KR100933242B1 - Biodegradable MDO Heat Shrink Film for Labels and Manufacturing Method Thereof - Google Patents

Biodegradable MDO Heat Shrink Film for Labels and Manufacturing Method Thereof Download PDF

Info

Publication number
KR100933242B1
KR100933242B1 KR1020070041943A KR20070041943A KR100933242B1 KR 100933242 B1 KR100933242 B1 KR 100933242B1 KR 1020070041943 A KR1020070041943 A KR 1020070041943A KR 20070041943 A KR20070041943 A KR 20070041943A KR 100933242 B1 KR100933242 B1 KR 100933242B1
Authority
KR
South Korea
Prior art keywords
biodegradable
ppm
heat shrink
shrink film
melting point
Prior art date
Application number
KR1020070041943A
Other languages
Korean (ko)
Other versions
KR20080096961A (en
Inventor
신영수
Original Assignee
위더스케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 위더스케미칼 주식회사 filed Critical 위더스케미칼 주식회사
Priority to KR1020070041943A priority Critical patent/KR100933242B1/en
Publication of KR20080096961A publication Critical patent/KR20080096961A/en
Application granted granted Critical
Publication of KR100933242B1 publication Critical patent/KR100933242B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the carboxyl- and the hydroxy groups directly linked to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08J2467/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the hydroxy and the carboxyl groups directly linked to aromatic rings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

본 발명은 용기의 수축 라벨용으로 인쇄성, 시일성, 투명성 및 우수한 기계적 특성을 갖으며 자연환경 속에서 분해되는 MDO 열수축 필름에 관한 것이다. The present invention relates to an MDO heat shrink film that has printability, sealability, transparency and excellent mechanical properties for shrink labels of containers and decomposes in a natural environment.

본 발명은 생분해성 원료인 폴리락트산계 중합체, 폴리부틸렌 숙시네이트 아디페이트 및 지방족 폴리에스테르를 90:1:9∼90:9:1의 중량비율로 혼합한 생분해성 MDO 열수축 필름을 제공하는 것을 특징으로 한다. The present invention provides a biodegradable MDO heat shrink film obtained by mixing a biolactic acid-based polylactic acid polymer, polybutylene succinate adipate and an aliphatic polyester in a weight ratio of 90: 1: 9 to 90: 9: 1. It features.

라벨 label

Description

라벨용 생분해성 MDO 열수축 필름 및 그 제조방법{Biodegradable MDO Heat-shinkable Film for Label and Production Method therof}Biodegradable MDO Heat-shinkable Film for Label and Production Method therof}

도 1은 필름을 연신 하는데 사용되는 연신 장치를 개략적으로 나타낸 도면1 schematically shows a drawing device used to draw a film;

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

R1, R2 : 예열 로울러,R1, R2: preheat roller,

R3 : 저속 로울러,R3: low speed roller,

R4 : 고속 로울러,R4: high speed roller,

R5 : 어닐링 로울러,R5: annealing roller,

R6 : 냉각 로울러R6: Cooling Roller

본 발명은 생분해성 MDO 열수축 필름 및 그 제조방법에 관한 것으로, 자연환경 속에서 자연분해되고 압출·연신공정 상의 가공성이 우수하며, 투명성, 인쇄성, 용제에 대한 접착성 및 수축특성이 뛰어난 생분해성 MDO 열수축 필름 및 그 제조방법에 관한 것이다.The present invention relates to a biodegradable MDO heat shrink film and a method for manufacturing the same, which is naturally decomposed in a natural environment, has excellent processability in the extrusion and stretching process, and has excellent transparency, printability, adhesion to solvents, and shrinkage characteristics. An MDO heat-shrink film and a method of manufacturing the same.

MDO 열수축 필름은 유리병, 플라스틱, 건전지, 식용유, 식품, 세제류의 라벨 용으로 다양하게 사용되고 있으며, 라벨용으로 사용되기 위해서는 내용제성, 내열성, 내후성 등의 물성이 요구되고 특히 MD방향(길이방향= 기계방향)으로의 수축균일성이 우수하여야 한다. MDO heat shrink film is widely used for labeling of glass bottles, plastics, batteries, cooking oil, food, detergents, etc.In order to be used for labels, physical properties such as solvent resistance, heat resistance and weather resistance are required. Excellent shrinkage uniformity in the machine direction).

종래의 TDO 열수축 필름으로 사용되고 있는 폴리스티렌, 폴리에틸렌 테레프탈레이트, 폴리염화비닐의 열수축 필름의 경우에는 여러 가지 문제점이 있었다.There have been various problems in the case of heat shrink films of polystyrene, polyethylene terephthalate, and polyvinyl chloride, which are used as conventional TDO heat shrink films.

폴리스티렌 필름은 인쇄성에 문제가 있어 일반 플라스틱용 잉크의 사용이 어렵기 때문에 특수잉크를 사용하여야 하는 불편이 있었고, 특히 자연수축율이 커서 운송 및 보관상의 세심한 주의가 요구되었다.Polystyrene film has a problem in printability, so it is difficult to use a general ink for plastics, so it is inconvenient to use a special ink, and in particular, a large shrinkage rate requires great care in transportation and storage.

폴리에틸렌 테레프탈레이트 필름의 경우는 내열성, 내약품성, 내후성이 우수하나, 수축응력이 크고 수축속도가 빨라서 용기에 라벨링할 때 여러 가지 문제점이 발생하였다. 수축응력이 클 경우 플라스틱의 용기의 체적이 줄어들기 때문에 내용물의 수용이 적어지는 문제점이 있으며, 수축속도가 빠른 경우는 수축 불균일로 인한 상품의 가치를 떨어뜨리는 결과를 초래한다. The polyethylene terephthalate film has excellent heat resistance, chemical resistance, and weather resistance, but various problems have occurred when labeling a container because of high shrinkage stress and high shrinkage speed. If the shrinkage stress is large, the volume of the container of the plastic is reduced, there is a problem that the content of the content is reduced, the rapid shrinkage rate results in a drop in the value of the product due to shrinkage nonuniformity.

특히 폴리염화비닐 필름의 경우에는 염소성분을 함유하고 있기 때문에 소각 폐기시에 염화수소 및 다이옥신과 같은 유해물질을 다량 배출한다는 문제점이 있어서 환경친화적이지 못하다.In particular, the polyvinyl chloride film contains a chlorine component, which causes a large amount of harmful substances such as hydrogen chloride and dioxins to be emitted during incineration, which is not environmentally friendly.

이러한 문제점으로 인하여 상기 필름의 폐플라스틱을 매립지에 매립하고 있으나, 폐플라스틱의 난분해성에 따른 매립지의 안정화 저해, 이용기간 단축, 토질의 황폐화 등을 유발하고, 특히 바다, 강, 호수 등에 투기된 폐플라스틱은 자연생태계의 심각한 위해가 되고 있다. Due to this problem, the waste plastics of the film are buried in landfills, but the waste plastics are impaired in stabilization of landfills due to the degradability of waste plastics, shorten the use period, and degrade the soil. Plastics are a serious hazard to natural ecosystems.

이와 같은 폐플라스틱과 관련된 환경오염의 제반문제를 해결하기 위하여 환경보전의 필요성 및 방법 등에 대한 관심이 증대되고 있다.In order to solve such problems of environmental pollution related to waste plastics, there is increasing interest in the necessity and method of environmental conservation.

따라서 보통 플라스틱처럼 간편하게 사용할 수 있고, 사용 후에는 자연환경 속에서 자연분해되는 환경친화적이고 무해한 생분해성 플라스틱의 연구개발이 활발히 진행되고 있다.Therefore, research and development of environmentally friendly and harmless biodegradable plastics that can be used simply like ordinary plastics and decomposes in a natural environment after use are being actively conducted.

그 일례로 폴리락트산(polylactic acid)이 대표적이다. 폴리락트산은 흙 속에서 가수분해되고 미생물에 의해 무해한 분해물로 전환된다. One example is polylactic acid. Polylactic acid is hydrolyzed in soil and converted into harmless decomposition products by microorganisms.

본 발명의 목적은 플라스틱용기나 유리용기에 부착된 스티커 라벨을 용이하게 분리할 수 있는 생분해성 MDO 열수축 필름을 제공하는 데 있다.
본 발명의 또 다른 목적은 용기의 폐기에 따른 매립시에 생분해성이 뛰어난 MDO 열수축 필름을 제공하는 데 있다.
SUMMARY OF THE INVENTION An object of the present invention is to provide a biodegradable MDO heat shrink film that can easily separate a sticker label attached to a plastic container or a glass container.
It is still another object of the present invention to provide a biodegradable MDO heat shrink film at the time of landfill due to the disposal of the container.

삭제delete

본 발명에 의하면, 상기의 목적은 생분해성 원료인 폴리락트산계 중합체 기재에 폴리부틸렌 숙시네이트 아디페이트(polybutylene succinate co-adipate; PBSA)와 지방족 폴리에스테르를 혼합한 것을 특징으로 하는 생분해성 MDO 열수축 필름에 의해 달성된다.According to the present invention, the above object is a biodegradable MDO heat shrink characterized in that a polybutylene succinate co-adipate (PBSA) and an aliphatic polyester are mixed on a polylactic acid polymer substrate which is a biodegradable raw material. Achieved by a film.

본 발명에 의하면 폴리락트산계 중합체와 폴리부틸렌 숙시네이트 아디페이트 및 지방족 폴리에스테르의 바람직한 중량비는 90:1:9∼90:9:1이다. According to the present invention, the preferred weight ratio of the polylactic acid polymer, polybutylene succinate adipate and aliphatic polyester is 90: 1: 9 to 90: 9: 1.

생분해성 MDO 열수축 필름을 플라스틱, 병 등의 용기에 라벨로 사용하는 것 은 TDO 수축라벨 필름보다 효과적으로 사용될 수 있으며, 미개발되어있는 생분해성 MDO 수축 라벨 시장에 새로운 전환기가 될 것으로 생각된다.The use of biodegradable MDO heat shrink films as labels in containers such as plastics, bottles, etc. can be used more effectively than TDO shrink label films and is expected to be a new turning point in the market of undeveloped biodegradable MDO shrink labels.

생분해성 MDO 열수축 필름은 자원절약 및 공해문제에 있어서 한걸음 진보된 대안으로 제시할 수 있고, 사용후 용기 및 재료의 재활용이 효과적이어서 친환경적이라 할 수 있다.Biodegradable MDO heat shrink film can be suggested as an advanced alternative to resource conservation and pollution problems, and it can be said to be environmentally friendly because the recycling of containers and materials after use is effective.

현재 열수축 라벨에 의한 용기의 포장방법으로 TDO 열수축 라벨 포장방법이 널리 알려져 있다. TDO 열수축 라벨 포장방법은 열수축 필름으로 라벨을 만든 다음, 라벨 포장기계에서 수축 라벨을 용기의 상하방향으로 투입하여 부착한 후 열수축 터널을 통과시켜서 부착하는 방법이다.Currently, the TDO heat shrink label packaging method is widely known as a method of packaging a container by a heat shrink label. TDO heat shrink label packaging method is a method of making a label with heat shrink film, and then attaching the shrink label in the up and down direction of the container in a label packaging machine and then attaching it through a heat shrink tunnel.

통상적으로 TDO 열수축 필름 라벨의 포장공정은 인쇄, 재단, 시일링 및 라벨링의 4단계로 구성되어 있다.Typically, the packaging process of TDO heat shrink film labels consists of four steps: printing, cutting, sealing and labeling.

그러나 MDO 열수축 필름 라벨의 포장공정은 기존의 TDO 열수축 필름의 포장공정과는 다르게 인쇄, 재단 및 라벨링의 3단계로 이루어져 있기 때문에 TDO 열수축 포장공정보다 공정이 1단계 단축되므로 간편하다. 또한 라벨을 용기에 부착할 때 원형방법으로 권취하여 라벨을 접착하거나 부착하기 때문에 기존의 TDO 열수축 필름의 포장방법보다 간편하여 시간당 생산량이 많이 증가한다. However, the packaging process of MDO heat shrink film label is simpler than the TDO heat shrink film process because it consists of three steps of printing, cutting and labeling, unlike the conventional TDO heat shrink film packaging process. In addition, since the label is attached or adhered to the container by winding it in a circular method, it is simpler than the packaging method of the conventional TDO heat shrink film, thereby increasing the yield per hour.

또한 MDO 열수축 필름은 옥수수, 감자, 타피오카, 고구마, 밀, 쌀 등의 식물성 원료로 제조되기 때문에, 일반적으로 사용되고 있는 광유성 원료를 주재로 한 TDO 열수축 필름의 라벨보다 연소시에 유해가스가 발생하지 않아 환경친화적이다.In addition, since MDO heat shrink film is made of vegetable raw materials such as corn, potato, tapioca, sweet potato, wheat, and rice, no harmful gas is generated during combustion than the label of TDO heat shrink film mainly made of mineral oil. It is environmentally friendly.

이러한 장점으로 인하여 생분해성 MDO 열수축 필름은 종래의 광유성 원료로 제조된 TDO 열수축 필름으로는 달성할 수 없었던 친환경 분야로의 진출이 가능하게 되었다.These advantages enable the biodegradable MDO heat shrink film to enter the eco-friendly field that could not be achieved by the TDO heat shrink film made of a conventional mineral oil material.

본 발명에 의하면, 생분해성 원료인 폴리락트산계 중합체에, 1종 이상의 알킬글리콜과 1종 이상의 지방족 다관능성 산을 중합하여 제조된 폴리부틸렌 숙시네이트 아디페이트(PBSA)와 지방족 폴리에스테르를 혼합하여 가공성 및 인장강도가 개량된 생분해성 MDO 열수축필름을 제조한다.According to the present invention, a polybutylene succinate adipate (PBSA) prepared by polymerizing at least one alkyl glycol and at least one aliphatic polyfunctional acid is mixed with a polylactic acid polymer which is a biodegradable raw material, A biodegradable MDO heat shrink film with improved processability and tensile strength is prepared.

본 발명에 있어서, 일정량의 조성비로 혼합된 생분해성 MDO 필름원료를 직선형 T다이스의 개량형인 코우트행거(coat hanger) 방식의 T다이스를 통하여 압출한다. T다이스는 압출량의 변동이 없고 균일속도로 수지를 방출하며, 혼련분산이 양호하고 기포의 혼입을 배출할 수 있는 가열 용융 압출기를 통하여 생분해성 수지의 체류를 방지하도록 설계되어 있다. In the present invention, the biodegradable MDO film material mixed in a certain amount of composition ratio is extruded through a coat hanger type T dice, which is an improvement of the linear T dice. T-die is designed to prevent the retention of biodegradable resin through the hot melt extruder, which does not change the extrusion amount and releases the resin at a uniform speed, and has good kneading dispersion and discharge of bubble mixing.

생분해성 필름 원단을 압출하는 성형기는 수지송출 안정성 및 수지체류시간이 균일한 쌍축 압출기(동방향 및 역방향 회전) 보다는 폴리락트산계 중합체, PBSA 및 지방족 폴리에스테르의 혼합물을 균일한 조성물로 만들기 위하여 수지혼련이 양호한 단축 압출기를 사용한다.   The molding machine for extruding the biodegradable film fabric is kneaded to make a mixture of polylactic acid polymer, PBSA and aliphatic polyester into a uniform composition, rather than twin screw extruder (coaxial and reverse rotation) with uniform resin delivery stability and resin residence time. This good single screw extruder is used.

T다이스를 통하여 용융압출된 생분해성 수지를 냉각기에서 냉각된 물이 저장되어 있는 냉각조에 저장한 다음, 순환펌프에 의하여 냉각되어 있는 냉각롤로 급랭한 후, 몇 번의 가이드롤을 통과시켜서 균일성 및 투명성이 우수한 필름을 제조한다.   The biodegradable resin melt-extruded through the T dice is stored in a cooling tank in which water cooled in a cooler is stored, and then quenched by a cooling roll cooled by a circulation pump, and then passed through several guide rolls for uniformity and transparency. This excellent film is produced.

융점이 150∼160℃인 폴리락트산계 중합체를 압출하여 성형된 생분해성 원단 에 저분자 물질이 함유되어 있는 경우, 이들 물질이 필름 표면으로 확산되어 배어나오고 권취시 온도와 압력에 의하여 필름이 접착되어 일체화되는 현상이 생기게 된다. 이로 인하여 수축필름 제조의 생산성 및 가공성이 떨어지고, 필름의 외관을 크게 손상된다.   When low-molecular substances are contained in the biodegradable fabric formed by extruding polylactic acid polymer having a melting point of 150 to 160 ° C., these substances diffuse to the surface of the film to be oozed out, and the film is adhered and integrated by the temperature and pressure at the time of winding. The phenomenon occurs. Because of this, the productivity and processability of the shrink film production is degraded, and the appearance of the film is largely damaged.

따라서 본 발명에서는 우수한 생분해성 MDO 열수축 필름을 제조하기 위해서 융점이 50∼100℃인 올레인산 아미드 300∼5000ppm, 스테아린산 칼슘 350∼6000ppm, 스테아릴 아미드 300∼5000ppm를 첨가한다. 또 블록킹을 방지하고, 결정화도와 결정화 속도를 조정하기 위하여 무기입자 SiO2(실리카) 50∼1500ppm 및 활석 200∼1500ppm을 첨가한다. 상기 무기입자는 압출시 마스터배치 방식으로 첨가될 수 있으며, 무기입자의 평균입경은 1∼5㎛, 바람직하게는 2∼3㎛이다. Therefore, in the present invention, in order to produce an excellent biodegradable MDO heat shrink film, 300 to 5000 ppm of oleic acid amide having a melting point of 50 to 100 ° C, 350 to 6000 ppm of calcium stearate and 300 to 5000 ppm of stearyl amide are added. In addition, in order to prevent blocking and to adjust the crystallinity and crystallization rate, 50 to 1500 ppm of inorganic particles SiO 2 (silica) and 200 to 1500 ppm of talc are added. The inorganic particles may be added in a master batch method during extrusion, the average particle diameter of the inorganic particles is 1 to 5㎛, preferably 2 to 3㎛.

폴리락트산계 중합체에 융점이 95∼125℃인 PBSA와 융점이 60∼125℃인 지방족 폴리에스테르를 혼합한 반결정성 폴리머를 위와 같은 방법에 의하여 용융압출한 후 바로 급냉하여 연신할 수 있는 비결정성 생분해성 원단으로 만든다. 이렇게 만들어진 생분해성 원단은 MDO 연신장치를 통과시킨다. MDO 연신장치를 통과하는 원단은 도 1에 나타난 바와 같이, 몇 개의 로울러를 조합하여 만든 로울러와 로울러 사이를 통과하게 된다. Amorphous biodegradation that can be quenched and stretched immediately after melt-extruding a semi-crystalline polymer in which a polylactic acid polymer is mixed with PBSA having a melting point of 95 to 125 ° C and an aliphatic polyester having a melting point of 60 to 125 ° C. Made of castle fabric. The biodegradable fabric thus made is passed through an MDO drawing machine. The fabric passing through the MDO stretching apparatus is passed between the roller and the roller made by combining several rollers, as shown in FIG.

MDO 연신장치로 연신하는 방법은 생분해성 원단이 제1 로울러(R1, 예열로울러)을 통과하여 제2 로울러(R2, 예열로울러)를 지난다. 제1 로울러(R1) 및 제2 로울러(R2)는 길이방향(MD)의 연신을 원할하게 하기 위하여 70℃∼80℃ 예열장치를 설치한다. 충분히 예열된 생분해성 원단은 길이 방향으로 연신하기 위한 장치인 제 3 로울러(R3, 저속로울러)와 제4 로울러(R4, 고속 로울러)를 통과한다. R3와 R4의 온도는 배합물의 융점 이하로 설정된다.  In the stretching method using the MDO stretching apparatus, the biodegradable fabric passes through the first roller (R1, preheat roller) and passes through the second roller (R2, preheat roller). The 1st roller R1 and the 2nd roller R2 are equipped with 70 degreeC-80 degreeC preheating apparatus in order to make extending | stretching of longitudinal direction MD smooth. The sufficiently preheated biodegradable fabric passes through a third roller (R3, low speed roller) and a fourth roller (R4, high speed roller), which are devices for stretching in the longitudinal direction. The temperature of R3 and R4 is set below the melting point of the blend.

연신하기 위한 장치인 R3의 속도를 20∼80m/min로 조정하고, R4의 속도를 40∼160m/min로 작동하도록 조정한다. 이렇게 되면 로울러(R3)와 (R4)의 속도비는 2:1이 된다. 연신로울러 R3와 R4를 통과한 생분해성 원단은 초기 원단 면적보다 길어지고 두께도 1/2로 줄어든 얇은 생분해성 MDO 필름이 생산되며, MD방향(길이방향) 연신비는 2배가 된다. 본 발명에 의한 바람직한 연신배율은 2∼5이다. The speed of R3, the device for stretching, is adjusted to 20 to 80 m / min, and the speed of R4 is adjusted to operate at 40 to 160 m / min. In this case, the speed ratio of the rollers (R3) and (R4) is 2: 1. The biodegradable fabric passing through the drawing rollers R3 and R4 produces a thin biodegradable MDO film that is longer than the initial fabric area and is reduced in thickness by 1/2, and the draw ratio in the MD direction (length direction) is doubled. The draw ratio which is preferable by this invention is 2-5.

필름의 두께 및 수축율 특성에 따라 R1, R2의 온도와 R3, R4의 온도 및 속도를 조절하여 연신배율을 정할 수 있다. 본 발명에 의한 생분해성 MDO 필름의 두께는 5∼70㎛이다. The draw ratio may be determined by adjusting the temperature of R1 and R2 and the temperature and speed of R3 and R4 according to the thickness and shrinkage characteristics of the film. The thickness of the biodegradable MDO film according to the present invention is 5 to 70 µm.

연신배율을 조정하고, 생분해성 원단을 융점 이하의 적당한 온도로 설정함으로써 연신되는 생분해성 원단의 분자구조와 수지결정성에 배향을 주어서 생분해성 필름의 단점인 기계적 강도, 광학적 특성, 가스투과도 및 수축율 향상을 향상시킨다.By adjusting the draw ratio and setting the biodegradable fabric to a suitable temperature below the melting point, the orientation of the molecular structure and resin crystallinity of the stretched biodegradable fabric is improved, thereby improving the mechanical strength, optical properties, gas permeability and shrinkage, which are disadvantages of the biodegradable film. To improve.

생분해성 원료인 폴리락트산계 중합체, PBSA 및 지방족 폴리에스테르로 생산된 원단은 융점에 따라서 가공온도가 다르지만 예열처리 공정에서 온도분포가 일정하도록 R1, R2의 온도를 일정하게 조절한다. R1, R2의 온도는 70℃∼80℃이다. 연신과정에서 R1, R2의 온도가 일정하지 않으면 온도의 불균일로 인하여 연신된 생분해성 열수축 필름의 두께 및 수축율에 악영향을 주며, 연신로울러 R3와 R4의 속도비가 일정하지 않을 경우에는 연신방향으로 분자배향이 일정하지 않아 수축필름의 길이방향의 인장강도 및 수축율에 부분적으로 차이가 발생하게 된다. 바람직한 연신로울러 R3와 R4의 속도비는 2:1∼2:10이다.   Fabrics made of biodegradable polylactic acid-based polymers, PBSA and aliphatic polyester have different processing temperatures depending on melting point, but the temperature of R1 and R2 is controlled to be constant in the preheating process. The temperature of R1 and R2 is 70 degreeC-80 degreeC. If the temperature of R1 and R2 is not constant in the stretching process, it will adversely affect the thickness and shrinkage rate of the stretched biodegradable heat-shrinkable film due to the temperature nonuniformity, and if the speed ratio of R3 and R4 is not constant, the molecular orientation will be in the stretching direction. This non-uniformity causes partial differences in tensile strength and shrinkage in the longitudinal direction of the shrink film. Preferred drawing rollers have a speed ratio of R3 to R4 of 2: 1 to 2:10.

연신공정 상의 R3와 R4를 통과한 원단이 불안정한 상태인 경우 이를 안정화시키기 위하여, 약 40∼50℃ 정도의 열로 가열되어 있는 어닐링(annealing) 로울러(R5)를 통과시켜서 연신원단을 안정화시킨다. 어닐링 로울러(R5)의 속도는 R4의 속도와 같거나 약간 빠르다. In order to stabilize the fabric having passed through R3 and R4 in the stretching process to stabilize it, the stretching fabric is stabilized by passing through an annealing roller (R5) heated by heat of about 40 to 50 ° C. The speed of the annealing roller R5 is equal to or slightly faster than the speed of R4.

안정화된 원단이 여러 개의 로울러를 통과하는 도중에 가열되어 연신된 원단이 변형될 수 있기 때문에 이러한 변형을 방지하기 위하여 약 30∼40℃ 정도의 냉각로울러(R6)를 통과시킨다. 이렇게 하여 제조된 생분해성 MDO 열수축 필름은 58℃ 90% RH 습도하에서 59일 경과시 93.9%가 생분해된다.  Since the stabilized fabric is heated while passing through several rollers, the stretched fabric may be deformed, and then passed through a cooling roller R6 of about 30 to 40 ° C. to prevent such deformation. The biodegradable MDO heat-shrink film prepared in this way biodegraded 93.9% after 59 days under 58 ° C 90% RH humidity.

(실시예)(Example)

이하에 본 발명의 구체적인 실시예를 들어 보다 상세하게 설명하지만 이에 한정되는 것은 아니다.Specific examples of the present invention are described below in more detail, but the present invention is not limited thereto.

(실시예 1)(Example 1)

중량 평균분자량이 20만 이상인 폴리락트산계 중합체 90중량%에 폴리부틸렌 숙시네이트 아디페이트 4중량%와 지방족 폴리에스테르 6중량%를 혼합한 후 평균입경이 1∼2㎛인 무기입자 실리카 150ppm과 활석 350ppm을 첨가하였다.150 ppm of inorganic particle silica with an average particle diameter of 1 to 2 µm and talc after mixing 4 weight% of polybutylene succinate adipate and 6 weight% of aliphatic polyester to 90 weight% of polylactic acid polymer having a weight average molecular weight of 200,000 or more 350 ppm was added.

또한 생산성 및 가공성을 향상시키기 위하여, 용융점이 50∼100℃인 올레인산 아미드 300ppm, 스테아린산 칼슘 500ppm, 스테아릴 아미드 300ppm을 첨가하여 혼합하고 T다이 압출기를 이용하여 생분해성 원단을 제조하였다.  In addition, in order to improve productivity and processability, 300 ppm of oleic acid amide having a melting point of 50 to 100 ° C., 500 ppm of calcium stearate, and 300 ppm of stearyl amide were added and mixed to prepare a biodegradable fabric using a T-die extruder.

제조된 생분해성 원단을 MDO 연신기계 장치를 사용하여 MD방향(길이방향)으로 2.5배 연신하여 25㎛의 생분해성 MDO 열수축 필름을 제조하였다. 제조된 수축필름의 수축 특성은 다음과 같다. The prepared biodegradable fabric was stretched 2.5 times in the MD direction (length direction) using an MDO drawing machine device to prepare a biodegradable MDO heat shrink film having a thickness of 25 μm. Shrinkage characteristics of the prepared shrink film is as follows.

50℃50 ℃ 60℃60 ℃ 70℃70 ℃ 80℃80 ℃ 90℃90 ℃ 100℃100 ℃ MD(길이방향)MD (length) 0%0% 15%15% 30%30% 40%40% 56%56% 63%63% TD(횡방향)TD (lateral) 0%0% 1%One% 3%3% 3%3% 4%4% 5%5%

* 열수축율 실험방법: 필름샘플을 가로방향, 세로방향으로 각각 120mm로 절단하여, 그사이에 가로, 세로 100mm의 표선을 넣고 각 온도의 온수조에 30초 동안 침적시킨후, 그 표선 간의 치수를 재고, 다음과 같은 식에 따라서 수축율을 계산하였다.* Thermal shrinkage test method: Cut the film sample into 120mm in the horizontal and vertical directions, insert the horizontal and vertical 100mm marks in between, immerse them in a hot water bath at each temperature for 30 seconds, and measure the dimensions between the marks. Shrinkage was calculated according to the following equation.

열수축율 (%) = (수축전치수 - 수축후치수) / (수축전 치수) × 100    Heat Shrinkage (%) = (Before Shrinkage-After Shrinkage) / (Before Shrinkage) × 100

(실시예 2)(Example 2)

중량 평균분자량이 20만 이상인 폴리락트산 90중량%에 폴리부틸렌 숙시네이트 아디페이트 3중량%와 지방족 폴리에스테르 7중량%를 혼합한 후 평균입경이 1∼2㎛인 무기입자 실리카 450ppm과 활석 550ppm을 첨가하였다.After mixing 3% by weight of polybutylene succinate adipate and 7% by weight of aliphatic polyester to 90% by weight of polylactic acid having a weight average molecular weight of 200,000 or more, 450 ppm of inorganic particle silica having an average particle diameter of 1 to 2 µm and 550 ppm of talc were obtained. Added.

또한 좋은 생분해성 열수축 필름을 제조생산 하기 위해서, 용융점이 50∼100 ℃인 올레인산 아미드 300ppm, 스테아린산 칼슘 500ppm, 스테아릴 아미드 300ppm을 첨가하여 혼합하고 T다이 압출기를 이용하여 생분해성 원단을 제조하였다.  In addition, in order to manufacture and produce a good biodegradable heat shrink film, 300 ppm of oleic acid amide having a melting point of 50 to 100 ° C., 500 ppm of calcium stearate, and 300 ppm of stearyl amide were added and mixed, and a biodegradable fabric was manufactured using a T-die extruder.

제조된 생분해성 원단을 MDO 연신기계 장치를 이용하여 MD방향(길이방향)으로 3배 연신하여 40㎛의 생분해성 MDO 열수축 필름을 제조하였다. 제조된 수축필름의 수축 특성은 다음과 같다. The prepared biodegradable fabric was stretched three times in the MD direction (length direction) using an MDO drawing machine device to prepare a biodegradable MDO heat shrink film having a thickness of 40 μm. Shrinkage characteristics of the prepared shrink film is as follows.

50℃50 ℃ 60℃60 ℃ 70℃70 ℃ 80℃80 ℃ 90℃90 ℃ 100℃100 ℃ MD(길이방향)MD (length) 0%0% 15%15% 33%33% 45%45% 60%60% 68%68% TD(횡방향)TD (lateral) 0%0% 3%3% 3%3% 3%3% 4%4% 5%5%

* 열수축율 실험방법: 필름샘플을 가로방향, 세로방향으로 각각 120mm로 절단하여, 그사이에 가로, 세로 100mm의 표선을 넣고 각 온도의 온수조에 30초 동안 침적시킨 후, 그 표선 간의 치수를 재고, 다음과 같은 식에 따라서 수축율을 계산하였다.* Thermal shrinkage test method: cut the film sample into 120mm in the horizontal and vertical directions, insert the horizontal and vertical 100mm marks in between, immerse them in a hot water bath at each temperature for 30 seconds, and measure the dimensions between the marks. Shrinkage was calculated according to the following equation.

열수축율 (%) = (수축전치수 - 수축후치수) / (수축전 치수) × 100    Heat Shrinkage (%) = (Before Shrinkage-After Shrinkage) / (Before Shrinkage) × 100

(실시예 3)(Example 3)

중량 평균분자량이 20만 이상인 폴리락트산 90중량%에 폴리부틸렌 숙시네이트 아디페이트 2중량%와 지방족 폴리에스테르 8중량%를 혼합한 후 평균입경이 1∼2㎛인 무기입자 실리카 300ppm과 활석 700ppm을 첨가한다.After mixing 2% by weight of polybutylene succinate adipate and 8% by weight of aliphatic polyester to 90% by weight of polylactic acid having a weight average molecular weight of 200,000 or more, 300 ppm of inorganic particle silica having an average particle diameter of 1 to 2 µm and 700 ppm of talc are obtained. Add.

또한 좋은 생분해성 열수축 필름을 제조생산 하기 위해서, 용융점이 50∼100 ℃의 범위를 갖는 올레인산 아미드 300ppm, 스테아린산 칼슘 500ppm, 스테아릴 아미드 300ppm을 첨가하여 혼합하고 T다이 압출기를 이용하여 생분해성 원단을 제조하였다.  In addition, in order to manufacture and produce a good biodegradable heat-shrink film, 300 ppm of oleic acid amide having a melting point in the range of 50 to 100 ° C., 500 ppm of calcium stearate, and 300 ppm of stearyl amide are added and mixed, and a biodegradable fabric is manufactured using a T-die extruder. It was.

제조된 생분해성 원단을 MDO 연신기계 장치를 이용하여 MD방향(길이방향)으로 2.5배 연신하여 30㎛의 생분해성 MDO 열수축 필름을 제조하였다. 제조된 수축필름의 수축 특성은 다음과 같다. The prepared biodegradable fabric was stretched 2.5 times in the MD direction (length direction) using an MDO drawing machine device to prepare a biodegradable MDO heat shrink film having a thickness of 30 μm. Shrinkage characteristics of the prepared shrink film is as follows.

50℃50 ℃ 60℃60 ℃ 70℃70 ℃ 80℃80 ℃ 90℃90 ℃ 100℃100 ℃ MD(길이방향)MD (length) 0%0% 20%20% 38%38% 50%50% 66%66% 69%69% TD(횡방향)TD (lateral) 0%0% 1%One% 5%5% 6%6% 6%6% 4%4%

* 열수축율 실험방법: 필름샘플을 가로방향, 세로방향으로 각각 120mm로 절단하여, 그사이에 가로, 세로 100mm의 표선을 넣고 각 온도의 온수조에 30초 동안 침적시킨 후, 그 표선 간의 치수를 재고, 다음과 같은 식에 따라서 수축율을 계산하였다.* Thermal shrinkage test method: cut the film sample into 120mm in the horizontal and vertical directions, insert the horizontal and vertical 100mm marks in between, immerse them in a hot water bath at each temperature for 30 seconds, and measure the dimensions between the marks. Shrinkage was calculated according to the following equation.

열수축율 (%) = (수축전치수 - 수축후치수) / (수축전 치수) × 100    Heat Shrinkage (%) = (Before Shrinkage-After Shrinkage) / (Before Shrinkage) × 100

상기의 실시예에서 본 바와 같이, 본 발명에 의한 수축 필름은 온도 80℃∼100℃에서 우수한 수축 특성을 갖는다. As seen in the above examples, the shrink film according to the present invention has excellent shrinkage characteristics at a temperature of 80 ° C to 100 ° C.

본 발명에 의한 수축 필름은 온도 80℃∼100℃에서 우수한 수축 특성을 갖기 때문에 플라스틱용기나 유리용기에서 부착된 스티커 라벨을 용이하게 분리할 수 있으며, 따라서 플라스틱용기나 유리용기를 재활용하는데 시간이 절약되며 생산성이 향상된다. Since the shrink film according to the present invention has excellent shrinkage characteristics at a temperature of 80 ° C. to 100 ° C., the sticker label attached to the plastic container or the glass container can be easily separated, thus saving time in recycling the plastic container or the glass container. And productivity is improved.

Claims (7)

삭제delete 중량평균 분자량이 20만 이상이고 융점이 150∼160℃인 폴리락트산계 중합체에 융점이 95∼125℃인 폴리부틸렌 숙시네이트 아디페이트와 융점이 60∼125℃인 지방족 폴리에스테르를 배합한 것을 특징으로 하는 라벨용 MDO 열수축 필름에 있어서, A polylactic acid polymer having a weight average molecular weight of 200,000 or more and a melting point of 150 to 160 ° C. is blended with a polybutylene succinate adipate having a melting point of 95 to 125 ° C. and an aliphatic polyester having a melting point of 60 to 125 ° C. In the label MDO heat shrink film, 상기 폴리락트산계 중합체, 상기 폴리부틸렌 숙시네이트 아디페이트 및 상기 지방족 폴리에스테르의 중량비는 90:1:9∼90:9:1인 것을 특징으로 하는 라벨용 생분해성 MDO 열수축 필름.The weight ratio of the polylactic acid polymer, the polybutylene succinate adipate and the aliphatic polyester is 90: 1: 9 to 90: 9: 1, biodegradable MDO heat shrink film for labels. 제2항에 있어서, 상기 배합물에 융점이 50∼100℃인 올레인산 아미드 300∼5000ppm, 스테아린산 칼슘 350∼6000ppm 및 스테아릴 아미드 300∼5000ppm를 첨가하고, 무기입자인 실리카 50∼1500ppm 및 활석 200∼1500ppm을 첨가하는 것을 특징으로 하는 라벨용 생분해성 MDO 열수축 필름.3. The compound is added with 300 to 5000 ppm of oleic acid amide having a melting point of 50 to 100 DEG C, 350 to 6000 ppm of calcium stearate and 300 to 5000 ppm of stearyl amide, and 50 to 1500 ppm of silica as an inorganic particle and 200 to 1500 ppm of talc. Biodegradable MDO heat shrink film for labels, characterized in that the addition of. 제3항에 있어서, 상기 무기입자의 평균 입경은 1∼5㎛인 것을 특징으로 하는 라벨용 생분해성 MDO 열수축 필름.The biodegradable MDO heat shrink film for labels according to claim 3, wherein the inorganic particles have an average particle diameter of 1 to 5 mu m. 제2항에 있어서, 상기 필름의 두께는 5∼70㎛인 것을 특징으로 하는 라벨용 생분해성 MDO 열수축 필름. The biodegradable MDO heat shrink film for labels according to claim 2, wherein the film has a thickness of 5 to 70 μm. 중량평균 분자량이 20만 이상이고 융점이 150∼160℃인 폴리락트산계 중합체에 융점이 95∼125℃인 폴리부틸렌 숙시네이트 아디페이트와 융점이 60∼125℃인 지방족 폴리에스테르를 배합하는 단계,Blending a polybutylene succinate adipate having a melting point of 95 to 125 ° C. and an aliphatic polyester having a melting point of 60 to 125 ° C. to a polylactic acid polymer having a weight average molecular weight of 200,000 or more and a melting point of 150 to 160 ° C., 융점이 50∼100℃인 올레인산 아미드 300∼5000ppm, 스테아린산 칼슘 350∼6000ppm 및 스테아릴 아미드 300∼5000ppm를 첨가하고, 실리카 50∼1500ppm 및 활석 200∼1500ppm을 첨가하는 단계, Adding 300 to 5000 ppm of oleic acid amide having a melting point of 50 to 100 ° C, 350 to 6000 ppm of calcium stearate and 300 to 5000 ppm of stearyl amide, adding 50 to 1500 ppm of silica and 200 to 1500 ppm of talc, 상기 배합물을 T다이스를 통해 압출하는 단계,Extruding the blend through a T dice, 압출된 원단을 연신장치의 제1 및 제2 로울러에서, 온도 70∼80℃하에 예열처리하는 단계, Preheating the extruded fabric at temperatures of 70-80 ° C. in the first and second rollers of the stretching apparatus, 연신장치의 제3 및 제4 로울러에서, MD방향(길이방향)으로 연신하는 단계,Stretching in the MD direction (length direction) in the third and fourth rollers of the stretching apparatus, 연신장치의 제5 로울러에서, 온도 40∼50℃하에 어닐링하는 단계, 및In a fifth roller of the stretching apparatus, annealing at a temperature of 40 to 50 ° C., and 연신장치의 제6 로울러에서, 온도 30∼40℃로 냉각하는 단계를 포함하는 것을 특징으로 하는 라벨용 생분해성 MDO 열수축 필름의 제조방법. In the sixth roller of the stretching apparatus, the method for producing a biodegradable MDO heat shrink film for labels, comprising the step of cooling to a temperature of 30 ~ 40 ℃. 제6항에 있어서, 상기 연신장치의 제3 및 제4 로울러의 속도비는 2:1∼2:10인 것을 특징으로 하는 라벨용 생분해성 MDO 열수축 필름의 제조방법.The method of manufacturing a biodegradable MDO heat shrink film for labels according to claim 6, wherein the speed ratio of the third and fourth rollers of the stretching apparatus is 2: 1 to 2:10.
KR1020070041943A 2007-04-30 2007-04-30 Biodegradable MDO Heat Shrink Film for Labels and Manufacturing Method Thereof KR100933242B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070041943A KR100933242B1 (en) 2007-04-30 2007-04-30 Biodegradable MDO Heat Shrink Film for Labels and Manufacturing Method Thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070041943A KR100933242B1 (en) 2007-04-30 2007-04-30 Biodegradable MDO Heat Shrink Film for Labels and Manufacturing Method Thereof

Publications (2)

Publication Number Publication Date
KR20080096961A KR20080096961A (en) 2008-11-04
KR100933242B1 true KR100933242B1 (en) 2009-12-22

Family

ID=40285035

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070041943A KR100933242B1 (en) 2007-04-30 2007-04-30 Biodegradable MDO Heat Shrink Film for Labels and Manufacturing Method Thereof

Country Status (1)

Country Link
KR (1) KR100933242B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018097656A1 (en) * 2016-11-24 2018-05-31 에스케이케미칼주식회사 Multi-layer mdo heat-resistant heat-shrinkable film
WO2018097655A1 (en) * 2016-11-24 2018-05-31 에스케이케미칼 주식회사 Heat-resistant mdo heat-shrinkable film
KR102223079B1 (en) 2020-06-11 2021-03-04 (주)코마글로벌 Biodegradable material for excellent in flexibility and transparency
KR102283071B1 (en) 2020-09-21 2021-07-29 위더스케미칼 주식회사 Producing device for shrinkable label filme
KR102419973B1 (en) 2021-10-22 2022-07-13 위더스케미칼 주식회사 Device of extending width for film with temperature adjuster
KR102419971B1 (en) 2021-10-22 2022-07-13 위더스케미칼 주식회사 Device and method of extending width for film with variable heater

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9555419B2 (en) 2012-05-07 2017-01-31 Eastman Chemical Company Films containing foamable inks or coatings and process for separating similar density materials
CN113993949A (en) * 2019-06-21 2022-01-28 大仓工业株式会社 Resin composition for heat shrinkable film and heat shrinkable film using same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005035238A (en) * 2003-07-18 2005-02-10 Fuji Seal International Inc Heat shrinkable film and package
KR100574719B1 (en) 2002-07-26 2006-04-28 아사히 가세이 가부시키가이샤 Wrapping Film
JP2007002011A (en) 2005-06-21 2007-01-11 Shimizu Corp Biodegradable maturing film and method for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100574719B1 (en) 2002-07-26 2006-04-28 아사히 가세이 가부시키가이샤 Wrapping Film
JP2005035238A (en) * 2003-07-18 2005-02-10 Fuji Seal International Inc Heat shrinkable film and package
JP2007002011A (en) 2005-06-21 2007-01-11 Shimizu Corp Biodegradable maturing film and method for producing the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018097656A1 (en) * 2016-11-24 2018-05-31 에스케이케미칼주식회사 Multi-layer mdo heat-resistant heat-shrinkable film
WO2018097655A1 (en) * 2016-11-24 2018-05-31 에스케이케미칼 주식회사 Heat-resistant mdo heat-shrinkable film
US11560457B2 (en) 2016-11-24 2023-01-24 Sk Chemicals Co., Ltd. MDO thermoresistant heat-shrinkable film
US11926117B2 (en) 2016-11-24 2024-03-12 Sk Chemicals Co., Ltd. MDO thermoresistant heat-shrinkable multilayer film
KR102223079B1 (en) 2020-06-11 2021-03-04 (주)코마글로벌 Biodegradable material for excellent in flexibility and transparency
KR102292735B1 (en) 2020-06-11 2021-08-23 (주)코마글로벌 Biodegradable material for excellent in flexibility and transparency
KR102283071B1 (en) 2020-09-21 2021-07-29 위더스케미칼 주식회사 Producing device for shrinkable label filme
KR102419973B1 (en) 2021-10-22 2022-07-13 위더스케미칼 주식회사 Device of extending width for film with temperature adjuster
KR102419971B1 (en) 2021-10-22 2022-07-13 위더스케미칼 주식회사 Device and method of extending width for film with variable heater

Also Published As

Publication number Publication date
KR20080096961A (en) 2008-11-04

Similar Documents

Publication Publication Date Title
KR100933242B1 (en) Biodegradable MDO Heat Shrink Film for Labels and Manufacturing Method Thereof
CN100411870C (en) Heat-shrinkable polylactic acid film
CN101607617B (en) Degradable BOPP packing film and manufacturing method thereof
EP2658906B1 (en) Eco-friendly foaming sheet
CN111621239B (en) Full-biodegradable adhesive tape and preparation method thereof
CN104371296A (en) Poly-methyl ethylene carbonate composition and preparation method thereof
KR20070107427A (en) Biodegradable heat-shinkable film and production method therof
CN113185810B (en) Renewable high-barrier polyester packaging material and preparation method thereof
JP3655619B2 (en) Heat-shrinkable polylactic acid film
JP5145695B2 (en) Method for producing polylactic acid resin film
CN115674626A (en) Preparation method of biodegradable heat shrinkable film
CN114350171A (en) Full-degradable plastic film and production process thereof
KR20120052088A (en) Environment-friendly heat shrinkable film
JP4999524B2 (en) Polylactic acid film
CN113843999B (en) Preparation method of poly (adipic acid)/poly (butylene terephthalate) film
KR20090024908A (en) Biodegradable sheet for a heat constriction film
CA2607216A1 (en) Extrudable polyethylene terephthalate blend
JP2000117920A (en) Lactic acid type polymer laminate and molded article
JP3150441B2 (en) Polybutylene terephthalate resin composition for tubular biaxially oriented film with excellent stretching stability
JPH10249925A (en) Lactate polymer container and its manufacture
KR20090077154A (en) Heat shrinkable film retaining biodegradability and preparing process thereof
JP3623053B2 (en)   Biodegradable resin molding
KR102399123B1 (en) Eco-friendly air cap and manufacturing method of thereof
KR20200084939A (en) Bio-degradable resin compound and Manufacturing method thereof
KR101182712B1 (en) Film comprising polylactic acid, manufacturing method and manufacturing device thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121213

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20131213

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20141216

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20151214

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20161215

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20171205

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20181213

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20200115

Year of fee payment: 11