KR102309341B1 - Catalyst support having a core-shell structure with enhanced thermal stability and preparation method thereof - Google Patents

Catalyst support having a core-shell structure with enhanced thermal stability and preparation method thereof Download PDF

Info

Publication number
KR102309341B1
KR102309341B1 KR1020170163121A KR20170163121A KR102309341B1 KR 102309341 B1 KR102309341 B1 KR 102309341B1 KR 1020170163121 A KR1020170163121 A KR 1020170163121A KR 20170163121 A KR20170163121 A KR 20170163121A KR 102309341 B1 KR102309341 B1 KR 102309341B1
Authority
KR
South Korea
Prior art keywords
core
catalyst
sic
catalyst carrier
shell
Prior art date
Application number
KR1020170163121A
Other languages
Korean (ko)
Other versions
KR20190063938A (en
Inventor
서명기
최종명
민형기
Original Assignee
롯데케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 롯데케미칼 주식회사 filed Critical 롯데케미칼 주식회사
Priority to KR1020170163121A priority Critical patent/KR102309341B1/en
Publication of KR20190063938A publication Critical patent/KR20190063938A/en
Application granted granted Critical
Publication of KR102309341B1 publication Critical patent/KR102309341B1/en

Links

Images

Classifications

    • B01J35/396
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/002Catalysts characterised by their physical properties
    • B01J35/0073Distribution of the active metal ingredient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/02Solids
    • B01J35/026Form of the solid particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/02Solids
    • B01J35/10Solids characterised by their surface properties or porosity
    • B01J35/1004Surface area
    • B01J35/1009Surface area less than 10 m2/g
    • B01J35/50
    • B01J35/612
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)

Abstract

본 발명은 코어(core)-쉘(shell) 구조를 갖는 촉매담체 및 이의 제조방법에 관한 것으로, 상기 촉매담체는 비표면적이 작은 코어와 열전도도가 높은 SiC를 포함하는 쉘의 구조를 가짐으로써 촉매담체의 열전도도를 높여 금속 촉매의 소결을 억제하여 담체 표면에 금속 촉매가 작은 크기로 담지될 수 있다.The present invention relates to a catalyst carrier having a core-shell structure and a method for preparing the same, wherein the catalyst carrier has a core structure having a small specific surface area and a shell including SiC having high thermal conductivity. The metal catalyst can be supported in a small size on the surface of the support by suppressing the sintering of the metal catalyst by increasing the thermal conductivity of the support.

Description

열적 안정성이 향상된 코어-쉘 구조의 촉매담체 및 이의 제조방법 {CATALYST SUPPORT HAVING A CORE-SHELL STRUCTURE WITH ENHANCED THERMAL STABILITY AND PREPARATION METHOD THEREOF}CATALYST SUPPORT HAVING A CORE-SHELL STRUCTURE WITH ENHANCED THERMAL STABILITY AND PREPARATION METHOD THEREOF}

본 발명은 열적 안정성이 향상된 코어(core)-쉘(shell) 구조를 갖는 촉매담체 및 이의 제조방법에 관한 것으로, 구체적으로는 2종의 무기물을 코어-쉘 구조로 합성하고, 쉘에 SiC를 포함하는 촉매담체 및 이의 제조방법에 관한 것이다.The present invention relates to a catalyst carrier having a core-shell structure with improved thermal stability and a method for preparing the same. Specifically, two kinds of inorganic materials are synthesized in a core-shell structure, and SiC is included in the shell It relates to a catalyst carrier and a method for preparing the same.

본 발명은 촉매에 사용되는 무기 담체 및 이의 합성법에 관한 것이다. 일반적으로 촉매에 사용되는 무기 담체는 촉매의 활성 성분인 금속의 높은 분산도 및 구조적 안정성을 위해 사용한다. 발열량이 큰 반응 중에도 금속 촉매의 높은 분산도가 유지되려면, 반응열을 원활하게 제거해 주어야 한다. 반응열은 촉매 표면에서 발생하는데 이를 제거하지 않으면 촉매 표면에 부분적으로 핫 스팟을 생성하고, 이로 인해 금속 촉매의 소결이 일어나게 된다. 금속 촉매가 소결되면(금속 촉매의 크기가 커지면) 노출되는 금속 촉매의 면적이 감소하며, 이로 인해 촉매 활성이 감소하게 된다. The present invention relates to an inorganic carrier used in a catalyst and a method for synthesizing the same. In general, the inorganic carrier used in the catalyst is used for high dispersion and structural stability of the metal, which is an active component of the catalyst. In order to maintain a high degree of dispersion of the metal catalyst even during a reaction with a large calorific value, the heat of reaction must be smoothly removed. Reaction heat is generated on the surface of the catalyst, and if it is not removed, a hot spot is partially created on the surface of the catalyst, which causes sintering of the metal catalyst. When the metal catalyst is sintered (when the size of the metal catalyst increases), the area of the metal catalyst exposed decreases, which leads to a decrease in catalytic activity.

