KR102302671B1 - 적응적 움직임 벡터 해상도로 결정된 움직임 벡터의 부호화 장치 및 부호화 방법, 및 움직임 벡터의 복호화 장치 및 복호화 방법 - Google Patents

적응적 움직임 벡터 해상도로 결정된 움직임 벡터의 부호화 장치 및 부호화 방법, 및 움직임 벡터의 복호화 장치 및 복호화 방법 Download PDF

Info

Publication number
KR102302671B1
KR102302671B1 KR1020217000585A KR20217000585A KR102302671B1 KR 102302671 B1 KR102302671 B1 KR 102302671B1 KR 1020217000585 A KR1020217000585 A KR 1020217000585A KR 20217000585 A KR20217000585 A KR 20217000585A KR 102302671 B1 KR102302671 B1 KR 102302671B1
Authority
KR
South Korea
Prior art keywords
coding unit
motion vector
block
mvr
candidate
Prior art date
Application number
KR1020217000585A
Other languages
English (en)
Other versions
KR20210006027A (ko
Inventor
최웅일
이진영
정승수
템즈아니쉬
표인지
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020217028689A priority Critical patent/KR20210115052A/ko
Publication of KR20210006027A publication Critical patent/KR20210006027A/ko
Application granted granted Critical
Publication of KR102302671B1 publication Critical patent/KR102302671B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/105Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/513Processing of motion vectors
    • H04N19/517Processing of motion vectors by encoding
    • H04N19/52Processing of motion vectors by encoding by predictive encoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/136Incoming video signal characteristics or properties
    • H04N19/137Motion inside a coding unit, e.g. average field, frame or block difference
    • H04N19/139Analysis of motion vectors, e.g. their magnitude, direction, variance or reliability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/184Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being bits, e.g. of the compressed video stream
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/44Decoders specially adapted therefor, e.g. video decoders which are asymmetric with respect to the encoder
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/523Motion estimation or motion compensation with sub-pixel accuracy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/593Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial prediction techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/56Motion estimation with initialisation of the vector search, e.g. estimating a good candidate to initiate a search
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/567Motion estimation based on rate distortion criteria

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

비트스트림으로부터 현재 블록의 움직임 벡터 해상도를 나타내는 정보를 획득하는 단계; 현재 블록의 움직임 벡터 해상도에 기초하여, 적어도 하나의 후보 블록 중 하나의 후보 블록을 선택하는 단계; 결정된 하나의 후보 블록의 움직임 벡터를 현재 블록의 예측 움직임 벡터로 이용하여, 움직임 벡터 해상도에 대응하는 현재 블록의 움직임 벡터를 획득하는 단계를 포함하는 것을 특징으로 하는 일 실시예에 따른 움직임 벡터의 복호화 방법이 개시된다.

Description

적응적 움직임 벡터 해상도로 결정된 움직임 벡터의 부호화 장치 및 부호화 방법, 및 움직임 벡터의 복호화 장치 및 복호화 방법{APPARATUS AND METHOD FOR ENCODING MOTION VECTOR DETERMINED USING ADAPTIVE MOTION VECTOR RESOLUTION, AND APPARATUS AND METHOD FOR DECODING MOTION VECTOR}
본 개시는 비디오 부호화 및 복호화 분야에 관한 것이다. 보다 구체적으로, 본 개시는 비디오의 움직임 벡터를 부호화하는 방법 및 장치, 복호화하는 방법 및 장치에 관한 것이다.
비디오의 부호화 및 복호화 방법에서는 영상을 부호화하기 위해 하나의 픽처를 매크로블록으로 분할하고, 인터 예측(inter prediction) 또는 인트라 예측(intraprediction)을 통해 각각의 매크로 블록을 예측 부호화할 수 있다.
인터 예측은 픽처들 사이의 시간적인 중복성을 제거하여 영상을 압축하는 방법으로 움직임 추정 부호화가 대표적인 예이다. 움직임 추정 부호화는 참조 픽처를 이용해 현재 픽처의 블록들을 예측한다. 소정의 평가 함수를 이용하여 현재 블록과 가장 유사한 참조 블록을 소정의 검색 범위에서 검색할 수 있다.
현재 블록을 참조 블록에 기초하여 예측하고, 예측 결과 생성된 예측 블록을 현재 블록으로부터 감산하여 생성된 잔차 블록을 부호화한다. 이 때, 예측을 보다 정확하게 수행하기 위해 참조 픽처의 검색 범위에 대해 보간을 수행하여 정수 화소 단위(integer pel unit)보다 작은 부화소 단위(sub pel unit) 픽셀들을 생성하고, 부화소 단위의 픽셀에 기초해 인터 예측을 수행할 수 있다.
H.264 AVC(Advanced Video Coding) 및 HEVC(High Efficiency Video Coding)와 같은 코덱에서는 현재 블록의 움직임 벡터를 예측하기 위해 현재 블록에 인접한 이전에 부호화된 블록들 또는 이전에 부호화된 픽처에 포함된 블록들의 움직임 벡터를 현재 블록의 예측 움직임 벡터(Motion Vector Prediction)로 이용한다.
일 실시예에 따른 움직임 벡터의 복호화 방법은, 비트스트림으로부터 현재 블록의 움직임 벡터 해상도를 나타내는 정보를 획득하는 단계; 상기 현재 블록의 움직임 벡터 해상도에 기초하여, 적어도 하나의 후보 블록 중 하나의 후보 블록을 선택하는 단계; 상기 결정된 하나의 후보 블록의 움직임 벡터를 현재 블록의 예측 움직임 벡터로 이용하여, 상기 움직임 벡터 해상도에 대응하는 현재 블록의 움직임 벡터를 획득하는 단계를 포함할 수 있다.
일 실시예에 따른 움직임 벡터의 복호화 방법은, 비트스트림으로부터 현재 블록에 대한 하나의 후보 블록을 가리키는 정보를 획득하는 단계; 상기 하나의 후보 블록을 가리키는 정보에 기초하여, 적어도 하나의 후보 움직임 벡터 해상도 중 하나의 후보 움직임 벡터 해상도를 상기 현재 블록의 움직임 벡터 해상도로 결정하는 단계; 및 상기 하나의 후보 블록의 움직임 벡터를 현재 블록의 예측 움직임 벡터로 이용하여, 상기 움직임 벡터 해상도에 대응하는 현재 블록의 움직임 벡터를 획득하는 단계를 포함할 수 있다.
상기 현재 블록의 움직임 벡터 해상도는, 적어도 하나의 후보 움직임 벡터 해상도 중에서 결정될 수 있다.
상기 적어도 하나의 후보 움직임 벡터 해상도와, 상기 적어도 하나의 후보 블록은 1:1로 매핑될 수 있다.
상기 움직임 벡터의 복호화 방법은, 현재 블록, 이전에 복호화된 블록, 현재 슬라이스, 이전에 복호화된 슬라이스, 현재 픽처 및 이전에 복호화된 픽처 중 적어도 하나에 대한 정보에 기초하여, 상기 적어도 하나의 후보 움직임 벡터 해상도의 개수 및 종류를 결정하는 단계를 더 포함할 수 있다.
상기 움직임 벡터의 복호화 방법은, 현재 블록, 이전에 복호화된 블록, 현재 슬라이스, 이전에 복호화된 슬라이스, 현재 픽처 및 이전에 복호화된 픽처 중 적어도 하나에 대한 정보에 기초하여, 상기 적어도 하나의 후보 움직임 벡터 해상도에 매핑될 상기 적어도 하나의 후보 블록의 위치를 결정하는 단계를 더 포함할 수 있다.
상기 현재 블록의 움직임 벡터 해상도를 결정하는 단계는, 상기 비트스트림으로부터 상기 현재 블록의 움직임 벡터 해상도를 나타내는 인덱스를 획득하는 단계; 및 상기 적어도 하나의 후보 움직임 벡터 해상도 중 상기 획득한 인덱스에 대응하는 후보 움직임 벡터 해상도를 상기 현재 블록의 움직임 벡터 해상도로 결정하는 단계를 포함할 수 있다.
상기 움직임 벡터의 복호화 방법은, 상기 하나의 후보 블록에 움직임 벡터가 존재하지 않는 경우, 상기 적어도 하나의 후보 블록을 제외한 다른 블록의 움직임 벡터를 상기 예측 움직임 벡터로 결정하는 단계를 더 포함할 수 있다.
상기 움직임 벡터의 복호화 방법은, 현재 블록에 대해 선택 가능한 적어도 하나의 후보 MVR에 매핑된 적어도 하나의 후보 블록 중 서로 동일한 움직임 벡터를 갖는 후보 블록이 존재하는 경우, 서로 동일한 움직임 벡터를 갖는 후보 블록들 중 일부를, 상기 적어도 하나의 후보 블록 이외의 다른 블록으로 대체하는 단계를 더 포함할 수 있다.
상기 현재 블록의 움직임 벡터를 획득하는 단계는, 적어도 하나의 후보 움직임 벡터 해상도 중 최소 움직임 벡터 해상도보다 상기 현재 블록의 움직임 벡터 해상도가 큰 경우, 상기 비트스트림으로부터 획득되는 잔차 움직임 벡터를 업스케일하는 단계를 더 포함할 수 있다.
상기 현재 블록의 움직임 벡터를 획득하는 단계는, 적어도 하나의 후보 움직임 벡터 해상도 중 최소 움직임 벡터 해상도보다 상기 현재 블록의 움직임 벡터 해상도가 큰 경우, 상기 예측 움직임 벡터를 조정하는 단계를 더 포함할 수 있다.
상기 조정하는 단계는, 상기 현재 블록의 움직임 벡터 해상도와 상기 최소 움직임 벡터 해상도의 차이에 기초하여, 상기 예측 움직임 벡터를 다운스케일하는 단계; 상기 다운스케일된 예측 움직임 벡터가 정수 화소 단위를 가리키지 않는 경우, 상기 다운스케일된 예측 움직임 벡터가 정수 화소 단위를 가리키도록 변경하는 단계; 및 상기 변경된 다운스케일된 예측 움직임 벡터를 업스케일하여 상기 조정된 예측 움직임 벡터를 획득하는 단계를 포함할 수 있다.
일 실시예에 따른 움직임 벡터의 복호화 장치는, 비트스트림으로부터 현재 블록의 움직임 벡터 해상도를 나타내는 정보를 획득하는 획득부; 및 상기 현재 블록의 움직임 벡터 해상도에 기초하여, 적어도 하나의 후보 블록 중 하나의 후보 블록을 결정하고, 상기 결정된 하나의 후보 블록의 움직임 벡터를 현재 블록의 예측 움직임 벡터로 이용하여, 상기 움직임 벡터 해상도에 대응하는 현재 블록의 움직임 벡터를 획득하는 예측 복호화부를 포함할 수 있다.
일 실시예에 따른 움직임 벡터의 부호화 방법은, 현재 블록의 움직임 벡터 해상도를 결정하는 단계; 상기 결정된 움직임 벡터 해상도에 기초하여, 적어도 하나의 후보 블록 중 하나의 후보 블록을 결정하는 단계; 상기 결정된 움직임 벡터 해상도에 따라 상기 현재 블록의 움직임 벡터를 획득하는 단계; 및 상기 움직임 벡터 해상도를 나타내는 정보 및 상기 하나의 후보 블록을 가리키는 정보 중 적어도 하나와, 상기 현재 블록의 움직임 벡터와 상기 하나의 후보 블록의 움직임 벡터 사이의 잔차 움직임 벡터를 포함하는 비트스트림을 생성하는 단계를 포함할 수 있다.
일 실시예에 따른 저장 매체에 저장된 비트스트림은, 현재 블록의 움직임 벡터 해상도를 나타내는 정보 또는 상기 현재 블록에 대한 하나의 후보 블록을 나타내는 정보; 및 상기 움직임 벡터 해상도에 따라 결정된 상기 현재 블록의 움직임 벡터와 상기 하나의 후보 블록의 움직임 벡터를 이용하여 획득된 잔차 움직임 벡터에 대응하는 정보를 포함하되, 상기 현재 블록의 움직임 벡터 해상도를 나타내는 정보와 상기 현재 블록에 대한 하나의 후보 블록을 나타내는 정보는 서로 매핑될 수 있다.
일 실시예에 따른 움직임 벡터의 부호화 장치 및 부호화 방법, 및 움직임 벡터의 복호화 장치 및 복호화 방법은 적응적으로 결정된 움직임 벡터 해상도를 기초로 잔차 움직임 벡터를 표현함으로써, 낮은 비트레이트로 효율적인 영상 부호화 및 복호화를 달성할 수 있다.
본 명세서에서 인용되는 도면을 보다 충분히 이해하기 위하여 각 도면의 간단한 설명이 제공된다.
도 1은 일 실시예에 따른 움직임 벡터 부호화 장치의 구성을 나타내는 블록도이다.
도 2는 일 실시예에 따른 움직임 벡터 부호화 방법을 설명하기 위한 순서도이다.
도 3은 일 실시예에 따른 움직임 벡터 복호화 장치의 구성을 나타내는 블록도이다.
도 4는 일 실시예에 따른 움직임 벡터 복호화 방법을 설명하기 위한 순서도이다.
도 5는 적어도 하나의 후보 움직임 벡터 해상도에 1:1로 매핑된 적어도 하나의 후보 블록을 설명하기 위한 도면이다.
도 6은 적어도 하나의 후보 움직임 벡터 해상도와 적어도 하나의 후보 블록 사이의 매핑 관계를 도시하는 예시적인 도면이다.
도 7은 다양한 움직임 벡터 해상도에 따른 움직임 벡터를 결정하기 위한 보간(interpolation)을 설명하기 위한 도면이다.
도 8은 지원 가능한 최소 움직임 벡터 해상도가 1/4 화소 단위인 경우, 1/4 화소 단위의 MVR, 1/2 화소 단위의 MVR, 1 화소 단위의 MVR 및 2 화소 단위의 MVR의 움직임 벡터가 가리킬 수 있는 화소들의 위치를 도시하는 도면이다.
도 9a 및 도 9b은 예측 움직임 벡터의 조정 방법을 설명하기 위한 도면이다.
도 10은 현재 블록의 MVR 인덱스를 획득하는 과정을 설명하기 위한 예시적인 신택스를 나타내는 도면이다.
도 11은 일 실시예에 따라 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여 영상을 복호화 할 수 있는 비디오 복호화 장치의 블록도를 도시한다.
도 12는 일 실시예에 따라 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여 영상을 부호화 할 수 있는 비디오 부호화 장치의 블록도를 도시한다.
도 13은 일 실시예에 따라 현재 부호화 단위가 분할되어 적어도 하나의 부호화 단위가 결정되는 과정을 도시한다.
도 14는 일 실시예에 따라 비-정사각형의 형태인 부호화 단위가 분할되어 적어도 하나의 부호화 단위가 결정되는 과정을 도시한다.
도 15는 일 실시예에 따라 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여 부호화 단위가 분할되는 과정을 도시한다.
도 16은 일 실시예에 따라 홀수개의 부호화 단위들 중 소정의 부호화 단위가 결정되는 방법을 도시한다.
도 17은 일 실시예에 따라 현재 부호화 단위가 분할되어 복수개의 부호화 단위들이 결정되는 경우, 복수개의 부호화 단위들이 처리되는 순서를 도시한다.
도 18은 일 실시예에 따라 소정의 순서로 부호화 단위가 처리될 수 없는 경우, 현재 부호화 단위가 홀수개의 부호화 단위로 분할되는 것으로 결정되는 과정을 도시한다.
도 19는 일 실시예에 따라 제1 부호화 단위가 분할되어 적어도 하나의 부호화 단위가 결정되는 과정을 도시한다.
도 20은 일 실시예에 따라 제1 부호화 단위가 분할되어 결정된 비-정사각형 형태의 제2 부호화 단위가 소정의 조건을 만족하는 경우, 제2 부호화 단위가 분할될 수 있는 형태가 제한되는 것을 도시한다.
도 21은 일 실시예에 따라 분할 형태 정보가 4개의 정사각형 형태의 부호화 단위로 분할하는 것을 나타낼 수 없는 경우, 정사각형 형태의 부호화 단위가 분할되는 과정을 도시한다
도 22는 일 실시예에 따라 복수개의 부호화 단위들 간의 처리 순서가 부호화 단위의 분할 과정에 따라 달라질 수 있음을 도시한 것이다.
도 23은 일 실시예에 따라 부호화 단위가 재귀적으로 분할되어 복수개의 부호화 단위가 결정되는 경우, 부호화 단위의 형태 및 크기가 변함에 따라 부호화 단위의 심도가 결정되는 과정을 도시한다.
도 24는 일 실시예에 따라 부호화 단위들의 형태 및 크기에 따라 결정될 수 있는 심도 및 부호화 단위 구분을 위한 인덱스(part index, 이하 PID)를 도시한다.
도 25는 일 실시예에 따라 픽쳐에 포함되는 복수개의 소정의 데이터 단위에 따라 복수개의 부호화 단위들이 결정된 것을 도시한다.
도 26은 일 실시예에 따라 픽쳐에 포함되는 기준 부호화 단위의 결정 순서를 결정하는 기준이 되는 프로세싱 블록을 도시한다.
도 27은 일 실시예에 따라 부호화 단위가 분할될 수 있는 형태의 조합이 픽쳐마다 서로 다른 경우, 각각의 픽쳐마다 결정될 수 있는 부호화 단위들을 도시한다.
도 28은 일 실시예에 따라 바이너리(binary)코드로 표현될 수 있는 분할 형태 정보에 기초하여 결정될 수 있는 부호화 단위의 다양한 형태를 도시한다.
도 29는 일 실시예에 따라 바이너리 코드로 표현될 수 있는 분할 형태 정보에 기초하여 결정될 수 있는 부호화 단위의 또 다른 형태를 도시한다.
도 30은 루프 필터링을 수행하는 비디오 부호화 및 복호화 시스템의 블록도를 나타낸 도면이다.
도 31은 일 실시예에 따른 최대 부호화 단위에 포함되는 필터링 단위들의 일례와 필터링 단위의 필터링 수행 정보를 나타낸 도면이다.
도 32는 일 실시예에 따라 소정의 부호화 방법에 따라 결정된 부호화 단위들 간의 병합(merge) 또는 분할(split)이 수행되는 과정을 도시한다.
도 33은 일 실시예에 따른 부호화 단위의 Z 스캔 순서에 따른 인덱스를 도시한다.
도 34는 일 실시예에 따른 부호화 단위의 인트라 예측을 위한 참조 샘플을 나타내는 도면이다.
본 개시는 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고, 이를 상세한 설명을 통해 상세히 설명하고자 한다. 그러나, 이는 본 개시의 실시 형태에 대해 한정하려는 것이 아니며, 본 개시는 여러 실시예들의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
실시예를 설명함에 있어서, 관련된 공지 기술에 대한 구체적인 설명이 본 개시의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 명세서의 설명 과정에서 이용되는 숫자(예를 들어, 제 1, 제 2 등)는 하나의 구성요소를 다른 구성요소와 구분하기 위한 식별기호에 불과하다.
또한, 본 명세서에서, 일 구성요소가 다른 구성요소와 "연결된다" 거나 "접속된다" 등으로 언급된 때에는, 상기 일 구성요소가 상기 다른 구성요소와 직접 연결되거나 또는 직접 접속될 수도 있지만, 특별히 반대되는 기재가 존재하지 않는 이상, 중간에 또 다른 구성요소를 매개하여 연결되거나 또는 접속될 수도 있다고 이해되어야 할 것이다.
또한, 본 명세서에서 '~부(유닛)', '모듈' 등으로 표현되는 구성요소는 2개 이상의 구성요소가 하나의 구성요소로 합쳐지거나 또는 하나의 구성요소가 보다 세분화된 기능별로 2개 이상으로 분화될 수도 있다. 또한, 이하에서 설명할 구성요소 각각은 자신이 담당하는 주기능 이외에도 다른 구성요소가 담당하는 기능 중 일부 또는 전부의 기능을 추가적으로 수행할 수도 있으며, 구성요소 각각이 담당하는 주기능 중 일부 기능이 다른 구성요소에 의해 전담되어 수행될 수도 있음은 물론이다.
또한, 본 명세서에서, '영상' 또는 '픽처'는 비디오의 정지영상이거나 동영상, 즉 비디오 그 자체를 나타낼 수 있다.
또한, 본 명세서에서, '샘플'은, 영상의 샘플링 위치에 할당된 데이터로서 프로세싱 대상이 되는 데이터를 의미한다. 예를 들어, 공간 영역의 영상에서 픽셀값, 변환 영역 상의 변환 계수들이 샘플들일 수 있다. 이러한 적어도 하나의 샘플들을 포함하는 단위를 블록이라고 정의할 수 있다.
또한, 본 명세서에서,'현재 블록(Current Block)'은, 부호화 또는 복호화하고자 하는 현재 영상의 최대 부호화 단위, 부호화 단위, 예측 단위 또는 변환 단위의 블록을 의미할 수 있다.
또한, 본 명세서에서, '움직임 벡터 해상도'는, 참조 영상(또는 보간된 참조 영상)에 포함된 화소들 중, 인터 예측을 통해 결정된 움직임 벡터가 가리킬 수 있는 화소의 위치의 정밀도를 의미할 수 있다. 움직임 벡터 해상도가 N 화소 단위(N은 유리수)를 갖는다는 것은, 움직임 벡터가 N 화소 단위의 정밀도를 가질 수 있다는 것을 의미한다. 일 예로서, 1/4 화소 단위의 움직임 벡터 해상도는 움직임 벡터가 보간된 참조 영상에서 1/4 화소 단위(즉, 부화소 단위)의 화소 위치를 가리킬 수 있다는 것을 의미할 수 있고, 1 화소 단위의 움직임 벡터 해상도는 움직임 벡터가 보간된 참조 영상에서 1 화소 단위(즉, 정수 화소 단위)에 대응하는 화소 위치를 가리킬 수 있다는 것을 의미할 수 있다.
또한 본 명세서에서, '후보 움직임 벡터 해상도'는 블록의 움직임 벡터 해상도로 선택될 수 있는 하나 이상의 움직임 벡터 해상도를 의미하며, '후보 블록'은 후보 움직임 벡터 해상도에 매핑되어, 인터 예측되는 블록의 예측 움직임 벡터를 위한 블록으로 이용될 수 있는 하나 이상의 블록을 의미한다.
또한, 본 명세서에서 '화소 단위'는 화소 정밀도, 화소 정확도 등의 용어로 대체되어 설명될 수도 있다.
이하 도 1 내지 도 4를 참조하여, 일 실시예에 따른 움직임 벡터의 부호화 장치 및 방법, 및 움직임 벡터의 복호화 장치 및 방법이 제안된다.
이하, 움직임 벡터 부호화 장치(10) 및 움직임 벡터 부호화 방법은 후술할 비디오 부호화 장치(200) 및 방법에 포함할 수 있다. 또한, 움직임 벡터 복호화 장치(30) 및 움직임 벡터 복호화 방법은 후술할 비디오 복호화 장치(100) 및 방법에 포함될 수 있다.
도 1은 일 실시예에 따른 움직임 벡터 부호화 장치(10)의 구성을 나타내는 블록도이다.
비디오 부호화에서 인터 예측(inter prediction)은 현재 영상과 다른 영상 간의 유사성을 이용하는 예측 방법을 의미한다. 현재 영상보다 먼저 복호화된 참조 영상 중에서, 현재 영상의 현재 블록과 유사한 참조 블록이 검출되고, 현재 블록과 참조 블록 사이의 좌표상의 거리가 움직임 벡터로 표현된다. 또한, 현재 블록과 참조 블록 간의 픽셀 값들의 차이가 잔차(Residual) 데이터로 표현될 수 있다. 따라서, 현재 블록에 대한 인터 예측에 의해, 현재 블록의 영상 정보를 직접 출력하는 대신에, 참조 영상을 가리키는 인덱스, 움직임 벡터 및 잔차 데이터를 출력하여 부호화 및 복호화의 효율을 향상시킬 수 있다.
일 실시예에 따른 움직임 벡터 부호화 장치(10)는 비디오의 각 영상의 블록 별 인터 예측을 위해 사용되는 움직임 벡터를 부호화할 수 있다.
블록의 타입은 정사각형 또는 직사각형일 수 있으며, 임의의 기하학적 형태일 수도 있다. 일 실시예에 따른 블록은 일정한 크기의 데이터 단위로 제한되는 것은 아니며, 트리 구조에 따른 부호화 단위들 중에서는, 최대 부호화 단위, 부호화 단위, 예측 단위, 변환 단위 등을 포함할 수 있다.
트리 구조에 따른 부호화 단위들에 기초한 비디오의 부호화 및 복호화 방식은, 도 11 내지 도 34를 참조하여 후술한다.
도 1에 도시된 바와 같이, 일 실시예에 따른 움직임 벡터 부호화 장치(10)는 예측 부호화부(11) 및 생성부(13)를 포함할 수 있다. 전술한 바와 같이, 움직임 벡터 부호화 장치(10)는 도 12에 도시된 비디오 부호화 장치(200)에 포함될 수 있는데, 예측 부호화부(11)는 비디오 부호화 장치(200)의 부호화부(220)에 포함될 수 있고, 생성부(13)는 비디오 부호화 장치(200)의 비트스트림 생성부(210)에 포함될 수 있다.
움직임 벡터 부호화 장치(10)는 픽처로부터 분할된 블록 단위로 인터 예측을 수행하여 움직임 벡터의 부호화를 수행할 수 있다.
일 실시예에 따른 움직임 벡터 부호화 장치(10)는 부호화 단위(coding unit) 또는 부호화 단위로부터 분할된 예측 단위를 포함하는 현재 블록에 대해, 움직임 추정(Motion estimation)을 통해 참조 영상에서 현재 블록과 가장 유사한 예측 블록을 검색하고, 현재 블록과 예측 블록간의 움직임 정보를 나타내는 움직임 벡터를 결정할 수 있다.
일 실시예에서, 예측 부호화부(11)는 적어도 하나의 후보 움직임 벡터 해상도(Candidate Of Motion Vector Resolution, 이하, 후보 MVR로 참조함) 중 하나의 후보 MVR을 현재 블록의 움직임 벡터 해상도(Motion Vector Resolution, 이하, MVR로 참조함)로 선택하고, 선택된 MVR에 따라 현재 블록의 움직임 벡터를 결정할 수 있다. 예측 부호화부(11)는 적어도 하나의 후보 블록(candidate block) 중 상기 선택된 현재 블록의 MVR에 매핑된 후보 블록의 움직임 벡터를 현재 블록의 예측 움직임 벡터로 이용할 수 있다.
일 실시예에서, 예측 부호화부(11)는 적어도 하나의 후보 블록 중 현재 블록에 대한 하나의 후보 블록을 선택하고, 적어도 하나의 후보 MVR 중 상기 선택된 후보 블록에 매핑된 하나의 후보 MVR을 현재 블록의 MVR로 결정할 수 있다.
일 실시예에서, 움직임 벡터 부호화 장치(10)에는 적어도 하나의 후보 MVR과 적어도 하나의 후보 블록의 1:1 매핑 관계 또는 대응 관계가 미리 설정될 수 있다. 적어도 하나의 후보 MVR과 적어도 하나의 후보 블록이 1:1로 매핑되었다는 것은, 적어도 하나의 후보 MVR 중 어느 하나의 후보 MVR이 현재 블록의 MVR로 결정되면 그에 따라 현재 블록의 예측 움직임 벡터로 이용될 어느 하나의 후보 블록의 위치가 결정되고, 반대로, 적어도 하나의 후보 블록 중 현재 블록의 예측 움직임 벡터로 이용될 어느 하나의 후보 블록이 결정되면, 그에 따라 어느 하나의 후보 MVR이 현재 블록의 MVR로 결정된다는 것을 의미할 수 있다. 즉, 본 개시에 따른 일 실시예에서, 적어도 하나의 후보 MVR 각각에는 후보 블록들이 하나씩 할당되는 것으로 볼 수 있다.
상기 적어도 하나의 후보 MVR은 1/8 화소 단위의 MVR, 1/4 화소 단위의 MVR, 1/2 화소 단위의 MVR, 1 화소 단위의 MVR, 2 화소 단위의 MVR, 4 화소 단위의 MVR 및 8 화소 단위의 MVR 중 적어도 하나를 포함할 수 있다. 그러나, 후보 MVR은 상기 예시에 한정되는 것은 아니며, 다양한 값의 화소 단위의 MVR들이 후보 MVR에 포함될 수 있다.
본 명세서에서, 제 1 MVR이 제 2 MVR 보다 크다는 것은 제 1 MVR의 화소 단위가 제 2 MVR의 화소 단위보다 크다는 것을 의미한다. 예를 들어, 1 화소 단위의 MVR은 1/2 화소 단위의 MVR보다 크고, 1/2 화소 단위의 MVR은 1/4 화소 단위의 MVR보다 크다. 실제적으로, 1/4 화소 단위의 MVR로 움직임 벡터를 결정한 경우가 1 화소 단위의 MVR로 움직임 벡터를 결정한 경우에 비해, 보다 정밀하게 예측이 가능하지만, 본 명세서에서는 설명의 편의를 위해 각 MVR의 화소 단위의 크기를 기준으로 각 MVR의 크기 차이를 설명한다.
상기 적어도 하나의 후보 블록은, 현재 블록과 연관된 공간적 블록과 시간적 블록을 포함한 블록들 중에서 선택될 수 있다. 현재 블록과 연관된 공간적 블록은 현재 블록과 공간적으로 인접한 블록을 적어도 하나 포함할 수 있다. 시간적 블록은 현재 블록의 POC(Picture Order Count)와 다른 POC를 갖는 참조 영상 내에서 현재 블록과 동일한 지점에 위치한 블록과, 동일 위치의 블록에 대해 공간적으로 인접한 블록을 적어도 하나 포함할 수 있다.
일 실시예에서, 적어도 하나의 후보 MVR이 1/4 화소 단위의 MVR, 1/2 화소 단위의 MVR, 1 화소 단위의 MVR 및 2 화소 단위의 MVR을 포함하고, 적어도 하나의 후보 블록이 좌측 블록, 상부 블록, 좌측 상부 블록, 상부 좌측 블록을 포함할 때, (1/4 화소 단위의 MVR - 좌측 블록), (1/2 화소 단위의 MVR - 상부 블록), (1 화소 단위의 MVR - 좌측 상부 블록), (2 화소 단위의 MVR - 상부 좌측 블록)의 매핑 관계 또는 대응 관계가 움직임 벡터 부호화 장치(10)에 설정될 수 있다. 이에 의하면, 예측 부호화부(11)는 현재 블록의 MVR로서 1/4 화소 단위의 MVR을 선택하면, 그에 따라 좌측 블록의 움직임 벡터를 현재 블록의 예측 움직임 벡터로 이용할 수 있다. 또한, 예측 부호화부(11)는 현재 블록의 예측 움직임 벡터로서 상부 블록을 선택한 경우, 그에 따라 현재 블록의 MVR로 1/2 화소 단위의 MVR을 결정할 수 있다.
일 실시예에서, 예측 부호화부(11)는 현재 블록, 이전에 부호화된 블록, 현재 슬라이스, 이전에 부호화된 슬라이스, 현재 픽처 및 이전에 부호화된 픽처 중 적어도 하나에 대한 정보를 기초로, 선택 가능한 후보 MVR의 개수 및 종류를, 블록 단위, 슬라이스 단위 또는 픽처 단위로 결정할 수 있다. 예측 부호화부(11)는 블록 단위, 슬라이스 단위 또는 픽처 단위로 결정된, 현재 블록에 대해 선택 가능한 후보 MVR 중 어느 하나의 후보 MVR을 현재 블록의 MVR로 결정할 수 있다.
일 예로서, 예측 부호화부(11)는 현재 블록에 대해 선택 가능한 적어도 하나의 후보 MVR과 이후의 블록에 대해 선택 가능한 적어도 하나의 후보 MVR을 서로 상이하게 결정할 수 있다. 예를 들어, 현재 블록에 대해 선택 가능한 적어도 하나의 후보 MVR로서, 1/4 화소 단위의 MVR 및 1/2 화소 단위의 MVR을 결정할 수 있고, 이후의 블록에 대해서는 적어도 하나의 후보 MVR로서, 1 화소 단위의 MVR 및 2 화소 단위의 MVR을 결정할 수 있다. 또는 어떠한 블록에 대해서는 후보 MVR로서 하나의 MVR만을 결정할 수 있다.
일 예로서, 예측 부호화부(11)는 선택 가능한 적어도 하나의 후보 MVR을 블록 단위로 결정할 때, 현재 블록의 크기를 미리 정해진 크기와 비교하여, 하나의 MVR만을 후보 MVR에 포함시키거나, 복수의 MVR을 후보 MVR에 포함시킬 수 있다. 또는 예측 부호화부(11)는 선택 가능한 적어도 하나의 후보 MVR을 블록 단위로 결정할 때, 이전에 부호화된 주변 블록의 MVR에 기초하여, 현재 블록에 대해 선택 가능한 후보 MVR의 개수 및 종류를 결정할 수도 있다.
또한, 일 예로서, 예측 부호화부(11)는 선택 가능한 적어도 하나의 후보 MVR을 슬라이스 또는 픽처 단위로 결정할 때, 슬라이스 또는 픽처의 타입에 따라 현재 슬라이스 또는 현재 픽처에 대해 선택 가능한 후보 MVR의 개수 및 종류를 결정할 수도 있다. 또한, 일 예로서, 예측 부호화부(11)는 선택 가능한 적어도 하나의 후보 MVR을 슬라이스 또는 픽처 단위로 결정할 때, 슬라이스 또는 픽처가 다른 슬라이스 또는 다른 픽처에 의해 참조되는지 여부에 따라 현재 슬라이스 또는 현재 픽처에 대해 선택 가능한 후보 MVR의 개수 및 종류를 결정할 수도 있다.
일 실시예에서, 예측 부호화부(11)는 현재 블록, 이전에 부호화된 블록, 현재 슬라이스, 이전에 부호화된 슬라이스, 현재 픽처 및 이전에 부호화된 픽처 중 적어도 하나에 대한 정보를 기초로, 블록 단위, 슬라이스 단위 또는 픽처 단위로 적어도 하나의 후보 MVR 각각에 매핑될 적어도 하나의 후보 블록의 위치를 결정할 수 있다.
일 예로서, 예측 부호화부(11)는 현재 블록에 대해 선택 가능한 적어도 하나의 후보 블록과 이후의 블록에 대해 선택 가능한 적어도 하나의 후보 블록을 서로 상이하게 결정할 수 있다. 예를 들어, 선택 가능한 후보 블록의 위치가 블록 단위로 결정되는 경우, 현재 블록의 후보 MVR에 해당하는 1 화소 단위의 MVR과 2 화소 단위의 MVR 각각에 대해 상부 블록과 좌측 블록을 매핑시키고, 이후의 블록의 후보 MVR에 해당하는 1 화소 단위의 MVR과 2 화소 단위의 MVR 각각에 대해서는 상부 좌측 블록과 좌측 하부 블록을 매핑시킬 수 있다.
일 실시예에서, 적어도 하나의 후보 MVR의 개수 및 종류와, 적어도 하나의 후보 MVR 각각에 매핑될 적어도 하나의 후보 블록의 위치는 부호화 대상인 비디오에 대해 디폴트(default)로 고정되어 설정될 수도 있다.
일 실시예에서, 예측 부호화부(11)는 적어도 하나의 후보 MVR 중 어느 하나의 후보 MVR을 현재 블록의 MVR로 결정하고, 현재 블록의 MVR에 따라 현재 블록의 움직임 벡터를 결정할 수 있다.
예측 부호화부(11)는 현재 블록의 움직임 벡터를 결정하기 위해, 적어도 하나의 후보 MVR 중 최소 MVR로 참조 영상을 보간(interpolation)할 수 있다.
일 실시예에서, 예측 부호화부(11)는 적어도 하나의 후보 MVR 중 가장 작은 화소 단위의 후보 MVR(즉, 최소 MVR)이 1/n 화소 단위 (상기 n은 자연수)를 가질 때, 움직임 추정을 위해 예측 부호화부(11)는 참조 영상의 정수 화소로부터 1/n 화소 단위의 부화소 픽셀을 생성할 수 있고, 현재 블록의 MVR에 따라 최대 1/n 화소 단위의 부화소 픽셀을 가리키는 현재 블록의 움직임 벡터를 결정할 수 있다.
현재 영상의 특성에 따라 언제나 작은 화소 단위의 MVR로 움직임 벡터를 결정하는 것이 높은 화소 단위의 MVR로 움직임 벡터를 결정하는 것보다 비효율적일 수 있다. 작은 화소 단위의 MVR로 움직임 벡터를 결정한 경우, 움직임 벡터(또는 잔차 움직임 벡터)의 크기를 표현하는데 있어 큰 화소 단위의 MVR로 움직임 벡터를 결정하는 것보다 보다 많은 비트량을 필요로 하며 이는 비트레이트 측면에서 비효율적일 수 있다. 따라서, 예를 들어, 영상의 해상도에 따라 적응적으로 MVR을 결정하여 비트레이트를 감소시키는 동시에 복원 영상의 퀄리티 저감을 최소화할 수 있다.
일 실시예에 따른 예측 부호화부(11)는 현재 블록의 MVR을 적응적으로 결정하고, 결정된 MVR의 화소 단위로 움직임 벡터를 결정할 수 있다. 예를 들어, 현재 블록의 MVR의 화소 단위가 1/2인 경우, 예측 부호화부(11)는 최소 MVR에 따라 보간된 참조 영상에서 1/2 화소 단위의 픽셀을 가리키는 움직임 벡터를 결정할 수 있다.
일 실시예에 따른 예측 부호화부(11)는, 후보 블록들의 움직임 벡터를 그대로 현재 블록의 예측 움직임 벡터로 이용하거나, 후보 블록들의 움직임 벡터를 변경하여 현재 블록의 예측 움직임 벡터로 이용할 수 있다.
일 실시예에서, 예측 부호화부(11)는 지원 가능한 후보 MVR 중 최소 MVR과 현재 블록의 MVR의 차이에 기초하여 현재 블록에 대한 후보 블록의 움직임 벡터를 조정한 후, 조정된 움직임 벡터를 이용하여 현재 블록의 움직임 벡터를 결정할 수 있다.
후보 블록의 움직임 벡터는 최소 MVR에 따라 보간된 영상 내의 화소 좌표를 가리키도록 예측된 것이므로, 현재 블록의 MVR에 대응시키기 위해 후보 블록의 움직임 벡터를 조정하는 것이다. 또한, 후보 블록의 움직임 벡터를 조정하는 것은 후술하는 바와 같이, 잔차 움직임 벡터가 정수 단위로 표현되도록 하기 위함이다.
예를 들어, 현재 블록의 MVR이 1 화소 단위라면, 현재 블록의 움직임 벡터는 최소 MVR에 따라 보간된 영상 내에서 1 화소 단위의 화소를 가리키도록 결정되어야 한다. 그러나, 후보 블록의 움직임 벡터가 1 화소 단위의 화소를 가리키지 않는 경우, 1 화소 단위의 화소를 가리키도록 후보 블록의 움직임 벡터를 조정하는 것이다.
후보 블록의 움직임 벡터를 조정하는 방법에 대해서는 도 9a 및 도 9b를 참조하여 후술한다.
예측 부호화부(11)는 적어도 하나의 후보 MVR 각각에 매핑된 후보 블록들의 움직임 벡터를 예측 움직임 벡터로 이용하여, 각각의 후보 MVR로 현재 블록의 움직임 벡터를 결정하고, 코스트에 기초하여 적어도 하나의 후보 MVR 중 하나를 결정한다. 코스트 계산시 율-왜곡 비용(rate-distortion cost)이 이용될 수 있다.
현재 블록의 움직임 벡터를 결정하기 위하여, 예측 부호화부(11)는 각 후보 MVR에 할당된 후보 블록의 움직임 벡터(또는 조정된 움직임 벡터)를 이용하여, 참조 영상 내의 탐색 시작 위치를 결정하고, 각 후보 MVR에 따라 최적의 참조 블록을 탐색하여 각 후보 MVR 에 따른 현재 블록의 움직임 벡터를 결정할 수 있다. 일 예로서, 예측 부호화부(11)는 첫 번째로 탐색 시작 위치 주변에 대해 5개 화소들의 탐색 범위로 박스 서치(box search)를 수행할 수 있다. 그리고, 두 번째로 다양한 스텝 사이즈로 다이아몬드 서치(diamond search)를 수행할 수 있다. 그리고, 선택적으로 래스터 서치(raster)가 수행되어 최적의 위치가 결정될 수 있다.
예측 부호화부(11)는 각 후보 MVR에 따라 결정된 현재 블록의 움직임 벡터와 각 후보 MVR에 할당된 후보 블록의 움직임 벡터의 차이값에 기초한 율-왜곡 비용을 비교하여 최소 비용을 갖는 후보 MVR 및 후보 블록을 현재 블록의 MVR 및 현재 블록의 예측 움직임 벡터를 위한 후보 블록으로 결정할 수 있다.
일 예로서, 예측 부호화부(11)는 적어도 하나의 후보 MVR로서, 좌측 블록에 매핑된 1/4 화소 단위의 MVR, 상부 블록에 매핑된 1/2 화소 단위의 MVR 및 상부 우측 블록에 매핑된 1 화소 단위의 MVR을 포함하는 경우, 좌측 블록의 움직임 벡터를 이용하여 최소 MVR인 1/4 화소 단위 MVR에 따라 보간된 참조 영상에서 1/4 화소 단위로 현재 블록의 움직임 벡터를 결정하고, 상부 블록의 움직임 벡터를 이용하여 1/4 화소 단위 MVR에 따라 보간된 참조 영상에서 1/2 화소 단위로 현재 블록의 움직임 벡터를 결정하고, 상부 우측 블록의 움직임 벡터를 이용하여 1/4 화소 단위 MVR에 따라 보간된 참조 영상에서 1 화소 단위로 현재 블록의 움직임 벡터를 결정할 수 있다. 그리고, 예측 부호화부(11)는 코스트에 기초하여 선택된 어느 하나의 후보 MVR을 현재 블록의 MVR로 결정할 수 있다.
일 실시예에서, 현재 블록에 대한 후보 MVR들 각각에 매핑된 후보 블록 중 일부의 후보 블록에 움직임 벡터가 존재하지 않는 경우, 예측 부호화부(11)는 움직임 벡터가 존재하지 않는 후보 블록을 제외시키고, 움직임 벡터를 갖는 다른 블록을 후보 블록으로 이용할 수 있다. 이 경우, 후보 블록으로 새롭게 이용되는 다른 블록은 후보 MVR들 각각에 매핑된 후보 블록들 이외의 블록을 포함할 수 있다. 그리고, 예측 부호화부(11)는 후보 MVR에 따라 결정되는 상기 다른 블록의 움직임 벡터를 현재 블록의 예측 움직임 벡터로 이용할 수 있다. 만약, 어떠한 블록이 인트라(intra) 예측된 경우, 인트라 예측된 블록은 움직임 벡터를 갖지 않는 블록인 것으로 판단될 수 있다.
일 예로서, 현재 블록에 대해 지원 가능한 적어도 하나의 후보 MVR이, 좌측 블록에 매핑된 1/4 화소 단위의 MVR, 상부 블록에 매핑된 1/2 화소 단위의 MVR 및 상부 우측 블록에 매핑된 1 화소 단위의 MVR을 포함하되, 상부 우측 블록에 움직임 벡터가 존재하지 않는 경우를 가정하면, 예측 부호화부(11)는 후보 블록을 제외한 다른 블록, 예를 들어, 상부 좌측 블록에 1 화소 단위의 MVR을 매핑시킬 수 있다.
일 실시예에서, 후보 MVR에 매핑된 적어도 하나의 후보 블록 중 일부의 후보 블록에 움직임 벡터가 존재하지 않을 경우, 새롭게 매핑될 블록들의 위치 및 매핑 우선 순위는 미리 결정되어 있을 수 있다.
또한, 일 실시예에서, 현재 블록에 대해 지원 가능한 적어도 하나의 후보 MVR에 매핑된 적어도 하나의 후보 블록 중 일부의 후보 블록에 움직임 벡터가 존재하지 않는 경우, 예측 부호화부(11)는 임의의 움직임 벡터(예를 들어, 제로 벡터)를 상기 일부의 후보 블록의 움직임 벡터로 이용할 수도 있다.
또한, 일 실시예에서, 현재 블록에 대해 지원 가능한 적어도 하나의 후보 MVR에 매핑된 적어도 하나의 후보 블록 중 서로 동일한 움직임 벡터를 갖는 후보 블록이 존재하는 경우, 서로 동일한 움직임 벡터를 갖는 후보 블록들 중 일부를, 기 매핑된 상기 적어도 하나의 후보 블록을 제외한 다른 블록으로 대체할 수도 있다. 예를 들어, 1/4 화소 단위 MVR에 매핑된 좌측 블록의 움직임 벡터와, 1/2 화소 단위 MVR에 매핑된 상부 블록의 움직임 벡터가 동일한 경우, 예측 부호화부(11)는 좌측 블록과 상부 블록 중 어느 하나의 블록(예를 들어, 상부 블록)을 다른 블록(예를 들어, 상부 좌측 블록)으로 대체하여 후보 MVR(예를 들어, 1/2 화소 해상도)에 매핑시킬 수 있다.
일 실시예에서, 두 개 이상의 후보 블록의 움직임 벡터의 동일 여부는, 후술하는 바와 같이, 후보 블록의 움직임 벡터의 조정이 완료된 이후 조정된 움직임 벡터 사이의 비교를 통해 판단될 수도 있다.
동일한 움직임 벡터를 갖는 후보 블록들이 복수일 때, 복수의 후보 블록 중 어느 후보 블록을 다른 블록으로 대체할지를 나타내는 우선 순위와, 새롭게 매핑될 블록들의 종류 및 우선 순위는 미리 결정되어 있을 수 있다.
일 실시예에서, 현재 블록의 후보 블록 및 움직임 벡터가 결정되면, 예측 부호화부(11)는 현재 블록의 움직임 벡터와 예측 움직임 벡터 사이의 잔차 움직임 벡터를 획득할 수 있다.
생성부(13)는 현재 블록의 MVR을 나타내는 정보 및 현재 블록의 예측 움직임 벡터로 이용된 후보 블록을 나타내는 정보 중 적어도 하나를 포함하는 비트스트림을 생성할 수 있다. 전술한 바와 같이, 후보 MVR과 후보 블록은 1:1 매핑 관계를 가지므로, 현재 블록의 MVR이 결정되면 그에 따라 후보 블록의 위치가 결정될 수 있으며, 반대의 경우 후보 블록이 결정되면 그에 따라 현재 블록의 MVR이 결정될 수 있다. 따라서, 생성부(13)는 현재 블록의 MVR에 대한 정보나 후보 블록을 특정하기 위한 정보 중 적어도 하나를 포함하는 비트스트림을 생성할 수 있는 것이다.
생성부(13)는 현재 블록의 MVR을 나타내는 정보 및 현재 블록의 예측 움직임 벡터로 이용된 후보 블록을 나타내는 정보 중 적어도 하나로서, 현재 블록의 MVR을 가리키는 인덱스 및 후보 블록을 가리키는 인덱스 중 적어도 하나를 비트스트림에 포함시킬 수 있다.
일 실시예에서, 현재 블록에 대해 지원 가능한 후보 MVR 각각에 대해 유너리(UNARY) 방식으로 인덱스가 할당되고, 예측 부호화부(11)에 의해 어느 하나의 인덱스가 선택되면, 생성부(13)는 선택된 인덱스를 포함하는 비트스트림을 생성할 수 있다. 일 예로서, 지원 가능한 후보 MVR이 1/4 화소 단위의 MVR, 1/2 화소 단위의 MVR, 1 화소 단위의 MVR, 2 화소 단위의 MVR, 4 화소 단위의 MVR, 8 화소 단위의 MVR을 포함할 때, 1/4 화소 단위의 MVR에 대해서는 0, 1/2 화소 단위의 MVR에 대해서는 10, 1 화소 단위의 MVR에 대해서는 110, 2 화소 단위의 MVR에 대해서는 1110, 4 화소 단위의 MVR에 대해서는 11110, 8 화소 단위의 MVR에 대해서는 11111의 인덱스로 표현될 수 있다.
일 실시예에서, 적어도 하나의 후보 MVR 각각에 매핑된 적어도 하나의 후보 블록 각각에 대해 유너리(UNARY) 방식으로 인덱스가 할당되고, 예측 부호화부(11)에 의해 어느 하나의 인덱스가 선택되면, 생성부(13)는 선택된 인덱스를 포함하는 비트스트림을 생성할 수 있다. 일 예로서, 적어도 하나의 후보 블록이 좌측 블록, 상부 블록, 좌측 상부 블록, 좌측 하부 블록, 상부 좌측 블록 및 상부 우측 블록을 포함할 때, 좌측 블록에 대해서는 0, 상부 블록에 대해서는 10, 좌측 상부 블록에 대해서는 110, 좌측 하부 블록에 대해서는 1110, 상부 좌측 블록에 대해서는 11110, 상부 우측 블록에 대해서는 11111의 인덱스로 표현될 수 있다.
일 실시예에서, 현재 블록에 대해 지원 가능한 후보 MVR이 하나인 경우, 예측 부호화부(11)는 현재 블록의 MVR 및 후보 블록을 나타내는 정보의 생성을 생략한다. 이에 따라, 생성부(13)에 의해 생성된 비트스트림에는 현재 블록의 MVR 및 후보 블록을 나타내는 정보가 포함되지 않을 수 있다.
일 실시예에서, 현재 블록에 대해 지원 가능한 후보 MVR이 두 개 이상인 경우, 예측 부호화부(11)는 현재 블록의 MVR 및 후보 블록을 나타내는 정보 중 적어도 하나를 플래그(flag) 혹은 인덱스(index)로 생성할 수도 있다.
일 실시예에서, 예측 부호화부(11)는 현재 블록의 움직임 벡터와 예측 움직임 벡터의 차이인 잔차 움직임 벡터를 다운스케일(down-scale)할 수 있다.
일 예로서, 예측 부호화부(11)는 현재 블록의 MVR이 후보 MVR 중 최소 MVR보다 큰 경우, 최소 MVR과 현재 블록의 MVR의 차이에 기초하여 잔차 움직임 벡터를 다운스케일할 수 있다. 예를 들어, 최소 MVR이 1/4 화소 단위를 갖고, 현재 블록의 MVR이 1/2 화소 단위를 갖는 경우, 예측 부호화부(11)는 잔차 움직임 벡터를 1/2만큼 다운스케일할 수 있다.
일 실시예에서 현재 블록에 대해 적응적으로 선택되는 MVR에 따라 잔차 움직임 벡터를 적응적 또는 선택적으로 다운스케일하므로, 보다 적은 양의 비트를 이용하여 현재 블록의 움직임 벡터를 부호화할 수 있다.
도 2는 일 실시예에 따른 움직임 벡터 부호화 방법을 설명하기 위한 순서도이다.
S21 단계에서, 움직임 벡터 부호화 장치(10)는 현재 블록에 대해 지원 가능한 적어도 하나의 후보 MVR 중 하나의 후보 MVR을 현재 블록의 MVR로 결정하고, 적어도 하나의 후보 블록 중 상기 선택된 MVR에 매핑된 후보 블록을 현재 블록의 예측 움직임 벡터를 위한 후보 블록으로 결정할 수 있다.
또는 일 실시예에서, 움직임 벡터 부호화 장치(10)는 적어도 하나의 후보 블록 중 예측 움직임 벡터로 이용할 후보 블록을 선택하고, 선택된 후보 블록에 매핑된 후보 MVR을 현재 블록의 MVR로 결정할 수도 있다.
지원 가능한 적어도 하나의 후보 MVR은 적어도 하나의 후보 블록에 1:1로 매핑되어 있으며, 움직임 벡터 부호화 장치(10)는 각각의 지원 가능한 후보 MVR 및 그에 매핑된 후보 블록의 움직임 벡터를 이용하여 각 후보 MVR에 따라 현재 블록의 움직임 벡터를 결정할 수 있다. 그리고, 움직임 벡터 부호화 장치(10)는 코스트에 기초하여 선택된 어느 하나의 후보 MVR 및 후보 블록을 현재 블록의 MVR 및 현재 블록의 예측 움직임 벡터를 위한 후보 블록으로 선택할 수 있다.
일 실시예에서, 움직임 벡터 부호화 장치(10)는 현재 블록, 이전에 부호화된 블록, 현재 슬라이스, 이전에 부호화된 슬라이스, 현재 픽처 및 이전에 부호화된 픽처 중 적어도 하나에 대한 정보를 기초로, 적어도 하나의 후보 MVR의 개수 및 종류를, 블록 단위, 슬라이스 단위 또는 픽처 단위로 결정할 수 있다.
일 실시예에서, 움직임 벡터 부호화 장치(10)는 현재 블록, 이전에 부호화된 블록, 현재 슬라이스, 이전에 부호화된 슬라이스, 현재 픽처 및 이전에 부호화된 픽처 중 적어도 하나에 대한 정보를 기초로, 적어도 하나의 후보 MVR 각각에 매핑될 적어도 하나의 후보 블록의 위치를, 블록 단위, 슬라이스 단위 또는 픽처 단위로 결정할 수 있다.
일 실시예에서, 적어도 하나의 후보 MVR 각각에 매핑된 적어도 하나의 후보 블록 중 일부의 후보 블록에 움직임 벡터가 존재하지 않는 경우, 움직임 벡터 부호화 장치(10)는 후보 MVR에 매핑된 적어도 하나의 후보 블록을 제외한 다른 블록을, 움직임 벡터가 존재하지 않는 후보 블록 대신 후보 MVR에 새롭게 매핑시킬 수 있고, 새롭게 매핑된 블록의 움직임 벡터를 현재 블록의 예측 움직임 벡터로 이용할 수 있다.
또한, 일 실시예에서, 적어도 하나의 후보 MVR에 매핑된 적어도 하나의 후보 블록 중 일부의 후보 블록에 움직임 벡터가 존재하지 않는 경우, 움직임 벡터 부호화 장치(10)는 임의의 움직임 벡터(예를 들어, 제로 벡터)를 상기 일부의 후보 블록의 움직임 벡터로 이용할 수 있다.
또한, 일 실시예에서, 적어도 하나의 후보 MVR 각각에 매핑된 적어도 하나의 후보 블록 중에서 서로 동일한 움직임 벡터를 갖는 후보 블록이 존재하는 경우, 움직임 벡터 부호화 장치(10)는 서로 동일한 움직임 벡터를 갖는 후보 블록들 중 일부를, 후보 MVR에 매핑된 적어도 하나의 후보 블록을 제외한 다른 블록으로 대체하여 후보 MVR에 새롭게 매핑시킬 수 있다.
S22 단계에서, 움직임 벡터 부호화 장치(10)는 현재 블록의 MVR에 따라, 보간된 참조 영상에서 현재 블록의 움직임 벡터를 결정한다.
움직임 벡터 부호화 장치(10)는 현재 블록에 대해 선택 가능한 적어도 하나의 후보 MVR 중 최소 MVR과 현재 블록의 MVR을 비교하여 후보 블록의 움직임 벡터를 조정할 수 있다. 움직임 벡터 부호화 장치(10)는 후보 블록의 조정된 움직임 벡터에 따라 참조 영상 내 탐색 시작 위치를 결정하고, 참조 영상 내에서 최적의 참조 블록을 탐색하여, 현재 블록의 MVR에 따른 현재 블록의 움직임 벡터를 결정할 수 있다.
S23 단계에서, 움직임 벡터 부호화 장치(10)는 현재 블록의 움직임 벡터와 후보 블록의 움직임 벡터(또는 조정된 움직임 벡터) 사이의 잔차 움직임 벡터를 획득한다.
S24 단계에서, 움직임 벡터 부호화 장치(10)는 현재 블록의 MVR에 대한 정보 및 예측 움직임 벡터로 이용된 후보 블록을 나타내는 정보 중 적어도 하나와, 잔차 움직임 벡터를 나타내는 정보를 생성한다.
현재 블록의 MVR에 대한 정보 및 예측 움직임 벡터로 이용된 후보 블록을 나타내는 정보 중 적어도 하나와, 잔차 움직임 벡터를 나타내는 정보는 비트스트림에 포함될 수 있다.
전술한 바와 같이, 움직임 벡터 부호화 장치(10)는 현재 블록의 MVR과 적어도 하나의 후보 MVR 중 최소 MVR을 비교하여 잔차 움직임 벡터를 다운스케일할 수 있다.
도 3은 일 실시예에 따른 움직임 벡터 복호화 장치(30)의 구성을 나타내는 블록도이다. 도 3에 도시된 움직임 벡터 복호화 장치(30)는 후술할 비디오 복호화 장치(100)에 포함될 수 있다. 구체적으로, 획득부(31)는 비디오 복호화 장치(100)의 비트스트림 획득부(110)에 포함될 수 있고, 예측 복호화부(33)는 비디오 복호화 장치(100)의 복호화부(120)에 포함될 수 있다.
움직임 벡터 복호화 장치(30)는 획득한 비트스트림을 파싱하여 현재 블록의 인터 예측을 수행하기 위한 움직임 벡터를 결정할 수 있다.
획득부(31)는 비트스트림으로부터 현재 블록의 MVR에 대한 정보 및 후보 블록을 나타내는 정보 중 적어도 하나, 및 잔차 움직임 벡터를 나타내는 정보를 획득할 수 있다.
상기 현재 블록의 MVR에 대한 정보는, 현재 블록의 MVR을 가리키는 인덱스를 포함할 수 있고, 후보 블록을 나타내는 정보는 후보 블록을 나타내는 인덱스를 포함할 수 있다.
예측 복호화부(33)는 획득부(31)에 의해 현재 블록의 MVR에 대한 정보가 획득되면, 현재 블록의 MVR에 따라 현재 블록의 예측 움직임 벡터로서 이용될 후보 블록을 결정할 수 있다.
일 실시예에서, 획득부(31)는 MVR에 대한 정보를 인터 예측된 부호화 단위마다 획득할 수도 있다. 도 10은 비트스트림으로부터 MVR에 대한 정보를 획득하는 신택스를 나타내는 도면이다.
도 10을 참조하면, a 구문에서 현재 부호화 단위를 포함하는 슬라이스가 I 슬라이스가 아니라면, b 구문에서 cu_skip_flag가 추출된다. cu_skip_flag는 현재 부호화 단위에 대해 스킵 모드를 적용할지 여부를 나타낸다. c 구문에서 스킵 모드의 적용이 확인되면, 현재 부호화 단위를 스킵 모드에 따라 처리하게 된다. d 구문에서 스킵 모드의 미적용이 확인되면, e 구문에서 pred_mode_flag가 추출된다. pred_mode_flag는 현재 부호화 단위가 인트라 예측되었는지, 인터 예측 되었는지를 나타낸다. f 구문에서 현재 부호화 단위가 인트라 예측된 것이 아니라면, 즉, 인터 예측되었다면 g 구문에서 pred_mvr_idx가 추출된다. pred_mvr_idx는 현재 부호화 단위의 MVR을 나타내는 인덱스이며, 각 인덱스에 대응하는 MVR은 아래의 표 1과 같다.
MVR Index 0 1 2 3 4
Resolution (R) in pel 1/4 1/2 1 2 4
일 실시예에서, 예측 복호화부(33)는 획득부(31)에 의해 현재 블록의 예측 움직임 벡터로 이용될 후보 블록을 나타내는 정보가 획득되면, 후보 블록을 나타내는 정보에 기초하여 적어도 하나의 후보 MVR 중 하나의 후보 MVR을 현재 블록의 MVR로 결정할 수 있다.예측 복호화부(33)는 현재 블록에 대해 선택 가능한 적어도 하나의 후보 MVR과 적어도 하나의 후보 블록 사이의 1:1 매핑 관계(또는 대응 관계)에 대한 정보를 미리 저장할 수 있다. 따라서, 획득부(31)에 의해 현재 블록의 MVR에 대한 정보가 획득되면 그에 매핑된 현재 블록의 후보 블록을 선택할 수 있고, 또는, 획득부(31)에 의해 후보 블록을 나타내는 정보가 획득되면, 그에 매핑된 현재 블록의 MVR을 선택할 수 있다.
일 실시예에서, 표 1에 도시된 MVR 인덱스는 적어도 하나의 후보 블록의 인덱스로도 이용될 수 있다. 인덱스에 따라 결정되는 후보 MVR과 후보 블록은 아래의 표 2와 같다.
Index 0 1 2 3 4
Resolution in pel 1/4 1/2 1 2 4
Nth MVP 1st MVP 2nd MVP 3rd MVP 4th MVP 5th MVP
표 2에서, 1st MVP, 2nd MVP, 3rd MVP, 4th MVP 및 5th MVP 각각은 서로 다른 후보 블록을 나타낸다.일 실시예에서, 적어도 하나의 후보 MVR은 1/8 화소 단위의 MVR, 1/4 화소 단위의 MVR, 1/2 화소 단위의 MVR, 1 화소 단위의 MVR, 2 화소 단위의 MVR, 4 화소 단위의 MVR 및 8 화소 단위의 MVR 중 적어도 하나를 포함할 수 있다. 그러나, 지원 가능한 적어도 하나의 후보 MVR은 상기 예시에 한정되는 것은 아니며, 다양한 값의 화소 단위의 MVR들이 후보 MVR에 포함될 수 있다.
일 실시예에서, 상기 적어도 하나의 후보 블록은, 현재 블록과 연관된 공간적 블록과 시간적 블록을 포함한 블록들 중에서 선택될 수 있다. 공간적 블록은 현재 블록과 공간적으로 인접한 블록을 적어도 하나 포함할 수 있다. 시간적 블록은 현재 블록의 POC(Picture Order Count)와 다른 POC를 갖는 참조 영상 내에서 현재 블록과 동일한 지점에 위치한 블록과, 동일 위치의 블록에 대해 공간적으로 인접한 블록을 적어도 하나 포함할 수 있다.
일 실시예에서, 적어도 하나의 후보 MVR이 1/4 화소 단위의 MVR, 1/2 화소 단위의 MVR, 1 화소 단위의 MVR 및 2 화소 단위의 MVR을 포함하고, 적어도 하나의 후보 블록이 좌측 블록, 상부 블록, 좌측 상부 블록, 상부 좌측 블록을 포함할 때, (1/4 화소 단위의 MVR - 좌측 블록), (1/2 화소 단위의 MVR - 상부 블록), (1 화소 단위의 MVR - 좌측 상부 블록), (2 화소 단위의 MVR - 상부 좌측 블록)의 매핑 관계 또는 대응 관계가 움직임 벡터 복호화 장치(30)에 설정될 수 있다. 이에 의하면, 예측 복호화부(33)는 현재 블록의 MVR로서 1/4 화소 단위의 MVR이 확인되면, 그에 따라 좌측 블록의 움직임 벡터를 현재 블록의 예측 움직임 벡터로 이용할 수 있다. 또한, 예측 복호화부(33)는 현재 블록의 예측 움직임 벡터로서 상부 블록이 확인된 경우, 그에 따라 현재 블록의 MVR로 1/2 화소 단위 MVR을 결정할 수 있다.
일 실시예에서, 예측 복호화부(33)는 현재 블록, 이전에 복호화된 블록, 현재 슬라이스, 이전에 복호화된 슬라이스, 현재 픽처 및 이전에 복호화된 픽처 중 적어도 하나에 대한 정보를 기초로, 선택 가능한 적어도 하나의 후보 MVR의 개수 및 종류를, 블록 단위, 슬라이스 단위 또는 픽처 단위로 결정할 수 있다.
일 예로서, 예측 복호화부(33)는 현재 블록에 대해 선택 가능한 적어도 하나의 후보 MVR과 이후의 블록에 대해 선택 가능한 적어도 하나의 후보 MVR을 서로 상이하게 결정할 수 있다. 예를 들어, 현재 블록에 대해 선택 가능한 적어도 하나의 후보 MVR로서 1/4 화소 단위의 MVR 및 1/2 화소 단위의 MVR을 결정할 수 있고, 이후의 블록에 대해 선택 가능한 적어도 하나의 후보 MVR로서 1 화소 단위의 MVR 및 2 화소 단위의 MVR을 결정할 수 있다. 또는 어떠한 블록에 대해서는 후보 MVR로서 하나의 MVR만을 포함시킬 수 있다.
일 예로서, 예측 복호화부(33)는 적어도 하나의 후보 MVR을 블록 단위로 결정할 때, 현재 블록의 크기를 미리 정해진 크기와 비교하여, 하나의 MVR만을 후보 MVR에 포함시키거나, 복수의 MVR을 후보 MVR에 포함시킬 수 있다. 또는 예측 복호화부(33)는 적어도 하나의 후보 MVR을 블록 단위로 결정할 때, 이전에 복호화된 블록의 MVR에 기초하여, 현재 블록의 후보 MVR 의 개수 및 종류를 결정할 수도 있다.
또한, 일 예로서, 예측 복호화부(33)는 선택 가능한 적어도 하나의 후보 MVR을 슬라이스 또는 픽처 단위로 결정할 때, 슬라이스 또는 픽처의 타입에 따라 현재 슬라이스 또는 현재 픽처에 대해 지원 가능한 후보 MVR의 개수 및 종류를 결정할 수도 있다. 또한, 일 예로서, 예측 복호화부(33)는 선택 가능한 적어도 하나의 후보 MVR을 슬라이스 또는 픽처 단위로 결정할 때, 슬라이스 또는 픽처가 다른 슬라이스 또는 다른 픽처에 의해 참조되는지 여부에 따라 현재 슬라이스 또는 현재 픽처에 대해 선택 가능한 후보 MVR의 개수 및 종류를 결정할 수도 있다.
일 실시예에서, 예측 복호화부(33)는 현재 블록, 이전에 복호화된 블록, 현재 슬라이스, 이전에 복호화된 슬라이스, 현재 픽처 및 이전에 복호화된 픽처 중 적어도 하나에 대한 정보를 기초로, 블록 단위, 슬라이스 단위 또는 픽처 단위로, 적어도 하나의 후보 MVR 각각에 매핑될 적어도 하나의 후보 블록의 위치를 결정할 수 있다.
예를 들어, 예측 복호화부(33)는 현재 블록, 이전에 복호화된 블록, 현재 슬라이스, 이전에 복호화된 슬라이스, 현재 픽처 및 이전에 복호화된 픽처 중 적어도 하나에 대한 정보에 기초하여, 현재 블록에 대해 선택 가능한 후보 MVR에 1:1로 매핑되는 후보 블록의 위치를 결정할 수 있다. 일 예로서, 예측 복호화부(33)는 이전에 복호화된 블록의 예측 모드(인트라 또는 인터), 움직임 벡터, MVR, 참조 영상, 양방향 예측 여부 등의 정보에 따라 현재 블록에 대해 선택 가능한 후보 MVR 각각에 매핑될 후보 블록들의 위치를 결정할 수 있다.
일 예로서, 예측 복호화부(33)는 현재 블록에 대해 선택 가능한 적어도 하나의 후보 블록과 이후의 블록에 대해 선택 가능한 적어도 하나의 후보 블록을 서로 상이하게 결정할 수 있다. 예를 들어, 블록 단위로 후보 블록의 위치가 결정되는 경우, 현재 블록의 후보 MVR에 해당하는 1 화소 단위의 MVR과 2 화소 단위의 MVR 각각에 대해 상부 블록과 좌측 블록을 매핑시키고, 이후의 블록의 후보 MVR에 해당하는 1 화소 단위의 MVR과 2 화소 단위의 MVR 각각에 대해 상부 좌측 블록과 좌측 하부 블록을 매핑시킬 수 있다.
일 실시예에서, 현재 블록에 대해 선택 가능한 후보 MVR 각각에 대해 유너리(UNARY) 방식으로 인덱스가 할당되고, 예측 복호화부(33)는 획득부(31)에 의해 획득된 현재 블록의 MVR을 나타내는 인덱스에 따라 현재 블록의 MVR을 선택할 수 있다. 일 예로서, 지원 가능한 후보 MVR이 1/4 화소 단위의 MVR, 1/2 화소 단위의 MVR, 1 화소 단위의 MVR, 2 화소 단위의 MVR, 4 화소 단위의 MVR, 8 화소 단위의 MVR을 포함할 때, 1/4 화소 단위의 MVR에 대해서는 0, 1/2 화소 단위의 MVR에 대해서는 10, 1 화소 단위의 MVR에 대해서는 110, 2 화소 단위의 MVR에 대해서는 1110, 4 화소 단위의 MVR에 대해서는 11110, 8 화소 단위의 MVR에 대해서는 11111의 인덱스가 할당될 수 있다.
일 실시예에서, 적어도 하나의 후보 MVR에 매핑된 각 후보 블록에 대해 유너리(UNARY) 방식으로 인덱스가 할당되고, 예측 복호화부(33)는 획득부(31)에 의해 획득된 후보 블록 인덱스에 따라 현재 블록의 예측 움직임 벡터로 이용되는 후보 블록을 선택할 수 있다. 일 예로서, 적어도 하나의 후보 블록이 좌측 블록, 상부 블록, 좌측 상부 블록, 좌측 하부 블록, 상부 좌측 블록 및 상부 우측 블록을 포함할 때, 좌측 블록에 대해서는 0, 상부 블록에 대해서는 10, 좌측 상부 블록에 대해서는 110, 좌측 하부 블록에 대해서는 1110, 상부 좌측 블록에 대해서는 11110, 상부 우측 블록에 대해서는 11111의 인덱스가 할당될 수 있다.
일 실시예에서, 현재 블록에 대해 지원 가능한 후보 MVR이 하나인 경우, 획득부(31)는 현재 블록의 MVR 및 현재 블록의 예측 움직임 벡터를 위해 이용되는 후보 블록을 나타내는 정보의 획득을 스킵(skip) 또는 생략할 수 있다. 여기서, 정보의 획득을 스킵한다는 것은 비트스트림으로부터 해당 정보를 획득하지 않는다는 것을 의미할 수 있다.
일 실시예에서, 현재 블록에 대해 지원 가능한 후보 MVR이 두 개 이상인 경우, 획득부(31)는 현재 블록의 MVR을 나타내는 정보 및 현재 블록의 예측 움직임 벡터를 결정하는데 이용되는 후보 블록을 나타내는 정보 중 적어도 하나를 나타내는 플래그 혹은 인덱스를 획득할 수도 있다.
일 실시예에 따른 예측 복호화부(33)는, 후보 블록의 움직임 벡터를 그대로 현재 블록의 예측 움직임 벡터로 이용하거나, 후보 블록의 움직임 벡터를 변경하여 현재 블록의 예측 움직임 벡터로 이용할 수 있다.
일 실시예에서, 현재 블록의 MVR에 매핑된 후보 블록에 움직임 벡터가 존재하지 않으면, 예측 복호화부(33)는 후보 MVR 각각에 매핑된 후보 블록들을 제외한, 움직임 벡터를 갖는 다른 블록을, 현재 블록의 MVR에 매핑시킬 수 있다. 그리고, 예측 복호화부(33)는 새롭게 매핑된 블록의 움직임 벡터를 현재 블록의 예측 움직임 벡터로 이용할 수 있다. 만약, 어떠한 블록이 인트라(intra) 예측된 경우 해당 블록은 움직임 벡터를 갖지 않는 블록인 것으로 판단될 수 있다.
일 예로서, 현재 블록에 대해 지원 가능한 적어도 하나의 후보 MVR이, 좌측 블록에 매핑된 1/4 화소 단위의 MVR, 상부 블록에 매핑된 1/2 화소 단위의 MVR 및 상부 우측 블록에 매핑된 1 화소 단위의 MVR을 포함하되, 상부 우측 블록에는 움직임 벡터가 존재하지 않는 경우를 가정하면, 예측 복호화부(33)는 1 화소 단위의 MVR을 적어도 하나의 후보 블록을 제외한 다른 블록, 예를 들어, 상부 좌측 블록에 매핑시킬 수 있다.
일 실시예에서, 현재 블록의 MVR에 매핑된 후보 블록에 움직임 벡터가 존재하지 않을 경우, 새롭게 이용될 다른 블록들의 위치 및 우선 순위는 미리 결정되어 있을 수 있다.
또한, 일 실시예에서, 현재 블록의 MVR에 매핑된 후보 블록에 움직임 벡터가 존재하지 않는 경우, 예측 복호화부(33)는 임의의 움직임 벡터(예를 들어, 제로 벡터)를 현재 블록의 예측 움직임 벡터로 이용할 수도 있다.
또한, 일 실시예에서, 현재 블록의 MVR에 매핑된 후보 블록에 움직임 벡터가 존재하지 않는 경우, 다른 후보 블록의 움직임 벡터를 이용하여 현재 블록에 대응하는 후보 블록의 움직임 벡터를 유도할 수도 있다.
또한, 일 실시예에서, 예측 복호화부(33)는 현재 블록에 대해 지원 가능한 적어도 하나의 후보 MVR에 매핑된 적어도 하나의 후보 블록 중 서로 동일한 움직임 벡터를 갖는 후보 블록이 존재하는 경우, 서로 동일한 움직임 벡터를 갖는 후보 블록들 중 일부를, 각각의 후보 MVR에 매핑된 상기 적어도 하나의 후보 블록 이외의 다른 블록으로 대체할 수도 있다. 예를 들어, 1/4 화소 단위 MVR에 매핑된 좌측 블록의 움직임 벡터와, 1/2 화소 단위 MVR에 매핑된 상부 블록의 움직임 벡터가 동일한 경우, 예측 복호화부(33)는 좌측 블록과 상부 블록 중 어느 하나의 블록(예를 들어, 상부 블록)을 다른 블록(예를 들어, 상부 좌측 블록)으로 대체하여 후보 MVR(예를 들어, 1/2 화소 해상도)에 매핑시킬 수 있다.
동일한 움직임 벡터를 갖는 후보 블록들이 복수일 때, 복수의 후보 블록 중 어느 후보 블록을 다른 블록으로 대체할지를 나타내는 우선 순위와, 새롭게 매핑될 블록들의 종류 및 우선 순위는 미리 결정되어 있을 수 있다.
일 실시예에서, 예측 복호화부(33)는 현재 블록에 대해 지원 가능한 적어도 하나의 후보 MVR에 매핑된 적어도 하나의 후보 블록 중 서로 동일한 움직임 벡터를 갖는 후보 블록이 존재하는 경우, 서로 동일한 움직임 벡터를 갖는 후보 블록들 중 일부에 임의의 움직임 벡터(예를 들어, 제로 벡터)를 할당할 수 있다. 이 경우, 임의의 움직임 벡터를 할당할 후보 블록의 우선 순위는 미리 결정되어 있을 수 있다.
일 실시예에서, 예측 복호화부(33)는 현재 블록에 대해 지원 가능한 적어도 하나의 후보 MVR에 매핑된 적어도 하나의 후보 블록 중 서로 동일한 움직임 벡터를 갖는 후보 블록이 존재하는 경우, 서로 동일한 움직임 벡터를 갖는 후보 블록들 중 일부의 움직임 벡터를, 다른 후보 블록의 움직임 벡터를 이용하여 유도할 수도 있다.
일 실시예에서, 두 개 이상의 후보 블록의 움직임 벡터의 동일 여부는, 후술하는 바와 같이, 후보 블록의 움직임 벡터의 조정이 완료된 이후 조정된 움직임 벡터 사이의 비교를 통해 판단될 수도 있다.
또한, 일 실시예에서, 예측 복호화부(33)는 적어도 하나의 후보 블록 중 서로 동일한 움직임 벡터를 갖는 후보 블록이 존재하는지를 직접 판단하지 않고, 비트스트림으로부터 관련 정보를 수신할 수도 있다. 일 실시예에서, 획득부(31)는 비트스트림으로부터 후보 블록이 대체되었다는 정보를 획득할 수 있고, 예측 복호화부(33)는 대체된 블록의 움직임 벡터를 예측 움직임 벡터로 이용할 수 있다. 후보 블록이 대체되었다는 정보가 획득된 경우, 현재 블록의 MVR에 대응하여 현재 블록의 예측 움직임 벡터로 이용될 블록들의 종류 및 우선 순위는 미리 결정되어 있을 수 있다.
일 실시예에서, 예측 복호화부(33)는 현재 블록의 MVR과 적어도 하나의 후보 MVR 중 최소 MVR의 차이에 기초하여, 획득부(31)에 의해 획득된 잔차 움직임 벡터를 업스케일(up-scale)할 수 있다. 예를 들어, 예측 복호화부(33)는 현재 블록의 MVR이 최소 MVR보다 큰 경우, 잔차 움직임 벡터를 업스케일(up-scale)할 수 있다.
또한, 일 실시예에서, 예측 복호화부(33)는 현재 블록의 MVR에 매핑된 후보 블록의 움직임 벡터를 선택적으로 조정할 수 있다.
예측 복호화부(33)는 선택적으로 조정된 후보 블록의 움직임 벡터와 선택적으로 업스케일된 잔차 움직임 벡터를 이용하여 현재 블록의 움직임 벡터를 획득할 수 있다.
잔차 움직임 벡터의 업스케일 및 후보 블록의 움직임 벡터의 조정에 대해서는 아래에서 구체적으로 설명된다.
예측 복호화부(33)는 현재 블록의 움직임 벡터를 이용하여 참조 영상에서 예측 블록을 탐색하고, 탐색된 예측 블록에 역양자화 및 역변환된 잔차 데이터를 합하여 현재 블록을 재구성(reconstruction)할 수 있다.
일 실시예에서, 예측 복호화부(33)는 현재 블록의 MVR이 1 화소 단위 이상의 MVR인 경우에는 보간되지 않은 참조 영상에서 예측 블록을 탐색하고, 현재 블록의 MVR이 1 화소 단위 미만의 MVR인 경우에는 보간된 참조 영상에서 예측 블록을 탐색할 수 있다.
도 4는 일 실시예에 따른 움직임 벡터 복호화 방법을 설명하기 위한 순서도이다.
S41 단계에서, 움직임 벡터 복호화 장치(30)는 현재 블록의 MVR과, 현재 블록의 예측 움직임 벡터를 결정하기 위해 이용되는 후보 블록을 결정한다. 움직임 벡터 복호화 장치(30)에 의해 결정되는 현재 블록의 MVR은 현재 블록에 대해 선택 가능한 적어도 하나의 MVR 후보 중 어느 하나에 대응할 수 있고, 현재 블록의 예측 움직임 벡터를 위한 후보 블록은 적어도 하나의 MVR 후보 각각에 매핑된 적어도 하나의 후보 블록 중 어느 하나에 대응할 수 있다.
움직임 벡터 복호화 장치(30)는 비트스트림으로부터 현재 블록의 MVR을 나타내는 정보 및 후보 블록을 나타내는 정보 중 적어도 하나와, 잔차 움직임 벡터를 획득할 수 있다.
움직임 벡터 복호화 장치(30)는 비트스트림으로부터 현재 블록의 MVR을 나타내는 정보가 획득되면, 획득한 정보에 기초하여 예측 움직임 벡터로 이용될 후보 블록을 결정하고, 반대로, 비트스트림으로부터 후보 블록을 나타내는 정보가 획득되면, 획득한 정보에 기초하여 현재 블록의 MVR을 결정할 수 있다.
S42 단계에서, 움직임 벡터 복호화 장치(30)는 후보 블록의 움직임 벡터와 잔차 움직임 벡터를 이용하여 현재 블록의 움직임 벡터를 획득한다.
일 실시예에서, 움직임 벡터 복호화 장치(30)는 현재 블록의 MVR과 최소 MVR의 차이에 따라 후보 블록의 움직임 벡터에 대해 선택적으로 조정을 하고, 최소 MVR과 현재 블록의 MVR의 차이에 따라 잔차 움직임 벡터를 선택적으로 업스케일할 수 있다.
도 5는 적어도 하나의 후보 MVR 각각에 1:1로 매핑된 적어도 하나의 후보 블록을 설명하기 위한 도면이다.
현재 블록(50)과 연관된 공간적 블록들과 시간적 블록들 중에서 선택된 적어도 하나의 후보 블록이 후보 MVR 각각에 매핑될 수 있다.
예를 들어, 공간적 블록은, 현재 블록(50)의 인접 블록인 좌측 상부 블록(a), 우측 상부 블록(b), 상부 좌측 블록(c), 상부 우측 블록(d), 좌상단 외곽 블록(e), 우상단 외곽 블록(f), 좌하단 외곽 블록(g), 우하단 외곽 블록(h), 좌측 하부 블록(i), 우측 하부 블록(j), 좌측 블록(k), 우측 블록(l) 및 상부 블록(m)을 포함할 수 있다. 시간적 블록은 현재 블록(50)과 다른 POC를 갖는 참조 영상에 속한 동일 위치 블록(n) 및 동일 위치 블록의 인접 블록(o)을 포함할 수 있다.
이들 공간적 블록들과 시간적 블록들 중에서 선택된 적어도 하나의 후보 블록이 후보 MVR 각각에 매핑될 수 있는데, 도 6에 도시된 바와 같이, 1/8 화소 단위의 MVR은 좌측 블록(k), 1/4 화소 단위의 MVR은 상부 블록(m), 1/2 화소 단위의 MVR은 좌측 상부 블록(a), 1 화소 단위의 MVR은 상부 좌측 블록(c), 2 화소 단위의 MVR은 좌측 하부 블록(i) 각각에 매핑될 수 있다. 도시된 매핑 관계는 하나의 예시일 뿐이며, 다양한 매핑 관계가 설정될 수 있다.
도 6에 도시된 예에 따르면, 움직임 벡터 부호화 장치(10)는 현재 블록의 MVR을 1/8 화소 단위로 결정하면, 현재 블록의 예측 움직임 벡터로서 좌측 블록의 움직임 벡터를 이용한다. 또한, 움직임 벡터 부호화 장치(10)는 현재 블록의 예측 움직임 벡터로서 상부 블록의 움직임 벡터를 이용하면, 현재 블록의 MVR을 1/4 화소 단위로 결정할 수 있다.
또한, 움직임 벡터 복호화 장치(30)는 현재 블록의 MVR이 1/8 화소 단위로 확인하면, 현재 블록의 예측 움직임 벡터로서 좌측 블록의 움직임 벡터를 이용한다. 또한, 움직임 벡터 복호화 장치(30)는 현재 블록의 예측 움직임 벡터로서 상부 블록의 움직임 벡터가 이용되는 것으로 확인되면, 현재 블록의 MVR을 1/4 화소 단위로 결정할 수 있다.
일 실시예에서, 적어도 하나의 후보 MVR 각각에 매핑되는 후보 블록의 위치는, 임의의 화소 단위의 MVR로 소정 개수의 픽처 내 블록들의 움직임 벡터를 결정할 때, 예측 움직임 벡터로서 많이 선택되는 순서로 결정될 수 있다. 예를 들어, 지원 가능한 후보 MVR의 개수가 5개인 경우, 공간적 블록들 및 시간적 블록들을 포함한 블록들 중 예측 움직임 벡터로서 많이 선택되는 5개의 블록 각각이 후보 MVR 각각에 매핑될 수 있다.
일 실시예에서, 후보 MVR과 후보 블록을 1:1로 매핑시킬 때, 후보 MVR들을 화소 단위의 크기에 따라 오름차순으로 정렬하고, 후보 블록들은 예측 움직임 벡터로서 선택된 횟수에 따라 내림차순으로 정렬한 후, 서로 간에 순위가 대응하는 후보 MVR과 후보 블록을 매핑시킬 수 있다.
앞서 설명한 바와 같이, 현재 블록에 대해 선택 가능한 후보 MVR의 종류 및 개수는 현재 블록, 이전에 복호화된 블록, 현재 슬라이스, 이전에 복호화된 슬라이스, 현재 픽처 및 및 이전에 복호화된 픽처 중 적어도 하나에 대한 정보에 따라 변경될 수 있다.
또한, 현재 블록에 대해 선택 가능한 후보 MVR 각각에 매핑되는 후보 블록들의 위치는 현재 블록, 이전에 복호화된 블록, 현재 슬라이스, 이전에 복호화된 슬라이스, 현재 픽처 및 이전에 복호화된 픽처 중 적어도 하나에 대한 정보에 따라 변경될 수도 있다.
현재 블록에 대해 선택 가능한 후보 MVR의 종류 및 개수, 및 현재 블록에 대해 선택 가능한 후보 MVR 각각에 매핑되는 후보 블록의 위치는, 움직임 벡터 부호화 장치(10) 및 움직임 벡터 복호화 장치(30)에 의해 동일 기준으로 결정될 수 있으며, 이에 따라 움직임 벡터 부호화 장치(10)가 현재 블록의 MVR을 나타내는 인덱스 또는 현재 블록에 대한 후보 블록을 나타내는 인덱스를 부호화하여 움직임 벡터 복호화 장치(30)로 전송하더라도 움직임 벡터 복호화 장치(30)는 각 인덱스에 대응하는 MVR 또는 후보 블록을 결정할 수 있게 된다.
도 7은 다양한 움직임 벡터 해상도에 따른 움직임 벡터를 결정하기 위한 보간(interpolation)을 설명하기 위한 도면이다.
움직임 벡터 부호화 장치(10)는 현재 블록을 인터 예측하기 위해 적어도 하나의 후보 MVR에 따라 현재 블록의 움직임 벡터를 결정할 수 있다. 지원 가능한 후보 MVR은 2k 화소 단위(k는 정수)의 MVR을 포함할 수 있다. 만약, k가 0보다 클 경우 움직임 벡터는 보간된 참조 영상 내의 정수 화소들만 가리킬 수 있으며, k가 0보다 작을 경우에는 부화소들 및 정수 화소들을 가리킬 수 있다.
예를 들어, 최소 MVR이 1/4 화소 단위를 갖는 경우, 움직임 벡터 부호화 장치(10)는 1/4 화소 단위의 부픽셀들이 생성되도록 참조 영상을 보간하고, 움직임 벡터가 후보 MVR, 예를 들어, 1/4 화소 단위 MVR, 1/2 화소 단위 MVR, 1 화소 단위 MVR 또는 2 화소 단위 MVR 각각에 대응하는 화소를 가리키도록 움직임 벡터를 결정할 수 있다.
일 예로서, 움직임 벡터 부호화 장치(10)는 n-탭 FIR 필터(Finite Impulse Response filter)를 이용해 참조 영상에 대해 보간을 수행하여 1/2 화소 단위의 부화소들(a 내지 l)을 생성할 수 있다. 세로 방향의 1/2 부화소들을 살펴보면, 정수 화소 단위의 A1, A2, A3, A4, A5 및 A6을 이용해 보간을 수행하여 부화소 a를 생성하고, 정수 화소 단위의 B1, B2, B3, B4, B5 및 B6를 이용해 보간을 수행하여 부화소 b를 생성할 수 있다. 동일한 방법으로 부화소 c, d, e 및 f를 생성할 수 있다.
세로 방향의 부화소들의 화소 값들은 다음과 같이 계산될 수 있다. 예를 들어, a=(A1-5×A2+20×A3+20×A4-5×A5+A6)/32, b=(B1-5×B2+20ХB3+20ХB4-5ХB5+B6)/32 와 같이 계산될 수 있다. 부화소 c, d, e 및 f의 화소 값들도 동일한 방법에 의해 계산될 수 있다.
움직임 벡터 부호화 장치(10)는 세로 방향의 부화소와 마찬가지로 가로 방향의 부화소들도 6탭 FIR 필터를 이용해 보간을 수행하여 생성할 수 있다. A1, B1, C1, D1, E1 및 F1을 이용해 부화소 g를 생성하고, A2, B2, C2, D2, E2 및 F2를 이용해 부화소 h를 생성할 수 있다.
가로 방향의 부화소들의 화소 값도 세로 방향의 부화소들의 화소 값과 동일한 방법에 의해 계산된다. 예를 들어, g=(A1-5×B1+20×C1+20×D1-5×E1+F1)/32와 같이 계산할 수 있다.
대각 방향의 1/2 화소 단위의 부화소 m은 다른 1/2 화소 단위 부화소를 이용하여 보간될 수 있다. 다시 말해, 부화소 m의 화소 값은 m=(a-5×b+20×c+20×d-5×e+f)/32와 같이 계산될 수 있다.
1/2 화소 단위의 부화소들이 생성되면, 움직임 벡터 부호화 장치(10)는 정수 화소들과 1/2 화소 단위의 부화소들을 이용하여, 1/4 화소 단위의 부화소들을 생성할 수 있다. 인접한 2개 화소들을 이용해 보간을 수행하여 1/4 화소 단위의 부화소들을 생성할 수 있다. 또는, 1/4 화소 단위의 부화소는 1/2 화소 단위의 부화소 값을 이용하지 않고 정수 화소의 화소 값에 직접 보간 필터를 적용하여 생성될 수도 있다.
상술한 보간 필터는 6-탭 필터를 예로 들어 기재하였으나, 움직임 벡터 부호화 장치(10)는 다른 탭 수를 가지는 필터를 사용하여 픽처를 보간할 수도 있다. 예를 들어, 보간 필터는 4-탭, 7-탭, 8-탭, 12탭 필터를 포함할 수 있다.
도 8은 지원 가능한 최소 MVR이 1/4 화소 단위 MVR인 경우, 1/4 화소 단위 MVR, 1/2 화소 단위 MVR, 1 화소 단위 MVR 및 2 화소 단위 MVR에 대응하여 움직임 벡터가 가리킬 수 있는 화소들의 위치를 나타낸다.
도 8의 (a), (b), (c), (d)는 각각 좌표 (0, 0)을 기준으로 1/4 화소 단위 MVR, 1/2 화소 단위 MVR, 1 화소 단위 MVR 및 2 화소 단위 MVR의 움직임 벡터가 가리킬 수 있는 화소의 좌표(검정색 사각형으로 표시)들을 나타낸다.
최소 MVR이 1/4 화소 단위 MVR인 경우, 1/4 화소 단위 MVR의 움직임 벡터가 가리킬 수 있는 화소의 좌표는 (a/4, b/4)(a, b는 정수)가 되고, 1/2 화소 단위 MVR의 움직임 벡터가 가리킬 수 있는 화소의 좌표는 (2c/4, 2d/4)(c, d는 정수)가 되고, 1 화소 단위 MVR의 움직임 벡터가 가리킬 수 있는 화소의 좌표는 (4e/4, 4f/4)(e, f는 정수)가 되고, 2 화소 단위 MVR의 움직임 벡터가 가리킬 수 있는 화소의 좌표는 (8g/4, 8h/4)(g, h는 정수)가 된다. 즉, 최소 MVR이 2m(m은 정수) 화소 단위를 갖는 경우, 2n(n은 정수) 화소 단위 MVR이 가리킬 수 있는 화소의 좌표는 (2n-m*i/2-m, 2n-m*j/2-m)(i, j는 정수)이 된다. 움직임 벡터가 특정의 MVR에 따라 결정되더라도, 움직임 벡터는 1/4 화소 단위에 따라 보간된 영상 내 좌표로 표현된다.
일 실시예에서, 움직임 벡터 부호화 장치(10)는 최소 MVR에 따라 보간된 영상에서 움직임 벡터를 결정하므로, 움직임 벡터(및 예측 움직임 벡터)가 정수로 표현될 수 있도록, 움직임 벡터(및 예측 움직임 벡터)에 최소 MVR의 화소 단위 값의 역수, 예를 들어, 최소 MVR이 2m(m은 정수) 화소 단위를 갖는 경우, 2-m을 곱하여 정수 단위의 움직임 벡터를 나타낼 수 있다. 2-m을 곱한 정수 단위의 움직임 벡터가 움직임 벡터 부호화 장치(10) 및 움직임 벡터 복호화 장치(30)에서 이용될 수 있다.
만약, 좌표(0,0)에서 출발한 1/2 화소 단위 MVR의 움직임 벡터가 좌표 (2/4, 6/4)을 가리키고, 최소 MVR이 1/4 화소 단위를 갖는다면, 움직임 벡터 부호화 장치(10)는 움직임 벡터에 정수 4를 곱한 값인 (2, 6)를 움직임 벡터로 결정할 수 있다.
일 실시예에 따른 움직임 벡터 부호화 장치(10)는 MVR의 크기가 1 화소 단위 미만인 경우, 부화소 단위로 움직임 예측을 수행하기 위해, 정수 화소 단위에서 결정된 움직임 벡터를 기준으로, 부화소 단위에 기초하여 참조 영상 내에서 현재 블록과 유사한 블록을 검색할 수 있다.
일 예로서, 움직임 벡터 부호화 장치(10)는 현재 블록의 MVR이 1/4 화소 단위 MVR인 경우, 정수 화소 단위에서 움직임 벡터를 결정하고, 1/2 화소 단위의 부픽셀들이 생성되도록 참조 영상을 보간한 후 정수 화소 단위에서 결정된 움직임 벡터를 기준으로 (-1 ~ 1, -1 ~ 1) 범위에서 가장 유사한 예측 블록을 검색할 수 있다. 다음, 다시 1/4 화소 단위의 부픽셀들이 생성되도록 참조 영상을 보간한 후, 1/2 화소 단위에서 결정된 움직임 벡터를 기준으로 (-1 ~ 1, -1 ~ 1) 범위에서 가장 유사한 예측 블록을 검색함으로서, 최종적인 1/4 화소 단위 MVR의 움직임 벡터를 결정할 수 있다.
예를 들어, 정수 화소 단위의 움직임 벡터가 좌표 (0,0)을 기준으로 (-4, -3)인 경우, 1/2 화소 단위 MVR에서는 움직임 벡터가 (-8, -6)(=(-4*2, -3*2))이 되고 만약 (0, -1)만큼 움직였다면 1/2 화소 단위 MVR의 움직임 벡터는 최종적으로 (-8, -7)(=(-8, -6-1))로 결정된다. 또한, 1/4 화소 단위 MVR에서의 움직임 벡터는 (-16, -14)(=(-8*2, -7*2))로 변경되고 다시 (-1,0)만큼 움직였다면 1/4 화소 단위 MVR의 최종적인 움직임 벡터는 (-17, -14)(=(-16-1, -14))로 결정될 수 있다.
일 실시예에 따른 움직임 벡터 부호화 장치(10)는 현재 블록의 MVR이 1 화소 단위 MVR보다 큰 경우, 큰 화소 단위로 움직임 예측을 수행하기 위해, 정수 화소 단위에서 결정된 움직임 벡터를 기준으로 1 화소 단위보다 큰 화소 단위에 기초하여 참조 픽처 내에서 현재 블록과 유사한 블록을 검색할 수 있다. 1 화소 단위보다 큰 화소 단위(예를 들어, 2 화소 단위, 3 화소 단위, 4 화소 단위)에 위치하는 화소는 슈퍼 화소(super pixel)로 참조될 수 있다.
이하에서는, 도 9a 및 도 9b를 참조하여, 일 실시예에 따른 움직임 벡터 부호화 장치(10) 및 움직임 벡터 복호화 장치(30)에 의해 선택적으로 수행되는 예측 움직임 벡터 조정 방법에 대해 설명한다.
움직임 벡터 부호화 장치(10) 및 움직임 벡터 복호화 장치(30)는 현재 블록의 MVR이 선택 가능한 후보 MVR 중 최소 MVR보다 큰 경우, 현재 블록의 예측 움직임 벡터로 이용되는 후보 블록의 움직임 벡터를 조정할 수 있다.
움직임 벡터 부호화 장치(10) 및 움직임 벡터 복호화 장치(30)는 최소 MVR에 따라 보간된 영상 내 좌표로 표현되는 예측 움직임 벡터를 현재 블록의 MVR로 조정(adjust)하기 위해, 예측 움직임 벡터가 가리키는 화소 대신 주변의 화소들을 가리키도록 조정할 수 있다.
일 예로서, 도 9a에서 좌표 (0,0)을 기준으로 좌표 (19, 27)의 화소(71)를 가리키는 예측 움직임 벡터(A)를 현재 블록의 MVR인 1 화소 단위 MVR로 조정하기 위해 예측 움직임 벡터(A)가 가리키는 화소(71)의 좌표 (19, 27)를 정수 4로 나누게 되는데(즉, 다운스케일), 나눈 결과에 해당하는 좌표 (19/4, 27/4)가 정수 화소 단위를 가리키지 않는 경우가 발생하게 된다.
움직임 벡터 부호화 장치(10) 및 움직임 벡터 복호화 장치(30)는 다운스케일된 예측 움직임 벡터가 정수 화소 단위를 가리키도록 조정할 수 있다. 예를 들어, 좌표 (19/4, 27/4)를 중심으로 한 주변의 정수 화소의 좌표 각각은 (16/4, 28/4), (16/4, 24/4), (20/4, 28/4), (20/4, 24/4)가 된다. 이 때, 움직임 벡터 부호화 장치(10) 및 움직임 벡터 복호화 장치(30)는 다운스케일된 예측 움직임 벡터(A)가 좌표 (19/4, 27/4) 대신 우측-상단에 위치하는 좌표인 (20/4, 28/4)를 가리키도록 조정한 후, 다시 정수 4를 곱하여(즉, 업스케일), 최종적으로 조정된 예측 움직임 벡터(D)가 좌표 (20, 28)에 해당하는 화소(74)을 가리키도록 할 수 있다.
도 9a를 참조하면, 조정되기 전의 예측 움직임 벡터(A)가 화소(71)를 가리키고, 최종적으로 조정된 예측 움직임 벡터(D)가 화소(71)의 우측-상단에 위치하는 정수 단위의 화소(74)를 가리킬 수 있다.
일 실시예에 따른 움직임 벡터 부호화 장치(10) 및 움직임 벡터 복호화 장치(30)는 예측 움직임 벡터를 현재 블록의 MVR에 따라 조정할 때, 조정된 예측 움직임 벡터가, 조정되기 전의 예측 움직임 벡터가 가리키는 화소의 우측-상단에 위치하는 화소를 가리키도록 할 수 있다. 다른 실시예에 따른 움직임 벡터 부호화 장치(10) 및 움직임 벡터 복호화 장치(30)는 조정된 예측 움직임 벡터가, 조정되기 전의 예측 움직임 벡터가 가리키는 화소의 좌측-상단에 위치하는 화소, 좌측-하단에 위치하는 화소, 또는 우측-하단에 위치하는 화소를 가리키도록 할 수도 있다.
일 실시예에서, 다운스케일된 예측 움직임 벡터가 가리키는 x 좌표 값 및 y 좌표 값 중 어느 하나가 정수 화소를 가리키는 경우에는, 정수 화소를 가리키지 않는 좌표 값만을 증가시키거나 감소시켜, 정수 화소를 가리키도록 조정할 수 있다. 즉, 다운스케일된 예측 움직임 벡터가 가리키는 x 좌표 값이 정수 화소를 가리킬 때에는, 조정된 예측 움직임 벡터가, 조정되기 전의 예측 움직임 벡터가 가리키는 화소의 상단에 위치하는 정수 화소 또는 하단에 위치하는 정수 화소를 가리키도록 할 수 있다. 또는, 다운스케일된 예측 움직임 벡터가 가리키는 y 좌표 값이 정수 화소를 가리킬 때에는, 조정된 예측 움직임 벡터가, 조정되기 전의 예측 움직임 벡터가 가리키는 화소의 좌측에 위치하는 정수 화소 또는 우측에 위치하는 정수 화소를 가리키도록 할 수 있다.
움직임 벡터 부호화 장치(10) 및 움직임 벡터 복호화 장치(30)는 예측 움직임 벡터를 조정할 때, 조정된 예측 움직임 벡터가 가리키는 지점을, 현재 블록의 MVR에 따라 다르게 선택할 수도 있다.
예를 들어, 도 9b를 참조하면, 현재 블록의 MVR이 1/2 화소 단위 MVR인 경우, 조정된 예측 움직임 벡터는 조정되기 전의 예측 움직임 벡터가 가리키는 화소(81)의 좌측-상단의 화소(83)를 가리키게 하고, 현재 블록의 MVR이 1 화소 단위 MVR인 경우, 조정된 예측 움직임 벡터는 조정되기 전의 예측 움직임 벡터가 가리키는 화소(81)의 우측-상단의 화소(82)를 가리키게 하고, 현재 블록의 MVR이 2 화소 단위 MVR인 경우, 조정된 예측 움직임 벡터는 조정되기 전의 예측 움직임 벡터가 가리키는 화소(81)의 우측-하단의 화소(84)를 가리키도록 조정할 수 있다.
움직임 벡터 부호화 장치(10) 및 움직임 벡터 복호화 장치(30)는 조정된 예측 움직임 벡터가 어느 화소를 가리키도록 할지를, 현재 블록의 MVR, 예측 움직임 벡터, 주변 블록의 정보, 부호화 정보, 임의의 패턴 중 적어도 하나에 기초하여 결정할 수 있다.
움직임 벡터 부호화 장치(10) 및 움직임 벡터 복호화 장치(30)는 현재 블록의 MVR과 최소 MVR을 고려하여 후보 블록의 움직임 벡터를 조정할 때, 하기의 수학식 1에 따라 조정할 수 있다.
[수학식 1]
pMV' = ((pMV >> k) + offset) << k
수학식 1에서 pMV'는 조정된 예측 움직임 벡터를 나타내고, k는 현재 블록의 MVR과 최소 MVR의 차이에 따라 결정되는 값으로서, 현재 블록의 MVR이 2m 화소 단위(m은 정수), 최소 MVR이 2n 화소 단위(n은 정수)이고, m > n일 때, k는 m-n일 수 있다.
일 실시예에서, k는 MVR의 인덱스일 수도 있는데, 후보 MVR이 1/4 화소 단위 MVR, 1/2 화소 단위 MVR, 1 화소 단위 MVR, 2 화소 단위 MVR 및 4 화소 단위 MVR을 포함할 때, MVR의 각 인덱스에 대응하는 MVR은 앞서 살펴본 표 1과 같다. 움직임 벡터 복호화 장치(30)는 비트스트림으로부터 MVR 인덱스가 수신되면, MVR 인덱스를 k로 이용하여 후보 블록의 움직임 벡터를 수학식 1에 따라 조정할 수 있다.
또한, 수학식 1에서 >> 또는 <<는 비트 쉬프트(bit shift) 연산으로서, 예측 움직임 벡터의 크기를 감소 또는 증가시키는 연산을 의미한다. 또한, offset은 k 값에 따라 다운스케일된 pMV가 정수 화소를 가리키지 않을 때 정수 화소를 가리키도록 더해지거나 빼지는 값을 의미한다. offset은 기본 MV의 x 좌표 값 및 y 좌표 값 각각에 대해 상이하게 결정될 수 있다.
일 실시예에서, 움직임 벡터 부호화 장치(10)와 움직임 벡터 복호화 장치(30)는 다운스케일된 pMV가 정수 화소를 가리키도록 변경시킬 때, 동일 기준에 따라 변경시킬 수 있다.
일 실시예에서, 다운스케일된 pMV의 x 좌표 값 및 y 좌표 값이 정수 화소를 가리키지 않을 때, 다운스케일된 pMV의 x 좌표 값 및 y 좌표 값을 항상 증가시켜 정수 화소를 가리키도록 할 수 있고, 항상 감소시켜 정수 화소를 가리키도록 할 수도 있다. 또는, 다운스케일된 pMV의 x 좌표 값 및 y 좌표 값을 반올림하여 정수 화소를 가리키도록 할 수도 있다.
일 실시예에서, 움직임 벡터 부호화 장치(10) 및 움직임 벡터 복호화 장치(30)는 후보 블록의 움직임 벡터를 조정할 때, 움직임 벡터의 다운스케일 및 업스케일을 생략하고, 움직임 벡터가 현재 블록의 MVR에 대응하는 화소 단위를 가리키도록 최소 MVR에 따라 보간된 참조 영상 내 좌표 평면에서 조정할 수도 있다.
또한, 일 실시예에서, 움직임 벡터 부호화 장치(10) 및 움직임 벡터 복호화 장치(30)는 현재 블록의 MVR과 최소 MVR을 고려하여 후보 블록의 움직임 벡터를 조정할 때, 상기 수학식 1 대신 하기의 수학식 2에 따라 조정할 수도 있다.
[수학식 2]
pMV' = ((pMV + offset) >> k) << k
수학식 2는 수학식 1과 유사하나, 수학식 1에서와 같이 offset이 다운스케일된 pMV에 적용되는 것이 아니고, 원래의 pmV에 offset이 적용된 후, k에 따라 다운스케일된 것을 알 수 있다.
움직임 벡터 부호화 장치(10)는 현재 블록의 MVR로 현재 블록의 움직임 벡터를 찾고, 현재 블록의 움직임 벡터와 선택적으로 조정된 예측 움직임 벡터 사이의 차를 잔차 움직임 벡터로 획득한다.
움직임 벡터 부호화 장치(10)는 잔차 움직임 벡터를 하기의 수학식 3과 같이 결정하여 부호화할 수 있다. 수학식 3에서 MV는 현재 블록의 움직임 벡터이고, pMV'는 조정된 예측 움직임 벡터이고, MVD는 잔차 움직임 벡터를 나타낸다.
[수학식 3]
MVD = MV - pMV'
움직임 벡터 부호화 장치(10)는 현재 블록의 MVR이 최소 MVR보다 크다면 잔차 움직임 벡터를 수학식 4와 같이 다운스케일하고, 다운스케일된 잔차 움직임 벡터를 나타내는 정보를 포함하는 비트스트림을 생성할 수 있다.
[수학식 4]
MVD' = (MVD >> k)
상기 수학식 4에서 MVD'는 다운스케일된 잔차 움직임 벡터를 나타내고, k는 최소 MVR과 현재 블록의 MVR 사이의 차이에 따라 결정되는 값으로서, 앞서 수학식 1의 k와 동일하다.
일 실시예에서, 움직임 벡터 부호화 장치(10)는 현재 블록의 움직임 벡터와 예측 움직임 벡터(또는 조정된 예측 움직임 벡터)를 상기 k 값에 따라 다운스케일 한 뒤, 두 값의 차를 잔차 움직임 벡터로서 부호화할 수도 있다.
일 실시예에서, 움직임 벡터 부호화 장치(10)는 수학식 3과 수학식 4 대신 아래의 수학식 5에 따라 다운스케일된 잔차 움직임 벡터를 계산할 수도 있다.
[수학식 5]
MVD' = (MV - pMV') / (R * S)
수학식 5에서 MVD'는 다운스케일된 잔차 움직임 벡터를 나타내고, MV는 현재 블록의 움직임 벡터이고, pMV'는 조정된 예측 움직임 벡터이다. 또한, R은 현재 블록의 MVR의 화소 단위 값, 예를 들어, 1/4 화소 단위 MVR인 경우 1/4을 나타낸다. 또한, S는 최소 MVR의 화소 단위 값의 역수로서, 최소 MVR이 1/4 화소 단위인 경우, S는 4를 나타낸다.
움직임 벡터 복호화 장치(30)는 비트스트림으로부터 획득된 현재 블록의 MVR을 나타내는 정보 및 후보 블록을 나타내는 정보 중 적어도 하나와, 잔차 움직임 벡터를 이용하여 현재 블록의 움직임 벡터를 복원할 수 있다.
움직임 벡터 복호화 장치(30)는 현재 블록의 MVR이 최소 MVR보다 큰 경우, 상기 수학식 1 또는 수학식 2과 같이 예측 움직임 벡터를 조정할 수 있다.
움직임 벡터 복호화 장치(30)는 현재 블록의 MVR이 최소 MVR보다 큰 경우에는 잔차 움직임 데이터를 아래의 수학식 6과 같이, 업스케일할 수 있다.
[수학식 6]
MVD'' = (MVD' << k)
상기 수학식 6에서 MVD'는 부호화 장치 측에서 다운스케일된 잔차 움직임 벡터를 나타내고, MVD''는 업스케일된 잔차 움직임 벡터를 나타낸다. 상기 k는 최소 MVR과 현재 블록의 MVR 사이의 차이에 따라 결정되는 값으로서, 앞서 수학식 1의 k와 동일하다.
움직임 벡터 복호화 장치(30)는 최소 MVR과 현재 블록의 MVR의 크기 차이에 따라 선택적으로 조정된 예측 움직임 벡터와 선택적으로 업스케일된 잔차 움직임 벡터를 합하여 현재 블록의 움직임 벡터를 복호화할 수 있다.
일 실시예에서, 움직임 벡터 복호화 장치(30)는 업스케일된 잔차 움직임 벡터를 상기 수학식 6 대신 아래의 수학식 7에 따라 결정할 수도 있다.
[수학식 7]
MVD'' = MVD' * (R * S)
수학식 7에서 MVD'는 다운스케일된 잔차 움직임 벡터를 나타내고, R은 현재 블록의 MVR의 화소 단위 값, 예를 들어, 1/4 화소 단위 MVR인 경우 1/4을 나타낸다. 또한, S는 최소 MVR의 화소 단위 값의 역수로서, 최소 MVR이 1/4 화소 단위인 경우, S는 4를 나타낸다.
일 실시예에서, 움직임 벡터 복호화 장치(30)는 현재 블록의 MVR이 1 화소 단위 MVR 미만인 경우에는, 최소 MVR에 따라 참조 영상을 보간한 후, 현재 블록의 움직임 벡터에 따라 예측 블록을 탐색할 수 있다. 또한, 움직임 벡터 복호화 장치(30)는 현재 블록의 MVR이 1 화소 단위 MVR 이상인 경우에는, 참조 영상을 보간하지 않고 현재 블록의 움직임 벡터에 따라 예측 블록을 탐색할 수 있다.
이하 도 11 내지 도 34를 참조하여, 일 실시예에 따른 트리 구조의 부호화 단위 및 변환 단위에 기초한 비디오 부호화 방법 및 그 장치, 비디오 복호화 방법 및 그 장치가 개시된다.
도 11은 일 실시예에 따라 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여 영상을 복호화 할 수 있는 비디오 복호화 장치(100)의 블록도를 도시한다.
도 11을 참조하면, 비디오 복호화 장치(100)는 일 실시예에 따라 비트스트림으로부터 분할 형태 정보, 블록 형태 정보 등과 같은 소정의 정보를 획득하기 위한 비트스트림 획득부(110), 획득한 정보를 이용하여 영상을 복호화 하기 위한 복호화부(120)를 포함할 수 있다. 일 실시예에 따라 비디오 복호화 장치(100)의 비트스트림 획득부(110)에서 블록 형태 정보 및 분할 형태 정보 중 적어도 하나를 획득한 경우, 비디오 복호화 장치(100)의 복호화부(120)는 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여 영상을 분할하는 적어도 하나의 부호화 단위를 결정할 수 있다.
일 실시예에 따라 비디오 복호화 장치(100)의 복호화부(120)는 블록 형태 정보에 기초하여 부호화 단위의 형태를 결정할 수 있다. 예를 들면 블록 형태 정보는 부호화 단위가 정사각형인지 또는 비-정사각형인지 여부를 나타내는 정보를 포함할 수 있다. 복호화부(120)는 블록 형태 정보를 이용하여 부호화 단위의 형태를 결정할 수 있다.
일 실시예에 따라 복호화부(120)는 분할 형태 정보에 기초하여 부호화 단위가 어떤 형태로 분할될지를 결정할 수 있다. 예를 들면 분할 형태 정보는 부호화 단위에 포함되는 적어도 하나의 부호화 단위의 형태에 대한 정보를 나타낼 수 있다.
일 실시예에 따라 복호화부(120)는 분할 형태 정보에 따라 부호화 단위가 분할되는지 분할되지 않는지 여부를 결정할 수 있다. 분할 형태 정보는 부호화 단위에 포함되는 적어도 하나의 부호화 단위에 대한 정보를 포함할 수 있으며, 만일 분할 형태 정보가 부호화 단위에 하나의 부호화 단위만이 포함되는 것을 나타내거나 또는 분할되지 않음을 나타내는 경우, 복호화부(120)는 분할 형태 정보를 포함하는 부호화 단위가 분할되지 않는 것으로 결정할 수 있다. 분할 형태 정보가, 부호화 단위가 복수개의 부호화 단위로 분할됨을 나타내는 경우 복호화부(120)는 분할 형태 정보에 기초하여 부호화 단위에 포함되는 복수개의 부호화 단위로 분할할 수 있다.
일 실시예에 따라 분할 형태 정보는 부호화 단위를 몇 개의 부호화 단위로 분할할 지를 나타내거나 어느 방향으로 분할할지를 나타낼 수 있다. 예를 들면 분할 형태 정보는 수직 방향 및 수평 방향 중 적어도 하나의 방향으로 분할하는 것을 나타내거나 또는 분할하지 않는 것을 나타낼 수 있다.
도 13은 일 실시예에 따라 비디오 복호화 장치(100)가 현재 부호화 단위를 분할하여 적어도 하나의 부호화 단위를 결정하는 과정을 도시한다.
블록 형태는 4Nx4N,4Nx2N, 2Nx4N, 4NxN 또는 Nx4N을 포함할 수 있다. 여기서 N은 양의 정수일 수 있다. 블록 형태 정보는 부호화 단위의 모양, 방향, 너비 및 높이의 비율 또는 크기 중 적어도 하나를 나타내는 정보이다.
부호화 단위의 모양은 정사각형(square) 및 비-정사각형(non-square)을 포함할 수 있다. 부호화 단위의 너비 및 높이의 길이가 같은 경우(4Nx4N), 비디오 복호화 장치(100)는 부호화 단위의 블록 형태 정보를 정사각형으로 결정할 수 있다. 비디오 복호화 장치(100)는 부호화 단위의 모양을 비-정사각형으로 결정할 수 있다.
부호화 단위의 너비 및 높이의 길이가 다른 경우(4Nx2N, 2Nx4N, 4NxN 또는 Nx4N), 비디오 복호화 장치(100)는 부호화 단위의 블록 형태 정보를 비-정사각형으로 결정할 수 있다. 부호화 단위의 모양이 비-정사각형인 경우, 비디오 복호화 장치(100)는 부호화 단위의 블록 형태 정보 중 너비 및 높이의 비율을 1:2, 2:1, 1:4, 4:1, 1:8 또는 8:1 중 적어도 하나로 결정할 수 있다. 또한, 부호화 단위의 너비의 길이 및 높이의 길이에 기초하여, 비디오 복호화 장치(100)는 부호화 단위가 수평 방향인지 수직 방향인지 결정할 수 있다. 또한, 부호화 단위의 너비의 길이, 높이의 길이, 넓이 중 적어도 하나에 기초하여, 비디오 복호화 장치(100)는 부호화 단위의 크기를 결정할 수 있다.
일 실시예에 따라 비디오 복호화 장치(100)는 블록 형태 정보를 이용하여 부호화 단위의 형태를 결정할 수 있고, 분할 형태 모드에 대한 정보를 이용하여 부호화 단위가 어떤 형태로 분할되는지를 결정할 수 있다. 즉, 비디오 복호화 장치(100)가 이용하는 블록 형태 정보가 어떤 블록 형태를 나타내는지에 따라 분할 형태 모드에 대한 정보가 나타내는 부호화 단위의 분할 방법이 결정될 수 있다.
비디오 복호화 장치(100)는 비트스트림으로부터 분할 형태 모드에 대한 정보를 획득할 수 있다. 하지만 이에 한정되는 것은 아니며, 비디오 복호화 장치(100) 및 비디오 부호화 장치(200)는 블록 형태 정보에 기초하여 미리 약속된 분할 형태 모드에 대한 정보를 획득할 수 있다. 비디오 복호화 장치(100)는 최대 부호화 단위 또는 최소 부호화 단위에 대하여 미리 약속된 분할 형태 모드에 대한 정보를 획득할 수 있다. 예를 들어 비디오 복호화 장치(100)는 최대 부호화 단위의 크기를 256x256으로 결정할 수 있다. 비디오 복호화 장치(100)는 미리 약속된 분할 형태 모드에 대한 정보를 쿼드 분할(quad split)로 결정할 수 있다. 쿼드 분할은 부호화 단위의 너비 및 높이를 모두 이등분하는 분할 형태 모드이다. 비디오 복호화 장치(100)는 분할 형태 모드에 대한 정보에 기초하여 256x256 크기의 최대 부호화 단위로부터 128x128 크기의 부호화 단위를 획득할 수 있다. 또한 비디오 복호화 장치(100)는 최소 부호화 단위의 크기를 4x4로 결정할 수 있다. 비디오 복호화 장치(100)는 최소 부호화 단위에 대하여 "분할하지 않음"을 나타내는 분할 형태 모드에 대한 정보를 획득할 수 있다.
일 실시예에 따라, 비디오 복호화 장치(100)는 현재 부호화 단위가 정사각형 형태임을 나타내는 블록 형태 정보를 이용할 수 있다. 예를 들어 비디오 복호화 장치(100)는 분할 형태 모드에 대한 정보에 따라 정사각형의 부호화 단위를 분할하지 않을지, 수직으로 분할할지, 수평으로 분할할지, 4개의 부호화 단위로 분할할지 등을 결정할 수 있다. 도 13을 참조하면, 현재 부호화 단위(300)의 블록 형태 정보가 정사각형의 형태를 나타내는 경우, 복호화부(120)는 분할되지 않음을 나타내는 분할 형태 모드에 대한 정보에 따라 현재 부호화 단위(300)와 동일한 크기를 가지는 부호화 단위(310a)를 분할하지 않거나, 소정의 분할방법을 나타내는 분할 형태 모드에 대한 정보에 기초하여 분할된 부호화 단위(310b, 310c, 310d 등)를 결정할 수 있다.
도 13을 참조하면 비디오 복호화 장치(100)는 일 실시예에 따라 수직방향으로 분할됨을 나타내는 분할 형태 모드에 대한 정보에 기초하여 현재 부호화 단위(300)를 수직방향으로 분할한 두 개의 부호화 단위(310b)를 결정할 수 있다. 비디오 복호화 장치(100)는 수평방향으로 분할됨을 나타내는 분할 형태 모드에 대한 정보에 기초하여 현재 부호화 단위(300)를 수평방향으로 분할한 두 개의 부호화 단위(310c)를 결정할 수 있다. 비디오 복호화 장치(100)는 수직방향 및 수평방향으로 분할됨을 나타내는 분할 형태 모드에 대한 정보에 기초하여 현재 부호화 단위(300)를 수직방향 및 수평방향으로 분할한 네 개의 부호화 단위(310d)를 결정할 수 있다. 다만 정사각형의 부호화 단위가 분할될 수 있는 분할 형태는 상술한 형태로 한정하여 해석되어서는 안되고, 분할 형태 모드에 대한 정보가 나타낼 수 있는 다양한 형태가 포함될 수 있다. 정사각형의 부호화 단위가 분할되는 소정의 분할 형태들은 이하에서 다양한 실시예를 통해 구체적으로 설명하도록 한다.
도 14는 일 실시예에 따라 비디오 복호화 장치(100)가 비-정사각형의 형태인 부호화 단위를 분할하여 적어도 하나의 부호화 단위를 결정하는 과정을 도시한다.
일 실시예에 따라 비디오 복호화 장치(100)는 현재 부호화 단위가 비-정사각형 형태임을 나타내는 블록 형태 정보를 이용할 수 있다. 비디오 복호화 장치(100)는 분할 형태 모드에 대한 정보에 따라 비-정사각형의 현재 부호화 단위를 분할하지 않을지 소정의 방법으로 분할할지 여부를 결정할 수 있다. 도 14를 참조하면, 현재 부호화 단위(400 또는 450)의 블록 형태 정보가 비-정사각형의 형태를 나타내는 경우, 비디오 복호화 장치(100)는 분할되지 않음을 나타내는 분할 형태 모드에 대한 정보에 따라 현재 부호화 단위(400 또는 450)와 동일한 크기를 가지는 부호화 단위(410 또는 460)를 결정하거나, 소정의 분할방법을 나타내는 분할 형태 모드에 대한 정보에 따라 기초하여 분할된 부호화 단위(420a, 420b, 430a, 430b, 430c, 470a, 470b, 480a, 480b, 480c)를 결정할 수 있다. 비-정사각형의 부호화 단위가 분할되는 소정의 분할 방법은 이하에서 다양한 실시예를 통해 구체적으로 설명하도록 한다.
일 실시예에 따라 비디오 복호화 장치(100)는 분할 형태 모드에 대한 정보를 이용하여 부호화 단위가 분할되는 형태를 결정할 수 있고, 이 경우 분할 형태 모드에 대한 정보는 부호화 단위가 분할되어 생성되는 적어도 하나의 부호화 단위의 개수를 나타낼 수 있다. 도 14를 참조하면 분할 형태 모드에 대한 정보가 두 개의 부호화 단위로 현재 부호화 단위(400 또는 450)가 분할되는 것을 나타내는 경우, 비디오 복호화 장치(100)는 분할 형태 모드에 대한 정보에 기초하여 현재 부호화 단위(400 또는 450)를 분할하여 현재 부호화 단위에 포함되는 두 개의 부호화 단위(420a, 420b, 또는 470a, 470b)를 결정할 수 있다.
일 실시예에 따라 비디오 복호화 장치(100)가 분할 형태 모드에 대한 정보에 기초하여 비-정사각형의 형태의 현재 부호화 단위(400 또는 450)를 분할하는 경우, 비디오 복호화 장치(100)는 비-정사각형의 현재 부호화 단위(400 또는 450)의 긴 변의 위치를 고려하여 현재 부호화 단위를 분할할 수 있다. 예를 들면, 비디오 복호화 장치(100)는 현재 부호화 단위(400 또는 450)의 형태를 고려하여 현재 부호화 단위(400 또는 450)의 긴 변을 분할하는 방향으로 현재 부호화 단위(400 또는 450)를 분할하여 복수개의 부호화 단위를 결정할 수 있다.
일 실시예에 따라, 분할 형태 모드에 대한 정보가 홀수개의 블록으로 부호화 단위를 분할(트라이 분할; tri split)하는 것을 나타내는 경우, 비디오 복호화 장치(100)는 현재 부호화 단위(400 또는 450)에 포함되는 홀수개의 부호화 단위를 결정할 수 있다. 예를 들면, 분할 형태 모드에 대한 정보가 3개의 부호화 단위로 현재 부호화 단위(400 또는 450)를 분할하는 것을 나타내는 경우, 비디오 복호화 장치(100)는 현재 부호화 단위(400 또는 450)를 3개의 부호화 단위(430a, 430b, 430c, 480a, 480b, 480c)로 분할할 수 있다.
일 실시예에 따라, 현재 부호화 단위(400 또는 450)의 너비 및 높이의 비율이 4:1 또는 1:4 일 수 있다. 너비 및 높이의 비율이 4:1 인 경우, 너비의 길이가 높이의 길이보다 길므로 블록 형태 정보는 수평 방향일 수 있다. 너비 및 높이의 비율이 1:4 인 경우, 너비의 길이가 높이의 길이보다 짧으므로 블록 형태 정보는 수직 방향일 수 있다. 비디오 복호화 장치(100)는 분할 형태 모드에 대한 정보에 기초하여 현재 부호화 단위를 홀수개의 블록으로 분할할 것을 결정할 수 있다. 또한 비디오 복호화 장치(100)는 현재 부호화 단위(400 또는 450)의 블록 형태 정보에 기초하여 현재 부호화 단위(400 또는 450)의 분할 방향을 결정할 수 있다. 예를 들어 현재 부호화 단위(400)가 수직 방향인 경우, 비디오 복호화 장치(100)는 현재 부호화 단위(400)를 수평 방향으로 분할 하여 부호화 단위(430a, 430b, 430c)를 결정할 수 있다. 또한 현재 부호화 단위(450)가 수평 방향인 경우, 비디오 복호화 장치(100)는 현재 부호화 단위(450)를 수직 방향으로 분할 하여 부호화 단위(480a, 480b, 480c)를 결정할 수 있다.
일 실시예에 따라 비디오 복호화 장치(100)는 현재 부호화 단위(400 또는 450)에 포함되는 홀수개의 부호화 단위를 결정할 수 있으며, 결정된 부호화 단위들의 크기 모두가 동일하지는 않을 수 있다. 예를 들면, 결정된 홀수개의 부호화 단위(430a, 430b, 430c, 480a, 480b, 480c) 중 소정의 부호화 단위(430b 또는 480b)의 크기는 다른 부호화 단위(430a, 430c, 480a, 480c)들과는 다른 크기를 가질 수도 있다. 즉, 현재 부호화 단위(400 또는 450)가 분할되어 결정될 수 있는 부호화 단위는 복수의 종류의 크기를 가질 수 있고, 경우에 따라서는 홀수개의 부호화 단위(430a, 430b, 430c, 480a, 480b, 480c)가 각각 서로 다른 크기를 가질 수도 있다.
일 실시예에 따라 분할 형태 모드에 대한 정보가 홀수개의 블록으로 부호화 단위가 분할되는 것을 나타내는 경우, 비디오 복호화 장치(100)는 현재 부호화 단위(400 또는 450)에 포함되는 홀수개의 부호화 단위를 결정할 수 있고, 나아가 비디오 복호화 장치(100)는 분할하여 생성되는 홀수개의 부호화 단위들 중 적어도 하나의 부호화 단위에 대하여 소정의 제한을 둘 수 있다. 도 4을 참조하면 비디오 복호화 장치(100)는 현재 부호화 단위(400 또는 450)가 분할되어 생성된 3개의 부호화 단위(430a, 430b, 430c, 480a, 480b, 480c)들 중 중앙에 위치하는 부호화 단위(430b, 480b)에 대한 복호화 과정을 다른 부호화 단위(430a, 430c, 480a, 480c)와 다르게 할 수 있다. 예를 들면, 비디오 복호화 장치(100)는 중앙에 위치하는 부호화 단위(430b, 480b)에 대하여는 다른 부호화 단위(430a, 430c, 480a, 480c)와 달리 더 이상 분할되지 않도록 제한하거나, 소정의 횟수만큼만 분할되도록 제한할 수 있다.
도 15는 일 실시예에 따라 비디오 복호화 장치(100)가 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여 부호화 단위를 분할하는 과정을 도시한다.
일 실시예에 따라 비디오 복호화 장치(100)는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 정사각형 형태의 제1 부호화 단위(500)를 부호화 단위들로 분할하거나 분할하지 않는 것으로 결정할 수 있다. 일 실시예에 따라 분할 형태 모드에 대한 정보가 수평 방향으로 제1 부호화 단위(500)를 분할하는 것을 나타내는 경우, 비디오 복호화 장치(100)는 제1 부호화 단위(500)를 수평 방향으로 분할하여 제2 부호화 단위(510)를 결정할 수 있다. 일 실시예에 따라 이용되는 제1 부호화 단위, 제2 부호화 단위, 제3 부호화 단위는 부호화 단위 간의 분할 전후 관계를 이해하기 위해 이용된 용어이다. 예를 들면, 제1 부호화 단위를 분할하면 제2 부호화 단위가 결정될 수 있고, 제2 부호화 단위가 분할되면 제3 부호화 단위가 결정될 수 있다. 이하에서는 이용되는 제1 부호화 단위, 제2 부호화 단위 및 제3 부호화 단위의 관계는 상술한 특징에 따르는 것으로 이해될 수 있다.
일 실시예에 따라 비디오 복호화 장치(100)는 결정된 제2 부호화 단위(510)를 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 부호화 단위들로 분할하거나 분할하지 않는 것으로 결정할 수 있다. 도 15를 참조하면 비디오 복호화 장치(100)는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 제1 부호화 단위(500)를 분할하여 결정된 비-정사각형의 형태의 제2 부호화 단위(510)를 적어도 하나의 제3 부호화 단위(520a, 520b, 520c, 520d 등)로 분할하거나 제2 부호화 단위(510)를 분할하지 않을 수 있다. 비디오 복호화 장치(100)는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나를 획득할 수 있고 비디오 복호화 장치(100)는 획득한 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 제1 부호화 단위(500)를 분할하여 다양한 형태의 복수개의 제2 부호화 단위(예를 들면, 510)를 분할할 수 있으며, 제2 부호화 단위(510)는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 제1 부호화 단위(500)가 분할된 방식에 따라 분할될 수 있다. 일 실시예에 따라, 제1 부호화 단위(500)가 제1 부호화 단위(500)에 대한 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 제2 부호화 단위(510)로 분할된 경우, 제2 부호화 단위(510) 역시 제2 부호화 단위(510)에 대한 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 제3 부호화 단위(예를 들면, 520a, 520b, 520c, 520d 등)으로 분할될 수 있다. 즉, 부호화 단위는 부호화 단위 각각에 관련된 분할 형태 모드에 대한 정보 및 블록 형태 정보 중 적어도 하나에 기초하여 재귀적으로 분할될 수 있다. 따라서 비-정사각형 형태의 부호화 단위에서 정사각형의 부호화 단위가 결정될 수 있고, 이러한 정사각형 형태의 부호화 단위가 재귀적으로 분할되어 비-정사각형 형태의 부호화 단위가 결정될 수도 있다.
도 15를 참조하면, 비-정사각형 형태의 제2 부호화 단위(510)가 분할되어 결정되는 홀수개의 제3 부호화 단위(520b, 520c, 520d) 중 소정의 부호화 단위(예를 들면, 가운데에 위치하는 부호화 단위 또는 정사각형 형태의 부호화 단위)는 재귀적으로 분할될 수 있다. 일 실시예에 따라 홀수개의 제3 부호화 단위(520b, 520c, 520d) 중 하나인 정사각형 형태의 제3 부호화 단위(520b)는 수평 방향으로 분할되어 복수개의 제4 부호화 단위로 분할될 수 있다. 복수개의 제4 부호화 단위(530a, 530b, 530c, 530d) 중 하나인 비-정사각형 형태의 제4 부호화 단위(530b 또는 530d)는 다시 복수개의 부호화 단위들로 분할될 수 있다. 예를 들면, 비-정사각형 형태의 제4 부호화 단위(530b 또는 530d)는 홀수개의 부호화 단위로 다시 분할될 수도 있다. 부호화 단위의 재귀적 분할에 이용될 수 있는 방법에 대하여는 다양한 실시예를 통해 후술하도록 한다.
일 실시예에 따라 비디오 복호화 장치(100)는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 제3 부호화 단위(520a, 520b, 520c, 520d 등) 각각을 부호화 단위들로 분할할 수 있다. 또한 비디오 복호화 장치(100)는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 제2 부호화 단위(510)를 분할하지 않는 것으로 결정할 수 있다. 비디오 복호화 장치(100)는 일 실시예에 따라 비-정사각형 형태의 제2 부호화 단위(510)를 홀수개의 제3 부호화 단위(520b, 520c, 520d)로 분할할 수 있다. 비디오 복호화 장치(100)는 홀수개의 제3 부호화 단위(520b, 520c, 520d) 중 소정의 제3 부호화 단위에 대하여 소정의 제한을 둘 수 있다. 예를 들면 비디오 복호화 장치(100)는 홀수개의 제3 부호화 단위(520b, 520c, 520d) 중 가운데에 위치하는 부호화 단위(520c)에 대하여는 더 이상 분할되지 않는 것으로 제한하거나 또는 설정 가능한 횟수로 분할되어야 하는 것으로 제한할 수 있다.
도 15를 참조하면, 비디오 복호화 장치(100)는 비-정사각형 형태의 제2 부호화 단위(510)에 포함되는 홀수개의 제3 부호화 단위(520b, 520c, 520d)들 중 가운데에 위치하는 부호화 단위(520c)는 더 이상 분할되지 않거나, 소정의 분할 형태로 분할(예를 들면 4개의 부호화 단위로만 분할하거나 제2 부호화 단위(510)가 분할된 형태에 대응하는 형태로 분할)되는 것으로 제한하거나, 소정의 횟수로만 분할(예를 들면 n회만 분할, n>0)하는 것으로 제한할 수 있다. 다만 가운데에 위치한 부호화 단위(520c)에 대한 상기 제한은 단순한 실시예들에 불과하므로 상술한 실시예들로 제한되어 해석되어서는 안되고, 가운데에 위치한 부호화 단위(520c)가 다른 부호화 단위(520b, 520d)와 다르게 복호화 될 수 있는 다양한 제한들을 포함하는 것으로 해석되어야 한다.
일 실시예에 따라 비디오 복호화 장치(100)는 현재 부호화 단위를 분할하기 위해 이용되는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나를 현재 부호화 단위 내의 소정의 위치에서 획득할 수 있다.
도 16은 일 실시예에 따라 비디오 복호화 장치(100)가 홀수개의 부호화 단위들 중 소정의 부호화 단위를 결정하기 위한 방법을 도시한다.
도 16을 참조하면, 현재 부호화 단위(600, 650)의 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나는 현재 부호화 단위(600, 650)에 포함되는 복수개의 샘플 중 소정 위치의 샘플(예를 들면, 가운데에 위치하는 샘플(640, 690))에서 획득될 수 있다. 다만 이러한 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나가 획득될 수 있는 현재 부호화 단위(600) 내의 소정 위치가 도 16에서 도시하는 가운데 위치로 한정하여 해석되어서는 안되고, 소정 위치에는 현재 부호화 단위(600)내에 포함될 수 있는 다양한 위치(예를 들면, 최상단, 최하단, 좌측, 우측, 좌측상단, 좌측하단, 우측상단 또는 우측하단 등)가 포함될 수 있는 것으로 해석되어야 한다. 비디오 복호화 장치(100)는 소정 위치로부터 획득되는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나를 획득하여 현재 부호화 단위를 다양한 형태 및 크기의 부호화 단위들로 분할하거나 분할하지 않는 것으로 결정할 수 있다.
일 실시예에 따라 비디오 복호화 장치(100)는 현재 부호화 단위가 소정의 개수의 부호화 단위들로 분할된 경우 그 중 하나의 부호화 단위를 선택할 수 있다. 복수개의 부호화 단위들 중 하나를 선택하기 위한 방법은 다양할 수 있으며, 이러한 방법들에 대한 설명은 이하의 다양한 실시예를 통해 후술하도록 한다.
일 실시예에 따라 비디오 복호화 장치(100) 는 현재 부호화 단위를 복수개의 부호화 단위들로 분할하고, 소정 위치의 부호화 단위를 결정할 수 있다.
일 실시예에 따라 비디오 복호화 장치(100)는 홀수개의 부호화 단위들 중 가운데에 위치하는 부호화 단위를 결정하기 위하여 홀수개의 부호화 단위들 각각의 위치를 나타내는 정보를 이용할 수 있다. 도 16을 참조하면, 비디오 복호화 장치(100)는 현재 부호화 단위(600) 또는 현재 부호화 단위(650)를 분할하여 홀수개의 부호화 단위들(620a, 620b, 620c) 또는 홀수개의 부호화 단위들(660a, 660b, 660c)을 결정할 수 있다. 비디오 복호화 장치(100)는 홀수개의 부호화 단위들(620a, 620b, 620c) 또는 홀수개의 부호화 단위들(660a, 660b, 660c)의 위치에 대한 정보를 이용하여 가운데 부호화 단위(620b)또는 가운데 부호화 단위(660b)를 결정할 수 있다. 예를 들면 비디오 복호화 장치(100)는 부호화 단위들(620a, 620b, 620c)에 포함되는 소정의 샘플의 위치를 나타내는 정보에 기초하여 부호화 단위들(620a, 620b, 620c)의 위치를 결정함으로써 가운데에 위치하는 부호화 단위(620b)를 결정할 수 있다. 구체적으로, 비디오 복호화 장치(100)는 부호화 단위들(620a, 620b, 620c)의 좌측 상단의 샘플(630a, 630b, 630c)의 위치를 나타내는 정보에 기초하여 부호화 단위들(620a, 620b, 620c)의 위치를 결정함으로써 가운데에 위치하는 부호화 단위(620b)를 결정할 수 있다.
일 실시예에 따라 부호화 단위들(620a, 620b, 620c)에 각각 포함되는 좌측 상단의 샘플(630a, 630b, 630c)의 위치를 나타내는 정보는 부호화 단위들(620a, 620b, 620c)의 픽쳐 내에서의 위치 또는 좌표에 대한 정보를 포함할 수 있다. 일 실시예에 따라 부호화 단위들(620a, 620b, 620c)에 각각 포함되는 좌측 상단의 샘플(630a, 630b, 630c)의 위치를 나타내는 정보는 현재 부호화 단위(600)에 포함되는 부호화 단위들(620a, 620b, 620c)의 너비 또는 높이를 나타내는 정보를 포함할 수 있고, 이러한 너비 또는 높이는 부호화 단위들(620a, 620b, 620c)의 픽쳐 내에서의 좌표 간의 차이를 나타내는 정보에 해당할 수 있다. 즉, 비디오 복호화 장치(100)는 부호화 단위들(620a, 620b, 620c)의 픽쳐 내에서의 위치 또는 좌표에 대한 정보를 직접 이용하거나 좌표간의 차이값에 대응하는 부호화 단위의 너비 또는 높이에 대한 정보를 이용함으로써 가운데에 위치하는 부호화 단위(620b)를 결정할 수 있다.
일 실시예에 따라, 상단 부호화 단위(620a)의 좌측 상단의 샘플(630a)의 위치를 나타내는 정보는 (xa, ya) 좌표를 나타낼 수 있고, 가운데 부호화 단위(620b)의 좌측 상단의 샘플(530b)의 위치를 나타내는 정보는 (xb, yb) 좌표를 나타낼 수 있고, 하단 부호화 단위(620c)의 좌측 상단의 샘플(630c)의 위치를 나타내는 정보는 (xc, yc) 좌표를 나타낼 수 있다. 비디오 복호화 장치(100)는 부호화 단위들(620a, 620b, 620c)에 각각 포함되는 좌측 상단의 샘플(630a, 630b, 630c)의 좌표를 이용하여 가운데 부호화 단위(620b)를 결정할 수 있다. 예를 들면, 좌측 상단의 샘플(630a, 630b, 630c)의 좌표를 오름차순 또는 내림차순으로 정렬하였을 때, 가운데에 위치하는 샘플(630b)의 좌표인 (xb, yb)를 포함하는 부호화 단위(620b)를 현재 부호화 단위(600)가 분할되어 결정된 부호화 단위들(620a, 620b, 620c) 중 가운데에 위치하는 부호화 단위로 결정할 수 있다. 다만 좌측 상단의 샘플(630a, 630b, 630c)의 위치를 나타내는 좌표는 픽쳐 내에서의 절대적인 위치를 나타내는 좌표를 나타낼 수 있고, 나아가 상단 부호화 단위(620a)의 좌측 상단의 샘플(630a)의 위치를 기준으로, 가운데 부호화 단위(620b)의 좌측 상단의 샘플(630b)의 상대적 위치를 나타내는 정보인 (dxb, dyb)좌표, 하단 부호화 단위(620c)의 좌측 상단의 샘플(630c)의 상대적 위치를 나타내는 정보인 (dxc, dyc)좌표를 이용할 수도 있다. 또한 부호화 단위에 포함되는 샘플의 위치를 나타내는 정보로서 해당 샘플의 좌표를 이용함으로써 소정 위치의 부호화 단위를 결정하는 방법이 상술한 방법으로 한정하여 해석되어서는 안되고, 샘플의 좌표를 이용할 수 있는 다양한 산술적 방법으로 해석되어야 한다.
일 실시예에 따라 비디오 복호화 장치(100)는 현재 부호화 단위(600)를 복수개의 부호화 단위들(620a, 620b, 620c)로 분할할 수 있고, 부호화 단위들(620a, 620b, 620c) 중 소정의 기준에 따라 부호화 단위를 선택할 수 있다. 예를 들면, 비디오 복호화 장치(100)는 부호화 단위들(620a, 620b, 620c) 중 크기가 다른 부호화 단위(620b)를 선택할 수 있다.
일 실시예에 따라 비디오 복호화 장치(100)는 상단 부호화 단위(620a)의 좌측 상단의 샘플(630a)의 위치를 나타내는 정보인 (xa, ya) 좌표, 가운데 부호화 단위(620b)의 좌측 상단의 샘플(630b)의 위치를 나타내는 정보인 (xb, yb) 좌표, 하단 부호화 단위(620c)의 좌측 상단의 샘플(630c)의 위치를 나타내는 정보인 (xc, yc) 좌표를 이용하여 부호화 단위들(620a, 620b, 620c) 각각의 너비 또는 높이를 결정할 수 있다. 비디오 복호화 장치(100)는 부호화 단위들(620a, 620b, 620c)의 위치를 나타내는 좌표인 (xa, ya), (xb, yb), (xc, yc)를 이용하여 부호화 단위들(620a, 620b, 620c) 각각의 크기를 결정할 수 있다. 일 실시예에 따라, 비디오 복호화 장치(100)는 상단 부호화 단위(620a)의 너비를 현재 부호화 단위(600)의 너비로 결정할 수 있다. 비디오 복호화 장치(100)는 상단 부호화 단위(620a)의 높이를 yb-ya로 결정할 수 있다. 일 실시예에 따라 비디오 복호화 장치(100)는 가운데 부호화 단위(620b)의 너비를 현재 부호화 단위(600)의 너비로 결정할 수 있다. 비디오 복호화 장치(100)는 가운데 부호화 단위(620b)의 높이를 yc-yb로 결정할 수 있다. 일 실시예에 따라 비디오 복호화 장치(100)는 하단 부호화 단위의 너비 또는 높이는 현재 부호화 단위의 너비 또는 높이와 상단 부호화 단위(620a) 및 가운데 부호화 단위(620b)의 너비 및 높이를 이용하여 결정할 수 있다. 비디오 복호화 장치(100)는 결정된 부호화 단위들(620a, 620b, 620c)의 너비 및 높이에 기초하여 다른 부호화 단위와 다른 크기를 갖는 부호화 단위를 결정할 수 있다. 도 16을 참조하면, 비디오 복호화 장치(100)는 상단 부호화 단위(620a) 및 하단 부호화 단위(620c)의 크기와 다른 크기를 가지는 가운데 부호화 단위(620b)를 소정 위치의 부호화 단위로 결정할 수 있다. 다만 상술한 비디오 복호화 장치(100)가 다른 부호화 단위와 다른 크기를 갖는 부호화 단위를 결정하는 과정은 샘플 좌표에 기초하여 결정되는 부호화 단위의 크기를 이용하여 소정 위치의 부호화 단위를 결정하는 일 실시예에 불과하므로, 소정의 샘플 좌표에 따라 결정되는 부호화 단위의 크기를 비교하여 소정 위치의 부호화 단위를 결정하는 다양한 과정이 이용될 수 있다.
비디오 복호화 장치(100)는 좌측 부호화 단위(660a)의 좌측 상단의 샘플(670a)의 위치를 나타내는 정보인 (xd, yd) 좌표, 가운데 부호화 단위(660b)의 좌측 상단의 샘플(670b)의 위치를 나타내는 정보인 (xe, ye) 좌표, 우측 부호화 단위(660c)의 좌측 상단의 샘플(670c)의 위치를 나타내는 정보인 (xf, yf) 좌표를 이용하여 부호화 단위들(660a, 660b, 660c) 각각의 너비 또는 높이를 결정할 수 있다. 비디오 복호화 장치(100)는 부호화 단위들(660a, 660b, 660c)의 위치를 나타내는 좌표인 (xd, yd), (xe, ye), (xf, yf)를 이용하여 부호화 단위들(660a, 660b, 660c) 각각의 크기를 결정할 수 있다.
일 실시예에 따라, 비디오 복호화 장치(100)는 좌측 부호화 단위(660a)의 너비를 xe-xd로 결정할 수 있다. 비디오 복호화 장치(100)는 좌측 부호화 단위(660a)의 높이를 현재 부호화 단위(650)의 높이로 결정할 수 있다. 일 실시예에 따라 비디오 복호화 장치(100)는 가운데 부호화 단위(660b)의 너비를 xf-xe로 결정할 수 있다. 비디오 복호화 장치(100)는 가운데 부호화 단위(660b)의 높이를 현재 부호화 단위(600)의 높이로 결정할 수 있다. 일 실시예에 따라 비디오 복호화 장치(100)는 우측 부호화 단위(660c)의 너비 또는 높이는 현재 부호화 단위(650)의 너비 또는 높이와 좌측 부호화 단위(660a) 및 가운데 부호화 단위(660b)의 너비 및 높이를 이용하여 결정할 수 있다. 비디오 복호화 장치(100)는 결정된 부호화 단위들(660a, 660b, 660c)의 너비 및 높이에 기초하여 다른 부호화 단위와 다른 크기를 갖는 부호화 단위를 결정할 수 있다. 도 16을 참조하면, 비디오 복호화 장치(100)는 좌측 부호화 단위(660a) 및 우측 부호화 단위(660c)의 크기와 다른 크기를 가지는 가운데 부호화 단위(660b)를 소정 위치의 부호화 단위로 결정할 수 있다. 다만 상술한 비디오 복호화 장치(100)가 다른 부호화 단위와 다른 크기를 갖는 부호화 단위를 결정하는 과정은 샘플 좌표에 기초하여 결정되는 부호화 단위의 크기를 이용하여 소정 위치의 부호화 단위를 결정하는 일 실시예에 불과하므로, 소정의 샘플 좌표에 따라 결정되는 부호화 단위의 크기를 비교하여 소정 위치의 부호화 단위를 결정하는 다양한 과정이 이용될 수 있다.
다만 부호화 단위의 위치를 결정하기 위하여 고려하는 샘플의 위치는 상술한 좌측 상단으로 한정하여 해석되어서는 안되고 부호화 단위에 포함되는 임의의 샘플의 위치에 대한 정보가 이용될 수 있는 것으로 해석될 수 있다.
일 실시예에 따라 비디오 복호화 장치(100)는 현재 부호화 단위의 형태를 고려하여, 현재 부호화 단위가 분할되어 결정되는 홀수개의 부호화 단위들 중 소정 위치의 부호화 단위를 선택할 수 있다. 예를 들면, 현재 부호화 단위가 너비가 높이보다 긴 비-정사각형 형태라면 비디오 복호화 장치(100)는 수평 방향에 따라 소정 위치의 부호화 단위를 결정할 수 있다. 즉, 비디오 복호화 장치(100)는 수평 방향으로 위치를 달리 하는 부호화 단위들 중 하나를 결정하여 해당 부호화 단위에 대한 제한을 둘 수 있다. 현재 부호화 단위가 높이가 너비보다 긴 비-정사각형 형태라면 비디오 복호화 장치(100)는 수직 방향에 따라 소정 위치의 부호화 단위를 결정할 수 있다. 즉, 비디오 복호화 장치(100)는 수직 방향으로 위치를 달리 하는 부호화 단위들 중 하나를 결정하여 해당 부호화 단위에 대한 제한을 둘 수 있다.
일 실시예에 따라 비디오 복호화 장치(100)는 짝수개의 부호화 단위들 중 소정 위치의 부호화 단위를 결정하기 위하여 짝수개의 부호화 단위들 각각의 위치를 나타내는 정보를 이용할 수 있다. 비디오 복호화 장치(100)는 현재 부호화 단위를 분할(바이 분할; binarysplit)하여 짝수개의 부호화 단위들을 결정할 수 있고 짝수개의 부호화 단위들의 위치에 대한 정보를 이용하여 소정 위치의 부호화 단위를 결정할 수 있다. 이에 대한 구체적인 과정은 도 16에서 상술한 홀수개의 부호화 단위들 중 소정 위치(예를 들면, 가운데 위치)의 부호화 단위를 결정하는 과정에 대응하는 과정일 수 있으므로 생략하도록 한다.
일 실시예에 따라, 비-정사각형 형태의 현재 부호화 단위를 복수개의 부호화 단위로 분할한 경우, 복수개의 부호화 단위들 중 소정 위치의 부호화 단위를 결정하기 위하여 분할 과정에서 소정 위치의 부호화 단위에 대한 소정의 정보를 이용할 수 있다. 예를 들면 비디오 복호화 장치(100)는 현재 부호화 단위가 복수개로 분할된 부호화 단위들 중 가운데에 위치하는 부호화 단위를 결정하기 위하여 분할 과정에서 가운데 부호화 단위에 포함된 샘플에 저장된 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나를 이용할 수 있다.
도 16을 참조하면 비디오 복호화 장치(100)는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 현재 부호화 단위(600)를 복수개의 부호화 단위들(620a, 620b, 620c)로 분할할 수 있으며, 복수개의 부호화 단위들(620a, 620b, 620c) 중 가운데에 위치하는 부호화 단위(620b)를 결정할 수 있다. 나아가 비디오 복호화 장치(100)는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나가 획득되는 위치를 고려하여, 가운데에 위치하는 부호화 단위(620b)를 결정할 수 있다. 즉, 현재 부호화 단위(600)의 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나는 현재 부호화 단위(600)의 가운데에 위치하는 샘플(640)에서 획득될 수 있으며, 상기 블록 형태 정보 및 상기 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 현재 부호화 단위(600)가 복수개의 부호화 단위들(620a, 620b, 620c)로 분할된 경우 상기 샘플(640)을 포함하는 부호화 단위(620b)를 가운데에 위치하는 부호화 단위로 결정할 수 있다. 다만 가운데에 위치하는 부호화 단위로 결정하기 위해 이용되는 정보가 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나로 한정하여 해석되어서는 안되고, 다양한 종류의 정보가 가운데에 위치하는 부호화 단위를 결정하는 과정에서 이용될 수 있다.
일 실시예에 따라 소정 위치의 부호화 단위를 식별하기 위한 소정의 정보는, 결정하려는 부호화 단위에 포함되는 소정의 샘플에서 획득될 수 있다. 도 16을 참조하면, 비디오 복호화 장치(100)는 현재 부호화 단위(600)가 분할되어 결정된 복수개의 부호화 단위들(620a, 620b, 620c) 중 소정 위치의 부호화 단위(예를 들면, 복수개로 분할된 부호화 단위 중 가운데에 위치하는 부호화 단위)를 결정하기 위하여 현재 부호화 단위(600) 내의 소정 위치의 샘플(예를 들면, 현재 부호화 단위(600)의 가운데에 위치하는 샘플)에서 획득되는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나를 이용할 수 있다. 즉, 비디오 복호화 장치(100)는 현재 부호화 단위(600)의 블록 형태를 고려하여 상기 소정 위치의 샘플을 결정할 수 있고, 비디오 복호화 장치(100)는 현재 부호화 단위(600)가 분할되어 결정되는 복수개의 부호화 단위들(620a, 620b, 620c) 중, 소정의 정보(예를 들면, 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나)가 획득될 수 있는 샘플이 포함된 부호화 단위(620b)를 결정하여 소정의 제한을 둘 수 있다. 도 16을 참조하면 일 실시예에 따라 비디오 복호화 장치(100)는 소정의 정보가 획득될 수 있는 샘플로서 현재 부호화 단위(600)의 가운데에 위치하는 샘플(640)을 결정할 수 있고, 비디오 복호화 장치(100)는 이러한 샘플(640)이 포함되는 부호화 단위(620b)를 복호화 과정에서의 소정의 제한을 둘 수 있다. 다만 소정의 정보가 획득될 수 있는 샘플의 위치는 상술한 위치로 한정하여 해석되어서는 안되고, 제한을 두기 위해 결정하려는 부호화 단위(620b)에 포함되는 임의의 위치의 샘플들로 해석될 수 있다.
일 실시예에 따라 소정의 정보가 획득될 수 있는 샘플의 위치는 현재 부호화 단위(600)의 형태에 따라 결정될 수 있다. 일 실시예에 따라 블록 형태 정보는 현재 부호화 단위의 형태가 정사각형인지 또는 비-정사각형인지 여부를 결정할 수 있고, 형태에 따라 소정의 정보가 획득될 수 있는 샘플의 위치를 결정할 수 있다. 예를 들면, 비디오 복호화 장치(100)는 현재 부호화 단위의 너비에 대한 정보 및 높이에 대한 정보 중 적어도 하나를 이용하여 현재 부호화 단위의 너비 및 높이 중 적어도 하나를 반으로 분할하는 경계 상에 위치하는 샘플을 소정의 정보가 획득될 수 있는 샘플로 결정할 수 있다. 또다른 예를 들면, 비디오 복호화 장치(100)는 현재 부호화 단위에 관련된 블록 형태 정보가 비-정사각형 형태임을 나타내는 경우, 현재 부호화 단위의 긴 변을 반으로 분할하는 경계에 인접하는 샘플 중 하나를 소정의 정보가 획득될 수 있는 샘플로 결정할 수 있다.
일 실시예에 따라 비디오 복호화 장치(100)는 현재 부호화 단위를 복수개의 부호화 단위로 분할한 경우, 복수개의 부호화 단위들 중 소정 위치의 부호화 단위를 결정하기 위하여, 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나를 이용할 수 있다. 일 실시예에 따라 비디오 복호화 장치(100)는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나를 부호화 단위에 포함된 소정 위치의 샘플에서 획득할 수 있고, 비디오 복호화 장치(100)는 현재 부호화 단위가 분할되어 생성된 복수개의 부호화 단위들을 복수개의 부호화 단위 각각에 포함된 소정 위치의 샘플로부터 획득되는 분할 형태 모드에 대한 정보 및 블록 형태 정보 중 적어도 하나를 이용하여 분할할 수 있다. 즉, 부호화 단위는 부호화 단위 각각에 포함된 소정 위치의 샘플에서 획득되는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나를 이용하여 재귀적으로 분할될 수 있다. 부호화 단위의 재귀적 분할 과정에 대하여는 도 15를 통해 상술하였으므로 자세한 설명은 생략하도록 한다.
일 실시예에 따라 비디오 복호화 장치(100)는 현재 부호화 단위를 분할하여 적어도 하나의 부호화 단위를 결정할 수 있고, 이러한 적어도 하나의 부호화 단위가 복호화되는 순서를 소정의 블록(예를 들면, 현재 부호화 단위)에 따라 결정할 수 있다.
도 17은 일 실시예에 따라 비디오 복호화 장치(100)가 현재 부호화 단위를 분할하여 복수개의 부호화 단위들을 결정하는 경우, 복수개의 부호화 단위들이 처리되는 순서를 도시한다.
일 실시예에 따라 비디오 복호화 장치(100)는 블록 형태 정보 및 분할 형태 모드에 대한 정보에 따라 제1 부호화 단위(700)를 수직 방향으로 분할하여 제2 부호화 단위(710a, 710b)를 결정하거나 제1 부호화 단위(700)를 수평 방향으로 분할하여 제2 부호화 단위(730a, 730b)를 결정하거나 제1 부호화 단위(700)를 수직 방향 및 수평 방향으로 분할하여 제2 부호화 단위(750a, 750b, 750c, 750d)를 결정할 수 있다.
도 17을 참조하면, 비디오 복호화 장치(100)는 제1 부호화 단위(700)를 수직 방향으로 분할하여 결정된 제2 부호화 단위(710a, 710b)를 수평 방향(710c)으로 처리되도록 순서를 결정할 수 있다. 비디오 복호화 장치(100)는 제1 부호화 단위(700)를 수평 방향으로 분할하여 결정된 제2 부호화 단위(730a, 730b)의 처리 순서를 수직 방향(730c)으로 결정할 수 있다. 비디오 복호화 장치(100)는 제1 부호화 단위(700)를 수직 방향 및 수평 방향으로 분할하여 결정된 제2 부호화 단위(750a, 750b, 750c, 750d)를 하나의 행에 위치하는 부호화 단위들이 처리된 후 다음 행에 위치하는 부호화 단위들이 처리되는 소정의 순서(예를 들면, 래스터 스캔 순서((raster scan order) 또는 z 스캔 순서(z scan order)(750e) 등)에 따라 결정할 수 있다.
일 실시예에 따라 비디오 복호화 장치(100)는 부호화 단위들을 재귀적으로 분할할 수 있다. 도 17을 참조하면, 비디오 복호화 장치(100)는 제1 부호화 단위(700)를 분할하여 복수개의 부호화 단위들(710a, 710b, 730a, 730b, 750a, 750b, 750c, 750d)을 결정할 수 있고, 결정된 복수개의 부호화 단위들(710a, 710b, 730a, 730b, 750a, 750b, 750c, 750d) 각각을 재귀적으로 분할할 수 있다. 복수개의 부호화 단위들(710a, 710b, 730a, 730b, 750a, 750b, 750c, 750d)을 분할하는 방법은 제1 부호화 단위(700)를 분할하는 방법에 대응하는 방법이 될 수 있다. 이에 따라 복수개의 부호화 단위들(710a, 710b, 730a, 730b, 750a, 750b, 750c, 750d)은 각각 독립적으로 복수개의 부호화 단위들로 분할될 수 있다. 도 17을 참조하면 비디오 복호화 장치(100)는 제1 부호화 단위(700)를 수직 방향으로 분할하여 제2 부호화 단위(710a, 710b)를 결정할 수 있고, 나아가 제2 부호화 단위(710a, 710b) 각각을 독립적으로 분할하거나 분할하지 않는 것으로 결정할 수 있다.
일 실시예에 따라 비디오 복호화 장치(100)는 좌측의 제2 부호화 단위(710a)를 수평 방향으로 분할하여 제3 부호화 단위(720a, 720b)로 분할할 수 있고, 우측의 제2 부호화 단위(710b)는 분할하지 않을 수 있다.
일 실시예에 따라 부호화 단위들의 처리 순서는 부호화 단위의 분할 과정에 기초하여 결정될 수 있다. 다시 말해, 분할된 부호화 단위들의 처리 순서는 분할되기 직전의 부호화 단위들의 처리 순서에 기초하여 결정될 수 있다. 비디오 복호화 장치(100)는 좌측의 제2 부호화 단위(710a)가 분할되어 결정된 제3 부호화 단위(720a, 720b)가 처리되는 순서를 우측의 제2 부호화 단위(710b)와 독립적으로 결정할 수 있다. 좌측의 제2 부호화 단위(710a)가 수평 방향으로 분할되어 제3 부호화 단위(720a, 720b)가 결정되었으므로 제3 부호화 단위(720a, 720b)는 수직 방향(720c)으로 처리될 수 있다. 또한 좌측의 제2 부호화 단위(710a) 및 우측의 제2 부호화 단위(710b)가 처리되는 순서는 수평 방향(710c)에 해당하므로, 좌측의 제2 부호화 단위(710a)에 포함되는 제3 부호화 단위(720a, 720b)가 수직 방향(720c)으로 처리된 후에 우측 부호화 단위(710b)가 처리될 수 있다. 상술한 내용은 부호화 단위들이 각각 분할 전의 부호화 단위에 따라 처리 순서가 결정되는 과정을 설명하기 위한 것이므로, 상술한 실시예에 한정하여 해석되어서는 안되고, 다양한 형태로 분할되어 결정되는 부호화 단위들이 소정의 순서에 따라 독립적으로 처리될 수 있는 다양한 방법으로 이용되는 것으로 해석되어야 한다.
도 18은 일 실시예에 따라 비디오 복호화 장치(100)가 소정의 순서로 부호화 단위가 처리될 수 없는 경우, 현재 부호화 단위가 홀수개의 부호화 단위로 분할되는 것임을 결정하는 과정을 도시한다.
일 실시예에 따라 비디오 복호화 장치(100)는 획득된 블록 형태 정보 및 분할 형태 모드에 대한 정보에 기초하여 현재 부호화 단위가 홀수개의 부호화 단위들로 분할되는 것을 결정할 수 있다. 도 18을 참조하면 정사각형 형태의 제1 부호화 단위(800)가 비-정사각형 형태의 제2 부호화 단위(810a, 810b)로 분할될 수 있고, 제2 부호화 단위(810a, 810b)는 각각 독립적으로 제3 부호화 단위(820a, 820b, 820c, 820d, 820e)로 분할될 수 있다. 일 실시예에 따라 비디오 복호화 장치(100)는 제2 부호화 단위 중 좌측 부호화 단위(810a)는 수평 방향으로 분할하여 복수개의 제3 부호화 단위(820a, 820b)를 결정할 수 있고, 우측 부호화 단위(810b)는 홀수개의 제3 부호화 단위(820c, 820d, 820e)로 분할할 수 있다.
일 실시예에 따라 비디오 복호화 장치(100)는 제3 부호화 단위들(820a, 820b, 820c, 820d, 820e)이 소정의 순서로 처리될 수 있는지 여부를 판단하여 홀수개로 분할된 부호화 단위가 존재하는지를 결정할 수 있다. 도 18을 참조하면, 비디오 복호화 장치(100)는 제1 부호화 단위(800)를 재귀적으로 분할하여 제3 부호화 단위(820a, 820b, 820c, 820d, 820e)를 결정할 수 있다. 비디오 복호화 장치(100)는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여, 제1 부호화 단위(800), 제2 부호화 단위(810a, 810b) 또는 제3 부호화 단위(820a, 820b, 820c, 820d, 820e)가 분할되는 형태 중 홀수개의 부호화 단위로 분할되는지 여부를 결정할 수 있다. 예를 들면, 제2 부호화 단위(810a, 810b) 중 우측에 위치하는 부호화 단위가 홀수개의 제3 부호화 단위(820c, 820d, 820e)로 분할될 수 있다. 제1 부호화 단위(800)에 포함되는 복수개의 부호화 단위들이 처리되는 순서는 소정의 순서(예를 들면, z-스캔 순서(z-scan order)(830))가 될 수 있고, 비디오 복호화 장치(100)는 우측 제2 부호화 단위(810b)가 홀수개로 분할되어 결정된 제3 부호화 단위(820c, 820d, 820e)가 상기 소정의 순서에 따라 처리될 수 있는 조건을 만족하는지를 판단할 수 있다.
일 실시예에 따라 비디오 복호화 장치(100)는 제1 부호화 단위(800)에 포함되는 제3 부호화 단위(820a, 820b, 820c, 820d, 820e)가 소정의 순서에 따라 처리될 수 있는 조건을 만족하는지를 결정할 수 있으며, 상기 조건은 제3 부호화 단위(820a, 820b, 820c, 820d, 820e)의 경계에 따라 제2 부호화 단위(810a, 810b)의 너비 및 높이 중 적어도 하나를 반으로 분할되는지 여부와 관련된다. 예를 들면 비-정사각형 형태의 좌측 제2 부호화 단위(810a)의 높이를 반으로 분할하여 결정되는 제3 부호화 단위(820a, 820b)는 조건을 만족할 수 있다. 우측 제2 부호화 단위(810b)를 3개의 부호화 단위로 분할하여 결정되는 제3 부호화 단위(820c, 820d, 820e)들의 경계가 우측 제2 부호화 단위(810b)의 너비 또는 높이를 반으로 분할하지 못하므로 제3 부호화 단위(820c, 820d, 820e)는 조건을 만족하지 못하는 것으로 결정될 수 있다. 비디오 복호화 장치(100)는 이러한 조건 불만족의 경우 스캔 순서의 단절(disconnection)로 판단하고, 판단 결과에 기초하여 우측 제2 부호화 단위(810b)는 홀수개의 부호화 단위로 분할되는 것으로 결정할 수 있다. 일 실시예에 따라 비디오 복호화 장치(100)는 홀수개의 부호화 단위로 분할되는 경우 분할된 부호화 단위들 중 소정 위치의 부호화 단위에 대하여 소정의 제한을 둘 수 있으며, 이러한 제한 내용 또는 소정 위치 등에 대하여는 다양한 실시예를 통해 상술하였으므로 자세한 설명은 생략하도록 한다.
도 19는 일 실시예에 따라 비디오 복호화 장치(100)가 제1 부호화 단위(900)를 분할하여 적어도 하나의 부호화 단위를 결정하는 과정을 도시한다.
일 실시예에 따라 비디오 복호화 장치(100)는 비트스트림 획득부(110)를 통해 획득한 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 제1 부호화 단위(900)를 분할할 수 있다. 정사각형 형태의 제1 부호화 단위(900)는 4개의 정사각형 형태를 가지는 부호화 단위로 분할되거나 또는 비-정사각형 형태의 복수개의 부호화 단위로 분할할 수 있다. 예를 들면 도 19를 참조하면, 블록 형태 정보가 제1 부호화 단위(900)는 정사각형임을 나타내고 분할 형태 모드에 대한 정보가 비-정사각형의 부호화 단위로 분할됨을 나타내는 경우 비디오 복호화 장치(100)는 제1 부호화 단위(900)를 복수개의 비-정사각형의 부호화 단위들로 분할할 수 있다. 구체적으로, 분할 형태 모드에 대한 정보가 제1 부호화 단위(900)를 수평 방향 또는 수직 방향으로 분할하여 홀수개의 부호화 단위를 결정하는 것을 나타내는 경우, 비디오 복호화 장치(100)는 정사각형 형태의 제1 부호화 단위(900)를 홀수개의 부호화 단위들로서 수직 방향으로 분할되어 결정된 제2 부호화 단위(910a, 910b, 910c) 또는 수평 방향으로 분할되어 결정된 제2 부호화 단위(920a, 920b, 920c)로 분할할 수 있다.
일 실시예에 따라 비디오 복호화 장치(100)는 제1 부호화 단위(900)에 포함되는 제2 부호화 단위(910a, 910b, 910c, 920a, 920b, 920c)가 소정의 순서에 따라 처리될 수 있는 조건을 만족하는지를 결정할 수 있으며, 상기 조건은 제2 부호화 단위(910a, 910b, 910c, 920a, 920b, 920c)의 경계에 따라 제1 부호화 단위(900)의 너비 및 높이 중 적어도 하나를 반으로 분할되는지 여부와 관련된다. 도 19를 참조하면 정사각형 형태의 제1 부호화 단위(900)를 수직 방향으로 분할하여 결정되는 제2 부호화 단위(910a, 910b, 910c)들의 경계가 제1 부호화 단위(900)의 너비를 반으로 분할하지 못하므로 제1 부호화 단위(900)는 소정의 순서에 따라 처리될 수 있는 조건을 만족하지 못하는 것으로 결정될 수 있다. 또한 정사각형 형태의 제1 부호화 단위(900)를 수평 방향으로 분할하여 결정되는 제2 부호화 단위(920a, 920b, 920c)들의 경계가 제1 부호화 단위(900)의 너비를 반으로 분할하지 못하므로 제1 부호화 단위(900)는 소정의 순서에 따라 처리될 수 있는 조건을 만족하지 못하는 것으로 결정될 수 있다. 비디오 복호화 장치(100)는 이러한 조건 불만족의 경우 스캔 순서의 단절(disconnection)로 판단하고, 판단 결과에 기초하여 제1 부호화 단위(900)는 홀수개의 부호화 단위로 분할되는 것으로 결정할 수 있다. 일 실시예에 따라 비디오 복호화 장치(100)는 홀수개의 부호화 단위로 분할되는 경우 분할된 부호화 단위들 중 소정 위치의 부호화 단위에 대하여 소정의 제한을 둘 수 있으며, 이러한 제한 내용 또는 소정 위치 등에 대하여는 다양한 실시예를 통해 상술하였으므로 자세한 설명은 생략하도록 한다.
일 실시예에 따라, 비디오 복호화 장치(100)는 제1 부호화 단위를 분할하여 다양한 형태의 부호화 단위들을 결정할 수 있다.
도 19를 참조하면, 비디오 복호화 장치(100)는 정사각형 형태의 제1 부호화 단위(900), 비-정사각형 형태의 제1 부호화 단위(930 또는 950)를 다양한 형태의 부호화 단위들로 분할할 수 있다.
도 20은 일 실시예에 따라 비디오 복호화 장치(100)가 제1 부호화 단위(1000)가 분할되어 결정된 비-정사각형 형태의 제2 부호화 단위가 소정의 조건을 만족하는 경우 제2 부호화 단위가 분할될 수 있는 형태가 제한되는 것을 도시한다.
일 실시예에 따라 비디오 복호화 장치(100)는 비트스트림 획득부(110)를 통해 획득한 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 정사각형 형태의 제1 부호화 단위(1000)를 비-정사각형 형태의 제2 부호화 단위(1010a, 1010b, 1020a, 1020b)로 분할하는 것으로 결정할 수 있다. 제2 부호화 단위(1010a, 1010b, 1020a, 1020b)는 독립적으로 분할될 수 있다. 이에 따라 비디오 복호화 장치(100)는 제2 부호화 단위(1010a, 1010b, 1020a, 1020b) 각각에 관련된 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 복수개의 부호화 단위로 분할하거나 분할하지 않는 것을 결정할 수 있다. 일 실시예에 따라 비디오 복호화 장치(100)는 수직 방향으로 제1 부호화 단위(1000)가 분할되어 결정된 비-정사각형 형태의 좌측 제2 부호화 단위(1010a)를 수평 방향으로 분할하여 제3 부호화 단위(1012a, 1012b)를 결정할 수 있다. 다만 비디오 복호화 장치(100)는 좌측 제2 부호화 단위(1010a)를 수평 방향으로 분할한 경우, 우측 제2 부호화 단위(1010b)는 좌측 제2 부호화 단위(1010a)가 분할된 방향과 동일하게 수평 방향으로 분할될 수 없도록 제한할 수 있다. 만일 우측 제2 부호화 단위(1010b)가 동일한 방향으로 분할되어 제3 부호화 단위(1014a, 1014b)가 결정된 경우, 좌측 제2 부호화 단위(1010a) 및 우측 제2 부호화 단위(1010b)가 수평 방향으로 각각 독립적으로 분할됨으로써 제3 부호화 단위(1012a, 1012b, 1014a, 1014b)가 결정될 수 있다. 하지만 이는 비디오 복호화 장치(100)가 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 제1 부호화 단위(1000)를 4개의 정사각형 형태의 제2 부호화 단위(1030a, 1030b, 1030c, 1030d)로 분할한 것과 동일한 결과이며 이는 영상 복호화 측면에서 비효율적일 수 있다.
일 실시예에 따라 비디오 복호화 장치(100)는 수평 방향으로 제1 부호화 단위(1000)가 분할되어 결정된 비-정사각형 형태의 제2 부호화 단위(1020a 또는 1020b)를 수직 방향으로 분할하여 제3 부호화 단위(1022a, 1022b, 1024a, 1024b)를 결정할 수 있다. 다만 비디오 복호화 장치(100)는 제2 부호화 단위 중 하나(예를 들면 상단 제2 부호화 단위(1020a))를 수직 방향으로 분할한 경우, 상술한 이유에 따라 다른 제2 부호화 단위(예를 들면 하단 부호화 단위(1020b))는 상단 제2 부호화 단위(1020a)가 분할된 방향과 동일하게 수직 방향으로 분할될 수 없도록 제한할 수 있다.
도 21은 일 실시예에 따라 분할 형태 모드에 대한 정보가 4개의 정사각형 형태의 부호화 단위로 분할하는 것을 나타낼 수 없는 경우, 비디오 복호화 장치(100)가 정사각형 형태의 부호화 단위를 분할하는 과정을 도시한다.
일 실시예에 따라 비디오 복호화 장치(100)는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 제1 부호화 단위(1100)를 분할하여 제2 부호화 단위(1110a, 1110b, 1120a, 1120b 등)를 결정할 수 있다. 분할 형태 모드에 대한 정보에는 부호화 단위가 분할될 수 있는 다양한 형태에 대한 정보가 포함될 수 있으나, 다양한 형태에 대한 정보에는 정사각형 형태의 4개의 부호화 단위로 분할하기 위한 정보가 포함될 수 없는 경우가 있다. 이러한 분할 형태 모드에 대한 정보에 따르면, 비디오 복호화 장치(100)는 정사각형 형태의 제1 부호화 단위(1100)를 4개의 정사각형 형태의 제2 부호화 단위(1130a, 1130b, 1130c, 1130d)로 분할하지 못한다. 분할 형태 모드에 대한 정보에 기초하여 비디오 복호화 장치(100)는 비-정사각형 형태의 제2 부호화 단위(1110a, 1110b, 1120a, 1120b 등)를 결정할 수 있다.
일 실시예에 따라 비디오 복호화 장치(100)는 비-정사각형 형태의 제2 부호화 단위(1110a, 1110b, 1120a, 1120b 등)를 각각 독립적으로 분할할 수 있다. 재귀적인 방법을 통해 제2 부호화 단위(1110a, 1110b, 1120a, 1120b 등) 각각이 소정의 순서대로 분할될 수 있으며, 이는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 제1 부호화 단위(1100)가 분할되는 방법에 대응하는 분할 방법일 수 있다.
예를 들면 비디오 복호화 장치(100)는 좌측 제2 부호화 단위(1110a)가 수평 방향으로 분할되어 정사각형 형태의 제3 부호화 단위(1112a, 1112b)를 결정할 수 있고, 우측 제2 부호화 단위(1110b)가 수평 방향으로 분할되어 정사각형 형태의 제3 부호화 단위(1114a, 1114b)를 결정할 수 있다. 나아가 비디오 복호화 장치(100)는 좌측 제2 부호화 단위(1110a) 및 우측 제2 부호화 단위(1110b) 모두 수평 방향으로 분할되어 정사각형 형태의 제3 부호화 단위(1116a, 1116b, 1116c, 1116d)를 결정할 수도 있다. 이러한 경우 제1 부호화 단위(1100)가 4개의 정사각형 형태의 제2 부호화 단위(1130a, 1130b, 1130c, 1130d)로 분할된 것과 동일한 형태로 부호화 단위가 결정될 수 있다.
또 다른 예를 들면 비디오 복호화 장치(100)는 상단 제2 부호화 단위(1120a)가 수직 방향으로 분할되어 정사각형 형태의 제3 부호화 단위(1122a, 1122b)를 결정할 수 있고, 하단 제2 부호화 단위(1120b)가 수직 방향으로 분할되어 정사각형 형태의 제3 부호화 단위(1124a, 1124b)를 결정할 수 있다. 나아가 비디오 복호화 장치(100)는 상단 제2 부호화 단위(1120a) 및 하단 제2 부호화 단위(1120b) 모두 수직 방향으로 분할되어 정사각형 형태의 제3 부호화 단위(1126a, 1126b, 1126a, 1126b)를 결정할 수도 있다. 이러한 경우 제1 부호화 단위(1100)가 4개의 정사각형 형태의 제2 부호화 단위(1130a, 1130b, 1130c, 1130d)로 분할된 것과 동일한 형태로 부호화 단위가 결정될 수 있다.
도 22는 일 실시예에 따라 복수개의 부호화 단위들 간의 처리 순서가 부호화 단위의 분할 과정에 따라 달라질 수 있음을 도시한 것이다.
일 실시예에 따라 비디오 복호화 장치(100)는 블록 형태 정보 및 분할 형태 모드에 대한 정보에 기초하여 제1 부호화 단위(1200)를 분할할 수 있다. 블록 형태 정보가 정사각형 형태를 나타내고, 분할 형태 모드에 대한 정보가 제1 부호화 단위(1200)가 수평 방향 및 수직 방향 중 적어도 하나의 방향으로 분할됨을 나타내는 경우, 비디오 복호화 장치(100)는 제1 부호화 단위(1200)를 분할하여 제2 부호화 단위(예를 들면, 1210a, 1210b, 1220a, 1220b 등)를 결정할 수 있다. 도 22를 참조하면 제1 부호화 단위(1200)가 수평 방향 또는 수직 방향만으로 분할되어 결정된 비-정사각형 형태의 제2 부호화 단위(1210a, 1210b, 1220a, 1220b)는 각각에 대한 블록 형태 정보 및 분할 형태 모드에 대한 정보에 기초하여 독립적으로 분할될 수 있다. 예를 들면 비디오 복호화 장치(100)는 제1 부호화 단위(1200)가 수직 방향으로 분할되어 생성된 제2 부호화 단위(1210a, 1210b)를 수평 방향으로 각각 분할하여 제3 부호화 단위(1216a, 1216b, 1216c, 1216d)를 결정할 수 있고, 제1 부호화 단위(1200)가 수평 방향으로 분할되어 생성된 제2 부호화 단위(1220a, 1220b)를 수평 방향으로 각각 분할하여 제3 부호화 단위(1226a, 1226b, 1226c, 1226d)를 결정할 수 있다. 이러한 제2 부호화 단위(1210a, 1210b, 1220a, 1220b)의 분할 과정은 도 21과 관련하여 상술하였으므로 자세한 설명은 생략하도록 한다.
일 실시예에 따라 비디오 복호화 장치(100)는 소정의 순서에 따라 부호화 단위를 처리할 수 있다. 소정의 순서에 따른 부호화 단위의 처리에 대한 특징은 도 17과 관련하여 상술하였으므로 자세한 설명은 생략하도록 한다. 도 22를 참조하면 비디오 복호화 장치(100)는 정사각형 형태의 제1 부호화 단위(1200)를 분할하여 4개의 정사각형 형태의 제3 부호화 단위(1216a, 1216b, 1216c, 1216d, 1226a, 1226b, 1226c, 1226d)를 결정할 수 있다. 일 실시예에 따라 비디오 복호화 장치(100)는 제1 부호화 단위(1200)가 분할되는 형태에 따라 제3 부호화 단위(1216a, 1216b, 1216c, 1216d, 1226a, 1226b, 1226c, 1226d)의 처리 순서를 결정할 수 있다.
일 실시예에 따라 비디오 복호화 장치(100)는 수직 방향으로 분할되어 생성된 제2 부호화 단위(1210a, 1210b)를 수평 방향으로 각각 분할하여 제3 부호화 단위(1216a, 1216b, 1216c, 1216d)를 결정할 수 있고, 비디오 복호화 장치(100)는 좌측 제2 부호화 단위(1210a)에 포함되는 제3 부호화 단위(1216a, 1216c)를 수직 방향으로 먼저 처리한 후, 우측 제2 부호화 단위(1210b)에 포함되는 제3 부호화 단위(1216b, 1216d)를 수직 방향으로 처리하는 순서(1217)에 따라 제3 부호화 단위(1216a, 1216b, 1216c, 1216d)를 처리할 수 있다.
일 실시예에 따라 비디오 복호화 장치(100)는 수평 방향으로 분할되어 생성된 제2 부호화 단위(1220a, 1220b)를 수직 방향으로 각각 분할하여 제3 부호화 단위(1226a, 1226b, 1226c, 1226d)를 결정할 수 있고, 비디오 복호화 장치(100)는 상단 제2 부호화 단위(1220a)에 포함되는 제3 부호화 단위(1226a, 1226b)를 수평 방향으로 먼저 처리한 후, 하단 제2 부호화 단위(1220b)에 포함되는 제3 부호화 단위(1226c, 1226d)를 수평 방향으로 처리하는 순서(1227)에 따라 제3 부호화 단위(1226a, 1226b, 1226c, 1226d)를 처리할 수 있다.
도 22를 참조하면, 제2 부호화 단위(1210a, 1210b, 1220a, 1220b)가 각각 분할되어 정사각형 형태의 제3 부호화 단위(1216a, 1216b, 1216c, 1216d, 1226a, 1226b, 1226c, 1226d)가 결정될 수 있다. 수직 방향으로 분할되어 결정된 제2 부호화 단위(1210a, 1210b) 및 수평 방향으로 분할되어 결정된 제2 부호화 단위(1220a, 1220b)는 서로 다른 형태로 분할된 것이지만, 이후에 결정되는 제3 부호화 단위(1216a, 1216b, 1216c, 1216d, 1226a, 1226b, 1226c, 1226d)에 따르면 결국 동일한 형태의 부호화 단위들로 제1 부호화 단위(1200)가 분할된 결과가 된다. 이에 따라 비디오 복호화 장치(100)는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 상이한 과정을 통해 재귀적으로 부호화 단위를 분할함으로써 결과적으로 동일한 형태의 부호화 단위들을 결정하더라도, 동일한 형태로 결정된 복수개의 부호화 단위들을 서로 다른 순서로 처리할 수 있다.
도 23은 일 실시예에 따라 부호화 단위가 재귀적으로 분할되어 복수개의 부호화 단위가 결정되는 경우, 부호화 단위의 형태 및 크기가 변함에 따라 부호화 단위의 심도가 결정되는 과정을 도시한다.
일 실시예에 따라 비디오 복호화 장치(100)는 부호화 단위의 심도를 소정의 기준에 따라 결정할 수 있다. 예를 들면 소정의 기준은 부호화 단위의 긴 변의 길이가 될 수 있다. 비디오 복호화 장치(100)는 현재 부호화 단위의 긴 변의 길이가 분할되기 전의 부호화 단위의 긴 변의 길이보다 2n (n>0) 배로 분할된 경우, 현재 부호화 단위의 심도는 분할되기 전의 부호화 단위의 심도보다 n만큼 심도가 증가된 것으로 결정할 수 있다. 이하에서는 심도가 증가된 부호화 단위를 하위 심도의 부호화 단위로 표현하도록 한다.
도 23을 참조하면, 일 실시예에 따라 정사각형 형태임을 나타내는 블록 형태 정보(예를 들면 블록 형태 정보는 ′0: SQUARE′를 나타낼 수 있음)에 기초하여 비디오 복호화 장치(100)는 정사각형 형태인 제1 부호화 단위(1300)를 분할하여 하위 심도의 제2 부호화 단위(1302), 제3 부호화 단위(1304) 등을 결정할 수 있다. 정사각형 형태의 제1 부호화 단위(1300)의 크기를 2Nx2N이라고 한다면, 제1 부호화 단위(1300)의 너비 및 높이를 1/2배로 분할하여 결정된 제2 부호화 단위(1302)는 NxN의 크기를 가질 수 있다. 나아가 제2 부호화 단위(1302)의 너비 및 높이를 1/2크기로 분할하여 결정된 제3 부호화 단위(1304)는 N/2xN/2의 크기를 가질 수 있다. 이 경우 제3 부호화 단위(1304)의 너비 및 높이는 제1 부호화 단위(1300)의 1/4배에 해당한다. 제1 부호화 단위(1300)의 심도가 D인 경우 제1 부호화 단위(1300)의 너비 및 높이의 1/2배인 제2 부호화 단위(1302)의 심도는 D+1일 수 있고, 제1 부호화 단위(1300)의 너비 및 높이의 1/4배인 제3 부호화 단위(1304)의 심도는 D+2일 수 있다.
일 실시예에 따라 비-정사각형 형태를 나타내는 블록 형태 정보(예를 들면 블록 형태 정보는, 높이가 너비보다 긴 비-정사각형임을 나타내는 ′1: NS_VER′ 또는 너비가 높이보다 긴 비-정사각형임을 나타내는 ′2: NS_HOR′를 나타낼 수 있음)에 기초하여, 비디오 복호화 장치(100)는 비-정사각형 형태인 제1 부호화 단위(1310 또는 1320)를 분할하여 하위 심도의 제2 부호화 단위(1312 또는 1322), 제3 부호화 단위(1314 또는 1324) 등을 결정할 수 있다.
비디오 복호화 장치(100)는 Nx2N 크기의 제1 부호화 단위(1310)의 너비 및 높이 중 적어도 하나를 분할하여 제2 부호화 단위(예를 들면, 1302, 1312, 1322 등)를 결정할 수 있다. 즉, 비디오 복호화 장치(100)는 제1 부호화 단위(1310)를 수평 방향으로 분할하여 NxN 크기의 제2 부호화 단위(1302) 또는 NxN/2 크기의 제2 부호화 단위(1322)를 결정할 수 있고, 수평 방향 및 수직 방향으로 분할하여 N/2xN 크기의 제2 부호화 단위(1312)를 결정할 수도 있다.
일 실시예에 따라 비디오 복호화 장치(100)는 2NxN 크기의 제1 부호화 단위(1320) 의 너비 및 높이 중 적어도 하나를 분할하여 제2 부호화 단위(예를 들면, 1302, 1312, 1322 등)를 결정할 수도 있다. 즉, 비디오 복호화 장치(100)는 제1 부호화 단위(1320)를 수직 방향으로 분할하여 NxN 크기의 제2 부호화 단위(1302) 또는 N/2xN 크기의 제2 부호화 단위(1312)를 결정할 수 있고, 수평 방향 및 수직 방향으로 분할하여 NxN/2 크기의 제2 부호화 단위(1322)를 결정할 수도 있다.
일 실시예에 따라 비디오 복호화 장치(100)는 NxN 크기의 제2 부호화 단위(1302) 의 너비 및 높이 중 적어도 하나를 분할하여 제3 부호화 단위(예를 들면, 1304, 1314, 1324 등)를 결정할 수도 있다. 즉, 비디오 복호화 장치(100)는 제2 부호화 단위(1302)를 수직 방향 및 수평 방향으로 분할하여 N/2xN/2 크기의 제3 부호화 단위(1304)를 결정하거나 N/4xN/2 크기의 제3 부호화 단위(1314)를 결정하거나 N/2xN/4 크기의 제3 부호화 단위(1324)를 결정할 수 있다.
일 실시예에 따라 비디오 복호화 장치(100)는 N/2xN 크기의 제2 부호화 단위(1312)의 너비 및 높이 중 적어도 하나를 분할하여 제3 부호화 단위(예를 들면, 1304, 1314, 1324 등)를 결정할 수도 있다. 즉, 비디오 복호화 장치(100)는 제2 부호화 단위(1312)를 수평 방향으로 분할하여 N/2xN/2 크기의 제3 부호화 단위(1304) 또는 N/2xN/4 크기의 제3 부호화 단위(1324)를 결정하거나 수직 방향 및 수평 방향으로 분할하여 N/4xN/2 크기의 제3 부호화 단위(1314)를 결정할 수 있다.
일 실시예에 따라 비디오 복호화 장치(100)는 NxN/2 크기의 제2 부호화 단위(1322)의 너비 및 높이 중 적어도 하나를 분할하여 제3 부호화 단위(예를 들면, 1304, 1314, 1324 등)를 결정할 수도 있다. 즉, 비디오 복호화 장치(100)는 제2 부호화 단위(1322)를 수직 방향으로 분할하여 N/2xN/2 크기의 제3 부호화 단위(1304) 또는 N/4xN/2 크기의 제3 부호화 단위(1314)를 결정하거나 수직 방향 및 수평 방향으로 분할하여 N/2xN/4크기의 제3 부호화 단위(1324)를 결정할 수 있다.
일 실시예에 따라 비디오 복호화 장치(100)는 정사각형 형태의 부호화 단위(예를 들면, 1300, 1302, 1304)를 수평 방향 또는 수직 방향으로 분할할 수 있다. 예를 들면, 2Nx2N 크기의 제1 부호화 단위(1300)를 수직 방향으로 분할하여 Nx2N 크기의 제1 부호화 단위(1310)를 결정하거나 수평 방향으로 분할하여 2NxN 크기의 제1 부호화 단위(1320)를 결정할 수 있다. 일 실시예에 따라 심도가 부호화 단위의 가장 긴 변의 길이에 기초하여 결정되는 경우, 2Nx2N 크기의 제1 부호화 단위(1300)가 수평 방향 또는 수직 방향으로 분할되어 결정되는 부호화 단위의 심도는 제1 부호화 단위(1300)의 심도와 동일할 수 있다.
일 실시예에 따라 제3 부호화 단위(1314 또는 1324)의 너비 및 높이는 제1 부호화 단위(1310 또는 1320)의 1/4배에 해당할 수 있다. 제1 부호화 단위(1310 또는 1320)의 심도가 D인 경우 제1 부호화 단위(1310 또는 1320)의 너비 및 높이의 1/2배인 제2 부호화 단위(1312 또는 1322)의 심도는 D+1일 수 있고, 제1 부호화 단위(1310 또는 1320)의 너비 및 높이의 1/4배인 제3 부호화 단위(1314 또는 1324)의 심도는 D+2일 수 있다.
도 24는 일 실시예에 따라 부호화 단위들의 형태 및 크기에 따라 결정될 수 있는 심도 및 부호화 단위 구분을 위한 인덱스(part index, 이하 PID)를 도시한다.
일 실시예에 따라 비디오 복호화 장치(100)는 정사각형 형태의 제1 부호화 단위(1400)를 분할하여 다양한 형태의 제2 부호화 단위를 결정할 수 있다. 도 14를 참조하면, 비디오 복호화 장치(100)는 분할 형태 모드에 대한 정보에 따라 제1 부호화 단위(1400)를 수직 방향 및 수평 방향 중 적어도 하나의 방향으로 분할하여 제2 부호화 단위(1402a, 1402b, 1404a, 1404b, 1406a, 1406b, 1406c, 1406d)를 결정할 수 있다. 즉, 비디오 복호화 장치(100)는 제1 부호화 단위(1400)에 대한 분할 형태 모드에 대한 정보에 기초하여 제2 부호화 단위(1402a, 1402b, 1404a, 1404b, 1406a, 1406b, 1406c, 1406d)를 결정할 수 있다.
일 실시예에 따라 정사각형 형태의 제1 부호화 단위(1400)에 대한 분할 형태 모드에 대한 정보에 따라 결정되는 제2 부호화 단위(1402a, 1402b, 1404a, 1404b, 1406a, 1406b, 1406c, 1406d)는 긴 변의 길이에 기초하여 심도가 결정될 수 있다. 예를 들면, 정사각형 형태의 제1 부호화 단위(1400)의 한 변의 길이와 비-정사각형 형태의 제2 부호화 단위(1402a, 1402b, 1404a, 1404b)의 긴 변의 길이가 동일하므로, 제1 부호화 단위(1400)와 비-정사각형 형태의 제2 부호화 단위(1402a, 1402b, 1404a, 1404b)의 심도는 D로 동일하다고 볼 수 있다. 이에 반해 비디오 복호화 장치(100)가 분할 형태 모드에 대한 정보에 기초하여 제1 부호화 단위(1400)를 4개의 정사각형 형태의 제2 부호화 단위(1406a, 1406b, 1406c, 1406d)로 분할한 경우, 정사각형 형태의 제2 부호화 단위(1406a, 1406b, 1406c, 1406d)의 한 변의 길이는 제1 부호화 단위(1400)의 한 변의 길이의 1/2배 이므로, 제2 부호화 단위(1406a, 1406b, 1406c, 1406d)의 심도는 제1 부호화 단위(1400)의 심도인 D보다 한 심도 하위인 D+1의 심도일 수 있다.
일 실시예에 따라 비디오 복호화 장치(100)는 높이가 너비보다 긴 형태의 제1 부호화 단위(1410)를 분할 형태 모드에 대한 정보에 따라 수평 방향으로 분할하여 복수개의 제2 부호화 단위(1412a, 1412b, 1414a, 1414b, 1414c)로 분할할 수 있다. 일 실시예에 따라 비디오 복호화 장치(100)는 너비가 높이보다 긴 형태의 제1 부호화 단위(1420)를 분할 형태 모드에 대한 정보에 따라 수직 방향으로 분할하여 복수개의 제2 부호화 단위(1422a, 1422b, 1424a, 1424b, 1424c)로 분할할 수 있다.
일 실시예에 따라 비-정사각형 형태의 제1 부호화 단위(1410 또는 1420)에 대한 분할 형태 모드에 대한 정보에 따라 결정되는 제2 부호화 단위(1412a, 1412b, 1414a, 1414b, 1414c. 1422a, 1422b, 1424a, 1424b, 1424c)는 긴 변의 길이에 기초하여 심도가 결정될 수 있다. 예를 들면, 정사각형 형태의 제2 부호화 단위(1412a, 1412b)의 한 변의 길이는 높이가 너비보다 긴 비-정사각형 형태의 제1 부호화 단위(1410)의 한 변의 길이의 1/2배이므로, 정사각형 형태의 제2 부호화 단위(1412a, 1412b)의 심도는 비-정사각형 형태의 제1 부호화 단위(1410)의 심도 D보다 한 심도 하위의 심도인 D+1이다.
나아가 비디오 복호화 장치(100)가 분할 형태 모드에 대한 정보에 기초하여 비-정사각형 형태의 제1 부호화 단위(1410)를 홀수개의 제2 부호화 단위(1414a, 1414b, 1414c)로 분할할 수 있다. 홀수개의 제2 부호화 단위(1414a, 1414b, 1414c)는 비-정사각형 형태의 제2 부호화 단위(1414a, 1414c) 및 정사각형 형태의 제2 부호화 단위(1414b)를 포함할 수 있다. 이 경우 비-정사각형 형태의 제2 부호화 단위(1414a, 1414c)의 긴 변의 길이 및 정사각형 형태의 제2 부호화 단위(1414b)의 한 변의 길이는 제1 부호화 단위(1410)의 한 변의 길이의 1/2배 이므로, 제2 부호화 단위(1414a, 1414b, 1414c)의 심도는 제1 부호화 단위(1410)의 심도인 D보다 한 심도 하위인 D+1의 심도일 수 있다. 비디오 복호화 장치(100)는 제1 부호화 단위(1410)와 관련된 부호화 단위들의 심도를 결정하는 상기 방식에 대응하는 방식으로, 너비가 높이보다 긴 비-정사각형 형태의 제1 부호화 단위(1420)와 관련된 부호화 단위들의 심도를 결정할 수 있다.
일 실시예에 따라 비디오 복호화 장치(100)는 분할된 부호화 단위들의 구분을 위한 인덱스(PID)를 결정함에 있어서, 홀수개로 분할된 부호화 단위들이 서로 동일한 크기가 아닌 경우, 부호화 단위들 간의 크기 비율에 기초하여 인덱스를 결정할 수 있다. 도 24를 참조하면, 홀수개로 분할된 부호화 단위들(1414a, 1414b, 1414c) 중 가운데에 위치하는 부호화 단위(1414b)는 다른 부호화 단위들(1414a, 1414c)와 너비는 동일하지만 높이가 다른 부호화 단위들(1414a, 1414c)의 높이의 두 배일 수 있다. 즉, 이 경우 가운데에 위치하는 부호화 단위(1414b)는 다른 부호화 단위들(1414a, 1414c)의 두 개를 포함할 수 있다. 따라서, 스캔 순서에 따라 가운데에 위치하는 부호화 단위(1414b)의 인덱스(PID)가 1이라면 그 다음 순서에 위치하는 부호화 단위(1414c)는 인덱스가 2가 증가한 3일수 있다. 즉 인덱스의 값의 불연속성이 존재할 수 있다. 일 실시예에 따라 비디오 복호화 장치(100)는 이러한 분할된 부호화 단위들 간의 구분을 위한 인덱스의 불연속성의 존재 여부에 기초하여 홀수개로 분할된 부호화 단위들이 서로 동일한 크기가 아닌지 여부를 결정할 수 있다.
일 실시예에 따라 비디오 복호화 장치(100)는 현재 부호화 단위로부터 분할되어 결정된 복수개의 부호화 단위들을 구분하기 위한 인덱스의 값에 기초하여 특정 분할 형태로 분할된 것인지를 결정할 수 있다. 도 24를 참조하면 비디오 복호화 장치(100)는 높이가 너비보다 긴 직사각형 형태의 제1 부호화 단위(1410)를 분할하여 짝수개의 부호화 단위(1412a, 1412b)를 결정하거나 홀수개의 부호화 단위(1414a, 1414b, 1414c)를 결정할 수 있다. 비디오 복호화 장치(100)는 복수개의 부호화 단위 각각을 구분하기 위하여 각 부호화 단위를 나타내는 인덱스(PID)를 이용할 수 있다. 일 실시예에 따라 PID는 각각의 부호화 단위의 소정 위치의 샘플(예를 들면, 좌측 상단 샘플)에서 획득될 수 있다.
일 실시예에 따라 비디오 복호화 장치(100)는 부호화 단위의 구분을 위한 인덱스를 이용하여 분할되어 결정된 부호화 단위들 중 소정 위치의 부호화 단위를 결정할 수 있다. 일 실시예에 따라 높이가 너비보다 긴 직사각형 형태의 제1 부호화 단위(1410)에 대한 분할 형태 모드에 대한 정보가 3개의 부호화 단위로 분할됨을 나타내는 경우 비디오 복호화 장치(100)는 제1 부호화 단위(1410)를 3개의 부호화 단위(1414a, 1414b, 1414c)로 분할할 수 있다. 비디오 복호화 장치(100)는 3개의 부호화 단위(1414a, 1414b, 1414c) 각각에 대한 인덱스를 할당할 수 있다. 비디오 복호화 장치(100)는 홀수개로 분할된 부호화 단위 중 가운데 부호화 단위를 결정하기 위하여 각 부호화 단위에 대한 인덱스를 비교할 수 있다. 비디오 복호화 장치(100)는 부호화 단위들의 인덱스에 기초하여 인덱스들 중 가운데 값에 해당하는 인덱스를 갖는 부호화 단위(1414b)를, 제1 부호화 단위(1410)가 분할되어 결정된 부호화 단위 중 가운데 위치의 부호화 단위로서 결정할 수 있다. 일 실시예에 따라 비디오 복호화 장치(100)는 분할된 부호화 단위들의 구분을 위한 인덱스를 결정함에 있어서, 부호화 단위들이 서로 동일한 크기가 아닌 경우, 부호화 단위들 간의 크기 비율에 기초하여 인덱스를 결정할 수 있다. 도 24를 참조하면, 제1 부호화 단위(1410)가 분할되어 생성된 부호화 단위(1414b)는 다른 부호화 단위들(1414a, 1414c)와 너비는 동일하지만 높이가 다른 부호화 단위들(1414a, 1414c)의 높이의 두 배일 수 있다. 이 경우 가운데에 위치하는 부호화 단위(1414b)의 인덱스(PID)가 1이라면 그 다음 순서에 위치하는 부호화 단위(1414c)는 인덱스가 2가 증가한 3일수 있다. 이러한 경우처럼 균일하게 인덱스가 증가하다가 증가폭이 달라지는 경우, 비디오 복호화 장치(100)는 다른 부호화 단위들과 다른 크기를 가지는 부호화 단위를 포함하는 복수개의 부호화 단위로 분할된 것으로 결정할 수 있다, 일 실시예에 따라 분할 형태 모드에 대한 정보가 홀수개의 부호화 단위로 분할됨을 나타내는 경우, 비디오 복호화 장치(100)는 홀수개의 부호화 단위 중 소정 위치의 부호화 단위(예를 들면 가운데 부호화 단위)가 다른 부호화 단위와 크기가 다른 형태로 현재 부호화 단위를 분할할 수 있다. 이 경우 비디오 복호화 장치(100)는 부호화 단위에 대한 인덱스(PID)를 이용하여 다른 크기를 가지는 가운데 부호화 단위를 결정할 수 있다. 다만 상술한 인덱스, 결정하고자 하는 소정 위치의 부호화 단위의 크기 또는 위치는 일 실시예를 설명하기 위해 특정한 것이므로 이에 한정하여 해석되어서는 안되며, 다양한 인덱스, 부호화 단위의 위치 및 크기가 이용될 수 있는 것으로 해석되어야 한다.
일 실시예에 따라 비디오 복호화 장치(100)는 부호화 단위의 재귀적인 분할이 시작되는 소정의 데이터 단위를 이용할 수 있다.
도 25는 일 실시예에 따라 픽쳐에 포함되는 복수개의 소정의 데이터 단위에 따라 복수개의 부호화 단위들이 결정된 것을 도시한다.
일 실시예에 따라 소정의 데이터 단위는 부호화 단위가 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나를 이용하여 재귀적으로 분할되기 시작하는 데이터 단위로 정의될 수 있다. 즉, 현재 픽쳐를 분할하는 복수개의 부호화 단위들이 결정되는 과정에서 이용되는 최상위 심도의 부호화 단위에 해당할 수 있다. 이하에서는 설명 상 편의를 위해 이러한 소정의 데이터 단위를 기준 데이터 단위라고 지칭하도록 한다.
일 실시예에 따라 기준 데이터 단위는 소정의 크기 및 형태를 나타낼 수 있다. 일 실시예에 따라, 기준 부호화 단위는 MxN의 샘플들을 포함할 수 있다. 여기서 M 및 N은 서로 동일할 수도 있으며, 2의 승수로 표현되는 정수일 수 있다. 즉, 기준 데이터 단위는 정사각형 또는 비-정사각형의 형태를 나타낼 수 있으며, 이후에 정수개의 부호화 단위로 분할될 수 있다.
일 실시예에 따라 비디오 복호화 장치(100)는 현재 픽쳐를 복수개의 기준 데이터 단위로 분할할 수 있다. 일 실시예에 따라 비디오 복호화 장치(100)는 현재 픽쳐를 분할하는 복수개의 기준 데이터 단위를 각각의 기준 데이터 단위에 대한 분할 형태 모드에 대한 정보를 이용하여 분할할 수 있다. 이러한 기준 데이터 단위의 분할 과정은 쿼드 트리(quad-tree)구조를 이용한 분할 과정에 대응될 수 있다.
일 실시예에 따라 비디오 복호화 장치(100)는 현재 픽쳐에 포함되는 기준 데이터 단위가 가질 수 있는 최소 크기를 미리 결정할 수 있다. 이에 따라, 비디오 복호화 장치(100)는 최소 크기 이상의 크기를 갖는 다양한 크기의 기준 데이터 단위를 결정할 수 있고, 결정된 기준 데이터 단위를 기준으로 블록 형태 정보 및 분할 형태 모드에 대한 정보를 이용하여 적어도 하나의 부호화 단위를 결정할 수 있다.
도 25를 참조하면, 비디오 복호화 장치(100)는 정사각형 형태의 기준 부호화 단위(1500)를 이용할 수 있고, 또는 비-정사각형 형태의 기준 부호화 단위(1502)를 이용할 수도 있다. 일 실시예에 따라 기준 부호화 단위의 형태 및 크기는 적어도 하나의 기준 부호화 단위를 포함할 수 있는 다양한 데이터 단위(예를 들면, 시퀀스(sequence), 픽쳐(picture), 슬라이스(slice), 슬라이스 세그먼트(slice segment), 최대부호화단위 등)에 따라 결정될 수 있다.
일 실시예에 따라 비디오 복호화 장치(100)의 비트스트림 획득부(110)는 기준 부호화 단위의 형태에 대한 정보 및 기준 부호화 단위의 크기에 대한 정보 중 적어도 하나를 상기 다양한 데이터 단위마다 비트스트림으로부터 획득할 수 있다. 정사각형 형태의 기준 부호화 단위(1500)에 포함되는 적어도 하나의 부호화 단위가 결정되는 과정은 도 13의 현재 부호화 단위(300)가 분할되는 과정을 통해 상술하였고, 비-정사각형 형태의 기준 부호화 단위(1502)에 포함되는 적어도 하나의 부호화 단위가 결정되는 과정은 도 14의 현재 부호화 단위(400 또는 450)가 분할되는 과정을 통해 상술하였으므로 자세한 설명은 생략하도록 한다.
일 실시예에 따라 비디오 복호화 장치(100)는 소정의 조건에 기초하여 미리 결정되는 일부 데이터 단위에 따라 기준 부호화 단위의 크기 및 형태를 결정하기 위하여, 기준 부호화 단위의 크기 및 형태를 식별하기 위한 인덱스를 이용할 수 있다. 즉, 비트스트림 획득부 (110)는 비트스트림으로부터 상기 다양한 데이터 단위(예를 들면, 시퀀스, 픽쳐, 슬라이스, 슬라이스 세그먼트, 최대부호화단위 등) 중 소정의 조건(예를 들면 슬라이스 이하의 크기를 갖는 데이터 단위)을 만족하는 데이터 단위로서 슬라이스, 슬라이스 세그먼트, 최대부호화 단위 등 마다, 기준 부호화 단위의 크기 및 형태의 식별을 위한 인덱스만을 획득할 수 있다. 비디오 복호화 장치(100)는 인덱스를 이용함으로써 상기 소정의 조건을 만족하는 데이터 단위마다 기준 데이터 단위의 크기 및 형태를 결정할 수 있다. 기준 부호화 단위의 형태에 대한 정보 및 기준 부호화 단위의 크기에 대한 정보를 상대적으로 작은 크기의 데이터 단위마다 비트스트림으로부터 획득하여 이용하는 경우, 비트스트림의 이용 효율이 좋지 않을 수 있으므로, 기준 부호화 단위의 형태에 대한 정보 및 기준 부호화 단위의 크기에 대한 정보를 직접 획득하는 대신 상기 인덱스만을 획득하여 이용할 수 있다. 이 경우 기준 부호화 단위의 크기 및 형태를 나타내는 인덱스에 대응하는 기준 부호화 단위의 크기 및 형태 중 적어도 하나는 미리 결정되어 있을 수 있다. 즉, 비디오 복호화 장치(100)는 미리 결정된 기준 부호화 단위의 크기 및 형태 중 적어도 하나를 인덱스에 따라 선택함으로써, 인덱스 획득의 기준이 되는 데이터 단위에 포함되는 기준 부호화 단위의 크기 및 형태 중 적어도 하나를 결정할 수 있다.
일 실시예에 따라 비디오 복호화 장치(100)는 하나의 최대 부호화 단위에 포함하는 적어도 하나의 기준 부호화 단위를 이용할 수 있다. 즉, 영상을 분할하는 최대 부호화 단위에는 적어도 하나의 기준 부호화 단위가 포함될 수 있고, 각각의 기준 부호화 단위의 재귀적인 분할 과정을 통해 부호화 단위가 결정될 수 있다. 일 실시예에 따라 최대 부호화 단위의 너비 및 높이 중 적어도 하나는 기준 부호화 단위의 너비 및 높이 중 적어도 하나의 정수배에 해당할 수 있다. 일 실시예에 따라 기준 부호화 단위의 크기는 최대부호화단위를 쿼드 트리 구조에 따라 n번 분할한 크기일 수 있다. 즉, 비디오 복호화 장치(100)는 최대부호화단위를 쿼드 트리 구조에 따라 n 번 분할하여 기준 부호화 단위를 결정할 수 있고, 다양한 실시예들에 따라 기준 부호화 단위를 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 분할할 수 있다.
도 26은 일 실시예에 따라 픽쳐(1600)에 포함되는 기준 부호화 단위의 결정 순서를 결정하는 기준이 되는 프로세싱 블록을 도시한다.
일 실시예에 따라 비디오 복호화 장치(100)는 픽쳐를 분할하는 적어도 하나의 프로세싱 블록을 결정할 수 있다. 프로세싱 블록이란, 영상을 분할하는 적어도 하나의 기준 부호화 단위를 포함하는 데이터 단위로서, 프로세싱 블록에 포함되는 적어도 하나의 기준 부호화 단위는 특정 순서대로 결정될 수 있다. 즉, 각각의 프로세싱 블록에서 결정되는 적어도 하나의 기준 부호화 단위의 결정 순서는 기준 부호화 단위가 결정될 수 있는 다양한 순서의 종류 중 하나에 해당할 수 있으며, 각각의 프로세싱 블록에서 결정되는 기준 부호화 단위 결정 순서는 프로세싱 블록마다 상이할 수 있다. 프로세싱 블록마다 결정되는 기준 부호화 단위의 결정 순서는 래스터 스캔(raster scan), Z 스캔(Z-scan), N 스캔(N-scan), 우상향 대각 스캔(up-right diagonal scan), 수평적 스캔(horizontal scan), 수직적 스캔(vertical scan) 등 다양한 순서 중 하나일 수 있으나, 결정될 수 있는 순서는 상기 스캔 순서들에 한정하여 해석되어서는 안 된다.
일 실시예에 따라 비디오 복호화 장치(100)는 프로세싱 블록의 크기에 대한 정보를 획득하여 영상에 포함되는 적어도 하나의 프로세싱 블록의 크기를 결정할 수 있다. 비디오 복호화 장치(100)는 프로세싱 블록의 크기에 대한 정보를 비트스트림으로부터 획득하여 영상에 포함되는 적어도 하나의 프로세싱 블록의 크기를 결정할 수 있다. 이러한 프로세싱 블록의 크기는 프로세싱 블록의 크기에 대한 정보가 나타내는 데이터 단위의 소정의 크기일 수 있다.
일 실시예에 따라 비디오 복호화 장치(100)의 수신부(110)는 비트스트림으로부터 프로세싱 블록의 크기에 대한 정보를 특정의 데이터 단위마다 획득할 수 있다. 예를 들면 프로세싱 블록의 크기에 대한 정보는 영상, 시퀀스, 픽쳐, 슬라이스, 슬라이스 세그먼트 등의 데이터 단위로 비트스트림으로부터 획득될 수 있다. 즉 수신부(110)는 상기 여러 데이터 단위마다 비트스트림으로부터 프로세싱 블록의 크기에 대한 정보를 획득할 수 있고 비디오 복호화 장치(100)는 획득된 프로세싱 블록의 크기에 대한 정보를 이용하여 픽쳐를 분할하는 적어도 하나의 프로세싱 블록의 크기를 결정할 수 있으며, 이러한 프로세싱 블록의 크기는 기준 부호화 단위의 정수배의 크기일 수 있다.
일 실시예에 따라 비디오 복호화 장치(100)는 픽쳐(1600)에 포함되는 프로세싱 블록(1602, 1612)의 크기를 결정할 수 있다. 예를 들면, 비디오 복호화 장치(100)는 비트스트림으로부터 획득된 프로세싱 블록의 크기에 대한 정보에 기초하여 프로세싱 블록의 크기를 결정할 수 있다. 도 26을 참조하면, 비디오 복호화 장치(100)는 일 실시예에 따라 프로세싱 블록(1602, 1612)의 가로크기를 기준 부호화 단위 가로크기의 4배, 세로크기를 기준 부호화 단위의 세로크기의 4배로 결정할 수 있다. 비디오 복호화 장치(100)는 적어도 하나의 프로세싱 블록 내에서 적어도 하나의 기준 부호화 단위가 결정되는 순서를 결정할 수 있다.
일 실시예에 따라, 비디오 복호화 장치(100)는 프로세싱 블록의 크기에 기초하여 픽쳐(1600)에 포함되는 각각의 프로세싱 블록(1602, 1612)을 결정할 수 있고, 프로세싱 블록(1602, 1612)에 포함되는 적어도 하나의 기준 부호화 단위의 결정 순서를 결정할 수 있다. 일 실시예에 따라 기준 부호화 단위의 결정은 기준 부호화 단위의 크기의 결정을 포함할 수 있다.
일 실시예에 따라 비디오 복호화 장치(100)는 비트스트림으로부터 적어도 하나의 프로세싱 블록에 포함되는 적어도 하나의 기준 부호화 단위의 결정 순서에 대한 정보를 획득할 수 있고, 획득한 결정 순서에 대한 정보에 기초하여 적어도 하나의 기준 부호화 단위가 결정되는 순서를 결정할 수 있다. 결정 순서에 대한 정보는 프로세싱 블록 내에서 기준 부호화 단위들이 결정되는 순서 또는 방향으로 정의될 수 있다. 즉, 기준 부호화 단위들이 결정되는 순서는 각각의 프로세싱 블록마다 독립적으로 결정될 수 있다.
일 실시예에 따라 비디오 복호화 장치(100)는 특정 데이터 단위마다 기준 부호화 단위의 결정 순서에 대한 정보를 비트스트림으로부터 획득할 수 있다. 예를 들면, 수신부(110)는 기준 부호화 단위의 결정 순서에 대한 정보를 영상, 시퀀스, 픽쳐, 슬라이스, 슬라이스 세그먼트, 프로세싱 블록 등의 데이터 단위로마다 비트스트림으로부터 획득할 수 있다. 기준 부호화 단위의 결정 순서에 대한 정보는 프로세싱 블록 내에서의 기준 부호화 단위 결정 순서를 나타내므로, 결정 순서에 대한 정보는 정수개의 프로세싱 블록을 포함하는 특정 데이터 단위 마다 획득될 수 있다.
비디오 복호화 장치(100)는 일 실시예에 따라 결정된 순서에 기초하여 적어도 하나의 기준 부호화 단위를 결정할 수 있다.
일 실시예에 따라 비트스트림 획득부(110)는 비트스트림으로부터 프로세싱 블록(1602, 1612)과 관련된 정보로서, 기준 부호화 단위 결정 순서에 대한 정보를 획득할 수 있고, 비디오 복호화 장치(100)는 상기 프로세싱 블록(1602, 1612)에 포함된 적어도 하나의 기준 부호화 단위를 결정하는 순서를 결정하고 부호화 단위의 결정 순서에 따라 픽쳐(1600)에 포함되는 적어도 하나의 기준 부호화 단위를 결정할 수 있다. 도 26을 참조하면, 비디오 복호화 장치(100)는 각각의 프로세싱 블록(1602, 1612)과 관련된 적어도 하나의 기준 부호화 단위의 결정 순서(1604, 1614)를 결정할 수 있다. 예를 들면, 기준 부호화 단위의 결정 순서에 대한 정보가 프로세싱 블록마다 획득되는 경우, 각각의 프로세싱 블록(1602, 1612)과 관련된 기준 부호화 단위 결정 순서는 프로세싱 블록마다 상이할 수 있다. 프로세싱 블록(1602)과 관련된 기준 부호화 단위 결정 순서(1604)가 래스터 스캔(raster scan)순서인 경우, 프로세싱 블록(1602)에 포함되는 기준 부호화 단위는 래스터 스캔 순서에 따라 결정될 수 있다. 이에 반해 다른 프로세싱 블록(1612)과 관련된 기준 부호화 단위 결정 순서(1614)가 래스터 스캔 순서의 역순인 경우, 프로세싱 블록(1612)에 포함되는 기준 부호화 단위는 래스터 스캔 순서의 역순에 따라 결정될 수 있다.
비디오 복호화 장치(100)는 일 실시예에 따라, 결정된 적어도 하나의 기준 부호화 단위를 복호화할 수 있다. 비디오 복호화 장치(100)는 상술한 실시예를 통해 결정된 기준 부호화 단위에 기초하여 영상을 복호화 할 수 있다. 기준 부호화 단위를 복호화 하는 방법은 영상을 복호화 하는 다양한 방법들을 포함할 수 있다.
일 실시예에 따라 비디오 복호화 장치(100)는 현재 부호화 단위의 형태를 나타내는 블록 형태 정보 또는 현재 부호화 단위를 분할하는 방법을 나타내는 분할 형태 모드에 대한 정보를 비트스트림으로부터 획득하여 이용할 수 있다. 블록 형태 정보 또는 분할 형태 모드에 대한 정보는 다양한 데이터 단위와 관련된 비트스트림에 포함될 수 있다. 예를 들면, 비디오 복호화 장치(100)는 시퀀스 파라미터 세트(sequence parameter set), 픽쳐 파라미터 세트(picture parameter set), 비디오 파라미터 세트(video parameter set), 슬라이스 헤더(slice header), 슬라이스 세그먼트 헤더(slice segment header)에 포함된 블록 형태 정보 또는 분할 형태 모드에 대한 정보를 이용할 수 있다. 나아가, 비디오 복호화 장치(100)는 최대 부호화 단위, 기준 부호화 단위, 프로세싱 블록마다 비트스트림으로부터 블록 형태 정보 또는 분할 형태 모드에 대한 정보에 대응하는 신택스 엘리먼트를 비트스트림으로부터 획득하여 이용할 수 있다.
도 27은 일 실시예에 따라 부호화 단위가 분할될 수 있는 형태의 조합이 픽쳐마다 서로 다른 경우, 각각의 픽쳐마다 결정될 수 있는 부호화 단위들을 도시한다.
도 27을 참조하면, 비디오 복호화 장치(100)는 픽쳐마다 부호화 단위가 분할될 수 있는 분할 형태들의 조합을 다르게 결정할 수 있다. 예를 들면, 비디오 복호화 장치(100)는 영상에 포함되는 적어도 하나의 픽쳐들 중 4개의 부호화 단위로 분할될 수 있는 픽쳐(1700), 2개 또는 4개의 부호화 단위로 분할될 수 있는 픽쳐(1710) 및 2개, 3개 또는 4개의 부호화 단위로 분할될 수 있는 픽쳐(1720)를 이용하여 영상을 복호화 할 수 있다. 비디오 복호화 장치(100)는 픽쳐(1700)를 복수개의 부호화 단위로 분할하기 위하여, 4개의 정사각형의 부호화 단위로 분할됨을 나타내는 분할 형태 정보만을 이용할 수 있다. 비디오 복호화 장치(100)는 픽쳐(1710)를 분할하기 위하여, 2개 또는 4개의 부호화 단위로 분할됨을 나타내는 분할 형태 정보만을 이용할 수 있다. 비디오 복호화 장치(100)는 픽쳐(1720)를 분할하기 위하여, 2개, 3개 또는 4개의 부호화 단위로 분할됨을 나타내는 분할 형태 정보만을 이용할 수 있다. 상술한 분할 형태의 조합은 비디오 복호화 장치(100)의 동작을 설명하기 위한 실시예에 불과하므로 상술한 분할 형태의 조합은 상기 실시예에 한정하여 해석되어서는 안되며 소정의 데이터 단위마다 다양한 형태의 분할 형태의 조합이 이용될 수 있는 것으로 해석되어야 한다.
일 실시예에 따라 비디오 복호화 장치(100)의 비트스트림 획득부(110)는 분할 형태 정보의 조합을 나타내는 인덱스를 포함하는 비트스트림을 소정의 데이터 단위 단위(예를 들면, 시퀀스, 픽쳐, 슬라이스 등)마다 획득할 수 있다. 예를 들면, 비트스트림 획득부(110)는 시퀀스 파라미터 세트(Sequence Parameter Set), 픽쳐 파라미터 세트(Picture Parameter Set) 또는 슬라이스 헤더(Slice Header)에서 분할 형태 정보의 조합을 나타내는 인덱스를 획득할 수 있다. 비디오 복호화 장치(100)의 비디오 복호화 장치(100)는 획득한 인덱스를 이용하여 소정의 데이터 단위마다 부호화 단위가 분할될 수 있는 분할 형태의 조합을 결정할 수 있으며, 이에 따라 소정의 데이터 단위마다 서로 다른 분할 형태의 조합을 이용할 수 있다.
도 28은 일 실시예에 따라 바이너리(binary)코드로 표현될 수 있는 분할 형태 정보에 기초하여 결정될 수 있는 부호화 단위의 다양한 형태를 도시한다.
일 실시예에 따라 비디오 복호화 장치(100)는 비트스트림 획득부(110)를 통해 획득한 블록 형태 정보 및 분할 형태 정보를 이용하여 부호화 단위를 다양한 형태로 분할할 수 있다. 분할될 수 있는 부호화 단위의 형태는 상술한 실시예들을 통해 설명한 형태들을 포함하는 다양한 형태에 해당할 수 있다.
도 28을 참조하면, 비디오 복호화 장치(100)는 분할 형태 정보에 기초하여 정사각형 형태의 부호화 단위를 수평 방향 및 수직 방향 중 적어도 하나의 방향으로 분할할 수 있고, 비-정사각형 형태의 부호화 단위를 수평 방향 또는 수직 방향으로 분할할 수 있다.
일 실시예에 따라 비디오 복호화 장치(100)가 정사각형 형태의 부호화 단위를 수평 방향 및 수직 방향으로 분할하여 4개의 정사각형의 부호화 단위로 분할할 수 있는 경우, 정사각형의 부호화 단위에 대한 분할 형태 정보가 나타낼 수 있는 분할 형태는 4가지일 수 있다. 일 실시예에 따라 분할 형태 정보는 2자리의 바이너리 코드로써 표현될 수 있으며, 각각의 분할 형태마다 바이너리 코드가 할당될 수 있다. 예를 들면 부호화 단위가 분할되지 않는 경우 분할 형태 정보는 (00)b로 표현될 수 있고, 부호화 단위가 수평 방향 및 수직 방향으로 분할되는 경우 분할 형태 정보는 (01)b로 표현될 수 있고, 부호화 단위가 수평 방향으로 분할되는 경우 분할 형태 정보는 (10)b로 표현될 수 있고 부호화 단위가 수직 방향으로 분할되는 경우 분할 형태 정보는 (11)b로 표현될 수 있다.
일 실시예에 따라 비디오 복호화 장치(100)는 비-정사각형 형태의 부호화 단위를 수평 방향 또는 수직 방향으로 분할하는 경우 분할 형태 정보가 나타낼 수 있는 분할 형태의 종류는 몇 개의 부호화 단위로 분할하는지에 따라 결정될 수 있다. 도 28을 참조하면, 비디오 복호화 장치(100)는 일 실시예에 따라 비-정사각형 형태의 부호화 단위를 3개까지 분할할 수 있다. 비디오 복호화 장치(100)는 부호화 단위를 두 개의 부호화 단위로 분할할 수 있으며, 이 경우 분할 형태 정보는 (10)b로 표현될 수 있다. 비디오 복호화 장치(100)는 부호화 단위를 세 개의 부호화 단위로 분할할 수 있으며, 이 경우 분할 형태 정보는 (11)b로 표현될 수 있다. 비디오 복호화 장치(100)는 부호화 단위를 분할하지 않는 것으로 결정할 수 있으며, 이 경우 분할 형태 정보는 (0)b로 표현될 수 있다. 즉, 비디오 복호화 장치(100)는 분할 형태 정보를 나타내는 바이너리 코드를 이용하기 위하여 고정길이 코딩(FLC: Fixed Length Coding)이 아니라 가변길이 코딩(VLC: Varaible Length Coding)을 이용할 수 있다.`
일 실시예에 따라 도 28을 참조하면, 부호화 단위가 분할되지 않는 것을 나타내는 분할 형태 정보의 바이너리 코드는 (0)b로 표현될 수 있다. 만일 부호화 단위가 분할되지 않음을 나타내는 분할 형태 정보의 바이너리 코드가 (00)b로 설정된 경우라면, (01)b로 설정된 분할 형태 정보가 없음에도 불구하고 2비트의 분할 형태 정보의 바이너리 코드를 모두 이용하여야 한다. 하지만 도 28에서 도시하는 바와 같이, 비-정사각형 형태의 부호화 단위에 대한 3가지의 분할 형태를 이용하는 경우라면, 비디오 복호화 장치(100)는 분할 형태 정보로서 1비트의 바이너리 코드(0)b를 이용하더라도 부호화 단위가 분할되지 않는 것을 결정할 수 있으므로, 비트스트림을 효율적으로 이용할 수 있다. 다만 분할 형태 정보가 나타내는 비-정사각형 형태의 부호화 단위의 분할 형태는 단지 도 28에서 도시하는 3가지 형태만으로 국한되어 해석되어서는 안되고, 상술한 실시예들을 포함하는 다양한 형태로 해석되어야 한다.
도 29는 일 실시예에 따라 바이너리 코드로 표현될 수 있는 분할 형태 정보에 기초하여 결정될 수 있는 부호화 단위의 또 다른 형태를 도시한다.
도 29를 참조하면 비디오 복호화 장치(100)는 분할 형태 정보에 기초하여 정사각형 형태의 부호화 단위를 수평 방향 또는 수직 방향으로 분할할 수 있고, 비-정사각형 형태의 부호화 단위를 수평 방향 또는 수직 방향으로 분할할 수 있다. 즉, 분할 형태 정보는 정사각형 형태의 부호화 단위를 한쪽 방향으로 분할되는 것을 나타낼 수 있다. 이러한 경우 정사각형 형태의 부호화 단위가 분할되지 않는 것을 나타내는 분할 형태 정보의 바이너리 코드는 (0)b로 표현될 수 있다. 만일 부호화 단위가 분할되지 않음을 나타내는 분할 형태 정보의 바이너리 코드가 (00)b로 설정된 경우라면, (01)b로 설정된 분할 형태 정보가 없음에도 불구하고 2비트의 분할 형태 정보의 바이너리 코드를 모두 이용하여야 한다. 하지만 도 29에서 도시하는 바와 같이, 정사각형 형태의 부호화 단위에 대한 3가지의 분할 형태를 이용하는 경우라면, 비디오 복호화 장치(100)는 분할 형태 정보로서 1비트의 바이너리 코드(0)b를 이용하더라도 부호화 단위가 분할되지 않는 것을 결정할 수 있으므로, 비트스트림을 효율적으로 이용할 수 있다. 다만 분할 형태 정보가 나타내는 정사각형 형태의 부호화 단위의 분할 형태는 단지 도 29에서 도시하는 3가지 형태만으로 국한되어 해석되어서는 안되고, 상술한 실시예들을 포함하는 다양한 형태로 해석되어야 한다.
일 실시예에 따라 블록 형태 정보 또는 분할 형태 정보는 바이너리 코드를 이용하여 표현될 수 있고, 이러한 정보가 곧바로 비트스트림으로 생성될 수 있다. 또한 바이너리 코드로 표현될 수 있는 블록 형태 정보 또는 분할 형태 정보는 바로 비트스트림으로 생성되지 않고 CABAC(context adaptive binary arithmetic coding)에서 입력되는 바이너리 코드로서 이용될 수도 있다.
일 실시예에 따라 비디오 복호화 장치(100)는 CABAC을 통해 블록 형태 정보 또는 분할 형태 정보에 대한 신택스를 획득하는 과정을 설명한다. 비트스트림 획득부(110)를 통해 상기 신택스에 대한 바이너리 코드를 포함하는 비트스트림을 획득할 수 있다. 비디오 복호화 장치(100)는 획득한 비트스트림에 포함되는 빈 스트링(bin string)을 역 이진화하여 블록 형태 정보 또는 분할 형태 정보를 나타내는 신택스 요소(syntax element)를 검출할 수 있다. 일 실시예에 따라 비디오 복호화 장치(100)는 복호화할 신택스 요소에 해당하는 바이너리 빈 스트링의 집합을 구하고, 확률 정보를 이용하여 각각의 빈을 복호화할 수 있고, 비디오 복호화 장치(100)는 이러한 복호화된 빈으로 구성되는 빈 스트링이 이전에 구한 빈 스트링들 중 하나와 같아질 때까지 반복할수 있다. 비디오 복호화 장치(100)는 빈 스트링의 역 이진화를 수행하여 신택스 요소를 결정할 수 있다.
일 실시예에 따라 비디오 복호화 장치(100)는 적응적 이진 산술 코딩(adaptive binary arithmetic coding)의 복호화 과정을 수행하여 빈 스트링에 대한 신택스를 결정할 수 있고, 비디오 복호화 장치(100)는 비트스트림 획득부(110)를 통해 획득한 빈들에 대한 확률 모델을 갱신할 수 있다. 도 28을 참조하면, 비디오 복호화 장치(100)의 비트스트림 획득부(110)는 일 실시예에 따라 분할 형태 정보를 나타내는 바이너리 코드를 나타내는 비트스트림을 획득할 수 있다. 획득한 1비트 또는 2비트의 크기를 가지는 바이너리 코드를 이용하여 비디오 복호화 장치(100)는 분할 형태 정보에 대한 신택스를 결정할 수 있다. 비디오 복호화 장치(100)는 분할 형태 정보에 대한 신택스를 결정하기 위하여, 2비트의 바이너리 코드 중 각각의 비트에 대한 확률을 갱신할 수 있다. 즉, 비디오 복호화 장치(100)는 2비트의 바이너리 코드 중 첫번째 빈의 값이 0 또는 1 중 어떤 값이냐에 따라, 다음 빈을 복호화 할 때 0 또는 1의 값을 가질 확률을 갱신할 수 있다.
일 실시예에 따라 비디오 복호화 장치(100)는 신택스를 결정하는 과정에서, 신택스에 대한 빈 스트링의 빈들을 복호화 하는 과정에서 이용되는 빈들에 대한 확률을 갱신할 수 있으며, 비디오 복호화 장치(100)는 상기 빈 스트링 중 특정 비트에서는 확률을 갱신하지 않고 동일한 확률을 가지는 것으로 결정할 수 있다.
도 28을 참조하면, 비-정사각형 형태의 부호화 단위에 대한 분할 형태 정보를 나타내는 빈 스트링을 이용하여 신택스를 결정하는 과정에서, 비디오 복호화 장치(100)는 비-정사각형 형태의 부호화 단위를 분할하지 않는 경우에는 0의 값을 가지는 하나의 빈을 이용하여 분할 형태 정보에 대한 신택스를 결정할 수 있다. 즉, 블록 형태 정보가 현재 부호화 단위는 비-정사각형 형태임을 나타내는 경우, 분할 형태 정보에 대한 빈 스트링의 첫번째 빈은, 비-정사각형 형태의 부호화 단위가 분할되지 않는 경우 0이고, 2개 또는 3개의 부호화 단위로 분할되는 경우 1일 수 있다. 이에 따라 비-정사각형의 부호화 단위에 대한 분할 형태 정보의 빈 스트링의 첫번째 빈이 0일 확률은 1/3, 1일 확률은 2/3일 수 있다. 상술하였듯이 비디오 복호화 장치(100)는 비-정사각형 형태의 부호화 단위가 분할되지 않는 것을 나타내는 분할 형태 정보는 0의 값을 가지는 1비트의 빈 스트링만을 표현될 수 있으므로, 비디오 복호화 장치(100)는 분할 형태 정보의 첫번째 빈이 1인 경우에만 두번째 빈이 0인지 1인지 판단하여 분할 형태 정보에 대한 신택스를 결정할 수 있다. 일 실시예에 따라 비디오 복호화 장치(100)는 분할 형태 정보에 대한 첫번째 빈이 1인 경우, 두번째 빈이 0 또는 1일 확률은 서로 동일한 확률인 것으로 보고 빈을 복호화할 수 있다.
일 실시예에 따라 비디오 복호화 장치(100)는 분할 형태 정보에 대한 빈 스트링의 빈을 결정하는 과정에서 각각의 빈에 대한 다양한 확률을 이용할 수 있다. 일 실시예에 따라 비디오 복호화 장치(100)는 비-정사각형 블록의 방향에 따라 분할 형태 정보에 대한 빈의 확률을 다르게 결정할 수 있다. 일 실시예에 따라 비디오 복호화 장치(100)는 현재 부호화 단위의 넓이 또는 긴 변의 길이에 따라 분할 형태 정보에 대한 빈의 확률을 다르게 결정할 수 있다. 일 실시예에 따라 비디오 복호화 장치(100)는 현재 부호화 단위의 형태 및 긴 변의 길이 중 적어도 하나에 따라 분할 형태 정보에 대한 빈의 확률을 다르게 결정할 수 있다.
일 실시예에 따라 비디오 복호화 장치(100)는 소정 크기 이상의 부호화 단위들에 대하여는 분할 형태 정보에 대한 빈의 확률을 동일한 것으로 결정할 수 있다. 예를 들면, 부호화 단위의 긴 변의 길이를 기준으로 64샘플 이상의 크기의 부호화 단위들에 대하여는 분할 형태 정보에 대한 빈의 확률이 동일한 것으로 결정할 수 있다.
일 실시예에 따라 비디오 복호화 장치(100)는 분할 형태 정보의 빈 스트링을 구성하는 빈들에 대한 초기 확률은 슬라이스 타입(예를 들면, I 슬라이스, P 슬라이스 또는 B 슬라이스…)에 기초하여 결정될 수 있다.
도 30은 루프 필터링을 수행하는 영상 부호화 및 복호화 시스템의 블록도를 나타낸 도면이다.
영상 부호화 및 복호화 시스템(2000)의 부호화단(2010)은 영상의 부호화된 비트스트림을 전송하고, 복호화단(2050)은 비트스트림을 수신하여 복호화함으로써 복원 영상을 출력한다. 여기서 부호화단(2010)은 후술할 비디오 부호화 장치(200)에 유사한 구성일 수 있고, 복호화단(2050)은 비디오 복호화 장치(100)에 유사한 구성일 수 있다.
부호화단(2010)에서, 예측 부호화부(2015)는 인터 예측 및 인트라 예측을 통해 참조 영상을 출력하고, 변환 및 양자화부(2020)는 참조 영상과 현재 입력 영상 간의 레지듀얼 데이터를 양자화된 변환 계수로 양자화하여 출력한다. 엔트로피 부호화부(2025)는 양자화된 변환 계수를 부호화하여 변환하고 비트스트림으로 출력한다. 양자화된 변환 계수는 역양자화 및 역변환부(2030)을 거쳐 공간 영역의 데이터로 복원되고, 복원된 공간 영역의 데이터는 디블로킹 필터링부(2035) 및 루프 필터링부(2040)를 거쳐 복원 영상으로 출력된다. 복원 영상은 예측 부호화부(2015)를 거쳐 다음 입력 영상의 참조 영상으로 사용될 수 있다.
복호화단(2050)으로 수신된 비트스트림 중 부호화된 영상 데이터는, 엔트로피 복호화부(2055) 및 역양자화 및 역변환부(2060)를 거쳐 공간 영역의 레지듀얼 데이터로 복원된다. 예측 복호화부(2075)로부터 출력된 참조 영상 및 레지듀얼 데이터가 조합되어 공간 영역의 영상 데이터가 구성되고, 디블로킹 필터링부(2065) 및 루프 필터링부(2070)는 공간 영역의 영상 데이터에 대해 필터링을 수행하여 현재 원본 영상에 대한 복원 영상을 출력할 수 있다. 복원 영상은 예측 복호화부(2075)에 의해 다음 원본 영상에 대한 참조 영상으로서 이용될 수 있다.
부호화단(2010)의 루프 필터링부(2040)는 사용자 입력 또는 시스템 설정에 따라 입력된 필터 정보를 이용하여 루프 필터링을 수행한다. 루프 필터링부(2040)에 의해 사용된 필터 정보는 엔트로피 부호화부(2010)로 출력되어, 부호화된 영상 데이터와 함께 복호화단(2050)으로 전송된다. 복호화단(2050)의 루프 필터링부(2070)는 복호화단(2050)으로부터 입력된 필터 정보에 기초하여 루프 필터링을 수행할 수 있다.
도 31은 일 실시예에 따른 최대 부호화 단위에 포함되는 필터링 단위들의 일례와 필터링 단위의 필터링 수행 정보를 나타낸 도면이다.
부호화단(2010)의 루프 필터링부(2040) 및 복호화단(2050)의 루프 필터링부(2070)의 필터링 단위가, 도 13 내지 도 15를 통해 전술한 일 실시예에 따른 부호화 단위와 유사한 데이터 단위로 구성된다면, 필터 정보는 필터링 단위를 나타내기 위한 데이터 단위의 블록 형태 정보 및 분할 형태 정보, 그리고 필터링 단위에 대한 루프 필터링 수행 여부를 나타내는 루프 필터링 수행 정보를 포함할 수 있다.
일 실시예에 따른 최대 부호화 단위(2100)에 포함된 필터링 단위들은 최대 부호화 단위(2100)에 포함된 부호화 단위들과 동일한 블록 형태 및 분할 형태를 가질 수 있다. 또한, 일 실시예에 따른 최대 부호화 단위(2100)에 포함된 필터링 단위들은 최대 부호화 단위(2100)에 포함된 부호화 단위들의 크기를 기준으로 분할될 수 있다. 도 31을 참조하여 예를 들면, 필터링 단위들은 심도 D의 정사각형 형태의 필터링 단위(2140), 심도 D의 비-정사각형 형태의 필터링 단위(2132, 2134), 심도 D+1의 정사각형 형태의 필터링 단위(2112, 2114, 2116, 2152, 2154, 2164), 심도 D+1의 비-정사각형 형태의 필터링 단위(2162, 2166), 심도 D+2의 정사각형 형태의 필터링 단위(2122, 2124, 2126, 2128)를 포함할 수 있다.
최대 부호화 단위(2100)에 포함된 필터링 단위들의 블록 형태 정보, 분할 형태 정보(심도) 및 루프 필터링 수행 정보는 아래 표 3과 같이 부호화될 수 있다.
Figure 112021002272707-pat00001
일 실시예에 따른 블록 형태 정보 및 블록 분할 정보에 따라 부호화 단위가 재귀적으로 분할되어 복수개의 부호화 단위가 결정되는 과정은, 도 23을 통해 전술한 바와 같다. 일 실시예에 따른 필터링 단위들의 루프 필터링 수행 정보는, 플래그 값이 1인 경우 해당 필터링 단위에 대해 루프 필터링이 수행됨을 나타내며, 0인 경우 루프 필터링이 수행되지 않음을 나타낸다. 표 1을 참조하면, 루프 필터링부(2040, 2070)에 의해 필터링의 대상이 되는 필터링 단위를 결정하기 위한 데이터 단위의 정보들은 필터 정보로서 모두 부호화되어 전송될 수 있다.
일 실시예에 따라 구성된 부호화 단위들은, 원본 영상과의 오차를 최소화하는 형태로 구성된 부호화 단위이므로, 부호화 단위 내에서 공간적 상관도가 높다고 예상된다. 따라서, 일 실시예에 따른 부호화 단위에 기반하여 필터링 단위가 결정됨으로써, 부호화 단위의 결정과 별도로 필터링 단위를 결정하는 동작이 생략될 수도 있다. 또한 이에 따라, 일 실시예에 따른 부호화 단위에 기반하여 필터링 단위를 결정함으로써 필터링 단위의 분할 형태를 결정하기 위한 정보를 생략할 수 있으므로 필터 정보의 전송 비트레이트를 절약할 수 있다.
전술한 실시예에서는 필터링 단위가 일 실시예에 따른 부호화 단위에 기반하여 결정되는 것으로 설명하였지만, 부호화 단위에 기반하여 필터링 단위의 분할을 수행하다가 임의의 심도에서 더 이상 분할하지 않고 해당 심도까지만 필터링 단위의 형태가 결정될 수도 있다.
전술한 실시예에 개시된 필터링 단위의 결정은 루프 필터링 뿐만 아니라, 디블로킹 필터링, 적응적 루프 필터링 등 다양한 실시예에도 적용될 수 있다.
일 실시예에 따라 비디오 복호화 장치(100)는 블록 형태 정보 및 분할 형태 정보 중 적어도 하나를 이용하여 현재 부호화 단위를 분할할 수 있으며, 블록 형태 정보는 정사각형 형태만을 이용하는 것으로 미리 결정되고, 분할 형태 정보는 분할하지 않거나 또는 4개의 정사각형 형태의 부호화 단위로 분할됨을 나타낼 수 있는 것으로 미리 결정될 수 있다. 즉, 현재 부호화 단위는 상기 블록 형태 정보에 따르면 부호화 단위는 항상 정사각형 형태를 가지고, 상기 분할 형태 정보에 기초하여 분할되지 않거나 4개의 정사각형 형태의 부호화 단위들로 분할될 수 있다. 비디오 복호화 장치(100)는 이러한 블록 형태 및 분할 형태만을 이용하는 것으로 미리 결정된 소정의 부호화 방법을 이용하여 생성된 비트스트림을 비트스트림 획득부(110)를 통해 획득할 수 있고, 비디오 복호화 장치(100)는 미리 결정된 블록 형태 및 분할 형태만을 이용할 수 있다. 이러한 경우 비디오 복호화 장치(100)는 상술한 소정의 부호화 방법과 유사한 소정의 복호화 방법을 이용함으로써 소정의 부호화 방법과의 호환성 문제를 해결할 수 있다. 일 실시예에 따라 비디오 복호화 장치(100)는 블록 형태 정보 및 분할 형태 정보가 나타낼 수 있는 다양한 형태들 중 미리 결정된 블록 형태 및 분할 형태만을 이용하는 상술한 소정의 복호화 방법을 이용하는 경우, 블록 형태 정보는 정사각형 형태만을 나타내게 되므로 비디오 복호화 장치(100)는 비트스트림으로부터 블록 형태 정보를 획득하는 과정을 생략할 수 있다. 상술한 소정의 복호화 방법을 이용할 것인지 여부를 나타내는 신택스가 이용될 수 있고, 이러한 신택스는 시퀀스, 픽쳐, 슬라이스 단위, 최대부호화단위 등 복수개의 부호화 단위를 포함할 수 있는 다양한 형태의 데이터 단위마다 비트스트림으로부터 획득될 수 있다. 즉, 비트스트림 획득부(110)는 소정의 복호화 방법의 사용 여부를 나타내는 신택스에 기초하여 블록 형태 정보를 나타내는 신택스를 비트스트림으로부터 획득하는지 여부를 결정할 수 있다.
도 33은 일 실시예에 따른 부호화 단위의 Z 스캔 순서에 따른 인덱스를 도시한다.
일 실시예에 따른 비디오 복호화 장치(100)는, 상위 데이터 단위에 포함된 하위 데이터 단위들을 Z 스캔 순서에 따라 스캔할 수 있다. 또한, 일 실시예에 따른 비디오 복호화 장치(100)는 최대 부호화 단위 또는 프로세싱 블록에 포함되는 부호화 단위 내의 Z 스캔 인덱스에 따라 데이터를 순차적으로 액세스할 수 있다.
일 실시예에 따른 비디오 복호화 장치(100)가 기준 부호화 단위를 적어도 하나의 부호화 단위로 분할할 수 있음은 도 13 내지 도 14를 참조하여 전술한 바와 같다. 이 때, 기준 부호화 단위 내에는 정사각형 형태의 부호화 단위들과 비-정사각형 형태의 부호화 단위들이 혼재할 수 있다. 일 실시예에 따른 비디오 복호화 장치(100)는, 기준 부호화 단위 내의 각 부호화 단위에 포함된 Z 스캔 인덱스에 따라 데이터 액세스를 수행할 수 있다. 이 때, 기준 부호화 단위 내에 비-정사각형 형태의 부호화 단위가 존재하는지 여부에 따라 Z 스캔 인덱스를 적용하는 방식이 상이해질 수 있다.
일 실시예에 따라, 기준 부호화 단위 내에 비-정사각형 형태의 부호화 단위가 존재하지 않는 경우, 기준 부호화 단위 내의 하위 심도의 부호화 단위들끼리는 연속된 Z 스캔 인덱스를 가질 수 있다. 예를 들어, 일 실시예에 따라 상위 심도의 부호화 단위는 하위 심도의 부호화 단위 4 개를 포함할 수 있다. 여기서, 4 개의 하위 심도의 부호화 단위들은 서로 인접하는 경계가 연속적일 수 있으며, 각각의 하위 심도의 부호화 단위들은 Z 스캔 순서를 나타내는 인덱스에 따라 Z 스캔 순서로 스캔될 수 있다. 일 실시예에 따른 Z 스캔 순서를 나타내는 인덱스는 각 부호화 단위에 대해 Z 스캔 순서에 따라 증가하는 수로 설정될 수 있다. 이 경우, 동일한 심도의 심도별 부호화 단위들끼리 Z 스캔 순서에 따라 스캔이 가능하다.
일 실시예에 따라, 기준 부호화 단위 내에 비-정사각형 형태의 부호화 단위가 적어도 하나 이상 존재하는 경우, 비디오 복호화 장치(100)는 기준 부호화 단위 내의 부호화 단위들을 각각 서브 블록들로 분할하여, 분할된 서브 블록들에 대해 Z 스캔 순서에 따른 스캔을 수행할 수 있다. 예를 들어, 기준 부호화 단위 내에 수직 방향 또는 수평 방향의 비-정사각형 형태의 부호화 단위가 존재하는 경우 분할된 서브 블록들을 이용하여 Z 스캔을 수행할 수 있다. 또한, 예를 들어, 기준 부호화 단위 내에서 홀수 개의 부호화 단위들로 분할이 수행된 경우 서브 블록들을 이용하여 Z 스캔을 수행할 수 있다. 서브 블록은, 더 이상 분할되지 않는 부호화 단위 또는 임의의 부호화 단위가 분할된 것으로서, 정사각형 형태일 수 있다. 예를 들어, 정사각형 형태의 부호화 단위로부터 4개의 정사각형 형태의 서브 블록들이 분할될 수 있다. 또한, 예를 들어, 비-정사각형 형태의 부호화 단위로부터는 2 개의 정사각형 형태의 서브 블록들이 분할될 수 있다.
도 33을 참조하여 예를 들면, 일 실시예에 따른 비디오 복호화 장치(100)는, 부호화 단위(2300) 내에서 하위 심도의 부호화 단위들(2302, 2304, 2306, 2308, 2310)을 Z 스캔 순서에 따라 스캔할 수 있다. 부호화 단위(2300) 및 부호화 단위(2302, 2304, 2306, 2308, 2310)는, 각각 상대적으로 상위 부호화 단위 및 하위 부호화 단위이다. 부호화 단위(2300)는 수평 방향의 비-정사각형 형태의 부호화 단위(2306, 2310)를 포함한다. 이들 비-정사각형 형태의 부호화 단위들(2306, 2310)은 인접한 정사각형 형태의 부호화 단위(2302, 2304)와의 경계가 불연속적이다. 또한, 부호화 단위(2308)는 정사각형 형태이며, 비-정사각형 형태의 부호화 단위가 홀수 개로 분할 시 중간에 위치한 부호화 단위이다. 비-정사각형 형태의 부호화 단위들(2306, 2310)과 마찬가지로, 부호화 단위(2308)는 인접한 정사각형 형태의 부호화 단위(2302, 2304)와의 경계가 불연속적이다. 부호화 단위(2300) 내에 비-정사각형 형태의 부호화 단위(2306, 2310)가 포함되거나 비-정사각형 형태의 부호화 단위가 홀수 개로 분할 시 중간에 위치한 부호화 단위(2308)가 포함된 경우, 부호화 단위들 간에 인접하는 경계가 불연속적이기 때문에 연속적인 Z 스캔 인덱스가 설정될 수 없다. 따라서, 비디오 복호화 장치(100)는 부호화 단위들을 서브 블록들로 분할함으로써 Z 스캔 인덱스를 연속적으로 설정할 수 있다. 또한, 비디오 복호화 장치(100)는, 비-정사각형 형태의 부호화 단위(2306, 2310) 또는 홀수 개로 분할된 비-정사각형 형태의 부호화 단위의 중간에 위치한 부호화 단위(2308)에 대해 연속된 Z 스캔을 수행할 수 있다.
도 33에 도시된 부호화 단위(2320)는 부호화 단위(2300) 내의 부호화 단위들(2302, 2304, 2306, 2308, 2310)을 서브 블록들로 분할한 것이다. 서브 블록들 각각에 대해 Z 스캔 인덱스가 설정될 수 있고, 서브 블록들 간의 인접하는 경계는 연속적이므로, 서브 블록들끼리 Z 스캔 순서에 따라 스캔이 가능하다. 예를 들어, 일 실시예에 따른 복호화 장치에서, 부호화 단위(2308)는 서브 블록들(2322, 2324, 2326, 2328)로 분할될 수 있다. 이 때, 서브 블록(2322, 2324)은 서브 블록(2330)에 대한 데이터 처리 이후에 스캔될 수 있으며, 서브 블록(2326, 2328)은 서브 블록(2332)에 대한 데이터 처리 이후에 스캔될 수 있다. 또한, 각각의 서브 블록들끼리 Z 스캔 순서에 따라 스캔될 수 있다.
전술한 실시예에서, 데이터 단위들에 대해 Z 스캔 순서에 따라 스캔하는 것은, 데이터 저장, 데이터 로딩, 데이터 액세스 등을 위한 것일 수 있다.
또한, 전술한 실시예에서는, 데이터 단위들을 Z 스캔 순서에 따라 스캔할 수 있음을 설명하였지만, 데이터 단위들의 스캔 순서는 래스터 스캔, N 스캔, 우상향 대각 스캔, 수평적 스캔, 수직적 스캔 등 다양한 스캔 순서로 수행될 수 있고, Z 스캔 순서에 한정하여 해석되는 것은 아니다.
또한, 전술한 실시예에서는, 기준 부호화 단위 내의 부호화 단위들에 대해 스캔을 수행하는 것으로 설명하였지만, 이에 한정하여 해석되어서는 안되며, 스캔 수행의 대상은 최대 부호화 단위 또는 프로세싱 블록 내의 임의의 블록일 수 있다.
또한, 전술한 실시예에서는, 비-정사각형 형태의 블록이 적어도 하나 이상 존재하는 경우에만 서브 블록들로 분할하여 Z 스캔 순서에 따른 스캔을 수행하는 것으로 설명하였지만, 단순화된 구현을 위해 비-정사각형 형태의 블록이 존재하지 않는 경우에도 서브 블록들을 분할하여 Z 스캔 순서에 따른 스캔을 수행할 수도 있다.
일 실시예에 따른 비디오 복호화 장치(100)는, 부호화 단위에 대한 인터 예측 또는 인트라 예측을 수행하여 예측 데이터를 생성하고, 현재 부호화 단위에 포함된 변환 단위에 대해 역변환을 수행하여 레지듀얼 데이터를 생성하며, 생성된 예측 데이터와 레지듀얼 데이터를 이용하여 현재 부호화 단위를 복원할 수 있다.
일 실시예에 따른 부호화 단위의 예측 모드는 인트라 모드, 인터 모드 및 스킵 모드 중 적어도 하나일 수 있다. 일 실시예에 따라, 부호화 단위 마다 독립적으로 예측 모드가 선택될 수 있다.
일 실시예에 따른 2Nx2N 형태의 부호화 단위가 분할하여 두 개의 2NxN 또는 두 개의 Nx2N 형태의 부호화 단위들로 분할된 경우, 이들 각각의 부호화 단위에 대해서 인터 모드 예측 및 인트라 모드 예측이 별개로 수행될 수도 있다. 또한, 일 실시예에 따른 2NxN 또는 Nx2N 형태의 부호화 단위에 대해서는 스킵 모드가 적용될 수도 있다.
한편, 일 실시예에 따른 비디오 복호화 장치(100)는, 8x4 또는 4x8 형태의 부호화 단위의 스킵 모드에서 양방향 예측(bi-prediction)의 수행이 허용될 수도 있다. 스킵 모드에서는 부호화 단위에 대해 스킵 모드 정보만을 전송받기 때문에 해당 부호화 단위에 대한 레지듀얼 데이터의 이용이 생략된다. 따라서, 이 경우 역양자화 및 역변환에 대한 오버헤드(overhead)를 절약할 수 있다. 그 대신, 일 실시예에 따른 비디오 복호화 장치(100)는 스킵 모드가 적용되는 부호화 단위에 대해 양방향 예측을 허용하여 복호화 효율을 높일 수 있다. 또한, 일 실시예에 따른 비디오 복호화 장치(100)는 8x4 또는 4x8 형태의 부호화 단위에 대해 양방향 예측을 허용하되, 움직임 보상 단계에서 보간 탭(interpolation tap) 수를 상대적으로 적게 설정하여 메모리 대역폭을 효율적으로 사용할 수 있다. 일 예로, 8-탭의 보간 필터를 사용하는 대신 8 미만의 탭 수의 보간 필터(예를 들어, 2-탭 보간 필터)를 사용할 수도 있다.
또한, 일 실시예에 따른 비디오 복호화 장치(100)는 현재 부호화 단위에 포함된 영역을 미리설정된 형태로 분할(예를 들어, 사선 기반 분할)하여 분할된 각 영역에 대한 인트라 또는 인터 예측 정보를 시그널링할 수도 있다.
일 실시예에 따른 비디오 복호화 장치(100)는 인트라 모드를 이용하여 현재 부호화 단위의 예측 샘플을 현재 부호화 단위의 주변 샘플을 이용하여 획득할 수 있다. 이 때, 인트라 예측은 주변의 이미 재구성된 샘플들을 사용하여 예측을 수행하는데 이러한 샘플들을 참조 샘플이라고 한다.
도 34는 일 실시예에 따른 부호화 단위의 인트라 예측을 위한 참조 샘플을 나타내는 도면이다. 도 34를 참조하면, 블록 형태가 비-사각형 형태이고 수평 방향의 길이가 w, 수직 방향의 길이가 h인 현재 부호화 단위(2300)에 대하여, 상단의 참조 샘플(2302)이 w+h 개, 좌측의 참조 샘플(2304)이 w+h 개, 좌측 상단의 참조 샘플(2306)에 한 개로 총 2(w+h)+1 개의 참조 샘플이 필요하다. 참조 샘플의 준비를 위해, 참조 샘플이 존재하지 않는 부분에 대해 패딩을 수행하는 단계를 거치며, 재구성된 참조 샘플에 포함된 양자화 에러를 줄이기 위한 예측 모드별 참조 샘플 필터링 과정을 거칠 수도 있다.
전술한 실시예에서는 현재 부호화 단위의 블록 형태가 비-사각형 형태인 경우의 참조 샘플의 개수를 설명하였으나, 이러한 참조 샘플의 개수는 현재 부호화 단위가 사각형 형태의 블록 형태인 경우에도 동일하게 적용된다.
상술한 다양한 실시예들은 비디오 복호화 장치(100)이 수행하는 영상 복호화 방법과 관련된 동작을 설명한 것이다. 이하에서는 이러한 영상 복호화 방법에 역순의 과정에 해당하는 영상 부호화 방법을 수행하는 비디오 부호화 장치(200)의 동작을 다양한 실시예를 통해 설명하도록 한다.
도 12는 일 실시예에 따라 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여 영상을 부호화 할 수 있는 비디오 부호화 장치(200)의 블록도를 도시한다.
비디오 부호화 장치(200)는 부호화부(220) 및 비트스트림 생성부(210)를 포함할 수 있다. 부호화부(220)는 입력 영상을 수신하여 입력 영상을 부호화할 수 있다. 부호화부(220)는 입력 영상을 부호화하여 적어도 하나의 신택스 엘리먼트를 획득할 수 있다. 신택스 엘리먼트는 skip flag, prediction mode, motion vector difference, motion vector prediction method (or index), transform quantized coefficient, coded block pattern, coded block flag, intra prediction mode, direct flag, merge flag, delta QP, reference index, prediction direction, transform index 중 적어도 하나를 포함할 수 있다. 부호화부(220)는 부호화 단위의 모양, 방향, 너비 및 높이의 비율 또는 크기 중 적어도 하나를 포함하는 블록 형태 정보에 기초하여 컨텍스트 모델을 결정할 수 있다.
비트스트림 생성부(210)는 부호화된 입력 영상에 기초하여 비트스트림을 생성할 수 있다. 예를 들어 비트스트림 생성부(210)는 컨텍스트 모델에 기초하여 신택스 엘리먼트를 엔트로피 부호화함으로써 비트스트림을 생성할 수 있다. 또한 비디오 부호화 장치(200)는 비트스트림을 비디오 복호화 장치(100)로 전송할 수 있다.
일 실시예에 따라 비디오 부호화 장치(200)의 부호화부(220)는 부호화 단위의 형태를 결정할 수 있다. 예를 들면 부호화 단위가 정사각형인지 또는 비-정사각형의 형태를 가질 수 있고, 이러한 형태를 나타내는 정보는 블록 형태 정보에 포함될 수 있다.
일 실시예에 따라 부호화부(220)는 부호화 단위가 어떤 형태로 분할될지를 결정할 수 있다. 부호화부(220)는 부호화 단위에 포함되는 적어도 하나의 부호화 단위의 형태를 결정할 수 있고 비트스트림 생성부(210)는 이러한 부호화 단위의 형태에 대한 정보를 포함하는 분할 형태 정보를 포함하는 비트스트림을 생성할 수 있다.
일 실시예에 따라 부호화부(220)는 부호화 단위가 분할되는지 분할되지 않는지 여부를 결정할 수 있다. 부호화부(220)가 부호화 단위에 하나의 부호화 단위만이 포함되거나 또는 부호화 단위가 분할되지 않는 것으로 결정하는 경우 비트스트림 생성부(210)는 부호화 단위가 분할되지 않음을 나타내는 분할 형태 정보를 포함하는 비트스트림을 생성할 수 있다. 또한 부호화부(220)는 부호화 단위에 포함되는 복수개의 부호화 단위로 분할할 수 있고, 비트스트림 생성부(210)는 부호화 단위는 복수개의 부호화 단위로 분할됨을 나타내는 분할 형태 정보를 포함하는 비트스트림을 생성할 수 있다.
일 실시예에 따라 부호화 단위를 몇 개의 부호화 단위로 분할할 지를 나타내거나 어느 방향으로 분할할지를 나타내는 정보가 분할 형태 정보에 포함될 수 있다. 예를 들면 분할 형태 정보는 수직 방향 및 수평 방향 중 적어도 하나의 방향으로 분할하는 것을 나타내거나 또는 분할하지 않는 것을 나타낼 수 있다.
비디오 부호화 장치(200)는 부호화 단위의 분할 형태 모드에 기초하여 분할 형태 모드에 대한 정보를 결정한다. 비디오 부호화 장치(200)는 부호화 단위의 모양, 방향, 너비 및 높이의 비율 또는 크기 중 적어도 하나에 기초하여 컨텍스트 모델을 결정한다. 그리고, 비디오 부호화 장치(200)는 컨텍스트 모델에 기초하여 부호화 단위를 분할하기 위한 분할 형태 모드에 대한 정보를 비트스트림으로 생성한다.
비디오 부호화 장치(200)는 컨텍스트 모델을 결정하기 위하여, 부호화 단위의 모양, 방향, 너비 및 높이의 비율 또는 크기 중 적어도 하나와 컨텍스트 모델에 대한 인덱스를 대응시키기 위한 배열을 획득할 수 있다. 비디오 부호화 장치(200)는 배열에서 부호화 단위의 모양, 방향, 너비 및 높이의 비율 또는 크기 중 적어도 하나에 기초하여 컨텍스트 모델에 대한 인덱스를 획득할 수 있다. 비디오 부호화 장치(200)는 컨텍스트 모델에 대한 인덱스에 기초하여 컨텍스트 모델을 결정할 수 있다.
비디오 부호화 장치(200)는, 컨텍스트 모델을 결정하기 위하여, 부호화 단위에 인접한 주변 부호화 단위의 모양, 방향, 너비 및 높이의 비율 또는 크기 중 적어도 하나를 포함하는 블록 형태 정보에 더 기초하여 컨텍스트 모델을 결정할 수 있다. 또한 주변 부호화 단위는 부호화 단위의 좌하측, 좌측, 좌상측, 상측, 우상측, 우측 또는 우하측에 위치한 부호화 단위 중 적어도 하나를 포함할 수 있다.
또한, 비디오 부호화 장치(200)는, 컨텍스트 모델을 결정하기 위하여, 상측 주변 부호화 단위의 너비의 길이와 부호화 단위의 너비의 길이를 비교할 수 있다. 또한, 비디오 부호화 장치(200)는 좌측 및 우측의 주변 부호화 단위의 높이의 길이와 부호화 단위의 높이의 길이를 비교할 수 있다. 또한, 비디오 부호화 장치(200)는 비교 결과들에 기초하여 컨텍스트 모델을 결정할 수 있다.
비디오 부호화 장치(200)의 동작은 도 13 내지 도 34에서 설명한 비디오 복호화 장치(100)의 동작과 유사한 내용을 포함하고 있으므로, 상세한 설명은 생략한다.
한편, 상술한 실시예들은 컴퓨터에서 실행될 수 있는 프로그램으로 작성가능하고, 작성된 프로그램은 매체에 저장될 수 있다.
매체는 컴퓨터로 실행 가능한 프로그램을 계속 저장하거나, 실행 또는 다운로드를 위해 임시 저장하는 것일 수도 있다. 또한, 매체는 단일 또는 수개 하드웨어가 결합된 형태의 다양한 기록수단 또는 저장수단일 수 있는데, 어떤 컴퓨터 시스템에 직접 접속되는 매체에 한정되지 않고, 네트워크 상에 분산 존재하는 것일 수도 있다. 매체의 예시로는, 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체, CD-ROM 및 DVD와 같은 광기록 매체, 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical medium), 및 ROM, RAM, 플래시 메모리 등을 포함하여 프로그램 명령어가 저장되도록 구성된 것이 있을 수 있다. 또한, 다른 매체의 예시로, 애플리케이션을 유통하는 앱 스토어나 기타 다양한 소프트웨어를 공급 내지 유통하는 사이트, 서버 등에서 관리하는 기록매체 내지 저장매체도 들 수 있다.
이상, 본 개시의 기술적 사상을 바람직한 실시예를 들어 상세하게 설명하였으나, 본 개시의 기술적 사상은 상기 실시예들에 한정되지 않고, 본 개시의 기술적 사상의 범위 내에서 당 분야에서 통상의 지식을 가진 자에 의하여 여러 가지 변형 및 변경이 가능하다.

Claims (2)

  1. 비트스트림으로부터 복수의 움직임 벡터 해상도 중 현재 블록의 움직임 벡터 해상도를 나타내는 정보를 획득하는 단계;
    복수의 후보 블록 중 상기 현재 블록의 움직임 벡터 해상도에 대응하는 하나의 후보 블록의 움직임 벡터가 이용 가능한지 여부를 결정하는 단계;
    상기 하나의 후보 블록의 움직임 벡터가 이용 가능하면, 상기 하나의 후보 블록의 움직임 벡터를 이용하여 상기 현재 블록의 예측 움직임 벡터를 결정하는 단계; 및
    상기 현재 블록의 예측 움직임 벡터와 차분 움직임 벡터를 이용하여 상기 현재 블록의 움직임 벡터를 획득하는 단계를 포함하되,
    상기 복수의 후보 블록들의 위치는 서로 상이하고, 상기 복수의 후보 블록들의 위치는 이전에 복호화된 블록에 대한 정보에 기초하여 변경되는 것을 특징으로 하는 움직임 벡터의 복호화 방법.
  2. 비트스트림으로부터 복수의 움직임 벡터 해상도 중 현재 블록의 움직임 벡터 해상도를 나타내는 정보를 획득하는 획득부; 및
    복수의 후보 블록 중 상기 현재 블록의 움직임 벡터 해상도에 대응하는 하나의 후보 블록의 움직임 벡터가 이용 가능한지 여부를 결정하고, 상기 하나의 후보 블록의 움직임 벡터가 이용 가능하면, 상기 하나의 후보 블록의 움직임 벡터를 이용하여 상기 현재 블록의 예측 움직임 벡터를 결정하고, 상기 현재 블록의 예측 움직임 벡터와 차분 움직임 벡터를 이용하여 상기 현재 블록의 움직임 벡터를 획득하는 예측 복호화부를 포함하되,
    상기 복수의 후보 블록들의 위치는 서로 상이하고, 상기 복수의 후보 블록들의 위치는 이전에 복호화된 블록에 대한 정보에 기초하여 변경되는 것을 특징으로 하는 움직임 벡터의 복호화 장치.
KR1020217000585A 2017-07-07 2018-03-30 적응적 움직임 벡터 해상도로 결정된 움직임 벡터의 부호화 장치 및 부호화 방법, 및 움직임 벡터의 복호화 장치 및 복호화 방법 KR102302671B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020217028689A KR20210115052A (ko) 2017-07-07 2018-03-30 적응적 움직임 벡터 해상도로 결정된 움직임 벡터의 부호화 장치 및 부호화 방법, 및 움직임 벡터의 복호화 장치 및 복호화 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762529566P 2017-07-07 2017-07-07
US62/529,566 2017-07-07
KR1020197037061A KR102206084B1 (ko) 2017-07-07 2018-03-30 적응적 움직임 벡터 해상도로 결정된 움직임 벡터의 부호화 장치 및 부호화 방법, 및 움직임 벡터의 복호화 장치 및 복호화 방법
PCT/KR2018/003800 WO2019009504A1 (ko) 2017-07-07 2018-03-30 적응적 움직임 벡터 해상도로 결정된 움직임 벡터의 부호화 장치 및 부호화 방법, 및 움직임 벡터의 복호화 장치 및 복호화 방법

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020197037061A Division KR102206084B1 (ko) 2017-07-07 2018-03-30 적응적 움직임 벡터 해상도로 결정된 움직임 벡터의 부호화 장치 및 부호화 방법, 및 움직임 벡터의 복호화 장치 및 복호화 방법

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020217028689A Division KR20210115052A (ko) 2017-07-07 2018-03-30 적응적 움직임 벡터 해상도로 결정된 움직임 벡터의 부호화 장치 및 부호화 방법, 및 움직임 벡터의 복호화 장치 및 복호화 방법

Publications (2)

Publication Number Publication Date
KR20210006027A KR20210006027A (ko) 2021-01-15
KR102302671B1 true KR102302671B1 (ko) 2021-09-15

Family

ID=64951072

Family Applications (3)

Application Number Title Priority Date Filing Date
KR1020217000585A KR102302671B1 (ko) 2017-07-07 2018-03-30 적응적 움직임 벡터 해상도로 결정된 움직임 벡터의 부호화 장치 및 부호화 방법, 및 움직임 벡터의 복호화 장치 및 복호화 방법
KR1020197037061A KR102206084B1 (ko) 2017-07-07 2018-03-30 적응적 움직임 벡터 해상도로 결정된 움직임 벡터의 부호화 장치 및 부호화 방법, 및 움직임 벡터의 복호화 장치 및 복호화 방법
KR1020217028689A KR20210115052A (ko) 2017-07-07 2018-03-30 적응적 움직임 벡터 해상도로 결정된 움직임 벡터의 부호화 장치 및 부호화 방법, 및 움직임 벡터의 복호화 장치 및 복호화 방법

Family Applications After (2)

Application Number Title Priority Date Filing Date
KR1020197037061A KR102206084B1 (ko) 2017-07-07 2018-03-30 적응적 움직임 벡터 해상도로 결정된 움직임 벡터의 부호화 장치 및 부호화 방법, 및 움직임 벡터의 복호화 장치 및 복호화 방법
KR1020217028689A KR20210115052A (ko) 2017-07-07 2018-03-30 적응적 움직임 벡터 해상도로 결정된 움직임 벡터의 부호화 장치 및 부호화 방법, 및 움직임 벡터의 복호화 장치 및 복호화 방법

Country Status (5)

Country Link
US (3) US11303920B2 (ko)
EP (1) EP3618435A4 (ko)
KR (3) KR102302671B1 (ko)
CN (3) CN110870306B (ko)
WO (1) WO2019009504A1 (ko)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102368622B1 (ko) 2018-02-28 2022-02-28 삼성전자주식회사 비디오 복호화 방법 및 장치, 비디오 부호화 방법 및 장치
KR20240049658A (ko) 2018-10-09 2024-04-16 삼성전자주식회사 비디오 복호화 방법 및 장치, 비디오 부호화 방법 및 장치
EP3893509A4 (en) 2018-12-07 2022-10-26 Samsung Electronics Co., Ltd. VIDEO DECODING METHOD AND DEVICE AND VIDEO ENCODING METHOD AND DEVICE
KR102625145B1 (ko) 2018-12-17 2024-01-16 삼성전자주식회사 예측 모드를 시그널링하는 비디오 신호 처리 방법 및 장치
CN111435993B (zh) * 2019-01-14 2022-08-26 华为技术有限公司 视频编码器、视频解码器及相应方法
CN111567044A (zh) * 2019-03-13 2020-08-21 北京大学 一种视频处理方法、装置、编码设备及解码设备
JP7403245B2 (ja) 2019-06-21 2023-12-22 キヤノン株式会社 画像復号装置、画像復号方法
KR102221581B1 (ko) * 2019-06-27 2021-03-02 삼성전자주식회사 비디오 복호화 방법 및 장치, 비디오 부호화 방법 및 장치
US12120320B2 (en) 2019-06-28 2024-10-15 Sk Telecom Co., Ltd. Method for adaptively setting resolution, and image decoding apparatus
CN118233626A (zh) * 2019-06-28 2024-06-21 Sk电信有限公司 自适应地设置分辨率的设备和提供视频数据的设备
KR102297479B1 (ko) * 2020-04-10 2021-09-03 삼성전자주식회사 움직임 벡터의 부호화 장치 및 방법, 및 움직임 벡터의 복호화 장치 및 방법
US11936899B2 (en) 2021-03-12 2024-03-19 Lemon Inc. Methods and systems for motion candidate derivation
US20220295090A1 (en) * 2021-03-12 2022-09-15 Lemon Inc. Motion candidate derivation
US11671616B2 (en) 2021-03-12 2023-06-06 Lemon Inc. Motion candidate derivation
WO2024039166A1 (ko) * 2022-08-18 2024-02-22 삼성전자 주식회사 Ai를 이용하는 영상 복호화 장치, 영상 부호화 장치 및 이들에 의한 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015057038A1 (ko) * 2013-10-18 2015-04-23 엘지전자 주식회사 멀티-뷰 비디오의 디코딩 방법 및 장치
WO2016068674A1 (ko) * 2014-10-31 2016-05-06 삼성전자 주식회사 움직임 벡터 부복호화 방법 및 장치

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003063503A1 (en) * 2002-01-24 2003-07-31 Hitachi, Ltd. Moving picture signal coding method, decoding method, coding apparatus, and decoding apparatus
WO2010029850A1 (ja) 2008-09-09 2010-03-18 日本電気株式会社 画像符号化装置、画像復号化装置、画像符号化方法、画像復号化方法、及びそのプログラム
TW201041404A (en) 2009-03-06 2010-11-16 Sony Corp Image processing device and method
KR101452859B1 (ko) 2009-08-13 2014-10-23 삼성전자주식회사 움직임 벡터를 부호화 및 복호화하는 방법 및 장치
KR101377530B1 (ko) 2009-08-21 2014-03-27 에스케이텔레콤 주식회사 적응적 움직임 벡터 해상도를 이용한 영상 부호화/복호화 방법 및 장치
KR101418104B1 (ko) * 2010-03-08 2014-07-16 에스케이 텔레콤주식회사 움직임 벡터 해상도 조합을 이용한 움직임 벡터 부호화/복호화 방법 및 장치와 그를 이용한 영상 부호화/복호화 방법 및 장치
KR101752418B1 (ko) 2010-04-09 2017-06-29 엘지전자 주식회사 비디오 신호 처리 방법 및 장치
KR101377529B1 (ko) 2011-01-07 2014-04-10 에스케이텔레콤 주식회사 적응적 움직임 벡터 부호화/복호화를 이용한 영상 부호화/복호화 방법 및 장치
KR101377528B1 (ko) 2011-01-15 2014-03-27 에스케이텔레콤 주식회사 움직임 벡터 부호화/복호화 방법 및 장치
KR102232113B1 (ko) 2011-03-21 2021-03-25 엘지전자 주식회사 움직임 벡터 예측자 선택 방법 및 이를 이용하는 장치
PL3309970T3 (pl) 2011-06-24 2023-09-25 Sun Patent Trust Sposób dekodowania obrazu
MX365013B (es) 2011-08-29 2019-05-20 Ibex Pt Holdings Co Ltd Metodo para generar un bloque de prediccion en modo de prediccion de vector de movimiento avanzada (amvp).
BR112014004797B1 (pt) 2011-10-17 2022-02-15 Kabushiki Kaisha Toshiba Método de decodificação
CA2898150C (en) 2012-01-30 2017-11-14 Samsung Electronics Co., Ltd. Method and apparatus for video encoding for each spatial sub-area, and method and apparatus for video decoding for each spatial sub-area
CN104255031B (zh) * 2012-02-29 2017-12-22 Lg 电子株式会社 层间预测方法和使用层间预测方法的装置
US9426498B2 (en) * 2012-07-10 2016-08-23 Broadcom Corporation Real-time encoding system of multiple spatially scaled video based on shared video coding information
EP3018907A4 (en) 2013-07-12 2017-02-22 Samsung Electronics Co., Ltd. Method for predicting disparity vector based on blocks for apparatus and method for inter-layer encoding and decoding video
KR102138368B1 (ko) * 2013-07-19 2020-07-27 삼성전자주식회사 적응적 샘플링에 기초한 계층적 움직임 예측 방법 및 움직임 예측 장치
KR20220162877A (ko) 2014-10-31 2022-12-08 삼성전자주식회사 고정밀 스킵 부호화를 이용한 비디오 부호화 장치 및 비디오 복호화 장치 및 그 방법
US20160337662A1 (en) 2015-05-11 2016-11-17 Qualcomm Incorporated Storage and signaling resolutions of motion vectors
US10200713B2 (en) * 2015-05-11 2019-02-05 Qualcomm Incorporated Search region determination for inter coding within a particular picture of video data
WO2017090967A1 (ko) 2015-11-24 2017-06-01 삼성전자 주식회사 부호화 순서 부호화 방법 및 그 장치, 복호화 방법 및 그 장치

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015057038A1 (ko) * 2013-10-18 2015-04-23 엘지전자 주식회사 멀티-뷰 비디오의 디코딩 방법 및 장치
WO2016068674A1 (ko) * 2014-10-31 2016-05-06 삼성전자 주식회사 움직임 벡터 부복호화 방법 및 장치

Also Published As

Publication number Publication date
US11991383B2 (en) 2024-05-21
KR20210006027A (ko) 2021-01-15
WO2019009504A1 (ko) 2019-01-10
US20220239942A1 (en) 2022-07-28
KR102206084B1 (ko) 2021-01-21
CN110870306A (zh) 2020-03-06
US11303920B2 (en) 2022-04-12
US20240276009A1 (en) 2024-08-15
CN116016921A (zh) 2023-04-25
CN116016922A (zh) 2023-04-25
KR20210115052A (ko) 2021-09-24
US20210152843A1 (en) 2021-05-20
CN110870306B (zh) 2023-02-03
EP3618435A1 (en) 2020-03-04
EP3618435A4 (en) 2020-03-18
KR20200004418A (ko) 2020-01-13

Similar Documents

Publication Publication Date Title
KR102302671B1 (ko) 적응적 움직임 벡터 해상도로 결정된 움직임 벡터의 부호화 장치 및 부호화 방법, 및 움직임 벡터의 복호화 장치 및 복호화 방법
KR102483331B1 (ko) 움직임 정보의 부호화 장치 및 방법, 및 복호화 장치 및 방법
KR102285739B1 (ko) 움직임 벡터 해상도에 기초하여 영상을 부호화하는 장치 및 방법, 및 복호화 장치 및 방법
KR102220230B1 (ko) 주변 움직임 정보를 이용하여 움직임 정보를 부호화 및 복호화하는 장치, 및 방법
KR102232245B1 (ko) 기본 움직임 벡터를 이용하여 움직임 벡터를 부호화하는 장치 및 방법, 및 복호화 장치 및 방법
KR102302201B1 (ko) 서브 블록 기반으로 영상을 복호화하는 방법 및 장치, 부호화 방법 및 장치
KR102546695B1 (ko) 주변 움직임 정보를 이용하여 움직임 정보를 부호화 및 복호화하는 장치, 및 방법
KR20210115044A (ko) 영상 크기에 기반한 영상의 부호화 방법 및 장치, 영상의 복호화 방법 및 장치
KR20210014094A (ko) 움직임 정보의 부호화 장치 및 부호화 방법, 및 움직임 정보의 복호화 장치 및 복호화 방법
KR20220051842A (ko) 움직임 정보의 부호화 장치 및 방법, 및 복호화 장치 및 방법

Legal Events

Date Code Title Description
A107 Divisional application of patent
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant