KR102306642B1 - Multijunction Solar Cell and Method for Manufacturing the Same - Google Patents

Multijunction Solar Cell and Method for Manufacturing the Same Download PDF

Info

Publication number
KR102306642B1
KR102306642B1 KR1020190178468A KR20190178468A KR102306642B1 KR 102306642 B1 KR102306642 B1 KR 102306642B1 KR 1020190178468 A KR1020190178468 A KR 1020190178468A KR 20190178468 A KR20190178468 A KR 20190178468A KR 102306642 B1 KR102306642 B1 KR 102306642B1
Authority
KR
South Korea
Prior art keywords
solar cell
cell device
layer
manufacturing
bonding
Prior art date
Application number
KR1020190178468A
Other languages
Korean (ko)
Other versions
KR20210085441A (en
Inventor
이광철
김효진
Original Assignee
한국광기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국광기술원 filed Critical 한국광기술원
Priority to KR1020190178468A priority Critical patent/KR102306642B1/en
Publication of KR20210085441A publication Critical patent/KR20210085441A/en
Application granted granted Critical
Publication of KR102306642B1 publication Critical patent/KR102306642B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0725Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

본 발명은 다중접합 태양전지에 관한 것으로서, 제1태양전지셀층을 갖는 제1태양전지소자와, 제2태양전지셀층을 갖는 제2태양전지소자와, 제1태양전지소자와 제2태양전지소자 사이에 접합되게 형성되며 투명실리콘화합물에 은나노와이어가 분산된 형태로 형성된 본딩층을 구비한다. 이러한 다중접합 태양전지 및 그 제조방법에 의하면, 이종의 기판에 각각 격자 정합된 태양전지 셀층을 형성하고, 이를 본딩 공정을 통해 하나의 다중접합 태양전지를 구성시킴으로써, 특히, 3중 접합 이상의 태양전지에서 효율이 크게 향상되는 효과를 기대할 수 있다.The present invention relates to a multi-junction solar cell, a first solar cell device having a first solar cell layer, a second solar cell device having a second solar cell layer, a first solar cell device, and a second solar cell device It is formed to be bonded therebetween and includes a bonding layer formed in a form in which silver nanowires are dispersed in a transparent silicon compound. According to this multi-junction solar cell and its manufacturing method, by forming lattice-matched solar cell layers on different substrates, respectively, and configuring one multi-junction solar cell through a bonding process, in particular, a triple-junction or more solar cell A significant improvement in efficiency can be expected.

Description

다중접합 태양전지 및 그 제조방법{Multijunction Solar Cell and Method for Manufacturing the Same}Multijunction Solar Cell and Method for Manufacturing the Same

본 발명은 다중접합 태양전지 및 그 제조방법에 관한 것으로서, 보다 상세하게는 이종의 기판에 각각 격자 정합된 물질을 성장시킨 후, 상호 본딩하여 격자 부정합에 의한 각 셀의 성능 및 신뢰성 감축을 최소화함으로써, 에너지 효율을 향상시킬 수 있는 다중접합 태양전지 및 그 제조방법에 관한 것이다.The present invention relates to a multi-junction solar cell and a method for manufacturing the same, and more particularly, by growing lattice-matched materials on different substrates, bonding them to each other, and minimizing the reduction in performance and reliability of each cell due to lattice mismatch. , to a multi-junction solar cell capable of improving energy efficiency and a method for manufacturing the same.

태양전지는 태양광발전의 핵심소자이며, 광기전력효과(Photovoltaic Effect)를 이용하여 태양에너지를 직접 전기에너지로 변환시키는 소자이다.A solar cell is a core element of photovoltaic power generation, and it is a device that directly converts solar energy into electrical energy using the photovoltaic effect.

통상적인 태양전지의 동작은 반도체에 입사되는 태양광에 의한 전자-정공 쌍의 생성, 전자와 정공이 각각 분리되어 양단의 전극으로의 이동으로 이루어진다. 즉, 초기의 태양전지는 p형 반도체와 n형 반도체의 접합을 통해 구현되었다. 그러나, 최근에는 기술의 진보에 따라 실리콘과 같은 무기 소재로 구성된 무기 태양전지, 유기물을 채용한 유기 태양전지 등이 출현 되어 이용되고 있다.A typical solar cell operation consists of generation of an electron-hole pair by sunlight incident on a semiconductor, and the electrons and holes are separated from each other and moved to electrodes at both ends. That is, early solar cells were implemented through the junction of a p-type semiconductor and an n-type semiconductor. However, in recent years, with the advancement of technology, inorganic solar cells made of inorganic materials such as silicon, organic solar cells employing organic materials, etc. have appeared and are being used.

무기 태양전지로는 실리콘계 태양전지와, CIS, CIGS, CdTe, GaAs 등과 같은 칼코게나이드 및 화합물 반도체 태양전지 등이 있다.Examples of inorganic solar cells include silicon-based solar cells and chalcogenide and compound semiconductor solar cells such as CIS, CIGS, CdTe, and GaAs.

유기 태양전지로는 양자점 태양전지와, 페로브스카이트계 태양전지 등이 있다.Examples of organic solar cells include quantum dot solar cells and perovskite solar cells.

실리콘계 태양전지는 화합물반도체 태양전지에 비해 재료를 구하기가 용이하고 저렴하여 저가의 태양전지를 공급할 수 있는 장점이 있으나, 화합물반도체 태양전지에 비해 효율이 떨어지는 단점이 있다. 현재 일부 3-5족 화합물반도체 다중접합 전지는 40%를 넘는 에너지 효율을 갖는 반면, 실리콘 기술은 일반적으로 단지 약 25% 효율성에 그친다. 따라서, 실리콘을 기판으로 사용하면서도 태양전지의 효율을 높일 수 있는 기술이 요구되는 실정이고, 이를 위하여 다중접합 기술이 활용될 수 있는데, 일반적인 다중접합 태양전지 구조에서는 기판과 격자 상수가 상이한 박막을 성장할 경우 캐리어 수명이 감소하여 태양전지 효율이 감소하는 문제가 있다. 이를 부분적으로 완화하기 위해 버퍼를 성장하는 방법이 활용되고 있다.The silicon-based solar cell has the advantage of being able to supply a low-cost solar cell because it is easy to obtain materials and inexpensive compared to the compound semiconductor solar cell, but has a disadvantage in that the efficiency is lower than that of the compound semiconductor solar cell. Currently, some Group III-V compound semiconductor multijunction cells have energy efficiencies in excess of 40%, while silicon technology is typically only about 25% efficient. Therefore, there is a need for a technology capable of increasing the efficiency of a solar cell while using silicon as a substrate, and for this purpose, a multi-junction technology can be utilized. In this case, there is a problem in that the carrier life is reduced and the solar cell efficiency is reduced. In order to partially alleviate this, a method of growing a buffer is utilized.

다중접합 태양전지는 국내 등록특허 제10-1716149호 등 다양하게 제안되어 있다.A multi-junction solar cell has been proposed in various ways, such as Korean Patent Registration No. 10-1716149.

한편, NREL 발표에 의하면 2019년 현재 육중접합의 경우, 비집광상태 39.2%, 집광상태 47.1%가 최대 효율로 알려져 있고, 실리콘 태양전지는 비집광상태로 26.1% 로 알려져 있다.On the other hand, according to the NREL announcement, as of 2019, in the case of the hexagonal junction, 39.2% in the non-condensing state and 47.1% in the light-condensing state are known as the maximum efficiency, and the silicon solar cell is known to be 26.1% in the non-condensing state.

따라서, 태양전지의 효율을 높이기 위해서 다중접합 기술이 요구되지만, 단일기판에 다중접합 태양전지를 구현하기 위해서는 격자 부정합에 의한 물질 파라미터 희생이 수반되어 전체 태양전지 효율은 감소할 가능성이 크다.Therefore, although a multi-junction technology is required to increase the efficiency of a solar cell, in order to implement a multi-junction solar cell on a single substrate, material parameters are sacrificed due to lattice mismatch, so the overall solar cell efficiency is highly likely to decrease.

종래의 다중접합 태양전지를 구현하는 방법은 주로 각기 다른 이종 기판에 해당하는 셀층을 형성하고 특정 기판을 제거한 후 다른 기판에 접착하는 방식을 적용하고 있다. 또한, 접착 방식은 주로 솔더 물질, 투명전극물질(TCO) 등을 융착하거나 Poly(styrene)-b-poly(2-vinyl pyridine) [PSbP2VP] 등과 같은 투명수지 내에서 금속 물질을 자기정렬 방식으로 융착하였다. 그러나, 금속 융착 방식은 고온에 의한 태양전지 소자의 손상, 열화를 줄 수 있으며, 일반 투명 수지의 경우 가시광선 대역 광흡수단 때문에 장기신뢰성 면에서 황변현상, 크랙현상 등이 발생하여 문제가 될 수 있다. The conventional method of implementing a multi-junction solar cell is mainly applying a method of forming cell layers corresponding to different heterogeneous substrates, removing a specific substrate, and then bonding the cells to other substrates. In addition, the adhesion method is mainly welding a solder material, a transparent electrode material (TCO), etc. or a metal material in a transparent resin such as Poly(styrene)-b-poly(2-vinyl pyridine) [PSbP2VP] by self-alignment method. did. However, the metal fusion method may cause damage and deterioration of solar cell elements due to high temperature, and in the case of general transparent resins, yellowing and cracking may occur in terms of long-term reliability due to the visible ray band light absorption edge, which may cause problems. have.

본 발명은 상기와 같은 문제점을 해결하기 위하여 창안된 것으로서 격자 및 전류 정합을 위한 물질의 선택폭을 넓힐 수 있도록 이종의 기판에 태양전지 셀층을 형성시키기 위해 각각 격자 정합된 물질을 성장시킨 후 본딩을 하여 격자 부정합에 의한 각 셀의 성능 및 신뢰성 감축을 최소화하면서 2중 접합 이상의 다중접합 태양전지를 구현시켜 태양전지의 효율을 향상시킬 수 있는 다중접합 태양전지 및 그 제조방법을 제공하는 데 그 목적이 있다.The present invention was devised to solve the above problems, and in order to form a solar cell layer on a heterogeneous substrate so as to broaden the selection of materials for lattice and current matching, each lattice-matched material is grown and then bonding is performed. The purpose of the present invention is to provide a multi-junction solar cell and a method for manufacturing the same, which can improve the efficiency of the solar cell by implementing a multi-junction solar cell with more than double junction while minimizing the reduction in performance and reliability of each cell due to lattice mismatch. have.

상기의 목적을 달성하기 위하여 본 발명에 따른 다중접합 태양전지는 제1태양전지셀층을 갖는 제1태양전지소자와; 제2태양전지셀층을 갖는 제2태양전지소자와; 상기 제1태양전지소자와 상기 제2태양전지소자 사이에 접합되게 형성되며 투명실리콘화합물에 은나노와이어가 분산된 형태로 형성된 본딩층;을 구비한다.In order to achieve the above object, a multi-junction solar cell according to the present invention includes a first solar cell device having a first solar cell layer; a second solar cell device having a second solar cell layer; and a bonding layer formed to be bonded between the first solar cell device and the second solar cell device and in which silver nanowires are dispersed in a transparent silicon compound.

바람직하게는 상기 투명실리콘화합물은 실록산(siloxane), 실리케이트(silicate), 실란(silane)을 함유하되 300℃ 이하 저온에서 열경화할 수 있으며 가시광선 대역에서 광흡수단이 없는 투명한 화합물로 형성된 것을 적용한다.Preferably, the transparent silicon compound contains siloxane, silicate, and silane, but can be thermally cured at a low temperature of 300° C. or less, and is formed of a transparent compound having no light absorption edge in the visible ray band. do.

또한, 상기 본딩층에는 투명전기전도성산화물(Transparent Conductive Oxide:TCO) 입자가 더 첨가되어 있고, 상기 투명전기전도성산화물 입자의 입경은 100~1000nm이고, 함량은 상기 본딩층 전체 체적 대비 25체적% 이내로 적용된다.In addition, transparent conductive oxide (TCO) particles are further added to the bonding layer, the particle diameter of the transparent conductive oxide particles is 100 to 1000 nm, and the content is within 25% by volume of the total volume of the bonding layer. applies.

본 발명의 일 측면에 따르면, 상기 제1베이스기판 위에 오믹접촉을 위한 금속소재나 투명전극물질로 형성된 제1오믹접촉층과, 상기 제2베이스기판 하부에 오믹접촉을 위한 금속소재나 투명전극물질로 형성된 제2오믹접촉층을 구비하고, 상기 제1오믹접촉층과 상기 제2오믹접촉층 사이에 상기 본딩층이 적용된다.According to one aspect of the present invention, a first ohmic contact layer formed of a metal material or a transparent electrode material for ohmic contact on the first base substrate, and a metal material or transparent electrode material for ohmic contact on the lower portion of the second base substrate and a second ohmic contact layer formed of, and the bonding layer is applied between the first ohmic contact layer and the second ohmic contact layer.

또한, 상기의 목적을 달성하기 위하여 본 발명에 따른 다중접합 태양전지의 제조방법은 가. 제1베이스 기판 상에 제1태양전지 셀층을 형성하여 제1태양전지소자를 제조하는 단계와; 나. 제2베이스 기판 상에 제2태양전지 셀층을 형성하여 제2태양전지소자를 제조하는 단계; 및 다. 상기 제1태양전지소자와 상기 제2태양전지소자 사이에 은나노와이어가 함유된 액상 투명실리콘화합물로 접합 경화하여 본딩층을 형성하는 단계;를 포함한다.In addition, in order to achieve the above object, the method for manufacturing a multi-junction solar cell according to the present invention is a. manufacturing a first solar cell device by forming a first solar cell layer on a first base substrate; me. manufacturing a second solar cell device by forming a second solar cell layer on a second base substrate; and c. and forming a bonding layer by bonding and curing between the first solar cell device and the second solar cell device with a liquid transparent silicon compound containing silver nanowires.

상기 은나노와이어는 은전구체인 질산은 수용액에 환원제 글루코스(glucose) 수용액과 안정제 PVP수용액을 연속 반응시킨 후 은이온 대비 2배 수준의 염소이온량을 고려하여 염소이온 전구체 NaCl 수용액을 천천히 반응시킨 후 140~180℃, 20~24시간 수열합성하고 용매 초순수물과 IPA를 적용한 저속 원심분리법으로 은나노와이어를 회수하여 제조한 것을 적용한다.The silver nanowire is obtained by continuously reacting an aqueous reducing agent glucose solution and a stabilizer PVP aqueous solution with an aqueous silver nitrate solution, which is a silver precursor. ℃, 20-24 hours hydrothermal synthesis, and apply the prepared by recovering the silver nanowires by a low-speed centrifugation method applying solvent ultrapure water and IPA.

또한, 상기 액상 투명실리콘화합물은 용제 : siloxane : silicate : silane = 8~12 : 4 : 1 : 1 몰비로 혼합한 후, 전체량 대비 0.0005 내지 0.01 mol % 백금 성분을 첨가하여 제조하고, 상기 용제는 에탄올(EtOH) : 프로필렌 글리콜 메틸 에테르(PGME) = 1 : 1 몰비로 혼합한 것을 적용한다.In addition, the liquid transparent silicon compound is prepared by mixing solvent: siloxane: silicate: silane = 8-12: 4: 1: 1 in a molar ratio, and then adding 0.0005 to 0.01 mol % of platinum component based on the total amount, and the solvent is Ethanol (EtOH): Propylene glycol methyl ether (PGME) = 1:1 molar ratio is applied.

본 발명에 따른 다중접합 태양전지 및 그 제조방법에 의하면, 이종의 기판에 각각 격자 정합된 태양전지 셀층을 형성하고, 이를 본딩 공정을 통해 하나의 다중접합 태양전지를 구성시킴으로써, 특히, 3중 접합 이상의 태양전지에서 효율이 크게 향상되는 효과를 기대할 수 있다. 또한, 기판 선택에 자유도를 주어 새로운 다중접합 태양전지 설계와 실현이 가능하다. 부가적으로 이종의 기판에 각각에 전류 정합이 될 뿐만 아니라 타기판에도 전류 정합이 되는 단일 또는 다중 태양전지를 성장하고, 이를 본딩 기술을 이용하여 붙임으로써, 단일 기판으로는 실현이 어려운 고효율의 5중 이상 접합 태양전지를 구현할 수 있는 장점을 제공한다.According to the multi-junction solar cell and the method for manufacturing the same according to the present invention, each lattice-matched solar cell layer is formed on a different substrate, and a single multi-junction solar cell is formed through a bonding process. The effect of greatly improving the efficiency of the above solar cells can be expected. In addition, it is possible to design and realize a new multi-junction solar cell by giving freedom in substrate selection. Additionally, by growing single or multiple solar cells that not only match current to each other on different substrates, but also match other substrates, and attach them using bonding technology, high-efficiency 5 that is difficult to realize with a single substrate It provides the advantage of realizing a medium or more junction solar cell.

도 1은 본 발명의 일 실시예에 따른 다중접합 태양전지를 나타내 보인 단면도이고,
도 2는 도 1의 다중접합 태양전지를 제조하는 과정을 설명하기 위한 도면이고,
도 3은 본 발명의 또 다른 실시예에 따른 다중접합 태양전지를 제조하는 과정을 설명하기 위한 도면이다.
1 is a cross-sectional view showing a multi-junction solar cell according to an embodiment of the present invention;
2 is a view for explaining a process of manufacturing the multi-junction solar cell of FIG. 1,
3 is a view for explaining a process of manufacturing a multi-junction solar cell according to another embodiment of the present invention.

이하, 첨부된 도면을 참조하면서 본 발명의 바람직한 실시예에 따른 다중접합 태양전지 및 그 제조방법을 더욱 상세하게 설명한다.Hereinafter, a multi-junction solar cell and a manufacturing method thereof according to a preferred embodiment of the present invention will be described in more detail with reference to the accompanying drawings.