이러한 금속 촉매의 소결을 억제하는 방법으로서 금속 촉매와 담체(지지체) 사이의 인력을 활용한 고분산 방법이 일반적으로 많이 사용되고 있다. 하지만, 금속-지지체 상호작용(metal-support interaction)은 서로 상호작용을 하는 물질이 한정되어 있다는 단점이 있다. 따라서, 금속 촉매의 소결을 억제하기 위해 반응열을 제거하는 방법은 금속 촉매와 담체의 인력을 고려하지 않아도 된다. As a method of suppressing the sintering of the metal catalyst, a high dispersion method utilizing the attractive force between the metal catalyst and the carrier (support) is generally used. However, the metal-support interaction has a disadvantage in that materials interacting with each other are limited. Accordingly, the method of removing the reaction heat in order to suppress the sintering of the metal catalyst does not need to consider the attractive force between the metal catalyst and the carrier.

본 발명에서는 열적 안정성이 증대된 코어(core)-쉘(shell) 구조의 촉매담체를 개발하였다. 코어에는 비표면적이 작은 무기물, 예를 들어, α-알루미나(α-Al2O3)를 사용하고, 쉘에는 열전도도가 매우 뛰어난 실리콘 카바이드(SiC)와 무기물, 예를 들어, θ-알루미나, α-알루미나 또는 이들의 혼합물을 사용하였다. α-Al2O3의 열전도도(Thermal conductivity)는 30W/mK이며 SiC의 열전도도는 360 내지 490W/mK로서, SiC는 알루미나 대비 열전도율이 12배 이상 뛰어나다. 따라서, 촉매담체의 열적 안정성이 증대되면, 금속 촉매가 소결되는 현상을 효과적으로 억제할 수 있다. In the present invention, a catalyst carrier having a core-shell structure with increased thermal stability has been developed. For the core, an inorganic material with a small specific surface area, for example, α-alumina (α-Al 2 O 3 ) is used, and for the shell, silicon carbide (SiC) with excellent thermal conductivity and an inorganic material such as θ-alumina, α-alumina or a mixture thereof was used. The thermal conductivity of α-Al 2 O 3 is 30 W/mK, and the thermal conductivity of SiC is 360 to 490 W/mK, and SiC is more than 12 times superior in thermal conductivity than alumina. Accordingly, when the thermal stability of the catalyst carrier is increased, it is possible to effectively suppress the phenomenon of sintering the metal catalyst.

이에 본 발명에서는 코어-쉘 구조의 촉매담체를 제공하고 쉘에 열전도도가 매우 뛰어난 SiC를 포함시킴으로써 촉매 활성을 개선시키는 방법을 제공하게 되었다.Accordingly, the present invention provides a method for improving catalytic activity by providing a catalyst carrier having a core-shell structure and including SiC having excellent thermal conductivity in the shell.

본 발명은 발열반응에 사용되는 촉매 담체의 열적 특성을 개선시켜 촉매의 열적 안정성을 향상시키는 것을 목적으로 한다. 구체적으로, 본 발명은 비표면적이 작은 무기물을 코어로 사용하고 열전도도가 큰 SiC와 무기물을 포함하는 쉘로 상기 코어를 코팅한 코어-쉘 구조의 촉매 담체로써 촉매의 열적 안정성을 증가시켜 담지한 금속 촉매의 소결을 억제하는 것을 목적으로 한다.An object of the present invention is to improve the thermal stability of a catalyst by improving the thermal properties of a catalyst carrier used for an exothermic reaction. Specifically, the present invention is a catalyst carrier having a core-shell structure in which an inorganic material with a small specific surface area is used as a core and the core is coated with a shell containing SiC and an inorganic material having high thermal conductivity. Metal supported by increasing the thermal stability of the catalyst It aims at suppressing sintering of a catalyst.

상기한 목적을 달성하기 위해, 본 발명은 In order to achieve the above object, the present invention

코어(core)-쉘(shell) 구조를 갖는 촉매담체로서,A catalyst carrier having a core-shell structure, comprising:

상기 쉘은 20 내지 50중량%의 SiC를 포함하고, The shell comprises 20 to 50% by weight of SiC,

상기 코어 및 쉘의 성분은 각각 독립적으로 실리카(silica), 알루미나(alumina), 지르코니아(zirconia) 및 타이타니아(titania)로 이루어진 군에서 선택되는 것인 촉매담체를 제공한다.The components of the core and the shell are each independently selected from the group consisting of silica, alumina, zirconia and titania.

또한, 본 발명은 Also, the present invention

(a) 증류수에 제1 무기물과 SiC를 넣고 산 용액을 첨가하여 상온에서 교반하여 혼합물을 생성하는 단계;(a) adding a first inorganic material and SiC to distilled water, adding an acid solution, and stirring at room temperature to produce a mixture;

(b) 상기 혼합물에 제2 무기물과 알칼리화제를 첨가하여 겔화시키는 단계;(b) gelling the mixture by adding a second inorganic material and an alkalizing agent;

(c) (b) 단계에서 수득된 생성물을 60 내지 110℃에서 건조시키는 단계; 및(c) drying the product obtained in step (b) at 60 to 110°C; and

(d) (c) 단계에서 수득된 생성물을 1000 내지 1300℃에서 8 내지 12시간 동안 소성하여 코어-쉘 구조의 촉매담체를 수득하는 단계를 포함하고, (d) calcining the product obtained in step (c) at 1000 to 1300° C. for 8 to 12 hours to obtain a catalyst carrier having a core-shell structure,

상기 제1 무기물 및 제2 무기물은 각각 독립적으로 실리카(silica), 알루미나(alumina), 지르코니아(zirconia) 및 타이타니아(titania)로 이루어진 군에서 선택되는 것인, 촉매담체의 제조방법을 제공한다.The first inorganic material and the second inorganic material are each independently selected from the group consisting of silica, alumina, zirconia and titania.

