KR102321295B1 - 가공성이 우수한 고강도 강판 및 그 제조방법 - Google Patents

가공성이 우수한 고강도 강판 및 그 제조방법 Download PDF

Info

Publication number
KR102321295B1
KR102321295B1 KR1020190169609A KR20190169609A KR102321295B1 KR 102321295 B1 KR102321295 B1 KR 102321295B1 KR 1020190169609 A KR1020190169609 A KR 1020190169609A KR 20190169609 A KR20190169609 A KR 20190169609A KR 102321295 B1 KR102321295 B1 KR 102321295B1
Authority
KR
South Korea
Prior art keywords
steel sheet
less
relational expression
retained austenite
strength
Prior art date
Application number
KR1020190169609A
Other languages
English (en)
Other versions
KR20210078605A (ko
Inventor
이재훈
한태교
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020190169609A priority Critical patent/KR102321295B1/ko
Priority to US17/786,424 priority patent/US20230027722A1/en
Priority to PCT/KR2020/016830 priority patent/WO2021125602A2/ko
Priority to JP2022536970A priority patent/JP7417739B2/ja
Priority to CN202080088482.4A priority patent/CN114846168A/zh
Priority to EP20901231.9A priority patent/EP4079899A4/en
Publication of KR20210078605A publication Critical patent/KR20210078605A/ko
Application granted granted Critical
Publication of KR102321295B1 publication Critical patent/KR102321295B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/007Heat treatment of ferrous alloys containing Co
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/68Furnace coilers; Hot coilers
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

본 발명은 자동차 부품 등에 사용될 수 있는 강판에 관한 것으로서, 강도와 연성의 밸런스 및 강도와 구멍확장성의 밸런스가 우수하고, 굽힘가공성이 우수한 강판과 이를 제조하는 방법에 관한 것이다.