도 1은 본 발명의 일 실시예에 따른 다중접합 태양전지를 나타내 보인 단면도이고, 도 2는 도 1의 다중접합 태양전지를 제조하는 과정을 설명하기 위한 도면이다.1 is a cross-sectional view showing a multi-junction solar cell according to an embodiment of the present invention, and FIG. 2 is a view for explaining a process of manufacturing the multi-junction solar cell of FIG. 1 .

도 1 및 도 2를 참조하면, 본 발명에 따른 다중접합 태양전지는 제1태양전지소자(110), 제2태양전지소자(130) 및 본딩층(bonding layer)(150)을 구비한다.1 and 2 , the multi-junction solar cell according to the present invention includes a first solar cell device 110 , a second solar cell device 130 , and a bonding layer 150 .

다중접합 태양전지는 GaAs계 화합물 태양전지로 된 제2태양전지소자(130)가 본딩층(150) 상부에 위치하고, Si계 태양전지로 된 제1태양전지소자(110)가 본딩층(150) 하부에 위치하는 구조로 되어 있다.In the multi-junction solar cell, the second solar cell device 130 made of a GaAs-based compound solar cell is positioned on the bonding layer 150 , and the first solar cell device 110 made of the Si-based solar cell is formed by the bonding layer 150 . The structure is located at the bottom.

제1태양전지소자(110)는 Si기판(102) 하부에 Si하부태양전지셀층(Si bottom cell)(104) 및 후면층(back surface layer)(106)이 순차적으로 형성되어 있고, Si기판(102) 상부에 제1오믹접촉층(108)이 형성되어 있다. 여기서 Si기판(102)이 제1베이스기판에 해당한다. 도시된 예와 다르게 제1 베이스 기판은 InP로 형성된 것이 적용될 수 있다. 또한, 제1 베이스 기판 상에 형성되는 제1 태양전지 셀층은 기판보다 밴드갭이 낮은 물질을 성장하여 이종접합 태양전지를 형성하며 전류 제한이 일어나지 않게 한다.In the first solar cell device 110, a Si bottom cell 104 and a back surface layer 106 are sequentially formed under the Si substrate 102, and the Si substrate ( 102) A first ohmic contact layer 108 is formed thereon. Here, the Si substrate 102 corresponds to the first base substrate. Unlike the illustrated example, the first base substrate formed of InP may be applied. In addition, in the first solar cell layer formed on the first base substrate, a material having a band gap lower than that of the substrate is grown to form a heterojunction solar cell and current limitation does not occur.

Si하부태양전지셀층(Si bottom cell)은 입사된 광을 전기 에너지로 변환하는 제1태양전지셀층에 해당하며 p형 실리콘층과, n형 실리콘층이 순차적으로 적층된 구조가 적용될 수 있다.The Si bottom cell corresponds to the first solar cell layer that converts incident light into electrical energy, and a structure in which a p-type silicon layer and an n-type silicon layer are sequentially stacked may be applied.

후면층(back surface layer)(106)은 전극으로 이용될 수 있게 금속으로 형성되며 일 예로서, 알루미늄(Al)으로 형성될 수 있다.The back surface layer 106 may be formed of a metal to be used as an electrode, and may be formed of, for example, aluminum (Al).

제1오믹접촉층(108)은 태양전지소자 상호간이 기판 끼리 본딩층(150)을 사이에 두고 접합되는 경우 오믹접촉 효율을 높이기 위해 적용된 것으로 금속소재나 투명전극물질로 형성되며, 기판끼리 접합되는 경우 이외에는 생략될 수 있다.The first ohmic contact layer 108 is applied to increase the ohmic contact efficiency when the solar cell devices are bonded to each other with the bonding layer 150 interposed therebetween. In other cases, it may be omitted.

제2태양전지소자(130)는 제1태양전지소자(110)에 적용된 Si기판(102)과는 다른 소재인 GaAs기판(132) 상부에 버퍼층(buffer layer)(134), GaAs 미들셀(middle cell)(138), 터널정크션(tunnel junction)(138), InGaP탑셀(top cell)(140), 표면층(surface layer)(142)이 순차적으로 적층되어 있고, GaAs기판(102)(132) 하부에 제2오믹접촉층(144)이 형성되어 있다. 여기서 GaAs기판이 제2베이스기판에 해당한다. 또한, 버퍼층(134)을 격자정합을 유도하기 위해 적용된 층이며, GaAs 미들셀(middle cell)(138), 터널정크션(tunnel junction)(138), InGaP탑셀(top cell)(140)은 입사된 광을 전기에너지로 변환하는 제2태양전지셀층에 해당한다.The second solar cell device 130 includes a buffer layer 134 and a GaAs middle cell on the GaAs substrate 132 which is a different material from the Si substrate 102 applied to the first solar cell device 110 . cell) 138 , a tunnel junction 138 , an InGaP top cell 140 , and a surface layer 142 are sequentially stacked, and a GaAs substrate 102 , 132 . A second ohmic contact layer 144 is formed below. Here, the GaAs substrate corresponds to the second base substrate. In addition, the buffer layer 134 is a layer applied to induce lattice matching, and a GaAs middle cell 138 , a tunnel junction 138 , and an InGaP top cell 140 are incident. It corresponds to the second solar cell layer that converts the generated light into electrical energy.

여기서, GaAs 미들셀(middle cell)(138)은 p형 GaAs/n형 GaAs로 형성되고, InGaP탑셀(top cell)(140)은 p형 InGaP/n형 InGaP가 순차적으로 형성된 것이 적용될 수 있다.Here, the GaAs middle cell 138 may be formed of p-type GaAs/n-type GaAs, and the InGaP top cell 140 may be formed of p-type InGaP/n-type InGaP sequentially.

표면층(surface layer)(142)은 순차적으로 적층된 윈도우층, AR coating 층 및 전극층을 포함할 수 있다.The surface layer 142 may include a window layer, an AR coating layer, and an electrode layer sequentially stacked.

제2오믹접촉층(144)은 태양전지소자 상호간이 기판 끼리 본딩층(150)을 사이에 두고 접합되는 경우 오믹접촉 효율을 높이기 위해 적용된 것으로 금속소재나 투명전극물질로 형성되며, 기판끼리 접합되는 경우 이외에는 생략될 수 있다.The second ohmic contact layer 144 is applied to increase the ohmic contact efficiency when the solar cell devices are bonded to each other with the bonding layer 150 interposed therebetween. In other cases, it may be omitted.

본딩층(150)은 제1태양전지소자(110)와 제2태양전지소자(130) 사이에 접합되게 형성되며 투명실리콘화합물(152)에 은나노와이어(156)가 분산된 형태로 형성된 것을 적용한다.The bonding layer 150 is formed to be bonded between the first solar cell device 110 and the second solar cell device 130, and the silver nanowire 156 is dispersed in the transparent silicon compound 152. .

도시된 예에서는 제1태양전지소자(110)와 제2태양전지소자(130)를 기판 끼리 상호 접합하고자 할 때 제1 및 제2오믹접촉층(108)(144)를 추가로 형성하여 본딩층(150)을 통해 접합하였다.In the illustrated example, when the first solar cell device 110 and the second solar cell device 130 are to be bonded to each other, first and second ohmic contact layers 108 and 144 are additionally formed to form a bonding layer. (150).

한편, 도시된 예와 다르게 도 3에 도시된 바와 같이 도 2와 다르게 제1 및 제2태양전지소자(130)를 뒤집어서 태양전지셀 상호간이 본딩층(150)을 통해 접합되게 제조할 수 있다. 이 경우 제2태양전지소자(130)는 GaAs기판(102)(132) 위에 희생층(sacrificial layer)(133)을 더 형성하고, 제2오믹접촉층을 생략한 것을 적용하며, 제1태양전지소자(110)는 Si기판(102) 상부에 Si하부태양전지셀층(Si bottom cell)(104)이 배치되고, 저면에 후면층(back surface layer)(106)이 배치된 것을 적용하면 된다.Meanwhile, unlike the illustrated example, as shown in FIG. 3 , unlike in FIG. 2 , the first and second solar cell devices 130 may be inverted so that the solar cells are bonded to each other through the bonding layer 150 . In this case, in the second solar cell device 130 , a sacrificial layer 133 is further formed on the GaAs substrates 102 and 132 , and the second ohmic contact layer is omitted, and the first solar cell For the device 110 , a Si bottom cell layer 104 is disposed on the Si substrate 102 , and a back surface layer 106 is disposed on the bottom surface thereof.

또한, 본딩층(150)은 Si하부태양전지셀층(Si bottom cell)(104)과 버퍼층(134) 사이에 접합되게 형성된 이후 희생층을 제거하고, InGaP탑셀(top cell)(140) 위에 표면층(146)을 형성하면 된다. In addition, the bonding layer 150 is formed to be bonded between the Si bottom cell 104 and the buffer layer 134, and then the sacrificial layer is removed, and the surface layer ( 146) can be formed.

이와 같이 태양전지소자 상호간에 대해 본딩층을 기준으로 가장가깝게 상호 대향되게 배치되는 요소에 대해 기판끼리 또는 태양전지셀 끼리 또는 기판과 태양전지셀이 배치되게 접합될 수 있고, 앞서 설명된 바와 같이 기판끼리 배치될 때는 오믹접촉층을 적용하여 접합하면된다.As described above, substrates or solar cells or substrates and solar cells may be bonded to each other with respect to the elements disposed to face each other closest to each other on the basis of the bonding layer with respect to the solar cell devices, and as described above, the substrate When they are placed together, they can be joined by applying an ohmic contact layer.

또한, 제1태양전지소자(110)와 제2태양전지소자(130)에 적용되는 제1 및 제2베이스 기판은 예시된 것 이외에도 원소주기율 상 4족, 3-5족, 2-6족 원소의 조합 및 Mo, SiO2의 물질들 중 어느 하나 이상의 물질로 이루어지는 것을 적용할 수 있다. 또한, 제1 태양전지 셀층과 제2 태양전지 셀층은 단일 또는 다중접합 태양전지 셀로 이루어질 수 있다.In addition, the first and second base substrates applied to the first solar cell device 110 and the second solar cell device 130 are elements of Group 4, Group 3-5, and Group 2-6 in terms of the periodic rate of elements in addition to those exemplified. Combination of and Mo, SiO 2 It can be applied to a material made of any one or more of the materials. In addition, the first solar cell layer and the second solar cell layer may be formed of a single or multi-junction solar cell.

한편, 본딩층(150)에 적용되는 투명실리콘화합물(152)은 가시광선 대역에서 광흡수단이 없어서 내광성, 내황변성이 우수한 것을 적용한다. 본딩층(150)에 적용되는 투명실리콘화합물(152)은 실록산(siloxane), 실리케이트(silicate), 실란(silane)을 함유하되 300℃ 이하 저온에서 열경화할 수 있으며 가시광선 대역에서 광흡수단이 없는 투명한 화합물을 적용한다. 투명실리콘화합물(152)의 열경화 요구온도가 300℃를 초과할 경우 태양전지의 열화 및 손상이 일어날 수 있다.On the other hand, the transparent silicon compound 152 applied to the bonding layer 150 does not have a light absorption edge in the visible ray band, so a material having excellent light resistance and yellowing resistance is applied. The transparent silicon compound 152 applied to the bonding layer 150 contains siloxane, silicate, and silane, but can be thermally cured at a low temperature of 300° C. or less, and has a light absorption edge in the visible ray band. Apply a clear compound without When the required thermal curing temperature of the transparent silicon compound 152 exceeds 300° C., deterioration and damage of the solar cell may occur.

바람직하게는 투명실리콘화합물(152)은 -Si-O- 골격 사슬(backbone chain)에 알킬(alkyl)계 유기 그룹과 산소 및 경화용 촉매물질로만 구성되고 단일결합만 존재하는 물질이 적용되며, 실록산(siloxane)은 PDMS(polydimethysiloxane), PMHS(polymethylhydrosiloxane) 중 어느 하나가 적용되고, 실리케이트(silicate)는 TMOS(tetramethylorthosilicate), TEOS(tetraethylorthosilicate) 중 어느 하나가 적용되고, 실란(silane)은 MTMS(methyltrimethoxysilane), TEES(triethoxyethylsilane) 중 어느 하나가 적용된다.Preferably, the transparent silicone compound 152 is composed of an alkyl-based organic group, oxygen and a catalyst material for curing in the -Si-O- backbone chain, and a material having only a single bond is applied, and siloxane (siloxane) any one of PDMS (polydimethysiloxane) and PMHS (polymethylhydrosiloxane) is applied, for silicate, any one of TMOS (tetramethylorthosilicate) and TEOS (tetraethylorthosilicate) is applied, and silane is MTMS (methyltrimethoxysilane) , any one of TEES (triethoxyethylsilane) is applied.

또한, 본딩층(150)에 적용되는 은나노와이어(156)는 직경 100~500nm 이고, 길이 300um 내지 10mm인 것이 적용된다. 은나노와이어(156)의 직경이 100nm 미만 시 전류밀도가 제한적이며, 500nm 초과일 경우 유연성이 없어서 부러지는 문제가 발생할 수 있고, 길이가 300um 미만일 경우 본딩층(150)에서 태양전지 간 전기적 연결이 불가능할 수 있다. In addition, the silver nanowire 156 applied to the bonding layer 150 has a diameter of 100 to 500 nm, and a length of 300 μm to 10 mm is applied. When the diameter of the silver nanowire 156 is less than 100 nm, the current density is limited, and when it is more than 500 nm, a problem of breaking may occur due to inflexibility, and when the length is less than 300 μm, electrical connection between the solar cells in the bonding layer 150 is impossible. can

여기서, 본딩층(150)에 적용되는 은나노와이어(156)의 함량은 전기전도도가 1×105 S/m 이상, 바람직하게는 1×105 S/m 내지 1×108 S/m 이 되며, 가시광선 대역 광투과율이 90% 이상이 되게 적용한다. 은나노와이어(156)를 함유한 본딩층(150)의 전기전도도가 1×105 S/m 미만일 경우, 전류밀도 제한 현상이 발생할 수 있고, 광투과율 90% 미만일 경우에는 태양전지 효율이 저하된다.Here, the content of the silver nanowire 156 applied to the bonding layer 150 has an electrical conductivity of 1×10 5 S/m or more, preferably 1×10 5 S/m to 1×10 8 S/m, and , It is applied so that the light transmittance in the visible light band is 90% or more. When the electrical conductivity of the bonding layer 150 containing the silver nanowires 156 is less than 1×10 5 S/m, a current density limitation phenomenon may occur, and when the light transmittance is less than 90%, the solar cell efficiency is reduced.

또한, 본딩층(150)에는 투명전기전도성산화물(Transparent Conductive Oxide:TCO)입자(154)가 첨가될 수 있다. 본딩층(150)에 첨가되는 투명전기전도성산화물 입자(154)의 입경은 서브마이크론 범위인 100~1000nm인 것이 적용된다. 또한, 본딩층(150)에 적용되는 투명전기전도성산화물(Transparent Conductive Oxide:TCO)입자(154)의 첨가 함량은 본딩층(150) 전체 체적 대비 25체적% 이내로 적용한다. 또 다르게는 본딩층(150)에 적용되는 투명전기전도성산화물(Transparent Conductive Oxide:TCO)입자(154)의 첨가량은 본딩층(150) 전체 중량에 대해 25중량% 이내로 적용해도 된다. 투명전기전도성산화물(Transparent Conductive Oxide:TCO)입자(154)의 입경이 100nm 미만일 경우 너무 많은 입자 수로 인하여 입자와 투명물질 간 계면에서 전기전도성, 광학투과성이 저하될 수 있으며, 1000nm를 초과할 경우 본딩층(150)의 두께가 너무 두꺼워져 접착상태가 불량해질 수 있다. 또한, 투명전기전도성산화물 입자(154)의 첨가량이 25체적% 초과의 함량인 경우, 본딩층(150) 접착 시 유동성이 저하되어 접착 공정이 불량하게 처리될 수 있다. In addition, transparent conductive oxide (TCO) particles 154 may be added to the bonding layer 150 . The particle diameter of the transparent electrically conductive oxide particles 154 added to the bonding layer 150 is 100 to 1000 nm in the sub-micron range. In addition, the added content of the transparent conductive oxide (TCO) particles 154 applied to the bonding layer 150 is applied within 25% by volume of the total volume of the bonding layer 150 . Alternatively, the amount of transparent conductive oxide (TCO) particles 154 applied to the bonding layer 150 may be applied within 25% by weight based on the total weight of the bonding layer 150 . When the particle diameter of the transparent conductive oxide (TCO) particles 154 is less than 100 nm, electrical conductivity and optical transmittance at the interface between the particles and the transparent material may be reduced due to too many particle numbers, and if it exceeds 1000 nm, bonding Since the thickness of the layer 150 is too thick, the adhesive state may be poor. In addition, when the amount of the transparent electrically conductive oxide particles 154 added is more than 25% by volume, fluidity when bonding the bonding layer 150 is lowered, so that the bonding process may be poorly treated.

여기서, 투명전기전도성산화물은 ITO(Indium Tin Oxide), ATO(Aluminum doped Tin Oxide), IZO(Indium doped Zinc Oxide), AZO(Aluminum doped Zinc Oxide), FTO(Fluorine doped Tin Oxide)로 이루어진 군에서 선택되는 어느 하나 이상의 물질이 적용된다.Here, the transparent electrically conductive oxide is selected from the group consisting of indium tin oxide (ITO), aluminum doped tin oxide (ATO), indium doped zinc oxide (IZO), aluminum doped zinc oxide (AZO), and fluorine doped tin oxide (FTO). Any one or more substances that are applied are applied.

한편, 도시된 예에서는 설명의 복잡성을 피하기 위해 2중 접합 구조를 예시하여 설명하였고, 3중 접합 이상의 다중접합의 경우 다중접합 태양전지는 제3 베이스 기판 내지 제n 베이스 기판이 더 포함되며, 각각의 베이스 기판 상에 태양전지 셀층이 증착 또는 성장되어 형성되고, 제n 베이스 기판이 포함되는 경우, 본딩층(150)은 n-1개로 형성된다.On the other hand, in the illustrated example, a double junction structure has been exemplified to avoid the complexity of the description, and in the case of multiple junctions of triple junction or more, the multi-junction solar cell further includes a third base substrate to an n-th base substrate, each When the solar cell layer is deposited or grown on the base substrate of the n-th base substrate, and the n-th base substrate is included, n-1 bonding layers 150 are formed.

이러한 다중접합 태양전지는 제1베이스 기판 상에 제1태양전지 셀층을 형성하여 제1태양전지소자(110)를 제조하고, 별도로 제2베이스 기판 상에 제2태양전지 셀층을 형성하여 제2태양전지소자(130)를 제조한다.In this multi-junction solar cell, a first solar cell layer is formed on a first base substrate to manufacture the first solar cell device 110 , and a second solar cell layer is separately formed on a second base substrate to form a second solar cell layer. The battery device 130 is manufactured.

다음은 제1태양전지소자(110)와 제2태양전지소자(130) 사이에 은나노와이어(156)가 함유된 액상 투명실리콘화합물(152)로 접합 경화하여 본딩층(150)을 형성한다.Next, the bonding layer 150 is formed by bonding and curing the liquid transparent silicon compound 152 containing the silver nanowires 156 between the first solar cell device 110 and the second solar cell device 130 .

한편, 이러한 제조과정에서 은나노와이어(156)는 은전구체인 질산은 수용액에 환원제 글루코제(glucose) 수용액과 안정제 PVP(polyvinylpyrrolidone)수용액을 연속 반응시킨 후 은이온 대비 2배 수준의 염소이온량을 고려하여 염소이온 전구체 NaCl 수용액을 천천히 반응시킨 후 140~180℃, 20~24시간 수열합성하고 용매 초순수물과 IPA(isopropyl alcohol)를 적용한 저속 원심분리법으로 은나노와이어(156)를 회수하여 제조한 것을 적용한다.On the other hand, in this manufacturing process, the silver nanowire 156 is produced by continuously reacting an aqueous reducing agent glucose solution and a stabilizer polyvinylpyrrolidone (PVP) aqueous solution with an aqueous silver nitrate solution, which is a silver precursor. After slowly reacting the ion precursor NaCl aqueous solution, hydrothermal synthesis at 140-180° C. for 20-24 hours, and the low-speed centrifugation method using solvent ultrapure water and IPA (isopropyl alcohol) to recover the silver nanowires 156 and apply the prepared ones.

은나노와이어(156)의 제조공정 중 수열합성 조건은 140℃ 미만 혹은 180℃ 초과일 경우 은나노입자나 은입자로 형성되며, 20시간 미만일 경우 은나노입자, 24시간 초과일 경우 은나노와이어(156)의 응집현상이 발생한다.The hydrothermal synthesis conditions during the manufacturing process of the silver nanowire 156 are formed of silver nanoparticles or silver particles when the temperature is less than 140° C. or more than 180° C., silver nanoparticles when it is less than 20 hours, and aggregation of the silver nanowires 156 when it is more than 24 hours. phenomenon occurs.

또한, 액상 투명실리콘화합물(152)은 용제 : siloxane : silicate : silane = 8~12 : 4 : 1 : 1 몰비로 혼합한 후 전체량 대비 0.0005 내지 0.01 mol % 백금 성분을 첨가하여 제조한 것을 적용한다. 용제는 에탄올(EtOH) : 프로필렌 글리콜 메틸 에테르(PGME) = 1 : 1 몰비로 혼합한 것을 적용한다. 실리콘(silicon) 전구체(siloxane, silicate, silane) 중 siloxane은 필수적이며 siloxane 대비 비siloxane(siloxane이 아닌 실리콘 전구체)은 2 : 1 몰비가 적용된다. 비siloxane 대비 siloxane의 몰비가 2를 초과일 경우 경도저하문제가 발생하고, 몰비가 2미만일 경우 크랙, 박리문제가 발생할 우려가 있다. 용제로 적용된 EtOH, PGME는 실리콘 전구체(siloxane, silicate, silane)를 용해시키거나 분산시켜 적정 수준의 점성물질로 만들면서 중합반응 개시제로서 작용한다. 용제의 양은 8 미만이거나 12 초과일 경우 점도가 높거나 낮아서 공정성이 떨어진다. In addition, the liquid transparent silicon compound 152 is prepared by mixing solvent: siloxane: silicate: silane = 8 to 12: 4: 1: 1 in a molar ratio and then adding 0.0005 to 0.01 mol % of platinum component based on the total amount. . The solvent is ethanol (EtOH): propylene glycol methyl ether (PGME) = 1:1 molar ratio is applied. Among silicon precursors (siloxane, silicate, silane), siloxane is essential, and a 2:1 molar ratio of siloxane to non-siloxane (a silicon precursor not siloxane) is applied. When the molar ratio of siloxane to non-siloxane exceeds 2, there is a risk of hardness degradation, and when the molar ratio is less than 2, cracks and peeling problems may occur. EtOH and PGME applied as solvents act as polymerization initiators while dissolving or dispersing silicon precursors (siloxane, silicate, silane) into a viscous material at an appropriate level. If the amount of the solvent is less than 8 or more than 12, the viscosity is high or low, and the fairness is deteriorated.

백금 성분은 염화백금산(Hexachloroplatinate;H₂PtCl), Platinum(II) acetylacetonate,Potassium hexachloroplatinate(IV),Palladium(II) nitrate hydrate 등이며 0.0005mol % 미만일 경우 경화시간이 길어지며 0.01mol % 초과일 경우 경화현상이 너무 빨라 접착 공정 이전에도 경화되는 문제가 발생한다.Platinum components include chloroplatinate (H₂PtCl), Platinum(II) acetylacetonate, Potassium hexachloroplatinate(IV), and Palladium(II) nitrate hydrate. It is too fast and there is a problem of curing even before the bonding process.

- 은나노와이어 함유 액상 투명실리콘화합물 합성 후 접합공정- Bonding process after synthesizing a liquid transparent silicon compound containing silver nanowires

은나노와이어(156)를 액상 투명실리콘화합물(152)에 분산시켜서 5~15중량% 은나노와이어(156)를 함유한 액상투명실리콘 화합물(152)을 제조한 후 접합부위에 침지코팅, 스핀코팅 등을 이용해 배치한 후 150~250℃, 1시간 이상 조건에서 열경화하여 이종 태양전지를 접합한다. 은나노와이어(156)가 5중량% 미만일 경우 전기전도도가 낮아지며 15중량%이상일 경우 광투과율이 낮아지는 문제 발생할 수 있다. 열경화온도가 150℃ 미만일 경우 경화 불량이 발생하고, 경화온도가 250℃ 초과일 경우 은나노와이어(156)의 변형 및 본딩층(150)의 박리가 우려되며, 경화시간이 1시간 미만일 경우 경화 불량 이 발생할 수 있다.After dispersing the silver nanowires 156 in the liquid transparent silicon compound 152 to prepare the liquid transparent silicon compound 152 containing 5 to 15% by weight of the silver nanowires 156, immersion coating, spin coating, etc. After placement, heat curing at 150~250℃ for 1 hour or longer to bond heterogeneous solar cells . When the silver nanowire 156 is less than 5% by weight, the electrical conductivity is lowered, and when it is 15% by weight or more, a problem in that the light transmittance is lowered may occur. When the thermosetting temperature is less than 150 ℃, curing failure occurs, and when the curing temperature is more than 250 ℃, deformation of the silver nanowire 156 and peeling of the bonding layer 150 are concerned, and when the curing time is less than 1 hour, curing is poor This can happen.

또한, 액상 투명실리콘화합물(152)에 추가로 분산시킬 투명전기전도성산화물은 침지코팅법, 스핀코팅법, 진공증착법 등을 통해 구현한 박막을 박리시켜 분말화하여 사용하거나 수열합성법, 공침법, 열분무법 등을 통해 직접 분말을 구현해도 된다.In addition, the transparent electrically conductive oxide to be further dispersed in the liquid transparent silicon compound 152 may be used by exfoliating the thin film implemented through immersion coating method, spin coating method, vacuum deposition method, etc. and powdered or hydrothermal synthesis method, co-precipitation method, heat The powder may be directly implemented through a spraying method or the like.

일 예로서 열분무법을 통한 ITO 입자를 적용할 수 있고, 그 제조예는 다음과 같다. 초순수물에 에탄올을 혼합한 후, 산화인듐(In2O3)을 용해한 후 염산을 가해서 pH 2.0이 되도록 하여 염화인듐 수용액을 제조하고, 염화주석(SnCl2)을 초순수물에 용해하여 염화주석 수용액을 제조한 후, 염화인듐과 염화주석 몰비율이 각각 0.027 : 0.003 이 되도록 각각의 수용액을 혼합하여 열분무법에 적용할 액을 준비한 후, 24MHz 초음파압전체를 적용한 열분무장비에 적용하여 700℃를 유지하는 유리기판에 열분무시켜 서브마이크론 입경의 ITO 구형 입자를 구현한다.As an example, ITO particles through thermal spraying may be applied, and the preparation example is as follows. After mixing ethanol with ultrapure water, indium oxide (In 2 O 3 ) is dissolved, and hydrochloric acid is added to adjust the pH to 2.0 to prepare an aqueous indium chloride solution, and tin chloride (SnCl 2 ) is dissolved in ultrapure water to dissolve tin chloride aqueous solution After preparing the solution to be applied to the thermal spray method by mixing each aqueous solution so that the molar ratio of indium chloride and tin chloride is 0.027: 0.003, respectively, apply to thermal spray equipment to which 24MHz ultrasonic piezoelectric body is applied and maintain 700℃ ITO spherical particles of sub-micron particle size are realized by thermal spraying on a glass substrate.

- 본 발명에서 제안한 다중접합 태양전지의 제조방법에 대해서는 아래의 제조 예를 통해 상세히 설명한다.- The manufacturing method of the multi-junction solar cell proposed in the present invention will be described in detail through the following manufacturing examples.

[제조예 1] (InGaP/GaAs 이중접합 태양전지 구현)[Production Example 1] (InGaP/GaAs double junction solar cell implementation)

GaAs 기판(132) 상에 MOCVD 적용 결정성장법을 이용하여 AlAs 희생층(133)을 형성하고 InGaP n, p층(InGaP top cell)(140)을 형성한 후 터널접합(tunnel junction)구조(138)를 형성하고 GaAs n, p층(GaAs middle cell)(136)을 형성한 후 buffer layer(136)를 형성하여 상층부 태양전지인 제2태양전지소자(130)를 제조한다.An AlAs sacrificial layer 133 is formed on the GaAs substrate 132 using a crystal growth method applied by MOCVD, an InGaP n, p layer (InGaP top cell) 140 is formed, and then a tunnel junction structure 138 is formed. ), a GaAs n, p layer (GaAs middle cell) 136 is formed, and then a buffer layer 136 is formed to manufacture the second solar cell device 130 which is an upper layer solar cell.

[제조예 2] (Si 태양전지 구현)[Production Example 2] (Si solar cell implementation)

일반적인 monocrystalline silicon 태양전지를 구현함. 구체적으로 설명하면, p형 실리콘 기판의 양면에 이방성 액상 식각법으로 texturing을 수행하고 상면에 인성분을 확산하여 n doping을 수행하고 상면에 전극, 하면에 전극과 back surface field를 인쇄법 및 열처리를 통하여 제조한다.Implemented a typical monocrystalline silicon solar cell. Specifically, texturing is performed on both sides of the p-type silicon substrate by anisotropic liquid-phase etching, n-doping is performed by diffusing phosphorus on the upper surface, and the electrode and back surface field are printed on the upper surface, and the electrode and back surface field are printed and heat treated. manufactured through

[제조예 3] (은나노와이어 구현)[Production Example 3] (Silver nanowire implementation)

교반 중인 26.25mL 0.02M AgNO3 수용액에 8.75mL 0.133M glucos 수용액을 첨가하고 10분 동안 교반 하고, 8.75mL 0.005M PVP 수용액을 첨가하고 20분 동안 교반 후 26.25mL 0.04M NaCl 수용액을 방울방울 첨가 후 20분 동안 교반 후 70mL를 취하여 100mL Teflon-lined autoclave에 넣고 160℃, 22시간 조건으로 수열합성을 진행하고 완료된 액체를 저속(2500rpm), 60분 조건으로 초순수 물 3회, IPA 3회 순서로 은나노와이어(156)를 원심분리하여 회수하고 IPA에 20중량% 수준으로 은나노와이어(156)를 분산시킨다.8.75mL 0.133M glucos aqueous solution was added to 26.25mL 0.02M AgNO3 aqueous solution being stirred, stirred for 10 minutes, 8.75mL 0.005M PVP aqueous solution was added, stirred for 20 minutes, 26.25mL 0.04M NaCl aqueous solution was added dropwise after 20 minutes After stirring for a minute, take 70 mL, put it in a 100 mL Teflon-lined autoclave, perform hydrothermal synthesis at 160°C, 22 hours, and transfer the completed liquid to low speed (2500 rpm), 60 minutes with ultrapure water 3 times and IPA 3 times in the order of silver nanowire (156) is recovered by centrifugation and the silver nanowires 156 are dispersed in IPA at a level of 20% by weight.

[제조예 4] (액상 투명실리콘화합물)[Preparation Example 4] (Liquid transparent silicone compound)

29.18mL EtOH에 49.96mL PGME를 혼합하고 28.95mL Mn 550 PDMS, 7.13mL MTMS, 10.41TEOS를 넣고 10분 동안 교반한 후 0.12g 염화백금산(H₂PtCl)을 첨가하고 30분 동안 교반한다.49.96 mL PGME was mixed with 29.18 mL EtOH, 28.95 mL Mn 550 PDMS, 7.13 mL MTMS, 10.41 TEOS were added, stirred for 10 minutes, 0.12 g chloroplatinic acid (H₂PtCl) was added, and stirred for 30 minutes.

[제조예 5] (은나노와이어, 투명전기전도성산화물 함유 액상 투명실리콘화합물)[Preparation Example 5] (Silver nanowires, liquid transparent silicon compound containing transparent electrically conductive oxide)

10g 액상 투명실리콘화합물(152)에 20중량% 은나노와이어(156) 함유액 5.76mL와 1g ITO 구형입자를 넣고 진공교반기로 교반하여 10중량% 은나노와이어 함유 액상투명실리콘화합물을 제조한다.5.76 mL of a solution containing 20 wt% silver nanowires 156 and 1g ITO spherical particles were added to 10g liquid transparent silicone compound 152 and stirred with a vacuum stirrer to prepare a liquid transparent silicone compound containing 10% by weight silver nanowires.

[제조예 6] (Si 태양전지 상부에 InGaP/GaAs 태양전지 접합)[Production Example 6] (InGaP/GaAs solar cell bonding on top of Si solar cell)

Si 태양전지 상부와 InGaP/GaAs 상부 사이에 은나노와이어(156), 투명전기전도성산화물 함유 액상 투명실리콘화합물(152)을 스핀코팅법으로 5um 이하 수준으로 코팅 후, 175℃, 1시간 조건에서 열처리하여 열경화 접착한다.Between the upper part of the Si solar cell and the upper part of InGaP/GaAs, a silver nanowire 156 and a liquid transparent silicon compound 152 containing a transparent electrically conductive oxide were coated to a level of 5 μm or less by spin coating, followed by heat treatment at 175° C. for 1 hour. thermosetting adhesive.

[제조예 7] (GaAs 기판 제거 및 표면층 형성)[Preparation Example 7] (GaAs substrate removal and surface layer formation)

GaAs기판과 InGaP 셀층 사이에 존재하는 AlAs 희생층을 레이저조사법으로 제거하여 GaAs기판을 전체 태양전지 층으로부터 제거한 후 InGaP n층 상부에 window layer, AR coating 층, 전극층을 연이어 형성하여 태양전지를 완성한다.After removing the GaAs substrate from the entire solar cell layer by removing the AlAs sacrificial layer between the GaAs substrate and the InGaP cell layer by laser irradiation, a window layer, AR coating layer, and electrode layer are successively formed on the InGaP n layer to complete the solar cell. .

[제조예 8] (기판 분리없는 다중접합 태양전지 구현 사례)[Production Example 8] (Example of implementation of multi-junction solar cell without substrate separation)

GaAs 기판 상에 MOCVD 적용 결정성장법을 이용하여 격자정합을 위한 buffer layer 층을 형성하고 GaAs p, n층을 형성한 후 터널접합(tunnel junction)구조를 형성하고, InGaP p, n층을 형성한 후 surface layer를 형성하고 GaAs기판을 얇게 조정하고 기판 하면에 제2오믹접촉층을 형성하여 상층부 태양전지를 완성하고, 제조예 2에서 언급된 실리콘 태양전지의 상층부에 오믹접촉층을 형성하여 하층부 태양전지를 완성한 후, 각각의 제1 및 제2오믹접촉층 사이에 제조예 6과 같이 본딩층을 형성하여 다중접합 태양전지를 구현한다.A buffer layer for lattice matching is formed on a GaAs substrate using a crystal growth method applied by MOCVD, a GaAs p, n layer is formed, a tunnel junction structure is formed, and an InGaP p, n layer is formed. After forming a surface layer, thinning the GaAs substrate, forming a second ohmic contact layer on the lower surface of the substrate to complete the upper layer solar cell, and forming an ohmic contact layer on the upper layer of the silicon solar cell mentioned in Preparation Example 2 to form the lower layer solar cell After the cell is completed, a bonding layer is formed between each of the first and second ohmic contact layers as in Preparation Example 6 to implement a multi-junction solar cell.

이러한 다중 접합 태양전지는 이종 기판에 각각 격자 정합된 물질을 성장시킨 후 기판을 본딩하여 격자 부정합에 의한 각 셀의 성능 및 신뢰성 감축을 최소화하면서 3중접합 이상의 다중접합 태양전지의 효율을 향상시킬 수 있다. 구체적으로는 접착 공정 중 가열에 의한 소자 손상 및 열화를 회피할 수 있고, 장기적으로 발생할 수 있는 황변현상 등을 억제하여 투광성 유지에 의한 태양전지 효율을 장기간 유지할 수 있으며, 복합체 성격의 본딩층에 의하여 주위 열적 환경에 의한 접합부위 크랙현상, 박리현상 등을 억제하여 태양전지의 장기신뢰성을 확보할 수 있다.Such a multi-junction solar cell can improve the efficiency of a multi-junction solar cell with a triple junction or higher while minimizing the reduction in performance and reliability of each cell due to lattice mismatch by growing a lattice-matched material on a heterogeneous substrate and then bonding the substrate. have. Specifically, it is possible to avoid element damage and deterioration due to heating during the bonding process, and it is possible to maintain long-term solar cell efficiency by maintaining light transmittance by suppressing long-term yellowing, etc. The long-term reliability of the solar cell can be secured by suppressing cracking and peeling of the junction due to the surrounding thermal environment.

즉, 본 발명에서는 기존 기술에서 발생하였던 고온 공정에 따른 태양전지 소자의 손상, 열화 및 가시광선 광흡수단이 포함된 수지 사용에 따르는 황변현상을 수반한 효율 저하, 크랙 현상, 박리현상 등의 장기 신뢰성 문제 등을 해결하고자 전류밀도가 높고 전기전도도가 우수한 은나노와이어와 투광성과 전기전도성이 우수한 투명전극물질을 적용하여 전기전도성을 확보하고, 가시광선 광흡수단이 거의 없는 투명실리콘화합물을 적용하여 투광성을 확보하였으며, 저온에서 접착을 수행할 수 있는 저온 경화형 액상 물질에 은나노와이어와 투명전극물질을 복합체 형태로 적용하여 접착공정 및 실제 태양전지 사용 중에 발생할 수 있는 열스트레스를 완화할 수 있다.That is, in the present invention, damage and deterioration of the solar cell element according to the high-temperature process that occurred in the existing technology, and the efficiency decrease accompanying the yellowing phenomenon due to the use of a resin containing a visible light absorption edge, cracking, peeling, etc. In order to solve reliability problems, silver nanowires with high current density and excellent electrical conductivity and transparent electrode materials with excellent light transmittance and electrical conductivity are applied to secure electrical conductivity, and a transparent silicon compound with almost no visible light absorption edge is applied to transmit light. It is possible to alleviate thermal stress that may occur during the bonding process and actual use of solar cells by applying silver nanowires and transparent electrode materials to a low-temperature curing liquid material that can perform adhesion at low temperatures in the form of a composite.

110: 제1태양전지소자
130: 제2태양전지소자
150: 본딩층
110: first solar cell device
130: second solar cell device
150: bonding layer

Claims (16)

삭제delete 삭제delete 제1태양전지셀층을 갖는 제1태양전지소자와;
제2태양전지셀층을 갖는 제2태양전지소자와;
상기 제1태양전지소자와 상기 제2태양전지소자 사이에 접합되게 형성되며 투명실리콘화합물에 은나노와이어가 분산된 형태로 형성된 본딩층;을 구비하고,
상기 투명실리콘화합물은 실록산(siloxane), 실리케이트(silicate), 실란(silane)을 함유하되 300℃ 이하 저온에서 열경화할 수 있으며 가시광선 대역에서 광흡수단이 없는 투명한 화합물로 형성되며,
상기 투명실리콘화합물은 -Si-O- 골격 사슬(backbone chain)에 알킬(alkyl)계 유기 그룹과 산소 및 경화용 촉매물질로만 구성되고 단일결합만 존재하는 물질이 적용되며, 상기 실록산(siloxane)은 PDMS(polydimethysiloxane), PMHS(polymethylhydrosiloxane) 중 어느 하나가 적용되고, 상기 실리케이트(silicate)는 TMOS(tetramethylorthosilicate), TEOS(tetraethylorthosilicate) 중 어느 하나가 적용되고, 상기 실란(silane)은 MTMS(methyltrimethoxysilane), TEES(triethoxyethylsilane) 중 어느 하나가 적용된 것을 특징으로 하는 다중접합 태양전지.
a first solar cell device having a first solar cell layer;
a second solar cell device having a second solar cell layer;
a bonding layer formed to be bonded between the first solar cell device and the second solar cell device and in which silver nanowires are dispersed in a transparent silicon compound;
The transparent silicon compound contains siloxane, silicate, and silane, but can be thermally cured at a low temperature of 300° C. or less and is formed of a transparent compound having no light absorption edge in the visible light band,
The transparent silicone compound is a material that consists only of an alkyl-based organic group, oxygen and a catalyst material for curing in a -Si-O- backbone chain and has only a single bond, and the siloxane is Any one of polydimethysiloxane (PDMS) and polymethylhydrosiloxane (PMHS) is applied, any one of tetramethylorthosilicate (TMOS) and tetraethylorthosilicate (TEOS) is applied to the silicate, and the silane is methyltrimethoxysilane (MTMS), TEES (triethoxyethylsilane) Multi-junction solar cell, characterized in that any one is applied.
삭제delete 제1태양전지셀층을 갖는 제1태양전지소자와;
제2태양전지셀층을 갖는 제2태양전지소자와;
상기 제1태양전지소자와 상기 제2태양전지소자 사이에 접합되게 형성되며 투명실리콘화합물에 은나노와이어가 분산된 형태로 형성된 본딩층;을 구비하고,
상기 본딩층은 전기전도도가 1×105 S/m 내지 1×108 S/m 이 되며, 가시광선 대역 광투과율이 90% 이상이 되도록 상기 은나노와이어가 함유된 것을 특징으로 하는 다중접합 태양전지.
a first solar cell device having a first solar cell layer;
a second solar cell device having a second solar cell layer;
a bonding layer formed to be bonded between the first solar cell device and the second solar cell device and in which silver nanowires are dispersed in a transparent silicon compound;
The bonding layer has an electrical conductivity of 1×10 5 S/m to 1×10 8 S/m and a multi-junction solar cell, characterized in that it contains the silver nanowire so that the visible light band transmittance is 90% or more .
제1태양전지셀층을 갖는 제1태양전지소자와;
제2태양전지셀층을 갖는 제2태양전지소자와;
상기 제1태양전지소자와 상기 제2태양전지소자 사이에 접합되게 형성되며 투명실리콘화합물에 은나노와이어가 분산된 형태로 형성된 본딩층;을 구비하고,
상기 본딩층에는 투명전기전도성산화물(Transparent Conductive Oxide:TCO) 입자가 첨가되어 있고, 상기 투명전기전도성산화물 입자의 입경은 100~1000nm이고, 함량은 상기 본딩층 전체 체적 대비 25체적% 이내인 것을 특징으로 하는 다중접합 태양전지.
a first solar cell device having a first solar cell layer;
a second solar cell device having a second solar cell layer;
a bonding layer formed to be bonded between the first solar cell device and the second solar cell device and in which silver nanowires are dispersed in a transparent silicon compound;
Transparent conductive oxide (TCO) particles are added to the bonding layer, the particle diameter of the transparent conductive oxide particles is 100 to 1000 nm, and the content is within 25% by volume of the total volume of the bonding layer A multi-junction solar cell with
제6항에 있어서, 상기 투명전기전도성산화물은 ITO(Indium Tin Oxide), ATO(Aluminum doped Tin Oxide), IZO(Indium doped Zinc Oxide), AZO(Aluminum doped Zinc Oxide), FTO(Fluorine doped Tin Oxide)로 이루어진 군에서 선택되는 어느 하나 이상의 물질로 이루어진 것을 특징으로 하는 다중접합 태양전지.The method of claim 6, wherein the transparent electrically conductive oxide is ITO (Indium Tin Oxide), ATO (Aluminum doped Tin Oxide), IZO (Indium doped Zinc Oxide), AZO (Aluminum doped Zinc Oxide), FTO (Fluorine doped Tin Oxide) A multi-junction solar cell, characterized in that it is made of any one or more materials selected from the group consisting of. 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 가. 제1베이스 기판 상에 제1태양전지 셀층을 형성하여 제1태양전지소자를 제조하는 단계와;
나. 제2베이스 기판 상에 제2태양전지 셀층을 형성하여 제2태양전지소자를 제조하는 단계; 및
다. 상기 제1태양전지소자와 상기 제2태양전지소자 사이에 은나노와이어가 함유된 액상 투명실리콘화합물로 접합 경화하여 본딩층을 형성하는 단계;를 포함하고,
상기 은나노와이어는 은전구체인 질산은 수용액에 환원제 글루코스(glucose) 수용액과 안정제 PVP수용액을 연속 반응시킨 후 은이온 대비 2배 수준의 염소이온량을 고려하여 염소이온 전구체 NaCl 수용액을 천천히 반응시킨 후 140~180℃, 20~24시간 수열합성하고 용매 초순수물과 IPA를 적용한 저속 원심분리법으로 은나노와이어를 회수하여 제조한 것을 적용하는 것을 특징으로 하는 다중접합 태양전지의 제조방법.
go. manufacturing a first solar cell device by forming a first solar cell layer on a first base substrate;
me. manufacturing a second solar cell device by forming a second solar cell layer on a second base substrate; and
all. and forming a bonding layer between the first solar cell device and the second solar cell device by bonding and curing with a liquid transparent silicon compound containing silver nanowires;
The silver nanowire is obtained by continuously reacting an aqueous reducing agent glucose solution and a stabilizer PVP aqueous solution with an aqueous silver nitrate solution, which is a silver precursor. A method of manufacturing a multi-junction solar cell, characterized in that it is subjected to hydrothermal synthesis at ℃, 20 to 24 hours, and the silver nanowire is recovered and prepared by a low-speed centrifugal separation method using solvent ultrapure water and IPA.
가. 제1베이스 기판 상에 제1태양전지 셀층을 형성하여 제1태양전지소자를 제조하는 단계와;
나. 제2베이스 기판 상에 제2태양전지 셀층을 형성하여 제2태양전지소자를 제조하는 단계; 및
다. 상기 제1태양전지소자와 상기 제2태양전지소자 사이에 은나노와이어가 함유된 액상 투명실리콘화합물로 접합 경화하여 본딩층을 형성하는 단계;를 포함하고,
상기 액상 투명실리콘화합물은 용제 : siloxane : silicate : silane = 8~12 : 4 : 1 : 1 몰비로 혼합한 후, 전체량 대비 0.0005 내지 0.01 mol % 백금 성분을 첨가하여 제조하고, 상기 용제는 에탄올(EtOH) : 프로필렌 글리콜 메틸 에테르(PGME) = 1 : 1 몰비로 혼합한 것을 적용한 것을 특징으로 하는 다중접합 태양전지의 제조방법.
go. manufacturing a first solar cell device by forming a first solar cell layer on a first base substrate;
me. manufacturing a second solar cell device by forming a second solar cell layer on a second base substrate; and
all. and forming a bonding layer between the first solar cell device and the second solar cell device by bonding and curing with a liquid transparent silicon compound containing silver nanowires;
The liquid transparent silicone compound is prepared by mixing solvent: siloxane: silicate: silane = 8-12: 4: 1: 1 in a molar ratio, and then adding 0.0005 to 0.01 mol % of platinum component relative to the total amount, and the solvent is ethanol ( EtOH): Propylene glycol methyl ether (PGME) = 1:1 A method for manufacturing a multi-junction solar cell, characterized in that the mixture is applied in a molar ratio.
가. 제1베이스 기판 상에 제1태양전지 셀층을 형성하여 제1태양전지소자를 제조하는 단계와;
나. 제2베이스 기판 상에 제2태양전지 셀층을 형성하여 제2태양전지소자를 제조하는 단계; 및
다. 상기 제1태양전지소자와 상기 제2태양전지소자 사이에 은나노와이어가 함유된 액상 투명실리콘화합물로 접합 경화하여 본딩층을 형성하는 단계;를 포함하고,
상기 다단계는 상기 은나노와이어를 상기 액상 투명실리콘화합물에 분산시켜서 5~15중량% 은나노와이어를 함유한 액상투명실리콘 화합물을 제조한 후 접합부위에 침지코팅, 스핀코팅 중 어느 하나의 코팅방식을 적용하여 코팅한 후 150~250℃로, 1시간 이상 열경화하는 것을 특징으로 하는 다중접합 태양전지의 제조방법.

go. manufacturing a first solar cell device by forming a first solar cell layer on a first base substrate;
me. manufacturing a second solar cell device by forming a second solar cell layer on a second base substrate; and
all. and forming a bonding layer between the first solar cell device and the second solar cell device by bonding and curing with a liquid transparent silicon compound containing silver nanowires;
The multi-step is to disperse the silver nanowires in the liquid transparent silicon compound to prepare a liquid transparent silicon compound containing 5 to 15 wt% silver nanowires, and then apply any one coating method of immersion coating and spin coating to the bonding site. A method of manufacturing a multi-junction solar cell, characterized in that the heat curing is carried out at 150 to 250° C. for at least 1 hour.

KR1020190178468A 2019-12-30 2019-12-30 Multijunction Solar Cell and Method for Manufacturing the Same KR102306642B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190178468A KR102306642B1 (en) 2019-12-30 2019-12-30 Multijunction Solar Cell and Method for Manufacturing the Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190178468A KR102306642B1 (en) 2019-12-30 2019-12-30 Multijunction Solar Cell and Method for Manufacturing the Same

Publications (2)

Publication Number Publication Date
KR20210085441A KR20210085441A (en) 2021-07-08
KR102306642B1 true KR102306642B1 (en) 2021-09-30

Family

ID=76894624

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190178468A KR102306642B1 (en) 2019-12-30 2019-12-30 Multijunction Solar Cell and Method for Manufacturing the Same

Country Status (1)

Country Link
KR (1) KR102306642B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101193810B1 (en) * 2011-09-26 2012-10-23 (재)한국나노기술원 Multijunction solar cell and a method for manufacturing the same
US20150380592A1 (en) * 2014-06-26 2015-12-31 Soitec Semiconductor structures including bonding layers, multi-junction photovoltaic cells and related methods

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150084689A (en) * 2014-01-14 2015-07-22 주식회사 동진쎄미켐 Transparent conductive electrode and method for producing the same
KR20160111850A (en) * 2015-03-17 2016-09-27 단국대학교 산학협력단 Method for Manufacturing Transparent Electrode of Surface Energy Controlling of Metal Mesh, and Organic Photovoltaic Cell Having The Transparent Electrode Manufactured by The Same
KR102386997B1 (en) * 2015-12-30 2022-04-14 엘지디스플레이 주식회사 Transparent adhesive composition, Transparent adhesive layer and Display device including the same
KR102367784B1 (en) * 2016-07-13 2022-02-24 엘지전자 주식회사 Tandem solar cell, tanden solar cell module comprising the same and method for manufacturing thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101193810B1 (en) * 2011-09-26 2012-10-23 (재)한국나노기술원 Multijunction solar cell and a method for manufacturing the same
US20150380592A1 (en) * 2014-06-26 2015-12-31 Soitec Semiconductor structures including bonding layers, multi-junction photovoltaic cells and related methods
US10014429B2 (en) 2014-06-26 2018-07-03 Soitec Semiconductor structures including bonding layers, multi-junction photovoltaic cells and related methods

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Chihak Lee. Flash-induced nanowelding of silver nanowire networks for transparent stretchable electrochromic devices, 2018 공개
Weiwei Li 외. Coat-and-print patterning of silver nanowires for flexible and transparent electronics, 2019 공개
YanxiaoLi 외. Adhesion of silver nano wire graphene composite film, 2018 공개
Youngsang Ko 외. A Simple Silver Nanowire Patterning Method Based on Poly(Ethylene Glycol) Photolithography and Its Application for Soft Electronics, 2017 공개

Also Published As

Publication number Publication date
KR20210085441A (en) 2021-07-08

Similar Documents

Publication Publication Date Title
EP1703569A2 (en) High efficiency inorganic nanorod-enhanced photovoltaic devices
KR102100105B1 (en) Hetero junction tandem solar cell and manufacturing method
US20120152340A1 (en) Multi-junction photovoltaic device, integrated multi-junction photovoltaic device, and processes for producing same
CN103329281A (en) Solar cell, manufacturing method thereof, and solar cell module
CN103975449A (en) Solar cell
TW201010094A (en) Nano or micro-structured PN junction diode array thin-film solar cell and manufacturing method thereof
TW201547044A (en) Conductive polymer/Si interfaces at the backside of solar cells
TWI720959B (en) A solar cell, a mthod of fabricating the solar cell and a paste for forming a non-conductive region of the solar cell
CN111554763B (en) High-pressure high-efficiency perovskite/crystalline silicon laminated battery
CN105659390B (en) Solar battery structure and its manufacture method
CN106876595A (en) A kind of silicon heterogenous solar cell of N-type and preparation method thereof
KR102306642B1 (en) Multijunction Solar Cell and Method for Manufacturing the Same
CN102904158A (en) Preparation method of WGM (whispering gallery mode) ZnO ultraviolet micro-laser for constructing electric pump
JPH114008A (en) Manufacture of thin film solar battery
JP4693492B2 (en) Photoelectric conversion device and photovoltaic device using the same
CN106129185A (en) Laser ablation electrically conducting transparent film preparation phasmon strengthens crystal silicon solar battery method
CN102790098B (en) Back reflective solar battery and manufacturing method thereof
Hagar et al. Multi-junction solar cells by Intermetallic Bonding and interconnect of Dissimilar Materials: GaAs/Si
CN112864262A (en) Perovskite-silicon two-end series battery based on mechanical pressing and preparation method
EP4084086B1 (en) Photovoltaic cell and method for manufacturing same
JP4869196B2 (en) Rotating diffusion device and method for manufacturing photoelectric conversion device
US20140305486A1 (en) Intergrated multi-junction photovoltaic device
CN106374001A (en) GaAs thin-film solar cell having tapered back scattering layer and preparation method thereof
JP4693505B2 (en) Photoelectric conversion device and photovoltaic device using the same
JP2014232820A (en) Solar cell and method for manufacturing the same, and solar cell module

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right