종래의 기술에서는 SiC를 첨가한 촉매담체를 코어-쉘 구조로 합성하여 촉매의 열적 안정성을 향상시킨 기술이 없다. 본 발명에서는 코어-쉘 구조의 촉매담체의 쉘에 SiC를 도입함으로써 촉매담체의 열전도도를 높여 금속 촉매의 소결을 억제하는 효과를 제공한다.In the prior art, there is no technique for improving the thermal stability of the catalyst by synthesizing a catalyst carrier to which SiC is added in a core-shell structure. In the present invention, by introducing SiC into the shell of the catalyst support having a core-shell structure, the thermal conductivity of the catalyst support is increased, thereby providing an effect of suppressing sintering of the metal catalyst.

도 1은 본 발명의 일 실시양태에 따라 SiC를 쉘에 함유한 코어-쉘 구조의 촉매담체의 모식도이다.
도 2는 본 발명의 실시예에 따라 SiC가 첨가된 코어-쉘 구조의 촉매담체 표면의 SEM-EDS 분석 결과이다. SEM 이미지 상에서는 SiC와 Al2O3의 구분이 어려워 원소분석인 EDS 분석을 통하여 표면에 SiC가 분포하고 있음을 확인하였다. 도 2에서 보라색으로 나타낸 것이 SiC이며, 수십 마이크로 단위의 크기로 분포하고 있음이 확인된다.
도 3은 본 발명의 비교예 1에 따른 SiC를 함유하지 않는 코어-쉘 구조의 촉매담체에 담지된 Ag와 실시예 1 및 2의 SiC를 각각 30중량% 및 50중량% 함유한 코어-쉘 구조의 촉매담체에 담지된 Ag의 SEM 분석 결과 이미지이다.
도 4는 본 발명의 비교예 1에 따른 SiC를 함유하지 않는 코어-쉘 구조의 촉매담체에 담지된 Ag와 실시예 1 및 2의 SiC를 함유한 코어-쉘 구조의 촉매담체에 담지된 Ag를 300℃에서 1시간 동안 열처리한 후의 Ag의 SEM 분석 결과 이미지이다.
1 is a schematic diagram of a catalyst carrier having a core-shell structure containing SiC in a shell according to an embodiment of the present invention.
2 is a SEM-EDS analysis result of the surface of a catalyst carrier having a core-shell structure to which SiC is added according to an embodiment of the present invention. In the SEM image, it was difficult to distinguish between SiC and Al 2 O 3 , so it was confirmed that SiC was distributed on the surface through EDS analysis, which is an elemental analysis. It is confirmed that SiC is shown in purple in FIG. 2 and is distributed in the size of several tens of micro units.
3 is a core-shell structure containing 30% by weight and 50% by weight of Ag supported on a catalyst carrier having a core-shell structure without SiC according to Comparative Example 1 of the present invention and SiC of Examples 1 and 2, respectively; SEM analysis result image of Ag supported on the catalyst carrier of
4 shows Ag supported on a core-shell structure catalyst carrier not containing SiC according to Comparative Example 1 of the present invention and Ag supported on a core-shell structure catalyst carrier containing SiC of Examples 1 and 2; This is an image of the SEM analysis result of Ag after heat treatment at 300° C. for 1 hour.

본 발명에서는 촉매담체의 열적 안정성을 증가시키기 위해 SiC를 첨가하여 코어-쉘 구조의 촉매담체를 합성하였다. SiC는 촉매담체의 쉘 부분에 첨가하였으며 첨가량은 20 내지 50중량%이다.In the present invention, a catalyst carrier having a core-shell structure was synthesized by adding SiC to increase the thermal stability of the catalyst carrier. SiC was added to the shell portion of the catalyst carrier and the amount added was 20 to 50% by weight.

SiC 함량이 20중량% 보다 낮으면 촉매의 열적 안정성 증가 효과가 미미하고, SiC 함량이 50중량% 보다 높으면 코어에 SiC가 안정적으로 결합하지 못할 수 있다. When the SiC content is lower than 20% by weight, the effect of increasing the thermal stability of the catalyst is insignificant, and when the SiC content is higher than 50% by weight, the SiC may not be stably bonded to the core.

일 실시양태에서, 본 발명은 2종의 무기물을 코어-쉘 구조로 합성한 촉매담체를 제공한다.In one embodiment, the present invention provides a catalyst carrier in which two kinds of inorganic substances are synthesized in a core-shell structure.

일 실시양태에서, 본 발명은 In one embodiment, the present invention provides

코어(core)-쉘(shell) 구조를 갖는 촉매담체로서,A catalyst carrier having a core-shell structure, comprising:

상기 쉘은 20 내지 50중량%의 SiC를 포함하고, The shell comprises 20 to 50% by weight of SiC,

상기 코어 및 쉘의 성분은 각각 독립적으로 실리카(silica), 알루미나(alumina), 지르코니아(zirconia) 및 타이타니아(titania)로 이루어진 군에서 선택되는 것인 촉매담체를 제공한다.The components of the core and the shell are each independently selected from the group consisting of silica, alumina, zirconia and titania.