Description

가공성이 우수한 고강도 강판 및 그 제조방법 {High strength steel sheet having excellent workability and method for manufacturing the same}
본 발명은 자동차 부품 등에 사용될 수 있는 강판에 관한 것으로서, 고강도 특성을 구비하면서도 가공성이 우수한 강판과 이를 제조하는 방법에 관한 것이다.
최근 자동차 산업은 지구 환경을 보호하기 위하여 소재 경량화를 도모하고, 동시에 탑승자 안정성을 확보할 수 있는 방안에 주목하고 있다. 이러한 안정성과 경량화 요구에 부응하기 위해 고강도 강판의 적용이 급격히 증가하고 있다. 일반적으로 강판의 고강도화가 이루어질수록 강판의 가공성은 저하되는 것으로 알려져 있다. 따라서, 자동차 부품용 강판에 있어서, 고강도 특성을 구비하면서도, 연성, 굽힘가공성 및 구멍확장성 등으로 대표되는 가공성이 우수한 강판이 요구되고 있는 실정이다.
강판의 가공성을 개선하는 기술로써, 템퍼드 마르텐사이트를 활용하는 방법이 특허문헌 1 및 2에 개시되어 있다. 경질의 마르텐사이트를 템퍼링(tempering)시켜 만든 템퍼드 마르텐사이트는 연질화된 마르텐사이트이므로, 템퍼드 마르텐사이트는 기존의 템퍼링되지 않은 마르텐사이트(프레시 마르텐사이트)와 강도의 차이가 존재한다. 따라서, 프레시 마르텐사이트를 억제시키고 템퍼드 마르텐사이트를 형성하게 되면 가공성이 증가할 수 있다.
그러나 특허문헌 1 및 2에 개시된 기술로는 인장강도와 연신율의 밸런스(TSХEl)가 22,000MPa% 이상을 만족하지 못하고, 이는 우수한 강도 및 연성이 모두 우수한 강판을 확보하기 어렵다는 것을 의미한다.
한편, 자동차 부재용 강판은 고강도이면서 가공성이 우수한 특성을 모두 얻기 위해서 잔류 오스테나이트의 변태유기소성을 이용한 TRIP(Transformation Induced Plasticity)강이 개발되었다. 특허문헌 3에서는 강도 및 가공성이 우수한 TRIP강이 개시되어 있다.
특허문헌 3에서는 다각형의 페라이트와 잔류 오스테나이트 및 마르텐사이트를 포함하여, 연성과 가공성을 향상시키고자 하였으나, 베이나이트를 주상(主相)으로 하고 있어 높은 강도를 확보하지 못하고, 인장강도와 연신율의 밸런스(TSХEl) 역시 22,000MPa% 이상을 만족하지 못하는 것을 알 수 있다.
즉, 높은 강도를 가지면서도, 연성, 굽힘가공성 및 구멍확장성 등으로 대표되는 가공성이 우수한 강판에 대한 요구를 충족시키지 못하고 있는 실정이다.
한국 공개특허공보 제10-2006-0118602호 일본 공개특허공보 제2009-019258호 한국 공개특허공보 제10-2014-0012167호
본 발명의 일측면에 따르면, 강판의 조성 및 미세조직을 최적화하여 우수한 연성, 굽힘가공성 및 구멍확장성을 갖는 고강도 강판과 이를 제조하는 방법이 제공될 수 있다.
본 발명의 과제는 상술한 사항에 한정되지 않는다. 본 발명의 추가적인 과제는 명세서 전반적인 내용에 기술되어 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 본 발명의 명세서에 기재된 내용으로부터 본 발명의 추가적인 과제를 이해하는데 아무런 어려움이 없을 것이다.
본 발명의 일 측면에 따른 가공성이 우수한 고강도 강판은, 중량%로, C: 0.25~0.75%, Si: 4.0% 이하, Mn: 0.9~5.0%, Al: 5.0% 이하, P: 0.15% 이하, S: 0.03% 이하, N: 0.03% 이하, 나머지 Fe 및 불가피한 불순물을 포함하고, 미세조직으로, 43~55부피%의 템퍼드 마르텐사이트, 14~23부피%의 베이나이트, 15~33부피%의 잔류 오스테나이트, 8~16부피%의 페라이트 및 불가피한 조직을 포함하고, 아래의 [관계식 1] 및 [관계식 2]를 만족할 수 있다.
[관계식 1]
1.1 ≤ [Si+Al]F / [Si+Al]γ ≤ 3.0
상기 관계식 1에서, [Si+Al]F는 페라이트에 포함된 Si 및 Al의 평균 합계 함량(중량%)이고, [Si+Al]γ는 잔류 오스테나이트에 포함된 Si 및 Al의 평균 합계 함량(중량%)이다.
[관계식 2]
V(1.2㎛, γ) / V(γ) ≥ 0.1
상기 관계식 2에서, V(1.2㎛, γ)는 평균 결정립경이 1.2㎛ 이상인 잔류 오스테나이트 분율(부피%)이고, V(γ)은 강판의 잔류 오스테나이트 분율(부피%)이다.
상기 강판은, 아래의 (1) 내지 (9) 중 어느 하나 이상을 더 포함할 수 있다.
(1) Ti: 0~0.5%, Nb: 0~0.5% 및 V: 0~0.5% 중 1종 이상
(2) Cr: 0~3.0% 및 Mo: 0~3.0% 중 1종 이상
(3) Cu: 0~4.5% 및 Ni: 0~4.5% 중 1종 이상
(4) B: 0~0.005%
(5) Ca: 0~0.05%, Y를 제외하는 REM: 0~0.05% 및 Mg: 0~0.05% 중 1종 이상
(6) W: 0~0.5% 및 Zr: 0~0.5% 중 1종 이상
(7) Sb: 0~0.5% 및 Sn: 0~0.5% 중 1종 이상
(8) Y: 0~0.2% 및 Hf: 0~0.2% 중 1종 이상
(9) Co: 0~1.5%
상기 Si 및 Al의 합계 함량(Si+Al)은 1.0~6.0중량%일 수 있다.
상기 강판은 아래의 [관계식 3]을 만족할 수 있다.
[관계식 3]
V(lath, γ) / V(γ) ≥ 0.5
상기 관계식 3에서, V(lath, γ)는 레쓰(leth) 형태의 잔류 오스테나이트 분율(부피%)이고, V(γ)는 강판의 잔류 오스테나이트 분율(부피%)이다.
상기 강판은, 아래의 [관계식 4]로 표현되는 인장강도와 연신율의 밸런스(BT·E)가 22,000(MPa%) 이상이고, 아래의 [관계식 5]로 표현되는 인장강도와 구멍확장률의 밸런스 (BT·H)가 7*106(MPa2%1 /2) 이상이며, 아래의 [관계식 6]으로 표현되는 굽힘가공률(BR)이 0.5~3.0의 범위를 만족할 수 있다.
[관계식 4]
BT·E = [인장강도(TS, MPa)] * [연신율(El, %)]
[관계식 5]
BT·H = [인장강도(TS, MPa)]2 * [구멍확장률(HER, %)]1/2
[관계식 6]
BR = R/t
상기 관계식 6에서, R은 90° 굽힘 시험 후 크랙이 발생하지 않는 최소 굽힘 반경(㎜)을 의미하고, t는 강판의 두께(㎜)를 의미한다.
본 발명의 다른 일 측면에 따른 가공성이 우수한 고강도 강판의 제조방법은, 중량%로, C: 0.25~0.75%, Si: 4.0% 이하, Mn: 0.9~5.0%, Al: 5.0% 이하, P: 0.15% 이하, S: 0.03% 이하, N: 0.03% 이하, 나머지는 Fe 및 불가피한 불순물을 포함하는 냉간압연된 강판을 제공하는 단계; 상기 냉간압연된 강판을 5℃/s 이상의 평균 승온속도로 Ac1 이상 Ac3 미만의 온도범위까지 가열(1차 가열)하여, 50초 이상 유지(1차 유지)하는 단계; 평균 냉각속도 1℃/s 이상으로, 600~850℃의 온도범위(1차 냉각정지온도)까지 냉각(1차 냉각)하는 단계; 평균 냉각속도 2℃/s 이상으로, 300~500℃의 온도범위까지 냉각(2차 냉각)하고, 이 온도범위에서 5초 이상 유지(2차 유지)하는 단계; 평균 냉각속도 2℃/s 이상으로, 100~300℃의 온도범위(2차 냉각정지온도)까지 냉각(3차 냉각)하는 단계; 350~550℃의 온도범위까지 가열(2차 가열)하고, 이 온도범위에서 10초 이상 유지(3차 유지)하는 단계; 평균 냉각속도 1℃/s 이상으로, 250~450℃의 온도범위까지 냉각(4차 냉각)하고, 이 온도범위에서 10초 이상 유지(4차 유지)하는 단계; 및 상온까지 냉각(5차 냉각)하는 단계;를 포함할 수 있다.
상기 냉간압연된 강판은 아래의 (1) 내지 (9) 중 어느 하나 이상을 더 포함할 수 있다.
(1) Ti: 0~0.5%, Nb: 0~0.5% 및 V: 0~0.5% 중 1종 이상
(2) Cr: 0~3.0% 및 Mo: 0~3.0% 중 1종 이상
(3) Cu: 0~4.5% 및 Ni: 0~4.5% 중 1종 이상
(4) B: 0~0.005%
(5) Ca: 0~0.05%, Y를 제외하는 REM: 0~0.05% 및 Mg: 0~0.05% 중 1종 이상
(6) W: 0~0.5% 및 Zr: 0~0.5% 중 1종 이상
(7) Sb: 0~0.5% 및 Sn: 0~0.5% 중 1종 이상
(8) Y: 0~0.2% 및 Hf: 0~0.2% 중 1종 이상
(9) Co: 0~1.5%
상기 냉간압연된 강판에 포함되는 상기 Si 및 Al의 합계 함량(Si+Al)은 1.0~6.0중량%일 수 있다.
상기 냉간압연된 강판은, 강 슬라브를 1000~1350℃로 가열하는 단계; 800~1000℃의 온도범위에서 마무리 열간압연하는 단계; 300~600℃의 온도범위에서 상기 열간압연된 강판을 권취하는 단계; 상기 권취된 강판을 650~850℃의 온도범위에서 600~1700초 동안 열연소둔 열처리하는 단계; 및 상기 열연소둔 열처리된 강판을 30~90%의 압하율로 냉간압연하는 단계;를 통해 제공될 수 있다.
상기 1차 냉각의 냉각속도(Vc1)와 상기 2차 냉각의 냉각속도(Vc2)는 Vc1<Vc2의 관계를 만족할 수 있다.
본 발명의 바람직한 일 측면에 의하면, 강도가 우수할 뿐만 아니라, 연성, 굽힘가공성 및 구멍확장성 등의 가공성이 우수하여, 자동차 부품용으로 특히 적합한 강판을 제공할 수 있다.
본 발명은 가공성이 우수한 고강도 강판 및 그 제조방법에 관한 것으로, 이하에서는 본 발명의 바람직한 구현예들을 설명하고자 한다. 본 발명의 구현예들은 여러 가지 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 설명되는 구현예들에 한정되는 것으로 해석되어서는 안된다. 본 구현예들은 당해 발명이 속하는 기술분야에서 통상의 지식을 가지는 자에게 본 발명을 더욱 상세하기 위하여 제공되는 것이다.
본 발명의 발명자들은 베이나이트, 템퍼드 마르텐사이트, 잔류 오스테나이트 및 페라이트를 포함하는 변태유기소성(Transformation Induced Plasticity, TRIP)강에 있어서, 잔류 오스테나이트의 안정화를 도모함과 동시에, 잔류 오스테나이트와 페라이트에 포함되는 특정 성분의 비율을 일정 범위로 제어하는 경우, 잔류 오스테나이트와 페라이트의 상간 경도차를 감소시킴으로써 강판의 가공성 및 강도의 동시 확보가 가능하다는 점을 인지하게 되었다. 이를 규명하여, 고강도강의 연성과 가공성을 향상시킬 수 있는 방법을 고안하고, 본 발명에 이르게 되었다.
이하, 본 발명의 일 측면에 따른 가공성이 우수한 고강도 강판에 대해 보다 상세히 설명한다.
본 발명의 일 측면에 따른 가공성이 우수한 고강도 강판은, 중량%로, C: 0.25~0.75%, Si: 4.0% 이하, Mn: 0.9~5.0%, Al: 5.0% 이하, P: 0.15% 이하, S: 0.03% 이하, N: 0.03% 이하, 나머지 Fe 및 불가피한 불순물을 포함하고, 미세조직으로, 30~70부피%의 템퍼드 마르텐사이트, 10~45부피%의 베이나이트, 10~40부피%의 잔류 오스테나이트, 3~20부피%의 페라이트 및 불가피한 조직을 포함하고, 아래의 [관계식 1] 및 [관계식 2]를 만족할 수 있다.
[관계식 1]
1.1 ≤ [Si+Al]F / [Si+Al]γ ≤ 3.0
상기 관계식 1에서, [Si+Al]F는 페라이트에 포함된 Si 및 Al의 평균 합계 함량(중량%)이고, [Si+Al]γ는 잔류 오스테나이트에 포함된 Si 및 Al의 평균 합계 함량(중량%)이다.
[관계식 2]
V(1.2㎛, γ) / V(γ) ≥ 0.1
상기 관계식 2에서, V(1.2㎛, γ)는 평균 결정립경이 1.2㎛ 이상인 잔류 오스테나이트 분율(부피%)이고, V(γ)은 강판의 잔류 오스테나이트 분율(부피%)이다.
이하, 본 발명의 강 조성에 대하여 보다 상세히 설명한다. 이하, 특별히 달리 표시하지 않는 한 각 원소의 함량을 나타내는 %는 중량을 기준으로 한다.
본 발명의 일 측면에 따른 가공성이 우수한 고강도 강판은, 중량%로, C: 0.25~0.75%, Si: 4.0% 이하, Mn: 0.9~5.0%, Al: 5.0% 이하, P: 0.15% 이하, S: 0.03% 이하, N: 0.03% 이하, 나머지 Fe 및 불가피한 불순물을 포함한다, 또한, 추가적으로 Ti: 0.5% 이하(0% 포함), Nb: 0.5% 이하(0% 포함), V: 0.5% 이하(0% 포함), Cr: 3.0% 이하(0% 포함), Mo: 3.0% 이하(0% 포함), Cu: 4.5% 이하(0% 포함), Ni: 4.5% 이하(0% 포함), B: 0.005% 이하(0% 포함), Ca: 0.05% 이하(0% 포함), Y를 제외하는 REM: 0.05% 이하(0% 포함), Mg: 0.05% 이하(0% 포함), W: 0.5% 이하(0% 포함), Zr: 0.5% 이하(0% 포함), Sb: 0.5% 이하(0% 포함), Sn: 0.5% 이하(0% 포함), Y: 0.2% 이하(0% 포함), Hf: 0.2% 이하(0% 포함), Co: 1.5% 이하(0% 포함) 중 1종 이상을 더 포함할 수 있다. 아울러, 상기 Si 및 Al의 합계 함량(Si+Al)은 1.0~6.0%일 수 있다.
탄소(C): 0.25~0.75%
탄소(C)는 강판의 강도 확보에 불가결한 원소인 동시에, 강판의 연성 향상에 기여하는 잔류 오스테나이트를 안정화시키는 원소이기도 하다. 따라서, 본 발명은 이와 같은 효과 달성을 위해 0.25% 이상의 탄소(C)를 포함할 수 있다. 바람직한 탄소(C) 함량은 0.25% 초과일 수 있고, 0.27% 이상일 수 있으며, 0.30% 이상일 수 있다. 보다 바람직한 탄소(C) 함량은 0.31% 이상일 수 있다. 반면, 탄소(C) 함량이 일정 수준을 초과하는 경우, 과도한 강도 상승에 따라 냉각 압연이 어려워질 수 있다. 따라서, 본 발명은 탄소(C) 함량의 상한을 0.75%로 제한할 수 있다. 탄소(C) 함량은 0.70% 이하일 수 있으며, 보다 바람직한 탄소 함량(C)은 0.67% 이하일 수 있다.
실리콘(Si): 4.0% 이하 (0%는 제외)
실리콘(Si)은 고용강화에 의한 강도 향상에 기여하는 원소이며, 페라이트를 강화시키고, 조직을 균일화시킴으로써 가공성을 개선하는 원소이기도 하다. 또한, 실리콘(Si)은 시멘타이트의 석출을 억제시켜 잔류 오스테나이트의 생성에 기여하는 원소이다. 따라서, 본 발명은 이와 같은 효과 달성을 위해 실리콘(Si)을 필수적으로 첨가할 수 있다. 바람직한 실리콘(Si) 함량은 0.02% 이상일 수 있으며, 보다 바람직한 실리콘(Si) 함량은 0.05% 이상일 수 있다. 다만, 실리콘(Si) 함량이 일정 수준을 초과하는 경우, 도금공정에서 미도금과 같이 도금결함 문제를 유발할 뿐만 아니라, 강판의 용접성을 저하시킬 수 있는바, 본 발명은 실리콘(Si) 함량의 상한을 4.0%로 제한할 수 있다. 바람직한 실리콘(Si) 함량의 상한은 3.8%일 수 있으며, 보다 바람직한 실리콘(Si) 함량의 상한은 3.5%일 수 있다.
알루미늄(Al): 5.0% 이하 (0%는 제외)
알루미늄(Al)은 강중의 산소와 결합하여 탈산 작용을 하는 원소이다. 또한, 알루미늄(Al)은 실리콘(Si)과 동일하게 시멘타이트 석출을 억제시켜 잔류 오스테나이트를 안정화시키는 원소이기도 하다. 따라서, 본 발명은 이와 같은 효과 달성을 위해 알루미늄(Al)을 필수적으로 첨가할 수 있다. 바람직한 알루미늄(Al) 함량은 0.05% 이상일 수 있으며, 보다 바람직한 알루미늄(Al) 함량은 0.1% 이상일 수 있다. 반면, 알루미늄(Al)이 과다하게 첨가되는 경우, 강판의 개재물이 증가될 뿐만 아니라, 강판의 가공성을 저하시킬 수 있는바, 본 발명은 알루미늄(Al) 함량의 상한을 5.0%로 제한할 수 있다. 바람직한 알루미늄(Al) 함량의 상한은 4.75%일 수 있으며, 보다 바람직한 알루미늄(Al) 함량의 상한은 4.5%일 수 있다.
한편, 실리콘(Si)과 알루미늄(Al)의 합계 함량(Si+Al)은 1.0~6.0%인 것이 바람직하다. 실리콘(Si) 및 알루미늄(Al)은 본 발명에서 미세조직 형성에 영향을 주어, 연성, 굽힘가공성 및 구멍확장성에 영향을 미치는 성분이므로, 실리콘(Si) 및 알루미늄(Al)의 합계 함량은 1.0~6.0%인 것이 바람직하다. 보다 바람직한 실리콘(Si)과 알루미늄(Al)의 합계 함량(Si+Al)은 1.5% 이상일 수 있으며, 4.0% 이하일 수 있다.
망간(Mn): 0.9~5.0%
망간(Mn)은 강도와 연성을 함께 높이는데 유용한 원소이다. 따라서, 본 발명은 이와 같은 효과를 달성하기 위하여 망간(Mn) 함량의 하한을 0.9%로 제한할 수 있다. 바람직한 망간(Mn) 함량의 하한은 1.0%일 수 있으며, 보다 바람직한 망간(Mn) 함량의 하한은 1.1%일 수 있다. 반면, 망간(Mn)이 과다하게 첨가되는 경우, 베이나이트 변태시간이 증가하여 오스테나이트 중의 탄소(C) 농화도가 충분하지 않게 되므로, 목적하는 오스테나이트 분율을 확보할 수 없는 문제점이 존재한다. 따라서, 본 발명은 망간(Mn) 함량의 상한을 5.0%로 제한할 수 있다. 바람직한 망간(Mn) 함량의 상한은 4.7%일 수 있으며, 보다 바람직한 망간(Mn) 함량의 상한은 4.5%일 수 있다.
인(P): 0.15% 이하 (0% 포함)
인(P)은 불순물로 함유되어 충격인성을 열화시키는 원소이다. 따라서, 인(P)의 함량은 0.15% 이하로 관리하는 것이 바람직하다.
황(S): 0.03% 이하 (0% 포함)
황(S)은 불순물로 함유되어 강판 중에 MnS를 형성하고, 연성을 열화시키는 원소이다. 따라서, 황(S)의 함량은 0.03% 이하인 것이 바람직하다.
질소(N): 0.03% 이하 (0% 포함)
질소(N)는 불순물로 함유되어 연속주조 중에 질화물을 만들어 슬라브의 균열을 일으키는 원소이다. 따라서, 질소(N)의 함량은 0.03% 이하인 것이 바람직하다.
한편, 본 발명의 강판은 상술한 합금성분 이외에 추가적으로 포함될 수 있는 합금 조성이 존재하며, 이에 대해서는 아래에서 상세히 설명한다.
티타늄(Ti): 0~0.5%, 니오븀(Nb): 0~0.5% 및 바나듐(V): 0~0.5% 중 1종 이상
티타늄(Ti), 니오븀(Nb) 및 바나듐(V)은 석출물을 만들어 결정립을 미세화시키는 원소이며, 강판의 강도 및 충격인성의 향상에도 기여하는 원소이므로, 본 발명은 이와 같은 효과를 위해 티타늄(Ti), 니오븀(Nb) 및 바나듐(V) 중의 1종 이상을 첨가할 수 있다. 다만, 티타늄(Ti), 니오븀(Nb) 및 바나듐(V)의 각 함량이 일 정 수준을 초과하는 경우, 과도한 석출물이 형성되어 충격인성이 저하될 뿐만 아니라, 제조원가 상승의 원인이 되므로, 본 발명은 티타늄(Ti), 니오븀(Nb) 및 바나듐(V)의 함량을 각각 0.5% 이하로 제한할 수 있다.
크롬(Cr): 0~3.0% 및 몰리브덴(Mo): 0~3.0% 중 1종 이상
크롬(Cr) 및 몰리브덴(Mo)은 합금화 처리시 오스테나이트 분해를 억제할 뿐만 아니라, 망간(Mn)과 동일하게 오스테나이트를 안정화시키는 원소이므로, 본 발명은 이와 같은 효과를 위해 크롬(Cr) 및 몰리브덴(Mo) 중의 1종 이상을 첨가할 수 있다. 다만, 크롬(Cr) 및 몰리브덴(Mo)의 함량이 일정 수준을 초과하는 경우, 베이나이트 변태시간이 증가하여 오스테나이트 중의 탄소(C) 농화량이 충분하지 않게 되므로, 목적하는 잔류 오스테나이트 분율을 확보할 수 없다. 따라서, 본 발명은 크롬(Cr) 및 몰리브덴(Mo)의 함량을 각각 3.0% 이하로 제한할 수 있다.
구리(Cu): 0~4.5% 및 니켈(Ni): 0~4.5% 중 1종 이상
구리(Cu) 및 니켈(Ni)은 오스테나이트를 안정화시키고, 부식을 억제하는 원소이다. 또한, 구리(Cu) 및 니켈(Ni)은 강판 표면으로 농화되어, 강판 내로 이동하는 수소 침입을 막아 수소지연파괴를 억제하는 원소이기도 하다. 따라서, 본 발명은 이와 같은 효과를 위해, 구리(Cu) 및 니켈(Ni) 중의 1종 이상을 첨가할 수 있다. 다만, 구리(Cu) 및 니켈(Ni)의 함량이 일정 수준을 초과하는 경우, 과도한 특성효과뿐만 아니라, 제조원가 상승의 원인이 되므로, 본 발명은 구리(Cu) 및 니켈(Ni)의 함량을 각각 4.5% 이하로 제한할 수 있다.
보론(B): 0~0.005%
보론(B)은 담금질성을 향상시켜 강도를 높이는 원소이며, 결정립계의 핵생성을 억제하는 원소이기도 하다. 따라서, 본 발명은 이와 같은 효과를 위해, 보론(B)을 첨가할 수 있다. 다만, 보론(B)의 함량이 일정 수준을 초과하는 경우, 과도한 특성효과뿐만 아니라, 제조원가 상승의 원인이 되므로, 본 발명은 보론(B)의 함량을 0.005% 이하로 제한할 수 있다.
칼슘(Ca): 0~0.05%, 마그네슘(Mg): 0~0.05% 및 이트륨(Y)을 제외한 희토류 원소(REM): 0~0.05% 중 1종 이상
여기서, 희토류원소(REM)란 스칸듐(Sc), 이트륨(Y)과 란타넘족원소를 의미한다. 칼슘(Ca), 마그네슘(Mg), 이트륨(Y)을 제외한 희토류원소(REM)는 황화물을 구형화시킴으로써 강판의 연성 향상에 기여하는 원소이므로, 본 발명은 이와 같은 효과를 위해 칼슘(Ca), 마그네슘(Mg), 이트륨(Y)을 제외한 희토류원소(REM) 중의 1종 이상을 첨가할 수 있다. 다만, 칼슘(Ca), 마그네슘(Mg), 이트륨(Y)을 제외한 희토류원소(REM)의 함량이 일정 수준을 초과하는 경우, 과도한 특성효과뿐만 아니라 제조원가 상승의 원인이 되므로, 본 발명은 칼슘(Ca), 마그네슘(Mg), 이트륨(Y)을 제외한 희토류원소(REM)의 함량을 각각 0.05% 이하로 제한할 수 있다.
텅스텐(W): 0~0.5% 및 지르코늄(Zr): 0~0.5% 중 1종 이상
텅스텐(W) 및 지르코늄(Zr)은 담금질성을 향상시켜 강판의 강도를 증가시키는 원소이므로, 본 발명은 이와 같은 효과를 위해 텅스텐(W) 및 지르코늄(Zr) 중의 1종 이상을 첨가할 수 있다. 다만, 텅스텐(W) 및 지르코늄(Zr)의 함량이 일정 수준을 초과하는 경우, 과도한 특성효과뿐만 아니라 제조원가 상승의 원인이 되므로, 본 발명은 텅스텐(W) 및 지르코늄(Zr)의 함량을 각각 0.5% 이하로 제한할 수 있다.
안티몬(Sb): 0~0.5% 및 주석(Sn): 0~0.5% 중 1종 이상
안티몬(Sb) 및 주석(Sn)은 강판의 도금 젖음성과 도금 밀착성을 향상시키는 원소이므로, 본 발명은 이와 같은 효과를 위해 안티몬(Sb) 및 주석(Sn) 중의 1종 이상을 첨가할 수 있다. 다만, 안티몬(Sb) 및 주석(Sn)의 함량이 일정 수준을 초과하는 경우, 강판의 취성이 증가하여 열간가공 또는 냉간가공 시 균열이 발생할 수 있으므로, 본 발명은 안티몬(Sb) 및 주석(Sn)의 함량을 각각 0.5% 이하로 제한할 수 있다.
이트륨(Y): 0~0.2% 및 하프늄(Hf): 0~0.2% 중 1종 이상
이트륨(Y) 및 하프늄(Hf)은 강판의 내식성을 향상시키는 원소이므로, 본 발명은 이와 같은 효과를 위해 이트륨(Y) 및 하프늄(Hf) 중의 1종 이상을 첨가할 수 있다. 다만, 이트륨(Y) 및 하프늄(Hf)의 함량이 일정 수준을 초과하는 경우, 강판의 연성이 열화될 수 있으므로, 본 발명은 이트륨(Y) 및 하프늄(Hf)의 함량을 각각 0.2% 이하로 제한할 수 있다.
코발트(Co): 0~1.5%
코발트(Co)는 베이나이트 변태를 촉진시켜 TRIP 효과를 증가시키는 원소이므로, 본 발명은 이와 같은 효과를 위해 코발트(Co)를 첨가할 수 있다. 다만, 코발트(Co)의 함량이 일정 수준을 초과하는 경우, 강판의 용접성과 연성이 열화될 수 있으므로, 본 발명은 코발트(Co) 함량을 1.5% 이하로 제한할 수 있다.
본 발명의 일 측면에 따른 가공성이 우수한 고강도 강판은 전술한 성분 이외에 나머지 Fe 및 기타 불가피한 불순물을 포함할 수 있다. 다만, 통상의 제조과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불순물이 불가피하게 혼입될 수 있으므로, 이를 전면적으로 배제할 수는 없다. 이들 불순물은 본 기술분야에서 통상의 지식을 가진 자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 본 명세서에서 특별히 언급하지는 않는다. 더불어, 전술한 성분 이외에 유효한 성분의 추가적인 첨가가 전면적으로 배제되는 것은 아니다.
본 발명의 일 측면에 따른 가공성이 우수한 고강도 강판은, 미세조직으로 템퍼드 마르텐사이트, 베이나이트, 잔류 오스테나이트 및 페라이트를 포함할 수 있다. 바람직한 일 예로서, 본 발명의 일 측면에 따른 가공성이 우수한 고강도 강판은, 부피분율로, 43~55%의 템퍼드 마르텐사이트, 14~23%의 베이나이트, 15~33%의 잔류 오스테나이트, 8~16%의 페라이트 및 불가피한 조직을 포함할 수 있다. 본 발명의 불가피한 조직으로서, 프레시 마르텐사이트(Fresh Martensite), 펄라이트, 도상 마르텐사이트(Martensite Austenite Constituent, M-A) 등이 포함될 수 있다. 프레시 마르텐사이트나 펄라이트가 과도하게 형성되면, 강판의 가공성이 저하되거나, 잔류 오스테나이트의 분율을 저감시킬 수 있다.
본 발명의 일 측면에 따른 가공성이 우수한 고강도 강판은, 아래의 [관계식 1]과 같이, 잔류 오스테나이트에 포함된 실리콘(Si) 및 알루미늄(Al)의 평균 합계 함량([Si+Al]γ, 중량%)에 대한 페라이트에 포함된 실리콘(Si) 및 알루미늄(Al)의 평균 합계 함량([Si+Al]F, 중량%)의 비가 1.1~3.0의 범위를 만족하며, 아래의 [관계식 2]와 같이, 강판의 잔류 오스테나이트 분율(V(γ), 부피%)에 대한 평균 결정립경이 1.2㎛ 이상인 잔류 오스테나이트 분율(V(1.2㎛, γ), 부피%)의 비가 0.1 이상일 수 있다.
[관계식 1]
1.1 ≤ [Si+Al]F / [Si+Al]γ ≤ 3.0
[관계식 2]
V(1.2㎛, γ) / V(γ) ≥ 0.1
또한, 본 발명의 일 측면에 따른 가공성이 우수한 고강도 강판은, 아래의 [관계식 3]과 같이, 강판의 잔류 오스테나이트 분율(V(γ), 부피%)에 대한 레쓰(leth) 형태의 잔류 오스테나이트 분율(V(lath, γ), 부피%)의 비가 0.5 이상일 수 있다.
[관계식 3]
V(lath, γ) / V(γ) ≥ 0.5
본 발명의 일 측면에 따른 가공성이 우수한 고강도 강판은, 아래의 [관계식 4]로 표현되는 인장강도와 연신율의 밸런스(BT·E)가 22,000(MPa%) 이상이고, 아래의 [관계식 5]로 표현되는 인장강도와 구멍확장률의 밸런스 (BT·H)가 7*106(MPa2%1 /2) 이상이며, 아래의 [관계식 6]으로 표현되는 굽힘가공률(BR)이 0.5~3.0의 범위를 만족하므로, 우수한 강도와 연성의 밸런스 및 강도와 구멍확장률의 밸런스를 가질 뿐만 아니라, 우수한 굽힘가공성을 가질 수 있다.
[관계식 4]
BT·E = [인장강도(TS, MPa)] * [연신율(El, %)]
[관계식 5]
BT·H = [인장강도(TS, MPa)]2 * [구멍확장률(HER, %)]1/2
[관계식 6]
BR = R/t
상기 관계식 6에서, R은 90° 굽힘 시험 후 크랙이 발생하지 않는 최소 굽힘 반경(㎜)을 의미하고, t는 강판의 두께(㎜)를 의미한다.
본 발명은 고강도 특성뿐만 아니라, 우수한 연성 및 굽힘가공성을 동시에 확보하고자 하므로, 강판의 잔류 오스테나이트를 안정화시키는 것이 중요하다. 잔류 오스테나이트를 안정화시키기 위해서는, 강판의 페라이트, 베이나이트 및 템퍼드 마르텐사이트에서의 탄소(C)와 망간(Mn)을 오스테나이트로 농화시키는 것이 필요하다. 그러나, 페라이트를 활용하여 오스테나이트 중으로 탄소(C)를 농화시키면, 페라이트의 낮은 강도 특성 때문에 강판의 강도가 부족할 수 있으며, 과도한 상간 경도차가 발생하여 구멍확장률(HER)이 저하될 수 있다. 따라서, 본 발명은 베이나이트 및 템퍼드 마르텐사이트를 활용하여 오스테나이트 중으로 탄소(C)와 망간(Mn)을 농화시키고자 한다.
잔류 오스테나이트 중의 실리콘(Si) 및 알루미늄(Al) 함량을 일정 범위로 제한하는 경우, 베이나이트 및 템퍼드 마르텐사이트로부터 잔류 오스테나이트 중으로 탄소(C)와 망간(Mn)을 다량 농화시킬 수 있으므로, 잔류 오스테나이트를 효과적으로 안정화시킬 수 있다. 또한, 오스테나이트 중의 실리콘(Si) 및 알루미늄(Al) 함량을 일정 범위로 제한함에 따라, 페라이트 중의 실리콘(Si) 및 알루미늄(Al) 함량을 증가시킬 수 있다. 페라이트 중의 실리콘(Si) 및 알루미늄(Al) 함량이 증가됨에 따라 페라이트의 경도는 증가하며, 연질조직인 페라이트와 경질조직인 템퍼드 마르텐사이트, 베이나이트 및 잔류 오스테나이트의 상간 경도차를 효과적으로 감소시킬 수 있다.
따라서, 본 발명은 잔류 오스테나이트에 포함된 실리콘(Si) 및 알루미늄(Al)의 평균 합계 함량([Si+Al]γ, 중량%)에 대한 페라이트에 포함된 실리콘(Si) 및 알루미늄(Al)의 평균 합계 함량([Si+Al]F, 중량%)의 비를 1.1 이상으로 제한하므로, 연질조직과 경질조직의 상간 경도차를 효과적으로 감소시킬 수 있다. 반면, 페라이트 중의 실리콘(Si) 및 알루미늄(Al) 함량이 과다한 경우, 오히려 페라이트가 과도하게 경질화되어 가공성이 저하되므로, 목적하는 인장강도와 연신율의 밸런스(TSХEl), 인장강도와 구멍확장률의 밸런스(TS2ХHER1 /2) 및 굽힘가공률(R/t)을 모두 확보할 수 없게 된다. 따라서, 본 발명은 본 발명은 잔류 오스테나이트에 포함된 실리콘(Si) 및 알루미늄(Al)의 평균 합계 함량([Si+Al]γ, 중량%)에 대한 페라이트에 포함된 실리콘(Si) 및 알루미늄(Al)의 평균 합계 함량([Si+Al]F, 중량%)의 비를 3.0 이하로 제한할 수 있다.
잔류 오스테나이트 중 평균 결정립경이 1.2㎛ 이상의 잔류 오스테나이트는 베이나이트 형성 온도에서 열처리되어 평균 크기가 증가하여 오스테나이트로부터 마르텐사이트로의 변태를 억제시키게 되어, 강판의 가공성을 향상시킬 수 있다.
또한, 잔류 오스테나이트 중에 레쓰(lath) 형태의 잔류 오스테나이트는 강판의 가공성에 영향을 준다. 잔류 오스테나이이트는 베이나이트 상들 사이에 형성된 레쓰 형태의 잔류 오스테나이트와 베이나이트 상들이 없는 부분에 형성된 블록(block) 형태의 잔류 오스테나이트로 구분된다. 블록 형태의 잔류 오스테나이트는 열처리 과정에서 베이나이트로 추가 변태되면서, 레쓰 형태의 잔류 오스테나이트가 증가하게 되며, 결국 강판의 가공을 효과적으로 향상시킬 수 있다.
따라서, 강판의 연성 및 가공성을 향상시키기 위해, 잔류 오스테나이트 중에서 평균 결정립경이 1.2㎛ 이상인 잔류 오스테나이트 분율과 레쓰(lath) 형태의 잔류 오스테나이트 분율을 증가시키는 것이 바람직하다.
본 발명의 일 측면에 따른 가공성이 우수한 고강도 강판은, 강판의 잔류 오스테나이트 분율(V(γ), 부피%)에 대한 평균 결정립경이 1.2㎛ 이상인 잔류 오스테나이트 분율(V(1.2㎛, γ), 부피%)의 비를 0.1 이상으로 제한하고, 강판의 잔류 오스테나이트 분율(V(γ), 부피%)에 대한 레쓰(leth) 형태의 잔류 오스테나이트 분율(V(lath, γ), 부피%)의 비를 0.5 이상으로 제한할 수 있다. 강판의 잔류 오스테나이트 분율(V(γ), 부피%)에 대한 평균 결정립경이 1.2㎛ 이상인 잔류 오스테나이트 분율(V(1.2㎛, γ), 부피%)의 비가 0.1 미만이거나, 강판의 잔류 오스테나이트 분율(V(γ), 부피%)에 대한 레쓰(leth) 형태의 잔류 오스테나이트 분율(V(lath, γ), 부피%)의 비가 0.5 미만인 경우, 굽힘가공률(R/t)이 0.5~3.0을 만족하지 않게 되어, 목적하는 가공성을 확보하지 못하는 문제점이 존재한다.
잔류 오스테나이트가 포함된 강판은, 가공 중 오스테나이트에서 마르텐사이트로의 변태시 발생하는 변태유기소성에 의해 우수한 연성 및 굽힘가공성을 갖는다. 잔류 오스테나이트의 분율이 일정 수준 미만인 경우에는 인장강도와 연신율의 밸런스(TSХEl)가 22,000MPa% 미만이거나, 굽힘가공률(R/t)이 3.0을 초과할 수 있다. 한편, 잔류 오스테나이트의 분율이 일정 수준을 초과하게 되면 국부연신율(Local Elongation)이 저하될 수 있다. 따라서, 본 발명은 인장강도와 연신율의 밸런스(TSХEl) 뿐만 아니라, 굽힘가공률(R/t)이 우수한 강판을 얻기 위해 잔류 오스테나이의 분율을 15~33부피%의 범위로 제한할 수 있다.
한편, 템퍼링 되지 않은 마르텐사이트(프레시 마르텐사이트)와 템퍼드 마르텐사이트는 모두 강판의 강도를 향상시키는 미세조직이다. 그러나, 템퍼드 마르텐사이트와 비교할 때, 프레시 마르텐사이트는 강판의 연성 및 구멍확장성을 크게 저하시키는 특성이 있다. 이는 템퍼링 열처리에 의해 템퍼드 마르텐사이트의 미세조직이 연질화되기 때문이다. 따라서, 본 발명은 강도와 연성의 밸런스, 강도와 구멍확장성의 밸런스 및 굽힘가공성이 우수한 강판을 제공하기 위해, 템퍼드 마르텐사이트를 활용하는 것이 바람직하다. 템퍼드 마르텐사이트의 분율이 일정 수준 미만에서는 22,000MPa% 이상의 인장강도와 연신율의 밸런스(TSХEl) 또는 7*106(MPa2%1/2) 이상의 인장강도와 구멍확장률의 밸런스(TS2ХHER1/2)를 확보하기 어렵고, 템퍼드 마르텐사이트의 분율이 일정 수준 초과에서는, 연성 및 가공성이 저하되어, 인장강도와 연신율의 밸런스(TSХEl)가 22,000MPa% 미만이거나, 굽힘가공률(R/t)이 3.0을 초과하여 바람직하지 않다. 따라서, 본 발명은 인장강도와 연신율의 밸런스(TSХEl), 인장강도와 구멍확장률의 밸런스(TS2ХHER1/2) 및 굽힘가공률(R/t)이 우수한 강판을 얻기 위해 템퍼드 마르텐사이트의 분율을 43~55부피%의 범위로 제한할 수 있다.
인장강도와 연신율의 밸런스(TSХEl), 인장강도와 구멍확장률의 밸런스(TS2ХHER1/2) 및 굽힘가공률(R/t)을 향상시키기 위해서는, 미세조직으로 베이나이트가 적절하게 포함되는 것이 바람직하다. 베이나이트 분율이 일정 수준 이상인 경우에 한하여, 22,000MPa% 이상의 인장강도와 연신율의 밸런스(TSХEl), 7*106(MPa2%1/2) 이상의 인장강도와 구멍확장률의 밸런스(TS2ХHER1/2) 및 0.5~3.0의 굽힘가공률(R/t)을 확보할 수 있다. 반면, 베이나이트의 분율이 과도한 경우, 템퍼드 마르텐사이트 분율의 감소가 필수적으로 수반되므로, 결국 본 발명이 목적하는 인장강도와 연신율의 밸런스(TSХEl), 인장강도와 구멍확장률의 밸런스(TS2ХHER1/2) 및 굽힘가공률(R/t)을 확보할 수 없게 된다. 따라서, 본 발명은 베이나이트의 분율을 14~23부피%의 범위로 제한할 수 있다.
페라이트는 연성 향상에 기여하는 원소이므로, 페라이트의 분율이 일정 수준 이상인 경우에 한하여 본 발명이 목적하는 인장강도와 연신율의 밸런스(TSХEl)를 확보할 수 있다. 다만, 페라이트의 분율이 과도한 경우에는, 상간 경도차가 증가하여 구멍확장률(HER)이 저하될 수 있는바, 본 발명이 목적하는 인장강도와 구멍확장률의 밸런스(TS2ХHER1/2)를 확보하지 못하게 된다. 따라서, 본 발명은 페라이트의 분율을 8~16부피%의 범위로 제한할 수 있다.
이하, 본 발명의 강판을 제조하는 방법의 일 예에 대해 상세히 설명한다.
본 발명의 일 측면에 따른 가공성이 우수한 고강도 강판의 제조방법은, 소정의 성분을 가지는 냉간압연된 강판을 제공하는 단계; 상기 냉간압연된 강판을 5℃/s 이상의 평균 승온속도로 Ac1 이상 Ac3 미만의 온도범위까지 가열(1차 가열)하여, 50초 이상 유지(1차 유지)하는 단계; 평균 냉각속도 1℃/s 이상으로, 600~850℃의 온도범위(1차 냉각정지온도)까지 냉각(1차 냉각)하는 단계; 평균 냉각속도 2℃/s 이상으로, 300~500℃의 온도범위까지 냉각(2차 냉각)하고, 이 온도범위에서 5초 이상 유지(2차 유지)하는 단계; 평균 냉각속도 2℃/s 이상으로, 100~300℃의 온도범위(2차 냉각정지온도)까지 냉각(3차 냉각)하는 단계; 350~550℃의 온도범위까지 가열(2차 가열)하고, 이 온도범위에서 10초 이상 유지(3차 유지)하는 단계; 평균 냉각속도 1℃/s 이상으로, 250~450℃의 온도범위까지 냉각(4차 냉각)하고, 이 온도범위에서 10초 이상 유지(4차 유지)하는 단계; 및 상온까지 냉각(5차 냉각)하는 단계;를 포함할 수 있다.
또한, 본 발명의 냉간압연된 강판은, 강 슬라브를 1000~1350℃로 가열하는 단계; 800~1000℃의 온도범위에서 마무리 열간압연하는 단계; 300~600℃의 온도범위에서 상기 열간압연된 강판을 권취하는 단계; 상기 권취된 강판을 650~850℃의 온도범위에서 600~1700초 동안 열연소둔 열처리하는 단계; 및 상기 열연소둔 열처리된 강판을 30~90%의 압하율로 냉간압연하는 단계;를 통해 제공될 수 있다.
강 슬라브 준비 및 가열
소정의 성분을 가지는 강 슬라브를 준비한다. 본 발명의 강 슬라브는 전술한 강판의 합금조성과 대응하는 합금조성을 가지므로, 강 슬라브의 합금조성에 대한 설명은 전술한 강판의 합금조성에 대한 설명으로 대신한다.
준비된 강 슬라브를 일정 온도범위로 가열할 수 있으며, 이 때의 강 슬라브의 가열 온도는 1000~1350℃의 범위일 수 있다. 강 슬라브의 가열 온도가 1000℃ 미만일 경우, 목적하는 마무리 열간압연 온도범위 이하의 온도구간에서 열간압연될 소지가 있으며, 강 슬라브의 가열 온도가 1350℃를 초과할 경우, 강의 융점에 도달하여 녹아버릴 소지가 있기 때문이다.
열간압연 및 권취
가열된 강 슬라브는 열간압연되어 열연강판으로 제공될 수 있다. 열간압연 시 마무리 열간압연 온도는 800~1000℃의 범위가 바람직하다. 마무리 열간압연 온도가 800℃ 미만인 경우, 과도한 압연부하가 문제될 수 있으며, 마무리 열간압연 온도가 1000℃를 초과하는 경우, 열연강판의 결정립이 조대하게 형성되어 최종 강판의 물성저하를 야기할 수 있기 때문이다.
열간압연이 완료된 열연강판은 10℃/s 이상의 평균 냉각속도로 냉각될 수 있으며, 300~600℃의 온도에서 권취될 수 있다. 권취온도가 300℃ 미만인 경우, 권취가 용이하지 않고, 권취온도가 600℃를 초과하는 경우, 표면 스케일(scale)이 열연강판의 내부까지 형성되어 산세를 어렵게 할 소지가 있기 때문이다.
열연소둔 열처리
권취 후의 후속공정인 산세 및 냉간압연을 용이하게 실시하기 위해서 열연소둔 열처리 공정을 실시하는 것이 바람직하다. 열연소둔 열처리는 650~850℃의 온도구간에서 600~1700초 동안 행할 수 있다. 열연소둔 열처리 온도가 650℃ 미만이거나, 열연소둔 열처리 시간인 600초 미만인 경우, 열연소둔 열처리된 강판의 강도가 높아 후속되는 냉간압연이 용이하지 않을 수 있다. 반면, 열연소둔 열처리 온도가 850℃를 초과하거나, 열연소둔 열처리 시간인 1700초를 초과하는 경우, 강판 내부로 깊게 형성된 스케일(scale)에 기인하여 산세가 용이하지 않을 수 있다.
산세 및 냉간압연
열연소둔 열처리 후에 강판 표면에 생성된 스케일을 제거하기 위해서 산세를 실시하고, 냉간압연을 실시할 수 있다. 본 발명에서 산세 및 냉간압연 조건을 특별히 제한하는 것은 아니나, 냉간압연은 누적 압하율 30~90%로 실시하는 것이 바람직하다. 냉간압연의 누적 압하율이 90%를 초과하는 경우, 강판의 높은 강도로 인하여 냉간압연을 단시간에 수행하기 어려울 소지가 있다.
냉간압연된 강판은 소둔 열처리 공정을 거쳐 미도금의 냉연강판으로 제작되거나, 내식성을 부여하기 위해서 도금공정을 거쳐 도금강판으로 제작될 수 있다. 도금은 용융아연도금, 전기아연도금, 용융알루미늄도금 등의 도금방법을 적용할 수 있고, 그 방법과 종류를 특별히 제한하지 않는다.
소둔 열처리
본 발명은 강판의 강도 및 가공성 동시 확보를 위해서, 소둔 열처리 공정을 실시한다.
냉간압연된 강판을 Ac1 이상 Ac3 미만(이상역)의 온도범위로 가열(1차 가열)하고, 해당 온도범위에서 50초 이상 유지(1차 유지)한다. 1차 가열 또는 1차 유지 온도가 Ac3 이상(단상역)인 경우 목적하는 페라이트 조직을 구현할 수 없으므로, 목적하는 수준의 [Si+Al]F / [Si+Al]γ 및 인장강도와 구멍확장률의 밸런스(TS2ХHER1/2)를 구현할 수 없게 된다. 또한, 1차 가열 또는 1차 유지 온도가 Ac1 미만의 온도범위인 경우, 충분한 가열이 이루어지지 않아 후속하는 열처리에 의하더라도 본 발명이 목적하는 미세조직을 구현하지 못할 우려가 있다. 1차 가열의 평균 승온속도는 5℃/s 이상일 수 있다.
1차 유지 시간이 50초 미만인 경우에는 조직을 충분히 균일화시키지 못하여 강판의 물성이 저하될 수 있다. 1차 유지 시간의 상한은 특별히 한정하지 않으나, 결정립 조대화로 인한 인성의 감소를 방지하기 위해 1차 가열 시간은 1200초 이하로 제한하는 것이 바람직하다.
1차 유지 후, 1℃/s 이상의 평균 냉각속도로 600~850℃의 온도범위(1차 냉각정지온도)까지 냉각(1차 냉각)하는 것이 바람직하다. 1차 냉각의 평균 냉각속도의 상한은 특별히 규정할 필요는 없으나, 100℃/s 이하로 제한하는 것이 바람직하다. 1차 냉각정지온도가 600℃ 미만인 경우에는 페라이트가 과하게 형성되고 잔류 오스테나이트가 부족하여, [Si+Al]F / [Si+Al]γ 및 인장강도와 연신율의 밸런스(TSХEl)가 저하될 수 있다. 또한, 1차 냉각정지온도의 상한은 상기 1차 유지온도 보다 30℃ 이하인 것이 바람직하므로, 1차 냉각정지온도의 상한은 850℃로 제한할 수 있다.
1차 냉각 후, 2℃/s 이상의 평균 냉각속도로, 300~500℃의 온도범위까지 냉각(2차 냉각)하고, 해당 온도범위에서 5초 이상 유지(2차 유지)하는 것이 바람직하다. 2차 냉각의 평균 냉각속도가 2℃/s 미만일 경우에는 페라이트가 과도하게 형성되고, 잔류 오스테나이트가 부족하여 [Si+Al]F / [Si+Al]γ 및 인장강도와 연신율의 밸런스(TSХEl)가 저하될 수 있다. 2차 냉각의 평균 냉각속도 상한은 특별히 규정할 필요는 없으나, 100℃/s 이하로 제한하는 것이 바람직하다. 한편, 2차 유지온도가 500℃를 초과하는 경우, 잔류 오스테나이트가 부족하여 [Si+Al]F / [Si+Al]γ, V(lath, γ) / V(γ), 인장강도와 연신율의 밸런스(TSХEl) 및 굽힘가공률(R/t)이 저하될 수 있다. 또한, 2차 유지온도가 300℃ 미만인 경우, 낮은 열처리 온도로 V(1.2㎛, γ) / V(γ) 및 굽힘가공률(R/t)이 저하될 수 있다. 2차 유지시간이 5초 미만인 경우, 열처리 시간이 부족하여 V(1.2㎛, γ) / V(γ), V(lath, γ) / V(γ) 및 굽힘가공률(R/t)이 저하될 수 있다. 반면, 2차 유지시간의 상한은 특별히 규정할 필요는 없으나, 600초 이하로 하는 것이 바람직하다.
한편, 1차 냉각의 평균 냉각속도(Vc1)는 2차 냉각의 평균 냉각속도(Vc2)보다 작은 것이 바람직하다(Vc1 < Vc2).
2차 유지 후, 2℃/s 이상의 평균 냉각속도로 100~300℃의 온도범위(2차 냉각정지온도)까지 냉각(3차 냉각)하는 것이 바람직하다. 3차 냉각의 평균 냉각속도가 2℃/s 미만일 경우, 느린 냉각으로 인해 V(1.2㎛, γ) / V(γ) 및 굽힘가공률(R/t)이 저하될 수 있다. 3차 냉각의 평균 냉각속도 상한은 특별히 규정할 필요는 없으나, 100℃/s 이하로 제한하는 것이 바람직하다. 한편, 2차 냉각정지온도가 300℃를 초과하는 경우, 베이나이트가 과도하게 형성되고 템퍼드 마르텐사이트가 부족하여 인장강도와 연신율의 밸런스(TSХEl)가 저하될 수 있다. 반면, 2차 냉각정지온도가 100℃ 미만인 경우에는, 템퍼드 마르텐사이트가 과도하게 형성되고 잔류 오스테나이트가 부족하여 [Si+Al]F / [Si+Al]γ, V(1.2㎛, γ) / V(γ), 인장강도와 연신율의 밸런스(TSХEl) 및 굽힘가공률(R/t)이 저하될 수 있다.
3차 냉각 후, 350~550℃의 온도범위까지 가열(2차 가열)하고, 해당 온도범위에서 10초 이상 유지(3차 유지)하는 것이 바람직하다. 3차 유지온도가 550℃를 초과하는 경우, 잔류 오스테나이트가 부족하여 [Si+Al]F / [Si+Al]γ, V(lath, γ) / V(γ), 인장강도와 연신율의 밸런스(TSХEl) 및 굽힘가공률(R/t)이 저하될 수 있다. 반면, 3차 유지온도가 350℃ 미만이 경우, 유지 온도가 낮아 V(1.2㎛, γ) / V(γ) 및 굽힘가공률(R/t)이 저하될 수 있다. 3차 유지시간이 10초 미만인 경우, 유지 시간이 부족하여 V(1.2㎛, γ) / V(γ), V(lath, γ) / V(γ) 및 굽힘가공률(R/t)이 저하될 수 있다. 상기 3차 유지시간의 상한은 특별히 한정하지는 않으나, 바람직한 3차 유지시간은 1800초 이하일 수 있다.
3차 유지 후, 1℃/s 이상의 평균 냉각속도로 250~450℃의 온도범위까지 냉각(4차 냉각)하고, 해당 온도범위에서 10초 이상 유지(4차 유지)하는 것이 바람직하다. 4차 냉각의 평균 냉각속도가 1℃/s 미만일 경우, 느린 냉각으로 인해 V(1.2㎛, γ) / V(γ) 및 굽힘가공률(R/t)이 저하될 수 있다. 4차 냉각의 평균 냉각속도 상한은 특별히 규정할 필요는 없으나, 100℃/s 이하로 제한하는 것이 바람직하다. 4차 유지온도가 450℃를 초과하는 경우, 장시간의 열처리로 인하여 V(1.2㎛, γ) / V(γ), V(lath, γ) / V(γ) 및 굽힘가공률(R/t)이 저하될 수 있다. 반면, 4차 유지온도가 250℃/s 미만이 경우, 유지 온도가 낮아 V(1.2㎛, γ) / V(γ), V(lath, γ) / V(γ) 및 굽힘가공률(R/t)이 저하될 수 있다. 4차 유지시간이 10초 미만인 경우, 유지 시간이 부족하여 V(1.2㎛, γ) / V(γ), V(lath, γ) / V(γ) 및 굽힘가공률(R/t)이 저하될 수 있다. 상기 4차 유지시간의 상한은 특별히 한정하지는 않으나, 바람직한 4차 유지시간은 176,000초 이하일 수 있다.
상기 4차 유지 후, 상온까지 1℃/s 이상의 평균 냉각속도로 냉각(5차 냉각)하는 것이 바람직하다.
전술한 제조방법에 의해 제조된 가공성이 우수한 고강도 강판은, 미세조직으로 템퍼드 마르텐사이트, 베이나이트, 잔류 오스테나이트 및 페라이트를 포함할 수 있으며, 바람직한 일 예로서, 부피분율로, 43~55%의 템퍼드 마르텐사이트, 14~23%의 베이나이트, 15~33%의 잔류 오스테나이트, 8~16%의 페라이트 및 불가피한 조직을 포함할 수 있다.
또한, 전술한 제조방법에 의해 제조된 가공성이 우수한 고강도 강판은, 아래의 [관계식 1]과 같이, 잔류 오스테나이트에 포함된 실리콘(Si) 및 알루미늄(Al)의 평균 합계 함량([Si+Al]γ, 중량%)에 대한 페라이트에 포함된 실리콘(Si) 및 알루미늄(Al)의 평균 합계 함량([Si+Al]F, 중량%)의 비가 1.1~3.0의 범위를 만족할 수 있으며, 아래의 [관계식 2]와 같이, 강판의 잔류 오스테나이트 분율(V(γ), 부피%)에 대한 평균 결정립경이 1.2㎛ 이상인 잔류 오스테나이트 분율(V(1.2㎛, γ), 부피%)의 비가 0.1 이상일 수 있다.
[관계식 1]
1.1 ≤ [Si+Al]F / [Si+Al]γ ≤ 3.0
[관계식 2]
V(1.2㎛, γ) / V(γ) ≥ 0.1
또한, 전술한 제조방법에 의해 제조된 가공성이 우수한 고강도 강판은, 아래의 [관계식 3]과 같이, 강판의 잔류 오스테나이트 분율(V(γ), 부피%)에 대한 레쓰(leth) 형태의 잔류 오스테나이트 분율(V(lath, γ), 부피%)의 비가 0.5 이상일 수 있다.
[관계식 3]
V(lath, γ) / V(γ) ≥ 0.5
전술한 제조방법에 의해 제조된 가공성이 우수한 고강도 강판은, 아래의 [관계식 4]로 표현되는 인장강도와 연신율의 밸런스(BT·E)가 22,000(MPa%) 이상이고, 아래의 [관계식 5]로 표현되는 인장강도와 구멍확장률의 밸런스 (BT·H)가 7*106(MPa2%1/2) 이상이며, 아래의 [관계식 6]으로 표현되는 굽힘가공률(BR)이 0.5~3.0의 범위를 만족할 수 있다.
[관계식 4]
BT·E = [인장강도(TS, MPa)] * [연신율(EL, %)]
[관계식 5]
BT·H = [인장강도(TS, MPa)]2 * [구멍확장률(HER, %)]1/2
[관계식 6]
BR = R/t
상기 관계식 6에서, R은 90° 굽힘 시험 후 크랙이 발생하지 않는 최소 굽힘 반경(㎜)을 의미하고, t는 강판의 두께(㎜)를 의미한다.
이하, 구체적인 실시예를 통해 본 발명의 일 측면에 따른 가공성이 우수한 고강도 강판 및 그 제조방법에 대해 보다 상세히 설명한다. 하기 실시예는 본 발명의 이해를 위한 것일 뿐, 본 발명의 권리범위를 특정하기 위한 것이 아님을 유의할 필요가 있다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의해 결정된다.
(실시예)
하기 표 1에 기재된 합금 조성(나머지는 Fe와 불가피한 불순물임)을 갖는 두께 100㎜의 강 슬라브를 제조하여, 1200℃에서 가열한 다음, 900℃에서 마무리 열간 압연을 실시하였다. 이후 30℃/s의 평균 냉각속도로 냉각하고, 표 2 및 표 3의 권취온도에서 권취하여, 두께 3㎜의 열연강판을 제조하였다. 상기 열연강판을 표 2 및 3의 조건으로 열연소둔 열처리하였다. 이후, 산세하여 표면 스케일을 제거한 후, 1.5㎜두께까지 냉간압연을 실시하였다.
이후, 표 2 내지 7의 소둔 열처리 조건으로 열처리를 실시하여, 강판을 제조하였다.
이렇게 제조된 강판의 미세조직을 관찰하여 그 결과를 표 8 및 표 9에 나타내었다. 미세조직 중 페라이트(F), 베이나이트(B), 템퍼드 마르텐사이트(TM) 및 펄라이트(P)는 연마된 시편 단면을 나이탈 에칭한 후 SEM을 통하여 관찰하였다. 이중에서 구별이 어려운 베이나이트와 템퍼드 마르텐사이트는 딜라테이션 평가 후에 팽창 곡선을 이용하여 분율을 계산하였다. 한편, 프레시 마르텐사이트(FM)와 잔류 오스테나이트(잔류 γ) 역시 구별이 쉽지 않기 때문에, 상기 SEM로 관찰된 마르텐사이트와 잔류 오스테나이트 분율에서 X선 회절법으로 계산된 잔류 오스테나이트의 분율을 뺀 값을 프레시 마르텐사이트 분율로 결정하였다.
한편, 강판의 [Si+Al]F / [Si+Al]γ, V(1.2㎛, γ) / V(γ), V(lath, γ) / V(γ), 인장강도와 연신율의 밸런스 (TSХEl), 인장강도와 구멍확장률의 밸런스(TS2ХHER1/2), 굽힘가공률(R/t)을 관찰하여, 그 결과를 표 10 및 표 11에 나타내었다.
잔류 오스테나이트에 포함된 실리콘(Si) 및 알루미늄(Al)의 평균 합계 함량([Si+Al]γ, 중량%) 및 페라이트에 포함된 실리콘(Si) 및 알루미늄(Al)의 평균 합계 함량([Si+Al]F, 중량%)은 EPMA(Electron Probe MicroAnalyser)를 이용하여 측정하였다. 또한, 평균 결정립경이 1.2㎛ 이상인 잔류 오스테나이트 분율(V(1.2㎛, γ)) 및 레쓰(lath) 형상의 잔류 오스테나이트 분율(V(lath, γ))은 EPMA의 상지도(Phase Map)를 이용하여 잔류 오스테나이트 내에서 측정된 면적으로 결정하였다.
인장강도(TS) 및 연신율(El)은 인장시험을 통해 평가되었으며, 압연판재의 압연방향에 대해 90° 방향을 기준으로 JIS5호 규격에 의거하여 채취된 시험편으로 평가하여 인장강도(TS) 및 연신율(El)을 측정하였다. 굽힘가공률(R/t)은 V-벤딩시험으로 평가되었으며, 압연판재의 압연방향에 대하여 90°방향을 기준으로 시편을 채취하여 90° 굽힘 시험 후 크랙이 발생하지 않는 최소 굽힘반경 R을 판재의 두께 t로 나눈 값으로 결정하여 산출하였다. 구멍확장률(HER)은 구멍확장시험을 통해 평가되었으며, 10mmØ의 펀칭구멍(다이 내경 10.3mm, 클리어런스 12.5%)을 형성한 후 꼭지각 60°의 원추형 펀치를 펀칭구멍의 버(burr)가 외측이 되는 방향으로 펀칭구멍에 삽입하고, 20mm/min의 이동 속도로 펀칭구멍 주변부를 압박 확장한 후 아래의 [관계식 7]을 이용하여 산출하였다.
[관계식 7]
구멍확장률(HER, %) = {(D - D0) / D0} x 100
상기 관계식 5에서, D는 균열이 두께방향을 따라 강판을 관통하였을 때의 구멍 직경(mm)을 의미하며, D0는 초기 구멍 직경(mm)을 의미한다.
강종 화학성분 (중량%)
C Si Mn P S Al N Cr Mo 기타
A 0.37 2.12 2.33 0.007 0.0011 0.53 0.0028 0.58
B 0.34 2.06 2.25 0.009 0.0009 0.55 0.0031 0.25 0.23
C 0.42 2.21 2.18 0.011 0.0008 0.47 0.0026 0.49
D 0.38 2.28 3.53 0.012 0.0009 0.44 0.0029 0.54
E 0.39 1.75 2.41 0.010 0.0013 0.79 0.0030
F 0.58 1.58 2.50 0.009 0.0011 0.62 0.0035
G 0.72 1.69 1.78 0.007 0.0011 0.98 0.0028
H 0.35 1.82 2.16 0.008 0.0008 1.31 0.0033
I 0.36 1.47 1.84 0.008 0.00007 2.45 0.0031
J 0.30 0.06 2.93 0.009 0.0010 4.23 0.0034 Ti: 0.04
K 0.43 2.12 2.64 0.010 0.0012 0.46 0.0029 Nb: 0.04
L 0.45 2.22 2.31 0.011 0.0008 0.39 0.0026 V: 0.05
M 0.37 1.59 1.89 0.011 0.0010 0.51 0.0033 Ni: 0.36
N 0.34 1.48 2.52 0.009 0.0012 0.60 0.0030 Cu: 0.32
O 0.36 1.65 2.04 0.012 0.0009 0.54 0.0032 B: 0.0025
P 0.39 1.49 2.47 0.006 0.0007 0.57 0.0027 Ca: 0.005
Q 0.37 1.90 2.58 0.007 0.0012 0.44 0.0029 REM: 0.001
R 0.40 1.38 2.49 0.009 0.0012 0.52 0.0033 Mg: 0.002
S 0.43 1.64 2.27 0.010 0.0010 0.47 0.0026 W: 0.15
T 0.39 1.57 2.71 0.009 0.0008 0.61 0.0033 Zr: 0.16
U 0.37 1.92 2.24 0.007 0.0007 0.54 0.0031 Sb: 0.03
V 0.33 1.88 2.51 0.012 0.0009 0.46 0.0028 Sn: 0.03
W 0.32 1.73 2.73 0.009 0.0011 0.52 0.0026 Y: 0.02
X 0.28 3.24 1.90 0.009 0.0010 0.63 0.0035 Hf: 0.02
Y 0.35 2.51 2.37 0.008 0.0008 0.55 0.0032 Co: 0.34
XA 0.22 1.68 2.58 0.010 0.0009 0.57 0.0029
XB 0.78 1.54 2.69 0.010 0.0007 0.46 0.0031
XC 0.36 0.02 2.36 0.007 0.0009 0.02 0.0028
XD 0.39 4.13 2.60 0.009 0.0011 0.03 0.0031
XE 0.37 0.02 2.45 0.010 0.0010 5.20 0.0029
XF 0.42 1.64 0.78 0.012 0.0008 0.52 0.0030
XG 0.44 1.59 5.23 0.008 0.0009 0.55 0.0027
XH 0.39 2.06 2.52 0.006 0.0009 0.49 0.0033 3.23
XI 0.38 2.18 2.64 0.009 0.0012 0.46 0.0029 3.28
시편
번호
강종 열연강판
권취온도
(℃)
열연강판
소둔온도
(℃)
열연강판
소둔시간
(s)
1차평균
가열속도
(℃/s)
1차유지
온도구간
(℃)
1차유지
시간
(s)
1 A 550 800 1300 10 이상역 120
2 A 550 900 1400 산세불량
3 A 550 600 1000 냉간압연시 파단발생
4 A 450 700 1800 산세불량
5 A 450 700 500 냉간압연시 파단발생
6 A 500 750 1200 10 단상역 120
7 B 450 800 1000 10 이상역 120
8 B 500 800 1100 10 이상역 120
9 B 500 750 1300 10 이상역 120
10 C 500 700 1000 10 이상역 120
11 C 550 750 900 10 이상역 120
12 C 500 700 1200 10 이상역 120
13 C 500 700 1400 10 이상역 120
14 C 450 750 1200 10 이상역 120
15 C 450 750 1100 10 이상역 120
16 C 500 700 900 10 이상역 120
17 C 550 800 900 10 이상역 120
18 C 400 750 1400 10 이상역 120
19 C 450 700 1000 10 이상역 120
20 C 500 800 1200 10 이상역 120
21 C 550 700 1100 10 이상역 120
22 C 500 700 800 10 이상역 120
23 D 550 750 1300 10 이상역 120
24 E 550 850 1300 10 이상역 120
25 F 450 650 1200 10 이상역 120
26 G 400 700 1600 10 이상역 120
27 H 450 750 700 10 이상역 120
28 I 550 700 1400 10 이상역 120
29 J 550 800 1000 10 이상역 120
30 K 500 700 1100 10 이상역 120
시편
번호
강종 열연강판
권취온도
(℃)
열연강판
소둔온도
(℃)
열연강판
소둔시간
(s)
1차평균
가열속도
(℃/s)
1차유지
온도구간
(℃)
1차유지
시간
(s)
31 L 500 750 1400 10 이상역 120
32 M 500 700 900 10 이상역 120
33 N 450 800 1200 10 이상역 120
34 O 450 750 1100 10 이상역 120
35 P 450 750 1500 10 이상역 120
36 Q 550 700 1000 10 이상역 120
37 R 500 700 1300 10 이상역 120
38 S 500 700 1200 10 이상역 120
39 T 500 800 900 10 이상역 120
40 U 450 700 1000 10 이상역 120
41 V 450 750 1400 10 이상역 120
42 W 550 800 1100 10 이상역 120
43 X 500 750 800 10 이상역 120
44 Y 550 750 1300 10 이상역 120
45 XA 450 700 1500 10 이상역 120
46 XB 500 700 1200 10 이상역 120
47 XC 550 750 1300 10 이상역 120
48 XD 500 700 1000 10 이상역 120
49 XE 550 750 1200 10 이상역 120
50 XF 500 700 900 10 이상역 120
51 XG 550 700 1100 10 이상역 120
52 XH 450 750 1300 10 이상역 120
53 XI 550 700 1200 10 이상역 120
시편
번호
강종 1차평균
냉각속도
(℃/s)
1차냉각
정지온도
(℃)
2차평균
냉각속도
(℃/s)
2차유지
온도
(℃)
2차유지
시간
(s)
3차평균
냉각속도
(℃/s)
2차냉각
정지온도
(℃)
1 A 10 700 20 400 50 20 200
2 A 산세불량
3 A 냉간압연시 파단발생
4 A 산세불량
5 A 냉간압연시 파단발생
6 A 10 700 20 400 50 20 200
7 B 10 820 20 400 50 20 200
8 B 10 580 20 400 50 20 180
9 B 10 700 0.5 400 50 20 200
10 C 10 700 20 400 50 20 200
11 C 10 700 20 530 50 20 220
12 C 10 700 20 270 50 20 180
13 C 10 700 20 400 2 20 200
14 C 10 700 20 400 50 0.5 200
15 C 10 700 20 400 50 20 330
16 C 10 700 20 400 50 20 70
17 C 10 700 20 400 50 20 200
18 C 10 700 20 400 50 20 200
19 C 10 700 20 400 50 20 220
20 C 10 700 20 400 50 20 200
21 C 10 700 20 400 50 20 200
22 C 10 700 20 400 50 20 180
23 D 10 700 20 400 50 20 200
24 E 10 700 20 400 50 20 200
25 F 10 700 20 450 50 20 200
26 G 10 700 20 350 50 20 200
27 H 10 700 20 400 50 20 220
28 I 10 700 20 400 50 20 200
29 J 10 700 20 400 50 20 280
30 K 10 700 20 400 50 20 120
시편
번호
강종 1차평균
냉각속도
(℃/s)
1차냉각
정지온도
(℃)
2차평균
냉각속도
(℃/s)
2차유지
온도
(℃)
2차유지
시간
(s)
3차평균
냉각속도
(℃/s)
2차냉각
정지온도
(℃)
31 L 10 700 20 400 50 20 200
32 M 10 700 20 400 50 20 200
33 N 10 700 20 400 50 20 220
34 O 10 700 20 400 50 20 200
35 P 10 700 20 400 50 20 200
36 Q 10 700 20 400 50 20 180
37 R 10 700 20 400 50 20 200
38 S 10 700 20 400 50 20 200
39 T 10 700 20 400 50 20 200
40 U 10 700 20 400 50 20 220
41 V 10 700 20 400 50 20 200
42 W 10 700 20 400 50 20 200
43 X 10 700 20 400 50 20 200
44 Y 10 700 20 400 50 20 180
45 XA 10 700 20 400 50 20 200
46 XB 10 700 20 400 50 20 200
47 XC 10 700 20 400 50 20 200
48 XD 10 700 20 400 50 20 200
49 XE 10 700 20 400 50 20 200
50 XF 10 700 20 400 50 20 180
51 XG 10 700 20 400 50 20 200
52 XH 10 700 20 400 50 20 200
53 XI 10 700 20 400 50 20 200
시편
번호
강종 2차평균
가열속도
(℃/s)
3차유지
온도
(℃)
3차유지
시간
(s)
4차평균
냉각속도
(℃/s)
4차유지
온도
(℃)
4차유지
시간
(s)
5차평균
냉각속도
(℃/s)
1 A 15 425 160 10 375 160 10
2 A 산세불량
3 A 냉간압연시 파단발생
4 A 산세불량
5 A 냉간압연시 파단발생
6 A 15 455 160 10 395 160 10
7 B 15 455 160 10 395 160 10
8 B 15 455 160 10 395 160 10
9 B 15 455 160 10 395 160 10
10 C 15 455 160 10 395 160 10
11 C 15 455 160 10 395 160 10
12 C 15 455 160 10 395 160 10
13 C 15 455 160 10 395 160 10
14 C 15 455 160 10 395 160 10
15 C 15 455 160 10 395 160 10
16 C 15 455 160 10 395 160 10
17 C 15 580 160 10 420 160 10
18 C 15 320 160 10 270 160 10
19 C 15 455 3 10 395 160 10
20 C 15 485 160 10 465 160 10
21 C 15 455 160 10 220 160 10
22 C 15 455 160 10 395 3 10
23 D 15 455 160 10 395 160 10
24 E 15 455 160 10 395 160 10
25 F 15 455 160 10 395 160 10
26 G 15 455 160 10 395 160 10
27 H 15 455 160 10 395 160 10
28 I 15 455 160 10 395 160 10
29 J 15 455 160 10 395 160 10
30 K 15 455 160 10 395 160 10
시편
번호
강종 2차평균
가열속도
(℃/s)
3차유지
온도
(℃)
3차유지
시간
(s)
4차평균
냉각속도
(℃/s)
4차유지
온도
(℃)
4차유지
시간
(s)
5차평균
냉각속도
(℃/s)
31 L 15 455 160 10 395 160 10
32 M 15 455 160 10 395 160 10
33 N 15 455 160 10 395 160 10
34 O 15 455 160 10 395 160 10
35 P 15 455 160 10 395 160 10
36 Q 15 455 160 10 395 160 10
37 R 15 455 160 10 395 160 10
38 S 15 455 160 10 395 160 10
39 T 15 455 160 10 395 160 10
40 U 15 455 160 10 395 160 10
41 V 15 455 160 10 395 160 10
42 W 15 455 160 10 395 160 10
43 X 15 455 160 10 395 160 10
44 Y 15 455 160 10 395 160 10
45 XA 15 455 160 10 395 160 10
46 XB 15 455 160 10 395 160 10
47 XC 15 455 160 10 395 160 10
48 XD 15 455 160 10 395 160 10
49 XE 15 455 160 10 395 160 10
50 XF 15 455 160 10 395 160 10
51 XG 15 455 160 10 395 160 10
52 XH 15 455 160 10 395 160 10
53 XI 15 455 160 10 395 160 10
시편
번호
강종 페라
이트
(vol.%)
베이
나이트
(vol.%)
템퍼드
마르텐
사이트
(vol.%)
프레시
마르텐
사이트
(vol.%)
잔류
오스테
나이트
(vol.%)
펄라
이트
(vol.%)
1 A 10 16 55 0 19 0
2 A 산세불량
3 A 냉간압연시 파단발생
4 A 산세불량
5 A 냉간압연시 파단발생
6 A 2 18 60 0 20 0
7 B 11 17 56 0 16 0
8 B 22 19 54 0 5 0
9 B 24 15 57 0 4 0
10 C 13 17 51 1 18 0
11 C 11 21 62 0 6 0
12 C 9 22 54 0 15 0
13 C 12 18 53 0 17 0
14 C 10 21 54 1 14 0
15 C 9 51 21 0 19 0
16 C 7 15 73 0 5 0
17 C 10 16 67 0 7 0
18 C 8 22 55 0 15 0
19 C 13 19 50 0 18 0
20 C 14 15 54 0 17 0
21 C 11 16 52 0 21 0
22 C 12 19 53 0 16 0
23 D 11 20 50 1 18 0
24 E 14 19 52 0 15 0
25 F 10 21 51 0 18 0
26 G 8 23 52 0 17 0
27 H 13 17 53 1 16 0
28 I 15 18 47 0 20 0
29 J 11 15 51 1 22 0
30 K 9 17 55 0 19 0
시편
번호
강종 페라
이트
(vol.%)
베이
나이트
(vol.%)
템퍼드
마르텐
사이트
(vol.%)
프레시
마르텐
사이트
(vol.%)
잔류
오스테
나이트
(vol.%)
펄라
이트
(vol.%)
31 L 13 21 50 0 16 0
32 M 11 16 53 0 20 0
33 N 16 19 48 1 16 0
34 O 12 17 52 0 19 0
35 P 10 18 55 0 17 0
36 Q 9 21 54 0 16 0
37 R 11 19 51 0 19 0
38 S 13 17 48 0 22 0
39 T 10 14 43 0 33 0
40 U 9 22 50 0 19 0
41 V 8 18 53 0 21 0
42 W 12 19 51 0 18 0
43 X 13 20 48 2 17 0
44 Y 12 17 51 0 20 0
45 XA 10 15 57 0 18 0
46 XB 12 16 16 13 43 0
47 XC 11 17 67 0 5 0
48 XD 9 14 43 20 14 0
49 XE 8 17 44 16 15 0
50 XF 10 15 63 0 4 8
51 XG 9 14 47 17 13 0
52 XH 12 16 45 13 14 0
53 XI 6 19 52 11 12 0
시편
번호
강종 [Si+Al]F/
[Si+Al]γ
V(1.2㎛,γ)
/V(γ)
V(lath,γ)
/V(γ)
BT·E
(MPa%)
BT·H
(MPa2%1 /2)
R/t
1 A 1.74 0.24 0.65 30,537 10,562,297 1.86
2 A 산세불량
3 A 냉간압연시 파단발생
4 A 산세불량
5 A 냉간압연시 파단발생
6 A 0.18 0.22 0.62 25,861 6,260,175 2.35
7 B 1.66 0.19 0.59 28,592 8,660,537 2.17
8 B 3.25 0.14 0.57 20,620 8,930,248 2.46
9 B 3.46 0.21 0.55 21,209 9,285,340 2.60
10 C 1.82 0.23 0.60 30,457 10,726,548 1.92
11 C 3.67 0.18 0.38 19,508 8,286,154 3.59
12 C 2.24 0.06 0.54 25,267 7,645,329 4.26
13 C 2.41 0.08 0.45 24,249 7,478,651 3.66
14 C 2.35 0.05 0.66 23,928 7,641,287 4.14
15 C 1.86 0.21 0.50 19,034 8,701,640 2.32
16 C 4.17 0.07 0.57 21,693 9,076,218 3.68
17 C 3.62 0.19 0.43 20,507 7,370,524 4.30
18 C 1.80 0.06 0.58 26,580 9,154,382 3.36
19 C 1.93 0.07 0.36 25,455 8,804,327 3.79
20 C 2.04 0.08 0.41 24,736 8,750,219 5.45
21 C 2.23 0.07 0.39 26,480 7,593,541 4.58
22 C 1.71 0.05 0.42 27,927 8,406,358 3.69
23 D 1.68 0.28 0.58 30,352 10,316,285 1.74
24 E 1.96 0.25 0.56 29,484 11,746,804 2.08
25 F 1.88 0.19 0.65 31,278 12,635,255 2.23
26 G 1.49 0.23 0.62 30,804 11,008,517 2.16
27 H 1.63 0.18 0.67 32,562 10,865,121 1.95
28 I 1.81 0.22 0.72 31,248 10,232,584 2.34
29 J 1.70 0.25 0.58 29,017 9,510,695 1.76
30 K 1.67 0.17 0.55 31,630 11,430,824 1.84
시편
번호
강종 [Si+Al]F/
[Si+Al]γ
V(1.2㎛,γ)
/V(γ)
V(lath,γ)
/V(γ)
BT·E
(MPa%)
BT·H
(MPa2%1 /2)
R/t
31 L 2.65 0.21 0.63 31,004 11,692,450 1.92
32 M 1.73 0.18 0.59 30,817 11,800,157 1.65
33 N 2.51 0.16 0.55 29,349 12,452,853 1.83
34 O 1.82 0.25 0.57 32,427 10,872,651 1.77
35 P 1.57 0.22 0.60 30,268 9,345,704 2.26
36 Q 2.24 0.17 0.64 31,511 10,992,358 1.84
37 R 1.63 0.20 0.63 29,638 11,531,647 2.25
38 S 2.37 0.19 0.57 32,371 12,067,251 2.40
39 T 1.62 0.15 0.62 30,104 9,485,342 1.87
40 U 2.56 0.21 0.55 28,760 11,355,287 1.93
41 V 2.15 0.23 0.59 30,745 10,481,329 1.75
42 W 1.74 0.17 0.56 31,466 12,246,307 2.16
43 X 1.68 0.22 0.58 32,135 11,843,082 1.83
44 Y 2.36 0.16 0.62 30,830 9,531,964 2.04
45 XA 2.04 0.19 0.61 20,227 5,630,548 2.58
46 XB 2.17 0.24 0.56 19,836 6,004,634 6.34
47 XC 3.94 0.16 0.64 17,805 8,650,792 4.76
48 XD 2.50 0.19 0.62 25,663 7,873,484 4.35
49 XE 2.11 0.25 0.65 26,487 7,504,252 6.24
50 XF 3.47 0.21 0.58 15,263 8,085,137 2.18
51 XG 2.23 0.24 0.52 26,380 7,534,208 4.47
52 XH 1.64 0.15 0.56 25,427 9,134,264 6.22
53 XI 1.82 0.18 0.63 27,162 8,221,450 4.08
상기 표 1 내지 11에 나타난 바와 같이, 본 발명에서 제시하는 조건을 충족하는 시편들의 경우, [Si+Al]F / [Si+Al]γ의 값이 1.1~3.0의 범위를 만족하며, V(1.2㎛, γ) / V(γ)이 0.1 이상이고, V(lath, γ) / V(γ)가 0.5 이상이며, 인장강도 및 연신율의 밸런스(TSХEl)가 22,000MPa% 이상이고, 인장강도와 구멍확장률의 밸런스(TS2ХHER1/2)가 7*106(MPa2%1 /2) 이상이고, 굽힘가공률(R/t)이 0.5~3.0 범위를 충족하여, 우수한 강도 및 가공성을 동시에 구비하는 것을 알 수 있다.
시편 2 내지 5는 본 발명의 합금 조성범위는 중복되나, 열연소둔 온도 및 시간이 본 발명의 범위를 벗어나므로, 산세 불량이 발생하거나 냉간압연 시 파단이 발생한 것을 확인할 수 있다.
시편 6은 냉간압연 후 소둔열처리 과정에서 1차 가열 또는 유지온도가 본 발명이 제한하는 범위를 초과하므로, 페라이트의 형성량이 부족하였다. 그 결과, 시편 6은 [Si+Al]F / [Si+Al]γ의 값이 1.1 미만이며, 인장강도와 구멍확장률의 밸런스(TS2ХHER1/2)가 7*106(MPa2%1 /2) 미만인 것을 확인할 수 있다.
시편 8은 1차 냉각정지온도가 낮아 페라이트가 과도하게 형성되었으며, 잔류 오스테나이트가 적게 형성되었다. 그 결과, 시편 8은 [Si+Al]F / [Si+Al]γ의 값이 3.0을 초과하며, 인장강도와 연신율의 밸런스(TSХEl)가 22,000MPa% 미만인 것을 확인할 수 있다.
시편 9는 2차 냉각의 평균 냉각속도가 낮아 페라이트가 과도하게 형성되었으며, 잔류 오스테나이트가 적게 형성되었다. 그 결과, 시편 9는 [Si+Al]F / [Si+Al]γ의 값이 3.0을 초과하며, 인장강도와 연신율의 밸런스(TSХEl)가 22,000MPa% 미만인 것을 확인할 수 있다.
시편 11은 2차 유지온도가 높아 잔류 오스테나이트가 적게 형성되었다. 그 결과, 시편 12은 [Si+Al]F / [Si+Al]γ의 값이 3.0을 초과하며, V(lath, γ) / V(γ)가 0.5 미만이며, 인장강도와 연신율의 밸런스(TSХEl)가 22,000MPa% 미만이고, 굽힘가공률(R/t)이 3.0을 초과하는 것을 확인할 수 있다.
시편 12는 2차 유지온도가 낮아 V(1.2㎛, γ) / V(γ)가 0.1 미만이고, 굽힘가공률(R/t)이 3.0을 초과하였으며, 시편 13은 2차 유지시간이 짧아 V(1.2㎛, γ) / V(γ)가 0.1 미만이고, V(lath, γ) / V(γ)가 0.5 미만이며, 굽힘가공률(R/t)이 3.0을 초과하는 것을 확인할 수 있다.
시편 14는 3차 냉각의 평균 냉각속도가 낮아 V(1.2㎛, γ) / V(γ)가 0.1 미만이고, 굽힘가공률(R/t)이 3.0을 초과하는 것을 확인할 수 있다.
시편 15는 2차 냉각정지온도가 높아 베이나이트가 과도하게 형성되었으며, 템퍼드 마르텐사이트가 적게 형성되었다. 그 결과, 시편 15는 인장강도와 연신율의 밸런스(TSХEl)가 22,000MPa% 미만인 것을 확인할 수 있다.
시편 16은 2차 냉각정지온도가 낮아 템퍼드 마르텐사이트가 과도하게 형성되었으며, 잔류 오스테나이트가 적게 형성되었다. 그 결과, 시편 16은 [Si+Al]F / [Si+Al]γ의 값이 3.0을 초과하고, V(1.2㎛, γ) / V(γ)가 0.1 미만이며, 인장강도와 연신율의 밸런스(TSХEl)가 22,000MPa% 미만이고, 굽힘가공률(R/t)이 3.0을 초과하는 것을 확인할 수 있다.
시편 17은 3차 유지온도가 높아 잔류 오스테나이트가 적게 형성되었다. 그 결과, 시편 17은 [Si+Al]F / [Si+Al]γ의 값이 3.0을 초과하고, V(lath, γ) / V(γ)가 0.5 미만이며, 인장강도와 연신율의 밸런스(TSХEl)가 22,000MPa% 미만이고, 굽힘가공률(R/t)이 3.0을 초과하는 것을 확인할 수 있다.
시편 18은 3차 유지온도가 낮아 V(1.2㎛, γ) / V(γ)가 0.1 미만이고, 굽힘가공률(R/t)이 3.0을 초과하는 것을 확인할 수 있다.
시편 19는 3차 유지시간이 짧으므로, V(1.2㎛, γ) / V(γ)가 0.1 미만이고, V(lath, γ) / V(γ)가 0.5 미만이며, 굽힘가공률(R/t)이 3.0을 초과하는 것을 확인할 수 있다.
시편 20은 4차 유지온도가 높아 V(1.2㎛, γ) / V(γ)가 0.1 미만이고, V(lath, γ) / V(γ)가 0.5 미만이며, 굽힘가공률(R/t)이 3.0을 초과하는 반면, 시편 21은 4차 유지온도가 낮아 V(1.2㎛, γ) / V(γ)가 0.1 미만이고, V(lath, γ) / V(γ)가 0.5 미만이며, 굽힘가공률(R/t)이 3.0을 초과하는 것을 확인할 수 있다.
시편 22는 4차 유지시간이 짧으므로, V(1.2㎛, γ) / V(γ)가 0.1 미만이고, V(lath, γ) / V(γ)가 0.5 미만이며, 굽힘가공률(R/t)이 3.0을 초과하는 것을 확인할 수 있다.
시편 45 내지 53은 본 발명에서 제시하는 제조조건은 충족하는 경우이나, 합금 조성범위를 벗어난 경우이다. 이들의 경우에는 본 발명의 [Si+Al]F / [Si+Al]γ, V(1.2㎛, γ) / V(γ), V(lath, γ) / V(γ), 인장강도 연신율의 밸런스(TSХEl), 인장강도와 구멍확장률의 밸런스(TS2ХHER1/2)가 7*106(MPa2%1 /2) 및 굽힘가공률(R/t) 조건을 동시에 충족하지 못하는 것을 확인할 수 있다. 한편, 시편 47은 알루미늄(Al) 및 실리콘(Si) 합계 함량이 1.0% 미만인 경우로, [Si+Al]F / [Si+Al]γ, 인장강도 연신율의 밸런스(TSХEl) 및 굽힘가공률(R/t) 조건을 만족하지 않는 것을 확인할 수 있다.
이상에서 실시예를 통하여 본 발명을 상세하게 설명하였으나, 이와 다른 형태의 실시예들도 가능하다. 그러므로, 이하에 기재된 청구항들의 기술적 사상과 범위는 실시예들에 한정되지 않는다.

Claims (10)

  1. 중량%로, C: 0.25~0.75%, Si: 4.0% 이하, Mn: 0.9~5.0%, Al: 5.0% 이하, P: 0.15% 이하, S: 0.03% 이하, N: 0.03% 이하, 나머지 Fe 및 불가피한 불순물을 포함하고,
    미세조직으로, 43~55부피%의 템퍼드 마르텐사이트, 14~23부피%의 베이나이트, 15~33부피%의 잔류 오스테나이트, 8~16부피%의 페라이트 및 불가피한 조직을 포함하고,
    아래의 [관계식 1] 및 [관계식 2]를 만족하며,
    아래의 [관계식 4]로 표현되는 인장강도와 연신율의 밸런스(BT·E)가 22,000(MPa%) 이상이고, 아래의 [관계식 5]로 표현되는 인장강도와 구멍확장률의 밸런스 (BT·H)가 7*106(MPa2%1/2) 이상이며, 아래의 [관계식 6]으로 표현되는 굽힘가공률(BR)이 0.5~3.0인, 가공성이 우수한 고강도 강판.
    [관계식 1]
    1.1 ≤ [Si+Al]F / [Si+Al]γ ≤ 3.0
    상기 관계식 1에서, [Si+Al]F는 페라이트에 포함된 Si 및 Al의 평균 합계 함량(중량%)이고, [Si+Al]γ는 잔류 오스테나이트에 포함된 Si 및 Al의 평균 합계 함량(중량%)이다.
    [관계식 2]
    V(1.2㎛, γ) / V(γ) ≥ 0.1
    상기 관계식 2에서, V(1.2㎛, γ)는 평균 결정립경이 1.2㎛ 이상인 잔류 오스테나이트 분율(부피%)이고, V(γ)은 강판의 잔류 오스테나이트 분율(부피%)이다.
    [관계식 4]
    BT·E = [인장강도(TS, MPa)] * [연신율(El, %)]
    [관계식 5]
    BT·H = [인장강도(TS, MPa)]2 * [구멍확장률(HER, %)]1/2
    [관계식 6]
    BR = R/t
    상기 관계식 6에서, R은 90° 굽힘 시험 후 크랙이 발생하지 않는 최소 굽힘 반경(㎜)을 의미하고, t는 강판의 두께(㎜)를 의미한다.
  2. 제1항에 있어서,
    상기 강판은, 아래의 (1) 내지 (9) 중 어느 하나 이상을 더 포함하는, 가공성이 우수한 고강도 강판.
    (1) Ti: 0~0.5%, Nb: 0~0.5% 및 V: 0~0.5% 중 1종 이상
    (2) Cr: 0~3.0% 및 Mo: 0~3.0% 중 1종 이상
    (3) Cu: 0~4.5% 및 Ni: 0~4.5% 중 1종 이상
    (4) B: 0~0.005%
    (5) Ca: 0~0.05%, Y를 제외하는 REM: 0~0.05% 및 Mg: 0~0.05% 중 1종 이상
    (6) W: 0~0.5% 및 Zr: 0~0.5% 중 1종 이상
    (7) Sb: 0~0.5% 및 Sn: 0~0.5% 중 1종 이상
    (8) Y: 0~0.2% 및 Hf: 0~0.2% 중 1종 이상
    (9) Co: 0~1.5%
  3. 제1항에 있어서,
    상기 Si 및 Al의 합계 함량(Si+Al)은 1.0~6.0중량%인, 가공성이 우수한 고강도 강판.
  4. 제1항에 있어서,
    상기 강판은 아래의 [관계식 3]을 만족하는, 가공성이 우수한 고강도 강판.
    [관계식 3]
    V(lath, γ) / V(γ) ≥ 0.5
    상기 관계식 3에서, V(lath, γ)는 레쓰(leth) 형태의 잔류 오스테나이트 분율(부피%)이고, V(γ)는 강판의 잔류 오스테나이트 분율(부피%)이다.
  5. 삭제
  6. 삭제
  7. 삭제
  8. 삭제
  9. 삭제
  10. 삭제
KR1020190169609A 2019-12-18 2019-12-18 가공성이 우수한 고강도 강판 및 그 제조방법 KR102321295B1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020190169609A KR102321295B1 (ko) 2019-12-18 2019-12-18 가공성이 우수한 고강도 강판 및 그 제조방법
US17/786,424 US20230027722A1 (en) 2019-12-18 2020-11-25 High strength steel sheet having excellent workability and method for manufacturing same
PCT/KR2020/016830 WO2021125602A2 (ko) 2019-12-18 2020-11-25 가공성이 우수한 고강도 강판 및 그 제조방법
JP2022536970A JP7417739B2 (ja) 2019-12-18 2020-11-25 加工性に優れた高強度鋼板及びその製造方法
CN202080088482.4A CN114846168A (zh) 2019-12-18 2020-11-25 加工性优异的高强度钢板及其制造方法
EP20901231.9A EP4079899A4 (en) 2019-12-18 2020-11-25 HIGH STRENGTH STEEL SHEET HAVING EXCELLENT BENDABILITY AND METHOD OF MANUFACTURING THEREOF

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190169609A KR102321295B1 (ko) 2019-12-18 2019-12-18 가공성이 우수한 고강도 강판 및 그 제조방법

Publications (2)

Publication Number Publication Date
KR20210078605A KR20210078605A (ko) 2021-06-29
KR102321295B1 true KR102321295B1 (ko) 2021-11-03

Family

ID=76478410

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190169609A KR102321295B1 (ko) 2019-12-18 2019-12-18 가공성이 우수한 고강도 강판 및 그 제조방법

Country Status (6)

Country Link
US (1) US20230027722A1 (ko)
EP (1) EP4079899A4 (ko)
JP (1) JP7417739B2 (ko)
KR (1) KR102321295B1 (ko)
CN (1) CN114846168A (ko)
WO (1) WO2021125602A2 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017053001A (ja) * 2015-09-09 2017-03-16 新日鐵住金株式会社 溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法
WO2018147400A1 (ja) 2017-02-13 2018-08-16 Jfeスチール株式会社 高強度鋼板およびその製造方法
WO2018221307A1 (ja) 2017-05-31 2018-12-06 株式会社神戸製鋼所 高強度鋼板およびその製造方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4510488B2 (ja) 2004-03-11 2010-07-21 新日本製鐵株式会社 成形性および穴拡げ性に優れた溶融亜鉛めっき複合高強度鋼板およびその製造方法
JP4901617B2 (ja) 2007-07-13 2012-03-21 新日本製鐵株式会社 引張強度が700MPa以上で耐食性、穴拡げ性および延性に優れた合金化溶融亜鉛めっき高強度鋼板及びその製造方法
KR101574400B1 (ko) * 2011-03-31 2015-12-03 가부시키가이샤 고베 세이코쇼 가공성이 우수한 고강도 강판 및 그의 제조 방법
UA112771C2 (uk) 2011-05-10 2016-10-25 Арселормітталь Інвестігасьон І Десароло Сл Сталевий лист з високою механічною міцністю, пластичністю і формованістю, спосіб виготовлення та застосування таких листів
JP5632947B2 (ja) * 2012-12-12 2014-11-26 株式会社神戸製鋼所 加工性と低温靭性に優れた高強度鋼板およびその製造方法
JP6364755B2 (ja) 2013-11-28 2018-08-01 新日鐵住金株式会社 衝撃吸収特性に優れた高強度鋼材
JP6306481B2 (ja) * 2014-03-17 2018-04-04 株式会社神戸製鋼所 延性及び曲げ性に優れた高強度冷延鋼板および高強度溶融亜鉛めっき鋼板、並びにそれらの製造方法
KR101594670B1 (ko) * 2014-05-13 2016-02-17 주식회사 포스코 연성이 우수한 고강도 냉연강판, 용융아연도금강판 및 이들의 제조방법
JP6379716B2 (ja) 2014-06-23 2018-08-29 新日鐵住金株式会社 冷延鋼板及びその製造方法
JP6554397B2 (ja) * 2015-03-31 2019-07-31 株式会社神戸製鋼所 加工性および衝突特性に優れた引張強度が980MPa以上の高強度冷延鋼板、およびその製造方法
JP6554396B2 (ja) * 2015-03-31 2019-07-31 株式会社神戸製鋼所 加工性および衝突特性に優れた引張強度が980MPa以上の高強度冷延鋼板、およびその製造方法
KR101758485B1 (ko) * 2015-12-15 2017-07-17 주식회사 포스코 표면품질 및 점 용접성이 우수한 고강도 용융아연도금강판 및 그 제조방법
KR101714930B1 (ko) * 2015-12-23 2017-03-10 주식회사 포스코 구멍확장성이 우수한 초고강도 강판 및 그 제조방법
MX2018009643A (es) * 2016-02-10 2018-12-17 Jfe Steel Corp Lamina de acero de alta resistencia y metodo para la produccion de la misma.
JP6762868B2 (ja) * 2016-03-31 2020-09-30 株式会社神戸製鋼所 高強度鋼板およびその製造方法
KR101917452B1 (ko) * 2016-12-22 2018-11-09 주식회사 포스코 굽힘가공성과 구멍확장성이 우수한 냉연강판 및 그 제조방법
JP6798384B2 (ja) 2017-03-27 2020-12-09 Jfeスチール株式会社 高強度高延性鋼板およびその製造方法
EP3733898B1 (en) 2017-12-26 2021-11-10 JFE Steel Corporation High-strength cold rolled steel sheet and method for manufacturing same
WO2019131188A1 (ja) 2017-12-26 2019-07-04 Jfeスチール株式会社 高強度冷延鋼板及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017053001A (ja) * 2015-09-09 2017-03-16 新日鐵住金株式会社 溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法
WO2018147400A1 (ja) 2017-02-13 2018-08-16 Jfeスチール株式会社 高強度鋼板およびその製造方法
WO2018221307A1 (ja) 2017-05-31 2018-12-06 株式会社神戸製鋼所 高強度鋼板およびその製造方法

Also Published As

Publication number Publication date
CN114846168A (zh) 2022-08-02
WO2021125602A2 (ko) 2021-06-24
EP4079899A2 (en) 2022-10-26
JP7417739B2 (ja) 2024-01-18
US20230027722A1 (en) 2023-01-26
KR20210078605A (ko) 2021-06-29
JP2023507957A (ja) 2023-02-28
EP4079899A4 (en) 2023-05-10
WO2021125602A3 (ko) 2021-08-05

Similar Documents

Publication Publication Date Title
KR102178731B1 (ko) 가공특성이 우수한 고강도 강판 및 그 제조방법
KR102321288B1 (ko) 가공성이 우수한 고강도 강판 및 그 제조방법
KR102348527B1 (ko) 가공성이 우수한 고강도 강판 및 그 제조방법
KR102485012B1 (ko) 가공성이 우수한 고강도 강판 및 그 제조방법
KR102209575B1 (ko) 강도와 연성의 밸런스 및 가공성이 우수한 강판 및 그 제조방법
KR102178728B1 (ko) 강도 및 연성이 우수한 강판 및 그 제조방법
KR102276740B1 (ko) 연성 및 가공성이 우수한 고강도 강판 및 그 제조방법
KR102321295B1 (ko) 가공성이 우수한 고강도 강판 및 그 제조방법
KR102321292B1 (ko) 가공성이 우수한 고강도 강판 및 그 제조방법
KR102348529B1 (ko) 가공성이 우수한 고강도 강판 및 그 제조방법
KR102321285B1 (ko) 가공성이 우수한 고강도 강판 및 그 제조방법
KR102353611B1 (ko) 가공성이 우수한 고강도 강판 및 그 제조방법
KR102321287B1 (ko) 가공성이 우수한 고강도 강판 및 그 제조방법
KR102321297B1 (ko) 가공성이 우수한 고강도 강판 및 그 제조방법
KR102485004B1 (ko) 가공성이 우수한 고강도 강판 및 그 제조방법
KR102485006B1 (ko) 가공성이 우수한 고강도 강판 및 그 제조방법
KR102485009B1 (ko) 가공성이 우수한 고강도 강판 및 그 제조방법
KR102485007B1 (ko) 가공성이 우수한 고강도 강판 및 그 제조방법
KR102485013B1 (ko) 가공성이 우수한 고강도 강판 및 그 제조방법
KR102209569B1 (ko) 고강도 고연성 강판 및 그 제조방법

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant