KR102336715B1 - 누수 여부 탐지 시스템 - Google Patents

누수 여부 탐지 시스템 Download PDF

Info

Publication number
KR102336715B1
KR102336715B1 KR1020210035013A KR20210035013A KR102336715B1 KR 102336715 B1 KR102336715 B1 KR 102336715B1 KR 1020210035013 A KR1020210035013 A KR 1020210035013A KR 20210035013 A KR20210035013 A KR 20210035013A KR 102336715 B1 KR102336715 B1 KR 102336715B1
Authority
KR
South Korea
Prior art keywords
leak
sound
sensor
control terminal
server
Prior art date
Application number
KR1020210035013A
Other languages
English (en)
Other versions
KR20210032373A (ko
Inventor
차상훈
한만형
Original Assignee
한국수자원공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190111226A external-priority patent/KR102275063B1/ko
Application filed by 한국수자원공사 filed Critical 한국수자원공사
Priority to KR1020210035013A priority Critical patent/KR102336715B1/ko
Publication of KR20210032373A publication Critical patent/KR20210032373A/ko
Application granted granted Critical
Publication of KR102336715B1 publication Critical patent/KR102336715B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/24Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations
    • G01M3/243Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations for pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D5/00Protection or supervision of installations
    • F17D5/02Preventing, monitoring, or locating loss
    • F17D5/06Preventing, monitoring, or locating loss using electric or acoustic means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Tourism & Hospitality (AREA)
  • Acoustics & Sound (AREA)
  • Human Resources & Organizations (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • General Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

본 발명은, 작업자의 숙련도에 상관없이 지중 관로의 누수 여부를 판별할 수 있고, 일시적 외부 노이즈에 의한 판별 오류를 최소화할 수 있으며, 어느 지점에서 누수가 발생되었는지 여부를 신속하게 알아낼 수 있고, 신규 측정 위치에서 이미 누수가 진행중인 경우에도 누수 여부를 판별할 수 있으며, 모든 지중 관로마다 측정 장치를 구비하지 않아도 되는 누수 여부 탐지 시스템에 관한 것으로서, 지중 관로 또는 상기 지중 관로 주변의 소리를 측정하여 측정값을 생성하는 청음 센서; 상기 청음 센서로부터 측정값을 입력받고, 상기 측정값이 생성된 장소의 위치 좌표에 대응되는 시설물 정보를 상기 측정값과 함께 외부로 전송하는 제어 단말; 상기 제어 단말로부터 전송된 상기 측정값이 저장된 데이터와 설정 수치 이상 차이가 발생하는 경우 누수가 발생된 것으로 판별하는 서버;를 포함한다.

Description

누수 여부 탐지 시스템{Water leak detection system}
본 발명은 누수 여부 탐지 시스템에 관한 것으로서, 더욱 상세하게는, 작업자의 숙련도에 상관없이 지중 관로의 누수 여부를 판별할 수 있고, 일시적 외부 노이즈에 의한 판별 오류를 최소화할 수 있으며, 어느 지점에서 누수가 발생되었는지 여부를 신속하게 알아낼 수 있고, 신규 측정 위치에서 이미 누수가 진행중인 경우에도 누수 여부를 판별할 수 있으며, 모든 지중 관로마다 측정 장치를 구비하지 않아도 되는 누수 여부 탐지 시스템에 관한 것이다.
상수도 배관은 지중에 매설되어 운영되는데, 지진, 침하, 상부 압박 등에 의해 파손되어 누수가 발생된다. 특히 이러한 상수도 배관은 도로의 밑에 위치되는 경우가 많으므로, 차량의 통행에 따라 지속적으로 압박을 받게 되어 파손되는 문제가 있었다.
이러한 상수도 배관의 누수는 수자원의 낭비 뿐만 아니라, 누수 지역의 지반 약화 등 다양한 문제가 있으므로, 누수 부위를 신속하게 보수하는 것이 중요하다.
그러나, 상수도 배관은 대부분 지중에 매설되어 있으므로, 종래에는 막대형의 청음봉 일단을 지면에 접촉시키고 타단을 귀에 꽂아 청음봉을 타고 전파되는 지중의 소음을 통해 누수 여부를 확인하였다.
그러나, 이러한 청음봉을 이용한 방식은 작업자의 숙련도에 따라 오탐율이 10% 내지 80%가 되는 등 숙련된 작업자가 반드시 필요한 문제가 있었다.
따라서, 비전문가도 누수 탐사 업무를 수행할 수 있고, 누수음의 분석을 정확하게 할 수 있는 누수 여부 탐지 시스템의 개발이 필요로 하게 되었다.
KR20-0355166(등록번호) 2004.06.24.
본 발명은, 작업자의 숙련도에 상관없이 지중 관로의 누수 여부를 판별할 수 있는 누수 여부 탐지 시스템을 제공하는데 그 목적이 있다.
또한, 본 발명은, 일시적 외부 노이즈에 의한 판별 오류를 최소화할 수 있는 누수 여부 탐지 시스템을 제공하는데 그 목적이 있다.
또한, 본 발명은, 어느 지점에서 누수가 발생되었는지 여부를 신속하게 알아낼 수 있는 누수 여부 탐지 시스템을 제공하는데 그 목적이 있다.
또한, 본 발명은, 신규 측정 위치에서 이미 누수가 진행중인 경우에도 누수 여부를 판별할 수 있는 누수 여부 탐지 시스템을 제공하는데 그 목적이 있다.
또한, 본 발명은, 모든 지중 관로마다 측정 장치를 구비하지 않아도 되는 누수 여부 탐지 시스템을 제공하는데 그 목적이 있다.
본 발명은, 지중 관로 또는 상기 지중 관로 주변의 소리를 측정하여 측정값을 생성하는 청음 센서; 상기 청음 센서로부터 측정값을 입력받고, 상기 측정값이 생성된 장소의 위치 좌표에 대응되는 시설물 정보를 상기 측정값과 함께 외부로 전송하는 제어 단말; 상기 제어 단말로부터 전송된 상기 측정값이 저장된 데이터와 설정 수치 이상 차이가 발생하는 경우 누수가 발생된 것으로 판별하는 서버;를 포함하되, 상기 청음 센서는, 상기 지중 관로가 매설된 지상 또는 지중에 설치되어 주변의 소리를 측정하는 노면 센서, 또는, 상기 지중 관로에 접촉하여 상기 지중 관로를 통해 전도되는 소리를 측정하는 청음봉 센서를 포함하고, 상기 제어 단말은, 상기 위치 좌표의 설정 반경 이내의 시설물을 검색하여 상기 시설물 정보를 생성하고, 상기 시설물 정보의 전송시에 상기 위치 좌표를 상기 서버에 전송하며, 상기 서버는, 상기 제어 단말로부터 전송된 상기 시설물 정보에 상기 측정값을 매칭하여 저장하되, 상기 측정값을 누적하여 패턴으로 저장하고, 새로 전송된 측정값이 저장된 패턴으로부터 설정 범위 이상 차이나는 경우 해당 측정값을 이상 상황으로 분류하고, 이상 상황으로 분류된 횟수가 설정 시간 내에 설정 횟수 이상 연속되는 경우 누수가 발생된 것으로 판별한다.
또한, 본 발명의 상기 서버는, 누수가 발생된 것으로 판별되면 상기 시설물 정보를 토대로 관종별 누수음 정보를 생성하여 저장하고, 신규 측정 위치에서의 시설물 정보를 토대로 추출된 관종에 대응되는 상기 누수음 정보를 신규 측정 위치에서의 이상 상황 분류를 위한 초기 패턴으로 적용한다.
또한, 본 발명은, 상기 지중 관로에 음파를 방출하는 음향 송출 장치;를 포함하되, 상기 서버는, 상기 제어 단말로부터 전송된 상기 측정값의 피크 간격 또는 피크값을 누적하여 패턴으로 저장하고, 새로 전송된 측정값의 피크 간격 또는 피크값이 저장된 패턴으로부터 설정 범위 이상 차이나는 경우 해당 측정값을 이상 상황으로 분류한다.
또한, 본 발명의 상기 서버는, 상기 제어 단말로부터 새로 전송된 측정값이 저장된 패턴으로부터 설정 범위 이상 차이나는 경우가 설정 시간 내에 설정 횟수 미만이거나 또는 연속되지 않는 경우 해당 측정값을 패턴 형성을 위한 측정값으로서 누적하지 않는다.
본 발명은, 청음 센서로부터 측정된 측정값을 토대로 누수 여부를 판별할 수 있으므로, 작업자의 숙련도에 상관없이 지중 관로의 누수 여부를 판별할 수 있는 효과가 있다.
또한, 본 발명은, 측정값을 누적된 과거의 누수음 데이터와 비교하고, 이의 유사성 유무로서 누수 여부를 판별할 수 있으므로, 일시적 외부 노이즈에 의한 판별 오류를 최소화할 수 있는 효과가 있다.
또한, 본 발명은, 측정값을 위치 정보에 매칭하여 저장하므로, 어느 지점에서 누수가 발생되었는지 여부를 신속하게 알아낼 수 있는 효과가 있다.
또한, 본 발명은, 측정값을 시설물 정보에 매칭하여 저장하므로, 신규 측정 위치에서 이미 누수가 진행중인 경우에도 누수 여부를 판별할 수 있는 효과가 있다.
또한, 본 발명은, 휴대용 센서 및 휴대용 단말을 이용하여 위치 정보에 대응되는 위치에서 측정만 진행하여도 측정값의 누적 및 누수 여부의 판별이 가능하므로, 모든 지중 관로마다 측정 장치를 구비하지 않아도 되는 효과가 있다.
도 1 은 본 발명의 실시예에 따른 누수 여부 탐지 시스템의 예시도.
도 2 는 본 발명의 실시예에 따른 누수 여부 탐지 시스템의 노면 센서의 사용 상태도.
도 3 은 본 발명의 실시예에 따른 누수 여부 탐지 시스템의 청음봉 센서의 사용 상태도.
도 4 는 본 발명의 실시예에 따른 누수 여부 탐지 시스템의 측정 위치와 측정값을 매칭한 예시도.
도 5 는 본 발명의 제 1 실시예에 따른 누수 여부 탐지 시스템의 순서도.
도 6 은 본 발명의 제 1 실시예에 따른 누수 여부 탐지 시스템의 누수음 분석 과정 예시도.
도 7 은 본 발명의 제 2 실시예에 따른 누수 여부 탐지 시스템의 순서도.
도 8 은 본 발명의 제 3 실시예에 따른 누수 여부 탐지 시스템의 순서도.
이하에서, 본 발명의 실시예에 대하여 첨부한 도면을 참조하여 상세히 설명한다.
본 발명은, 도 1 내지 도 8 에 도시된 바와 같이, 지중 관로 또는 지중 관로 주변의 소리를 측정하여 측정값을 생성하는 청음 센서(100)와, 청음 센서(100)로부터 측정값을 입력받고, 측정값이 생성된 장소의 위치 좌표에 대응되는 시설물 정보를 측정값과 함께 외부로 전송하는 제어 단말(200)과, 제어 단말(200)로부터 전송된 측정값이 저장된 데이터와 설정 수치 이상 차이가 발생하는 경우 누수가 발생된 것으로 판별하는 서버(300)를 포함하여 구성된다.
청음 센서(100)는, 지중 관로가 매설된 부위의 노면 소음 또는 지중 소음을 측정하거나, 또는, 관로 자체, 수도 미터, 밸브 등에 직접 접촉하여 관로의 소음을 측정하는 역할을 한다.
이러한 청음 센서(100)는 측정값을 제어 단말(200)에 전송하고, 제어 단말(200)을 통해 측정값이 서버(300)로 전송된다.
청음 센서(100)는 우선 노면 또는 지중 소음을 측정하기 위한 노면 센서(110) 형태로 구성될 수 있다. 노면 센서(110)는 휴대용으로서 관로가 매설된 상부의 노면에 안착시켜 노면으로 전해지는 지중 관로의 소음을 측정할 수 있다.
노면 센서(110)의 일측에는 제어 단말(200)과의 연결을 위한 단자가 구비되어 신호선(101)을 이용하여 제어 단말(200)과 통신되며, 필요에 따라 제어 단말(200)과 접속하거나 또는 접속을 해제할 수 있다.
이러한 노면 센서(110)는 센싱 모듈(111)이 내장된 센서 하우징(112)과, 센서 하우징(112)의 내측 하면부에 구비되는 노면음 전달판(113)과, 노면음 전달판(113)에 상단이 접하고 하단은 센서 하우징(112)의 하방으로 돌출되어 지면에 접촉 가능하게 구비되는 노면음 전달핀(114)을 포함하여 구성된다. 따라서, 노면 센서(110)를 지면에 별도로 장착하거나 삽입할 필요 없이 단순히 지면에 안착시키기만 해도 노면음 전달핀(114)과 노면음 전달판(113)을 통해 노면음이 센싱 모듈(111)에 용이하게 도달될 수 있게 된다.
한편, 노면 센서(110)는 제어 단말(200)과 함께 지중에 매설된 형태로 구성되는 것 역시 가능하다. 이 경우에는 실시간으로 측정값을 서버(300)에 전송할 수 있으므로 더 많은 측정값의 누적에 의해 측정값 패턴 형성을 정확히 할 수 있는 장점이 있다. 이 경우 노면 센서(110)와 제어 단말(200)에 전원을 공급하기 위한 솔라셀 모듈 또는 상용 지주 전원 등이 구비될 수 있다.
다음으로 청음 센서(100)는 청음봉 센서(120) 형태로 구성될 수 있다. 청음봉 센서(120)는 관로 자체, 수도 미터, 밸브 등에 직접 접촉하여 관로를 타고 직접 전달되는 소음을 측정하는 역할을 하며, 관로 또는 관로의 부속에 접촉되는 봉 형태로 구성될 수 있다.
청음봉 센서(120)의 일측에는 제어 단말(200)과의 연결을 위한 단자가 구비되며, 청음봉 센서(120)는 필요에 따라 제어 단말(200)과 접속하거나 또는 접속을 해제할 수 있다. 이때, 청음봉 센서(120)는 노면 센서(110)와 마찬가지로 신호선(101)을 통해 제어 단말(200)과 통신될수도 있다.
청음봉 센서(120)는, 청음 로드(122)와, 청음 로드(122)의 타단에 결합되는 자석핀(123)과, 청음 로드(122)의 일단 부근에 접하는 센싱 모듈(121)과, 센싱 모듈(121)과 전기적으로 연결되는 연결 단자를 포함하여 구성된다. 이러한 청음봉 센서(120)는 타단에 구비된 자석핀(123)을 통해 통상 금속재로 이루어지는 관로 또는 관로의 부속에 접촉된 상태를 용이하게 유지할 수 있게 된다. 또한, 청음 로드(122)는 복수개가 길이 방향으로 조립되는 형태로서, 조립되는 청음 로드(122)의 수를 조절함으로써 청음하고자 하는 관로 또는 관로의 부속까지의 거리에 따라 적절하게 그 길이를 가변할 수 있는 장점이 있다.
한편, 청음봉 센서(120)는 제어 단말(200)과 함께 관로 또는 관로의 부속 부위에 부착 설치되는 형태로 구성되는 것 역시 가능하다. 이 경우에는 실시간으로 측정값을 서버(300)에 전송할 수 있으므로 더 많은 측정값의 누적에 의해 측정값 패턴 형성을 정확히 할 수 있는 장점이 있다. 이 경우 청음봉 센서(120)와 제어 단말(200)에 전원을 공급하기 위한 솔라셀 모듈 또는 상용 지주 전원 등이 구비될 수 있다.
제어 단말(200)은, 청음 센서(100)로부터 측정값을 입력받아 이를 외부의 서버(300)에 전송하는 역할을 한다.
이를 위하여 제어 단말(200)은 청음 센서(100), 즉, 노면 센서(110) 또는 청음봉 센서(120)와 접속 가능한 형태로 구성되며, 측정값의 외부 전송을 위한 무선 송수신부가 더 구비된다.
우선 제어 단말(200)은, 관리자가 휴대 가능한 형태로 구성될 수 있다. 이 경우 제어 단말(200)은 스마트폰, 태블릿 PC, 타블렛 등 무선 송수신이 가능하고 외부 장치의 연결이 가능한 모든 종류의 모바일 기기가 가능하며, 이 경우, 노면 센서(110) 또는 청음봉 센서(120)와 유선 연결 뿐만 아니라 블루투스 등의 무선 연결 역시 가능한 구성이 된다.
이때, 제어 단말(200)은 스마트폰 등 어느 하나의 기기만을 칭하지 아니하고 이러한 모바일 기기가 장착된 모듈형 장치를 포함하는 개념일 수 있다. 모듈형 장치라 함은 보조 배터리가 구비된 거치대 형태 또는 외장형 GPS 장치가 결합된 형태 등을 포함한다. 제어 단말(200)이 거치대 형태인 경우, 제어 단말(200)은, 본체(210)와, 본체(210)의 일측에 결합되어 스마트폰 등의 모바일 기기를 거치할 수 있는 거치대(220)를 포함하여 구성된다. 본체(210)의 내측으로는, 위치 좌표의 획득을 위한 GPS 모듈(211), 충전 배터리(212), 근거리 통신 모듈(213), 신호 증폭 모듈(214)이 구비되며, 본체의 일측으로는 노면 센서(110) 또는 청음봉 센서(120)와의 연결을 위한 연결 단자(215)가 구비되며, 측정값의 외부 전송을 위한 신호 전송 버튼(216)이 구비된다. 한편, 충전 배터리(212)의 충전을 위한 충전 단자(217) 및 측정된 소음을 직접 청음할 수 있도록 이어폰 단자(218)가 다른 일측에 구비될 수 있다.
그리고, 제어 단말(200)은 측정값을 서버(300)에 전송함과 동시에 측정시의 위치 정보를 서버(300)에 전송한다. 이러한 구성으로 인해 어느 위치에서 측정을 하였고, 해당 위치에서의 과거의 측정 데이터와의 비교가 가능해지게 된다. 나아가, 제어 단말(200)은 위치 정보 뿐만 아니라, 해당 위치의 시설물 정보를 서버(300)에 전송할 수 있다. 시설물 정보라 함은 건물명, 랜드마크, 주거 형태 등 관로의 관종, 매설 형태 또는 매설 규격을 확인할 수 있는 정보들이 그 대상이 될 수 있다. 만일 도 5 와 같이 해당 위치 지근거리에 시설물이 육안으로 확인 가능하나 시설물 정보가 검색되지 않는 경우 제어 단말(200)로부터 자체적으로 시설물 정보를 등록할 수도 있다. 이 경우, 제어 단말(200)로부터 등록되는 시설물 정보는 건물 규모, 건물 종류 등 해당 시설물에 적용된 관종 등에 대하여 유사한 다른 시설물의 시설물 정보로부터 차용된 대략적인 정보의 입력만이 가능하므로, 서버(300)는 제어 단말(200)로부터 등록된 시설물 정보가 차후 정식으로 입수되는 경우 해당 정보를 제어 단말(200)로부터 등록된 시설물 정보에 갈음하여 저장하는 것이 바람직하다.
한편, 제어 단말(200)은 상술한 바와 같이 휴대용 형태로 구성되는 것 외에, 노면 센서(110) 또는 청음봉 센서(120)와 함께 지중에 매설되거나 관로에 부착되는 형태로 구성될 수 있다. 이때에는 휴대용과 같이 충전식 배터리가 아닌 태양광 또는 지주형 상용 전원으로부터 전원을 제공받는 것이 바람직하다.
또한, 이 경우 제어 단말(200)은 서버(300)에 측정값 및 위치 정보를 전송할 뿐만 아니라, 서버(300)로부터 측정 간격 등의 제어 신호를 전송받아 이를 수행하는 형태로 구성될 수 있다. 또한, 이 경우 제어 단말(200)은 노면 센서(110) 또는 청음봉 센서(120)로부터 측정값이 입력되지 않으면 서버(300)에 센서의 고장을 알리는 신호를 전송하여 신속한 보수가 이루어질 수 있도록 구성될 수 있다.
서버(300)는, 본 발명의 제 1 실시예에서는, 도 5 및 도 6 과 같이, 제어 단말(200)로부터 청음 센서(100)의 측정값 및 측정 장소의 위치 좌표, 시설물 정보를 전송받아 저장하며, 측정값을 주파수 데이터로 변환한 후, 주파수 데이터 중 과거 누수음 데이터를 기반으로 설정된 누수 의심 영역의 주파수 범위에 해당되는 주파수 이외의 주파수를 제외한 유효 범위 주파수를 생성하며, 유효 범위 주파수 중 상위 진폭을 갖는 설정 갯수의 주파수를 선별하여 판별 대상 주파수로 선정하고, 판별 대상 주파수에 과거 누수음 데이터를 기반으로 설정된 가중치를 적용한 평균값이 설정값 이상인 경우 누수가 발생된 것으로 판별한다.
이를 위하여 서버(300)는, 제어 단말(200)로부터 청음 센서(100)의 측정값을 전송받는다. 이때 측정값은 해당 측정값이 생성된 장소의 위치 좌표 또는 해당 위치 좌표로부터 설정 반경 이내의 시설물의 시설물 정보에 매칭되어 서버(300)에 저장된다.
서버(300)에 전송된 측정값은 청음센서로부터 측정된 소리의 데이터이므로 시계열로 가변되는 파형 형태를 갖는다. 이러한 시계열 파형은 잡음 성분이 누수음 성분에 더해져 파형의 왜곡이 발생하므로 이를 잡음 성분과 누수음 성분으로 분리하고, 또한, 특정 패턴을 추출하기가 어려우므로, 이를 주파수계열 파형으로 변형할 필요가 있다. 이러한 주파수 계열의 변환을 위하여 고속 푸리에 변환(FFT: Fast Fourier Transform)이 활용된다. FFT는 주파수가 서로 다른 여러 사인파가 중첩된 파형에서 각 사인파의 주파수별로 진폭을 특정할 수 있으며, FFT의 수행 방법은 널리 알려진 공지의 기술이므로 상세한 수식은 생략하도록 한다.
서버(300)는 전송된 측정값으로부터 FFT를 수행하여 시계열 데이터를 주파수 데이터로 변환한다. 그리고, 해당 측정값과 매칭되어 저장된 시설물 정보를 토대로 해당 시설물 정보에 포함된 관종에 대응되는 과거 누수음 데이터를 기반으로 유효 범위 주파수를 생성한다. 유효 범위 주파수는 시설물 정보에 포함된 관종별로 다르게 생성될 수 있으며, 현재 측정값이 측정된 시설물 및 관종과 유사한 정보를 갖는 과거의 시설물 및 관종 정보에 매칭되어 저장된 누수음 데이터를 기초로 한다. 과거의 누수음 데이터는 어느 시설물의 어느 관종에서 어느 주파수 영역이 누수음에 관련된 데이터인지 구분되어 있으며, 따라서, 서버(300)는 현재 측정된 측정값으로부터 변환된 주파수 데이터 중 누수 의심 영역에 해당되는 주파수 이외의 주파수를 필터링하여 유효 범위 주파수를 생성하며, 이를 위하여 분류 모듈이 구비된다. 분류 모듈은 시설물 정보를 토대로 시설물에 적용된 관종을 분류하고, 분류된 관종에 대응되는 유효 범위 주파수를, 새로 전송된 시설물 정보에 매칭된 측정값으로부터 분류한다. 즉, 분류 모듈은, 과거의 누수음 데이터를 이용하여 새로 측정된 측정값으로부터 누수음에 관련되지 않은 노이즈 성분을 제거하는 역할을 하는 것이다.
그리고, 서버(300)는, 분류 모듈로부터 생성된 유효 범위 주파수 중에서 진폭이 큰 순서로 상위 설정 갯수의 주파수를 선별하여 판별 대상 주파수로 선정한다. 이는 측정 지점에서의 소리는 생활 소음, 누수음, 대형 트럭이 지나가거나 공사장 장비의 소음 등이 섞여있는데, 이 중 누수음과 주파수 범위가 다른 소음은 분류 모듈에서 노이즈로서 제외되고, 누수음과 주파수 범위가 다소 유사한 관로를 흐르는 물의 마찰음 등은 누수음보다 진폭이 비교적 작은 것에서 착안한 것이다. 즉, 모든 샘플주파수에 대하여 모두 가중치를 곱하여 계산하면 보다 정확하겠으나, 신속한 계산 및 가중치의 갱신을 위하여 누수 의심 영역 내의 주파수 중에서 진폭이 큰 몇 개의 주파수를 토대로 누수 여부를 판별하도록 하는 것이다. 이를 위하여 서버(300)에는 선별 모듈이 구비되며, 선별 모듈에서 선별된 판별 대상 주파수는 추출 모듈에서 추출된 가중치와 곱해지는 입력 변수로 활용되어 가중평균값이 구해지게 된다.
다음으로, 서버(300)는, 분류 모듈에서 분류한 관종 데이터 및 선별 모듈에서 선별한 판별 대상 가중치를 토대로, 해당 관종에서의 주파수 구간별로 분류된 입력 변수별 가중치 중 판별 대상 주파수가 속한 주파수 수간의 가중치를 추출한다. 그리고, 이러한 과정을 수행하기 위하여 추출 모듈이 구비된다. 즉, 서버(300)에는 관종별로, 각 관종에서의 주파수 구간별로 가중치가 저장되어 있으며, 추출 모듈은 여러 관종별로 저장된 주파수 구간별 가중치 중에서 분류 모듈에서 분류한 관종 데이터에 대응되면서도 판별 대상 주파수가 속한 주파수 구간에 매칭되어 저장된 가중치를 추출하는 것이다.
그리고, 서버(300)는, 판별 대상 주파수를 입력 변수로 설정하고, 입력 변수마다 가중치를 적용하여 가중평균값을 계산한다. 이를 위하여 서버(300)에는 계산 모듈이 구비되며, 계산 모듈은, 입력 변수인 판별 대상 주파수에 추출 모듈로부터 추출된 가중치를 적용하여 가중평균값을 계산한다. 이때, 시설물에는 하나의 관종만 적용되지 않고 여러 관종이 복합적으로 적용되는 경우가 더 많고, 시설물 정보로부터 분류 모듈에 의해 분류되는 관종 데이터는 복수로 구성될 수 있다. 따라서, 서버(300)는 분류 모듈, 선별 모듈, 추출 모듈, 계산 모듈로부터 가중평균값을 계산할 때 어느 하나의 관종에 대해서만 계산하지 아니하고, 복수의 관종에 대하여 가중평균값을 계산할 수 있다. 이때, 자명하게도 각각의 관종에 대한 유효 범위 주파수의 범위, 이에 따른 판별 대상 주파수의 값, 가중치의 값 등은 서로 다르게 형성되나, 우연의 일치로 같은 수치를 갖는 것을 배제하는 것은 아니다.
서버(300)는, 계산 모듈로부터 계산된 가중평균값이 설정값 이상인 경우 누수가 발생된 것으로 판별한다. 이때, 누수 여부는 최종적으로 관리자가 누수로 판별된 해당 측정 위치를 직접 탐방하여 공사를 진행함으로써 검증 완료되며, 만일 서버(300)에서는 누수로 판별하였으나, 관리자가 해당 위치를 직접 공사하였으나 누수가 아닌 것으로 확인되면 누수로 판별된 해당 관종의 해당 주파수 구간의 가중치를 파기 또는 변경하는 것이 바람직하다.
한편, 서버(300)는 계산 모듈로부터 계산된 가중평균값이 설정값 미만인 경우 누수가 발생되지 않은 것으로 판별하나, 실제 누수가 발생되었음에도 과거 누수음 데이터가 부족하여 오판되는 경우가 있을 수 있으므로, 이를 방지하고자 2차 누수 판별 과정을 실시한다.
상기에서 설명한 1차 누수 판별 과정은 시설물 정보 및 관종 정보에 대응되는 타지의 과거 누수음 데이터를 이용하여, 현재 측정중인 시설물 정보 및 관종 정보의 누수 여부를 판별하였다. 그러나, 누수음은 지반의 형성 재료, 각 형성 재료의 비율, 노면의 포장 상태, 대형 건물의 유무 등에 의해 왜곡될 수 있으므로, 비록 1차 누수 판별 과정에서 누수가 아닌 것으로 판별되었더라도, 해당 지역에 특화된 누수음에 대해서도 예방책으로 2차 판별 과정을 거치는 것이다.
이를 위하여, 서버(300)는, 가중평균값이 설정값 미만인 경우, 측정값이 측정된 위치 좌표의 설정 반경 이내에 존재하는 과거 누수음 데이터를 기반으로 유효 범위 주파수를 생성하고, 판별 대상 주파수를 선정하며, 가중치를 추출하여 가중 평균값을 재계산하게 된다. 이때, 각 과정은 1차 누수 판별 과정과 동일하며, 과거 누수음 데이터를 측정 위치 주변의 과거 누수음 데이터로 적용하는 것이다.
그리고, 서버(300)는 만일 2차 누수 판별 결과 누수가 발생된 것으로 판별되면, 해당 판별 대상 주파수가 포함된 주파수 구간의 가중치를 재설정한다. 이러한 가중치의 재설정 과정을 반복하게 되면, 해당 위치 좌표 주변에서의 가중치 정보가 더욱 정확해질 뿐만 아니라, 해당 위치 좌표에서의 시설물 정보에 속한 관종별 가중치 정보 역시 더욱 정확해지게 된다.
한편, 본 발명의 제 2 실시예는, 청음 센서(100), 제어 단말(200), 서버(300)간의 통신, 청음 센서(100)의 구성 및 측정값 생성, 제어 단말(200)의 구성 등 기본 구성은 상기의 제 1 실시예와 동일한 구성으로서, 서버(300)에서 누수 여부를 판별하는 알고리즘이 변형된 구성을 갖는다.
서버(300)는, 제어 단말(200)로부터 청음 센서(100)의 측정값을 전송받아 저장하며, 누적 저장된 측정값으로부터 측정값 패턴을 형성하고, 새로 전송된 측정값이 패턴의 오차 범위 내에 있는지 여부를 비교함으로써 관로의 누수 여부를 판별하는 역할을 한다.
이를 위하여 서버(300)는, 제어 단말(200)로부터 청음 센서(100)의 측정값을 전송받는다. 서버(300)는 전송된 측정값을 누적하여 저장하며, 누적 저장된 측정값을 토대로 측정값 패턴을 형성한다. 측정값 패턴은 시계열로 분석된 파형도 물론 가능하나, 특정 주기를 갖지 않는 파형의 분석은 주파수 계열로 분석하는 것이 바람직하며, 이를 위하여 서버(300)는 측정값을 고속 푸리에 변환(FFT: Fast Fourier Transform)하여 패턴을 형성한다.
서버(300)는, 패턴의 형성이 완료되면 새로 전송된 측정값을 형성된 패턴과 비교한다. 만일, 새로 전송된 측정값이 저장된 패턴으로부터 설정 범위 이상 차이가 발생하게 되면 해당 측정값을 이상 상황으로 분류한다. 이러한 이상 상황은 실제로 누수가 발생한 상황에 의해 발생될수도 있고, 또는, 근처를 지나는 대형 트럭, 공사장 소음 등에 의해 발생될수도 있다.
따라서, 서버(300)는 이러한 이상 상황이 누수에 의한 것인지 주변 환경에 의한 일시적 잡음인지를 판별해야 한다. 이를 위하여 서버(300)는 도 7 과 같이, 이상 상황으로 분류된 횟수, 즉, 새로 측정되는 측정값이 저장된 패턴으로부터 설정 범위 이상 차이가 발생되는 횟수가 설정 시간 내에 설정 횟수 이상 연속되는 경우에 한해 누수가 발생된 것으로 판별하게 된다. 즉, 대형 차량 등에 의한 노면 진동 또는 소음, 주변 공사장 소음 등에 의한 측정 오류는 일시적인 것이고, 누수에 의한 소음 변경은 지속적으로 발생되는 것에 착안한 것이다. 예를 들어, 10분간 1분 간격으로 측정한 측정값이 1회차, 5회차, 8회차에 이상 상황인 것으로 나타나면 이는 일시적인 주변 환경의 변화에 의한 것으로 판단하여 누수 상황으로 판별하지 않고, 또한, 이때 측정한 측정값은 패턴 형성을 위한 데이터로 활용하지 않는 것이다. 반면, 10분간 1분 간격으로 측정한 측정값이 기존에 측정했던 측정값에 의한 패턴과 대비하여 1회차에서부터 10회차까지 모두 설정 범위 이상 차이가 발생된 경우에는 기존에 측정했던 때로부터 현재의 측정 시점 사이에 누수가 발생된 것으로 판단하게 되는 것이다.
한편, 서버(300)는 제어 단말(200)로부터 측정시의 위치 정보, 시설물 정보 등을 함께 전송받아 이러헌 위치 정보 또는 시설물 정보에 측정값을 매칭하여 저장한다. 따라서, 해당 위치에서의 과거로부터의 측정값과 현재 측정된 측정값을 비교 분석할 수 있게 된다. 나아가, 서버(300)는 위치 정보 및 시설물 정보를 통해 해당 위치에서의 시설물별 또는 관종별 누수음 정보를 생성하여 신규 측정 위치에서 측정을 처음 시작하는 경우에, 신규 측정 위치에서의 시설물 정보를 토대로 추출된 시설물 종류 또는 관종에 대응되는 누수음 정보를 초기 패턴으로 적용할 수 있게 된다. 즉, 유사한 환경하의 신규 측정 위치의 관로가 이미 누설중인 경우에 대해서도 대응이 가능하도록 하기 위한 방법인 것이다.
예를 들어, A도시의 도심 지형, 20층 이상 고층 빌딩 10개소, 주변 상가 100개소인 종래의 측정값 패턴 및 누수음 정보가 있는 상태에서, B도시의 도심 지형, 20층 이상 고층 빌딩 9개소, 주변 상가 80개소인 신규 측정 위치가 있는 경우, A도시의 측정값 패턴 및 누수음 정보를 B도시에도 초기에 유사하게 적용할 수 있는 것이다. 만일, 이러한 초기 패턴 정보 또는 누수음 정보 없이 B도시를 신규 측정하는 경우, B도시의 관로가 이미 누수가 발생된 후라면, 누수가 발생중인 음을 측정하여 패턴을 형성하고 향후로도 이 패턴을 활용하여 누수 여부를 판별해야 하기 때문에, 누수 부위에 변동이 발생하지 않는 한 누수 여부를 판별하기 어렵기 때문이다.
또한, 이러한 위치 정보 및 시설물 정보에 근거한 초기 패턴 및 누수음 정보는 측정 사례가 거듭될수록 더욱 세분화되고 정밀해여, 신규 측정 위치에서의 측정도 더욱 정밀해지는 효과를 갖게 된다.
이때, 측정값 패턴은 관종 또는 시설물이 서로 유사한 경우에도 관로가 매설된 깊이, 관로가 매설된 지점의 지질 등에 따라 변수가 다양하기 대문에, 신규 측정 위치에서는 우선 해당 지역에 누수가 이미 발생되었는지의 여부를 확인하는 것에 초점을 맞추는게 바람직하다. 관로의 평상시 소음에 비해 누수음은 그 주파수 스펙트럼 패턴이 비교적 특징적으로 나타나기 때문에, 신규 측정 위치에서는 기 누수의 여부만을 판별하고, 새로이 측정되는 측정값으로부터 해당 위치만의 측정값 패턴을 형성할 수 있도록 하는 것이 바람직하다. 이를 위하여, 서버(300)는 어느 측정 위치에서 누수가 발생된 것으로 판별되면, 해당 측정 장소의 위치 정보 및 시설물 정보를 토대로 해당 위치에서의 관종별 또는 시설물별 누수음 정보를 생성하여 저장하고, 신규 측정 위치에서의 시설물 정보를 토대로 추출된 관종 또는 시설물에 대응되는 누수음 정보를 초기 패턴으로 적용하게 된다. 이때의 서버(300)는 신규 측정 위치에서의 측정값이 초기 패턴으로 저장된 누수음 패턴으로부터 설정 범위 이내인 경우 해당 측정값을 이상 상황으로 분류하는 것이 바람직하다.
한편, 주변 환경에 따라 이러한 관로의 소음 또는 누수음을 측정하는것만으로는 판별이 어려운 경우가 있을 수 있다.
이를 위하여 본 발명의 제 3 실시예에서는 본 발명의 제 2 실시예의 구성에서 관로상에 특정 음파를 방출하는 음향 송출 장치(미도시)가 더 구비될 수 있다.
음향 송출 장치는, 설정 주기마다 관로상에 설정된 주파수의 음을 단발적으로 방출하며, 방출된 음향이 관로의 특정 부위에서 반향되어 오는 반향음을 측정할 수 있도록 하는 역할을 한다. 이를 위하여 음향 송출 장치는 관로에 직접 부착되거나 또는 관로에 접촉되어야 하므로, 청음봉 센서(120)를 이용한 측정시에 활용되는 것이 바람직하며, 청음봉 센서(120)와 일체로 제작되어 활용되는 것 역시 가능하다. 물론, 이 경우에도 음향 송출 장치는 청음봉 센서(120)와 마찬가지로 관로상에 설치되거나 또는 휴대용으로 구성될 수 있다.
도 8 을 참조하면, 서버(300)는, 제어 단말(200)로부터 측정값을 입력받아 측정값의 피크 간격 또는 피크값을 누적하여 패턴으로 저장한다. 측정값의 피크값은 음향 송출 장치로부터 방출된 음향의 반향음에 의한 것이며, 이러한 반향음은 관로의 절곡 또는 밸브 등의 결합 부위 등에서 주로 크게 일어난다. 따라서, 방출된 음향이 되돌아오는 시간은 해당 관로에서는 매우 일정하게 측정되며, 서버(300)는 이러한 반향음의 크기 또는 간격을 이용하여 관로의 누수 여부를 판별하게 된다.
예를 들어, A지점에서 과거에 음향 송출 장치를 구동시키면서 측정한 측정값의 피크 간격이 1초, 피크값이 50으로 꾸준히 지속되어 패턴으로 형성된 이후, 현재 측정시의 측정값의 피크 간격이 0.5초, 피크값이 80으로 가변되었다면 관로에 누수가 발생되었고, 파손 부위에서 음향이 크게 반사되어 되돌아온 것으로 의심할 수 있는 것이다. 이때, 주변 환경에 의해 일시적으로 노이즈가 생성된 것일 수 있으므로, 서버(300)는 새로 측정된 측정값이 피크 간격 또는 피크값이 저장된 패턴으로부터 설정 범위 이상 차이나는 경우, 이를 이상 상황으로 분류하고, 이러한 이상 상황이 설정 시간 내에 설정 횟수 이상 연속되는 경우에만 누수가 발생된 것으로 판별하게 되는 것이다.
이때, 바람직하게는 측정값의 피크값이 음향 송출 장치에 의한 반향음인지 여부를 확인하기 위하여 주파수 스펙트럼 분석을 병행할 수 있다.
또한, 이 경우에도 서버(300)는 이상 상황으로 분류된 횟수가 설정 시간 내에 설정 횟수 미만이거나 또는 연속되지 않는 경우 이를 일시적인 외부 노이즈로 판별하고, 이때 측정한 측정값은 패턴 형성을 위한 데이터로 활용하지 않는다.
상술한 구성으로 이루어진 본 발명은, 청음 센서(100)로부터 측정된 측정값을 토대로 누수 여부를 판별할 수 있으므로, 작업자의 숙련도에 상관없이 지중 관로의 누수 여부를 판별할 수 있는 효과가 있다.
또한, 본 발명은, 측정값을 누적된 과거의 누수음 데이터와 비교하고, 이의 유사성 유무로서 누수 여부를 판별할 수 있으므로, 일시적 외부 노이즈에 의한 판별 오류를 최소화할 수 있는 효과가 있다.
또한, 본 발명은, 측정값을 위치 정보에 매칭하여 저장하므로, 어느 지점에서 누수가 발생되었는지 여부를 신속하게 알아낼 수 있는 효과가 있다.
또한, 본 발명은, 측정값을 시설물 정보에 매칭하여 저장하므로, 신규 측정 위치에서 이미 누수가 진행중인 경우에도 누수 여부를 판별할 수 있는 효과가 있다.
또한, 본 발명은, 휴대용 센서 및 휴대용 단말을 이용하여 위치 정보에 대응되는 위치에서 측정만 진행하여도 측정값의 누적 및 누수 여부의 판별이 가능하므로, 모든 지중 관로마다 측정 장치를 구비하지 않아도 되는 효과가 있다.
100 : 청음 센서
110 : 노면 센서
120 : 청음봉 센서
200 : 제어 단말
300 : 서버

Claims (4)

  1. 지중 관로 또는 상기 지중 관로 주변의 소리를 측정하여 측정값을 생성하는 청음 센서;
    상기 청음 센서로부터 측정값을 입력받고, 상기 측정값이 생성된 장소의 위치 좌표에 대응되는 시설물 정보를 상기 측정값과 함께 외부로 전송하는 제어 단말;
    상기 제어 단말로부터 전송된 상기 측정값이 저장된 데이터와 설정 수치 이상 차이가 발생하는 경우 누수가 발생된 것으로 판별하는 서버;
    를 포함하되,
    상기 청음 센서는, 상기 지중 관로가 매설된 지상 또는 지중에 설치되어 주변의 소리를 측정하는 노면 센서, 또는, 상기 지중 관로에 접촉하여 상기 지중 관로를 통해 전도되는 소리를 측정하는 청음봉 센서를 포함하고,
    상기 제어 단말은, 상기 위치 좌표의 설정 반경 이내의 시설물을 검색하여 상기 시설물 정보를 생성하고, 상기 시설물 정보의 전송시에 상기 위치 좌표를 상기 서버에 전송하며,
    상기 서버는, 상기 제어 단말로부터 전송된 상기 시설물 정보에 상기 측정값을 매칭하여 저장하되, 상기 측정값을 누적하여 패턴으로 저장하고, 새로 전송된 측정값이 저장된 패턴으로부터 설정 범위 이상 차이나는 경우 해당 측정값을 이상 상황으로 분류하고, 이상 상황으로 분류된 횟수가 설정 시간 내에 설정 횟수 이상 연속되는 경우 누수가 발생된 것으로 판별하되,
    상기 서버는, 누수가 발생된 것으로 판별되면 상기 시설물 정보를 토대로 관종별 누수음 정보를 생성하여 저장하고, 신규 측정 위치에서의 시설물 정보를 토대로 추출된 관종에 대응되는 상기 누수음 정보를 신규 측정 위치에서의 이상 상황 분류를 위한 초기 패턴으로 적용하는 누수 여부 탐지 시스템.
  2. 삭제
  3. 삭제
  4. 삭제
KR1020210035013A 2019-09-09 2021-03-18 누수 여부 탐지 시스템 KR102336715B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210035013A KR102336715B1 (ko) 2019-09-09 2021-03-18 누수 여부 탐지 시스템

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190111226A KR102275063B1 (ko) 2019-09-09 2019-09-09 누수 여부 탐지 시스템
KR1020210035013A KR102336715B1 (ko) 2019-09-09 2021-03-18 누수 여부 탐지 시스템

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020190111226A Division KR102275063B1 (ko) 2019-09-09 2019-09-09 누수 여부 탐지 시스템

Publications (2)

Publication Number Publication Date
KR20210032373A KR20210032373A (ko) 2021-03-24
KR102336715B1 true KR102336715B1 (ko) 2021-12-08

Family

ID=78867621

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210035013A KR102336715B1 (ko) 2019-09-09 2021-03-18 누수 여부 탐지 시스템

Country Status (1)

Country Link
KR (1) KR102336715B1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113532748B (zh) * 2021-07-15 2024-02-09 京源中科科技股份有限公司 输水管道用漏水检测设备
CN115950590B (zh) * 2023-03-15 2023-05-30 凯晟动力技术(嘉兴)有限公司 气体发动机泄露预警系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6398538A (ja) * 1986-10-15 1988-04-30 Nec Corp 漏水音識別装置
KR200355166Y1 (ko) 2004-04-22 2004-07-02 임규식 휴대성이 용이한 누수탐지기
KR20060086909A (ko) * 2006-06-30 2006-08-01 목진천 파이프내 기체 또는 액체의 누출여부를 탐지하기 위한탐지장치
KR102006206B1 (ko) * 2017-08-14 2019-08-01 오토시맨틱스 주식회사 딥러닝을 통한 음향기반 상수도 누수 진단 방법

Also Published As

Publication number Publication date
KR20210032373A (ko) 2021-03-24

Similar Documents

Publication Publication Date Title
KR102336715B1 (ko) 누수 여부 탐지 시스템
JP5846015B2 (ja) 漏洩検知方法、漏水検知方法、漏洩検知装置および漏水検知装置
US6003376A (en) Acoustic system for measuring the location and depth of underground pipe
KR101173592B1 (ko) 매설관의 파손방지와 파손된 위치를 확인하는 시스템 및 그 운용방법
CN101827461A (zh) 管理地下设施的无线通信系统
CN101358827A (zh) 管道壁厚tem检测方法和gbh管道腐蚀智能检测仪
KR101179001B1 (ko) 지하 매설물의 위치 측정 및 관리 시스템
CN111123271A (zh) 一种地下管道的定位系统及方法
CN100365438C (zh) 用于检测埋入的磁性物体的检测器
KR102254655B1 (ko) 지하 매립 유체용 배관의 누수 탐지 방법 및 지하 매립 유체용 배관의 누수 탐지 시스템
KR20210020516A (ko) 누수 감지 장치 및 시스템
CN110195824A (zh) 一种基于网络的地下管道漏水检测方法及漏水检测仪
KR102313851B1 (ko) 누수음 관리 운영 시스템
KR20110058313A (ko) 지하 시설물 측량용 3차원 전자유도 측량장비
KR102275063B1 (ko) 누수 여부 탐지 시스템
KR101382232B1 (ko) 소음 수준 및 분포를 이용한 상시 누수진단 시스템
KR20200073563A (ko) 상수관망 누수 정보 제공 시스템
US20230417937A1 (en) System and Method for Acoustically Detecting Cross Bores
CN211955820U (zh) 一种地下管道的定位系统
CN109299542A (zh) 基于现场检测与数值仿真相结合的pccp管道断丝的检测方法
KR101173161B1 (ko) 지중관로 탐사측정시스템
US20230028676A1 (en) Location determination of deployed fiber cables using distributed fiber optic sensing
CN112923245B (zh) 一种供水管网漏损探查的方法
US11555698B2 (en) Systems and methods for estimating concrete thickness
KR101575739B1 (ko) 지하매설물 관리 시스템 및 방법

Legal Events

Date Code Title Description
A107 Divisional application of patent
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right