일 실시양태에서, 본 발명의 코어는 상기 성분 입자들의 집합체이고 상기 코어를 쉘의 상기 성분 입자들이 둘러 싸고 있고, 상기 쉘의 입자의 평균 직경 대 코어의 입자의 평균 직경은 1:80 내지 1:150 또는 1:90 내지 1:130이다.In one embodiment, the core of the present invention is an aggregate of the component particles and the core is surrounded by the component particles of the shell, and the average diameter of the particles of the shell to the average diameter of the particles of the core is from 1:80 to 1: 150 or 1:90 to 1:130.

일 실시양태에서, 본 발명의 촉매담체의 코어는 링, 구형, 마카로니 또는 실린더 형태의 것 중 1종이다. In one embodiment, the core of the catalyst carrier of the present invention is one of a ring, a sphere, a macaroni or a cylinder shape.

일 실시양태에서, 본 발명의 코어의 성분은 α-알루미나(α-Al2O3)이다.In one embodiment, the component of the core of the invention is α-alumina (α-Al 2 O 3 ).

일 실시양태에서, 본 발명의 쉘의 성분은 θ-알루미나, α-알루미나 또는 이들의 혼합물이다.In one embodiment, the component of the shell of the present invention is θ-alumina, α-alumina, or mixtures thereof.

일 실시양태에서, 본 발명의 촉매담체는 Al2O3 코어 표면에 수십 마이크로미터의 실리콘 카바이드 입자를 알루미나와 혼합하여 코팅한 것이다.In one embodiment, the catalyst carrier of the present invention is coated on the surface of the Al 2 O 3 core by mixing tens of micrometers of silicon carbide particles with alumina.

일 실시양태에서, 본 발명의 쉘의 SiC 함량은 30 내지 50중량%이다. In one embodiment, the SiC content of the shell of the present invention is between 30 and 50% by weight.

일 실시양태에서, 본 발명의 촉매담체의 비표면적은 0.6 내지 1.0㎡/g이다.In one embodiment, the specific surface area of the catalyst carrier of the present invention is 0.6 to 1.0 m 2 /g.

일 실시양태에서, 본 발명의 촉매담체에 담지되는 금속은 Ag, Pd 및 Pt로 이루어진 군에서 선택되는 1종 이상의 것이다.In one embodiment, the metal supported on the catalyst carrier of the present invention is at least one selected from the group consisting of Ag, Pd and Pt.

일 실시양태에서, 본 발명은 In one embodiment, the present invention provides

(a) 증류수에 제1 무기물과 SiC를 넣고 산 용액을 첨가하여 상온에서 교반하여 혼합물을 생성하는 단계;(a) adding a first inorganic material and SiC to distilled water, adding an acid solution, and stirring at room temperature to produce a mixture;

(b) 상기 혼합물에 제2 무기물과 알칼리화제를 첨가하여 겔화시키는 단계;(b) gelling the mixture by adding a second inorganic material and an alkalizing agent;

(c) (b) 단계에서 수득된 생성물을 60 내지 110℃에서 건조시키는 단계; 및(c) drying the product obtained in step (b) at 60 to 110°C; and

(d) (c) 단계에서 수득된 생성물을 1000 내지 1300℃에서 8 내지 12시간 동안 소성하여 코어-쉘 구조의 촉매담체를 수득하는 단계를 포함하고, (d) calcining the product obtained in step (c) at 1000 to 1300° C. for 8 to 12 hours to obtain a catalyst carrier having a core-shell structure,

상기 제1 무기물 및 제2 무기물은 각각 독립적으로 실리카(silica), 알루미나(alumina), 지르코니아(zirconia) 및 타이타니아(titania)로 이루어진 군에서 선택되는 것인, 촉매담체의 제조방법을 제공한다.The first inorganic material and the second inorganic material are each independently selected from the group consisting of silica, alumina, zirconia and titania.

일 실시양태에서, 본 발명의 촉매담체의 제조방법에서 코어의 성분은 α-알루미나(α-Al2O3)이다.In one embodiment, in the method for preparing the catalyst carrier of the present invention, the component of the core is α-alumina (α-Al 2 O 3 ).

일 실시양태에서, 본 발명의 촉매담체의 제조방법에서 쉘의 성분은 θ-알루미나, α-알루미나 또는 이들의 혼합물이다.In one embodiment, in the method for preparing the catalyst carrier of the present invention, the component of the shell is θ-alumina, α-alumina, or a mixture thereof.

일 실시양태에서, 본 발명의 촉매담체의 제조방법에서 쉘의 SiC 함량은 30 내지 50중량%이다. In one embodiment, in the method for preparing the catalyst carrier of the present invention, the SiC content of the shell is 30 to 50% by weight.

일 실시양태에서, 본 발명의 촉매담체의 제조방법에서 촉매담체의 비표면적은 0.6 내지 1.0㎡/g이다.In one embodiment, in the method for preparing the catalyst support of the present invention, the specific surface area of the catalyst support is 0.6 to 1.0 m 2 /g.

이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나, 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. Hereinafter, embodiments of the present invention will be described in detail so that those of ordinary skill in the art can easily carry out the present invention. However, the present invention may be embodied in many different forms and is not limited to the embodiments described herein.

실시예 1: 코어-쉘 구조의 알루미나 담체의 합성 Example 1 : Synthesis of alumina carrier with core-shell structure

(1) 증류수(100ml)에 보헤마이트(boehmite; aluminium oxide hydroxide)와 SiC 30중량%를 넣고 교반하였다.(1) Boehmite (aluminium oxide hydroxide) and 30 wt% of SiC were added to distilled water (100ml) and stirred.

(2) (1)로부터의 혼합 용액에 질산(1.5ml)을 첨가하였다.(2) To the mixed solution from (1) was added nitric acid (1.5 ml).

(3) (2)로부터의 혼합액에 α-알루미나(α-Al2O3)를 첨가한 후 상온에서 30분간 교반하였다. (3) α-alumina (α-Al 2 O 3 ) was added to the mixture from (2) and stirred at room temperature for 30 minutes.

(4) (3)으로부터의 혼합액에 암모니아수(15ml)를 첨가한 후 상온에서 30분간 교반하여 겔화시켰다.(4) After adding aqueous ammonia (15 ml) to the mixed solution from (3), the mixture was stirred at room temperature for 30 minutes to gelation.

(5) (4)로부터의 합성된 담체를 체로 거르고 오븐(80℃)에서 24시간 건조시켰다. (5) The synthesized carrier from (4) was sieved and dried in an oven (80° C.) for 24 hours.

(6) 건조된 담체를 공기 흐름(air flow) 하에 1100℃에서 10시간 동안 소성시켜 코어-쉘 구조(α-Al2O3/SiC+θ-알루미나와 α-알루미나의 혼합물)의 촉매담체를 제조하였다.(6) The dried carrier was calcined at 1100° C. for 10 hours under air flow to obtain a catalyst carrier having a core-shell structure (α-Al 2 O 3 /SiC+θ-alumina and α-alumina mixture). prepared.

실시예 2: 코어-쉘 구조의 알루미나 담체의 합성 Example 2 : Synthesis of alumina carrier with core-shell structure

실시예 1의 단계 (1)에서 SiC의 함량을 50중량%로 첨가하는 것을 제외하고는 제조예 1과 동일한 방법으로 코어-쉘 구조(α-Al2O3/SiC+θ-알루미나와 α-알루미나의 혼합물)의 촉매담체를 제조하였다.The core-shell structure (α-Al 2 O 3 /SiC+θ-alumina and α- A mixture of alumina) was prepared as a catalyst carrier.

비교예 1Comparative Example 1

SiC를 첨가하지 않는 것을 제외하고는 제조예 1과 동일한 방법으로 코어-쉘 구조(α-Al2O3/θ-알루미나와 α-알루미나의 혼합물)의 촉매담체를 제조하였다. A catalyst carrier having a core-shell structure (a mixture of α-Al 2 O 3 /θ-alumina and α-alumina) was prepared in the same manner as in Preparation Example 1 except that SiC was not added.

실험예 1: 촉매담체에 Ag 담지 Experimental Example 1 : Ag supported on catalyst carrier

1) 실시예 1에서 합성된 촉매담체에 Ag 담지1) Ag supported on the catalyst carrier synthesized in Example 1

(1) 은 옥살레이트(silver oxalate) 7g을 증류수(7ml)에 넣고 5℃로 냉각시키면서 교반하였다.(1) 7 g of silver oxalate was added to distilled water (7 ml) and stirred while cooling to 5°C.

(2) (1)로부터의 용액의 총 중량에 대해 92중량%의 에틸렌디아민(ethylenediamine)(8중량%는 H2O)을 3.5ml 넣고 5℃로 냉각시키면서 교반하였다.(2) 3.5 ml of 92% by weight of ethylenediamine (8% by weight is H 2 O) was added with respect to the total weight of the solution from (1) and stirred while cooling to 5°C.

(3) Re2O7(37.4mg)과 (NH4)6Mo7O24·4H2O(3.7mg)를 각각 에틸렌디아민과 암모니아수의 혼합액(1ml)에 용해시켰다.(3) Re 2 O 7 (37.4 mg) and (NH 4 ) 6 Mo 7 O 24· 4H 2 O (3.7 mg) were respectively dissolved in a mixed solution (1 ml) of ethylenediamine and aqueous ammonia.

(4) LiNO3(28mg)와 Cs2CO3(18.3mg)를 각각 증류수(1ml)에 용해시켰다.(4) LiNO 3 (28 mg) and Cs 2 CO 3 (18.3 mg) were each dissolved in distilled water (1 ml).

(5) (3)과 (4)의 Re, Mo, Li, Cs의 용액을 (2)의 교반 용액에 넣고 5℃로 냉각시키면서 교반하였다.(5) The solutions of Re, Mo, Li, and Cs of (3) and (4) were put into the stirred solution of (2) and stirred while cooling to 5°C.

(6) 제조예 1에서 제조된 코어-쉘 구조의 촉매담체 15g에 (5)에서 완성된 전구체 용액을 모두 흡수시켰다.(6) All of the precursor solution completed in (5) was absorbed into 15 g of the catalyst carrier having a core-shell structure prepared in Preparation Example 1.

(7) 상기 전구체 용액을 흡수한 촉매담체를 감압 건조시켰다.(7) The catalyst carrier absorbing the precursor solution was dried under reduced pressure.

(8) 감압 건조된 촉매담체를 공기 흐름 하에 300℃에서 1시간 동안 열처리하였다. 완성된 (Re, Mo, Li, Cs)Ag/(α-Al2O3/SiC+θ-알루미나와 α-알루미나의 혼합물) 촉매는 20중량%의 은(Ag)을 포함하며, 360ppm의 레늄(Re)을 포함하며, 100ppm의 몰리브덴(Mo)을 포함하며, 750ppm의 세슘(Cs)을 포함하고, 140ppm의 리튬(Li)을 포함한다.(8) The catalyst carrier dried under reduced pressure was heat-treated at 300° C. for 1 hour under an air flow. The finished (Re, Mo, Li, Cs)Ag/(α-Al 2 O 3 /SiC+θ-alumina and α-alumina mixture) catalyst contains 20 wt% silver (Ag) and 360 ppm rhenium It contains (Re), contains 100 ppm of molybdenum (Mo), contains 750 ppm of cesium (Cs), and contains 140 ppm of lithium (Li).

2) 실시예 2에서 합성된 촉매담체에 Ag 담지 2) Ag supported on the catalyst carrier synthesized in Example 2

실시예 2에서 제조된 코어-쉘 구조의 촉매담체를 이용하는 것을 제외하고는 실험예 1과 동일한 방법으로 (Re, Mo, Li, Cs)Ag/(α-Al2O3/SiC+θ-알루미나와 α-알루미나의 혼합물) 촉매를 제조하였다. (Re, Mo, Li, Cs)Ag/(α-Al 2 O 3 /SiC+θ-alumina) in the same manner as in Experimental Example 1, except that the catalyst carrier having a core-shell structure prepared in Example 2 was used. and α-alumina) catalyst was prepared.

3) 비교예 1에서 합성된 촉매담체에 Ag 담지 3) Ag supported on the catalyst carrier synthesized in Comparative Example 1

비교예 1에서 제조된 SiC가 첨가되지 않은 코어-쉘 구조의 알루미나 담체를 이용하는 것을 제외하고는 실험예 1과 동일한 방법으로 (Re, Mo, Li, Cs)Ag/(α-Al2O3/θ-알루미나와 α-알루미나의 혼합물) 촉매를 제조하였다. (Re, Mo, Li, Cs)Ag/(α-Al 2 O 3 / A mixture of θ-alumina and α-alumina) catalyst was prepared.

실험예 2: 열처리 Experimental Example 2 : Heat treatment

실험예 1에서 제조한 세 가지 담지촉매의 열적 안정성을 확인하기 위해 300℃에서 1시간 동안 열처리를 수행하였다. SiC 첨가량에 따른 담체의 비표면적 및 담지된 Ag의 SEM 분석에 따른 입자 크기를 아래 표 1에 나타냈다. To confirm the thermal stability of the three supported catalysts prepared in Experimental Example 1, heat treatment was performed at 300° C. for 1 hour. Table 1 below shows the specific surface area of the carrier according to the SiC addition amount and the particle size according to the SEM analysis of the supported Ag.

또한, 위의 실시예 1 및 2에 따라 SiC가 첨가된 코어-쉘 구조의 담체 표면의 SEM-EDS 분석 결과를 도 2에 나타내고, 비교예 1에 따른 SiC를 함유하지 않는 코어-쉘 구조의 담체에 담지된 Ag와 실시예 1 및 2의 SiC를 함유한 코어-쉘 구조의 담체에 담지된 Ag의 SEM 분석 결과 이미지를 도 3에 나타내었다. 또한, Ag를 담지한 촉매를 300℃에서 1시간 동안 열처리한 후의 SEM 분석 결과 이미지를 도 4에 나타냈다.In addition, the SEM-EDS analysis result of the surface of the support having a core-shell structure to which SiC is added according to Examples 1 and 2 above is shown in FIG. 2 , and the SiC-free core-shell structure carrier according to Comparative Example 1 Figure 3 shows the SEM analysis result image of Ag supported on the Ag supported on the carrier of the core-shell structure containing the SiC of Examples 1 and 2 and. In addition, the SEM analysis result image after heat-treating the Ag-supported catalyst at 300° C. for 1 hour is shown in FIG. 4 .

담체carrier SiC 함량
(중량%)
SiC content
(weight%)
비표면적 (m2/g)Specific surface area (m 2 /g) Ag 담지 촉매Ag supported catalyst Ag 입자 크기 (nm)Ag particle size (nm)
열처리 전before heat treatment 열처리 후after heat treatment 비교예 1:
코어-쉘(Al2O3)
Comparative Example 1:
Core-shell (Al 2 O 3 )
00 0.740.74 비교예 1:
Ag/코어-쉘(Al2O3)
Comparative Example 1:
Ag/core-shell (Al 2 O 3 )
214214 515515
실시예 1:
코어-쉘(SiC + Al2O3)
Example 1:
Core-shell (SiC + Al 2 O 3 )
3030 0.880.88 실시예 1:
Ag/코어-쉘(SiC + Al2O3)
Example 1:
Ag/core-shell (SiC + Al 2 O 3 )
260260 396396
실시예 2:
코어-쉘(SiC + Al2O3)
Example 2:
Core-shell (SiC + Al 2 O 3 )
5050 0.690.69 실시예 2:
Ag/코어-쉘(SiC + Al2O3)
Example 2:
Ag/core-shell (SiC + Al 2 O 3 )
217217 335335

표 1에 기재된 Ag 입자 크기는 도 3 및 4의 SEM 이미지 상의 평균 Ag 입자 크기이다. 도 3 및 4로부터 Ag를 담지한 촉매의 열처리 전후의 Ag 입자 크기 변화를 통해서 Ag 소결이 일어난 정도를 확인할 수 있다. SiC를 첨가하지 않은 비교예 1의 담체를 사용한 경우 열처리 후 Ag의 크기가 매우 커졌으며(평균 크기 214nm → 515nm), SiC를 첨가한 실시예 1과 2의 담체를 사용한 경우의 Ag의 크기는 열처리 후에도 비교예 1에 비해 작은 상태(실시예 1: 260nm → 396nm, 실시예 2: 217nm → 335nm)로 유지됨을 확인하였다.The Ag particle sizes listed in Table 1 are the average Ag particle sizes on the SEM images of FIGS. 3 and 4 . From FIGS. 3 and 4 , it can be confirmed the extent of Ag sintering through the Ag particle size change before and after the heat treatment of the Ag-supported catalyst. In the case of using the carrier of Comparative Example 1 in which SiC was not added, the size of Ag was very large after heat treatment (average size 214 nm → 515 nm), and the size of Ag in the case of using the carriers of Examples 1 and 2 in which SiC was added was determined by heat treatment. It was confirmed that even after Comparative Example 1 was maintained in a small state (Example 1: 260nm → 396nm, Example 2: 217nm → 335nm).

따라서, 본 발명에 따르면 2종의 무기물을 포함하는 코어-쉘 구조의 담체로서 쉘에 SiC를 함유하는 담체가 SiC를 첨가하지 않은 담체에 비해 담지된 금속 촉매의 소결을 억제함으로써 금속 촉매의 크기가 커지는 것을 억제하여 금속 촉매의 열적 안정성을 증가시키는 효과를 제공한다.Therefore, according to the present invention, as a carrier of a core-shell structure including two inorganic substances, the carrier containing SiC in the shell suppresses the sintering of the supported metal catalyst compared to the carrier without adding SiC, thereby increasing the size of the metal catalyst. It provides the effect of increasing the thermal stability of the metal catalyst by suppressing the growth.

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다. As the specific parts of the present invention have been described in detail above, for those of ordinary skill in the art, it is clear that these specific descriptions are only preferred embodiments, and the scope of the present invention is not limited thereby. something to do. Accordingly, it is intended that the substantial scope of the present invention be defined by the appended claims and their equivalents.

Claims (12)

코어(core)-쉘(shell) 구조를 갖는 촉매담체로서,
상기 코어의 성분은 α-알루미나(α-Al2O3)이고,
상기 쉘의 성분은 θ-알루미나 및 α-알루미나의 혼합물이고,
상기 쉘은 20 내지 50중량%의 SiC를 포함하는 촉매담체.
A catalyst carrier having a core-shell structure, comprising:
A component of the core is α-alumina (α-Al 2 O 3 ),
The component of the shell is a mixture of θ-alumina and α-alumina,
The shell is a catalyst carrier comprising 20 to 50% by weight of SiC.
제1항에 있어서, 상기 촉매담체의 코어가 링, 구형, 마카로니 및 실린더 형태의 것 중 1종인 것인 촉매담체. The catalyst carrier according to claim 1, wherein the core of the catalyst carrier is one of a ring, a sphere, a macaroni, and a cylinder shape. 삭제delete 삭제delete 제1항에 있어서, 상기 쉘의 SiC 함량이 30 내지 50중량%인 것인 촉매담체. The catalyst carrier according to claim 1, wherein the SiC content of the shell is 30 to 50 wt%. 제1항에 있어서, 상기 촉매담체의 비표면적이 0.6 내지 1.0㎡/g인 것인 촉매담체.The catalyst support according to claim 1, wherein the specific surface area of the catalyst support is 0.6 to 1.0 m 2 /g. 제1항에 있어서, 상기 촉매담체에 담지되는 금속이 Ag, Pd 및 Pt로 이루어진 군에서 선택되는 1종 이상의 것인 촉매담체.The catalyst carrier according to claim 1, wherein the metal supported on the catalyst carrier is at least one selected from the group consisting of Ag, Pd and Pt. (a) 증류수에 제1 무기물로서 보헤마이트(boehmite; aluminium oxide hydroxide)와 SiC를 넣고 산 용액을 첨가하여 상온에서 교반하여 혼합물을 생성하는 단계;
(b) 상기 혼합물에 제2 무기물로서 α-알루미나(α-Al2O3)와 알칼리화제를 첨가하여 겔화시키는 단계;
(c) (b) 단계에서 수득된 생성물을 60 내지 110℃에서 건조시키는 단계; 및
(d) (c) 단계에서 수득된 생성물을 1000 내지 1300℃에서 8 내지 12시간 동안 소성하여 코어-쉘 구조의 촉매담체를 수득하는 단계를 포함하는, 제1항에 따른 촉매담체의 제조방법.
(a) adding boehmite (aluminium oxide hydroxide) and SiC as a first inorganic material to distilled water, adding an acid solution, and stirring at room temperature to produce a mixture;
(b) gelling the mixture by adding α-alumina (α-Al 2 O 3 ) and an alkalizing agent as a second inorganic material;
(c) drying the product obtained in step (b) at 60 to 110°C; and
(d) calcining the product obtained in step (c) at 1000 to 1300° C. for 8 to 12 hours to obtain a catalyst carrier having a core-shell structure.
삭제delete 삭제delete 제8항에 있어서, 상기 쉘의 SiC 함량이 30 내지 50중량%인 것인, 촉매담체의 제조방법.The method according to claim 8, wherein the SiC content of the shell is 30 to 50 wt%. 제8항에 있어서, 상기 촉매담체의 비표면적이 0.6 내지 1.0㎡/g인 것인, 촉매담체의 제조방법.The method according to claim 8, wherein the specific surface area of the catalyst support is 0.6 to 1.0 m 2 /g.
KR1020170163121A 2017-11-30 2017-11-30 Catalyst support having a core-shell structure with enhanced thermal stability and preparation method thereof KR102309341B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170163121A KR102309341B1 (en) 2017-11-30 2017-11-30 Catalyst support having a core-shell structure with enhanced thermal stability and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170163121A KR102309341B1 (en) 2017-11-30 2017-11-30 Catalyst support having a core-shell structure with enhanced thermal stability and preparation method thereof

Publications (2)

Publication Number Publication Date
KR20190063938A KR20190063938A (en) 2019-06-10
KR102309341B1 true KR102309341B1 (en) 2021-10-05

Family

ID=66848738

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170163121A KR102309341B1 (en) 2017-11-30 2017-11-30 Catalyst support having a core-shell structure with enhanced thermal stability and preparation method thereof

Country Status (1)

Country Link
KR (1) KR102309341B1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3313164B2 (en) * 1992-02-27 2002-08-12 株式会社日本触媒 Silver catalyst for producing ethylene oxide and method for producing the same
BRPI0416406A (en) * 2003-12-19 2007-01-09 Celanese Int Corp method for producing a catalyst or pre-catalyst suitable to assist in the production of alkenyl alkanoates, composition for catalyzing the production of an alkenyl alkanoate and method for producing alkenyl alkanoates

Also Published As

Publication number Publication date
KR20190063938A (en) 2019-06-10

Similar Documents

Publication Publication Date Title
RU2223821C2 (en) Method of preparing fischer-tropsch catalyst precursor
KR100483574B1 (en) Carrier for manufacturing ethylene oxide, catalyst for manufacturing ethylene oxide, and method for manufacturing ethylene oxide
RU2001111860A (en) The method of impregnation for catalysts
JP2003144932A (en) Catalyst for producing ethylene oxide, producing method therefor and method for manufacturing ethylene oxide by the catalyst
CN110479251B (en) Macroporous-mesoporous supported palladium catalyst, and preparation method and application thereof
CN110038543B (en) Alpha-alumina carrier of silver catalyst for ethylene epoxidation, silver catalyst and method for producing ethylene oxide by ethylene epoxidation
JP3371531B2 (en) Catalyst production method
CN109499558A (en) A kind of alpha-alumina supports, silver catalyst and olefin epoxidation process
JP2006255667A (en) Carbon dioxide absorbent and method for preparing it
CN108671934A (en) A kind of preparation method of the Hydrobon catalyst of high mechanical properties
CN104707664A (en) Preparation method of alpha-alumina carrier for silver catalyst
EP1081116B1 (en) Ceramic article, carrier for catalyst, methods for production thereof, catalyst for producing ethylene oxide using the carrier, and method for producing ethylene oxide
KR102309341B1 (en) Catalyst support having a core-shell structure with enhanced thermal stability and preparation method thereof
TW200846075A (en) Oxychlorination catalyst and method for preparing the same
JP2007038085A (en) Manufacturing method of catalyst and catalyst for purification of exhaust gas
JP2016513005A (en) Modified support for silver-based ethylene oxide catalyst
KR20180038805A (en) Base material absorbing carbon dioxide, carbon dioxide absorbent composition comprising the same, and carbon dioxide absorbent manufactured by using the same
CN106311230A (en) Preparation method of silver catalyst used for alkene epoxidation, catalyst and application thereof
JP4726349B2 (en) Catalyst for producing ethylene oxide, method for producing the same, and method for producing ethylene oxide using the catalyst
CN109746028B (en) Propane dehydrogenation catalyst, preparation method thereof and method for preparing propylene by propane dehydrogenation
JP2002136868A (en) Carrier of catalyst for manufacturing ethylene oxide, catalyst using the carrier for manufacturing ethylene oxide and method for manufacturing ethylene oxide
KR20120117255A (en) Catalyst for the dehydration of glycerol to acrolein and preparing method of the same
CN112007625B (en) Alpha-alumina carrier, preparation method, silver catalyst and application
CN107398304B (en) Alpha-alumina carrier of silver catalyst for ethylene epoxidation and preparation method thereof
JP4312510B2 (en) Method for producing fluid catalyst for oxychlorination and fluid catalyst for oxychlorination

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant