KR102320533B1 - Susceptor surface processing method - Google Patents

Susceptor surface processing method Download PDF

Info

Publication number
KR102320533B1
KR102320533B1 KR1020170019605A KR20170019605A KR102320533B1 KR 102320533 B1 KR102320533 B1 KR 102320533B1 KR 1020170019605 A KR1020170019605 A KR 1020170019605A KR 20170019605 A KR20170019605 A KR 20170019605A KR 102320533 B1 KR102320533 B1 KR 102320533B1
Authority
KR
South Korea
Prior art keywords
susceptor
particles
treatment method
coating film
surface treatment
Prior art date
Application number
KR1020170019605A
Other languages
Korean (ko)
Other versions
KR20170071448A (en
Inventor
오흥식
송영주
정득환
Original Assignee
(주)위지트
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150178175A external-priority patent/KR101749035B1/en
Application filed by (주)위지트 filed Critical (주)위지트
Priority to KR1020170019605A priority Critical patent/KR102320533B1/en
Publication of KR20170071448A publication Critical patent/KR20170071448A/en
Application granted granted Critical
Publication of KR102320533B1 publication Critical patent/KR102320533B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/78Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/06Anodisation of aluminium or alloys based thereon characterised by the electrolytes used

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

본 발명의 서셉터 표면 처리방법에 있어서, 서셉터의 표면에는 입자가 분사되어 요철이 형성되며;
상기 입자는 크기가 570∼850㎛ 범위인 구 형상인 것을 특징으로 하는 서셉터 표면 처리방법에 관한 것이다.
In the susceptor surface treatment method of the present invention, particles are sprayed on the surface of the susceptor to form irregularities;
The particle size relates to a susceptor surface treatment method, characterized in that the spherical shape in the range of 570 ~ 850㎛.

Description

서셉터 표면 처리방법{Susceptor surface processing method}Susceptor surface processing method

본 발명은 서셉터 표면 처리방법에 관한 것으로서, 아노다이징 처리 후 서셉터 표면의 거칠기가 유지되어 서셉터와 유리기판 사이의 정전이 방지되어 제품의 불량이 감소하며 서셉터의 수명이 연장된 서셉터 표면 처리방법에 관한 것이다.The present invention relates to a susceptor surface treatment method, wherein the roughness of the surface of the susceptor is maintained after anodizing to prevent static electricity between the susceptor and a glass substrate, thereby reducing product defects and extending the life of the susceptor. It's about processing.

일반적으로 서셉터는 유리기판이 직접 로딩되는 부분으로 그 상면은 편평한 정반으로 제작되는 것이 일반적이며, 증착 공정 시 유리기판에 열전달을 하여 증착 공정이 잘 이루어지도록 그 내부에는 히터가 마련되어 있다.In general, the susceptor is a part on which a glass substrate is directly loaded, and its upper surface is generally made of a flat platen, and a heater is provided inside the susceptor to transfer heat to the glass substrate during the deposition process to facilitate the deposition process.

상기 서셉터는 처리 대상물인 유리기판을 안착시키기 위한 것으로 정전 방식과 무정전 방식 모두에 이용된다. 정전 방식은 서셉터에 유리기판을 척킹할 수 있는 정전척이나 또는 진공 흡착 방식 등을 이용해 기판이 고정되게 하는 방식이다. 무정전 방식은 유리기판이 서셉터 표면을 거칠게 형성시켜 표면 마찰력을 이용해 기판이 안착 상태를 유지토록 하는 방식이다.The susceptor is used for both an electrostatic method and an uninterruptible method to seat a glass substrate, which is a processing object. The electrostatic method is a method of fixing the substrate using an electrostatic chuck capable of chucking a glass substrate to the susceptor or a vacuum adsorption method. The uninterruptible method is a method in which the glass substrate forms a rough surface of the susceptor and uses the surface friction force to maintain the substrate in a seated state.

정전 방식과 무정전 방식은 유리기판을 서셉터에 안착시키는 방식이 차이가 있으며, 이 중 무정전 방식은 표면 거칠기 정도에 따라 기판의 안정적인 안착이 가능하기 때문에 표면 거칠기를 정밀 가능하게 된다.There is a difference between the electrostatic method and the non-electrostatic method in how the glass substrate is mounted on the susceptor.

도 1 및 도 2에 도시된 바와 같이, 종래의 무정전 방식 서셉터는 처리 대상인 서셉터(1)를 수직한 상태로 설치 후 가공면 표면과 수직한 상태로 노즐(2)을 배치하여 노즐을 통해 Al2O3로 이루어진 입자(3)를 고압 분사시키면 서셉터(1) 표면은 분사되는 입자(3)에 의해 표면에 요철(4)이 형성된다. 그리고 요철(4)이 형성된 가공면에 아노다이징(Anodizing) 처리하여 코팅하면 서셉터(1) 표면 가공면과 유리기판(S) 간에 정전이 방지하도록 하는 구조를 하게 된다.1 and 2, in the conventional uninterruptible susceptor, the susceptor 1 to be processed is installed in a vertical state, and then the nozzle 2 is disposed in a state perpendicular to the surface of the processing surface through the nozzle. When the particles (3) made of Al 2 O 3 are sprayed at high pressure, the surface of the susceptor (1) is formed with irregularities (4) on the surface by the particles (3) being sprayed. And when the processing surface on which the unevenness 4 is formed is coated by anodizing, a structure is formed to prevent static electricity between the surface processing surface of the susceptor 1 and the glass substrate S.

종래에는 분사되는 입자(3)에 의해 요철(4)이 형성된 서셉터 표면은 균일하지 않은 입자로 인하여 홈이 깊게 형성되거나 얕게 형성되어 서셉터 표면에 아노다이징 처리 시 얕게 형성된 홈은 코팅 후 거친 정도가 사라져 유리기판(S)과 서셉터(1) 사이에서 정전이 방지되지 않는 문제점이 있었다.Conventionally, the susceptor surface on which the unevenness 4 is formed by the sprayed particles 3 is deeply or shallowly formed due to non-uniform particles. There was a problem in that the static electricity was not prevented between the glass substrate (S) and the susceptor (1).

대한민국 공개특허공보 제10-2009-0010625호(2009.01.30)Republic of Korea Patent Publication No. 10-2009-0010625 (2009.01.30)

본 발명은 상기 문제점을 해결하기 위해 제안된 것으로, 요철이 일정 깊이 이상 깊게 형성되어 서셉터 표면의 거칠기가 유지되며, 균일하게 가열되어 서셉터의 수명을 연장시키며 제품의 불량이 방지될 수 있는 서셉터 표면 처리방법을 제공하는데 목적이 있다.The present invention has been proposed to solve the above problems, and the roughness of the surface of the susceptor is maintained by forming irregularities deeper than a certain depth, and it is heated uniformly to extend the life of the susceptor and prevent product defects. An object of the present invention is to provide a method for treating a scepter surface.

본 발명의 서셉터 표면 처리방법에 있어서, 서셉터의 표면에는 입자가 분사되어 요철이 형성되며;In the susceptor surface treatment method of the present invention, particles are sprayed on the surface of the susceptor to form irregularities;

상기 입자는 크기가 570∼850㎛ 범위인 구 형상인 것을 특징으로 하는 서셉터 표면 처리방법을 제공한다.The particle size provides a susceptor surface treatment method, characterized in that the spherical shape in the range of 570 ~ 850㎛.

상기에서, 입자는 SiO2 또는 Al2O3 이며;In the above, the particles are SiO 2 or Al 2 O 3 ;

상기 입자는 서셉터로부터 거리가 495∼505㎜범위에서 4㎏f/㎠의 압력으로 서셉터의 표면으로 분사되는 것을 특징으로 한다.The particles are characterized in that the distance from the susceptor is sprayed onto the surface of the susceptor at a pressure of 4 kgf/cm 2 in the range of 495 to 505 mm.

상기에서, 입자에 의하여 요철이 형성된 상기 서셉터의 표면의 거칠기는 18∼25㎛범위인 것을 특징으로 한다.In the above, it is characterized in that the roughness of the surface of the susceptor formed by the particles is in the range of 18 to 25㎛.

상기에서, 서셉터의 표면은 입자에 의한 요철이 형성되고 아노다이징 처리에 의한 코팅막이 형성되며, 코팅막은 두께가 5∼20㎛범위인 것을 특징으로 한다.In the above, the surface of the susceptor is characterized in that unevenness is formed by particles and a coating film is formed by anodizing, and the coating film has a thickness in the range of 5 to 20 μm.

상기에서, 코팅막 형성을 위한 아노다이징 용액의 조성물은 수산 3∼10wt%, 주석산 3∼10wt%, 사과산 2∼5wt%, 구연산 2∼5wt%, 증류수 70∼90wt%으로 구성된 것을 특징으로 한다.In the above, the composition of the anodizing solution for forming the coating film is characterized in that it consists of 3 to 10 wt% of oxalic acid, 3 to 10 wt% of tartaric acid, 2 to 5 wt% of malic acid, 2 to 5 wt% of citric acid, and 70 to 90 wt% of distilled water.

본 발명에 따른 서셉터 표면 처리방법은 서셉터 표면에 아노다이징 처리 후 서셉터 표면의 거칠기가 일정 수준 유지되어 서셉터와 유리기판 사이에 정전이 확실하게 방지되며, 서셉터의 수명이 길게는 2배 이상 향상되는 효과가 있다. 그리고 서셉터의 가열이 균일하게 이루어져 제품의 불량이 감소하는 효과가 있다. In the susceptor surface treatment method according to the present invention, the roughness of the surface of the susceptor is maintained at a certain level after anodizing on the surface of the susceptor, so that static electricity between the susceptor and the glass substrate is reliably prevented, and the life of the susceptor is twice as long There is an improvement effect. In addition, the heating of the susceptor is uniformly made, thereby reducing product defects.

도 1은 종래의 서셉터 표면 처리방법을 나타내는 개략도이며,
도 2는 종래의 서셉터 표면 처리방법에 의해 처리된 상태를 나타내는 단면도이고,
도 3은 본 발명의 서셉터 표면 처리방법을 나타내는 개략도이며,
도 4는 본 발명의 서셉터 표면 처리방법에 의해 처리된 상태를 나타내는 단면도이다.
1 is a schematic diagram showing a conventional susceptor surface treatment method,
2 is a cross-sectional view showing a state treated by a conventional susceptor surface treatment method,
3 is a schematic diagram showing the susceptor surface treatment method of the present invention,
4 is a cross-sectional view showing a state treated by the susceptor surface treatment method of the present invention.

이하 첨부된 도면을 참조하여 본 발명에 따른 서셉터 표면 처리방법을 상세하게 설명한다.Hereinafter, a susceptor surface treatment method according to the present invention will be described in detail with reference to the accompanying drawings.

도 3은 본 발명의 서셉터 표면 처리방법을 나타내는 개략도이며, 도 4는 본 발명의 서셉터 표면 처리방법에 의해 처리된 상태를 나타내는 단면도이다.Figure 3 is a schematic view showing a susceptor surface treatment method of the present invention, Figure 4 is a cross-sectional view showing a state treated by the susceptor surface treatment method of the present invention.

도 3에 도시된 바와 같이, 본 발명에 따른 서셉터 표면 처리방법은 서셉터(10)의 표면에 입자(30)가 분사되어 요철(40)이 형성된다. 상기 요철(40)이 형성된 후 서셉터(10)의 표면에는 아노다이징 처리 후에 코팅막(50)이 형성된다.As shown in FIG. 3 , in the susceptor surface treatment method according to the present invention, the particles 30 are sprayed on the surface of the susceptor 10 to form the unevenness 40 . After the unevenness 40 is formed, a coating film 50 is formed on the surface of the susceptor 10 after anodizing.

상기 입자(30)는 SiO2 또는 Al2O3로 이루어진다. 상기 입자(30)는 구 형상으로 형성된다. 상기 입자(30)의 크기는 570∼850㎛ 범위로 형성된다. 상기 입자(30)의 크기가 570㎛보다 작으면 요철(40)이 작게 형성되어 아노다이징 처리 후 형성된 코팅막(50)에 의해 형성되었던 요철(40)이 메워져 서셉터(10) 표면의 거칠기 형성 효과가 소멸되는 문제점이 있다. 상기 입자(30)의 크기가 850㎛보다 과하게 크면 요철(40)이 크게 형성되어 요철(40)의 거친 정도가 커 유리기판(S)의 표면이 손상되고 품질이 균일하게 유지되지 않는 문제점이 있다.The particles 30 are made of SiO 2 or Al 2 O 3 . The particles 30 are formed in a spherical shape. The size of the particles 30 is formed in the range of 570 ~ 850㎛. When the size of the particles 30 is smaller than 570 μm, the unevenness 40 is formed small, and the unevenness 40 formed by the coating film 50 formed after anodizing is filled, so that the roughness formation effect of the surface of the susceptor 10 is reduced. There is a problem of disappearance. If the size of the particle 30 is excessively larger than 850 μm, the unevenness 40 is formed large, and the roughness of the unevenness 40 is large, so that the surface of the glass substrate S is damaged and the quality is not maintained uniformly There is a problem. .

상기 입자(30)는 노즐(20)을 통해 서셉터(10)의 표면으로 분사된다. 상기 노즐(20)은 상기 서셉터(10)의 표면으로부터 495∼505㎜범위의 거리(L)만큼 이격 구비된다. 상기 노즐(20)은 입자(30)를 4㎏f/㎠의 압력으로 서셉터(10)의 표면으로 분사한다. 상기 노즐(20)과 서셉터(10) 사이의 거리(L)가 495㎜보다 가까우면 서셉터(10) 표면에 가해지는 압력이 커 요철(40)이 깊게 형성되어 거칠기가 커지며, 505㎜보다 멀면 서셉터(10) 표면에 가해지는 압력이 약하여 요철이 형성되지 않는 문제점이 있다. 상기 노즐(20)과 서셉터(10) 사이의 거리(L)는 500㎜가 바람직하다. 상기 서셉터(10)로부터 500㎜ 떨어진 거리(L)에서 4㎏f/㎠의 압력으로 서셉터(10)의 표면으로 분사되는 입자(30)에 의해 요철(40)이 형성된 서셉터(10) 표면의 거칠기는 18∼25㎛범위의 수치를 갖는다.The particles 30 are sprayed onto the surface of the susceptor 10 through the nozzle 20 . The nozzle 20 is spaced apart from the surface of the susceptor 10 by a distance L in the range of 495 to 505 mm. The nozzle 20 sprays the particles 30 to the surface of the susceptor 10 at a pressure of 4 kgf/cm 2 . When the distance L between the nozzle 20 and the susceptor 10 is closer than 495 mm, the pressure applied to the surface of the susceptor 10 is large, so that the unevenness 40 is formed deeply and the roughness is increased, and the roughness is greater than 505 mm. If it is far, the pressure applied to the surface of the susceptor 10 is weak, so there is a problem in that irregularities are not formed. The distance L between the nozzle 20 and the susceptor 10 is preferably 500 mm. The susceptor 10 in which the unevenness 40 is formed by the particles 30 sprayed onto the surface of the susceptor 10 at a pressure of 4 kgf/cm 2 at a distance L 500 mm from the susceptor 10 . The roughness of the surface has a value in the range of 18 to 25 μm.

도 4에 도시된 바와 같이, 상기 서셉터(10)의 표면에 요철(40)이 형성된 후, 아노다이징 처리에 의해 코팅막(50)이 형성된다. 아노다이징 처리 시 이용되는 아노다이징 용액의 조성물은 수산 3∼10wt%, 주석산 3∼10wt%, 사과산 2∼5wt%, 구연산 2∼5wt%, 증류수 70∼90wt%로 구성된다. 상기 코팅막(50)의 두께(t)는 5∼20㎛범위로 형성된다. 상기 코팅막(50)의 두께(t)가 5∼20㎛범위로 형성됨으로써 500℃의 고온에서도 아노다이징의 크랙(Crack)이 발생하지 않는 효과가 있다. 상기 코팅막(50)이 형성된 서셉터(10)의 표면은 코팅막(50) 형성 전과 동일하게 거칠기는 18∼25㎛범위의 수치를 갖는다. 상기 거칠기가 18㎛보다 작게 형성되면 거칠기 형성 효과가 소멸되는 문제점이 있다. 거칠기가 25㎛보다 크게 형성되며 서셉터(10)의 표면이 균일하게 가열되지 않는 문제점이 있다.As shown in FIG. 4 , after the unevenness 40 is formed on the surface of the susceptor 10 , the coating film 50 is formed by anodizing. The composition of the anodizing solution used in the anodizing treatment consists of 3 to 10 wt% oxalic acid, 3 to 10 wt% tartaric acid, 2 to 5 wt% malic acid, 2 to 5 wt% citric acid, and 70 to 90 wt% distilled water. The thickness t of the coating film 50 is formed in the range of 5 to 20 μm. Since the thickness t of the coating film 50 is formed in the range of 5 to 20 μm, there is an effect that cracks of anodizing do not occur even at a high temperature of 500° C. The surface of the susceptor 10 on which the coating film 50 is formed has the same roughness as before the coating film 50 is formed in the range of 18 to 25 μm. When the roughness is formed to be smaller than 18 μm, there is a problem in that the effect of forming the roughness disappears. The roughness is formed to be greater than 25 μm, and there is a problem in that the surface of the susceptor 10 is not uniformly heated.

지금까지 본 발명에 따른 서셉터 표면 처리방법은 도면에 도시된 실시 예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당업자라면 누구든지 이로부터 다양한 변형 및 균등한 다른 실시 예가 가능하다는 점을 이해할 것이다. 따라서, 진정한 기술적 보호범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.So far, the susceptor surface treatment method according to the present invention has been described with reference to the embodiment shown in the drawings, but this is only exemplary, and it will be understood by those skilled in the art that various modifications and equivalent other embodiments are possible therefrom. . Accordingly, the true technical protection scope should be determined by the technical spirit of the appended claims.

10 : 서셉터 20 : 노즐
30 : 입자 40 : 요철
50 : 코팅막
10: susceptor 20: nozzle
30: particle 40: unevenness
50: coating film

Claims (2)

서셉터 표면 처리방법에 있어서, 서셉터(10)의 표면에는 입자(30)가 분사되어 요철(40)이 형성되고; 상기 입자(30)는 크기가 570∼850㎛ 범위인 구 형상이며;
상기 서셉터(10) 표면은 입자(30)에 의해 요철(40)이 형성되고 아노다이징 처리에 의한 코팅막(50)이 형성되며; 상기 입자(30)에 의하여 요철(40)이 형성된 서셉터(10)의 표면의 거칠기는 18∼25㎛범위이고, 상기 코팅막(50)의 두께(t)는 5∼20㎛ 범위이며;
상기 코팅막(50) 형성을 위한 아노다이징 용액의 조성물은 수산 3∼10wt%, 주석산 3∼10wt%, 사과산 2∼5wt%, 구연산 2∼5wt%, 증류수 70∼90wt%으로 구성된 것을 특징으로 하는 서셉터 표면 처리방법.
In the susceptor surface treatment method, particles 30 are sprayed on the surface of the susceptor 10 to form irregularities 40; The particles 30 are spherical in size ranging from 570 to 850 μm;
The surface of the susceptor 10 is formed with irregularities 40 by the particles 30 and a coating film 50 is formed by anodizing; The roughness of the surface of the susceptor 10 on which the unevenness 40 is formed by the particles 30 is in the range of 18 to 25 μm, and the thickness t of the coating film 50 is in the range of 5 to 20 μm;
The composition of the anodizing solution for forming the coating film 50 is oxalic acid 3-10 wt%, tartaric acid 3-10 wt%, malic acid 2-5 wt%, citric acid 2-5 wt%, susceptor, characterized in that it consists of 70-90 wt% distilled water Surface treatment method.
삭제delete
KR1020170019605A 2015-12-14 2017-02-13 Susceptor surface processing method KR102320533B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170019605A KR102320533B1 (en) 2015-12-14 2017-02-13 Susceptor surface processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150178175A KR101749035B1 (en) 2015-12-14 2015-12-14 Susceptor surface processing method
KR1020170019605A KR102320533B1 (en) 2015-12-14 2017-02-13 Susceptor surface processing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020150178175A Division KR101749035B1 (en) 2015-12-14 2015-12-14 Susceptor surface processing method

Publications (2)

Publication Number Publication Date
KR20170071448A KR20170071448A (en) 2017-06-23
KR102320533B1 true KR102320533B1 (en) 2021-11-03

Family

ID=59283712

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170019605A KR102320533B1 (en) 2015-12-14 2017-02-13 Susceptor surface processing method

Country Status (1)

Country Link
KR (1) KR102320533B1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100938874B1 (en) 2007-07-24 2010-01-27 주식회사 에스에프에이 Susceptor for Supporting Flat Display and Method for Manufacturing Thereof, and Chemical Vapor Deposition Apparatus Having the Same
JP5693807B2 (en) * 2008-01-22 2015-04-01 東京エレクトロン株式会社 Parts for substrate processing apparatus and film forming method
KR101226159B1 (en) * 2010-07-19 2013-01-24 주식회사 알지비하이텍 susceptor surface processing method
CN104508180A (en) * 2012-07-27 2015-04-08 应用材料公司 Roughened substrate support

Also Published As

Publication number Publication date
KR20170071448A (en) 2017-06-23

Similar Documents

Publication Publication Date Title
TWI401223B (en) Method of manufacturing an anti-glare glass
US9034199B2 (en) Ceramic article with reduced surface defect density and process for producing a ceramic article
WO2011047142A3 (en) A technique for processing a substrate having a non-planar surface
WO2017030945A3 (en) Molds and methods to control mold surface quality
KR102320533B1 (en) Susceptor surface processing method
TWI662107B (en) Composition and method for healing glass,and glass treated with the composition
WO2019173669A3 (en) Method for minimizing dent defects in chemically strengthened glass
KR20160016136A (en) Surface treatment for quartz jigs for cvd, composition for surface treatment of quartz jigs and quartz jigs manufactured by the same
TWI700742B (en) Quartz surface treatment method for quartz surface coating
KR101680867B1 (en) Manufacturing methods of metallic materials having a surface structure for crack prevention of ceramic coating layer
JP6714592B2 (en) Substrate undertreatment method and apparatus
KR101749035B1 (en) Susceptor surface processing method
KR101559112B1 (en) Ceramic coating film of parts surface & manufacture method thereof
KR20200113810A (en) Apparatus for coating steel and coating method of steel using the same
TW201607623A (en) Method of applying a protective coating to substrate edges
KR102182690B1 (en) Internal member applying plasma treatment apparatus and method for manufacturing the same
KR101226159B1 (en) susceptor surface processing method
TW201619081A (en) Method of chamfering glass
KR100798415B1 (en) Method of manufacturing protective layer of electrostatic chuck by coating hybrid ceramic
JP2017218351A (en) Production method of glass substrate, and glass substrate
TWI613041B (en) Method for manufacturing glass substrate
KR102672383B1 (en) Wafer placement table and manufacturing method
KR101518618B1 (en) The coating method of improving adhesion for steel sheet and steel sheet treated with tem
KR101860829B1 (en) Recycling method of quartz jig
JP2012196765A (en) Mask device for shot blast and mask method

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant