KR102339566B1 - PLA composite and method of heat shrinkable blown film - Google Patents

PLA composite and method of heat shrinkable blown film Download PDF

Info

Publication number
KR102339566B1
KR102339566B1 KR1020200085139A KR20200085139A KR102339566B1 KR 102339566 B1 KR102339566 B1 KR 102339566B1 KR 1020200085139 A KR1020200085139 A KR 1020200085139A KR 20200085139 A KR20200085139 A KR 20200085139A KR 102339566 B1 KR102339566 B1 KR 102339566B1
Authority
KR
South Korea
Prior art keywords
pla
film
temperature
composite material
biodegradable
Prior art date
Application number
KR1020200085139A
Other languages
Korean (ko)
Inventor
이광용
Original Assignee
에콜그린텍(주)
이광용
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에콜그린텍(주), 이광용 filed Critical 에콜그린텍(주)
Priority to KR1020200085139A priority Critical patent/KR102339566B1/en
Application granted granted Critical
Publication of KR102339566B1 publication Critical patent/KR102339566B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • B29B7/488Parts, e.g. casings, sealings; Accessories, e.g. flow controlling or throttling devices
    • B29B7/489Screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/251Design of extruder parts, e.g. by modelling based on mathematical theories or experiments
    • B29C48/2517Design of extruder parts, e.g. by modelling based on mathematical theories or experiments of intermeshing screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/375Plasticisers, homogenisers or feeders comprising two or more stages
    • B29C48/38Plasticisers, homogenisers or feeders comprising two or more stages using two or more serially arranged screws in the same barrel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/04Extrusion blow-moulding
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids

Abstract

The present invention relates to a biodegradable polylactic acid (PLA) composite material, particularly a PLA composite material, which substitutes for a petrochemical synthesis system generating environmental pollution and carbon dioxide and can be decomposed at a ratio of 90% or more within 6 months at a temperature of 60℃ under a humidity of 80% in the presence of activated microorganisms, when being discarded, and has an excellent light transmission, and a method for manufacturing a heat shrinkable blown film. The biodegradable PLA composite material includes 96.7-93.3 wt% of PLA, 3-6 wt% of polycaprolactone (PCL), and 0.3-0.7 wt% of any one crosslinking agent selected from calcium stearate and magnesium stearate. The biodegradable PLA composite material having an excellent light transmission and the method for manufacturing a heat shrinkable blown film according to the present invention use a coextrusion blowing process to avoid a need for T die-based heat sealing or adhesion treatment, thereby providing improved cost efficiency and productivity.

Description

광투과율이 우수한 생분해성 PLA 복합소재 및 열수축 블로운 필름 제조방법{PLA composite and method of heat shrinkable blown film}Biodegradable PLA composite material with excellent light transmittance and method of manufacturing heat shrinkable blown film {PLA composite and method of heat shrinkable blown film}

본 발명은 생분해성 PLA 복합소재에 관한 것으로, 더욱 상세하게는 환경오염과 이산화탄소를 발생하는 석유화학 합성계를 대체하여 폐기시 온도 60℃, 습도 80%, 활성화된 미생물 하에서 6개월 이내에 90% 이상 분해될 수 있으면서 광투과율이 우수한 생분해성 PLA 복합소재 및 열수축 블로운 필름 제조방법에 관한 것이다.The present invention relates to a biodegradable PLA composite material, and more particularly, it replaces the petrochemical synthesis system that generates environmental pollution and carbon dioxide and decomposes more than 90% within 6 months under a temperature of 60 ℃, a humidity of 80%, and an activated microorganism at the time of disposal It relates to a biodegradable PLA composite material with excellent light transmittance and a method for manufacturing a heat-shrinkable blown film.

일반적으로 열수축 필름은 PP, PE, PVC, PET 등의 석유화학 합성계가 이용됐다. 이러한 석유화학 합성계 소재는 폐기시 100년 이상이 지나야 분해가 이루어짐으로써 미세 플라스틱 발생과 환경오염, 온실가스 증가 등 사회적 이슈가 발행되고 있다. 특히, 패키징 분야 및 포장, 라벨 등은 대부분 사용 전에 파기시켜 버리는 문제로 인해 환경 오염을 증가시키고, 인쇄로 인해 재활용이 어려운 문제점이 있다.In general, for heat shrinkable films, petrochemical synthetic systems such as PP, PE, PVC, and PET were used. These petrochemical synthetic materials are decomposed after 100 years or more when discarded, so social issues such as generation of microplastics, environmental pollution, and increase in greenhouse gases are being issued. In particular, in the packaging field, packaging, and labels, etc., most of them are destroyed before use, increasing environmental pollution, and there is a problem in that recycling is difficult due to printing.

또한, 종래의 생분해성 열수축 필름 생산 방식은 T다이를 이용한 캐스팅 방식으로 1차 시트지 및 필름을 생산한 후 종방향과 횡방향으로 2차 연신을 통해 생산하였다. 이러한 방법은 생산성과 비용이 증가할 수 있고, 제조 생산 시설의 한계로 다양한 형태의 열수축 필름 생산이 어려우며 사용시 열씰링 또는 접착처리 과정이 수반되어야 하는 문제점이 있다.In addition, the conventional biodegradable heat-shrinkable film production method was produced through secondary stretching in the longitudinal and transverse directions after producing the primary sheet paper and film by a casting method using a T-die. In this method, productivity and cost may increase, and it is difficult to produce various types of heat-shrinkable films due to the limitations of manufacturing and production facilities, and there is a problem that heat sealing or adhesive treatment must be accompanied when used.

아울러 생분해성 PLA 소재는 유연성이 없고, 브리틀(Brittle)한 특성과 60℃ 이상에서 결정화가 진행되므로 물류 및 이송과정에서 투명성이 상실될 수 있어 열수축 포장된 제품에 내용물이 보이지 않거나 선명도가 약해지는 이슈가 발생될 수 있으며, 냉동식품 포장일 경우 브리틀한 특성으로 포장지가 파손될 수 있다.In addition, biodegradable PLA material is inflexible, has brittle characteristics, and crystallization proceeds at 60℃ or higher, so transparency may be lost during logistics and transport. Issues may arise, and in the case of frozen food packaging, the packaging may be damaged due to its brittle characteristics.

또한, 기존의 PLA 소재에 PBS, PBAT, PBSA, PCL, PGA 등과 브랜딩한 소재로 제조된 T다이 방식의 캐스팅 열수축 필름은 생산시 용융흐름지수(MI)가 높아야 생산성이 양호하지만, 공압출 방식의 열수축 블로운 필름은 기존 방식의 브랜딩된 소재를 사용하면 높은 MI로 인해 생산성이 어렵고, 유리전이온도(Tg)가 높아 광투과율이 떨어질 수 있다.In addition, the T-die casting heat-shrink film made from a material branded with PBS, PBAT, PBSA, PCL, PGA, etc. on the existing PLA material requires a high melt flow index (MI) during production for good productivity, but the co-extrusion method For heat-shrink blown films, if a conventional branded material is used, productivity may be difficult due to high MI, and light transmittance may decrease due to high glass transition temperature (Tg).

그리고 종래의 가소제 및 가교제, 유화제, 활제 등으로 사용되는 탈크, 탄산칼슘, 실리카, 이산화티타늄, 제오라이트, 알루미나 등의 무기광물계와 팜유, 스테아린산과 같은 유기계가 있으나 무기광물계는 투명성을 저하시킬 수 있고, 유기계는 PLA 특성상 비상용성 특성이 강하여 필름 표면으로 빠져나와 제품 적용시 오염의 원인이 될 수 있다.And there are inorganic mineral systems such as talc, calcium carbonate, silica, titanium dioxide, zeolite, and alumina used as conventional plasticizers, crosslinking agents, emulsifiers, lubricants, etc., and organic types such as palm oil and stearic acid, but inorganic mineral systems can reduce transparency, The organic type has strong incompatibility characteristics due to the nature of PLA, so it can escape to the film surface and cause contamination when applied to the product.

KR 등록특허공보 제10-2029207(2019.09.30)KR Registered Patent Publication No. 10-2029207 (2019.09.30)

본 발명은 종래와 같은 문제점을 해결하기 위해 창안한 것으로, 환경오염과 이산화탄소를 발생하는 석유화학 합성계를 대체하여 폐기시 온도 60℃, 습도 80%, 활성화된 미생물 하에서 6개월 이내에 90% 이상 분해될 수 있는, 광투과율이 우수한 생분해성 PLA 복합소재 및 열수축 블로운 필름 제조방법을 제공하는데 그 목적이 있다.The present invention was devised to solve the same problems as in the prior art, and replaces the petrochemical synthesis system that generates environmental pollution and carbon dioxide, and can be decomposed more than 90% within 6 months under a temperature of 60 ℃, a humidity of 80%, and an activated microorganism at the time of disposal. It is an object of the present invention to provide a biodegradable PLA composite material having excellent light transmittance and a method for manufacturing a heat-shrinkable blown film.

상기 목적을 달성하기 위한 본 발명에 따른 광투과율이 우수한 생분해성 PLA 복합소재는, PLA 96.7~93.3 중량%와, PCL 3~6 중량%와, 스테아린산 칼슘 또는 스테아린산 마그네슘 중 택 1종의 가교제 0.3~0.7 중량%를 포함함을 특징으로 한다.The biodegradable PLA composite material with excellent light transmittance according to the present invention for achieving the above object is a crosslinking agent of one type selected from among 96.7 to 93.3% by weight of PLA, 3 to 6% by weight of PCL, and calcium stearate or magnesium stearate. It is characterized in that it contains 0.7% by weight.

또한, 상기 PLA 소재는 분자량(Mw) 100,000~120,000g/mol, 유리전이온도(Tg) 58℃, 용융온도(Tm) 166℃이고, PCL 소재는 분자량(Mw) 80,000g/mol, 유리전이온도(Tg) 영하 68℃, 용융온도(Tm) 60℃이며, 가교제를 브랜딩하여 용융흐름지수(MI)가 170℃, 2160g에서 12g/10min 이하가 되도록 함을 특징으로 한다.In addition, the PLA material has a molecular weight (Mw) of 100,000 to 120,000 g/mol, a glass transition temperature (Tg) of 58°C, a melting temperature (Tm) of 166°C, and the PCL material has a molecular weight (Mw) of 80,000g/mol, a glass transition temperature (Tg) -68 ℃, melting temperature (Tm) 60 ℃, it is characterized in that the melt flow index (MI) is 12g/10min or less at 170℃, 2160g by branding a crosslinking agent.

또한, 본 발명에 따른 광투과율이 우수한 생분해성 PLA 복합소재 제조방법은, PCL(Polycaprolactone) 소재와 스테아린산 칼슘, 스테아린산 마그네슘 중 택 1종의 가교제를 혼합 혼련 후 가온가압 니더기에서 온도 60~80℃로 혼련 후 분쇄하는 제1 단계; 제1 단계의 소재와 PLA 소재를 혼합한 후 트윈압출기를 이용해 압출하여 레진을 생산하는 제2 단계; 를 포함함을 특징으로 한다.In addition, the method for manufacturing a biodegradable PLA composite material with excellent light transmittance according to the present invention mixes and kneads a PCL (Polycaprolactone) material, a crosslinking agent of one of calcium stearate and magnesium stearate, and then heats and presses a kneader at a temperature of 60 to 80 ° C. a first step of pulverizing after kneading with a furnace; A second step of mixing the material of the first step and the PLA material and extruding it using a twin extruder to produce a resin; It is characterized in that it includes.

또한, 본 발명에 따른 광투과율이 우수한 생분해성 PLA 복합소재를 이용한 열수축 블로운 필름 제조방법은, PCL(Polycaprolactone) 소재와 스테아린산 칼슘, 스테아린산 마그네슘 중 택 1종의 가교제를 혼합 혼련 후 가온가압 니더기에서 온도 60~80℃로 혼련 후 분쇄하는 제1 단계; 제1 단계의 소재와 PLA 소재를 혼합한 후 트윈압출기를 이용해 압출하여 레진을 생산하는 제2 단계; 제2 단계의 레진으로 공압출 방식에 의한 튜브 형태로 공기 주입량을 조절하여 필름을 생산하는 제3 단계; 제3 단계의 필름을 에어링을 통해 냉각시키는 제4 단계; 를 포함함을 특징으로 한다.In addition, the heat-shrink blown film manufacturing method using a biodegradable PLA composite material with excellent light transmittance according to the present invention is a PCL (Polycaprolactone) material, calcium stearate, and magnesium stearate, mixed and kneaded with a crosslinking agent, followed by heating and pressure kneading. A first step of pulverizing after kneading at a temperature of 60 ~ 80 ℃; A second step of mixing the material of the first step and the PLA material and extruding it using a twin extruder to produce a resin; a third step of producing a film by controlling the amount of air injected in the form of a tube by co-extrusion with the resin of the second step; a fourth step of cooling the film of the third step through an air ring; It is characterized in that it includes.

본 발명에 따른 광투과율이 우수한 생분해성 PLA 복합소재 및 열수축 블로운 필름 제조방법은 공압출 블로운 방식을 적용하여 T다이 방식의 열씰링이나 접착처리 과정을 생략하여 제조하므로 경제성과 생산성을 향상시킬 수 있는 효과가 있다.The biodegradable PLA composite material and heat-shrink blown film manufacturing method with excellent light transmittance according to the present invention is manufactured by applying the co-extrusion blow method to omit the T-die type heat sealing or bonding process, so that economic efficiency and productivity can be improved. can have an effect.

또한, 100% 생분해성 소재로 이산화탄소 저감, 환경오염 저감과 같은 사회적 이슈를 해결할 수 있으며, 일회용 포장재 대체 제품으로 활용할 수 있는 효과가 있다.In addition, 100% biodegradable material can solve social issues such as carbon dioxide reduction and environmental pollution reduction, and has the effect of being used as an alternative to disposable packaging material.

도 1은 본 발명에 따른 생분해성 PLA 복합소재의 제조방법을 도시한 공정도.
도 2는 본 발명에 따른 생분해성 PLA 복합소재를 이용한 열수축 블로운 필름 제조방법을 도시한 공정도.
1 is a process diagram showing a method of manufacturing a biodegradable PLA composite material according to the present invention.
Figure 2 is a process diagram showing a method for manufacturing a heat-shrinkable blown film using a biodegradable PLA composite material according to the present invention.

이하, 본 발명에 따른 광투과율이 우수한 생분해성 PLA 복합소재 및 열수축 블로운 필름 제조방법을 상세히 설명한다.Hereinafter, a biodegradable PLA composite material having excellent light transmittance and a method for manufacturing a heat-shrinkable blown film according to the present invention will be described in detail.

