KR102343793B1 - 데이터 처리 장치, 데이터 처리 시스템, 데이터 처리 방법, 데이터 처리 프로그램 및 기억 매체 - Google Patents

데이터 처리 장치, 데이터 처리 시스템, 데이터 처리 방법, 데이터 처리 프로그램 및 기억 매체 Download PDF

Info

Publication number
KR102343793B1
KR102343793B1 KR1020207010219A KR20207010219A KR102343793B1 KR 102343793 B1 KR102343793 B1 KR 102343793B1 KR 1020207010219 A KR1020207010219 A KR 1020207010219A KR 20207010219 A KR20207010219 A KR 20207010219A KR 102343793 B1 KR102343793 B1 KR 102343793B1
Authority
KR
South Korea
Prior art keywords
curve
life
algorithm
failure
unit
Prior art date
Application number
KR1020207010219A
Other languages
English (en)
Other versions
KR20200051758A (ko
Inventor
다쿠 시기하라
Original Assignee
미쓰비시덴키 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 미쓰비시덴키 가부시키가이샤 filed Critical 미쓰비시덴키 가부시키가이샤
Publication of KR20200051758A publication Critical patent/KR20200051758A/ko
Application granted granted Critical
Publication of KR102343793B1 publication Critical patent/KR102343793B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Marketing (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Operations Research (AREA)
  • Theoretical Computer Science (AREA)
  • Development Economics (AREA)
  • Game Theory and Decision Science (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

데이터 처리 장치(2)는 알고리즘 선택부(26)와 수명 예측 처리부를 구비한다. 알고리즘 선택부(26)는 장치를 구성하는 부품의 수명 예측을 행하기 위한 알고리즘이 격납된 알고리즘 기억부(30)로부터, 장치를 구성하는 부품 중 수명 예측의 대상이 되는 대상 부품에 대응하는 알고리즘을 선택한다. 수명 예측 처리부인 예방 보전 처리부(25)는, 알고리즘 선택부(26)에서 선택된 알고리즘을 기초로, 대상 부품의 수명 예측의 처리를 실행한다.

Description

데이터 처리 장치, 데이터 처리 시스템, 데이터 처리 방법, 데이터 처리 프로그램 및 기억 매체
본 발명은 장치의 예방 보전을 위한 데이터 처리를 행하는 데이터 처리 장치, 데이터 처리 시스템, 데이터 처리 방법, 데이터 처리 프로그램 및 기억 매체에 관한 것이다.
장치의 상태를 실측하여 얻어진 데이터를 기초로 고장의 징조를 감시하고, 이러한 징조의 레벨이 어느 기준 레벨을 초과할 때까지의 남은 수명을 예측함으로써, 장치에 발생하는 고장을 미연에 방지하는 예방 보전의 방법이 알려져 있다.
특허 문헌 1에는, 엔진을 구성하는 복수의 부품에 마련된 센서로부터의 정보에 기초하여 부품마다의 수명을 예측하고, 부품마다의 수명으로부터 엔진 전체의 수명을 예측하는 제어 시스템이 개시되어 있다. 특허 문헌 1의 제어 시스템은, 파쇄 혹은 코팅의 감손과 같은 고장의 요인이 되는 현상의 동향을 예측하고, 이러한 현상의 발생에 의한 고장의 발생율의 예측 결과로부터 부품의 남은 수명을 판정한다. 특허 문헌 1의 제어 시스템은, 엔진의 운전 상태에 대한 데이터를 이용하여, 수명 예측 알고리즘에 따라서 부품의 남은 수명을 계산하도록 프로그램된다.
특허 문헌 1: 일본 특표 2014-518974호 공보
제품의 생산 현장에서는, 계획적이고 또한 안정된 생산을 가능하게 하기 위해서, 생산 현장에서 가동시키는 생산 장치의 예방 보전이 요구되고 있다. 생산 장치의 상태를 실측하여 얻어진 데이터에 기초하여 수명 예측을 행하는 알고리즘을 이용하여, 생산 장치를 구성하는 부품마다의 수명을 계산함으로써, 생산 장치의 유저에게 메인터넌스 혹은 부품의 교환을 행해야 할 시기를 알릴 수 있다.
일반적으로, 생산 장치를 구성하는 부품은 생산 장치의 제조자에 의해서 임의로 선택된다. 특허 문헌 1의 기술을 생산 장치에 적용했을 경우, 생산 장치에 포함되는 예방 보전을 위한 애플리케이션의 제공자는, 생산 장치의 제조자마다에 대하여, 생산 장치의 구성에 특화된 알고리즘을 구축하게 된다. 또, 생산 장치에 있어서의 부품의 추가 혹은 부품의 교체가 있었을 때에도, 알고리즘은 재차 다시 구축하게 된다. 그 때문에, 특허 문헌 1의 기술에 의하면, 장치의 예방 보전을 위한 데이터 처리에 이용되는 애플리케이션의 구축에 요구되는 부담이 증대되는 일이 있다고 하는 문제가 있었다.
본 발명은 상기를 감안하여 이루어진 것으로서, 장치의 예방 보전을 위한 데이터 처리에 이용되는 애플리케이션의 구축에 요구되는 부담을 경감 가능하게 하는 데이터 처리 장치를 얻는 것을 목적으로 한다.
상술한 과제를 해결하여 목적을 달성하기 위해서, 본 발명에 따른 데이터 처리 장치는, 장치를 구성하는 부품의 수명 예측을 행하기 위한 알고리즘이 격납된 알고리즘 기억부로부터, 장치를 구성하는 부품 중 수명 예측의 대상이 되는 대상 부품에 대응하는 알고리즘을 선택하는 알고리즘 선택부와, 알고리즘 선택부에서 선택된 알고리즘을 기초로, 대상 부품의 수명 예측의 처리를 실행하는 수명 예측 처리부와, 부품의 수명을 검증하는 시험에서 얻어진 실측값과 시간의 관계를 나타내는 제1 커브와, 시험에서 부품이 고장에 이르렀을 때의 실측값인 고장 임계치를 기억하는 기억부를 구비한다. 수명 예측 처리부는 부품의 고장 원인을 나타내는 고장 모드의 특정에 사용되는 수치인 고장 모드값을 산출하는 고장 모드 산출부와, 고장 모드값을 기초로, 대상 부품의 고장 모드를 특정하는 고장 모드 특정부와, 대상 부품에 대한 제1 커브와 고장 임계치를 기억부로부터 읽어내어, 제1 커브를 고장 임계치와 대상 부품의 정격 수명에 기초하여 변형시킴으로써 제2 커브를 생성하고, 제2 커브에 기초하여, 대상 부품의 예측 수명의 산출에 사용되는 수명 예측 커브를 생성하는 수명 예측 커브 생성부를 구비한다.
본 발명에 따른 데이터 처리 장치는, 장치의 예방 보전을 위한 데이터 처리에 이용되는 애플리케이션의 구축에 요구되는 부담을 경감시킬 수 있다고 하는 효과를 달성한다.
도 1은 본 발명의 실시 형태 1에 따른 데이터 처리 시스템의 블록도이다.
도 2는 도 1에 나타내는 데이터 처리 장치에 인스톨되는 예방 보전 애플리케이션의 구성도이다.
도 3은 도 1에 나타내는 데이터 처리 장치의 기능 구성을 나타내는 블록도이다.
도 4는 도 1에 나타내는 데이터 처리 장치의 하드웨어 구성을 나타내는 블록도이다.
도 5는 도 2에 나타내는 태스크 핸들러에 의한 처리의 절차를 나타내는 순서도이다.
도 6은 도 3에 나타내는 예방 보전 처리부의 기능 구성을 나타내는 블록도이다.
도 7은 도 6에 나타내는 대표 수명 커브 선택부에 의해 선택되는 대표 수명 커브와 고장 임계치를 나타내는 도면이다.
도 8은 도 6에 나타내는 수명 예측 커브 생성부에 의한 수명 예측 커브의 생성에 대해 설명하는 제1 도면이다.
도 9는 도 6에 나타내는 수명 예측 커브 생성부에 의한 수명 예측 커브의 생성에 대해 설명하는 제2 도면이다.
도 10은 도 6에 나타내는 수명 예측 커브 생성부에 의한 수명 예측 커브의 생성에 대해 설명하는 제3 도면이다.
도 11은 도 6에 나타내는 수명 예측 커브 생성부에 의한 수명 예측 커브의 생성에 대해 설명하는 제4 도면이다.
도 12는 도 2에 나타내는 예방 보전 알고리즘이 선택된 이후에 있어서의 데이터 처리 장치에 의한 처리의 절차를 나타내는 순서도이다.
도 13은 도 6에 나타내는 수명 예측 커브 생성부에 의해 수명 예측 커브를 생성하는 처리의 절차를 나타내는 순서도이다.
이하에, 본 발명의 실시 형태에 따른 데이터 처리 장치, 데이터 처리 시스템, 데이터 처리 방법, 데이터 처리 프로그램 및 기억 매체를 도면에 기초하여 상세하게 설명한다. 덧붙여, 이 실시 형태에 의해 이 발명이 한정되는 것은 아니다.
실시 형태 1.
도 1은 본 발명의 실시 형태 1에 따른 데이터 처리 시스템의 블록도이다. 도 1에 나타내는 데이터 처리 시스템(1)은 데이터 처리 장치(2)와, 데이터 처리 장치(2)에 접속된 디바이스(4A)와, 디바이스(4A)에 접속된 디바이스(4B, 4C)를 가진다. 디바이스(4A, 4B, 4C)는 산업 데이터를 취득하는 장치이다. 산업 데이터는 온도, 전압, 전류, 거리, 속도, 혹은 위치 정보 등의 데이터로서, 생산 장치 혹은 생산 현장의 상태에 대한 모든 데이터이다.
디바이스(4B)는 생산 장치로서, 수치 제어(Numerical Control, NC) 장치, 서보 모터, 인버터 등의 구동 기기이다. 디바이스(4A)는 디바이스(4B)를 제어하는 컨트롤러로서, 프로그래머블 로직 컨트롤러(Programmable Logic Controller, PLC)이다. 디바이스(4C)는 생산 장치인 디바이스(4B)에 장착된 센서로서, 진동 센서, 집음 마이크, 전류 클램프 미터, 온도 센서 등이다. 데이터 처리 시스템(1)에 구비되는 디바이스(4A, 4B, 4C)의 수는 임의인 것으로 한다. 도 1에 나타내는 데이터 처리 시스템(1)은 1개의 디바이스(4A)와, 2개의 디바이스(4B)와, 1개의 디바이스(4C)를 구비한다. 디바이스(4A, 4B, 4C)는 상기의 구체적인 예로 한정되지 않고, 산업 데이터를 취득하는 장치이면 된다.
데이터 처리 장치(2)는 데이터 처리 프로그램인 예방 보전 애플리케이션(10)이 인스톨된 컴퓨터이다. 데이터 처리 장치(2)는 디바이스(4A, 4B, 4C)로부터 송신된 산업 데이터를 수집하고, 산업 데이터에 대한 일련의 기능 처리를 행한다. 데이터 처리 장치(2)에서 행해지는 기능 처리에는, 디바이스(4B)를 구성하는 부품의 수명을 예측하는 처리가 포함된다. 데이터 처리 장치(2)는 외부 서버인 클라우드 서버(3)에 접속되어 있다. 표시 장치(5)는 데이터 처리 장치(2)에 접속되어 있다. 표시 장치(5)는 데이터 처리 장치(2)에서 구해진 수명 예측의 결과를 표시한다.
디바이스(4B)에는 모터의 구동력을 전달하는 기구가 마련되어 있다. 디바이스(4B)의 고장의 주된 요인 중 하나는, 모터의 구동력을 받아 회전하는 회전 기구의 이상이다. 실시 형태 1에서는, 데이터 처리 장치(2)는 회전 기구를 구성하는 주된 부품인 베어링, 볼 나사, 기어 및 벨트 중 적어도 어느 것에 대한 수명 예측을 행함으로써, 디바이스(4B)의 예방 보전을 실시한다. 덧붙여, 도 1에서는, 모터, 동작 기구, 회전 기구 및 부품의 도시를 생략하고 있다.
도 2는 도 1에 나타내는 데이터 처리 장치(2)에 인스톨되는 예방 보전 애플리케이션(10)의 구성도이다. 데이터 처리 프로그램인 예방 보전 애플리케이션(10)은 태스크 핸들러(11)와 예방 보전 알고리즘(12)을 포함한다. 예방 보전 알고리즘(12)은 예방 보전을 위한 알고리즘이 실장되고, 실장되어 있는 알고리즘을 실현시키는 프로그램이다. 또, 예방 보전 알고리즘(12)은 프로그램을 대신하여, 예방 보전을 위한 계산 절차가 기술(記述)된 정보여도 된다. 계산 절차가 기술된 정보에는, 계산식을 나타내는 정보가 포함되어도 된다. 이 경우, 예방 보전을 위한 알고리즘은 기억되어 있는 예방 보전 알고리즘(12)을 예방 보전 애플리케이션(10)이 참조함으로써 실현된다. 이하의 설명에서는, 예방 보전 알고리즘(12)은 프로그램인 것으로 한다.
예방 보전 알고리즘(12)은 부품의 종류마다 준비된다. 본 실시 형태 1에서는 베어링용, 볼 나사용, 기어용, 및 벨트용 중 적어도 4개의 예방 보전 알고리즘(12)이 이용된다. 대형 베어링용, 중형 베어링용, 소형 베어링용과 같은, 보다 세분화된 부품 종류마다의 예방 보전 알고리즘(12)이 이용되어도 된다. 데이터 처리 장치(2)는 후술하는 제원 파라미터(15)를 참조함으로써, 부품마다의 치수의 차이 등의 제품 사양의 영향이 반영된 수명을 예측할 수 있다. 예를 들면, 치수가 상이한 베어링끼리에 대해 수명 예측을 행할 때는, 쌍방의 베어링에 대응하는 공통의 알고리즘을 이용하는 것으로 하고, 제원 파라미터(15)를 다르게 하면 된다.
디바이스(4B)의 유저는, 예방 보전 알고리즘(12)이 포함된 예방 보전 애플리케이션(10)을, 웹 사이트 상에서 애플리케이션을 판매하는 스토어 등으로부터 다운로드하여, 데이터 처리 장치(2)에 인스톨한다. 디바이스(4B)의 유저는, 예방 보전 애플리케이션(10)에 포함되어 있는 예방 보전 알고리즘(12)을 변경할 수 있다. 디바이스(4B)의 유저는, 웹 사이트 상에서 애플리케이션을 판매하는 스토어 등으로부터의 다운로드에 의해 예방 보전 알고리즘(12)을 추가 취득한다. 디바이스(4B)의 유저는, 예방 보전 알고리즘(12)이 기억되어 있는 기억 매체로부터 예방 보전 알고리즘(12)을 읽어냄으로써, 예방 보전 알고리즘(12)을 취득해도 된다. 디바이스(4B)의 유저는, 예방 보전 애플리케이션(10)이 기억되어 있는 기억 매체로부터 예방 보전 애플리케이션(10)을 읽어냄으로써, 예방 보전 애플리케이션(10)을 취득해도 된다. 디바이스(4B)의 유저는, 예방 보전 알고리즘(12)을 임의로 조합하여, 예방 보전 애플리케이션(10)을 구성할 수 있다.
예방 보전 애플리케이션(10)의 제공자는, 예방 보전 알고리즘(12)을 추가 및 교체 가능한 예방 보전 애플리케이션(10)을 디바이스(4B)의 유저에게 제공한다. 태스크 핸들러(11)는 예방 보전 애플리케이션(10)의 제공자에 의해 제공되는 예방 보전 애플리케이션(10)에 표준 장비되어 있다. 예방 보전 알고리즘(12)의 제공자는 부품의 제조자, 디바이스(4B)의 제조자 또는 예방 보전 애플리케이션(10)의 제공자가 상정되지만, 그 외의 사람이어도 된다.
태스크 핸들러(11)는 설정 정보(14)와 제원 파라미터(15)를 읽어들인다. 설정 정보(14)는 부품마다의 예방 보전 알고리즘(12)의 식별을 위한 식별 정보와, 부품마다의 제원 파라미터(15)의 식별을 위한 식별 정보와, 수명 예측을 실행하는 부품을 특정하는 정보와, 수명 예측을 실행하는 부품마다의 수명 예측의 실행 주기의 정보를 포함하는 파일이다. 대응하는 예방 보전 알고리즘(12)이 예방 보전 애플리케이션(10)에 포함되어 있는 부품 중, 어느 부품에 대해 수명 예측을 실행할지에 대해서는, 디바이스(4B)의 유저가 설정할 수 있다. 예방 보전 애플리케이션(10)에 포함되는 복수의 예방 보전 알고리즘(12) 중, 사용하는 예방 보전 알고리즘(12)은 유저가 임의로 선택할 수 있다.
제원 파라미터(15)는 부품 고유의 정보를 정의한 파일이다. 제원 파라미터(15)는 부품 고유의 고장 모드의 특정 시에 참조된다. 제원 파라미터(15)에는 부품의 치수 등의 정보가 포함된다. 구체적인 예를 들면, 베어링에 대한 제원 파라미터(15)에는, 전동체의 직경, 전동체의 피치 써클 지름, 전동체의 수, 접촉각의 각 수치가 포함된다. 디바이스(4B)의 유저는 부품의 제조자별, 또한 제품의 타입마다 작성된 제원 파라미터(15)를, 웹 혹은 기억 매체를 통해서 취득 가능한 것으로 한다. 제원 파라미터(15)는 부품의 제조자에 의해 작성되지만, 그 외의 사람에 의해 작성되어도 된다.
예방 보전 알고리즘(12)의 식별 정보는, 예방 보전 알고리즘(12)의 파일에 부여된 파일명이다. 제원 파라미터(15)의 식별 정보는, 제원 파라미터(15)의 파일에 부여된 파일명이다. 예방 보전 알고리즘(12)의 식별 정보는, 부품마다의 예방 보전 알고리즘(12)을 식별 가능한 정보이면 되고, 파일명 이외의 정보여도 된다. 제원 파라미터(15)의 식별 정보는, 부품마다의 제원 파라미터(15)를 식별 가능한 정보이면 되고, 파일명 이외의 정보여도 된다.
태스크 핸들러(11)는 예방 보전 애플리케이션(10)에 있어서의 예방 보전의 처리를 관리한다. 태스크 핸들러(11)에 의한 예방 보전의 처리의 관리에는, 부품마다의 수명 예측의 실행 주기의 관리가 포함된다. 태스크 핸들러(11)는 설정 정보(14)에 포함되는 실행 주기의 정보를 기초로, 각 부품의 실행 주기를 인식한다. 데이터 처리 장치(2)는 태스크 핸들러(11)에서의 실행 주기의 관리에 의해, 디바이스(4B)를 구성하는 부품마다 독립한 타이밍에서 수명 예측을 실행할 수 있다.
태스크 핸들러(11)는 실행 주기가 도래한 부품이 있었을 때, 해당 부품을 대상으로 하는 수명 예측을 실행한다. 덧붙여, 실행 주기의 정보에는, 수명 예측을 행하지 않는 것을 나타내는 정보를 설정 가능해도 된다. 수명 예측을 행하지 않는 것을 나타내는 정보가 설정되었을 경우, 태스크 핸들러(11)는 해당 설정에 해당하는 부품에 대한 수명 예측을 행하지 않는 것도 가능하다. 데이터 처리 장치(2)는 대응하는 예방 보전 알고리즘(12)이 예방 보전 애플리케이션(10)에 포함되어 있는 부품 중, 일부의 부품에 대응하는 예방 보전 알고리즘(12)을 실행하고, 그 외의 부품에 대응하는 예방 보전 알고리즘(12)을 실행하지 않는 것으로 해도 된다. 태스크 핸들러(11)는 수명 예측의 대상인 대상 부품에 대한 처리를 실행하기 위한 스레드(13)를 기동한다. 스레드(13)는 대상 부품에 대한 설정 정보(14)에 포함되는 식별 정보를 기초로, 해당 대상 부품에 대응하는 예방 보전 알고리즘(12)을 선택한다.
스레드(13)는 해당 대상 부품의 제원 파라미터(15)를 이용하여, 선택된 예방 보전 알고리즘(12)에 따른 처리를 실행한다. 태스크 핸들러(11)는 실행 주기가 도래한 부품이 복수 존재하고 있는 경우, 복수의 스레드(13)에 의한 병렬 처리를 행한다. 스레드(13)는 제원 파라미터(15)를 이용하여 예방 보전 알고리즘(12)에 따른 처리를 실행함으로써, 수명 예측의 처리를 실행한다. 예방 보전 알고리즘(12)의 기능에는, 고장 주파수의 산출, 실측값의 산출, 고장 모드의 특정, 대표 수명 커브의 선택, 수명 예측 커브의 선택, 및 예측 수명의 산출의 각 기능이 포함된다. 예방 보전 알고리즘(12)의 각 기능과, 고장 주파수와, 고장 모드에 대해서는 후술한다.
도 3은 도 1에 나타내는 데이터 처리 장치(2)의 기능 구성을 나타내는 블록도이다. 도 3에 나타내는 각 기능부는, 하드웨어인 컴퓨터에서의 예방 보전 애플리케이션(10)의 실행에 의해 실현된다.
데이터 처리 장치(2)는 데이터 처리 장치(2)를 제어하는 기능부인 제어부(20)와, 정보를 기억하는 기억부(21)와, 정보의 통신을 행하는 기능부인 통신부(22)와, 정보를 입력하는 기능부인 입력부(23)를 구비한다.
제어부(20)는 예방 보전의 처리를 관리하는 기능부인 예방 보전 관리부(24)를 구비한다. 실행 주기 관리부인 예방 보전 관리부(24)는 수명 예측의 실행 주기를 관리한다. 또, 제어부(20)는 수명 예측의 처리를 실행하는 기능부인 예방 보전 처리부(25)와, 부품마다의 예방 보전 알고리즘(12)으로부터, 장치를 구성하는 부품 중 수명 예측의 대상이 되는 대상 부품에 대응하는 예방 보전 알고리즘(12)을 선택하는 기능부인 알고리즘 선택부(26)를 구비한다. 예방 보전 처리부(25)는 알고리즘 선택부(26)에서 선택된 알고리즘을 기초로, 대상 부품의 수명 예측의 처리를 실행하는 수명 예측 처리부이다. 예방 보전 관리부(24)의 기능과 알고리즘 선택부(26)의 기능은, 태스크 핸들러(11)의 처리에 의해 실현된다. 예방 보전 처리부(25)의 기능은, 대상 부품의 제원 파라미터(15)가 이용되어 실행되는 예방 보전 알고리즘(12)의 처리에 의해 실현된다.
기억부(21)는 예방 보전 알고리즘(12)을 기억하는 알고리즘 기억부(30)와, 디바이스(4A, 4B, 4C)로부터 취득된 모든 부품에 대한 산업 데이터를 기억하는 산업 데이터 기억부(31)와, 부품의 제원 파라미터(15)를 기억하는 제원 파라미터 기억부(32)를 구비한다.
예방 보전 애플리케이션(10)에 포함되어 있는 예방 보전 알고리즘(12)은, 알고리즘 기억부(30)에 기억된다. 산업 데이터 기억부(31)는 1초 간격으로 취득된 산업 데이터를 시각 정보와 함께 기억한다. 산업 데이터 기억부(31)는 밀리초 오더 혹은 마이크로초 오더의 간격으로 취득된 산업 데이터를 기억해도 되고, 그 외의 간격으로 취득된 산업 데이터를 기억해도 된다. 구체적인 예를 들면, 베어링에 대해 디바이스(4B)에서 취득되는 산업 데이터에는, 모터 전류, 인코더 위치, 모터 속도, 온도의 각 값이 포함된다. 예방 보전 처리부(25)는 베어링에 대한 산업 데이터를 기초로, 베어링의 진동 주파수를 산출한다. 진동 주파수의 산출에 대해서는 후술한다. 베어링에 마련된 센서인 디바이스(4C)에서 취득되는 산업 데이터에는, 진동 가속도, 음압 레벨의 각 값이 포함된다. 제원 파라미터 기억부(32)는 디바이스(4B)의 각 부품에 대한 제원 파라미터(15)를 기억한다.
또, 기억부(21)는 예방 보전 처리부(25)에 의한 수명 예측의 결과를 기억하는 수명 데이터 기억부(33)와, 대표 수명 커브와 고장 임계치를 기억하는 대표 수명 커브 기억부(34)와, 설정 정보(14)를 기억하는 설정 정보 기억부(35)를 구비한다. 수명 데이터 기억부(33)는, 구체적으로는, 부품마다의 고장 모드와, 부품의 남은 수명과, 식별(identification) 스코어를 기억한다. 설정 정보(14)는 디바이스(4B)의 제조자에 의해서 데이터 처리 장치(2)로 입력된다. 대표 수명 커브, 고장 임계치, 고장 모드 및 식별 스코어에 대해서는 후술한다.
통신부(22)는 데이터 처리 장치(2)와, 데이터 처리 장치(2) 외의 장치인 디바이스(4A, 4B, 4C), 표시 장치(5) 및 클라우드 서버(3)와의 사이의 통신을 행한다. 입력부(23)는 데이터 처리 장치(2)로 설정 정보(14)를 입력한다.
도 4는 도 1에 나타내는 데이터 처리 장치(2)의 하드웨어 구성을 나타내는 블록도이다. 데이터 처리 장치(2)는 각종 처리를 실행하는 중앙 처리 장치(Central Processing Unit, CPU)(40)와, 프로그램 격납 영역 및 데이터 격납 영역을 포함하는 RAM(Random Access Memory, RAM)(41)과, 외부 기억 장치인 하드 디스크 드라이브(Hard Disk Drive, HDD)(42)를 구비한다. 또, 데이터 처리 장치(2)는 데이터 처리 장치(2)의 외부의 장치와의 접속 인터페이스인 통신 회로(43)와, 데이터 처리 장치(2)로의 입력 조작을 접수하는 입력 디바이스(44)를 구비한다. 도 4에 나타내는 데이터 처리 장치(2)의 각 부는, 버스(45)를 통해서 서로 접속되어 있다. 덧붙여, 외부 기억 장치는 반도체 메모리여도 된다.
HDD(42)는 예방 보전 애플리케이션(10)과, 산업 데이터와, 부품의 제원 파라미터(15)와, 수명 예측의 결과인 수명 데이터와, 대표 수명 커브와, 설정 정보(14)를 기억하고 있다. 도 3에 나타내는 기억부(21)의 기능은, HDD(42)를 사용하여 실현된다.
예방 보전 애플리케이션(10)은 RAM(41)에 로드된다. CPU(40)는 RAM(41) 내의 프로그램 격납 영역에서 예방 보전 애플리케이션(10)을 전개하여 각종 처리를 실행한다. RAM(41) 내의 데이터 격납 영역은, 각종 처리의 실행에 있어서의 작업 영역이 된다. 도 3에 나타내는 제어부(20)의 기능은, CPU(40)를 사용하여 실현된다. 통신부(22)의 기능은 통신 회로(43)를 사용하여 실현된다. 입력 디바이스(44)는 키보드 혹은 포인팅 디바이스를 포함한다. 도 3에 나타내는 입력부(23)의 기능은, 입력 디바이스(44)를 사용하여 실현된다.
덧붙여, 예방 보전 애플리케이션(10)은 컴퓨터에 의한 판독이 가능하게 된 기억 매체에 기억된 것이어도 된다. 데이터 처리 장치(2)는 기억 매체에 기억된 예방 보전 애플리케이션(10)을 HDD(42)에 격납해도 된다. 기억 매체는 플렉서블 디스크인 이동형 기억 매체, 혹은 반도체 메모리인 플래쉬 메모리여도 된다. 예방 보전 애플리케이션(10)은 다른 컴퓨터 혹은 서버 장치로부터 통신 네트워크를 통해서 데이터 처리 장치(2)에 인스톨되어도 된다.
도 5는 도 2에 나타내는 태스크 핸들러(11)에 의한 처리의 절차를 나타내는 순서도이다. 태스크 핸들러(11)는 데이터 처리 장치(2)인 컴퓨터의 기동에 맞추어 기동하고, 컴퓨터의 셧다운까지 기동 상태를 유지한다.
스텝 S1에서, 태스크 핸들러(11)는 설정 정보 기억부(35)로부터 읽어내진 설정 정보(14)에 포함되는 실행 주기의 정보를 기초로, 수명 예측의 실행 주기가 도래한 부품이 있는지 여부를 판단한다. 실행 주기가 도래한 부품이 없는 경우(스텝 S1, No), 스텝 S2에 있어서, 태스크 핸들러(11)는 실행 주기가 도래한 부품의 유무의 판단이 다음에 행해질 때까지 대기한다. 태스크 핸들러(11)는, 스텝 S2에 있어서의 대기 후, 처리를 스텝 S1로 되돌린다.
실행 주기가 도래한 부품이 있는 경우(스텝 S1, Yes), 태스크 핸들러(11)는, 스텝 S3에 있어서, 실행 주기가 도래한 부품인 대상 부품에 대한 스레드(13)를 기동한다. 스레드(13)는, 스텝 S4에 있어서, 대상 부품에 대한 설정 정보(14)에 포함되는 식별 정보를 기초로, 대상 부품의 예방 보전 알고리즘(12)을 선택한다. 이것에 의해, 태스크 핸들러(11)는, 알고리즘 기억부(30)에 기억되어 있는 예방 보전 알고리즘(12) 중에서, 대상 부품의 예방 보전 알고리즘(12)을 선택한다. 덧붙여, 태스크 핸들러(11)는, 스텝 S1에 있어서 수명 예측의 실행 주기가 도래한 부품이 있는 경우에 스텝 S3의 처리를 실행하는 것으로 한정되지 않는다. 태스크 핸들러(11)는 예방 보전 처리의 실행 지시가 유저에 의해서 입력부(23)로부터 입력되었을 경우에, 스텝 S3의 처리를 실행해도 된다.
스레드(13)는 제원 파라미터(15)의 식별 정보를 기초로, 제원 파라미터 기억부(32)로부터 읽어내지는 제원 파라미터(15) 중에서 수명 예측의 대상이 되는 부품에 대한 제원 파라미터(15)를 선택한다. 스텝 S5에 있어서, 스레드(13)는 해당 부품의 제원 파라미터(15)를 예방 보전 알고리즘(12)에 입력한다. 스텝 S6에서는, 스레드(13)에 있어서, 예방 보전 알고리즘(12)은, 예방 보전 처리인 수명 예측 처리를 실행한다. 스텝 S6에 있어서의 처리의 종료에 의해, 태스크 핸들러(11)는, 도 5에 나타내는 처리를 종료한다.
도 6은 도 3에 나타내는 예방 보전 처리부(25)의 기능 구성을 나타내는 블록도이다. 예방 보전 처리부(25)는 실측값을 산출하는 기능부인 실측값 산출부(51)와, 고장 모드마다의 고장 모드값을 산출하는 기능부인 고장 모드 산출부(52)와, 대표 수명 커브를 선택하는 기능부인 대표 수명 커브 선택부(53)와, 고장 모드를 특정하는 기능부인 고장 모드 특정부(54)와, 수명 예측 커브를 생성하는 기능부인 수명 예측 커브 생성부(55)를 구비한다. 또, 예방 보전 처리부(25)는 알고리즘 선택부(26)에서 선택된 예방 보전 알고리즘(12)을 기초로, 대상 부품의 예측 수명을 산출하는 기능부인 수명 예측부(56)를 구비한다.
고장 모드는 부품의 고장 원인을 나타낸다. 고장 모드값은 고장 모드의 특정에 사용되는 수치로 한다. 알고리즘 기억부(30)에 기억되어 있는 예방 보전 알고리즘(12)은, 부품의 각 고장 모드에 대한 고장 모드값의 산출식인 고장 모델을 포함한다. 실시 형태 1에서는, 고장 모드는, 부품에서 발생하는 진동의 주파수를 관측함으로써 고장의 징조를 감시할 수 있는 고장 원인으로 한다. 고장 모드 산출부(52)는 고장 모드값인 고장 주파수를 산출한다. 고장 주파수는 고장의 징조가 되는 진동의 주파수로서, 고장 모드마다 고유한 주파수로 한다. 고장 모드 산출부(52)는 고장 모드마다의 고장 주파수를 산출한다.
여기서, 부품의 하나인 베어링을 예로 하여, 고장 모드 산출부(52)에 의한 고장 주파수의 산출에 대해 설명한다. 베어링의 고장은 내륜, 외륜, 유지기 및 전동체에 있어서의 이상이 원인이 되어 발생할 수 있다. 베어링의 고장 모드에는, 이하에 기술하는 제1 내지 제5 고장 모드가 있다.
덧붙여, 이하에 나타내는 식 (1)~식 (5)에 있어서, 「d」는 전동체의 직경, 「D」는 전동체의 피치 써클의 지름, 「Z」는 전동체의 수, 「α」은 접촉각이라고 한다. 「d」 및 「D」의 단위는 밀리미터, 「α」의 단위는 라디안으로 한다. 고장 모드 산출부(52)는 제원 파라미터 기억부(32)로부터 읽어내진 제원 파라미터(15)로부터 「d」, 「D」, 「Z」 및 「α」의 각 값을 취득한다. 「f0」은 내륜의 회전 주파수라고 한다. 「f0」의 단위는 헤르츠로 한다. 고장 모드 산출부(52)는 산업 데이터 기억부(31)로부터 읽어내진 산업 데이터(16)를 기초로 「f0」의 값을 산출한다.
제1 고장 모드는, 유지기의 결함으로서, 유지기의 회전 주파수 fm을 관측함으로써 고장의 징조를 감시할 수 있다. 고장 모드 산출부(52)는, 다음의 식 (1)에 의해, 제1 고장 모드의 고장 주파수인 회전 주파수 fm을 산출한다.
[수학식 1]
Figure 112020036587274-pct00001
제2 고장 모드는 유지기의 결함으로서, 내륜에 대한 유지기의 상대 회전 주파수 fm-i를 관측함으로써 고장의 징조를 감시할 수 있다. 고장 모드 산출부(52)는 다음의 식 (2)에 의해, 제2 고장 모드의 고장 주파수인 상대 회전 주파수 fm-i를 산출한다.
[수학식 2]
Figure 112020036587274-pct00002
제3 고장 모드는 내륜의 레이스면의 흠집 혹은 박리(剝離)로서, 내륜에 대한 전동체의 통과 주파수 fi를 관측함으로써 고장의 징조를 감시할 수 있다. 고장 모드 산출부(52)는 다음의 식 (3)에 의해, 제3 고장 모드의 고장 주파수인 통과 주파수 fi를 산출한다.
[수학식 3]
Figure 112020036587274-pct00003
제4 고장 모드는 외륜의 레이스면의 흠집 혹은 박리로서, 외륜에 대한 전동체의 통과 주파수 fO를 관측함으로써 고장의 징조를 감시할 수 있다. 고장 모드 산출부(52)는 다음의 식 (4)에 의해, 제4 고장 모드의 고장 주파수인 통과 주파수 fO를 산출한다.
[수학식 4]
Figure 112020036587274-pct00004
제5 고장 모드는 전동체의 흠집 혹은 박리로서, 전동체의 자전 주파수 fb를 관측함으로써 고장의 징조를 감시할 수 있다. 고장 모드 산출부(52)는, 다음의 식 (5)에 의해, 제5 고장 모드의 고장 주파수인 자전 주파수 fb를 산출한다.
[수학식 5]
Figure 112020036587274-pct00005
대상 부품이 서보 모터의 베어링인 경우에 있어서, 고장 모드 산출부(52)는 서보 모터로부터 취득된 산업 데이터인 속도 모니터값을 기초로, 내륜의 회전 주파수 f0를 산출해도 된다. 또는, 고장 모드 산출부(52)는 외부 펄스 인코더에 마련된 센서인 디바이스(4C)로부터 취득된 산업 데이터인 펄스 수를 기초로, 내륜의 회전 주파수 f0를 산출해도 된다. 이러한 회전 주파수 f0는 특정의 주기에 있어서 변동하는 값이다. 고장 모드 산출부(52)는, 주기에 있어서의 일정한 타이밍에서 회전 주파수 f0를 취득한다.
일정한 타이밍에서 회전 주파수 f0가 취득됨으로써, 각 타이밍에서 고장 모드 산출부(52)에서 얻어지는 회전 주파수 f0의 값은, 일정하게 된다. 이 때문에, 회전 주파수 f0의 값은, 산업 데이터에 기초하여 산출되는 값을 대신하여, 제원 파라미터(15)에 미리 설정된 값으로 해도 된다. 덧붙여, 일정한 타이밍에서 회전 주파수 f0가 취득되는 경우에도, 디바이스(4B)의 상황에 의해서 회전 주파수 f0가 근소하게 변동하는 경우가 있기 때문에, 산업 데이터에 기초하여 회전 주파수 f0를 산출함으로써, 미리 설정된 값보다도 디바이스(4B)의 상황의 변화가 더 반영된 값을 얻는 것이 가능해진다. 이 때문에, 산업 데이터에 기초하는 산출에 의해 회전 주파수 f0를 취득함으로써, 고장 모드 산출부(52)는 정밀도 좋게 고장 주파수를 산출할 수 있다.
덧붙여, 고장 모드는 진동 이외의 현상을 관측함으로써 고장의 징조를 감시할 수 있는 고장 원인이어도 된다. 고장 모드 산출부(52)는 고장 주파수 이외의 고장 모드값을 산출해도 된다. 고장 모드가 기어박스의 온도를 관측함으로써 고장의 징조를 감시할 수 있는 고장 원인인 경우, 고장 모드값은 기어박스의 온도인 고장 온도로 한다. 고장 모드 산출부(52)는 고장 온도를 취득한다.
실측값 산출부(51)는 산업 데이터 기억부(31)에 기억되어 있는 산업 데이터(16)를 읽어내고, 읽어내진 산업 데이터(16)를 기초로, 고장 모드값에 대응하는 실측값을 산출한다. 고장 모드값이 고장 주파수인 경우, 실측값 산출부(51)는 실측값인 실측 주파수를 산출한다. 실측 주파수는 부품에 생기는 진동의 주파수로서, 디바이스(4B, 4C)에서 취득되는 산업 데이터(16)를 기초로 산출된다. 대상 부품이 베어링인 경우에 있어서, 실측값 산출부(51)는 디바이스(4B)에 의해 취득된 모터 전류치를 기초로 실측 주파수를 산출한다. 실측값 산출부(51)는 모터 전류치의 고속 푸리에 변환(Fast Fourier Transform, FFT)에 의한 주파수 성분의 추출에 의해서 실측 주파수를 산출한다. 덧붙여, 산업 데이터 기억부(31)는 FFT에 의해 얻어진 데이터를 산업 데이터(16)로서 기억한다.
디바이스(4B)에 있어서 진동 현상이 관측되지 않는 경우에는, 실측값 산출부(51)는 디바이스(4C)에서 취득된 산업 데이터(16)를 기초로 실측 주파수를 산출해도 된다. 실측 주파수의 산출에는, 베어링에 장착된 디바이스(4C)인 진동 센서에 의해 취득된 진동 가속도가 사용되어도 된다. 실측 주파수의 산출에는, 베어링에 장착된 디바이스(4C)인 음압 센서에 의해 취득된 음압 레벨이 사용되어도 된다. 실측값 산출부(51)는 진동 가속도 혹은 음압 레벨의 FFT에 의한 주파수 성분의 추출에 의해서 실측 주파수를 산출해도 된다.
고장 모드 특정부(54)는 고장 모드 산출부(52)에서 산출된 고장 모드값과 실측값 산출부(51)에서 산출된 실측값을 비교하여, 대상 부품의 고장 모드를 특정한다. 대상 부품이 베어링인 경우, 고장 모드 특정부(54)는 제1 내지 제5 고장 모드의 고장 주파수 중, 실측 주파수와 일치하는 고장 주파수를 판정한다. 실측 주파수가 상기의 회전 주파수 fm와 일치하는 경우, 고장 모드 특정부(54)는 대상 부품인 베어링의 고장 모드를 제1 고장 모드로 특정한다.
고장 모드 특정부(54)는 고장 모드값과 실측값의 일치 혹은 불일치를 판정하는 수법에는, 다양한 수법을 적용할 수 있다. 고장 모드 특정부(54)는 고장 모드값과 실측값이 일치하는지 여부를, 미리 결정된 오차 범위를 기초로 판정해도 된다. 고장 모드 특정부(54)는 고장 모드값과 실측값의 차가 오차 범위 내인 경우, 고장 모드값과 실측값이 일치한다고 판정한다. 고장 모드 특정부(54)는 특정된 고장 모드를 나타내는 정보를 대표 수명 커브 선택부(53)와 수명 예측 커브 생성부(55)로 보낸다.
고장 모드 특정부(54)는 고장 모드값에 대응하는 실측값으로서 관측된 현상이, 특정된 고장 모드의 고장에 의한 현상인 것의 정확도를 나타내는 식별 스코어를 산출해도 된다. 고장 모드 특정부(54)는 고장 모드값과 실측값의 차를 기초로, 식별 스코어를 산출한다. 식별 스코어는, 수명 예측 커브 생성부(55)를 통하여 수명 예측부(56)로 보내진다. 디바이스(4B)의 사용자는, 식별 스코어를 참조함으로써, 대상 부품의 고장 판정의 신뢰성을 판단할 수 있다.
대표 수명 커브 선택부(53)는 고장 모드 특정부(54)에 의해 특정된 고장 모드를 기초로, 대표 수명 커브와 고장 임계치를 선택한다. 제1 커브인 대표 수명 커브는, 부품의 수명 가속 시험에 의해 얻어진 데이터를 근사시킨 곡선으로서, 시험에서 생긴 현상에 대한 고장 모드값에 대응하는 실측값과 시간의 관계를 나타낸다. 수명 가속 시험은 시험 대상인 부품의 열화를 의도적으로 진행시켜, 부품의 수명을 검증하는 시험이다. 고장 임계치는 시험에서 부품이 고장에 이르렀을 때의 실측값으로 한다.
도 7은 도 6에 나타내는 대표 수명 커브 선택부(53)에 의해 선택되는 대표 수명 커브 C1과 고장 임계치 T를 나타내는 도면이다. 고장 모드값이 고장 주파수인 경우, 대표 수명 커브 C1은 시험에서 생긴 진동의 진폭과 시간의 관계를 나타낸다. 고장 임계치 T는 시험에서 부품이 고장에 이르렀을 때의 진동 진폭이다. 즉, 고장 모드값이 고장 주파수인 경우, 고장 주파수에 대응하는 진동 진폭이 시계열로 플롯되어 있다. 도 7에 있어서, 세로축은 진동 진폭을 나타내고, 가로축은 시간을 나타낸다. 이하의 설명에서, 진동 진폭을 나타내는 세로축을 Y축, 시간을 나타내는 가로축을 X축이라고 칭하는 경우가 있다. 덧붙여, 같은 제조원에서 제조되고, 또한 같은 타입의 부품이더라도, 수명 가속 시험에 의해 얻어지는 데이터에는 편차가 생기는 경우가 있다. 대표 수명 커브 C1은 같은 제조원에서 제조되고, 또한 같은 타입의 부품에 의해 얻어지는 수명 커브를 대표하는 수명 커브로 한다.
커브 기억부인 대표 수명 커브 기억부(34)는, 디바이스(4B)의 각 부품에 대해서, 고장 모드마다의 대표 수명 커브와 고장 임계치를 기억한다. 대표 수명 커브 선택부(53)는 대상 부품과 특정된 고장 모드에 대응하는 대표 수명 커브 C1과 고장 임계치 T를, 대표 수명 커브 기억부(34)에 기억되어 있는 대표 수명 커브와 고장 임계치로부터 선택한다. 시간 L1은 대표 수명 커브 C1에 있어서 진동 진폭이 고장 임계치 T에 도달할 때의 시간으로 한다.
대표 수명 커브 선택부(53)는 대표 수명 커브 C1과 고장 임계치 T의 선택 결과를, 수명 예측 커브 생성부(55)로 보낸다. 덧붙여, 대표 수명 커브 C1이 나타내질 때의 세로축은, 진동 진폭 이외에, 고장 모드값에 따른 파라미터인 온도 혹은 마찰력 등을 나타내도 된다. 또, 가로축은 시간 이외에, 부품의 열화의 진행을 나타내는 파라미터인 적산(積算) 온도 등을 나타내도 된다.
수명 예측 커브 생성부(55)는 대표 수명 커브 선택부(53)에서 선택된 대표 수명 커브 C1에 기초하여, 수명 예측 커브를 생성한다. 수명 예측 커브는 수명 예측의 실행시보다 후에 있어서의 실측값의 시계열 변화의 예측을 나타낸다. 고장 모드값이 고장 주파수인 경우, 수명 예측 커브는, 수명 예측의 실행시보다 후에 있어서의 진동 진폭과 시간의 관계를 나타낸다.
도 8은 도 6에 나타내는 수명 예측 커브 생성부(55)에 의한 수명 예측 커브의 생성에 대해 설명하는 제1 도면이다. 도 9는 도 6에 나타내는 수명 예측 커브 생성부(55)에 의한 수명 예측 커브의 생성에 대해 설명하는 제2 도면이다. 수명 예측 커브 생성부(55)는 대표 수명 커브 선택부(53)에 의한 선택 결과에 따라, 대표 수명 커브 기억부(34)로부터 대표 수명 커브 C1과 고장 임계치 T를 읽어낸다.
수명 가속 시험에 의해 얻어지는 대표 수명 커브 C1과 실측값의 플롯은, 시간축의 길이가 상이하다. 수명 예측 커브 생성부(55)는 대표 수명 커브 C1의 시간 L1까지의 시간축을, 대상 부품의 실제의 사용 상황에 맞춘 정격 수명인 시간 L2까지의 시간축에 맞춰, 가로축 방향으로 대표 수명 커브 C1을 신장시킨다. 정격 수명은 표준적인 제품의 이용에 있어서의 수명이다.
구체예를 말하면, 대상 부품인 볼 베어링이 구슬 베어링인 경우의 정격 수명은, (C/P)3×16667/n으로 나타내진다. 대상 부품인 볼 베어링이 롤러 베어링인 경우의 정격 수명은, (C/P)10/3×16667/n으로 나타내진다. 여기서, 「C」는 기본 동정격 하중, 「P」는 동등가 하중, 「n」은 회전 속도라고 한다. 「C」 및 「P」의 단위는 뉴턴, 「n」의 단위는 분당 회전수(revolution per minute, rpm)로 한다. 정격 수명의 단위는 시간(hour)이다.
동등가 하중인 「P」에 대해서는, P=Xr×Fr+Ya×Fa가 성립된다. 여기서, 「Xr」은 레이디얼(radial) 계수, 「Fr」은 레이디얼 하중, 「Ya」는 액시얼(axial) 계수, 「Fa」는 액시얼 하중으로 한다. 「Fr」 및 「Fa」의 단위는 뉴턴으로 한다. 수명 예측 커브 생성부(55)는 제원 파라미터 기억부(32)로부터 읽어내진 제원 파라미터(15)로부터 「C」, 「n」, 「Xr」 및 「Ya」의 각 값을 취득한다. 수명 예측 커브 생성부(55)는 설정 프로파일로부터 「Fr」 및 「Fa」의 각 값을 취득한다. 설정 프로파일은, 디바이스(4B)에 고유의 정보와 디바이스(4B)의 사용 환경을 정의한 파일이다. 또, 수명 예측 커브 생성부(55)는 볼 베어링이 구슬 베어링과 롤러 베어링 중 어느 것인지를, 설정 프로파일을 기초로 판단한다. 수명 예측 커브 생성부(55)는 제원 파라미터(15)와 설정 프로파일을 기초로, 정격 수명인 시간 L2를 산출해도 된다.
수명 예측 커브 생성부(55)는 고장 임계치 T와 정격 수명인 시간 L2에 기초하여, 대표 수명 커브 C1을 변형시킴으로써, 제2 커브인 정격 커브 C2를 생성한다. 정격 커브 C2에 의해 나타내지는 지수 함수 Y=a×bx+c의 상수 「a」, 「b」, 「c」는, 시간 L2에 있어서의 진동 진폭이 고장 임계치 T와 일치할 때까지 X축 방향으로 대표 수명 커브 C1을 길게 늘림으로써 구해진다. 수명 예측 커브 생성부(55)는 X축과 Y축 중 X축에 대한 스케일링에 의해, 대표 수명 커브 C1을 길게 늘린다.
도 10은 도 6에 나타내는 수명 예측 커브 생성부(55)에 의한 수명 예측 커브의 생성에 대해 설명하는 제3 도면이다. 수명 예측 커브 생성부(55)는 산업 데이터(16) 중, 현재까지의 진동 진폭의 실측값을 산업 데이터 기억부(31)로부터 읽어내고, 읽어내진 실측값을 현재까지의 시간축에 있어서 플롯한다. 대상 부품이 베어링인 경우에 있어서, 진동 진폭은 디바이스(4B)에 의해 취득된 모터 전류치를 실측값 산출부(51)에서 FFT하여 얻어진 데이터로부터 추출할 수 있다. 수명 예측 커브 생성부(55)는 실측값의 근사에 의해, 지수 함수 Y=a'×bx+c'를 나타내는 실측 커브 C3을 생성한다. 수명 예측 커브 생성부(55)는 고장 모드값에 대응하는 실측값인 진동 진폭의 실측값과 시간의 관계를 나타내는 제3 커브인 실측 커브 C3을 생성한다. 실측 커브 C3의 상수 「b」는, 정격 커브 C2의 상수 「b」와 일치시킨다. 시간 L3은 실측 커브 C3에 있어서 진동 진폭이 고장 임계치 T에 도달할 때의 시간으로 한다.
현재로부터 가장 최근의 실측값이 가장 최근 이전의 실측값보다도 작은 경우에, 상수 「a'」가 마이너스의 값이 되는 경우가 있다. 이 경우, 수명 예측 커브 생성부(55)는 전회(前回)의 수명 예측에서 산출된 상수 「a'」를 실측 커브 C3의 생성에 사용해도 된다. 또는, 전회의 상수 「a'」가 존재하지 않는 경우는, 수명 예측 커브 생성부(55)는 대표 수명 커브 C1의 상수 「a」를 실측 커브 C3의 생성에 사용해도 된다.
도 11은 도 6에 나타내는 수명 예측 커브 생성부(55)에 의한 수명 예측 커브 C4의 생성에 대해 설명하는 제4 도면이다. 수명 예측 커브 생성부(55)는 정격 커브 C2와 실측 커브 C3의 혼합에 의해, 수명 예측 커브 C4를 생성한다. 이것에 의해, 예방 보전 처리부(25)는 정격 커브 C2와 실측 커브 C3을 기초로 생성된 수명 예측 커브 C4를 얻는다. 수명 예측 커브 생성부(55)는 수명 예측 커브 C4에 있어서의 실측 커브 C3의 지배 정도를 나타내는 가중치를 실측 커브 C3에 적용시킴으로써 수명 예측 커브 C4를 생성한다. 이것에 의해, 수명 예측 커브 생성부(55)는 수명 예측 커브 C4에 포함되는 실측 커브 C3의 비율을 변화시킨다.
수명 예측 커브 생성부(55)는 수명 예측 커브 C4의 생성에 사용되는 가중치 비율 p를, 0%를 하한, 또한 100%를 상한으로서 변화시킨다. 가중치 비율 p가 0%일 때, 수명 예측 커브 C4는 정격 커브 C2와 일치한다. 가중치 비율 p가 100%일 때, 수명 예측 커브 C4는 실측 커브 C3과 일치한다. 시간 L4는 수명 예측 커브 C4에 있어서 진동 진폭이 고장 임계치 T에 도달할 때의 시간으로 한다.
여기서, 가중치 비율 p의 설정예에 대해 설명한다. 가중치 비율 p는, 도 11에 나타내는 세로축인 진동 진폭의 조건과, 가로축인 시간의 조건에 기초하여 결정된다. 진동 진폭의 조건을 Y축 조건, 시간의 조건을 X축 조건으로 한다.
디바이스(4B)의 가동을 개시시키고 나서 첫회의 수명 예측에서는, 첫회라고 하는 X축 조건에 기초하여, 가중치 비율 p는 0%로 한다. 또, 디바이스(4B)의 가동을 개시하고 나서 현재까지의 시간이 대상 부품의 정격 수명인 시간 L2를 초과하고 있는 경우, 시간 L2를 초과했다고 하는 X축 조건에 기초하여, 가중치 비율 p는 100%로 한다.
현재에 있어서의 진동 진폭의 실측값이 전회의 수명 예측시의 실측값과 일정하는 경우, 진동 진폭이 일정하다고 하는 Y축 조건에 기초하여, 가중치 비율 p는 전회의 수명 예측에서 결정된 가중치 비율 p와 같은 것으로 한다. 덧붙여, 2개의 실측값이 일정하다는 것은, 2개의 실측값의 차가 미리 설정된 퍼센트 범위 내인 것을 가리키는 것으로 한다.
현재에 있어서의 진동 진폭의 실측값이 전회의 수명 예측시의 실측값과 일정하지 않고, 또한 현재의 실측값이 전회의 실측값로부터 증가하고 있는 경우, 진동 진폭이 증가했다고 하는 Y축 조건에 기초하여, 가중치 비율 p는 전회보다 증가시킨다. 이러한 조건에 더하여, 디바이스(4B)의 가동을 개시하고 나서 현재까지의 시간이 시간 L2의 70% 미만과 같은 X축 조건이 성립되는 경우, 가중치 비율 p는 전회보다 10% 증가시킨다. 또, 디바이스(4B)의 가동을 개시하고 나서 현재까지의 시간이 시간 L2의 70% 이상이면서 또한 80% 미만과 같은 X축 조건이 성립되는 경우, 가중치 비율 p는 전회보다 20% 증가시킨다. 또, 디바이스(4B)의 가동을 개시하고 나서 현재까지의 시간이 시간 L2의 80% 이상이면서 또한 90% 미만과 같은 X축 조건이 성립되는 경우, 가중치 비율 p는 전회보다 30% 증가시킨다. 또, 디바이스(4B)의 가동을 개시하고 나서 현재까지의 시간이 시간 L2의 90% 이상이면서 또한 100% 미만과 같은 X축 조건이 성립되는 경우, 가중치 비율 p는 전회보다 40% 증가시킨다.
현재에 있어서의 진동 진폭의 실측값이 전회의 수명 예측시의 실측값과 일정하지 않고, 또한 현재의 실측값이 전회의 실측값로부터 감소하고 있는 경우, 진동 진폭이 감소했다고 하는 Y축 조건에 기초하여, 가중치 비율 p는 전회보다 감소시키던지, 전회와 같은 것으로 한다. 이러한 조건에 더하여, 디바이스(4B)의 가동을 개시하고 나서 현재까지의 시간이 시간 L2의 70% 미만과 같은 X축 조건이 성립되는 경우, 가중치 비율 p는 전회보다 10% 감소시킨다. 또, 디바이스(4B)의 가동을 개시하고 나서 현재까지의 시간이 시간 L2의 70% 이상이면서 또한 100% 미만과 같은 X축 조건이 성립되는 경우, 가중치 비율 p는 전회와 같은 것으로 한다.
이와 같이, X축 조건에 기초하여 가중치 비율 p가 설정됨으로써, 수명 예측 커브 생성부(55)는 디바이스(4B)의 가동을 개시하고 나서 초기의 단계로서 실측값의 축적이 적은 시기에서는, 실측 커브 C3에 비해 정격 커브 C2가 지배적이 되도록 가중된 수명 예측 커브 C4를 생성한다. 이것에 의해, 예방 보전 처리부(25)는 실측값의 축적이 적은 시기에 있어서, 정격 수명에 가중을 둔 수명 예측을 행할 수 있다. 또, 수명 예측 커브 생성부(55)는 시간이 경과함에 따라, 실측 커브 C3의 지배 정도가 높아지는 가중치를 적용한다. 수명 예측 커브 생성부(55)는 시간의 경과에 의해 실측값의 축적이 많아짐에 따라, 실측 커브 C3에 근접시키도록 수명 예측 커브 C4를 변화시킨다. 이것에 의해, 예방 보전 처리부(25)는 실측값의 축적이 많아짐에 따라, 축적된 실측값에 가중을 둔 수명 예측을 행할 수 있다. 또, Y축 조건에 기초하여 가중치 비율 p가 설정됨으로써, 수명 예측 커브 생성부(55)는 진동 진폭의 실측값이 증가함에 따라, 실측 커브 C3의 지배 정도가 높아지는 가중치를 적용한다. 수명 예측 커브 생성부(55)는 진동 진폭이 증가함에 따라 실측 커브 C3에 근접시키도록 수명 예측 커브 C4를 변화시킨다. 이것에 의해, 예방 보전 처리부(25)는 실측값이 증가하고 있는 상황에 맞는 수명 예측을 행할 수 있다.
수명 예측부(56)는 수명 예측 커브 생성부(55)에서 생성된 수명 예측 커브 C4에 의해 나타내지는 지수 함수에 고장 임계치 T를 대입함으로써, 시간 L4를 구한다. 수명 예측부(56)는 현재부터 시간 L4까지의 시간인 남은 수명을 산출한다. 수명 예측부(56)는 고장 모드 특정부(54)에 의해 특정된 고장 모드와, 수명 예측부(56)에 의해 산출된 수명 예측의 결과(17)인 남은 수명과, 고장 모드 특정부(54)에 의해 산출된 식별 스코어를, 수명 데이터 기억부(33)로 보낸다. 수명 데이터 기억부(33)는 고장 모드와, 남은 수명과, 식별 스코어를 기억한다. 표시 장치(5)는 수명 데이터 기억부(33)로부터 읽어내진 고장 모드와, 남은 수명과, 식별 스코어를 표시한다.
도 12는 도 2에 나타내는 예방 보전 알고리즘(12)이 선택된 이후에 있어서의 데이터 처리 장치(2)에 의한 처리의 절차를 나타내는 순서도이다. 스텝 S11에서, 고장 모드 산출부(52)는 대상 부품의 각 고장 모드의 고장 주파수를 산출한다. 스텝 S12에서, 실측값 산출부(51)는 부품에 생기는 진동의 주파수의 실측값을 산출한다.
스텝 S13에서, 고장 모드 특정부(54)는 실측값인 실측 주파수와 고장 주파수를 비교하여, 대상 부품의 고장 모드를 특정한다. 스텝 S14에서, 고장 모드 특정부(54)는 특정된 고장 모드의 식별 스코어를 산출한다. 대표 수명 커브 선택부(53)는 특정된 고장 모드를 기초로, 대표 수명 커브와 고장 임계치를 선택한다.
스텝 S15에서, 수명 예측 커브 생성부(55)는 대표 수명 커브 선택부(53)에 의해 선택된 대표 수명 커브 C1과 고장 임계치 T를 대표 수명 커브 기억부(34)로부터 읽어낸다. 스텝 S16에서, 수명 예측 커브 생성부(55)는 읽어내진 대표 수명 커브 C1에 기초하여, 수명 예측 커브 C4를 생성한다.
도 13은 도 6에 나타내는 수명 예측 커브 생성부(55)에 의해 수명 예측 커브 C4를 생성하는 처리의 절차를 나타내는 순서도이다. 스텝 S21에서, 수명 예측 커브 생성부(55)는 정격 수명과 고장 임계치 T에 기초하여 대표 수명 커브 C1의 시간축을 신장시킴으로써, 정격 커브 C2를 구한다.
스텝 S22에서, 수명 예측 커브 생성부(55)는 현재까지의 진동 진폭의 실측값을 기초로, 실측 커브 C3을 구한다. 스텝 S23에서, 수명 예측 커브 생성부(55)는 실측 커브 C3에 근접시키는 가중치를 정격 커브 C2에 적용시킴으로써, 가중치에 따른 수명 예측 커브 C4를 구한다. 이것에 의해, 수명 예측 커브 생성부(55)에 의해 수명 예측 커브 C4를 생성하는 처리를 종료한다.
도 12에 나타내는 스텝 S17에서, 수명 예측부(56)는 수명 예측 커브 생성부(55)에서 생성된 수명 예측 커브 C4를 기초로, 대상 부품의 남은 수명을 산출한다. 스텝 S18에서, 수명 데이터 기억부(33)는 스텝 S13에서 특정된 고장 모드와, 스텝 S17에서 산출된 남은 수명과, 스텝 S14에서 산출된 식별 스코어를 기억한다. 스텝 S19에서, 표시 장치(5)는 수명 데이터 기억부(33)로부터 읽어내진 고장 모드와, 남은 수명과, 식별 스코어를 표시한다. 이것에 의해, 데이터 처리 장치(2)는, 도 12에 나타내는 처리를 종료한다.
실시 형태 1의 데이터 처리 장치(2)의 기능에 의한 처리의 일부 혹은 전체는, 클라우드 서버(3)에 있어서 행해져도 된다. 클라우드 서버(3)는 고장 모드값의 산출식인 고장 모델을 유지하고, 고장 모드값의 산출과 고장 모드의 특정을 행해도 된다.
실시 형태 1에 의하면, 데이터 처리 장치(2)는 대상 부품에 대응하는 예방 보전 알고리즘(12)을 선택하는 알고리즘 선택부(26)를 구비한다. 생산 장치의 구성에 특화되어 구축된 알고리즘이 예방 보전 애플리케이션(10)에 탑재되는 경우와 비교하여, 예방 보전 애플리케이션(10)의 구축에 요구되는 부담을 경감시킬 수 있다. 이것에 의해, 장치의 예방 보전을 위한 데이터 처리에 이용되는 애플리케이션의 구축에 요구되는 부담을 경감시킬 수 있다고 하는 효과를 달성한다.
실시 형태 2.
본 발명의 실시 형태 2에 따른 데이터 처리 장치(2)는, 디바이스(4B)를 구성하는 각 부품에 대해서, 부품의 사용이 개시되고 나서의 경과 시간에 따라서, 부품마다의 수명 예측의 실행 주기를 변경한다. 실시 형태 2에 따른 데이터 처리 장치(2)는, 실시 형태 1에 따른 데이터 처리 장치(2)와 같은 구성을 구비한다. 실행 주기 관리부인 예방 보전 관리부(24)는, 부품의 사용이 개시되고 나서의 경과 시간에 따라 실행 주기를 변경한다.
진동 진폭의 실측값의 상승은, 부품의 수명 마감에 가까운 시기일수록 빨라진다. 실시 형태 2에서는, 예방 보전 관리부(24)는 부품의 사용이 개시되고 나서의 경과 시간이 길어짐에 따라, 수명 예측의 실행 주기를 짧게 하여, 수명 예측 처리의 실행 빈도를 높게 한다. 예방 보전 관리부(24)는, 실시 형태 1에 있어서의 가중치 비율 p를 기초로, 수명 예측의 실행 주기를 변경해도 된다. 이것에 의해, 예방 보전 관리부(24)는 진동 진폭의 실측값이 높아질수록, 또 시간이 경과할수록, 수명 예측 처리의 실행 빈도를 높게 한다.
실시 형태 2에 의하면, 데이터 처리 장치(2)는 부품의 사용이 개시되고 나서의 경과 시간에 따라서, 부품마다의 수명 예측의 실행 주기를 변경함으로써, 실측값의 상승 정도에 따라 수명 예측 처리의 실행 빈도를 변경할 수 있다. 이것에 의해, 데이터 처리 장치(2)는 남은 수명의 예측 정밀도를 높게 할 수 있다.
이상의 실시 형태에 나타낸 구성은, 본 발명의 내용의 일례를 나타내는 것이며, 다른 공지의 기술과 조합하는 것도 가능하고, 본 발명의 요지를 일탈하지 않는 범위에서, 구성의 일부를 생략, 변경하는 것도 가능하다.
1: 데이터 처리 시스템 2: 데이터 처리 장치
3: 클라우드 서버 4A, 4B, 4C: 디바이스
5: 표시 장치 10: 예방 보전 애플리케이션
11: 태스크 핸들러 12: 예방 보전 알고리즘
13: 스레드 14: 설정 정보
15: 제원 파라미터 16: 산업 데이터
20: 제어부 21: 기억부
22: 통신부 23: 입력부
24: 예방 보전 관리부 25: 예방 보전 처리부
26: 알고리즘 선택부 30: 알고리즘 기억부
31: 산업 데이터 기억부 32: 제원 파라미터 기억부
33: 수명 데이터 기억부 34: 대표 수명 커브 기억부
35: 설정 정보 기억부 40: CPU
41: RAM 42: HDD
43: 통신 회로 44: 입력 디바이스
45: 버스 51: 실측값 산출부
52: 고장 모드 산출부 53: 대표 수명 커브 선택부
54: 고장 모드 특정부 55: 수명 예측 커브 생성부
56: 수명 예측부

Claims (16)

  1. 장치를 구성하는 부품의 수명 예측을 행하기 위한 알고리즘이 격납된 알고리즘 기억부로부터, 상기 장치를 구성하는 상기 부품 중 수명 예측의 대상이 되는 대상 부품에 대응하는 알고리즘을 선택하는 알고리즘 선택부와,
    상기 알고리즘 선택부에서 선택된 알고리즘을 기초로, 상기 대상 부품의 수명 예측의 처리를 실행하는 수명 예측 처리부와,
    상기 부품의 수명을 검증하는 시험에서 얻어진 실측값과 시간의 관계를 나타내는 제1 커브와, 상기 시험에서 상기 부품이 고장에 이르렀을 때의 상기 실측값인 고장 임계치를 기억하는 기억부를 구비하고,
    상기 수명 예측 처리부는,
    상기 부품의 고장 원인을 나타내는 고장 모드의 특정에 사용되는 수치인 고장 모드값을 산출하는 고장 모드 산출부와,
    상기 고장 모드값을 기초로, 상기 대상 부품의 고장 모드를 특정하는 고장 모드 특정부와,
    상기 대상 부품에 대한 상기 제1 커브와 상기 고장 임계치를 상기 기억부로부터 읽어내어, 상기 제1 커브를 상기 고장 임계치와 상기 대상 부품의 정격 수명에 기초하여 변형시킴으로써 제2 커브를 생성하고, 상기 제2 커브에 기초하여, 상기 대상 부품의 예측 수명의 산출에 사용되는 수명 예측 커브를 생성하는 수명 예측 커브 생성부를
    구비하는 것을 특징으로 하는 데이터 처리 장치.
  2. 청구항 1에 있어서,
    상기 알고리즘 선택부는 상기 부품의 종류마다 선택 가능한 알고리즘이 격납된 상기 알고리즘 기억부로부터, 상기 대상 부품에 대응하는 알고리즘을 선택하는 것을 특징으로 하는 데이터 처리 장치.
  3. 청구항 1 또는 청구항 2에 있어서,
    상기 알고리즘 선택부는 상기 부품마다 대응하는 알고리즘을 식별하기 위한 식별 정보를 기초로 알고리즘을 선택하는 것을 특징으로 하는 데이터 처리 장치.
  4. 청구항 1 또는 청구항 2에 있어서,
    상기 알고리즘 선택부는 상기 부품마다의 상기 수명 예측의 실행 주기의 정보에 기초하여, 상기 실행 주기가 도래한 상기 대상 부품에 대응하는 알고리즘을 선택하는 것을 특징으로 하는 데이터 처리 장치.
  5. 청구항 4에 있어서,
    상기 부품마다의 상기 실행 주기를 관리하는 실행 주기 관리부를 구비하고,
    상기 실행 주기 관리부는 상기 부품의 사용이 개시되고 나서의 경과 시간에 따라 상기 실행 주기를 변경하는 것을 특징으로 하는 데이터 처리 장치.
  6. 청구항 1 또는 청구항 2에 있어서,
    상기 수명 예측 처리부는 상기 알고리즘 선택부에 의해서 선택되지 않았던 알고리즘을 이용하지 않고 상기 수명 예측의 처리를 실행하는 것을 특징으로 하는 데이터 처리 장치.
  7. 청구항 1 또는 청구항 2에 있어서,
    상기 알고리즘 선택부는, 상기 부품마다 고유의 정보로서 상기 대상 부품에 대응하는 제원 파라미터를 상기 수명 예측 처리부에 입력하고,
    상기 수명 예측 처리부는 상기 알고리즘 선택부에서 선택된 알고리즘과 입력된 상기 제원 파라미터를 기초로, 상기 수명 예측의 처리를 실행하는 것을 특징으로 하는 데이터 처리 장치.
  8. 청구항 1 또는 청구항 2에 있어서,
    상기 수명 예측 커브 생성부는 상기 고장 모드값에 대응하는 실측값과 시간의 관계를 나타내는 제3 커브를 생성하고, 상기 제2 커브와 상기 제3 커브의 혼합에 의해 상기 수명 예측 커브를 생성하는 것을 특징으로 하는 데이터 처리 장치.
  9. 청구항 8에 있어서,
    상기 수명 예측 커브 생성부는 상기 수명 예측 커브에 있어서의 상기 제3 커브의 지배 정도를 나타내는 가중치를 상기 제3 커브에 적용시킴으로써 상기 수명 예측 커브를 생성하는 것을 특징으로 하는 데이터 처리 장치.
  10. 청구항 9에 있어서,
    상기 수명 예측 커브 생성부는 시간이 경과함에 따라 상기 제3 커브의 지배 정도가 높아지는 상기 가중치를 적용시키는 것을 특징으로 하는 데이터 처리 장치.
  11. 청구항 9에 있어서,
    상기 수명 예측 커브 생성부는 상기 실측값이 증가함에 따라 상기 제3 커브의 지배 정도가 높아지는 상기 가중치를 적용시키는 것을 특징으로 하는 데이터 처리 장치.
  12. 청구항 1 또는 청구항 2에 있어서,
    상기 고장 모드 특정부는 상기 고장 모드값에 대응하는 실측값으로서 관측된 현상이, 특정된 상기 고장 모드의 고장에 의한 현상인 것의 정확도를 나타내는 식별(identification) 스코어를 산출하는 것을 특징으로 하는 데이터 처리 장치.
  13. 장치를 구성하는 부품의 수명 예측을 행하기 위한 알고리즘으로서 상기 부품의 종류마다 선택 가능한 알고리즘이 격납된 알고리즘 기억부로부터, 상기 장치를 구성하는 상기 부품 중 수명 예측의 대상이 되는 대상 부품에 대응하는 알고리즘을 선택하는 알고리즘 선택부와,
    상기 알고리즘 선택부에서 선택된 알고리즘과, 상기 부품마다 고유한 정보인 제원 파라미터를 기초로, 상기 대상 부품의 수명 예측의 처리를 실행하는 수명 예측 처리부를 구비하고,
    상기 수명 예측 처리부는,
    상기 부품의 고장 원인을 나타내는 고장 모드의 특정에 사용되는 수치인 고장 모드값을 산출하는 고장 모드 산출부와,
    상기 고장 모드값을 기초로, 상기 대상 부품의 고장 모드를 특정하는 고장 모드 특정부와,
    상기 대상 부품에 대해서, 상기 부품의 수명을 검증하는 시험에서 얻어진 실측값과 시간의 관계를 나타내는 제1 커브와, 상기 시험에서 상기 부품이 고장에 이르렀을 때의 상기 실측값인 고장 임계치를 취득하여, 상기 제1 커브를 상기 고장 임계치와 상기 대상 부품의 정격 수명에 기초하여 변형시킴으로써 제2 커브를 생성하고, 상기 제2 커브에 기초하여, 상기 대상 부품의 예측 수명의 산출에 사용되는 수명 예측 커브를 생성하는 수명 예측 커브 생성부를
    구비하는 것을 특징으로 하는 데이터 처리 시스템.
  14. 장치를 구성하는 부품의 수명 예측을 행하기 위한 알고리즘으로서 상기 부품의 종류마다 선택 가능한 알고리즘으로부터, 상기 장치를 구성하는 상기 부품 중 수명 예측의 대상이 되는 대상 부품에 대응하는 알고리즘을 데이터 처리 장치가 선택하는 스텝과,
    선택된 상기 알고리즘과, 상기 부품마다 고유한 정보인 제원 파라미터를 기초로, 상기 데이터 처리 장치가 상기 대상 부품의 수명 예측의 처리를 실행하는 스텝을 포함하고,
    상기 수명 예측의 처리를 실행하는 스텝은,
    상기 부품의 고장 원인을 나타내는 고장 모드의 특정에 사용되는 수치인 고장 모드값을 산출하는 스텝과,
    상기 고장 모드값을 기초로, 상기 대상 부품의 고장 모드를 특정하는 스텝과,
    상기 대상 부품에 대해서, 상기 부품의 수명을 검증하는 시험에서 얻어진 실측값과 시간의 관계를 나타내는 제1 커브와, 상기 시험에서 상기 부품이 고장에 이르렀을 때의 상기 실측값인 고장 임계치를 취득하여, 상기 제1 커브를 상기 고장 임계치와 상기 대상 부품의 정격 수명에 기초하여 변형시킴으로써 제2 커브를 생성하고, 상기 제2 커브에 기초하여, 상기 대상 부품의 예측 수명의 산출에 사용되는 수명 예측 커브를 생성하는 스텝을
    포함하는 것을 특징으로 하는 데이터 처리 방법.
  15. 컴퓨터를, 장치를 구성하는 부품의 수명 예측의 처리를 행하는 데이터 처리 장치로서 기능시키고, 기억 매체에 기억된 데이터 처리 프로그램으로서,
    상기 부품의 수명 예측을 행하기 위한 알고리즘으로서 상기 부품의 종류마다 선택 가능한 알고리즘으로부터, 상기 장치를 구성하는 상기 부품 중 수명 예측의 대상이 되는 대상 부품에 대응하는 알고리즘을 선택하는 스텝과.
    선택된 상기 알고리즘과, 상기 부품마다 고유한 정보인 제원 파라미터를 기초로, 상기 대상 부품의 수명 예측의 처리를 실행하는 스텝을,
    상기 컴퓨터에 실행시키고,
    상기 수명 예측의 처리를 실행하는 스텝은,
    상기 부품의 고장 원인을 나타내는 고장 모드의 특정에 사용되는 수치인 고장 모드값을 산출하는 스텝과,
    상기 고장 모드값을 기초로, 상기 대상 부품의 고장 모드를 특정하는 스텝과,
    상기 대상 부품에 대해서, 상기 부품의 수명을 검증하는 시험에서 얻어진 실측값과 시간의 관계를 나타내는 제1 커브와, 상기 시험에서 상기 부품이 고장에 이르렀을 때의 상기 실측값인 고장 임계치를 취득하여, 상기 제1 커브를 상기 고장 임계치와 상기 대상 부품의 정격 수명에 기초하여 변형시킴으로써 제2 커브를 생성하고, 상기 제2 커브에 기초하여, 상기 대상 부품의 예측 수명의 산출에 사용되는 수명 예측 커브를 생성하는 스텝을,
    포함하는 것을 특징으로 하는 기억 매체에 기억된 데이터 처리 프로그램.
  16. 청구항 15에 기재된 데이터 처리 프로그램이 기억되고, 컴퓨터에 의한 판독이 가능하게 된 것을 특징으로 하는 기억 매체.
KR1020207010219A 2017-10-17 2017-10-17 데이터 처리 장치, 데이터 처리 시스템, 데이터 처리 방법, 데이터 처리 프로그램 및 기억 매체 KR102343793B1 (ko)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/037555 WO2019077679A1 (ja) 2017-10-17 2017-10-17 データ処理装置、データ処理システム、データ処理方法、データ処理プログラムおよび記憶媒体

Publications (2)

Publication Number Publication Date
KR20200051758A KR20200051758A (ko) 2020-05-13
KR102343793B1 true KR102343793B1 (ko) 2021-12-27

Family

ID=66173585

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020207010219A KR102343793B1 (ko) 2017-10-17 2017-10-17 데이터 처리 장치, 데이터 처리 시스템, 데이터 처리 방법, 데이터 처리 프로그램 및 기억 매체

Country Status (4)

Country Link
JP (1) JP6676210B2 (ko)
KR (1) KR102343793B1 (ko)
CN (1) CN111213162B (ko)
WO (1) WO2019077679A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7426586B2 (ja) 2019-10-29 2024-02-02 パナソニックIpマネジメント株式会社 保守システム、処理方法、及びプログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002092137A (ja) * 2000-09-14 2002-03-29 Nippon Mitsubishi Oil Corp 寿命予測システム及び寿命予測方法
JP2006031231A (ja) * 2004-07-14 2006-02-02 Toshiba Corp プラント制御装置予防保全システムおよびプラント制御装置予防保全方法
KR101677358B1 (ko) * 2015-01-28 2016-11-18 주식회사 엑센솔루션 인공 신경망 알고리즘을 이용한 주조 설비에 대한 고장 예지 시스템 및 방법

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0450731A (ja) * 1990-06-19 1992-02-19 Toshiba Corp 回転機故障診断システム
JP2002189512A (ja) * 2000-12-21 2002-07-05 Mitsubishi Heavy Ind Ltd 支援システム、支援方法およびサーバ
JP3754927B2 (ja) * 2002-03-12 2006-03-15 キヤノン株式会社 シート搬送装置及び画像形成装置及び回転体寿命予測方法
JP2006016165A (ja) * 2004-07-02 2006-01-19 Mitsubishi Electric Building Techno Service Co Ltd 部品交換管理システム
US7328128B2 (en) * 2006-02-22 2008-02-05 General Electric Company Method, system, and computer program product for performing prognosis and asset management services
US7558771B2 (en) * 2006-06-07 2009-07-07 Gm Global Technology Operations, Inc. System and method for selection of prediction tools
JP2009193486A (ja) * 2008-02-18 2009-08-27 Fuji Xerox Co Ltd 故障診断装置およびプログラム
JP5764928B2 (ja) * 2011-01-05 2015-08-19 富士ゼロックス株式会社 部品劣化度算出装置、画像形成装置及びプログラム
US20120283963A1 (en) 2011-05-05 2012-11-08 Mitchell David J Method for predicting a remaining useful life of an engine and components thereof
JP5076031B2 (ja) * 2012-01-23 2012-11-21 株式会社東芝 製品寿命分析装置及び製品寿命分析方法
KR101288005B1 (ko) * 2012-08-21 2013-07-23 매크로이에스아이 주식회사 N차원 매트릭스를 이용한 부품 수명 분석 시스템
US20140095133A1 (en) * 2012-09-28 2014-04-03 General Electric Company Systems and methods for managing mechanical systems and components
JP6308777B2 (ja) * 2013-12-25 2018-04-11 Eizo株式会社 寿命予測方法、寿命予測プログラム及び寿命予測装置
KR101567980B1 (ko) * 2014-04-21 2015-11-20 (주)에너토크 수명 예측 장치
JP2016056997A (ja) * 2014-09-09 2016-04-21 大和ハウス工業株式会社 エネルギー利用システム
JP6536295B2 (ja) * 2015-08-31 2019-07-03 富士通株式会社 予測性能曲線推定プログラム、予測性能曲線推定装置および予測性能曲線推定方法
CN105225010A (zh) * 2015-10-12 2016-01-06 国网山东省电力公司电力科学研究院 一种基于可靠性的变压器设备寿命评估方法
JP6301902B2 (ja) * 2015-12-21 2018-03-28 ファナック株式会社 保守時期予測システム及び保守時期予測装置
CN105740625B (zh) * 2016-01-31 2018-02-23 太原科技大学 一种齿轮的实时剩余寿命预测方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002092137A (ja) * 2000-09-14 2002-03-29 Nippon Mitsubishi Oil Corp 寿命予測システム及び寿命予測方法
JP2006031231A (ja) * 2004-07-14 2006-02-02 Toshiba Corp プラント制御装置予防保全システムおよびプラント制御装置予防保全方法
KR101677358B1 (ko) * 2015-01-28 2016-11-18 주식회사 엑센솔루션 인공 신경망 알고리즘을 이용한 주조 설비에 대한 고장 예지 시스템 및 방법

Also Published As

Publication number Publication date
KR20200051758A (ko) 2020-05-13
CN111213162A (zh) 2020-05-29
JP6676210B2 (ja) 2020-04-08
WO2019077679A1 (ja) 2019-04-25
CN111213162B (zh) 2023-08-25
JPWO2019077679A1 (ja) 2019-11-14

Similar Documents

Publication Publication Date Title
US10527520B2 (en) Operating wind motors and determining their remaining useful life
US9476803B2 (en) Method and an apparatus for predicting the condition of a machine or a component of the machine
US20080140321A1 (en) Method and a control system for monitoring the condition of an industrial robot
CN114026564A (zh) 确定轴承状况的系统、装置和方法
KR101498527B1 (ko) 진동 주파수 분석 프로그램에 의한 발전소 회전설비상태 진단 시스템
KR102343793B1 (ko) 데이터 처리 장치, 데이터 처리 시스템, 데이터 처리 방법, 데이터 처리 프로그램 및 기억 매체
CN114117655A (zh) 用于估计轴承的剩余使用寿命的系统、装置和方法
Dang et al. Fault prediction of rolling bearing based on ARMA model
US20210008736A1 (en) Malfunction detection device and malfunction detection method
WO2021117752A1 (ja) 転がり軸受の状態監視方法及び転がり軸受の状態監視装置
US11747191B2 (en) Automated health state classifier for rotating machines based on expert knowledge
WO2020054725A1 (ja) 診断装置及び診断方法
JP2005214631A (ja) 状態監視保全装置及び状態監視保全方法
EP4253934A1 (en) System, apparatus and method for misalignment-based remaining useful life estimation of a bearing
CN116848331A (zh) 用于估计至少一个轴承的剩余使用寿命的系统、装置和方法
Gałka Symptom limit value: a statistical approach

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant