KR102324924B1 - 항암제 선별방법 - Google Patents

항암제 선별방법 Download PDF

Info

Publication number
KR102324924B1
KR102324924B1 KR1020200018916A KR20200018916A KR102324924B1 KR 102324924 B1 KR102324924 B1 KR 102324924B1 KR 1020200018916 A KR1020200018916 A KR 1020200018916A KR 20200018916 A KR20200018916 A KR 20200018916A KR 102324924 B1 KR102324924 B1 KR 102324924B1
Authority
KR
South Korea
Prior art keywords
cancer
protein
upb1
kit
ovarian cancer
Prior art date
Application number
KR1020200018916A
Other languages
English (en)
Other versions
KR20200101854A (ko
Inventor
김재훈
김성훈
양우겸
신하연
이은주
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Publication of KR20200101854A publication Critical patent/KR20200101854A/ko
Application granted granted Critical
Publication of KR102324924B1 publication Critical patent/KR102324924B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/106Pharmacogenomics, i.e. genetic variability in individual responses to drugs and drug metabolism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/118Prognosis of disease development
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/136Screening for pharmacological compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/52Predicting or monitoring the response to treatment, e.g. for selection of therapy based on assay results in personalised medicine; Prognosis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/60Complex ways of combining multiple protein biomarkers for diagnosis

Abstract

본 발명은 (a) 생물학적 시료에서 EXOC3L2, KCNK6, SPRN, MRGPRX3, CERS3, LCAT, UPB1, 또는 ZCCHC18으로 이루어진 군으로부터 선택된 1개 이상의 유전자의 mRNA 또는 이의 단백질의 발현 수준을 측정하는 단계; 및 (b) 상기 (a) 단계에의 생물학적 시료에 후보물질을 첨가하고, 상기 유전자들의 mRNA 또는 이의 단백질의 발현 수준이 변화가 있는 경우에 이를 항암제로 선별하는 단계를 포함하는, 항암제 선별방법에 관한 것이다. 또한, 본 발명은 상기 유전자들의 mRNA 또는 단백질의 발현 수준을 조절할 수 있는 성분을 유효성분으로 포함하는 암의 예방 또는 치료용 약학 조성물에 관한 것이다.

Description

항암제 선별방법{A SCREENING METHOD FOR ANTI-CANCER AGENTS}
본 발명은 항암제 선별방법에 관한 것이다.
암은 국내 사망 원인의 1위를 차지하는 중대 질환으로 암을 정복하기 위한 수많은 연구가 있어 왔지만 아직까지 정복되지 않고 있는 난치병이다. 진단된 암에 대한 치료법은 일반적으로 수술, 화학요법 및 방사선 치료 등이 있으나, 각각의 방법에는 한계가 많다. 또한 암은 일단 치료된 후에도 재발 가능성이 상당히 높으며, 항암제에 대한 감수성도 개체에 따라 차이가 많으므로 암의 예후 및 항암제 감수성을 예측하는 것이 암환자의 치료 방향을 결정하는데 필수적이다.
특히 난소암은 원격전이가 진행된 이후에는 생존율이 매우 낮으며, 난소암의 경우 조기 진단이 어렵고 복막 전이가 심하기 때문에 치료율이 매우 낮다. 또한, 난소암은 특히 유전적 다양성이 다른 암에 비해 매우 심해, 적합한 약물을 찾기도 어렵다. 약물에 대한 내성의 발현으로 재발이 잦기 때문이다. 그 단적인 예가 2011년 네이처에 발표된 논문에 따르면(Nature. 2011 Jun 29;474(7353):609-15), 난소암에서의 복제수변이(copy number variation)가 악성뇌교종(glioblastoma)에 비해 극히 심한 것이 기재되어 있다. 난소암은 종양간 이질성(intertumoral heterogeneit) 또는 종양내 이질성(intratumoral heterogeneity)이 매우 심각한 암이다. 난소암 환자 중 33%에서 BRCA1/2 변이가 발견되었고, 난소암 환자의 51%는 상동재조합과정의 변이(homologous recombination pathway alteration)가 있는 것으로 판명이 되어, 기존에 개발된 PARP 억제제인 올라파립(olaparib)이 난소암의 표적치료제로 주목을 받았다. 2015년 Lancet oncology에 발표된 난소암 환자들을 대상으로 올라파립에 대한 무작위 임상 2단계 결과를 살펴보면, BRCA 돌연변이 환자에서 PFS의 개선이 두드러졌으나, OS에서는 생존율 증가면에서 통계적으로 유의한 결과를 얻지 못하였다 (Lancet Oncol. 2015 Jan;16(1):87-97). 하지만, 2018년 NEJM journal에 발표된 새롭게 진단된 진행성 난소암 환자들 중 BRCA1 또는 BRCA2 유전자의 변이를 가진 환자에서 platinum based chemotherapy에 complete 또는 partial clinical response를 나타내는 환자를 대상으로, olaparib과 placebo를 하루에 300mg씩 2회 처방한 결과 progression-free survival이 70%가 개선되었고, 기간으로는 생존율이 3년 높게 나타났다. 이는 기존 platinum based chemotherapy에 필적할 만한 획기적인 결과로 평가받고 있다. 하지만, BRCA1/2 유전자 변이된 환자에 한정된 결과로 여전히 난소암의 치료의 어려움이 큰 것에는 차이가 없다. 이 외에도 다양한 임상 연구들이 진행이 되었지만, 대동소이하다.
암의 치료법은 외과적 수술, 방사선 치료법, 항암 화학 요법으로 크게 나눌 수 있으며, 암은 수술 실시가 가능하여 외과적 수술이 흔히 사용되고 있다. 하지만 외과적 수술을 받더라도, 암이 진행성인 경우 재발률이 매우 높다. 따라서, 재발을 예방하고, 암 환자들의 예후를 개선하기 위해 외과적 수술 후 화학요법이나, 화학-방사선요법을 포함한 다학제적 치료가 도입되었다. 그러나 이들 치료 방법이 환자들에서 일반적인 임상 결과를 개선하기는 하나 종양의 임상병리학적 이질성과, 같은 병기에 있는 환자들의 다른 결과는 보조 화학요법의 임무를 예측하는데 한계가 있어 개별 환자들에 대한 최적 접근이 부족한 상태이다.
최근의 진전에도 불구하고 발병적으로 별개의 종양 유형에 대해 특이적 치료 섭생을 표적화하고, 궁극적으로 성과를 최대화시키기 위하여 종양 치료를 개인화하기 위한 암 치료의 도전과제들이 남아있다. 따라서, 각종 치료 선택사항들에 대한 환자 반응에 관한 예측적 정보를 동시에 제공하는 시험을 필요로 하고 있다.
2006년 암환자의 식욕부진과 영양상태 심포지움에서 발표된 내용에 따르면, 암으로 사망하는 환자의 20% 이상에게 나타나는 직접적인 사망원인이 영양실조인 것으로 밝혀졌다. 암환자의 평균 63%가 영양실조를 겪고 있으며, 췌장암과 위암 환자의 경우에는 83% 이상이 영양실조로 고통을 겪고 있는 것으로 조사되었다. 암투병과정에서 영양결핍이 두드러지는 시기는 대개 말기이다. 그 이전 단계에서는 체중도 비교적 유지되며, 영양결핍이 나타나는 경우는 매우 드물다. 항암치료 중인 경우는 예외적인 상황인데, 수술 및 항암치료, 방사선 치료를 받는 기간에는 체중이 급격히 감소하는 경우가 대부분이며, 이 시기에는 칼로리를 보충해서 체중과 체력을 유지하는 것이 필수적이다. 가장 큰 문제점은 항암치료가 종결된 이후이다. 수술 후 또는 항암치료가 끝나고 한 달이 지난 시기에는 입맛 및 소화기능, 전신상태도 개선되기 때문에 체중이 늘기 시작한다. 환자의 경우 암 투병과정에서 영양상태가 중요하다는 설명을 많이 듣다보니 가리지 않고 섭취하여 오히려 체중이 과잉이 되는 경우도 상당수 존재한다. 만일, 암투병과정 중 수술 및 항암치료가 종결된 이후에도 난소암 환자들이 고열량식을 유지하고, 그에 따른 비만 및 대사장애로 인해 난소암 성장 및 전이에 영향을 받을 경우 치료 예후가 좋지 않을 가능성이 매우 높다.
게다가, 2016년 Nutrition and Cancer에 발표된 논문에 따르면, 난소암 환자의 경우 영향결핍이 나타난 경우 5년 전체생존율이 45.3%로 영향결핍이 나타나지 않은 경우 64%에 비해 예후가 좋지 않았고, 위험률은 5.8배로 높았다. 또한 progression free survival이 영향결핍이 나타나는 경우가 15개월로, 영향결핍이 나타나지 않는 환자의 28개월에 비해 현저히 낮았다.
즉, 난소암 환자의 영양상태 및 식이조절을 통한 체중 조절이 난소암 환자의 예후와 밀접하게 연관되었을 가능성이 매우 높다. 다양한 mata-analysis 연구의 보고에 따르면 body size의 obesity의 증가는 난소암의 위험도 및 생존율과 연관성이 높은 것으로 밝혀졌다. 특히, 2015년 Cancer research에 보고된 바에 의하면, obesity가 lipogenesis를 통해 난소암의 전이 성공률을 높여주는 것으로 밝혀졌다. 하지만, 아직까지 난소암 치료 종료 후 발생된 비만 또는 식이조절에 따른 잔류종양에 대한 연관성 및 난소암 성장, 유전자 발현 연구, 그리고 각 유전자 간의 상호작용에 대한 연구는 진행된 바가 없다.
본 발명의 목적은 유전자 EXOC3L2, KCNK6, SPRN, MRGPRX3, CERS3, LCAT, UPB1, 또는 ZCCHC18으로 이루어진 군으로부터 선택된 1개 이상을 포함하는, 항암제 감수성 예측용 바이오 마커를 제공하는 것이다.
본 발명의 또 다른 목적은 유전자 EXOC3L2, KCNK6, SPRN, MRGPRX3, CERS3, LCAT, UPB1, 또는 ZCCHC18으로 이루어진 군으로부터 선택된 1개 이상의 유전자의 mRNA 또는 단백질의 발현 수준을 측정하는 제제를 포함하는, 항암제 감수성 예측용 바이오 마커 조성물을 제공하는 것이다.
EXOC3L2, KCNK6, SPRN, MRGPRX3, CERS3, LCAT, UPB1, 또는 ZCCHC18으로 이루어진 군으로부터 선택된 1개 이상의 유전자의 mRNA의 수준 또는 이의 단백질의 발현 수준을 측정하기 위한 제제를 포함하는, 항암제 감수성 예측용 키트를 제공하는 것이다.
본 발명의 또 다른 목적은 상기 유전자의 발현 억제제를 유효성분으로 포함하는 암의 예방 또는 치료용 약학 조성물을 제공하는 것이다.
본 발명의 또 다른 목적은 상기 유전자의 활성화제를 유효성분으로 포함하는 암의 예방 또는 치료용 약학 조성물을 제공하는 것이다.
그러나, 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업계에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명자는 이러한 필요성을 해결하고자, 면역결핍 누드마우스에 난소암 환자유래종양조직 (Ovarian cancer patient's derived tumor xenograft, PDTX)을 이식하여, 마우스에 인위적 식이조절을 유도한 뒤 난소암의 성장에의 영향과 RNA 염기서열 분석법을 이용하여 난소암 환자유래종양조직에서의 유전적 변화 분석을 통해 예후를 예측하여 난소암 환자의 예후를 향상시킬 수 있는 유전자 발현 모델을 제시하여, 본 발명을 완성하기에 이르렀다.
나아가, 정상조직, 양성 종양 조직, 악성 종양 조직 또는 전이 암 조직 간의 유전자 발현 양상을 통계학적으로 분석하여 항암조성물 또는 항암제 처리시 발현량에 변화가 있는 유전자들을 선별하고, 이에 대한 생존율을 관찰하여 항암제에 대한 감수성을 예측할 수 있는 유전자군을 선별하고, 이에 따른 암 치료 효과를 확인하였다.
이하, 본원에 기재된 다양한 구현예가 도면을 참조로 기재된다. 하기 설명에서, 본 발명의 완전한 이해를 위해서, 다양한 특이적 상세사항, 예컨대, 특이적 형태, 조성물 및 공정 등이 기재되어 있다. 그러나, 특정의 구현예는 이들 특이적 상세 사항 중 하나 이상 없이, 또는 다른 공지된 방법 및 형태와 함께 실행될 수 있다. 다른 예에서, 공지된 공정 및 제조 기술은 본 발명을 불필요하게 모호하게 하지 않게 하기 위해서, 특정의 상세사항으로 기재되지 않는다. "한 가지 구현예" 또는 "구현예"에 대한 본 명세서 전체를 통한 참조는 구현예와 결부되어 기재된 특별한 특징, 형태, 조성 또는 특성이 본 발명의 하나 이상의 구현예에 포함됨을 의미한다. 따라서, 본 명세서 전체에 걸친 다양한 위치에서 표현된 "한 가지 구현예에서" 또는 "구현예"의 상황은 반드시 본 발명의 동일한 구현예를 나타내지는 않는다. 추가로, 특별한 특징, 형태, 조성, 또는 특성은 하나 이상의 구현예에서 어떠한 적합한 방법으로 조합될 수 있다.
본 발명 내 특별한 정의가 없으면 본 명세서에 사용된 모든 과학적 및 기술적인 용어는 본 발명이 속하는 기술분야에서 당 업자에 의하여 통상적으로 이해되는 것과 동일한 의미를 가진다.
본 발명에서 "항암제 감수성 예측용 마커"란 항암 조성물 또는 항암제를 대상체에게 처리하여 암 치료 후에 병의 경과, 생존 여부 또는 완치 여부를 확인할 수 있는 물질을 일컫는다. 이는 폴리펩타이드 또는 핵산(예: mRNA 등), 지질, 당지질, 당단백질 또는 당(단당류, 이당류, 올리고당류 등) 등과 같은 유기 생체 분자들을 포함한다. 본 발명의 목적상, 본 발명의 항암제 감수성 예측용 바이오 마커는 EXOC3L2, KCNK6, SPRN, MRGPRX3, CERS3, LCAT, UPB1, 또는 ZCCHC18 유전자로 이루어진 군으로부터 선택된 1개 이상의 유전자이다.
본 발명에서 "감수성"은 개개의 환자의 암에 대한 특정약물이 효과를 나타내는지 여부를 의미한다.
예컨대, 상기 특정약물은 주로 항암제이며, 이들 항암제에는 암의 종류에 따라 효과를 나타내는 경우와 효과를 나타내지 않는 경우가 있다. 또한, 유효한 것으로 인정되고 있는 종류의 암인 경우에도, 개개의 환자에 따라 효과를 나타내는 경우와 효과를 나타내지 않는 경우가 있는 것이 알려져 있다. 이와 같은 개개의 환자의 암에 대해 항암제가 효과를 나타내는지 여부를 항암제 감수성이라고 한다. 따라서, 본 발명에 따라 치료 개시 전에 효과를 기대할 수 있는 환자(반응자)와, 효과를 기대할 수 없는 환자(무반응자)를 예측할 수 있으면, 유효성과 안전성이 높은 화학 요법이 실현될 수 있다.
본 발명의 항암제는 알킬화제, 항대사물, 폴산 유사체, 피리미딘 유사체, 퓨린 유사체 및 관련 억제제, 빈카 알칼로이드, 에피포도필로톡신, 항생제, L-아스파라기나제, 토포이소머라제 억제제, 인터페론, 백금 배위 착물, 탁산 안트라센디온 치환된 우레아, 메틸 히드라진 유도체, 부신피질 저해제, 아드레노코르티코스테로이드, 프로게스틴, 에스트로겐, 항에스트로겐, 안드로겐, 항안드로겐, 겜시타빈 및 고나도트로핀-방출 호르몬 유사체, 옥사리플라틴, 플루오로우라실, 레보폴리네이트 및 그 염, 탁산, 파클리탁셀, 도세탁셀, 파클리탁셀 단백질-결합 입자 (예를 들어, 아브락산(Abraxane®), 겜시타빈, 백금 유사체, 카르보플라틴 또는 이들의 조합, 또는 수크로오스를 포함하는 탄수화물, 단백질, 및 지방으로 이루어진 조성물로 이루어진 군으로부터 선택된 것이다.
본 발명에서 "수크로오스(sucrose)"는 α-포도당(α-glucose)와 β-과당(β-fructose)이 1,2 결합한 이당류이다. 수크로오스는 분자식은 C12H22O11로, 사탕수수, 사탕 무, 당단풍 등의 즙액 중 당의 주성분이다.
본 발명에서 "예측"은 본원에서 대상 환자가 약물 또는 약물 세트에 대해 유리하게 또는 불리하게 반응할 가능성을 지칭하는데 사용된다. 일 실시형태에서, 예측은 이러한 반응의 정도에 관한 것이다. 예컨대, 예측은 환자가 처치 후, 예를 들어 특정한 치료제의 처치 및/또는 초발성 종양의 수술적 제거 및/또는 특정 기간 동안의 화학요법 후에 암 재발 없이 생존할지 여부 및/또는 그러할 확률에 관한 것이다. 본 발명의 예측은 암 환자에 대한 가장 적절한 치료 방식을 선택함으로써 치료를 결정하는데 임상적으로 사용될 수 있다. 본 발명의 예측은 환자가 치료 처치, 예컨대 주어진 치료적 처치, 예를 들어 주어진 치료제 또는 조합물의 투여, 수술적 개입, 화학요법 등에 유리하게 반응할 것인지 또는 치료적 처치 후에 환자의 장기 생존이 가능한 지의 여부를 예측하는데 있어서 유용한 도구이다.
본 발명에서 암은 신경교종, 갑상선암, 폐암, 간암, 췌장암, 두경부암, 위암, 대장암, 요로상피암, 신장암, 전립선암, 고환암, 유방암, 자궁경부암, 난소암, 자궁내막암, 흑색종양, 난관암, 자궁암, 혈액암, 골암, 피부암, 뇌암, 질암, 내분비암, 부갑상선암, 요관암, 요도암, 기관지암, 방광암 및 골수암으로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 예를 들면 난소암일 수 있으나, 이에 제한되지 않는다.
본 발명에서 "mRNA 발현 수준 측정"이란 항암제 감수성 예측을 위하여 생물학적 시료에서 EXOC3L2, KCNK6, SPRN, MRGPRX3, CERS3, LCAT, UPB1, 또는 ZCCHC18으로 이루어진 군으로부터 선택된 1개 이상의 유전자의 mRNA 존재 여부와 발현 정도를 확인하는 과정으로, mRNA의 양을 측정하여 이루어진다. 이를 위한 분석 방법으로는 예를 들어, 역전사 중합효소반응(RT-PCR), 경쟁적 역전사 중합효소반응(Competitive RT-PCR), 실시간 역전사 중합효소반응(Realtime RT-PCR), RNase 보호 분석법(RPA; RNase protection assay), 노던 블랏팅(Northern blotting), DNA 칩, 차세대 염기서열 분석법 (Next generation sequencing, NGS) 등이 있으나, 이에 제한되는 것은 아니다. 본 발명에서 유전자의 mRNA 수준을 측정하는 제제는 바람직하게는 안티센스 올리고뉴클레오티드, 프라이머 쌍 또는 프로브이다.
본 발명에서 "안티센스"는 안티센스 올리고머가 왓슨-크릭 염기쌍 형성에 의해 RNA 내의 표적 서열과 혼성화되어, 표적서열 내에서, 전형적으로 mRNA와 RNA:올리고머 헤테로이중체의 형성을 허용하는, 뉴클레오티드염기의 서열 및 서브 유닛간 백본을 갖는 올리고머를 지칭한다. 올리고머는 표적 서열에 대한 정확한 서열 상보성 또는 근사 상보성을 가질 수 있다. 이 안티센스 올리고머는 mRNA의 번역을 차단 또는 저해하고 mRNA의 스플라이스 변이체를 생산하는 mRNA의 프로세싱 과정을 변화시킬 수 있다.
본 발명에서 "프라이머"는 짧은 자유 3말단 수산화기를 가지는 핵산 서열로 상보적인 템플레이트(template)와 염기쌍을 형성할 수 있고 템플레이트 가닥 복사를 위한 시작 지점으로 기능을 하는 짧은 핵산 서열을 의미한다. 프라이머는 적절한 완충용액 및 온도에서 중합반응(즉, DNA 중합효소 또는 역전사효소)을 위한 시약 및 상이한 4가지 뉴클레오사이드 트리포스페이트의 존재하에서 DNA 합성이 개시할 수 있다.
본 발명에서 "프로브"란 mRNA와 특이적 결합을 이룰 수 있는 짧게는 수 염기 내지 길게는 수백 염기에 해당하는 RNA 또는 DNA 등의 핵산 단편을 의미하며 표지(Labelling)되어 있어서 특정 mRNA의 존재 유무를 확인할 수 있다. 프로브는 올리고 뉴클레오티드 프로브, 단쇄 DNA(single stranded DNA) 프로브, 이중쇄 DNA(double stranded DNA) 프로브, RNA 프로브 등의 형태로 제작될 수 있다. 적당한 프로브의 선택 및 혼성화 조건은 당업계에 공지된 것을 기초로 변형할 수 있다.
본 발명에서 "단백질 발현 수준 측정"이란 항암제 감수성을 예측하기 위하여 생물학적 시료에서 EXOC3L2, KCNK6, SPRN, MRGPRX3, CERS3, LCAT, UPB1, 또는 ZCCHC18으로 이루어진 군으로부터 선택된 유전자로부터 발현된 단백질의 존재 여부와 발현 정도를 확인하는 과정으로, 단백질의 양을 측정하여 이루어진다. 이를 위한 분석 방법으로는 웨스턴 블랏, ELISA (enzyme linked immunosorbent assay), 방사선면역분석(RIA: Radioimmunoassay), 방사 면역 확산법(radioimmunodiffusion), 오우크테로니(Ouchterlony) 면역확산법, 로케트(rocket) 면역전기영동, 조직면역 염색, 면역침전 분석법(Immunoprecipitation Assay), 보체 고정 분석법(Complement Fixation Assay), 유세포분석(Fluorescence Activated Cell Sorter, FACS), 단백질 칩(protein chip), 질량분석법 (Mass spectrometer) 등이 있으나 이로 제한되는 것은 아니다. 본 발명에서 단백질 발현 수준을 측정하는 제제는 바람직하게는 항체이다.
본 발명에서, "항체"란 항원성 부위에 대해서 지시되는 특이적인 단백질 분자를 의미한다. 본 발명의 목적상, 항체는 마커 단백질에 대해 특이적으로 결합하는 항체를 의미하며, 다클론 항체, 단클론 항체 및 재조합 항체를 모두 포함한다.
상기 목적을 달성하기 위하여, 본 발명은 (a) 생물학적 시료에서 EXOC3L2, KCNK6, SPRN, MRGPRX3, CERS3, LCAT, UPB1, 또는 ZCCHC18으로 이루어진 군으로부터 선택된 1개 이상의 유전자의 mRNA 또는 이의 단백질의 발현 수준을 측정하는 단계; 및 (b) 상기 (a) 단계에의 생물학적 시료에 후보물질을 첨가하고, 상기 유전자들의 mRNA 또는 이의 단백질의 발현 수준이 변화가 있는 경우에 이를 항암제로 선별하는 단계를 포함하는, 항암제 선별방법을 제공한다.
본 발명의 일 구체예에서, 상기 (a) 단계에서 생물학적 시료는 개체로부터 분리된 전혈, 혈청, 혈장, 타액, 뇨, 객담, 림프액, 조직 및 세포로 이루어진 군에서 선택된 1개 이상의 시료인 것을 특징으로 한다. 본 발명의 다른 구체예에서, 상기 (b) 단계에서 mRNA 발현 수준을 측정하는 방법은 역전사 중합효소반응(RT-PCR), 경쟁적 역전사 중합효소반응(Competitive RT-PCR), 실시간 역전사 중합효소반응(Realtime RT-PCR), RNase 보호 분석법(RPA; RNase protection assay), 노던 블랏팅(Northern blotting) 및 DNA 칩으로 이루어진 군에서 선택된 1개 이상의 방법인 것을 특징으로 한다. 본 발명의 또 다른 구체예에서, 상기 (b) 단계에서 단백질의 발현 수준을 측정하기 위한 방법은 웨스턴 블랏, ELISA (enzyme linked immunosorbent assay), 방사선면역분석(RIA: Radioimmunoassay), 방사 면역 확산법(radioimmunodiffusion), 오우크테로니(Ouchterlony) 면역확산법, 로케트(rocket) 면역전기영동, 조직면역 염색, 면역침전 분석법(Immunoprecipitation Assay), 보체 고정 분석법(Complement Fixation Assay), 유세포분석(Fluorescence Activated Cell Sorter, FACS) 및 단백질 칩(protein chip), 질량분석법 (Mass spectrometer)으로 이루어진 군에서 선택된 1개 이상의 방법인 것을 특징으로 한다.
본 발명에서, 상기 항암제는 신경교종, 갑상선암, 폐암, 간암, 췌장암, 두경부암, 위암, 대장암, 요로상피암, 신장암, 전립선암, 고환암, 유방암, 자궁경부암, 난소암, 자궁내막암, 흑색종양, 난관암, 자궁암, 혈액암, 골암, 피부암, 뇌암, 질암, 내분비암, 부갑상선암, 요관암, 요도암, 기관지암, 방광암, 및 골수암으로부터 선택된 1개 이상의 암에 대한 항암 작용이 있는 것이다.
본 발명의 또 다른 구체예에서, 상기 항암제는 수크로오스를 포함하는 탄수화물, 단백질, 및 지방으로 이루어진 것이다. 본 발명의 또 다른 구체예에서, 상기 항암제는 수크로오스 60 내지 80kcal%를 포함하는 탄수화물, 단백질, 및 지방으로 이루어진 것이다. 본 발명의 또 다른 구체예에서, 상기 항암제는 수크로오스 70kcal%(하기 표 1의 수크로오스 70%)를 포함하는 탄수화물, 단백질, 및 지방으로 이루어진 것이다.
추가로, 상기 목적을 달성하기 위하여, 본 발명은 EXOC3L2, KCNK6, SPRN, MRGPRX3, CERS3, LCAT, UPB1, 또는 ZCCHC18으로 이루어진 군으로부터 선택된 1개 이상의 유전자의 mRNA의 수준 또는 이의 단백질의 발현 수준을 측정하기 위한 제제를 포함하는, 항암제 선별용 키트를 제공한다.
본 발명에서 유전자의 mRNA 수준을 측정하는 제제는 안티센스 올리고뉴클레오티드, 프라이머 쌍 또는 프로브일 수 있다.
본 발명에서 단백질의 수준을 측정하는 제제는 항체일 수 있다.
본 발명의 일 구체예에서, 상기 키트는 RT-PCR 키트, 경쟁적 RT-PCR 키트, 실시간 RT-PCR 키트, 정량적 RT-PCR 키트, DNA 칩 키트 또는 단백질 칩 키트일 수 있다.
추가로, 상기 목적을 달성하기 위하여, 본 발명은 SPRN 또는 UPB1 유전자의 억제제를 유효성분으로 포함하는 암의 예방 또는 치료용 약학 조성물을 제공한다.
본 발명의 일 구체예에서, 상기 SPRN 또는 UPB1 유전자의 억제제는 각각의 mRNA에 상보적으로 결합하는 안티센스 뉴클레오티드, siRNA(short interfering RNA) 및 shRNA(short hairpin RNA)로 이루어진 군으로부터 선택된 1종 이상이다.
본 발명의 다른 구체예에서, 상기 UPB1 유전자의 억제제는 서열번호 1 또는 2로 표시되는 염기 서열로 이루어진 것일 수 있고, 서열번호 5 또는 6으로 표시되는 염기 서열을 참조하여 통상의 기술자에 의해 다양하게 제조될 수 있으므로, 이에 제한되는 것은 아니다.
본 발명에서, 상기 암은 신경교종, 갑상선암, 폐암, 간암, 췌장암, 두경부암, 위암, 대장암, 요로상피암, 신장암, 전립선암, 고환암, 유방암, 자궁경부암, 난소암, 자궁내막암, 흑색종양, 난관암, 자궁암, 혈액암, 골암, 피부암, 뇌암, 질암, 내분비암, 부갑상선암, 요관암, 요도암, 기관지암, 방광암, 및 골수암으로부터 선택된 1개 이상일 수 있으며, 예를 들면 난소암일 수 있으나, 이에 제한되는 것은 아니다.
추가로, 상기 목적을 달성하기 위하여, 본 발명은 MRGPRX3 유전자의 활성화제를 유효성분으로 포함하는 암의 예방 또는 치료용 약학 조성물을 제공한다.
본 발명에서 상기 MRGPRX3 유전자의 활성화제는 MRGPRX3 유전자를 활성화시킬 수 있는 것이라면 모두 포함될 수 있고, 예를 들면, MRGPRX3 유전자를 이루는 염기서열이 코딩된 유전자 발현 벡터 등일 수 있으나, 이에 제한되는 것은 아니다.
본 발명에서 상기 MRGPRX3 유전자는 서열번호 7 또는 8로 표시되는 염기 서열로 이루어진 것일 수 있으나, 이에 제한되는 것은 아니다.
본 발명에서 상기 "발현 벡터"는 일반적으로 재조합 DNA 기법에서 유용한 발현 벡터는 종종 플라스미드의 형태로 존재한다. 본 명세서에서, "플라스미드"와 "벡터"는, 플라스미드가 벡터 중 가장 통상적으로 사용되는 형태이기 때문에, 상호교환하여 사용될 수 있다.
본 발명에서 상기 발현 벡터의 구체적인 예시로는 상업적으로 널리 사용되는 pCDNA 벡터, F, R1, RP1, Col, pBR322, ToL, Ti 벡터; 코스미드; 람다, 람도이드(lambdoid), M13, Mu, p1 P22, Qμ, T-even, T2, T3, T7 등의 파아지; 식물 바이러스로 이루어진 군으로부터 선택될 수 있으나, 이에 제한되는 것은 아니며, 당업자에게 발현 벡터로 알려진 모든 발현 벡터는 본 발명에 사용 가능하고, 발현 벡터를 선택할 때에는 목적으로 하는 숙주 세포의 성질에 따른다. 숙주 세포로의 벡터 도입 시 인산칼슘 트랜스펙션, 바이러스 감염, DEAE-덱스트란 조절 트랜스펙션, 리포펙타민 트랜스펙션 또는 전기천공법에 의해 수행될 수 있으나 이에 한정되는 것은 아니며 당업자는 사용하는 발현 벡터 및 숙주 세포에 알맞은 도입 방법을 선택하여 이용할 수 있다.
본 발명에서, 상기 암은 신경교종, 갑상선암, 폐암, 간암, 췌장암, 두경부암, 위암, 대장암, 요로상피암, 신장암, 전립선암, 고환암, 유방암, 자궁경부암, 난소암, 자궁내막암, 흑색종양, 난관암, 자궁암, 혈액암, 골암, 피부암, 뇌암, 질암, 내분비암, 부갑상선암, 요관암, 요도암, 기관지암, 방광암, 및 골수암으로부터 선택된 1개 이상일 수 있으며, 예를 들면 난소암일 수 있으나, 이에 제한되는 것은 아니다.
추가로, 상기 목적을 달성하기 위하여, 본 발명은 SPRN 또는 UPB1 유전자의 억제제 중 어느 하나; 및 MRGPRX3 유전자의 활성화제를 유효성분으로 포함하는 암의 예방 또는 치료용 약학 조성물을 제공한다.
본 발명에서 상기 유전자의 억제제, 활성화제 및 암 등은 앞서 기재한바와 동일하여 명세서의 과도한 복잡성을 피하기 위해 생략한다.
[서열목록]
서열번호 1: UPB1 siRNA
CAG AGU UUA GAC AUG ACU Att
서열번호 2: UPB1 siRNA
CUG CAA UGU GUG GAG UCA Att
서열번호 3: forward primer
GGA AGC ATG GAC TAT GCC CTT
서열번호 4: reverse primer
TTC CAG GAT GGG AGA CAC CA
서열번호 5: SPRN 유전자의 mRNA 서열 (NCBI Reference Sequence: NM_001012508)
1 ggcggaggcc tcgcgcaaaa cccaggcgcc gcggctccgc gctccggctg agggtccgcg
61 ccgccgcccg cccgctcctt cccgctcggc cgcggcctca gggacggata ctccagcgcg
121 cggttccaac cgaggcccgt ggtttagccc cacgaagatg aactgggcac ccgcaacgtg
181 ctgggctctg ctactggcgg ccgccttcct ctgcgacagc ggcgcagcca agggcggccg
241 cggaggtgcg cggggcagtg cccggggagg ggtccgcggg ggtgcgcgcg gggcctcgag
301 ggtgcgcgtg aggccggcgc agcgctacgg tgccccgggc tcctccctgc gcgtggctgc
361 cgccggggcg gcagccgggg cggcggcggg agcggccgcg ggcctggcgg cgggctcggg
421 ctggagaagg gccgcgggac ccggggaacg cggcctggag gacgaggagg acggggtgcc
481 cggaggcaac gggacaggcc ccggcatcta cagctaccgg gcgtggactt cgggcgctgg
541 acccacgcgc ggcccgcgtc tctgtctcgt gctgggcggc gccctcggag ccctggggct
601 gctgcggccc taggcctggc tgggctcggg gaccacatct ggcccccggc ccgcgccatc
661 ccccaggatc ctccggcctg ggctccccct tcctcccttg cccacggtct tggagcccca
721 ctgggtgcag gagctgctgg ctgtccctgt ggacccgcca tccaccgtcc tgcccacgcc
781 gcctcagcct gccacctccc acctagagga gaccatgggc cctgccccac ccactccagg
841 atgttagggt cccctcagcc aaaaaggcag ctgcctgtgg ctcctgtacc aaccgcccag
901 ccacgctcca tcgccgccca aagggaggtg ccaaggccag gaacccaagc caccccggct
961 cccctcgcct gcccaggggc cgtggtgact cacgggcagg gaggcgacat caggctggtt
1021 ctgccactga gcccctgagg aatctgaccc tccccaaaag aagcagtgaa atggaccaaa
1081 ggacttaaga atttgggggg aagtgaggga aaaacgttag gtgctaacca cctgcccaga
1141 agagtggatc tcacagccca ggaacattcc caagcaggaa aaccgtccgt ccgaggaacg
1201 tccatcctgg ctctctgcgg ctggtgggaa aacacaccct gccctgaggg gctgtccagg
1261 ccttctcccc cacaccctca ggccgagatc cgtgagagac ccactttgct ccaacaactt
1321 gaaacaagtc actttaccct ccttaggacc cattttgggg gggaaaaacc aacacattcc
1381 agagctttcc aagtcctttg aacttcaggt tcacattcag ggatcacaca gttctgcctg
1441 ttctcagggc acagcaactg ccaatcccgc tgaagaggcc tccctgggca cagcacaggc
1501 tgcacggtgc acgcatttcc ctgaaggcag ccccttcttc ggaagcagct gttccaggcc
1561 tcggaacagg gcctgggtat ccgcgtggtg ggctggcagc tgacggcctg ctcagtggag
1621 ccaggagcta actcagaccc caaagcaagc agggggccag tggcggggcc cagcgcccag
1681 caggacaccc atgcaagagg ctgagccccc caacatccaa ggacaggaga gacatggagt
1741 ggcgctggac agtcacgaca aggacttgcc tccagcactg gacacacctg tgttaagacc
1801 agccctctgc ttcccagtcc cgccagcctg gggcatcctc catgggctca gcactgagag
1861 gtcttgggtc tgccacgttc tctagctctc cagtcaccca ctcatccagg gtaggagggg
1921 ttctccctgc cccccgccgt ggccttggga tctcaccctc tccatgtcct ggggacagcc
1981 tcgccctcag ccggactgca tccctcctgg gcctgagcct cgggactcag tggacaccaa
2041 agtcaagacc agcacccacc acgggccctg ccagcctctg ccttccccag ctggcctggg
2101 ttctggcctg ggtgaggatc tggaagctgt tggcaggact caaccaagca ctgctctcta
2161 gctccagggc actaagccac aggaggcagc gccctgcagc ctcccgtcca cactgccagc
2221 aatgcccctg gcccagtgag cccagacgct cctccacccc ttccagacca agctcaacgc
2281 ctccaagacc agcaggccaa ggccaagccc tgccccagat cctcataggc agagaagccc
2341 ttctgacatt tcccccagga ggcagggggt ggtctgagtc tcctcacagc agagagaccc
2401 accggagccc cctcaacttt gcagatgccc acctggaaaa tgggctgagc tgcaccagac
2461 cctcacacac cacagcactg caagctgatg gaatgttcca gttatgatgg acacttcgtg
2521 atctgcaatg actgttgatt cagcacatta gcatctgaca cagccaacct gaatacttcc
2581 tgccccaggc ggtcagggtt atggcacgat gcaggtggca ctcaggggct aacttcaggc
2641 tgatgagtgt gtggggtatg gggcagcaga ggcagccagc cagcaaagag gggccactga
2701 gcaccagggc cctggtggag gctgctgtgg gacggtcagg ccaccaccgc aaagaggcag
2761 ccggagcttc tgcacaggat gtccctggcc ccaggtcctg cagcacctta gtccatacta
2821 ccagccccac ccaccttcct tcctcttccc tcttctagga cacaggctgt ggaccccttc
2881 aggtgcacta taatggggct ggaggggccc ccacatctct cagccccact aatgcagaat
2941 cccactaccc gtgagctaga aggtgctcag aggccagggg tctctactgc ccatgccggg
3001 cggccttcca gtcattgcac agcaaagcca tgtgcagggc gtccccctca accctgccct
3061 gaacatgccc cagggcactg aggggcgaag ccagtgcttg ggctctgctg ctgggagtct
3121 ctggtctgtg tctgtgtgtg cctgtaagtg tgaaataaac ctctctgatg gcaaaaaaaa
3181 aaaaaaaa
서열번호 6: UPB1 유전자의 mRNA 서열 (NCBI Reference Sequence: NM_016327)
1 gggcacctcc tcccactgcg ggcaaagggc aggcagttcg tgcgcggaca caagcactgg
61 cggaccgtgg ccatggcggg cgctgagtgg aagtcgctgg aggaatgctt ggagaagcac
121 ctgccgctcc ccgacttgca ggaagtgaag cgcgttctct atggcaagga actcaggaag
181 cttgatctgc ccagggaagc tttcgaagct gcctccagag aagactttga actgcaggga
241 tatgcctttg aagcagcgga ggagcagctg agacgacccc gcattgtgca cgtggggctg
301 gttcagaaca gaatccccct ccccgcaaat gcccctgtgg cagaacaggt ctctgccctt
361 catagacgca taaaggctat cgtagaggtg gctgcaatgt gtggagtcaa catcatctgt
421 ttccaggaag catggactat gccctttgcc ttctgtacga gagagaagct tccttggaca
481 gaatttgctg agtcagcaga ggatgggccc accaccagat tctgtcagaa gctggcgaag
541 aaccatgaca tggtggtggt gtctcccatc ctggaacgag acagcgagca tggggatgtt
601 ttgtggaata cagccgtggt gatctccaat tccggagcag tcctgggaaa gaccaggaaa
661 aaccacatcc ccagagtggg tgatttcaac gagtcaactt actacatgga gggaaacctg
721 ggccaccccg tgttccagac gcagttcgga aggatcgcgg tgaacatttg ctacgggcgg
781 caccaccccc tcaactggct tatgtacagc atcaacgggg ctgagatcat cttcaacccc
841 tcggccacga taggagcact cagcgagtcc ctgtggccca tcgaggccag aaacgcagcc
901 attgccaatc actgcttcac ctgcgccatc aatcgagtgg gcaccgagca cttcccgaac
961 gagtttacct cgggagatgg aaagaaagct caccaggact ttggctactt ttatggctcg
1021 agctatgtgg cagcccctga cagcagccgg actcctgggc tgtcccgtag ccgggatgga
1081 ctgctagttg ctaagctcga cctaaacctc tgccagcagg tgaatgatgt ctggaacttc
1141 aagatgacgg gcaggtatga gatgtacgca cgggagctcg ccgaagctgt caagtccaac
1201 tacagcccca ccatcgtgaa agagtagccg gcttcagtgc ctgccttggg gtgaggaaga
1261 cacctctgcc ccagtggatt agcaagtgtg gcaggcttaa catgtccagg ttctccccaa
1321 taacattgtc caggttggtt ttaaaattcc caggcagggg gagagtggca tggggagtga
1381 cttcttaatg ggtaaggggc tgcttacttc tggggtattg gaaatgtttg gggactaggt
1441 agaggtgaat gtactaaatg ccactgaatt tgtatacttc agaatgtttg ttatgtaaat
1501 tttacctcaa ctaaaaaaaa aaatgcccag gtactgcttg tgcaggtgga tttgaggtta
1561 ggcagatgat gctgtccatc ccgtacacca gtgggaagag ggtgagggct gatccagaga
1621 ccctgagcct acagcaaggc tgtggtgggt cggatggtct ttggatgtgt cagcttagct
1681 aggccacagt caccagtaat tcaatcagac actaatctag gtatttctgt gaaggtattt
1741 tgtagatgtg acagaagtcc attcccaatt gactaagtaa gtgagattat ctcagataat
1801 ctgggtcagc ctgacctgat tagtcagaag gcctaaagaa cagagctaag ggtttccctg
1861 aggaagaaat tctgcctgag gacagcagcc cagtgcttgg cgagagttcc tgacagtctg
1921 cccttctgat agcctgcctc acagagttta gacatgacta gccagctcct acaatcactg
1981 aagtcaattc cttgcaataa atctcaatat atcccctact ggttctgctt ctctagttga
2041 atctgactga tacagatttt ggtgccaaaa gtggttctag aaaaatagaa tcttaaagat
2101 gagttttctg cattggttct ggattttttt agaattcttc cctagtttga ttgaacttaa
2161 aggcatcaat gactctattt ccatagagtc agggtaaaga gggtagttgg tagtccatgg
2221 catggtgcag caatagttat ttatgtgcga gactagccat cagccatcag tttgtgccca
2281 gagttccagc ctgccctttc tgatggcttg tcctgtggat atcagacttg cctgaccaga
2341 ttccatcatc atagaaggta atttgttgca ctaaatcctt ttatatctct atccatcacc
2401 tactaattct gctagttctg ctaatgtggt tgagctccat tttacacatc agattactca
2461 cttctctaca ccttggtttt tacatctgta aaatgggact gggccaggtg tggtggggtg
2521 gcttatgcct gtgatcccag cactttggga agccaaggca ggtggatcac ttgaggtcag
2581 gagttcaaga ccagcctggc caacacggcg aaaccccgtc tctactaaaa atacaaaaat
2641 tagctgggca tggtggcgca tgcctataat cccagctact cagcaggctg aggtatgaga
2701 attgcttgaa tctgggaggc aaaggctgca gtgagctgag atcacgccac tgtgctccag
2761 cctggacaac agagtgagag cctatctcca aaaaaaaaaa ggggtgggga ccatattcct
2821 gctttatgtc aagacactgg taagagacag actagatggg ccagggagcc ccttggcagt
2881 tatcagtgca gcgcctattt agccctgtcc ctgaacaaca cggcaagagc ccaacctgcc
2941 aagtctcaaa tagcagttaa ccagagtatc gggttggagg tggggttgag attctgtaat
3001 tccccgctta ttgttcccaa tcagagaagg cagccagaga aggcagcttc atcccttcac
3061 tggcccagca gctgaactat atggaaacct ccatgtcagg gctagggtac tcctggacag
3121 ccaccaagga tgagaaaccc tgatggagct gcctggccac agctctgcgg taacttcctt
3181 gaactctctg tgctgcaggt tttcacttta cctaatggcc cttcttgcac ctttaaaaaa
3241 aaaaaaaaaa aattccagtc ctacagacac agtgagcttt tttgcctgtt cctttagctt
3301 tcaaaattta gtgtcagcca aggcgggcag atcacaaggt caagagatgg aaaccatcct
3361 ggccaacatg gtgaaacccc atctctacta aaaatacaaa aattagctgg gtatggtggc
3421 gcacgcctgt agtcccaggt actcagcagg ctgagggagg agaatcactt gaacccggga
3481 ggcggaggtt gcagtgagcc gagatcacac cactgcactc cagcttggcg acagagtgag
3541 actccgtctc aaaaaacaaa acaaaacaaa acaccttagt gtttttggtt tctagagggt
3601 gtaatcaacc taatacagaa gccagcttag gtgacaaatt ggtacatttg tgaaacaggc
3661 atgaataaat ggaccacaac tctttgatta tctgcaactc tcattgcctg gaaacagaac
3721 agtcaggccc atcttagagt atgcaggccc tgtacagcca aggtcatttc aaggtttaac
3781 tcatccctgg aacatgcaga tgctcagtaa acatttgaat gaa
서열번호 7: MRGPRX3 유전자의 mRNA 서열 variant 1 (NCBI Reference Sequence: NM_054031)
1 gcccagtctg gaaagtgagg agcgtctttg cccggccgcc atcccatcta ggaagtgagg
61 agcgcctctt cccggccgcc atcccatcta ggaagtgagg agcgtctctg cccggccgcc
121 catcgtctga gatgtgggga gtgcctttgc cccgccgccc cgtctgggat gtgaggagcg
181 cctctgcccg gtcgcgaccc cgtctgggag ctcctgtagg catctcctga attaagcaac
241 acagaaaagt cctctgaagt cactgaatcc cataaaggct ctctaccttt agcacaaggg
301 aggtcttcac cactggacaa agaaggaacg ataaggggtc atcagactgg ggtttctgag
361 catggattca accatcccag tcttgggtac agaactgaca ccaatcaacg gacgtgagga
421 gactccttgc tacaagcaga ccctgagctt cacggggctg acgtgcatcg tttcccttgt
481 cgcgctgaca ggaaacgcgg ttgtgctctg gctcctgggc tgccgcatgc gcaggaacgc
541 tgtctccatc tacatcctca acctggtcgc ggccgacttc ctcttcctta gcggccacat
601 tatatgttcg ccgttacgcc tcatcaatat ccgccatccc atctccaaaa tcctcagtcc
661 tgtgatgacc tttccctact ttataggcct aagcatgctg agcgccatca gcaccgagcg
721 ctgcctgtcc atcctgtggc ccatctggta ccactgccgc cgccccagat acctgtcatc
781 agtcatgtgt gtcctgctct gggccctgtc cctgctgcgg agtatcctgg agtggatgtt
841 ctgtgacttc ctgtttagtg gtgctaattc tgtttggtgt gaaacgtcag atttcattac
901 aatcgcgtgg ctggtttttt tatgtgtggt tctctgtggg tccagcctgg tcctgctggt
961 caggattctc tgtggatccc ggaagatgcc gctgaccagg ctgtacgtga ccatcctcct
1021 cacagtgctg gtcttcctcc tctgtggcct gccctttggc attcagtggg ccctgttttc
1081 caggatccac ctggattgga aagtcttatt ttgtcatgtg catctagttt ccattttcct
1141 gtccgctctt aacagcagtg ccaaccccat catttacttc ttcgtgggct cctttaggca
1201 gcgtcaaaat aggcagaacc tgaagctggt tctccagagg gctctgcagg acacgcctga
1261 ggtggatgaa ggtggagggt ggcttcctca ggaaaccctg gagctgtcgg gaagcagatt
1321 ggagcagtga ggaagaacct ctgccctgtc agacaggact ttgagagcaa tgctgccctg
1381 ccacccttga caattatatg catttttctt agccttctgc ctcagaaatg tctcagtggt
1441 ccctcaaggt cttcgaatag atgtttatct aacctgacag ttgcagtttt cacccatgga
1501 aagcattagt ctgacagtac aatgtttgga ttctccttga tattaccaat acattttccc
1561 tgttatcttg cactgaatct ttcctactga acactttttc tgcacttttc attgtaataa
1621 aaggagttgc tgtccacaaa aaaaaaaaaa aaaaaaaaaa
서열번호 8: MRGPRX3 유전자의 mRNA 서열 variant 2 (NCBI Reference Sequence: NM_001370464)
1 agcatcttcg taagcctgga ttgctcacca gctttcattt cagctcctgt aggcatctcc
61 tgaattaagc aacacagaaa agtcctctga agtcactgaa tcccataaag gctctctacc
121 tttagcacaa gggaggtctt caccactgga caaagaagga acgataaggg gtcatcagac
181 tggggtttct gagcatggat tcaaccatcc cagtcttggg tacagaactg acaccaatca
241 acggacgtga ggagactcct tgctacaagc agaccctgag cttcacgggg ctgacgtgca
301 tcgtttccct tgtcgcgctg acaggaaacg cggttgtgct ctggctcctg ggctgccgca
361 tgcgcaggaa cgctgtctcc atctacatcc tcaacctggt cgcggccgac ttcctcttcc
421 ttagcggcca cattatatgt tcgccgttac gcctcatcaa tatccgccat cccatctcca
481 aaatcctcag tcctgtgatg acctttccct actttatagg cctaagcatg ctgagcgcca
541 tcagcaccga gcgctgcctg tccatcctgt ggcccatctg gtaccactgc cgccgcccca
601 gatacctgtc atcagtcatg tgtgtcctgc tctgggccct gtccctgctg cggagtatcc
661 tggagtggat gttctgtgac ttcctgttta gtggtgctaa ttctgtttgg tgtgaaacgt
721 cagatttcat tacaatcgcg tggctggttt ttttatgtgt ggttctctgt gggtccagcc
781 tggtcctgct ggtcaggatt ctctgtggat cccggaagat gccgctgacc aggctgtacg
841 tgaccatcct cctcacagtg ctggtcttcc tcctctgtgg cctgcccttt ggcattcagt
901 gggccctgtt ttccaggatc cacctggatt ggaaagtctt attttgtcat gtgcatctag
961 tttccatttt cctgtccgct cttaacagca gtgccaaccc catcatttac ttcttcgtgg
1021 gctcctttag gcagcgtcaa aataggcaga acctgaagct ggttctccag agggctctgc
1081 aggacacgcc tgaggtggat gaaggtggag ggtggcttcc tcaggaaacc ctggagctgt
1141 cgggaagcag attggagcag tgaggaagaa cctctgccct gtcagacagg actttgagag
1201 caatgctgcc ctgccaccct tgacaattat atgcattttt cttagccttc tgcctcagaa
1261 atgtctcagt ggtccctcaa ggtcttcgaa tagatgttta tctaacctga cagttgcagt
1321 tttcacccat ggaaagcatt agtctgacag tacaatgttt ggattctcct tgatattacc
1381 aatacatttt ccctgttatc ttgcactgaa tctttcctac tgaacacttt ttctgcactt
1441 ttcattgtaa taaaaggagt tgctgtccac aaccctaaaa
본 발명에서 제공하는 항암제 및 항암조성물에 대한 치료반응 및 환자의 예후예측 방법은 유전자 EXOC3L2, KCNK6, SPRN, MRGPRX3, CERS3, LCAT, UPB1, 또는 ZCCHC18를 하나 또는 그 이상의 조합으로 발현을 검출하여 측정하며, 각각의 유전자의 발현을 조절할 수 있는 하나 또는 그 이상의 조합의 억제제와 활성화제제를 통해 암환자의 생존율을 높이는데 유용하게 이용될 수 있다. 나아가, 상기 유전자의 발현 수준을 억제하거나, 활성화시키는 경우에는 암을 매우 효과적으로 예방 또는 치료할 수 있다.
도 1은 각 사료그룹에서 얻어낸 난소암 PDTX 조직에서의 유전자 발현 패턴에 따른 상관분석을 나타낸 이미지이다. 난소암 PDTX의 성장을 효과적으로 억제한 70% 수크로오스군 및 대조군 식이요법 군(표 1 참조)의 검체를 피어슨 상관계수에 따라 유사도가 높은 서브그룹으로 분류하였다.
도 2는 대조군 식이요법의 서브그룹 A1/A2를 기준으로 각각 70% 수크로오스군(표 1 참조)의 서브그룹 B1/B2/B3에 대한 차별 발현 유전자들을 찾아낸 모식도이다. 도 2의 (a) A1 서브그룹을 대조군으로 한 경우, B1/B2/B3 검체들에서 공통으로 변화하는 유전자 4개를 발견하였다. 도 2의 (b) A2 서브그룹을 대조군으로 한 경우, B1/B2/B3 검체들에서 공통으로 변화하는 유전자 5개를 발견하였다. 도 2의 (c) 각각의 공통유전자에서 다시 공통적으로 발현 변화하는 유전자 1개를 발견하였다. (Signal threshold >= 0.001, 1.5 fold, p < 0.05)
도 3은 RNA 시퀀싱에 의한 유전자 발현 수준을 나타내는 그래프이다. EXOC3L2, KCNK6, SPRN, MRGPRX3는 A1 서브그룹을 대조군으로 한 경우, B1/B2/B3 서브그룹에서 증가 또는 감소한 유전자이다. 또한, MRGPRX3, CERS3, LCAT, UPB1, ZCCHC18은 A2 서브그룹을 대조군으로 한 경우, B1/B2/B3 서브그룹에서 증가 또는 감소한 유전자이다.
도 4 내지 도 6은 표 1에서 나타내는 바와 같이 The Cancer Genome Atlas (TCGA)의 난소암 데이터세트에서 각 유전자들에 대한 다양한 암종에 대해 발현 레벨을 기준으로 암환자의 생존곡선을 표현한 것이다. 도 4에서는 MRGPRX3에 대한 두경부암, 폐암 및 자궁경부암 환자에 대한 생존곡선을 나타낸다(p > 0.05). 도 5에서는 SPRN에 대한 신장암, 요로상피암 및 췌장암 환자들에 대한 생존곡선을 나타낸다. 도 6에서는 UPB1에 대한 간암 및 신장암 환자들에 대한 생존곡선을 나타낸다.
도 7은 표 1에서 나타내는 바와 같이 The Gene Expression Omnibus (GEO) 데이터세트 중 난소암 환자 조직에서 microarray를 진행한 GSE9899 세트에서 양성 종양 조직 (low malignant potential tissue; LMP) 및 난소암 조직(cancer)에서의 MRGPRX3, SPRN, 및 UPB1에 대한 발현양을 확인한 그래프이다. MRGPRX3의 경우에, LMP에 비해 난소암에서 통계적으로 유의하게 발현양이 증가하였음을 확인할 수 있었다.
도 8은 표 1에서 나타내는 바와 같이 The Gene Expression Omnibus (GEO) 데이터세트 중 난소암 환자 조직에서 microarray를 진행한 GSE26712 세트에서 정상 조직 (Normal) 및 난소암 조직(cancer)에서의 UPB1에 대한 발현양을 확인한 그래프이다. 난소암 GSE26712 세트에서는 UPB1만 데이터세트 내에 존재하였으며, UPB1에 대한 발현이 통계적으로 유의하게 난소암에서 증가되어 있음을 확인할 수 있었다.
도 9는 표 1에서 나타내는 바와 같이 The Gene Expression Omnibus (GEO) 데이터세트 중 난소암 환자 조직에서 microarray를 진행한 GSE14764 세트에서 UPB1에 대한 발현양과 난소암 환자의 생존기간을 이용하여 컷오프 값 (UPB1 발현 레벨, 4.593)을 기준으로 컷오프 값보다 높은 발현을 보이는 환자를 "High"로, 낮은 발현을 보이는 환자를 "Low"로 표기하였고, High와 Low 환자간의 UPB1 발현의 차이를 확인한 그래프이다 (도 9(a)). 그리고 각각의 UPB1 high 또는 Low 인 환자들의 생존곡선을 나타낸 그래프(도 9 (b))이다. UPB1의 발현이 높은 경우 위험률이 2.35배 증가하였다 (p = 0.045).
도 10은 표 1에서 나타내는 바와 같이 The Gene Expression Omnibus (GEO) dataset 중 난소암 환자 조직에서 microarray를 진행한 GSE19829-GPL570 데이터세트에서 MRGPRX3, SPRN, UPB1에 대한 각 유전자의 발현양과 난소암 환자의 생존기간을 이용하여 컷오프 값 (MRGPRX3 = 5.298, UPB1 = 8.184, SPRN = 8.063)을 구하고, 각각의 컷오프 값을 기준으로 유전자 발현이 높으면 "High 또는 positive"로, 낮은 발현을 보이는 환자를 "Low 또는 negative"로 표기하였다. 그리고, High와 Low 환자간의 MRGPRX3, UPB1 및 SPRN 유전자 발현의 차이를 확인한 그래프이다.
도 11은 표 1에서 나타내는 바와 같이 GSE19829-GPL570 데이터세트에서 MRGPRX3, SPRN, UPB1에 대한 도 10에서 정한 유전자 발현 컷오프 값을 기준으로 각 유전자 발현에 따른 난소암 환자의 생존시간을 나타내는 그래프이다.
도 12는 표 1에서 나타내는 바와 같이 GSE19829-GPL570에서 SPRN 및 UPB1에 대한 유전자 발현 차이의 조합으로 환자를 분류하여 생존율을 나타내는 그래프이다.
도 13은 표 1에서 나타내는 바와 GSE19829-GPL570에서 MRGPRX3, SPRN, UPB1에 대한 유전자 발현 차이의 조합으로 환자를 분류하여 생존율을 나타내는 그래프이다.
도 14는 UPB1에 특이적으로 결합하는 siRNA를 형질전환한 뒤, OVCAR3 세포주에서 UPB1의 mRNA 발현 수준을 실시간 중합효소 연쇄반응을 통해 확인한 결과를 나타낸 것이다.
도 15는 UPB1에 특이적으로 결합하는 siRNA를 형질전환한 뒤, SKOV3 세포주에서 UPB1의 mRNA 발현 수준을 실시간 중합효소 연쇄반응을 통해 확인한 결과를 나타낸 것이다.
도 16은 UPB1에 특이적으로 결합하는 siRNA를 형질전환한 뒤, OVCAR3 세포주의 생존도를 크리스탈 바이올렛 염색(Crystal violet staining) 분석을 통해 확인한 결과를 나타낸 것이다.
도 17은 UPB1에 특이적으로 결합하는 siRNA를 형질전환한 뒤, SKOV3 세포주의 생존도를 크리스탈 바이올렛 염색 분석을 통해 확인한 결과를 나타낸 것이다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로서, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
[ 준비예 1] 환자 동의 및 PDTX 생성
강남세브란스병원에서 난소암 진단을 받은 환자의 암조직을 한국부인암은행에서 수집하였다. 한국부인암은행으로부터 공여받은 환자의 난소암 조직을 대략 3 mm3의 절편으로 나눠 BALB/c 누드마우스에 이식하여 PDTX를 만들었다. 본 연구는 시작 전에 강남세브란스병원 IRB로부터 연구 승인을 받았고 (IRB approval No.3-2014-0184), 암조직 공여 환자로부터 연구동의서를 받았다.
[ 실시예 1] 동물실험
5주령 BALB/c 누드마우스 (female)에 각각의 특수조제 사료를 공급하고 음용수를 2달간 제공하였다(표 1 참고). 이 후 PDTX-126과 PDTX-98의 조직을 3mm3의 절편으로 나누고, 졸레틸(zoletil), 럼푼(rompun), 및 식염수 (1:1:7)의 조합의 마취제를 이용하여 마우스를 마취하였다. 이후 마우스 당 2개의 위치의 피하조직에 PDTX 조직을 이식하였다. 일주일 간격으로 사료의 먹는 양과 조제사료(표 1 참조)에 해당하는 마우스가 먹는 사료 양의 섭취 칼로리를 계산하였고, 마우스의 몸무게를 측정하였다. 또한, 디지털 칼리퍼를 이용하여 종양의 부피를 측정하였다 (종양 부피 (mm3)=장길이 x 단길이2 x 0.5)(표 2 내지 표 4 참고, 표 4는 PDTX-126 및 PDTX-98에서의 결과를 통합한 결과이다). PDTX-126은 총 187일, PDTX-98은 총 134일 동안 마우스와 PDTX의 정보를 기록하였고 그 후 희생시켰다. 희생시킨 마우스에서는 간 및 복막의 백색지방조직을 적출하여 중량을 측정하였고, 하대정맥으로부터 혈액을 채취하였다. PDTX 종양 조직은 절출하여, 최종 부피 및 무게를 측정하였고, 마우스와 암조직에 대한 사진을 기록으로 남겼다. 모든 동물실험은 연세대학교의 동물윤리위원회의 승인을 받았다 (IACUC Approval No. 2017-0157)
Figure 112020016405620-pat00001
Figure 112020016405620-pat00002
Figure 112020016405620-pat00003
Figure 112020016405620-pat00004
표 2 내지 4에서 나타나는 바와 같이, 종양 성장이 70%의 수크로오스 식이요법(70% Sucrose)에서 가장 낮은 것을 확인하였다. 60% 지방 식이요법(60% Fat) 및 70% 지방 식이요법(70% Fat)의 경우, 종양 성장이 낮은 수치를 보였지만, 동시에 종양 성장이 매우 빠른 결과도 동시에 보였으므로, 항암 치료요법에 적합하지 않은 식이요법임을 확인하였다 (Final volume (mm3) 기준: Vary slow 0-250, Slow 250-500, Medium 500-1000, Fast 1000-1500, Vary fast > 1500).
[ 실시예 2] RNA 시퀀싱
Ion AmpliSeq TM 전사체 라이브러리 제조
표 1에서 제시된 사료를 먹인 후 일정시간이 흐른 후 BALB/c nude 마우스로부터 얻어진 PDTX 조직을 이용하여, 제조사의 프로토콜에 따라 총 RNA를 TRIzol® 시약(Ambion, Carlsbad, CA)으로 추출하고, Qubit® RNA HS Assay Kit (Life Technologies, Carlsbad, CA)로 정량화하고, Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA)의 스미어 분석을 사용하여 200nt보다 큰 RNA 단편의 백분율을 계산하였다. Qubit® dsDNA HS Assay Kit (Life Technologies)를 사용하여 DNA 샘플을 정량화하였다. Ion AmpliSeqTM 전사체 라이브러리는 제조사의 프로토콜에 따라 Ion Transcriptome Human Gene Expression Kit (Life Technologies)로 제작하였다. 전체 RNA의 10 ng을 역전사시켜 무작위 프라이밍으로 cDNA를 만들었다. cDNA 산물은 Ion AmpliSeqTM Library Kit Plus가 함께 있는 Ion AmpliSeqTM Human Gene Expression Core Panel을 사용하여 증폭된 표적 유전자이다. 프라이머 분해 후, 어댑터 및 분자 바코드를 증폭산물에 연결하고 이어서 마그네틱 비드로 정제를 수행하였다. 이 라이브러리는 총 5사이클 동안 증폭되고 정제하였다. 증폭산물 크기와 DNA 농도는 Agilent High Sensitivity DNA Kit (Agilent Technologies)을 사용하여 제조업체의 권장 사항에 따라 측정하였다.
샘플 에멀젼 PCR, 에멀젼 브레이크 및 농축은 제조사의 지침에 따라 Ion PITM Template OT2 200 Kit v3 (Life Technologies, Part #4488318 Rev. B.0)을 사용하여 수행하였다. 하나의 Ion PITM v2 칩에 대해 여러 바코드된 라이브러리를 같은 몰비로 결합하였다. 2개의 풀링된 Ion AmpliSeqTM Exome 라이브러리를 단일 Ion PITM v2 칩에 로딩하였다. 5개의 풀링된 AmpliSeqTM 전사체 라이브러리를 단일 Ion PITM v2 칩에 로딩하였다. 후속 에멀젼 PCR 및 풀링된 라이브러리의 시퀀싱 비드의 농축은 제조사의 프로토콜에 따라 Ion OneTouchTM 시스템 (Life Technologies)을 사용하여 약 7시간 이내에 수행하였다. 마지막으로 Ion ProtonTM 시퀀서 (Life Technologies) 상에서 Ion PITM Sequencing 200 Kit v3 (Life Technologies, Part #4488315 Rev. B.0)을 사용하여 Ion PITM v2 칩에서 520 Flows 시퀀싱을 수행하였다.
[ 실시예 3] RNA 시퀀싱 판독 및 유전자 발현 분석
RNA 시퀀싱 판독 맵핑은 DNASTAR Lasegene 15 소프트웨어 및 인간 게놈19 (hg19) 레퍼런스를 이용하여 수행하였다. 각각의 검체들을 선형상관 (R2 값) 분석을 수행하였다. 또한, 유클리디안 거리법에 따른 집단화(clustering)를 수행하였다. 집단화 결과에 따라, 표 1에서 나타내는 바와 같이 대조군 식이요법 군은 2개(도 1의 A1 및 A2), 70% 수크로오스 군은 3개(도 1의 B1, B2, 및 B3)의 아집단으로 분류를 하였다(도 2 참고). 각각의 그룹 간 차별 발현 유전자(differentially expressed genes; DEG)를 수득하였다(도 3). 그 유전자 리스트를 하기 표 5 및 표 6에 나열하였다.
Figure 112020016405620-pat00005
Figure 112020016405620-pat00006
표 5와 6 및 도 3에 나타난 바와 같이, 표 1에서 나타내는 바와 같이 70% 수크로오스를 유효 성분으로 포함하는 항암 조성물을 처리한 후에 유전자 EXOC3L2, KCNK6, SPRN, MRGPRX3, CERS3, LCAT, UPB1, 및 ZCCHC18의 수준 측정으로, 항암제에 대한 감수성을 예측할 수 있었다. 바람직하게는, 유전자 EXOC3L2, KCNK6, SPRN, MRGPRX3, CERS3, LCAT, UPB1, 및 ZCCHC18의 수준 측정으로, 70% 수크로오스를 포함하는 탄수화물, 지방, 및 단백질로 이루어진 본 발명에 따른 항암 조성물에 대한 감수성을 예측할 수 있었다.
[실시예 4] 생존분석
The Gene Expression Omnibus (GEO) 데이터세트에서 GSE 19829-GPL570 세트를 다운로드 받아서, SPRN (affymetrix probe no. 238333_s_at), MRGPRX3 (affymetrix probe no. 1553293_at), 및 UPB1 (affymetrix probe no. 228219_s_at) 유전자에 해당하는 microarray expression 값을 이용하였다. 이어서, 생존기간을 기준으로 각 유전자의 컷오프값을 수득하였다(PLoS One. 2012;7(12):e51862.). 컷오프값을 기준으로 발현이 높으면 "High"(positive) 및 낮으면 "Low"(negative)로 구분하였다. 각 유전자의 조합별로 카플란 메이어 방법(Kaplan-Meier method)을 이용하여 생존곡선을 그리고 통계적 유의성은 로그순위 검정(log-rank test)으로 계산하였다. 모든 통계적 분석은 Graphpad Prism 7 소프트웨어를 사용하여 진행하였다.
The Cancer Genome Atlas (TCGA) 데이터세트를 기반으로 각 유전자들에 대한 다양한 암종에 대해, 발현 레벨을 기준으로 암환자의 생존곡선을 얻었다(도 4 내지 도 6). MRGPRX3의 발현이 증가한 경우에 두경부암 환자들에 대한 생존율이 증가하고, MRGPRX3의 발현이 감소한 경우에 폐암 및 자궁경부암 환자들에 대한 생전율이 감소한 것을 확인하였다(도 4). 또한, SPRN의 발현이 증가한 경우에 요로상피암 및 췌장암 환자들에 대한 생존율이 증가하고, SPRN의 발현이 감소한 경우에 신장암 환자들에 대한 생존율이 증가한 것을 확인하였다(도 5). UPB1의 발현이 증가한 경우에 간암 및 신장암 환자들에 대한 생존율이 증가한 것을 확인하였다(도 6).
또한, GEO 데이터세트 (GSE9899, GSE26712, GSE14764)의 결과를 이용하여, MRGPRX3, SPRN, UPB1의 정상 (Normal), 양성종양 (low malignant potential tissue; LMP), 악성종양 (Cancer)에 대한 발현양을 계산하였다(도 7 및 8 참고). MRGPRX3의 경우에, LMP에 비해 난소암(악성종양)에서 통계적으로 유의하게 발현양이 증가하였음을 확인할 수 있었다. 난소암 GSE26712 세트에서는 UPB1만 데이터세트 내에 존재하였으며, UPB1에 대한 발현이 통계적으로 유의하게 난소암에서 증가하였음을 확인할 수 있었다. 도 9은 GEO 데이터세트 중 난소암 GSE14764 세트에서 UPB1에 대한 발현양의 차이를 확인한 그래프(도 9(a)) 및 환자들의 생존곡선을 나타낸 그래프(도 9의 (b))이다. GSE14764 세트에서는 UPB1만 데이터세트 내에 존재하였으며, UPB1에 대한 발현 레벨을 난소암 환자의 생존기간을 이용하여 컷오프 값(4.593)을 구하고 컷오프 값보다 높은 발현을 보이는 환자는 "High"로, 낮은 발현을 보이는 환자를 "Low"로 표기하였다. 도 9의 (a)는 High 및 Low 값의 차이를 그래프로 표현한 것이고, 도 9의 (b)는 High 및 Low 환자들에 대한 생존곡선을 나타낸 것이다. 발현이 높은 경우 위험률이 2.35배 증가였다 (p=0.045).
GSE19829-GPL570 데이터세트에서 MRGPRX3, SPRN, UPB1에 대한 각 유전자의 발현양(도 10) 및 난소암 환자의 생존시간(도 11)을 이용하여 컷오프 값을 계산하였다 (Receiver operation characteristic analysis). 각각의 컷오프 값은 MRGPRX3=5.298, UPB1=8.184, 및 SPRN=8.063이었다. 각각의 컷오프 값을 기준으로 높으면 "High"(positive)로, 낮은 발현을 보이는 환자를 "Low"(negative)로 표기하였다. 도 10는 High 및 Low 값의 차이를 그래프로 나타냈다. 도 11은 유전자 발현양의 많고 적음에 따른 환자의 생존율과 각 유전자들의 조합에 따른 생존율을 계산하였다. 상기한 8개의 유전자들 중 3개의 후보 유전자들 (MRGPRX3(NM_054031), SPRN(NM_001012508), UPB1(NM_016327))을 이용하여 생존율을 분석하였다. MRGPRX3의 경우 저발현이 생존율이 낮으며(적색 라인) (p=0.15), SPRN 및 UPB1은 과발현이 생존율이 낮은 것을 확인하였다(청색 라인) (p=0.16, p=0.012). 다만, UPB1의 생존율만 통계학적으로 유의미하였다 (p<0.05).
또한, 도 12에서 나타난 바와 같이, GSE19829-GPL570에서 SPRN 및 UPB1에 대해 두 유전자 모두 컷오프값 이상의 과발현 환자(double positive) 또는 두 유전자 모두 컷오프값 이하의 저발현 환자(double negative)로 나누고 생존곡선을 확인하였다 (Log rank p=0.0474). "Single positive"는 상기 두 유전자 중 하나의 유전자가 컷오프값 이상의 과발현 환자인 경우를 나타내었다. "double negative" 환자가 그런지 않은 두가지 경우에 비해 생존율이 높았음을 확인할 수 있었다.
GSE19829-GPL570에서 MRGPRX3, SPRN, 및 UPB1에 대한 유전자 발현 조합으로 환자를 분류하여 생존곡선을 확인하였다(도 13). GSE19829-GPL570에서 MRGPRX3, SPRN, 및 UPB1에 대한 유전자 발현 수준이 MRGPRX3의 과발현, SPRN, 및 UPB1의 저발현을 확인할 수 있었다("+/-/-"), 따라서, 본 발현 패턴과 동일한 난소암 환자의 경우 그 반대의 발현("-/+/+")을 나타내는 환자에 비해 통계적으로 유의하게 생존율이 높게 나타남을 확인하였다 (Log-rank p=0.005).
본 연구를 통해, 암환자에게 항암조성물 또는 항암제를 처리한 후에, 항암조성물 또는 항암제에 대한 이 환자의 감수성을 예측할 수 있는 유전자로서, EXOC3L2, KCNK6, SPRN, MRGPRX3, CERS3, LCAT, UPB1, 및 ZCCHC18을 확인하였다.
[실시예 5] 유전자 발현 억제에 따른 성장 억제 효과 확인
유전자의 발현 억제 효과 확인
난소암 세포주인 OVCAR3 및 SKOV3 세포주에 상기 실시예 4에서 확인된 환자의 감수성을 예측할 수 있는 유전자인 UPB1에 특이적인 하기 표 7에 기재된 siRNA를 형질전환한 뒤, 하기 표 8에 기재된 UPB1의 mRNA에 특이적인 프라이머를 이용한 실시간 중합효소 연쇄반응을 통해 발현 수준을 확인하여, 그 결과를 도 14 및 15에 나타내었다. 여기서, 대조군으로는 하기 표 7에 기재된 서열번호 3으로 표시된 siRNA(siLuc)를 사용하였다.
서열번호 표적 유전자 염기 서열
서열번호 1 UPB1(UPB1 #1) 5'-CAG AGU UUA GAC AUG ACU A=tt-3'(antisense)
서열번호 2 UPB1(UPB1 #2) 5'-CUG CAA UGU GUG GAG UCA A=tt-3' (antisense)
서열번호 특징 염기 서열
서열번호 3 정방향 5'-GGA AGC ATG GAC TAT GCC CTT-3'
서열번호 4 역방향 5'-TTC CAG GAT GGG AGA CAC CA-3'
도 14 및 15에서 보는 바와 같이, 하기 표 7에 기재된 siRNA는 대조군(siLuc)와 비교하여 60 내지 80% 정도 UPB1 유전자의 발현 수준을 억제하였다.
유전자의 발현 억제에 따른 암 세포주의 성장 억제 효과 확인
OVCAR3 및 SKOV3 세포주에 상기 실시예 4에서 확인된 환자의 감수성을 예측할 수 있는 유전자인 UPB1에 특이적인 하기 표 7에 기재된 siRNA를 형질전환한 뒤, 24시간 동안 충분히 배양하였다. 그런 다음, 상기 각각의 세포주들이 포함된 웰 플레이트에 Crystal violet staining 용액 (0.5% crystal violet with 20% MeOH)을 첨가하여 염색하였다. 그런 다음, 상기 웰 플레이트에서 크리스탈 바이올렛 염색(crystal violet staining) 용액을 제거한 뒤에, 3차 증류수를 이용해 여분의 크리스탈 바이올렛 염색 용액을 제거하고, 2% SDS(Sodium dodecyl sulfate) 용액을 추가로 넣고 세포내 염색된 크리스탈 바이올렛 염색 용액을 용해시키고, 595 nm에서 흡광도를 측정하여 그 결과를 도 16 및 17에 나타내었다. 여기서, 대조군으로는 상기 표 7에 기재된 서열번호 3으로 표시된 siRNA(siLuc)를 사용하였다.
도 16 및 17에서 보는 바와 같이, UPB1에 특이적인 siRNA가 형질전환된 OVCAR3 및 SKOV3 세포주는 대조군(siLuc)과 비교하여 20 내지 40% 세포의 성장을 억제하였다.
상기 결과를 통해, 본 발명에 따른 감수성을 예측할 수 있는 유전자의 발현 수준을 억제시킨 경우에는 암 세포주의 성장을 매우 현저하게 억제할 수 있기 때문에, 이와 같은 유전자의 발현 수준을 억제하는 조성물은 암의 예방 또는 치료에 매우 효과적으로 사용될 수 있다.
이상으로 본 발명의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.
<110> Industry-Academic Cooperation Foundation, Yonsei University <120> A SCREENING METHOD FOR ANTI-CANCER AGENTS <130> PDPB187364k01 <150> KR 10-2019-0019777 <151> 2019-02-20 <160> 8 <170> KoPatentIn 3.0 <210> 1 <211> 21 <212> RNA <213> Artificial Sequence <220> <223> UPB1 siRNA <400> 1 cagaguuuag acaugacuat t 21 <210> 2 <211> 21 <212> RNA <213> Artificial Sequence <220> <223> UPB1 siRNA <400> 2 cugcaaugug uggagucaat t 21 <210> 3 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> forward primer <400> 3 ggaagcatgg actatgccct t 21 <210> 4 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> reverse primer <400> 4 ttccaggatg ggagacacca 20 <210> 5 <211> 3188 <212> RNA <213> Homo sapiens <400> 5 ggcggaggcc tcgcgcaaaa cccaggcgcc gcggctccgc gctccggctg agggtccgcg 60 ccgccgcccg cccgctcctt cccgctcggc cgcggcctca gggacggata ctccagcgcg 120 cggttccaac cgaggcccgt ggtttagccc cacgaagatg aactgggcac ccgcaacgtg 180 ctgggctctg ctactggcgg ccgccttcct ctgcgacagc ggcgcagcca agggcggccg 240 cggaggtgcg cggggcagtg cccggggagg ggtccgcggg ggtgcgcgcg gggcctcgag 300 ggtgcgcgtg aggccggcgc agcgctacgg tgccccgggc tcctccctgc gcgtggctgc 360 cgccggggcg gcagccgggg cggcggcggg agcggccgcg ggcctggcgg cgggctcggg 420 ctggagaagg gccgcgggac ccggggaacg cggcctggag gacgaggagg acggggtgcc 480 cggaggcaac gggacaggcc ccggcatcta cagctaccgg gcgtggactt cgggcgctgg 540 acccacgcgc ggcccgcgtc tctgtctcgt gctgggcggc gccctcggag ccctggggct 600 gctgcggccc taggcctggc tgggctcggg gaccacatct ggcccccggc ccgcgccatc 660 ccccaggatc ctccggcctg ggctccccct tcctcccttg cccacggtct tggagcccca 720 ctgggtgcag gagctgctgg ctgtccctgt ggacccgcca tccaccgtcc tgcccacgcc 780 gcctcagcct gccacctccc acctagagga gaccatgggc cctgccccac ccactccagg 840 atgttagggt cccctcagcc aaaaaggcag ctgcctgtgg ctcctgtacc aaccgcccag 900 ccacgctcca tcgccgccca aagggaggtg ccaaggccag gaacccaagc caccccggct 960 cccctcgcct gcccaggggc cgtggtgact cacgggcagg gaggcgacat caggctggtt 1020 ctgccactga gcccctgagg aatctgaccc tccccaaaag aagcagtgaa atggaccaaa 1080 ggacttaaga atttgggggg aagtgaggga aaaacgttag gtgctaacca cctgcccaga 1140 agagtggatc tcacagccca ggaacattcc caagcaggaa aaccgtccgt ccgaggaacg 1200 tccatcctgg ctctctgcgg ctggtgggaa aacacaccct gccctgaggg gctgtccagg 1260 ccttctcccc cacaccctca ggccgagatc cgtgagagac ccactttgct ccaacaactt 1320 gaaacaagtc actttaccct ccttaggacc cattttgggg gggaaaaacc aacacattcc 1380 agagctttcc aagtcctttg aacttcaggt tcacattcag ggatcacaca gttctgcctg 1440 ttctcagggc acagcaactg ccaatcccgc tgaagaggcc tccctgggca cagcacaggc 1500 tgcacggtgc acgcatttcc ctgaaggcag ccccttcttc ggaagcagct gttccaggcc 1560 tcggaacagg gcctgggtat ccgcgtggtg ggctggcagc tgacggcctg ctcagtggag 1620 ccaggagcta actcagaccc caaagcaagc agggggccag tggcggggcc cagcgcccag 1680 caggacaccc atgcaagagg ctgagccccc caacatccaa ggacaggaga gacatggagt 1740 ggcgctggac agtcacgaca aggacttgcc tccagcactg gacacacctg tgttaagacc 1800 agccctctgc ttcccagtcc cgccagcctg gggcatcctc catgggctca gcactgagag 1860 gtcttgggtc tgccacgttc tctagctctc cagtcaccca ctcatccagg gtaggagggg 1920 ttctccctgc cccccgccgt ggccttggga tctcaccctc tccatgtcct ggggacagcc 1980 tcgccctcag ccggactgca tccctcctgg gcctgagcct cgggactcag tggacaccaa 2040 agtcaagacc agcacccacc acgggccctg ccagcctctg ccttccccag ctggcctggg 2100 ttctggcctg ggtgaggatc tggaagctgt tggcaggact caaccaagca ctgctctcta 2160 gctccagggc actaagccac aggaggcagc gccctgcagc ctcccgtcca cactgccagc 2220 aatgcccctg gcccagtgag cccagacgct cctccacccc ttccagacca agctcaacgc 2280 ctccaagacc agcaggccaa ggccaagccc tgccccagat cctcataggc agagaagccc 2340 ttctgacatt tcccccagga ggcagggggt ggtctgagtc tcctcacagc agagagaccc 2400 accggagccc cctcaacttt gcagatgccc acctggaaaa tgggctgagc tgcaccagac 2460 cctcacacac cacagcactg caagctgatg gaatgttcca gttatgatgg acacttcgtg 2520 atctgcaatg actgttgatt cagcacatta gcatctgaca cagccaacct gaatacttcc 2580 tgccccaggc ggtcagggtt atggcacgat gcaggtggca ctcaggggct aacttcaggc 2640 tgatgagtgt gtggggtatg gggcagcaga ggcagccagc cagcaaagag gggccactga 2700 gcaccagggc cctggtggag gctgctgtgg gacggtcagg ccaccaccgc aaagaggcag 2760 ccggagcttc tgcacaggat gtccctggcc ccaggtcctg cagcacctta gtccatacta 2820 ccagccccac ccaccttcct tcctcttccc tcttctagga cacaggctgt ggaccccttc 2880 aggtgcacta taatggggct ggaggggccc ccacatctct cagccccact aatgcagaat 2940 cccactaccc gtgagctaga aggtgctcag aggccagggg tctctactgc ccatgccggg 3000 cggccttcca gtcattgcac agcaaagcca tgtgcagggc gtccccctca accctgccct 3060 gaacatgccc cagggcactg aggggcgaag ccagtgcttg ggctctgctg ctgggagtct 3120 ctggtctgtg tctgtgtgtg cctgtaagtg tgaaataaac ctctctgatg gcaaaaaaaa 3180 aaaaaaaa 3188 <210> 6 <211> 3823 <212> RNA <213> Homo sapiens <400> 6 gggcacctcc tcccactgcg ggcaaagggc aggcagttcg tgcgcggaca caagcactgg 60 cggaccgtgg ccatggcggg cgctgagtgg aagtcgctgg aggaatgctt ggagaagcac 120 ctgccgctcc ccgacttgca ggaagtgaag cgcgttctct atggcaagga actcaggaag 180 cttgatctgc ccagggaagc tttcgaagct gcctccagag aagactttga actgcaggga 240 tatgcctttg aagcagcgga ggagcagctg agacgacccc gcattgtgca cgtggggctg 300 gttcagaaca gaatccccct ccccgcaaat gcccctgtgg cagaacaggt ctctgccctt 360 catagacgca taaaggctat cgtagaggtg gctgcaatgt gtggagtcaa catcatctgt 420 ttccaggaag catggactat gccctttgcc ttctgtacga gagagaagct tccttggaca 480 gaatttgctg agtcagcaga ggatgggccc accaccagat tctgtcagaa gctggcgaag 540 aaccatgaca tggtggtggt gtctcccatc ctggaacgag acagcgagca tggggatgtt 600 ttgtggaata cagccgtggt gatctccaat tccggagcag tcctgggaaa gaccaggaaa 660 aaccacatcc ccagagtggg tgatttcaac gagtcaactt actacatgga gggaaacctg 720 ggccaccccg tgttccagac gcagttcgga aggatcgcgg tgaacatttg ctacgggcgg 780 caccaccccc tcaactggct tatgtacagc atcaacgggg ctgagatcat cttcaacccc 840 tcggccacga taggagcact cagcgagtcc ctgtggccca tcgaggccag aaacgcagcc 900 attgccaatc actgcttcac ctgcgccatc aatcgagtgg gcaccgagca cttcccgaac 960 gagtttacct cgggagatgg aaagaaagct caccaggact ttggctactt ttatggctcg 1020 agctatgtgg cagcccctga cagcagccgg actcctgggc tgtcccgtag ccgggatgga 1080 ctgctagttg ctaagctcga cctaaacctc tgccagcagg tgaatgatgt ctggaacttc 1140 aagatgacgg gcaggtatga gatgtacgca cgggagctcg ccgaagctgt caagtccaac 1200 tacagcccca ccatcgtgaa agagtagccg gcttcagtgc ctgccttggg gtgaggaaga 1260 cacctctgcc ccagtggatt agcaagtgtg gcaggcttaa catgtccagg ttctccccaa 1320 taacattgtc caggttggtt ttaaaattcc caggcagggg gagagtggca tggggagtga 1380 cttcttaatg ggtaaggggc tgcttacttc tggggtattg gaaatgtttg gggactaggt 1440 agaggtgaat gtactaaatg ccactgaatt tgtatacttc agaatgtttg ttatgtaaat 1500 tttacctcaa ctaaaaaaaa aaatgcccag gtactgcttg tgcaggtgga tttgaggtta 1560 ggcagatgat gctgtccatc ccgtacacca gtgggaagag ggtgagggct gatccagaga 1620 ccctgagcct acagcaaggc tgtggtgggt cggatggtct ttggatgtgt cagcttagct 1680 aggccacagt caccagtaat tcaatcagac actaatctag gtatttctgt gaaggtattt 1740 tgtagatgtg acagaagtcc attcccaatt gactaagtaa gtgagattat ctcagataat 1800 ctgggtcagc ctgacctgat tagtcagaag gcctaaagaa cagagctaag ggtttccctg 1860 aggaagaaat tctgcctgag gacagcagcc cagtgcttgg cgagagttcc tgacagtctg 1920 cccttctgat agcctgcctc acagagttta gacatgacta gccagctcct acaatcactg 1980 aagtcaattc cttgcaataa atctcaatat atcccctact ggttctgctt ctctagttga 2040 atctgactga tacagatttt ggtgccaaaa gtggttctag aaaaatagaa tcttaaagat 2100 gagttttctg cattggttct ggattttttt agaattcttc cctagtttga ttgaacttaa 2160 aggcatcaat gactctattt ccatagagtc agggtaaaga gggtagttgg tagtccatgg 2220 catggtgcag caatagttat ttatgtgcga gactagccat cagccatcag tttgtgccca 2280 gagttccagc ctgccctttc tgatggcttg tcctgtggat atcagacttg cctgaccaga 2340 ttccatcatc atagaaggta atttgttgca ctaaatcctt ttatatctct atccatcacc 2400 tactaattct gctagttctg ctaatgtggt tgagctccat tttacacatc agattactca 2460 cttctctaca ccttggtttt tacatctgta aaatgggact gggccaggtg tggtggggtg 2520 gcttatgcct gtgatcccag cactttggga agccaaggca ggtggatcac ttgaggtcag 2580 gagttcaaga ccagcctggc caacacggcg aaaccccgtc tctactaaaa atacaaaaat 2640 tagctgggca tggtggcgca tgcctataat cccagctact cagcaggctg aggtatgaga 2700 attgcttgaa tctgggaggc aaaggctgca gtgagctgag atcacgccac tgtgctccag 2760 cctggacaac agagtgagag cctatctcca aaaaaaaaaa ggggtgggga ccatattcct 2820 gctttatgtc aagacactgg taagagacag actagatggg ccagggagcc ccttggcagt 2880 tatcagtgca gcgcctattt agccctgtcc ctgaacaaca cggcaagagc ccaacctgcc 2940 aagtctcaaa tagcagttaa ccagagtatc gggttggagg tggggttgag attctgtaat 3000 tccccgctta ttgttcccaa tcagagaagg cagccagaga aggcagcttc atcccttcac 3060 tggcccagca gctgaactat atggaaacct ccatgtcagg gctagggtac tcctggacag 3120 ccaccaagga tgagaaaccc tgatggagct gcctggccac agctctgcgg taacttcctt 3180 gaactctctg tgctgcaggt tttcacttta cctaatggcc cttcttgcac ctttaaaaaa 3240 aaaaaaaaaa aattccagtc ctacagacac agtgagcttt tttgcctgtt cctttagctt 3300 tcaaaattta gtgtcagcca aggcgggcag atcacaaggt caagagatgg aaaccatcct 3360 ggccaacatg gtgaaacccc atctctacta aaaatacaaa aattagctgg gtatggtggc 3420 gcacgcctgt agtcccaggt actcagcagg ctgagggagg agaatcactt gaacccggga 3480 ggcggaggtt gcagtgagcc gagatcacac cactgcactc cagcttggcg acagagtgag 3540 actccgtctc aaaaaacaaa acaaaacaaa acaccttagt gtttttggtt tctagagggt 3600 gtaatcaacc taatacagaa gccagcttag gtgacaaatt ggtacatttg tgaaacaggc 3660 atgaataaat ggaccacaac tctttgatta tctgcaactc tcattgcctg gaaacagaac 3720 agtcaggccc atcttagagt atgcaggccc tgtacagcca aggtcatttc aaggtttaac 3780 tcatccctgg aacatgcaga tgctcagtaa acatttgaat gaa 3823 <210> 7 <211> 1660 <212> RNA <213> Homo sapiens <400> 7 gcccagtctg gaaagtgagg agcgtctttg cccggccgcc atcccatcta ggaagtgagg 60 agcgcctctt cccggccgcc atcccatcta ggaagtgagg agcgtctctg cccggccgcc 120 catcgtctga gatgtgggga gtgcctttgc cccgccgccc cgtctgggat gtgaggagcg 180 cctctgcccg gtcgcgaccc cgtctgggag ctcctgtagg catctcctga attaagcaac 240 acagaaaagt cctctgaagt cactgaatcc cataaaggct ctctaccttt agcacaaggg 300 aggtcttcac cactggacaa agaaggaacg ataaggggtc atcagactgg ggtttctgag 360 catggattca accatcccag tcttgggtac agaactgaca ccaatcaacg gacgtgagga 420 gactccttgc tacaagcaga ccctgagctt cacggggctg acgtgcatcg tttcccttgt 480 cgcgctgaca ggaaacgcgg ttgtgctctg gctcctgggc tgccgcatgc gcaggaacgc 540 tgtctccatc tacatcctca acctggtcgc ggccgacttc ctcttcctta gcggccacat 600 tatatgttcg ccgttacgcc tcatcaatat ccgccatccc atctccaaaa tcctcagtcc 660 tgtgatgacc tttccctact ttataggcct aagcatgctg agcgccatca gcaccgagcg 720 ctgcctgtcc atcctgtggc ccatctggta ccactgccgc cgccccagat acctgtcatc 780 agtcatgtgt gtcctgctct gggccctgtc cctgctgcgg agtatcctgg agtggatgtt 840 ctgtgacttc ctgtttagtg gtgctaattc tgtttggtgt gaaacgtcag atttcattac 900 aatcgcgtgg ctggtttttt tatgtgtggt tctctgtggg tccagcctgg tcctgctggt 960 caggattctc tgtggatccc ggaagatgcc gctgaccagg ctgtacgtga ccatcctcct 1020 cacagtgctg gtcttcctcc tctgtggcct gccctttggc attcagtggg ccctgttttc 1080 caggatccac ctggattgga aagtcttatt ttgtcatgtg catctagttt ccattttcct 1140 gtccgctctt aacagcagtg ccaaccccat catttacttc ttcgtgggct cctttaggca 1200 gcgtcaaaat aggcagaacc tgaagctggt tctccagagg gctctgcagg acacgcctga 1260 ggtggatgaa ggtggagggt ggcttcctca ggaaaccctg gagctgtcgg gaagcagatt 1320 ggagcagtga ggaagaacct ctgccctgtc agacaggact ttgagagcaa tgctgccctg 1380 ccacccttga caattatatg catttttctt agccttctgc ctcagaaatg tctcagtggt 1440 ccctcaaggt cttcgaatag atgtttatct aacctgacag ttgcagtttt cacccatgga 1500 aagcattagt ctgacagtac aatgtttgga ttctccttga tattaccaat acattttccc 1560 tgttatcttg cactgaatct ttcctactga acactttttc tgcacttttc attgtaataa 1620 aaggagttgc tgtccacaaa aaaaaaaaaa aaaaaaaaaa 1660 <210> 8 <211> 1480 <212> RNA <213> Homo sapiens <400> 8 agcatcttcg taagcctgga ttgctcacca gctttcattt cagctcctgt aggcatctcc 60 tgaattaagc aacacagaaa agtcctctga agtcactgaa tcccataaag gctctctacc 120 tttagcacaa gggaggtctt caccactgga caaagaagga acgataaggg gtcatcagac 180 tggggtttct gagcatggat tcaaccatcc cagtcttggg tacagaactg acaccaatca 240 acggacgtga ggagactcct tgctacaagc agaccctgag cttcacgggg ctgacgtgca 300 tcgtttccct tgtcgcgctg acaggaaacg cggttgtgct ctggctcctg ggctgccgca 360 tgcgcaggaa cgctgtctcc atctacatcc tcaacctggt cgcggccgac ttcctcttcc 420 ttagcggcca cattatatgt tcgccgttac gcctcatcaa tatccgccat cccatctcca 480 aaatcctcag tcctgtgatg acctttccct actttatagg cctaagcatg ctgagcgcca 540 tcagcaccga gcgctgcctg tccatcctgt ggcccatctg gtaccactgc cgccgcccca 600 gatacctgtc atcagtcatg tgtgtcctgc tctgggccct gtccctgctg cggagtatcc 660 tggagtggat gttctgtgac ttcctgttta gtggtgctaa ttctgtttgg tgtgaaacgt 720 cagatttcat tacaatcgcg tggctggttt ttttatgtgt ggttctctgt gggtccagcc 780 tggtcctgct ggtcaggatt ctctgtggat cccggaagat gccgctgacc aggctgtacg 840 tgaccatcct cctcacagtg ctggtcttcc tcctctgtgg cctgcccttt ggcattcagt 900 gggccctgtt ttccaggatc cacctggatt ggaaagtctt attttgtcat gtgcatctag 960 tttccatttt cctgtccgct cttaacagca gtgccaaccc catcatttac ttcttcgtgg 1020 gctcctttag gcagcgtcaa aataggcaga acctgaagct ggttctccag agggctctgc 1080 aggacacgcc tgaggtggat gaaggtggag ggtggcttcc tcaggaaacc ctggagctgt 1140 cgggaagcag attggagcag tgaggaagaa cctctgccct gtcagacagg actttgagag 1200 caatgctgcc ctgccaccct tgacaattat atgcattttt cttagccttc tgcctcagaa 1260 atgtctcagt ggtccctcaa ggtcttcgaa tagatgttta tctaacctga cagttgcagt 1320 tttcacccat ggaaagcatt agtctgacag tacaatgttt ggattctcct tgatattacc 1380 aatacatttt ccctgttatc ttgcactgaa tctttcctac tgaacacttt ttctgcactt 1440 ttcattgtaa taaaaggagt tgctgtccac aaccctaaaa 1480

Claims (13)

  1. (a) 생물학적 시료에서 EXOC3L2, KCNK6, SPRN, MRGPRX3, CERS3, LCAT, UPB1, 또는 ZCCHC18으로 이루어진 군으로부터 선택된 1개 이상의 유전자의 mRNA 또는 이의 단백질의 발현 수준을 측정하는 단계; 및
    (b) 상기 (a) 단계에의 생물학적 시료에 후보물질을 첨가하고, 상기 유전자들의 mRNA 또는 이의 단백질의 발현 수준이 변화가 있는 경우에 이를 난소암 항암제로 선별하는 단계를 포함하고,
    상기 난소암 항암제는 수크로오스를 포함하는 탄수화물, 단백질, 및 지방으로 이루어진 것인, 항암제 선별방법.
  2. 제 1항에 있어서,
    상기 (a) 단계에서 생물학적 시료는 개체로부터 분리된 전혈, 혈청, 혈장, 타액, 뇨, 객담, 림프액, 조직 및 세포로 이루어진 군으로부터 선택된 1개 이상의 시료인 것을 특징으로 하는, 방법.
  3. 제 1항에 있어서,
    상기 (b) 단계에서 mRNA 발현 수준을 측정하는 방법은 역전사 중합효소반응(RT-PCR), 경쟁적 역전사 중합효소반응(Competitive RT-PCR), 실시간 역전사 중합효소반응(Realtime RT-PCR), RNase 보호 분석법(RPA; RNase protection assay), 노던 블랏팅(Northern blotting) 및 DNA 칩으로 이루어진 군으로부터 선택된 1개 이상의 방법인 것을 특징으로 하는, 방법.
  4. 제 1항에 있어서,
    상기 (b) 단계에서 단백질의 발현 수준을 측정하기 위한 방법은 웨스턴 블랏, ELISA (enzyme linked immunosorbent assay), 방사선면역분석(RIA: Radioimmunoassay), 방사 면역 확산법(radioimmunodiffusion), 오우크테로니(Ouchterlony) 면역확산법, 로케트(rocket) 면역전기영동, 조직면역 염색, 면역침전 분석법(Immunoprecipitation Assay), 보체 고정 분석법(Complement Fixation Assay), 유세포분석(Fluorescence Activated Cell Sorter, FACS) 및 단백질 칩(protein chip), 질량분석법 (Mass spectrometer)으로 이루어진 군으로부터 선택된 1개 이상의 방법인 것을 특징으로 하는, 방법.
  5. 삭제
  6. 삭제
  7. EXOC3L2, KCNK6, SPRN, MRGPRX3, CERS3, LCAT, UPB1, 또는 ZCCHC18으로 이루어진 군으로부터 선택된 1개 이상의 유전자의 mRNA의 수준 또는 이의 단백질의 발현 수준을 측정하기 위한 제제를 포함하는, 난소암 항암제 선별용 키트로,
    상기 난소암 항암제는 수크로오스를 포함하는 탄수화물, 단백질, 및 지방으로 이루어진 것인, 난소암 항암제 선별용 키트.
  8. 제 7항에 있어서,
    상기 키트는 RT-PCR 키트, 경쟁적 RT-PCR 키트, 실시간 RT-PCR 키트, 정량적 RT-PCR 키트, DNA 칩 키트 또는 단백질 칩 키트인 것을 특징으로 하는, 키트.
  9. 삭제
  10. 삭제
  11. 삭제
  12. 삭제
  13. 삭제
KR1020200018916A 2019-02-20 2020-02-17 항암제 선별방법 KR102324924B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190019777 2019-02-20
KR20190019777 2019-02-20

Publications (2)

Publication Number Publication Date
KR20200101854A KR20200101854A (ko) 2020-08-28
KR102324924B1 true KR102324924B1 (ko) 2021-11-12

Family

ID=72265859

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200018916A KR102324924B1 (ko) 2019-02-20 2020-02-17 항암제 선별방법

Country Status (1)

Country Link
KR (1) KR102324924B1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115910214B (zh) * 2022-10-13 2023-10-13 南京普恩瑞生物科技有限公司 一种利用肿瘤活组织生物样本库模拟临床试验评估抗肿瘤药物药效的方法及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J Appl Toxicol, 39(1):38-71 (2018.08.02.)*

Also Published As

Publication number Publication date
KR20200101854A (ko) 2020-08-28

Similar Documents

Publication Publication Date Title
JP5489459B2 (ja) 乳癌の診断、予後及び治療のためのマイクロrnaに基づいた方法及び組成物
JP2010503420A (ja) 慢性リンパ球性白血病におけるmiR−29およびmiR−181によって制御されるTCL1発現
AU2014229563A1 (en) Method for the diagnosis, prognosis and treatment of cancer metastasis
Han et al. Low-expression of TMEM100 is associated with poor prognosis in non-small-cell lung cancer
JP2015501645A (ja) 肺がんの腫瘍発生および化学療法耐性を低減するために有用なmiRNAならびに関連する組成物および方法
KR20080005193A (ko) 유방암 관련 znfn3a1 유전자
Wang et al. EGFR-AS1 promotes bladder cancer progression by upregulating EGFR
WO2017167989A1 (en) Cytidine deaminase expression level in cancer as a new therapeutic target
CN107586850B (zh) 非编码基因在肝癌诊疗中的应用
KR102338510B1 (ko) 항-her2 치료제에 대한 동반진단 마커 및 이의 용도
CN108220446B (zh) Linc01356作为分子标志物在胃癌中的应用
CN112867495A (zh) 包含syt11抑制剂作为活性成分的胃癌治疗组合物
KR102324924B1 (ko) 항암제 선별방법
EP3321377B1 (en) Method for determining sensitivity to simultaneous inhibitor against parp and tankyrase
CN108707672B (zh) Duxap8在肝细胞癌诊断和治疗中的应用
US20120190729A1 (en) Mirna inhibition of six1 expression
CN108165632B (zh) Linc01426在肝细胞癌诊断和治疗中的应用
KR20220088910A (ko) 치료 및 진단 표적으로서의 hla-h, hla-j, hla-l, hla-v 및 hla-y
CN105861736B (zh) miRNA在子宫内膜癌诊疗中的应用
US8486905B2 (en) Use of FLJ25416 gene
LU503535B1 (en) Use of linc02539 in diagnosis and treatment of kidney cancer
CN114032305B (zh) 环状RNA CircNFIB在肝内胆管细胞癌诊断、治疗及预后中的用途
KR20200022187A (ko) Nono의 발현 또는 활성 억제제를 유효성분으로 포함하는 방사선 민감성 증진용 조성물
CN111518905B (zh) lncRNA在肺腺癌诊疗中的用途
KR20180092135A (ko) 대장암 및 직장암의 예방, 진단 또는 치료를 위한 vldlr의 용도

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right