도 1은 본 발명에 따른 생분해성 PLA 복합소재의 제조방법을 도시한 공정도로서, 도면에 도시된 바와 같이 PCL(Polycaprolactone) 소재와 가교제를 혼합 혼련 후 분쇄하는 제1 단계; 제1 단계의 소재와 PLA 소재를 혼합 압출하여 레진을 생산하는 제2 단계; 를 포함한다.1 is a process diagram illustrating a method for manufacturing a biodegradable PLA composite material according to the present invention, a first step of pulverizing a PCL (Polycaprolactone) material and a crosslinking agent after mixing and kneading as shown in the figure; a second step of mixing and extruding the material of the first step and the PLA material to produce a resin; includes

상기 제1 단계는, PCL 소재와 스테아린산 칼슘, 스테아린산 마그네슘 중 택 1종의 파우더 가교제를 혼합한 후 가온가압 니더기에서 온도 60~80℃로 혼련(roll mixing milling) 후 분쇄기로 분쇄하여 4mm 전후의 레진을 생산하는 단계이다.In the first step, after mixing the PCL material, calcium stearate, and magnesium stearate, one kind of powder crosslinking agent is mixed, and then kneaded at a temperature of 60 to 80 ° C. This is the resin production stage.

종래의 가소제 및 가교제, 유화제, 활제 등으로 사용되는 탈크, 탄산칼슘, 실리카, 이산화티타늄, 제오라이트, 알루미나 등의 무기광물계는 투명성을 저하시킬 수 있고, 팜유, 스테아린산과 같은 유기계는 PLA 특성상 비상용성 특성이 강하여 필름 표면으로 빠져나와 제품 적용시 오염의 원인이 될 수 있는데, 물, 에탄올, 에테르 등에 녹지 않는 스테아린산 칼슘, 스테아린산 마그네슘과 같은 염의 혼합물 파우더 를 사용하여 개선한다.Inorganic mineral systems such as talc, calcium carbonate, silica, titanium dioxide, zeolite, and alumina, which are used as conventional plasticizers, crosslinking agents, emulsifiers, and lubricants, etc., can reduce transparency, and organic systems such as palm oil and stearic acid are incompatible due to the nature of PLA. It is strong and it leaks out to the film surface and can cause contamination when applying the product. This is improved by using a salt mixture powder such as calcium stearate and magnesium stearate that is insoluble in water, ethanol, and ether.

이때, 사용되는 PCL 소재의 분자량(Mw)은 80,000g/mol 이상이 바람직하며 분자량(Mw) 80,000g/mol 이하이면 PCL 융점(Tm)이 60℃로 인해 용융흐름지수(MI)가 상승할 수 있으며, 공압출 블로운 필름 생산이 어려워질 수 있다.At this time, the molecular weight (Mw) of the PCL material used is preferably 80,000 g/mol or more, and if the molecular weight (Mw) is 80,000 g/mol or less, the melt flow index (MI) may increase due to the PCL melting point (Tm) of 60 ° C. and coextrusion blown film production may become difficult.

제2 단계는, 제1 단계의 소재와 PLA 소재를 혼합한 후 트윈압출기를 이용해 레진을 생산하는 단계이다.The second step is a step of producing the resin using a twin extruder after mixing the material of the first step and the PLA material.

여기서 사용되는 트윈압출기의 스크류 온도는 160~180℃로 압출 후 컷팅하여 4mm 전후 크기의 레진을 생산한다.The screw temperature of the twin extruder used here is 160~180℃, and the resin is extruded and cut to produce resin with a size of around 4mm.

컷팅방법은 공기를 이용한 쿨링벨트 시스템으로 생산하며, 금속 메시망의 크기 가로, 세로가 3~5mm의 메시망 벨트를 사용한다. 이와 같은 조건으로 생산된 레진의 용융흐름지수는 170℃/2,160g에서 12g/10min 이하이며, 메시망 사이즈에 특별한 이슈가 없이 생산 가능하다.The cutting method is produced with a cooling belt system using air, and a mesh belt with a metal mesh size of 3 to 5 mm in width and length is used. The melt flow index of the resin produced under these conditions is less than 12g/10min at 170℃/2,160g, and it can be produced without any special issue in the mesh size.

수냉각 또는 워터컷팅 방식을 이용할 경우 수분을 제거하기 위해 60℃에서 4~6시간 동안 제습건조 단계가 필요하고 충분한 제습건조가 되지 않으면 제품 생산시 열가수분해의 문제가 발생될 수 있지만, 쿨링벨트 시스템을 이용함으로써 수냉각, 워터컷팅 방식의 번거로움을 해결할 수 있다.If water cooling or water cutting method is used, a dehumidifying and drying step is required at 60°C for 4 to 6 hours to remove moisture. By using the system, the inconvenience of water cooling and water cutting methods can be solved.

상기 제1 단계 및 제2 단계에 있어서, 각 소재의 함량은 PLA 96.7~93.3 중량%, PCL 3~6 중량%, 스테아린산 칼슘 또는 스테아린산 마그네슘 중 택 1종의 가교제 0.3~0.7 중량%의 비율로 이루어짐으로써, 이러한 함량에 의해 생산된 필름의 광투과율은 80~90%(555nm 파장)의 투명성을 확보할 수 있다.In the first step and the second step, the content of each material is made in a ratio of 0.3 to 0.7 wt% of a crosslinking agent selected from among 96.7 to 93.3 wt% of PLA, 3 to 6 wt% of PCL, and calcium stearate or magnesium stearate As a result, the light transmittance of the film produced by this content can ensure transparency of 80 to 90% (555 nm wavelength).

PCL 함량이 3 중량% 이하이면 PLA 소재의 결정성이 상승되어 광투과율이 저하될 수 있고, PCL 함량이 6 중량% 이상이면 용융흐름지수(MI)가 상승하여 공압출 블로운 필름 생산에 어려움이 있을 수 있다.If the PCL content is 3 wt% or less, the crystallinity of the PLA material may increase and the light transmittance may decrease. there may be

스테아린산 칼슘 또는 스테아린산 마그네슘의 가교제 함량이 0.3 중량% 이하이면 가교성과 슬립성이 저하되며 튜브 형태의 블로운 열수축 블로운 필름 생산시 2개의 압착롤에 의해 필름 내측이 점착되는 문제가 발생될 수 있고, 0.7 중량% 이상이면 필름 튜브 내측의 이형성은 좋아질 수 있으나 용융흐름지수가 증가되어 열수축 블로운 필름 생산에 어려움이 있을 수 있다.If the content of the crosslinking agent of calcium stearate or magnesium stearate is 0.3 wt% or less, crosslinking and slip properties are lowered, and when producing a tube-shaped blown heat-shrink blown film, the inside of the film is adhered by two pressing rolls. If it is 0.7% by weight or more, the releasability inside the film tube may be improved, but the melt flow index may be increased, so there may be difficulties in producing a heat-shrinkable blown film.

상기 PLA, PCL, 가교제를 혼합한 후 한 번에 트윈압출기에서 레진을 생산할 수도 있지만, 가교제의 슬립성으로 인해 일정한 비율의 혼합이 어려워질 수 있다.After mixing the PLA, PCL, and the crosslinking agent, the resin may be produced in a twin extruder at a time, but mixing at a certain ratio may be difficult due to the slip property of the crosslinking agent.

그리고 상기 PLA 소재는 분자량(Mw) 100,000~120,000g/mol, 유리전이온도(Tg) 58℃, 용융온도(Tm) 166℃이고, PCL 소재는 분자량(Mw) 80,000g/mol, 유리전이온도(Tg) 영하 68℃, 용융온도(Tm) 60℃이며, 가교제 및 활제 역할의 스테아린산 칼슘을 브랜딩하여 용융흐름지수(MI)가 170℃, 2160g에서 12g/10min 이하가 되도록 한다.And the PLA material is molecular weight (Mw) 100,000 ~ 120,000 g / mol, glass transition temperature (Tg) 58 ℃, melting temperature (Tm) 166 ℃, PCL material molecular weight (Mw) 80,000 g / mol, glass transition temperature ( Tg) −68° C., melting temperature (Tm) 60° C., and blending calcium stearate as a crosslinking agent and lubricant so that the melt flow index (MI) is 12 g/10min or less at 170° C. and 2160 g.

PLA 소재에 투명성과 유연성을 해결하기 위해 PBS, PBAT 소재를 사용할 수도 있지만, PBS는 유리전이온도(Tg)가 영하 32℃, PBAT는 유리전이온도가 영하 28℃로 비결정성 측면과 유연성 측면에서는 유리전이온도가 영하 68℃인 PCL이 효과적이다.Although PBS and PBAT materials can be used to solve the transparency and flexibility of PLA materials, PBS has a glass transition temperature (Tg) of -32 °C and PBAT is -28 °C, which is advantageous in terms of amorphous and flexibility. PCL with a transition temperature of -68°C is effective.

도 2는 본 발명에 따른 생분해성 PLA 복합소재를 이용한 열수축 블로운 필름 제조방법을 도시한 공정도이다.2 is a process diagram illustrating a method for manufacturing a heat-shrinkable blown film using a biodegradable PLA composite material according to the present invention.

본 발명에 따른 생분해성 PLA 복합소재를 이용한 열수축 블로운 필름 제조방법은, PCL 소재와 가교제를 혼합 혼련 후 분쇄하는 제1 단계; 제1 단계의 소재와 PLA 소재를 혼합 압출하여 레진을 생산하는 제2 단계; 제2 단계의 레진으로 공압출 방식에 의한 튜브 형태로 필름을 생산하는 제3 단계; 제3 단계의 필름을 냉각하는 제4 단계; 를 포함한다.A method for manufacturing a heat-shrinkable blown film using a biodegradable PLA composite material according to the present invention comprises: a first step of pulverizing a PCL material and a crosslinking agent after mixing and kneading; a second step of mixing and extruding the material of the first step and the PLA material to produce a resin; A third step of producing a film in the form of a tube by a co-extrusion method with the resin of the second step; a fourth step of cooling the film of the third step; includes

상기 제1 단계와 제2 단계는 상술한 생분해성 PLA 복합소재 제조방법과 동일하므로 생략한다.The first and second steps are omitted because they are the same as the above-described biodegradable PLA composite material manufacturing method.

상기 제3 단계는 제2 단계의 레진으로 공압출 방식에 의한 튜브 형태로 공기 주입량을 조절하여 필름을 생산하는 단계이다.The third step is a step of producing a film by controlling the amount of air injected in the form of a tube by a co-extrusion method with the resin of the second step.

이때, 압출기 스크류 온도는 160~180℃이고, 다이스 온도는 170℃이며, 상향식으로 튜브 형태의 필름을 생산한다. 여기서 다이스 온도가 170℃ 이상이면 용융흐름지수(MI)가 증가하여 필름 형성에 어려움이 있을 수 있다.At this time, the extruder screw temperature is 160 ~ 180 ℃, the die temperature is 170 ℃, to produce a film in the form of a tube in the bottom up. Here, if the die temperature is 170° C. or higher, the melt flow index (MI) increases, which may cause difficulties in film formation.

공압출 방식의 포장용 필름 생산 방식은 기존의 생산 방식을 따르되, 다이스를 통해 튜브형태의 필름 내로 주입되는 공기의 주입량을 조절하여 횡방향과 종방향의 팽창률을 조절하여 필름을 생산한다.The coextrusion packaging film production method follows the existing production method, but controls the amount of air injected into the tube-shaped film through the die to control the expansion rate in the transverse and longitudinal directions to produce the film.

튜브형태의 필름은 2개의 고무압착롤과 권취기의 속도에 따라 종방향으로 배향 연신이 되지 않도록 생산해야 하며, 압출량, 주입되는 공기량, 권취기 속도 등은 필름의 폭과 두께 등에 따라 무연신 필름이 되도록 조정하여 생산한다.The tube-type film should be produced so that orientation and stretching does not occur in the longitudinal direction depending on the speed of the two rubber compression rolls and the winding machine. It is produced by adjusting it so that it becomes a film.

상기 제4 단계는 제3 단계 튜브형태의 필름을 에어링을 통해 냉각하는 단계이다.The fourth step is a step of cooling the third step tube-shaped film through an air ring.

에어링의 공기 온도는 15~25℃로 냉각시킨다. 여기서 공기 온도가 25℃ 이상이면 튜브 형태의 필름 내측에서 2개의 고무압착롤 통과시 필름과 필름이 점착되는 문제가 있을 수 있고, 15℃ 이하이면 횡방향 또는 종방향의 팽창을 어렵게 할 수 있다.The air temperature of the air ring is cooled to 15~25℃. Here, if the air temperature is 25° C. or higher, there may be a problem in that the film and the film are adhered when passing through two rubber compression rolls inside the tube-shaped film, and when the air temperature is 15° C. or lower, expansion in the transverse or longitudinal direction may be difficult.

본 발명은 상기와 같은 방식의 소재로 튜브 타입에 열수축 필름을 생산하였고, 아래와 같은 비율의 실험을 통해 검증하였다.In the present invention, a heat-shrinkable film was produced in a tube type with the material in the same manner as above, and it was verified through experiments with the following ratios.

<실시 예1><Example 1>

소재별 용융흐림지수(MI : 170℃, 2160g)일 때When the melt cloudiness index for each material (MI: 170℃, 2160g)

조건Condition 결과result
A

A
PLA 93.3 중량%
PCL 6 중량%
스테아린산 칼슘 0.7 중량%
PLA 93.3 wt%
PCL 6 wt%
0.7 wt% calcium stearate

11.8g/10min

11.8g/10min

B

B
PLA 95.5 중량%
PCL 4 중량%
스테아린산 칼슘 0.5 중량%
PLA 95.5 wt%
PCL 4 wt%
0.5 wt% calcium stearate

7.6g/10min

7.6g/10min

C

C
PLA 96.7 중량%
PCL 3 중량%
스테아린산 칼슘 0.3 중량%
PLA 96.7 wt%
PCL 3 wt%
0.3 wt% calcium stearate

3.7g/10min

3.7g/10min

상기 데이터는 ISO 1133 방법으로 5회 측정 후 평균 수치임.The above data are average values after 5 measurements according to ISO 1133 method.

<실시 예2><Example 2>

실시 예1의 A, B, C 데이터 비율대로 25마이크로 미터 두께의 필름을 생산하여 열수축율, 헤이즈, 인장강도, 광투과율을 실험하였으며 필름의 사이즈는 종방향 250mm, 횡방향 250mm로 하였다.A 25 micrometer thick film was produced according to the data ratio of A, B, and C of Example 1, and heat shrinkage, haze, tensile strength, and light transmittance were tested. The size of the film was 250 mm in the longitudinal direction and 250 mm in the transverse direction.

AA BB CC 단위unit 열수축율
(80℃ 열풍 5분)
heat shrinkage
(80℃ hot air 5 minutes)
종방향longitudinal 6666 6262 5959 %%
횡방향transverse 3838 3636 3535 %% 헤이즈haze 0.70.7 0.90.9 1.11.1 %% 인장강도The tensile strength 종방향longitudinal 286286 271271 259259 kgf/㎠kgf/cm2 횡방향transverse 229229 217217 210210 kgf/㎠kgf/cm2 광투과율light transmittance 97.197.1 95.995.9 94.894.8 %%

측정방법은 아래와 같다.The measurement method is as follows.

열수축율 :

Figure 112020071746517-pat00001
Heat Shrinkage:
Figure 112020071746517-pat00001

헤이즈 : ASTM D 1003Haze: ASTM D 1003

인장강도 : ASTM D 638Tensile strength: ASTM D 638

광투과율 : ASTM D 1003(555nm 파장)Light transmittance: ASTM D 1003 (555nm wavelength)

<비교예 1><Comparative Example 1>

본 발명은 아래 구성 비율대로 무기광물계 Talc, CaCO3, TiO2 중 CaCO3(사이즈 : 4~6㎛)를 첨가하여 스테아린산 칼슘과 광투과율을 비교하였다. 필름은 동일한 방법으로 생산된 25㎛ 두께의 필름이다.In the present invention, calcium stearate and light transmittance were compared by adding CaCO3 (size: 4-6㎛) among inorganic mineral Talc, CaCO3, and TiO2 according to the composition ratio below. The film is a 25 μm thick film produced by the same method.

구성비율composition ratio 결과result 단위unit 시험조건Exam conditions
1

One
PLA 93.3 중량%
PCL 6 중량%
스테아린산 칼슘 0.7 중량%
PLA 93.3 wt%
PCL 6 wt%
0.7 wt% calcium stearate

97.1

97.1

%

%


ASTM D 1003
(555nm 파장)


ASTM D 1003
(555nm wavelength)

2

2
PLA 93.3 중량%
PCL 6 중량%
스테아린산 칼슘 0.7 중량%
PLA 93.3 wt%
PCL 6 wt%
0.7 wt% calcium stearate

89.6

89.6

%

%

본 발명은 상기와 같이 공압출 방식의 튜브타입 필름으로 광투과율이 우수한 100% 생분해성 열수축 필름의 결과를 얻었고, T다이 방식보다 생산성이 우수하고 열씰링을 해야 하는 공정단계를 줄일 수 있었다. 또한, 비교 예1의 결과로 무기광물계 CaCO3보다 스테아린산 칼슘이 첨가된 필름의 광투과율이 더 우수한 특성을 보였다.The present invention obtained a result of a 100% biodegradable heat-shrinkable film with excellent light transmittance as a tube-type film of the co-extrusion method as described above. In addition, as a result of Comparative Example 1, the light transmittance of the film to which calcium stearate was added was better than that of the inorganic mineral CaCO3.

Claims (4)

PCL(Polycaprolactone) 소재 3~6 중량%와 스테아린산 칼슘, 스테아린산 마그네슘 중 택 1종의 가교제 0.3~0.7 중량%를 혼합 혼련 후 가온가압 니더기에서 온도 60~80℃로 혼련 후 분쇄하는 제1 단계;
제1 단계의 소재와 PLA 소재 96.7~93.3 중량%를 혼합한 후 트윈압출기를 이용해 압출하여 레진을 생산하는 제2 단계;
제2 단계의 레진으로 공압출 방식에 의한 튜브 형태로 공기 주입량을 조절하여 무연신 필름을 생산하는 제3 단계;
제3 단계의 필름을 에어링을 통해 냉각시키는 제4 단계; 를 포함하며,
상기 PLA 소재는 분자량(Mw) 100,000~120,000g/mol, 유리전이온도(Tg) 58℃, 용융온도(Tm) 166℃이고, PCL 소재는 분자량(Mw) 80,000g/mol, 유리전이온도(Tg) 영하 68℃, 용융온도(Tm) 60℃이며, 가교제를 브랜딩하여 용융흐름지수(MI)가 170℃, 2160g에서 12g/10min 이하가 되도록 함을 특징으로 하는 광투과율이 우수한 생분해성 PLA 복합소재를 이용한 열수축 블로운 필름 제조방법.
A first step of mixing and kneading 3 to 6% by weight of PCL (Polycaprolactone) material and 0.3 to 0.7% by weight of a crosslinking agent of one of calcium stearate and magnesium stearate, kneading it in a heated and pressurized kneader at a temperature of 60 to 80 ℃, followed by pulverization;
A second step of mixing the material of the first step and the PLA material 96.7~93.3% by weight and then extruding using a twin extruder to produce a resin;
A third step of producing a non-stretched film by controlling the amount of air injected in the form of a tube by a co-extrusion method with the resin of the second step;
a fourth step of cooling the film of the third step through an air ring; includes,
The PLA material has a molecular weight (Mw) of 100,000 to 120,000 g/mol, a glass transition temperature (Tg) of 58°C, and a melting temperature (Tm) of 166°C, and the PCL material has a molecular weight (Mw) of 80,000 g/mol, a glass transition temperature (Tg) ) A biodegradable PLA composite material with excellent light transmittance, characterized in that it is minus 68 ° C, melting temperature (Tm) 60 ° C, and melt flow index (MI) is 12 g/10 min or less at 170 ° C and 2160 g by branding a crosslinking agent. A method for manufacturing a heat-shrinkable blown film using
제1 항에 있어서, 제3 단계의 압출기 스크류 온도는 160~180℃이고, 다이스 온도는 170℃이며,
제4 단계의 에어링 공기 온도는 15~25℃ 임을 특징으로 하는 광투과율이 우수한 생분해성 PLA 복합소재를 이용한 열수축 블로운 필름 제조방법.
According to claim 1, wherein the extruder screw temperature of the third step is 160 ~ 180 ℃, the die temperature is 170 ℃,
A method for manufacturing a heat-shrinkable blown film using a biodegradable PLA composite material with excellent light transmittance, characterized in that the airing air temperature of the fourth step is 15 to 25°C.
삭제delete 삭제delete
KR1020200085139A 2020-07-10 2020-07-10 PLA composite and method of heat shrinkable blown film KR102339566B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200085139A KR102339566B1 (en) 2020-07-10 2020-07-10 PLA composite and method of heat shrinkable blown film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200085139A KR102339566B1 (en) 2020-07-10 2020-07-10 PLA composite and method of heat shrinkable blown film

Publications (1)

Publication Number Publication Date
KR102339566B1 true KR102339566B1 (en) 2021-12-16

Family

ID=79033050

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200085139A KR102339566B1 (en) 2020-07-10 2020-07-10 PLA composite and method of heat shrinkable blown film

Country Status (1)

Country Link
KR (1) KR102339566B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090086814A (en) * 2008-02-11 2009-08-14 정지수 Polylactide foam and use of foam-molding product thereby
KR20160106556A (en) * 2013-10-27 2016-09-12 티파 코퍼레이션 리미티드 Biodegradable sheet
KR102029207B1 (en) 2019-01-14 2019-10-07 한국화학연구원 Pla composite and preparing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090086814A (en) * 2008-02-11 2009-08-14 정지수 Polylactide foam and use of foam-molding product thereby
KR20160106556A (en) * 2013-10-27 2016-09-12 티파 코퍼레이션 리미티드 Biodegradable sheet
KR102029207B1 (en) 2019-01-14 2019-10-07 한국화학연구원 Pla composite and preparing method thereof

Similar Documents

Publication Publication Date Title
TW419504B (en) Amorphous, transparent sheet of a crystallizable thermolastic
CN101838445B (en) PETG blow molding film and preparation method thereof
JP2006016617A (en) Method for producing biaxially oriented film
FI93850C (en) Heat-moldable polyaryl ether ketone discs
CA2225173A1 (en) Amorphous, transparent, uv-stabilized sheet of a crystallizable thermoplastic
EP0703071B1 (en) Composite plastics film or sheet
KR102269358B1 (en) Biodegradable soft multilayer food packaging material having improved heat resistance, gas-barrier and light-shielding, and method of manufacturing the same
CN101451004A (en) Film for producing composite paper-like film and paper-like film and method for producing the same
CN111621239B (en) Full-biodegradable adhesive tape and preparation method thereof
KR100933242B1 (en) Biodegradable MDO Heat Shrink Film for Labels and Manufacturing Method Thereof
WO2023115599A1 (en) Degradable high-barrier composite film and preparation method therefor
CN113500769A (en) Biodegradable biaxially oriented composite film and preparation method and application thereof
KR100307892B1 (en) Porous film and its manufacturing method obtained from resin composition and resin composition
KR102339566B1 (en) PLA composite and method of heat shrinkable blown film
CN115892736A (en) Biodegradable paper-plastic composite film and preparation method and application thereof
KR20070107427A (en) Biodegradable heat-shinkable film and production method therof
KR102292735B1 (en) Biodegradable material for excellent in flexibility and transparency
CN114350171A (en) Full-degradable plastic film and production process thereof
KR102233979B1 (en) Biodegradable air cap and preparation thereof
CN112194834A (en) High-temperature-shrinkage-resistant polyethylene foamed sheet and preparation method thereof
CN117106289A (en) Thermoplastic composite laminated material and preparation method thereof
CN111055564A (en) Degradable heat sealing film for compounding and preparation method thereof
CN113843999B (en) Preparation method of poly (adipic acid)/poly (butylene terephthalate) film
CN106243455A (en) The thin film being made up of stone powder and manufacture method thereof
KR20040099865A (en) Polypropylene composition provided by the calendering process for transparent film and sheet, and method for preparing polypropylene transparent film and sheet using the same

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant