KR20240049658A - 비디오 복호화 방법 및 장치, 비디오 부호화 방법 및 장치 - Google Patents
비디오 복호화 방법 및 장치, 비디오 부호화 방법 및 장치 Download PDFInfo
- Publication number
- KR20240049658A KR20240049658A KR1020247011745A KR20247011745A KR20240049658A KR 20240049658 A KR20240049658 A KR 20240049658A KR 1020247011745 A KR1020247011745 A KR 1020247011745A KR 20247011745 A KR20247011745 A KR 20247011745A KR 20240049658 A KR20240049658 A KR 20240049658A
- Authority
- KR
- South Korea
- Prior art keywords
- coding unit
- block
- motion vector
- sub
- coding
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 149
- 239000013598 vector Substances 0.000 claims abstract description 293
- 230000002123 temporal effect Effects 0.000 claims description 63
- 230000003044 adaptive effect Effects 0.000 claims description 2
- 230000008569 process Effects 0.000 abstract description 55
- 238000012545 processing Methods 0.000 description 64
- 230000011218 segmentation Effects 0.000 description 31
- 241000023320 Luma <angiosperm> Species 0.000 description 27
- OSWPMRLSEDHDFF-UHFFFAOYSA-N methyl salicylate Chemical compound COC(=O)C1=CC=CC=C1O OSWPMRLSEDHDFF-UHFFFAOYSA-N 0.000 description 27
- PXFBZOLANLWPMH-UHFFFAOYSA-N 16-Epiaffinine Natural products C1C(C2=CC=CC=C2N2)=C2C(=O)CC2C(=CC)CN(C)C1C2CO PXFBZOLANLWPMH-UHFFFAOYSA-N 0.000 description 21
- 238000010586 diagram Methods 0.000 description 17
- 230000009466 transformation Effects 0.000 description 5
- 238000003491 array Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000005192 partition Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 238000000638 solvent extraction Methods 0.000 description 2
- 235000010627 Phaseolus vulgaris Nutrition 0.000 description 1
- 244000046052 Phaseolus vulgaris Species 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000013144 data compression Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000013138 pruning Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/134—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
- H04N19/136—Incoming video signal characteristics or properties
- H04N19/137—Motion inside a coding unit, e.g. average field, frame or block difference
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/50—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
- H04N19/503—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
- H04N19/51—Motion estimation or motion compensation
- H04N19/513—Processing of motion vectors
- H04N19/517—Processing of motion vectors by encoding
- H04N19/52—Processing of motion vectors by encoding by predictive encoding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/50—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
- H04N19/503—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
- H04N19/51—Motion estimation or motion compensation
- H04N19/513—Processing of motion vectors
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/103—Selection of coding mode or of prediction mode
- H04N19/105—Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/13—Adaptive entropy coding, e.g. adaptive variable length coding [AVLC] or context adaptive binary arithmetic coding [CABAC]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/134—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
- H04N19/157—Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
- H04N19/159—Prediction type, e.g. intra-frame, inter-frame or bidirectional frame prediction
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/169—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
- H04N19/17—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
- H04N19/176—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/46—Embedding additional information in the video signal during the compression process
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/70—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
Abstract
비디오 부호화 및 복호화 과정 중에서, 비트스트림으로부터 서브 블록 머지 모드의 후보 움직임 벡터를 나타내는 서브 블록 머지 인덱스에 대한 비트열을 획득하고, 비트열에 대해서 미리정해진 컨텍스트 모델을 이용하여 CABAC 복호화를 수행함으로써, 상기 서브 블록 머지 인덱스를 나타내는 심볼의 첫 번째 빈을 획득하고, 비트열에 대해서 바이패스 복호화를 수행함으로써, 상기 서브 블록 머지 인덱스를 나타내는 심볼의 나머지 빈들을 획득하고, 상기 심볼의 첫 번째 빈 및 나머지 빈들에 기초하여, 서브 블록 머지 모드로 현재 블록에 대한 예측을 수행하는 비디오를 복호화하는 방법 및 장치를 제안한다.
Description
본 개시는 비디오 복호화 방법 및 비디오 복호화 장치에 관한 것으로, 보다 구체적으로, 본 개시는 비트스트림으로부터 서브 블록 머지 모드의 후보 움직임 벡터를 나타내는 서브 블록 머지 인덱스에 대한 비트열을 획득하고, 비트열에 대해서 미리정해진 컨텍스트 모델을 이용하여 CABAC(Context Adaptive Binary Arithmetic Coding) 복호화를 수행함으로써, 상기 서브 블록 머지 인덱스를 나타내는 심볼의 첫 번째 빈을 획득하고, 비트열에 대해서 바이패스 복호화를 수행함으로써, 상기 서브 블록 머지 인덱스를 나타내는 심볼의 나머지 빈들을 획득하고, 상기 심볼의 첫 번째 빈 및 나머지 빈들에 기초하여, 서브 블록 머지 모드로 현재 블록에 대한 예측을 수행하는 영상을 부호화하는 방법 및 장치, 복호화하는 방법 및 장치에 관한 것이다.
또한, 본 개시는 현재 블록의 움직임 벡터 정밀도가 1/4 픽셀인지 1/16 픽셀인지 판단하고, 움직임 벡터 정밀도가 1/4 픽셀이면, 움직임 벡터의 범위를 16비트로 결정하고, 움직임 벡터 정밀도가 1/16 픽셀이면, 움직임 벡터의 범위를 18비트로 결정하고, 결정된 움직임 벡터의 범위에 기초하여, 상기 현재 블록의 인터 예측을 수행하는 영상을 부호화하는 방법 및 장치, 복호화하는 방법 및 장치에 관한 것이다.
영상 데이터는 소정의 데이터 압축 표준, 예를 들면 MPEG(Moving Picture Expert Group) 표준에 따른 코덱에 의하여 부호화된 후 비트스트림의 형태로 기록매체에 저장되거나 통신 채널을 통해 전송된다.
고해상도 또는 고화질 영상 컨텐트를 재생, 저장할 수 있는 하드웨어의 개발 및 보급에 따라, 고해상도 또는 고화질 영상 컨텐트를 효과적으로 부호화 또는 복호화 하는 코덱(codec)의 필요성이 증대하고 있다. 부호화된 영상 컨텐트는 복호화됨으로써 재생될 수 있다. 최근에는 이러한 고해상도 또는 고화질 영상 컨텐트를 효과적으로 압축하기 위한 방법들이 실시되고 있다. 예를 들면, 부호화 하려는 영상을 임의적 방법으로 분할하거나, 데이터를 조작하는 과정을 통해 영상 압축 기술이 효과적으로 구현될 수 있도록 제안되고 있다.
데이터를 조작하는 기법 중에 하나로서, 엔트로피 코딩에서 CABAC 부호화 및 CABAC 복호화가 수행되는 것이 일반적이다. 또한, 인터 예측에 있어서, 움직임 벡터의 범위는 16비트로 일정한 것이 일반적이다.
비디오 부호화 및 복호화 과정 중에서, 비트스트림으로부터 서브 블록 머지 모드의 후보 움직임 벡터를 나타내는 서브 블록 머지 인덱스에 대한 비트열을 획득하고, 비트열에 대해서 미리정해진 컨텍스트 모델을 이용하여 CABAC 복호화를 수행함으로써, 상기 서브 블록 머지 인덱스를 나타내는 심볼의 첫 번째 빈을 획득하고, 비트열에 대해서 바이패스 복호화를 수행함으로써, 상기 서브 블록 머지 인덱스를 나타내는 심볼의 나머지 빈들을 획득하고, 상기 심볼의 첫 번째 빈 및 나머지 빈들에 기초하여, 서브 블록 머지 모드로 현재 블록에 대한 예측을 수행하는 방법 및 장치를 제안한다.
또한, 비디오 부호화 및 복호화 과정 중에서, 현재 블록의 움직임 벡터 정밀도가 1/4 픽셀인지 1/16 픽셀인지 판단하고, 움직임 벡터 정밀도가 1/4 픽셀이면, 움직임 벡터의 범위를 16비트로 결정하고, 움직임 벡터 정밀도가 1/16 픽셀이면, 움직임 벡터의 범위를 18비트로 결정하고, 결정된 움직임 벡터의 범위에 기초하여, 상기 현재 블록의 인터 예측을 수행하는 방법 및 장치를 제안한다.
상기 기술적 과제를 해결하기 위해 본 개시에서 제안하는 비디오 복호화 방법은, 비트스트림으로부터 서브 블록 머지 모드의 후보 움직임 벡터를 나타내는 서브 블록 머지 인덱스에 대한 비트열을 획득하는 단계; 상기 비트열에 대해서 미리정해진 컨텍스트 모델을 이용하여 CABAC 복호화를 수행함으로써, 상기 서브 블록 머지 인덱스를 나타내는 심볼의 첫 번째 빈을 획득하는 단계; 상기 비트열에 대해서 바이패스 복호화를 수행함으로써, 상기 서브 블록 머지 인덱스를 나타내는 심볼의 나머지 빈들을 획득하는 단계; 상기 심볼의 첫 번째 빈 및 나머지 빈들에 기초하여, 서브 블록 머지 모드로 현재 블록에 대한 예측을 수행하는 단계를 포함할 수 있다.
상기 기술적 과제를 해결하기 위해 본 개시에서 제안하는 비디오 복호화 장치는, 메모리; 및 상기 메모리와 접속된 적어도 하나의 프로세서를 포함하고, 상기 적어도 하나의 프로세서는: 비트스트림으로부터 서브 블록 머지 모드의 후보 움직임 벡터를 나타내는 서브 블록 머지 인덱스에 대한 비트열을 획득하고, 상기 비트열에 대해서 미리정해진 컨텍스트 모델을 이용하여 CABAC 복호화를 수행함으로써, 상기 서브 블록 머지 인덱스를 나타내는 심볼의 첫 번째 빈을 획득하고, 상기 비트열에 대해서 바이패스 복호화를 수행함으로써, 상기 서브 블록 머지 인덱스를 나타내는 심볼의 나머지 빈들을 획득하고, 상기 심볼의 첫 번째 빈 및 나머지 빈들에 기초하여, 서브 블록 머지 모드로 현재 블록에 대한 예측을 수행하도록 구성될 수 있다.
상기 기술적 과제를 해결하기 위해 본 개시에서 제안하는 비디오 부호화 방법은, 서브 블록 머지 모드로 현재 블록에 대한 예측을 수행하여, 서브 블록 머지 모드의 후보 움직임 벡터를 나타내는 서브 블록 머지 인덱스를 나타내는 심볼을 생성하는 단계; 상기 심볼의 첫 번째 빈에 대해서 미리정해진 컨텍스트 모델을 이용하여 CABAC 부호화를 수행하는 단계; 상기 심볼의 나머지 빈들에 대해서 바이패스 부호화를 수행하는 단계; CABAC 부호화 및 바이패스 부호화 결과에 기초하여, 서브 블록 머지 인덱스에 대한 비트열을 포함하는 비트스트림을 생성하는 단계를 포함할 수 있다.
상기 기술적 과제를 해결하기 위해 본 개시에서 제안하는 비디오 부호화 장치는, 상기 메모리와 접속된 적어도 하나의 프로세서를 포함하고, 상기 적어도 하나의 프로세서는: 서브 블록 머지 모드로 현재 블록에 대한 예측을 수행하여, 서브 블록 머지 모드의 후보 움직임 벡터를 나타내는 서브 블록 머지 인덱스를 나타내는 심볼을 생성하고, 상기 심볼의 첫 번째 빈에 대해서 미리정해진 컨텍스트 모델을 이용하여 CABAC 부호화를 수행하고, 상기 심볼의 나머지 빈들에 대해서 바이패스 부호화를 수행하고, CABAC 부호화 및 바이패스 부호화 결과에 기초하여, 서브 블록 머지 인덱스에 대한 비트열을 포함하는 비트스트림을 생성하도록 구성될 수 있다.
상기 기술적 과제를 해결하기 위해 본 개시에서 제안하는 비디오 복호화 방법은, 현재 블록의 움직임 벡터 정밀도가 1/4 픽셀인지 1/16 픽셀인지 판단하는 단계; 움직임 벡터 정밀도가 1/4 픽셀이면, 움직임 벡터의 범위를 16비트로 결정하는 단계; 움직임 벡터 정밀도가 1/16 픽셀이면, 움직임 벡터의 범위를 18비트로 결정하는 단계; 결정된 움직임 벡터의 범위에 기초하여, 상기 현재 블록의 인터 예측을 수행하는 단계를 포함할 수 있다.
상기 기술적 과제를 해결하기 위해 본 개시에서 제안하는 비디오 복호화 장치는, 메모리; 및 상기 메모리와 접속된 적어도 하나의 프로세서를 포함하고, 상기 적어도 하나의 프로세서는: 현재 블록의 움직임 벡터 정밀도가 1/4 픽셀인지 1/16 픽셀인지 판단하고, 움직임 벡터 정밀도가 1/4 픽셀이면, 움직임 벡터의 범위를 16비트로 결정하고, 움직임 벡터 정밀도가 1/16 픽셀이면, 움직임 벡터의 범위를 18비트로 결정하고, 결정된 움직임 벡터의 범위에 기초하여, 상기 현재 블록의 인터 예측을 수행하도록 구성될 수 있다.
상기 기술적 과제를 해결하기 위해 본 개시에서 제안하는 비디오 부호화 방법은, 현재 블록의 움직임 벡터 정밀도가 1/4 픽셀인지 1/16 픽셀인지 판단하는 단계; 움직임 벡터 정밀도가 1/4 픽셀이면, 움직임 벡터의 범위를 16비트로 결정하는 단계; 움직임 벡터 정밀도가 1/16 픽셀이면, 움직임 벡터의 범위를 18비트로 결정하는 단계; 결정된 움직임 벡터의 범위에 기초하여, 상기 현재 블록의 인터 예측을 수행하는 단계를 포함할 수 있다.
상기 기술적 과제를 해결하기 위해 본 개시에서 제안하는 비디오 부호화 장치는, 상기 메모리와 접속된 적어도 하나의 프로세서를 포함하고, 상기 적어도 하나의 프로세서는: 현재 블록의 움직임 벡터 정밀도가 1/4 픽셀인지 1/16 픽셀인지 판단하고, 움직임 벡터 정밀도가 1/4 픽셀이면, 움직임 벡터의 범위를 16비트로 결정하고, 움직임 벡터 정밀도가 1/16 픽셀이면, 움직임 벡터의 범위를 18비트로 결정하고, 결정된 움직임 벡터의 범위에 기초하여, 상기 현재 블록의 인터 예측을 수행하도록 구성될 수 있다.
비디오 부호화 및 복호화 과정 중에서, 비트스트림으로부터 서브 블록 머지 모드의 후보 움직임 벡터를 나타내는 서브 블록 머지 인덱스에 대한 비트열을 획득하고, 상기 비트열에 대해서 미리정해진 컨텍스트 모델을 이용하여 CABAC 복호화를 수행함으로써, 상기 서브 블록 머지 인덱스를 나타내는 심볼의 첫 번째 빈을 획득하고, 상기 비트열에 대해서 바이패스 복호화를 수행함으로써, 상기 서브 블록 머지 인덱스를 나타내는 심볼의 나머지 빈들을 획득하고, 상기 심볼의 첫 번째 빈 및 나머지 빈들에 기초하여, 서브 블록 머지 모드로 현재 블록에 대한 예측을 수행함으로써, 서브 블록 머지 인덱스에 대한 처리 속도가 효율적으로 향상될 수 있다.
또한, 현재 블록의 움직임 벡터 정밀도가 1/4 픽셀인지 1/16 픽셀인지 판단하고, 움직임 벡터 정밀도가 1/4 픽셀이면, 움직임 벡터의 범위를 16비트로 결정하고, 움직임 벡터 정밀도가 1/16 픽셀이면, 움직임 벡터의 범위를 18비트로 결정하고, 결정된 움직임 벡터의 범위에 기초하여, 상기 현재 블록의 인터 예측을 수행함으로써, 움직임 벡터 정밀도에 따라 움직임 벡터의 범위를 다르게 함으로써 효율적인 인터 예측이 수행될 수 있다.
도 1은 일 실시예에 따라 영상 복호화 장치의 개략적인 블록도를 도시한다.
도 2는 일 실시예에 따라 영상 복호화 방법의 흐름도를 도시한다.
도 3은 일 실시예에 따라 영상 복호화 장치가 현재 부호화 단위를 분할하여 적어도 하나의 부호화 단위를 결정하는 과정을 도시한다.
도 4는 일 실시예에 따라 영상 복호화 장치가 비-정사각형의 형태인 부호화 단위를 분할하여 적어도 하나의 부호화 단위를 결정하는 과정을 도시한다.
도 5는 일 실시예에 따라 영상 복호화 장치가 블록 형태 정보 및 분할 형태 모드 정보 중 적어도 하나에 기초하여 부호화 단위를 분할하는 과정을 도시한다.
도 6은 일 실시예에 따라 영상 복호화 장치가 홀수개의 부호화 단위들 중 소정의 부호화 단위를 결정하기 위한 방법을 도시한다.
도 7은 일 실시예에 따라 영상 복호화 장치가 현재 부호화 단위를 분할하여 복수개의 부호화 단위들을 결정하는 경우, 복수개의 부호화 단위들이 처리되는 순서를 도시한다.
도 8은 일 실시예에 따라 영상 복호화 장치가 소정의 순서로 부호화 단위가 처리될 수 없는 경우, 현재 부호화 단위가 홀수개의 부호화 단위로 분할되는 것임을 결정하는 과정을 도시한다.
도 9는 일 실시예에 따라 영상 복호화 장치가 제1 부호화 단위를 분할하여 적어도 하나의 부호화 단위를 결정하는 과정을 도시한다.
도 10은 일 실시예에 따라 영상 복호화 장치가 제1 부호화 단위가 분할되어 결정된 비-정사각형 형태의 제2 부호화 단위가 소정의 조건을 만족하는 경우 제2 부호화 단위가 분할될 수 있는 형태가 제한되는 것을 도시한다.
도 11은 일 실시예에 따라 분할 형태 모드 정보가 4개의 정사각형 형태의 부호화 단위로 분할하는 것을 나타낼 수 없는 경우, 영상 복호화 장치가 정사각형 형태의 부호화 단위를 분할하는 과정을 도시한다.
도 12는 일 실시예에 따라 복수개의 부호화 단위들 간의 처리 순서가 부호화 단위의 분할 과정에 따라 달라질 수 있음을 도시한 것이다.
도 13은 일 실시예에 따라 부호화 단위가 재귀적으로 분할되어 복수개의 부호화 단위가 결정되는 경우, 부호화 단위의 형태 및 크기가 변함에 따라 부호화 단위의 심도가 결정되는 과정을 도시한다.
도 14은 일 실시예에 따라 부호화 단위들의 형태 및 크기에 따라 결정될 수 있는 심도 및 부호화 단위 구분을 위한 인덱스(part index, 이하 PID)를 도시한다.
도 15는 일 실시예에 따라 픽쳐에 포함되는 복수개의 소정의 데이터 단위에 따라 복수개의 부호화 단위들이 결정된 것을 도시한다.
도 16은 일 실시예에 따라 픽쳐에 포함되는 기준 부호화 단위의 결정 순서를 결정하는 기준이 되는 프로세싱 블록을 도시한다.
도 17은 일 실시예에 따른 비디오 부호화 장치의 블록도를 도시한다.
도 18은 일 실시예에 따른 비디오 부호화 방법의 흐름도를 도시한다.
도 19는 일 실시예에 따른 비디오 복호화 장치의 블록도를 도시한다.
도 20은 일 실시예에 따른 비디오 복호화 방법의 흐름도를 도시한다.
도 21은 서브 블록 단위 시간적 움직임 벡터 후보가 결정되는 과정을 도시한다.
도 22는 다른 실시예에 따른 비디오 부호화 방법의 흐름도를 도시한다.
도 23은 다른 실시예에 따른 비디오 복호화 방법의 흐름도를 도시한다.
도 24는 아핀 모드에서 움직임 벡터를 저장하는 방법을 설명하기 위한 도면이다.
도 25는 이력 기반 움직임 벡터 예측을 설명하기 위한 도면이다.
도 26은 정규화된 움직임 벡터를 설명하기 위한 도면이다.
도 27은 크로마 블록의 크로마 샘플을 결정하기 위한 크로스 성분 선형 모델이 결정되는 방법을 설명하기 위한 도면이다.
도 28은 로컬 휘도 보상을 위한 선형 모델이 결정되는 방법을 설명하기 위한 도면이다.
도 2는 일 실시예에 따라 영상 복호화 방법의 흐름도를 도시한다.
도 3은 일 실시예에 따라 영상 복호화 장치가 현재 부호화 단위를 분할하여 적어도 하나의 부호화 단위를 결정하는 과정을 도시한다.
도 4는 일 실시예에 따라 영상 복호화 장치가 비-정사각형의 형태인 부호화 단위를 분할하여 적어도 하나의 부호화 단위를 결정하는 과정을 도시한다.
도 5는 일 실시예에 따라 영상 복호화 장치가 블록 형태 정보 및 분할 형태 모드 정보 중 적어도 하나에 기초하여 부호화 단위를 분할하는 과정을 도시한다.
도 6은 일 실시예에 따라 영상 복호화 장치가 홀수개의 부호화 단위들 중 소정의 부호화 단위를 결정하기 위한 방법을 도시한다.
도 7은 일 실시예에 따라 영상 복호화 장치가 현재 부호화 단위를 분할하여 복수개의 부호화 단위들을 결정하는 경우, 복수개의 부호화 단위들이 처리되는 순서를 도시한다.
도 8은 일 실시예에 따라 영상 복호화 장치가 소정의 순서로 부호화 단위가 처리될 수 없는 경우, 현재 부호화 단위가 홀수개의 부호화 단위로 분할되는 것임을 결정하는 과정을 도시한다.
도 9는 일 실시예에 따라 영상 복호화 장치가 제1 부호화 단위를 분할하여 적어도 하나의 부호화 단위를 결정하는 과정을 도시한다.
도 10은 일 실시예에 따라 영상 복호화 장치가 제1 부호화 단위가 분할되어 결정된 비-정사각형 형태의 제2 부호화 단위가 소정의 조건을 만족하는 경우 제2 부호화 단위가 분할될 수 있는 형태가 제한되는 것을 도시한다.
도 11은 일 실시예에 따라 분할 형태 모드 정보가 4개의 정사각형 형태의 부호화 단위로 분할하는 것을 나타낼 수 없는 경우, 영상 복호화 장치가 정사각형 형태의 부호화 단위를 분할하는 과정을 도시한다.
도 12는 일 실시예에 따라 복수개의 부호화 단위들 간의 처리 순서가 부호화 단위의 분할 과정에 따라 달라질 수 있음을 도시한 것이다.
도 13은 일 실시예에 따라 부호화 단위가 재귀적으로 분할되어 복수개의 부호화 단위가 결정되는 경우, 부호화 단위의 형태 및 크기가 변함에 따라 부호화 단위의 심도가 결정되는 과정을 도시한다.
도 14은 일 실시예에 따라 부호화 단위들의 형태 및 크기에 따라 결정될 수 있는 심도 및 부호화 단위 구분을 위한 인덱스(part index, 이하 PID)를 도시한다.
도 15는 일 실시예에 따라 픽쳐에 포함되는 복수개의 소정의 데이터 단위에 따라 복수개의 부호화 단위들이 결정된 것을 도시한다.
도 16은 일 실시예에 따라 픽쳐에 포함되는 기준 부호화 단위의 결정 순서를 결정하는 기준이 되는 프로세싱 블록을 도시한다.
도 17은 일 실시예에 따른 비디오 부호화 장치의 블록도를 도시한다.
도 18은 일 실시예에 따른 비디오 부호화 방법의 흐름도를 도시한다.
도 19는 일 실시예에 따른 비디오 복호화 장치의 블록도를 도시한다.
도 20은 일 실시예에 따른 비디오 복호화 방법의 흐름도를 도시한다.
도 21은 서브 블록 단위 시간적 움직임 벡터 후보가 결정되는 과정을 도시한다.
도 22는 다른 실시예에 따른 비디오 부호화 방법의 흐름도를 도시한다.
도 23은 다른 실시예에 따른 비디오 복호화 방법의 흐름도를 도시한다.
도 24는 아핀 모드에서 움직임 벡터를 저장하는 방법을 설명하기 위한 도면이다.
도 25는 이력 기반 움직임 벡터 예측을 설명하기 위한 도면이다.
도 26은 정규화된 움직임 벡터를 설명하기 위한 도면이다.
도 27은 크로마 블록의 크로마 샘플을 결정하기 위한 크로스 성분 선형 모델이 결정되는 방법을 설명하기 위한 도면이다.
도 28은 로컬 휘도 보상을 위한 선형 모델이 결정되는 방법을 설명하기 위한 도면이다.
발명의 실시를 위한 최선의 형태
본 개시에서 제안하는 일 실시예에 따른 비디오 복호화 방법은 비트스트림으로부터 서브 블록 머지 모드의 후보 움직임 벡터를 나타내는 서브 블록 머지 인덱스에 대한 비트열을 획득하는 단계; 상기 비트열에 대해서 미리정해진 컨텍스트 모델을 이용하여 CABAC 복호화를 수행함으로써, 상기 서브 블록 머지 인덱스를 나타내는 심볼의 첫 번째 빈을 획득하는 단계; 상기 비트열에 대해서 바이패스 복호화를 수행함으로써, 상기 서브 블록 머지 인덱스를 나타내는 심볼의 나머지 빈들을 획득하는 단계; 상기 심볼의 첫 번째 빈 및 나머지 빈들에 기초하여, 서브 블록 머지 모드로 현재 블록에 대한 예측을 수행하는 단계를 포함할 수 있다.
일 실시예에 따라, 상기 바이패스 복호화는 상기 심볼의 첫 번째 빈에 기초하여 수행여부가 결정될 수 있다.
일 실시예에 따라, 상기 심볼의 첫 번째 빈은 서브 블록 단위 시간적 움직임 벡터 후보가 선택될 확률에 기초하여 결정될 수 있다.
일 실시예에 따라, 상기 서브 블록 단위 시간적 움직임 벡터 후보는 현재 블록의 서브 블록에 대응되는 시간적 참조 서브 블록의 움직임 벡터일 수 있다.
일 실시예에 따라, 상기 시간적 참조 서브 블록이 포함된 참조 픽처는 현재 블록의 좌측 주변 블록이 인터 모드로 복원된 블록인 경우에, 상기 좌측 주변 블록의 움직임 벡터가 가리키는 참조 픽처와 동일할 수 있다.
일 실시예에 따라, 상기 현재 블록에 대응되는 참조 블록의 중심에 움직임 벡터가 존재하면, 상기 현재 블록의 서브 블록에 대응되는 시간적 참조 서브 블록의 움직임 벡터가 도출될 수 있다.
본 개시에서 제안하는 일 실시예에 따른 비디오 부호화 방법은, 서브 블록 머지 모드로 현재 블록에 대한 예측을 수행하여, 서브 블록 머지 모드의 후보 움직임 벡터를 나타내는 서브 블록 머지 인덱스를 나타내는 심볼을 생성하는 단계; 상기 심볼의 첫 번째 빈에 대해서 미리정해진 컨텍스트 모델을 이용하여 CABAC 부호화를 수행하는 단계; 상기 심볼의 나머지 빈들에 대해서 바이패스 부호화를 수행하는 단계; CABAC 부호화 및 바이패스 부호화 결과에 기초하여, 서브 블록 머지 인덱스에 대한 비트열을 포함하는 비트스트림을 생성하는 단계를 포함할 수 있다.
일 실시예에 따라, 상기 바이패스 부호화는 상기 심볼의 첫 번째 빈에 기초하여 수행여부가 결정될 수 있다.
일 실시예에 따라, 상기 심볼의 첫 번째 빈은 서브 블록 단위 시간적 움직임 벡터 후보가 선택될 확률에 기초하여 결정될 수 있다.
일 실시예에 따라, 상기 서브 블록 단위 시간적 움직임 벡터 후보는 현재 블록의 서브 블록에 대응되는 시간적 참조 서브 블록의 움직임 벡터일 수 있다.
본 개시에서 제안하는 다른 실시예에 따른 비디오 복호화 방법은, 현재 블록의 움직임 벡터 정밀도가 1/4 픽셀인지 1/16 픽셀인지 판단하는 단계; 움직임 벡터 정밀도가 1/4 픽셀이면, 움직임 벡터의 범위를 16비트로 결정하는 단계; 움직임 벡터 정밀도가 1/16 픽셀이면, 움직임 벡터의 범위를 18비트로 결정하는 단계; 결정된 움직임 벡터의 범위에 기초하여, 상기 현재 블록의 인터 예측을 수행하는 단계를 포함할 수 있다.
일 실시예에 따라, 현재 블록의 움직임 벡터 정밀도가 1/4 픽셀인지 1/16 픽셀인지는 현재 블록의 예측 모드에 기초하여 결정될 수 있다.
일 실시예에 따라, 현재 블록의 예측 모드가 아핀 모드이면, 움직임 벡터 정밀도가 1/16 픽셀로 결정될 수 있다.
일 실시예에 따라, 현재 블록의 움직임 벡터 정밀도가 1/4 픽셀인지 1/16 픽셀인지는 비트스트림으로부터 획득된 움직임 벡터 정밀도에 대한 플래그에 의해 결정될 수 있다.
일 실시예에 따라, 현재 블록의 예측 모드가 아핀 모드이면, 상기 움직임 벡터 정밀도에 대한 플래그는 움직임 벡터 정밀도가 1/16 픽셀임을 나타내는 것으로 설정될 수 있다.
발명의 실시를 위한 형태
개시된 실시예의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 개시는 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 개시가 완전하도록 하고, 본 개시가 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것일 뿐이다.
본 명세서에서 사용되는 용어에 대해 간략히 설명하고, 개시된 실시예에 대해 구체적으로 설명하기로 한다.
본 명세서에서 사용되는 용어는 본 개시에서의 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어들을 선택하였으나, 이는 관련 분야에 종사하는 기술자의 의도 또는 판례, 새로운 기술의 출현 등에 따라 달라질 수 있다. 또한, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 발명의 설명 부분에서 상세히 그 의미를 기재할 것이다. 따라서 본 개시에서 사용되는 용어는 단순한 용어의 명칭이 아닌, 그 용어가 가지는 의미와 본 개시의 전반에 걸친 내용을 토대로 정의되어야 한다.
본 명세서에서의 단수의 표현은 문맥상 명백하게 단수인 것으로 특정하지 않는 한, 복수의 표현을 포함한다.
명세서 전체에서 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있음을 의미한다.
또한, 명세서에서 사용되는 "부"라는 용어는 소프트웨어 또는 하드웨어 구성요소를 의미하며, "부"는 어떤 역할들을 수행한다. 그렇지만 "부"는 소프트웨어 또는 하드웨어에 한정되는 의미는 아니다. "부"는 어드레싱할 수 있는 저장 매체에 있도록 구성될 수도 있고 하나 또는 그 이상의 프로세서들을 재생시키도록 구성될 수도 있다. 따라서, 일 예로서 "부"는 소프트웨어 구성요소들, 객체지향 소프트웨어 구성요소들, 클래스 구성요소들 및 태스크 구성요소들과 같은 구성요소들과, 프로세스들, 함수들, 속성들, 프로시저들, 서브루틴들, 프로그램 코드의 세그먼트들, 드라이버들, 펌웨어, 마이크로 코드, 회로, 데이터, 데이터베이스, 데이터 구조들, 테이블들, 어레이들 및 변수들을 포함한다. 구성요소들과 "부"들 안에서 제공되는 기능은 더 작은 수의 구성요소들 및 "부"들로 결합되거나 추가적인 구성요소들과 "부"들로 더 분리될 수 있다.
본 개시의 일 실시예에 따르면 "부"는 프로세서 및 메모리로 구현될 수 있다. 용어 "프로세서" 는 범용 프로세서, 중앙 처리 장치 (CPU), 마이크로프로세서, 디지털 신호 프로세서 (DSP), 제어기, 마이크로제어기, 상태 머신, 및 등을 포함하도록 넓게 해석되어야 한다. 몇몇 환경에서는, "프로세서" 는 주문형 반도체 (ASIC), 프로그램가능 로직 디바이스 (PLD), 필드 프로그램가능 게이트 어레이 (FPGA), 등을 지칭할 수도 있다. 용어 "프로세서" 는, 예를 들어, DSP 와 마이크로프로세서의 조합, 복수의 마이크로프로세서들의 조합, DSP 코어와 결합한 하나 이상의 마이크로프로세서들의 조합, 또는 임의의 다른 그러한 구성들의 조합과 같은 처리 디바이스들의 조합을 지칭할 수도 있다.
용어 "메모리" 는 전자 정보를 저장 가능한 임의의 전자 컴포넌트를 포함하도록 넓게 해석되어야 한다. 용어 메모리는 임의 액세스 메모리 (RAM), 판독-전용 메모리 (ROM), 비-휘발성 임의 액세스 메모리 (NVRAM), 프로그램가능 판독-전용 메모리 (PROM), 소거-프로그램가능 판독 전용 메모리 (EPROM), 전기적으로 소거가능 PROM (EEPROM), 플래쉬 메모리, 자기 또는 광학 데이터 저장장치, 레지스터들, 등과 같은 프로세서-판독가능 매체의 다양한 유형들을 지칭할 수도 있다. 프로세서가 메모리에 메모리로부터 정보를 판독하고/하거나 메모리에 정보를 기록할 수 있다면 메모리는 프로세서와 전자 통신 상태에 있다고 불린다. 프로세서에 집적된 메모리는 프로세서와 전자 통신 상태에 있다.
이하, "영상"은 비디오의 정지영상와 같은 정적 이미지이거나 동영상, 즉 비디오 그 자체와 같은 동적 이미지를 나타낼 수 있다.
이하 "샘플"은, 영상의 샘플링 위치에 할당된 데이터로서 프로세싱 대상이 되는 데이터를 의미한다. 예를 들어, 공간영역의 영상에서 픽셀값, 변환 영역 상의 변환 계수들이 샘플들일 수 있다. 이러한 적어도 하나의 샘플들을 포함하는 단위를 블록이라고 정의할 수 있다.
*또한, 본 명세서에서, '현재 블록(Current Block)'은, 부호화 또는 복호화하고자 하는 현재 영상의 최대 부호화 단위, 부호화 단위, 예측 단위 또는 변환 단위의 블록을 의미할 수 있다.
아래에서는 첨부한 도면을 참고하여 실시예에 대하여 본 개시가 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그리고 도면에서 본 개시를을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략한다.
이하 도 1 내지 도 16를 참조하여 일 실시예에 따라 영상 부호화 장치 및 영상 복호화 장치, 영상 부호화 방법 및 영상 복호화 방법이 상술된다. 도 3 내지 도 16을 참조하여 일 실시예에 따라 영상의 데이터 단위를 결정하는 방법이 설명되고, 도 17 내지 도 21을 참조하여 일 실시예에 따른 비트스트림으로부터 서브 블록 머지 모드의 후보 움직임 벡터를 나타내는 서브 블록 머지 인덱스에 대한 비트열을 획득하고, 비트열에 대해서 미리정해진 컨텍스트 모델을 이용하여 CABAC 복호화를 수행함으로써, 상기 서브 블록 머지 인덱스를 나타내는 심볼의 첫 번째 빈을 획득하고, 비트열에 대해서 바이패스 복호화를 수행함으로써, 상기 서브 블록 머지 인덱스를 나타내는 심볼의 나머지 빈들을 획득하고, 상기 심볼의 첫 번째 빈 및 나머지 빈들에 기초하여, 서브 블록 머지 모드로 현재 블록에 대한 예측을 수행하는 비디오 부호화/복호화 방법이 후술되고, 도 22 내지 도 23을 참조하여 현재 블록의 움직임 벡터 정밀도가 1/4 픽셀인지 1/16 픽셀인지 판단하고, 움직임 벡터 정밀도가 1/4 픽셀이면, 움직임 벡터의 범위를 16비트로 결정하고, 움직임 벡터 정밀도가 1/16 픽셀이면, 움직임 벡터의 범위를 18비트로 결정하고, 결정된 움직임 벡터의 범위에 기초하여, 상기 현재 블록의 인터 예측을 수행하는 비디오 부호화/복호화 방법이 후술되고, 도 24를 참조하여, 아핀 모드에서 움직임 벡터를 저장하는 방법이 후술되고, 도 25를 참조하여, 이력 기반 움직임 벡터 예측 방법이 후술되고, 도 26을 참조하여, 정규화된 움직임 벡터가 후술되고, 도 27을 참조하여, 크로마 블록의 크로마 샘플을 결정하기 위한 크로스 성분 선형 모델이 결정되는 방법이 후술되고, 도 28을 참조하여, 로컬 휘도 보상을 위한 선형 모델이 결정되는 방법이 후술된다.
이하 도 1 및 도 2를 참조하여 본 개시의 일 실시예에 따라 컨텍스트 모델을 다양한 형태의 부호화 단위에 기초하여 적응적으로 선택하기 위한 방법 및 장치가 상술된다.
도 1은 일 실시예에 따라 영상 복호화 장치의 개략적인 블록도를 도시한다.
영상 복호화 장치(100)는 수신부(110) 및 복호화부(120)를 포함할 수 있다. 수신부(110) 및 복호화부(120)는 적어도 하나의 프로세서를 포함할 수 있다. 또한 수신부(110) 및 복호화부(120)는 적어도 하나의 프로세서가 수행할 명령어들을 저장하는 메모리를 포함할 수 있다.
수신부(110)는 비트스트림을 수신할 수 있다. 비트스트림은 후술되는 영상 부호화 장치(2200)가 영상을 부호화한 정보를 포함한다. 또한 비트스트림은 영상 부호화 장치(2200)로부터 송신될 수 있다. 영상 부호화 장치(2200) 및 영상 복호화 장치(100)는 유선 또는 무선으로 연결될 수 있으며, 수신부(110)는 유선 또는 무선을 통하여 비트스트림을 수신할 수 있다. 수신부(110)는 광학미디어, 하드디스크 등과 같은 저장매체로부터 비트스트림을 수신할 수 있다. 복호화부(120)는 수신된 비트스트림으로부터 획득된 정보에 기초하여 영상을 복원할 수 있다. 복호화부(120)는 영상을 복원하기 위한 신택스 엘리먼트를 비트스트림으로부터 획득할 수 있다. 복호화부(120)는 신택스 엘리먼트에 기초하여 영상을 복원할 수 있다.
영상 복호화 장치(100)의 동작에 대해서는 도 2와 함께 보다 자세히 설명한다.
도 2는 일 실시예에 따라 영상 복호화 방법의 흐름도를 도시한다.
본 개시의 일 실시예에 따르면 수신부(110)는 비트스트림을 수신한다.
영상 복호화 장치(100)는 비트스트림으로부터 부호화 단위의 분할 형태 모드에 대응하는 빈스트링을 획득하는 단계(210)를 수행한다. 영상 복호화 장치(100)는 부호화 단위의 분할 규칙을 결정하는 단계(220)를 수행한다. 또한 영상 복호화 장치(100)는 분할 형태 모드에 대응하는 빈스트링 및 상기 분할 규칙 중 적어도 하나에 기초하여, 부호화 단위를 복수의 부호화 단위들로 분할하는 단계(230)를 수행한다. 영상 복호화 장치(100)는 분할 규칙을 결정하기 위하여, 부호화 단위의 너비 및 높이의 비율에 따른, 상기 부호화 단위의 크기의 허용가능한 제 1 범위를 결정할 수 있다. 영상 복호화 장치(100)는 분할 규칙을 결정하기 위하여, 부호화 단위의 분할 형태 모드에 따른, 부호화 단위의 크기의 허용가능한 제 2 범위를 결정할 수 있다.
이하에서는 본 개시의 일 실시예에 따라 부호화 단위의 분할에 대하여 자세히 설명한다.
먼저 하나의 픽처 (Picture)는 하나 이상의 슬라이스 혹은 하나 이상의 타일로 분할될 수 있다. 하나의 슬라이스 혹은 하나의 타일은 하나 이상의 최대 부호화 단위(Coding Tree Unit; CTU)의 시퀀스일 수 있다. 최대 부호화 단위 (CTU)와 대비되는 개념으로 최대 부호화 블록 (Coding Tree Block; CTB)이 있다.
최대 부호화 블록(CTB)은 NxN개의 샘플들을 포함하는 NxN 블록을 의미한다(N은 정수). 각 컬러 성분은 하나 이상의 최대 부호화 블록으로 분할될 수 있다.
픽처가 3개의 샘플 어레이(Y, Cr, Cb 성분별 샘플 어레이)를 가지는 경우에 최대 부호화 단위(CTU)란, 루마 샘플의 최대 부호화 블록 및 그에 대응되는 크로마 샘플들의 2개의 최대 부호화 블록과, 루마 샘플, 크로마 샘플들을 부호화하는데 이용되는 신택스 구조들을 포함하는 단위이다. 픽처가 모노크롬 픽처인 경우에 최대 부호화 단위란, 모노크롬 샘플의 최대 부호화 블록과 모노크롬 샘플들을 부호화하는데 이용되는 신택스 구조들을 포함하는 단위이다. 픽처가 컬러 성분별로 분리되는 컬러 플레인으로 부호화되는 픽처인 경우에 최대 부호화 단위란, 해당 픽처와 픽처의 샘플들을 부호화하는데 이용되는 신택스 구조들을 포함하는 단위이다.
하나의 최대 부호화 블록(CTB)은 MxN개의 샘플들을 포함하는 MxN 부호화 블록(coding block)으로 분할될 수 있다 (M, N은 정수).
픽처가 Y, Cr, Cb 성분별 샘플 어레이를 가지는 경우에 부호화 단위(Coding Unit; CU)란, 루마 샘플의 부호화 블록 및 그에 대응되는 크로마 샘플들의 2개의 부호화 블록과, 루마 샘플, 크로마 샘플들을 부호화하는데 이용되는 신택스 구조들을 포함하는 단위이다. 픽처가 모노크롬 픽처인 경우에 부호화 단위란, 모노크롬 샘플의 부호화 블록과 모노크롬 샘플들을 부호화하는데 이용되는 신택스 구조들을 포함하는 단위이다. 픽처가 컬러 성분별로 분리되는 컬러 플레인으로 부호화되는 픽처인 경우에 부호화 단위란, 해당 픽처와 픽처의 샘플들을 부호화하는데 이용되는 신택스 구조들을 포함하는 단위이다.
위에서 설명한 바와 같이, 최대 부호화 블록과 최대 부호화 단위는 서로 구별되는 개념이며, 부호화 블록과 부호화 단위는 서로 구별되는 개념이다. 즉, (최대) 부호화 단위는 해당 샘플을 포함하는 (최대) 부호화 블록과 그에 대응하는 신택스 구조를 포함하는 데이터 구조를 의미한다. 하지만 당업자가 (최대) 부호화 단위 또는 (최대) 부호화 블록가 소정 개수의 샘플들을 포함하는 소정 크기의 블록을 지칭한다는 것을 이해할 수 있으므로, 이하 명세서에서는 최대 부호화 블록과 최대 부호화 단위, 또는 부호화 블록과 부호화 단위를 특별한 사정이 없는 한 구별하지 않고 언급한다.
영상은 최대 부호화 단위(Coding Tree Unit; CTU)로 분할될 수 있다. 최대 부호화 단위의 크기는 비트스트림으로부터 획득된 정보에 기초하여 결정될 수 있다. 최대 부호화 단위의 모양은 동일 크기의 정사각형을 가질 수 있다. 하지만 이에 한정되는 것은 아니다.
예를 들어, 비트스트림으로부터 루마 부호화 블록의 최대 크기에 대한 정보가 획득될 수 있다. 예를 들어, 루마 부호화 블록의 최대 크기에 대한 정보가 나타내는 루마 부호화 블록의 최대 크기는 4x4, 8x8, 16x16, 32x32, 64x64, 128x128, 256x256 중 하나일 수 있다.
예를 들어, 비트스트림으로부터 2분할이 가능한 루마 부호화 블록의 최대 크기와 루마 블록 크기 차이에 대한 정보가 획득될 수 있다. 루마 블록 크기 차이에 대한 정보는 루마 최대 부호화 단위와 2분할이 가능한 최대 루마 부호화 블록 간의 크기 차이를 나타낼 수 있다. 따라서, 비트스트림으로부터 획득된 2분할이 가능한 루마 부호화 블록의 최대 크기에 대한 정보와 루마 블록 크기 차이에 대한 정보를 결합하면, 루마 최대 부호화 단위의 크기가 결정될 수 있다. 루마 최대 부호화 단위의 크기를 이용하면 크로마 최대 부호화 단위의 크기도 결정될 수 있다. 예를 들어, 컬러 포맷에 따라 Y: Cb : Cr 비율이 4:2:0 이라면, 크로마 블록의 크기는 루마 블록의 크기의 절반일 수 있고, 마찬가지로 크로마 최대 부호화 단위의 크기는 루마 최대 부호화 단위의 크기의 절반일 수 있다.
일 실시예에 따르면, 바이너리 분할(binary split)이 가능한 루마 부호화 블록의 최대 크기에 대한 정보는 비트스트림으로부터 획득하므로, 바이너리 분할이 가능한 루마 부호화 블록의 최대 크기는 가변적으로 결정될 수 있다. 이와 달리, 터너리 분할(ternary split)이 가능한 루마 부호화 블록의 최대 크기는 고정될 수 있다. 예를 들어, I 픽처에서 터너리 분할이 가능한 루마 부호화 블록의 최대 크기는 32x32이고, P 픽처 또는 B 픽처에서 터너리 분할이 가능한 루마 부호화 블록의 최대 크기는 64x64일 수 있다.
또한 최대 부호화 단위는 비트스트림으로부터 획득된 분할 형태 모드 정보에 기초하여 부호화 단위로 계층적으로 분할될 수 있다. 분할 형태 모드 정보로서, 쿼드분할(quad split) 여부를 나타내는 정보, 다분할 여부를 나타내는 정보, 분할 방향 정보 및 분할 타입 정보 중 적어도 하나가 비트스트림으로부터 획득될 수 있다.
예를 들어, 쿼드분할(quad split) 여부를 나타내는 정보는 현재 부호화 단위가 쿼드분할(QUAD_SPLIT)될지 또는 쿼드분할되지 않을지를 나타낼 수 있다.
현재 부호화 단위가 쿼드분할지되 않으면, 다분할 여부를 나타내는 정보는 현재 부호화 단위가 더 이상 분할되지 않을지(NO_SPLIT) 아니면 바이너리/터너리 분할될지 여부를 나타낼 수 있다.
현재 부호화 단위가 바이너리 분할되거나 터너리 분할되면, 분할 방향 정보는 현재 부호화 단위가 수평 방향 또는 수직 방향 중 하나로 분할됨을 나타낸다.
현재 부호화 단위가 수평 또는 수직 방향으로 분할되면 분할 타입 정보는 현재 부호화 단위를 바이너리 분할) 또는 터너리 분할로 분할함을 나타낸다.
분할 방향 정보 및 분할 타입 정보에 따라, 현재 부호화 단위의 분할 모드가 결정될 수 있다. 현재 부호화 단위가 수평 방향으로 바이너리 분할되는 경우의 분할 모드는 바이너리 수평 분할(SPLIT_BT_HOR), 수평 방향으로 터너리 분할되는 경우의 터너리 수평 분할(SPLIT_TT_HOR), 수직 방향으로 바이너리 분할되는 경우의 분할 모드는 바이너리 수직 분할 (SPLIT_BT_VER) 및 수직 방향으로 터너리 분할되는 경우의 분할 모드는 터너리 수직 분할 (SPLIT_BT_VER)로 결정될 수 있다.
영상 복호화 장치(100)는 비트스트림으로부터 분할 형태 모드 정보를 하나의 빈스트링으로부터 획득할 수 있다. 영상 복호화 장치(100)가 수신한 비트스트림의 형태는 Fixed length binary code, Unary code, Truncated unary code, 미리 결정된 바이너리 코드 등을 포함할 수 있다. 빈스트링은 정보를 2진수의 나열로 나타낸 것이다. 빈스트링은 적어도 하나의 비트로 구성될 수 있다. 영상 복호화 장치(100)는 분할 규칙에 기초하여 빈스트링에 대응하는 분할 형태 모드 정보를 획득할 수 있다. 영상 복호화 장치(100)는 하나의 빈스트링에 기초하여, 부호화 단위를 쿼드분할할지 여부, 분할하지 않을지 또는 분할 방향 및 분할 타입을 결정할 수 있다.
부호화 단위는 최대 부호화 단위보다 작거나 같을 수 있다. 예를 들어 최대 부호화 단위도 최대 크기를 가지는 부호화 단위이므로 부호화 단위의 하나이다. 최대 부호화 단위에 대한 분할 형태 모드 정보가 분할되지 않음을 나타내는 경우, 최대 부호화 단위에서 결정되는 부호화 단위는 최대 부호화 단위와 같은 크기를 가진다. 최대 부호화 단위에 대한 분할 형태 모드 정보가 분할됨을 나타내는 경우 최대 부호화 단위는 부호화 단위들로 분할 될 수 있다. 또한 부호화 단위에 대한 분할 형태 모드 정보가 분할을 나타내는 경우 부호화 단위들은 더 작은 크기의 부호화 단위들로 분할 될 수 있다. 다만, 영상의 분할은 이에 한정되는 것은 아니며 최대 부호화 단위 및 부호화 단위는 구별되지 않을 수 있다. 부호화 단위의 분할에 대해서는 도 3 내지 도 16에서 보다 자세히 설명한다.
또한 부호화 단위로부터 예측을 위한 하나 이상의 예측 블록이 결정될 수 있다. 예측 블록은 부호화 단위와 같거나 작을 수 있다. 또한 부호화 단위로부터 변환을 위한 하나 이상의 변환 블록이 결정될 수 있다. 변환 블록은 부호화 단위와 같거나 작을 수 있다.
변환 블록과 예측 블록의 모양 및 크기는 서로 관련 없을 수 있다.
다른 실시예로, 부호화 단위가 예측 블록으로서 부호화 단위를 이용하여 예측이 수행될 수 있다. 또한 부호화 단위가 변환 블록으로서 부호화 단위를 이용하여 변환이 수행될 수 있다.
부호화 단위의 분할에 대해서는 도 3 내지 도 16에서 보다 자세히 설명한다. 본 개시의 현재 블록 및 주변 블록은 최대 부호화 단위, 부호화 단위, 예측 블록 및 변환 블록 중 하나를 나타낼 수 있다. 또한, 현재 블록 또는 현재 부호화 단위는 현재 복호화 또는 부호화가 진행되는 블록 또는 현재 분할이 진행되고 있는 블록이다. 주변 블록은 현재 블록 이전에 복원된 블록일 수 있다. 주변 블록은 현재 블록으로부터 공간적 또는 시간적으로 인접할 수 있다. 주변 블록은 현재 블록의 좌하측, 좌측, 좌상측, 상측, 우상측, 우측, 우하측 중 하나에 위치할 수 있다.
도 3은 일 실시예에 따라 영상 복호화 장치가 현재 부호화 단위를 분할하여 적어도 하나의 부호화 단위를 결정하는 과정을 도시한다.
블록 형태는 4Nx4N, 4Nx2N, 2Nx4N, 4NxN, Nx4N, 32NxN, Nx32N, 16NxN, Nx16N, 8NxN 또는 Nx8N을 포함할 수 있다. 여기서 N은 양의 정수일 수 있다. 블록 형태 정보는 부호화 단위의 모양, 방향, 너비 및 높이의 비율 또는 크기 중 적어도 하나를 나타내는 정보이다.
부호화 단위의 모양은 정사각형(square) 및 비-정사각형(non-square)을 포함할 수 있다. 부호화 단위의 너비 및 높이의 길이가 같은 경우(즉, 부호화 단위의 블록 형태가 4Nx4N 인 경우), 영상 복호화 장치(100)는 부호화 단위의 블록 형태 정보를 정사각형으로 결정할 수 있다. 영상 복호화 장치(100)는 부호화 단위의 모양을 비-정사각형으로 결정할 수 있다.
부호화 단위의 너비 및 높이의 길이가 다른 경우(즉, 부호화 단위의 블록 형태가 4Nx2N, 2Nx4N, 4NxN, Nx4N, 32NxN, Nx32N, 16NxN, Nx16N, 8NxN 또는 Nx8N인 경우), 영상 복호화 장치(100)는 부호화 단위의 블록 형태 정보를 비-정사각형으로 결정할 수 있다. 부호화 단위의 모양이 비-정사각형인 경우, 영상 복호화 장치(100)는 부호화 단위의 블록 형태 정보 중 너비 및 높이의 비율을 1:2, 2:1, 1:4, 4:1, 1:8, 8:1, 1:16, 16:1, 1:32, 32:1 중 적어도 하나로 결정할 수 있다. 또한, 부호화 단위의 너비의 길이 및 높이의 길이에 기초하여, 영상 복호화 장치(100)는 부호화 단위가 수평 방향인지 수직 방향인지 결정할 수 있다. 또한, 부호화 단위의 너비의 길이, 높이의 길이 또는 넓이 중 적어도 하나에 기초하여, 영상 복호화 장치(100)는 부호화 단위의 크기를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 블록 형태 정보를 이용하여 부호화 단위의 형태를 결정할 수 있고, 분할 형태 모드 정보를 이용하여 부호화 단위가 어떤 형태로 분할되는지를 결정할 수 있다. 즉, 영상 복호화 장치(100)가 이용하는 블록 형태 정보가 어떤 블록 형태를 나타내는지에 따라 분할 형태 모드 정보가 나타내는 부호화 단위의 분할 방법이 결정될 수 있다.
영상 복호화 장치(100)는 비트스트림으로부터 분할 형태 모드 정보를 획득할 수 있다. 하지만 이에 한정되는 것은 아니며, 영상 복호화 장치(100) 및 영상 부호화 장치(2200)는 블록 형태 정보에 기초하여 미리 약속된 분할 형태 모드 정보를 결정할 수 있다. 영상 복호화 장치(100)는 최대 부호화 단위 또는 최소 부호화 단위에 대하여 미리 약속된 분할 형태 모드 정보를 결정할 수 있다. 예를 들어 영상 복호화 장치(100)는 최대 부호화 단위에 대하여 분할 형태 모드 정보를 쿼드 분할(quad split)로 결정할 수 있다. 또한, 영상 복호화 장치(100)는 최소 부호화 단위에 대하여 분할 형태 모드 정보를 "분할하지 않음"으로 결정할 수 있다. 구체적으로 영상 복호화 장치(100)는 최대 부호화 단위의 크기를 256x256으로 결정할 수 있다. 영상 복호화 장치(100)는 미리 약속된 분할 형태 모드 정보를 쿼드 분할로 결정할 수 있다. 쿼드 분할은 부호화 단위의 너비 및 높이를 모두 이등분하는 분할 형태 모드이다. 영상 복호화 장치(100)는 분할 형태 모드 정보에 기초하여 256x256 크기의 최대 부호화 단위로부터 128x128 크기의 부호화 단위를 획득할 수 있다. 또한 영상 복호화 장치(100)는 최소 부호화 단위의 크기를 4x4로 결정할 수 있다. 영상 복호화 장치(100)는 최소 부호화 단위에 대하여 "분할하지 않음"을 나타내는 분할 형태 모드 정보를 획득할 수 있다.
일 실시예에 따라, 영상 복호화 장치(100)는 현재 부호화 단위가 정사각형 형태임을 나타내는 블록 형태 정보를 이용할 수 있다. 예를 들어 영상 복호화 장치(100)는 분할 형태 모드 정보에 따라 정사각형의 부호화 단위를 분할하지 않을지, 수직으로 분할할지, 수평으로 분할할지, 4개의 부호화 단위로 분할할지 등을 결정할 수 있다. 도 3을 참조하면, 현재 부호화 단위(300)의 블록 형태 정보가 정사각형의 형태를 나타내는 경우, 복호화부(120)는 분할되지 않음을 나타내는 분할 형태 모드 정보에 따라 현재 부호화 단위(300)와 동일한 크기를 가지는 부호화 단위(310a)를 분할하지 않거나, 소정의 분할방법을 나타내는 분할 형태 모드 정보에 기초하여 분할된 부호화 단위(310b, 310c, 310d, 310e, 310f 등)를 결정할 수 있다.
도 3을 참조하면 영상 복호화 장치(100)는 일 실시예에 따라 수직방향으로 분할됨을 나타내는 분할 형태 모드 정보에 기초하여 현재 부호화 단위(300)를 수직방향으로 분할한 두 개의 부호화 단위(310b)를 결정할 수 있다. 영상 복호화 장치(100)는 수평방향으로 분할됨을 나타내는 분할 형태 모드 정보에 기초하여 현재 부호화 단위(300)를 수평방향으로 분할한 두 개의 부호화 단위(310c)를 결정할 수 있다. 영상 복호화 장치(100)는 수직방향 및 수평방향으로 분할됨을 나타내는 분할 형태 모드 정보에 기초하여 현재 부호화 단위(300)를 수직방향 및 수평방향으로 분할한 네 개의 부호화 단위(310d)를 결정할 수 있다. 영상 복호화 장치(100)는 일 실시예에 따라 수직방향으로 터너리(ternary) 분할됨을 나타내는 분할 형태 모드 정보에 기초하여 현재 부호화 단위(300)를 수직방향으로 분할한 세 개의 부호화 단위(310e)를 결정할 수 있다. 영상 복호화 장치(100)는 수평방향으로 터너리 분할됨을 나타내는 분할 형태 모드 정보에 기초하여 현재 부호화 단위(300)를 수평방향으로 분할한 세 개의 부호화 단위(310f)를 결정할 수 있다. 다만 정사각형의 부호화 단위가 분할될 수 있는 분할 형태는 상술한 형태로 한정하여 해석되어서는 안되고, 분할 형태 모드 정보가 나타낼 수 있는 다양한 형태가 포함될 수 있다. 정사각형의 부호화 단위가 분할되는 소정의 분할 형태들은 이하에서 다양한 실시예를 통해 구체적으로 설명하도록 한다.
도 4는 일 실시예에 따라 영상 복호화 장치가 비-정사각형의 형태인 부호화 단위를 분할하여 적어도 하나의 부호화 단위를 결정하는 과정을 도시한다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 부호화 단위가 비-정사각형 형태임을 나타내는 블록 형태 정보를 이용할 수 있다. 영상 복호화 장치(100)는 분할 형태 모드 정보에 따라 비-정사각형의 현재 부호화 단위를 분할하지 않을지 소정의 방법으로 분할할지 여부를 결정할 수 있다. 도 4를 참조하면, 현재 부호화 단위(400 또는 450)의 블록 형태 정보가 비-정사각형의 형태를 나타내는 경우, 영상 복호화 장치(100)는 분할되지 않음을 나타내는 분할 형태 모드 정보에 따라 현재 부호화 단위(400 또는 450)와 동일한 크기를 가지는 부호화 단위(410 또는 460)를 결정하거나, 소정의 분할방법을 나타내는 분할 형태 모드 정보에 따라 기초하여 분할된 부호화 단위(420a, 420b, 430a, 430b, 430c, 470a, 470b, 480a, 480b, 480c)를 결정할 수 있다. 비-정사각형의 부호화 단위가 분할되는 소정의 분할 방법은 이하에서 다양한 실시예를 통해 구체적으로 설명하도록 한다.
일 실시예에 따라 영상 복호화 장치(100)는 분할 형태 모드 정보를 이용하여 부호화 단위가 분할되는 형태를 결정할 수 있고, 이 경우 분할 형태 모드 정보는 부호화 단위가 분할되어 생성되는 적어도 하나의 부호화 단위의 개수를 나타낼 수 있다. 도 4를 참조하면 분할 형태 모드 정보가 두 개의 부호화 단위로 현재 부호화 단위(400 또는 450)가 분할되는 것을 나타내는 경우, 영상 복호화 장치(100)는 분할 형태 모드 정보에 기초하여 현재 부호화 단위(400 또는 450)를 분할하여 현재 부호화 단위에 포함되는 두 개의 부호화 단위(420a, 420b, 또는 470a, 470b)를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)가 분할 형태 모드 정보에 기초하여 비-정사각형의 형태의 현재 부호화 단위(400 또는 450)를 분할하는 경우, 영상 복호화 장치(100)는 비-정사각형의 현재 부호화 단위(400 또는 450)의 긴 변의 위치를 고려하여 현재 부호화 단위를 분할할 수 있다. 예를 들면, 영상 복호화 장치(100)는 현재 부호화 단위(400 또는 450)의 형태를 고려하여 현재 부호화 단위(400 또는 450)의 긴 변을 분할하는 방향으로 현재 부호화 단위(400 또는 450)를 분할하여 복수개의 부호화 단위를 결정할 수 있다.
일 실시예에 따라, 분할 형태 모드 정보가 홀수개의 블록으로 부호화 단위를 분할(터너리 분할)하는 것을 나타내는 경우, 영상 복호화 장치(100)는 현재 부호화 단위(400 또는 450)에 포함되는 홀수개의 부호화 단위를 결정할 수 있다. 예를 들면, 분할 형태 모드 정보가 3개의 부호화 단위로 현재 부호화 단위(400 또는 450)를 분할하는 것을 나타내는 경우, 영상 복호화 장치(100)는 현재 부호화 단위(400 또는 450)를 3개의 부호화 단위(430a, 430b, 430c, 480a, 480b, 480c)로 분할할 수 있다.
일 실시예에 따라, 현재 부호화 단위(400 또는 450)의 너비 및 높이의 비율이 4:1 또는 1:4 일 수 있다. 너비 및 높이의 비율이 4:1 인 경우, 너비의 길이가 높이의 길이보다 길므로 블록 형태 정보는 수평 방향일 수 있다. 너비 및 높이의 비율이 1:4 인 경우, 너비의 길이가 높이의 길이보다 짧으므로 블록 형태 정보는 수직 방향일 수 있다. 영상 복호화 장치(100)는 분할 형태 모드 정보에 기초하여 현재 부호화 단위를 홀수개의 블록으로 분할할 것을 결정할 수 있다. 또한 영상 복호화 장치(100)는 현재 부호화 단위(400 또는 450)의 블록 형태 정보에 기초하여 현재 부호화 단위(400 또는 450)의 분할 방향을 결정할 수 있다. 예를 들어 현재 부호화 단위(400)가 수직 방향인 경우, 영상 복호화 장치(100)는 현재 부호화 단위(400)를 수평 방향으로 분할 하여 부호화 단위(430a, 430b, 430c)를 결정할 수 있다. 또한 현재 부호화 단위(450)가 수평 방향인 경우, 영상 복호화 장치(100)는 현재 부호화 단위(450)를 수직 방향으로 분할 하여 부호화 단위(480a, 480b, 480c)를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 부호화 단위(400 또는 450)에 포함되는 홀수개의 부호화 단위를 결정할 수 있으며, 결정된 부호화 단위들의 크기 모두가 동일하지는 않을 수 있다. 예를 들면, 결정된 홀수개의 부호화 단위(430a, 430b, 430c, 480a, 480b, 480c) 중 소정의 부호화 단위(430b 또는 480b)의 크기는 다른 부호화 단위(430a, 430c, 480a, 480c)들과는 다른 크기를 가질 수도 있다. 즉, 현재 부호화 단위(400 또는 450)가 분할되어 결정될 수 있는 부호화 단위는 복수의 종류의 크기를 가질 수 있고, 경우에 따라서는 홀수개의 부호화 단위(430a, 430b, 430c, 480a, 480b, 480c)가 각각 서로 다른 크기를 가질 수도 있다.
일 실시예에 따라 분할 형태 모드 정보가 홀수개의 블록으로 부호화 단위가 분할되는 것을 나타내는 경우, 영상 복호화 장치(100)는 현재 부호화 단위(400 또는 450)에 포함되는 홀수개의 부호화 단위를 결정할 수 있고, 나아가 영상 복호화 장치(100)는 분할하여 생성되는 홀수개의 부호화 단위들 중 적어도 하나의 부호화 단위에 대하여 소정의 제한을 둘 수 있다. 도 4을 참조하면 영상 복호화 장치(100)는 현재 부호화 단위(400 또는 450)가 분할되어 생성된 3개의 부호화 단위(430a, 430b, 430c, 480a, 480b, 480c)들 중 중앙에 위치하는 부호화 단위(430b, 480b)에 대한 복호화 과정을 다른 부호화 단위(430a, 430c, 480a, 480c)와 다르게 할 수 있다. 예를 들면, 영상 복호화 장치(100)는 중앙에 위치하는 부호화 단위(430b, 480b)에 대하여는 다른 부호화 단위(430a, 430c, 480a, 480c)와 달리 더 이상 분할되지 않도록 제한하거나, 소정의 횟수만큼만 분할되도록 제한할 수 있다.
도 5는 일 실시예에 따라 영상 복호화 장치가 블록 형태 정보 및 분할 형태 모드 정보 중 적어도 하나에 기초하여 부호화 단위를 분할하는 과정을 도시한다.
일 실시예에 따라 영상 복호화 장치(100)는 블록 형태 정보 및 분할 형태 모드 정보 중 적어도 하나에 기초하여 정사각형 형태의 제1 부호화 단위(500)를 부호화 단위들로 분할하거나 분할하지 않는 것으로 결정할 수 있다. 일 실시예에 따라 분할 형태 모드 정보가 수평 방향으로 제1 부호화 단위(500)를 분할하는 것을 나타내는 경우, 영상 복호화 장치(100)는 제1 부호화 단위(500)를 수평 방향으로 분할하여 제2 부호화 단위(510)를 결정할 수 있다. 일 실시예에 따라 이용되는 제1 부호화 단위, 제2 부호화 단위, 제3 부호화 단위는 부호화 단위 간의 분할 전후 관계를 이해하기 위해 이용된 용어이다. 예를 들면, 제1 부호화 단위를 분할하면 제2 부호화 단위가 결정될 수 있고, 제2 부호화 단위가 분할되면 제3 부호화 단위가 결정될 수 있다. 이하에서는 이용되는 제1 부호화 단위, 제2 부호화 단위 및 제3 부호화 단위의 관계는 상술한 특징에 따르는 것으로 이해될 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 결정된 제2 부호화 단위(510)를 분할 형태 모드 정보에 기초하여 부호화 단위들로 분할하거나 분할하지 않는 것으로 결정할 수 있다. 도 5를 참조하면 영상 복호화 장치(100)는 분할 형태 모드 정보에 기초하여 제1 부호화 단위(500)를 분할하여 결정된 비-정사각형의 형태의 제2 부호화 단위(510)를 적어도 하나의 제3 부호화 단위(520a, 520b, 520c, 520d 등)로 분할하거나 제2 부호화 단위(510)를 분할하지 않을 수 있다. 영상 복호화 장치(100)는 분할 형태 모드 정보를 획득할 수 있고 영상 복호화 장치(100)는 획득한 분할 형태 모드 정보에 기초하여 제1 부호화 단위(500)를 분할하여 다양한 형태의 복수개의 제2 부호화 단위(예를 들면, 510)를 분할할 수 있으며, 제2 부호화 단위(510)는 분할 형태 모드 정보에 기초하여 제1 부호화 단위(500)가 분할된 방식에 따라 분할될 수 있다. 일 실시예에 따라, 제1 부호화 단위(500)가 제1 부호화 단위(500)에 대한 분할 형태 모드 정보에 기초하여 제2 부호화 단위(510)로 분할된 경우, 제2 부호화 단위(510) 역시 제2 부호화 단위(510)에 대한 분할 형태 모드 정보에 기초하여 제3 부호화 단위(예를 들면, 520a, 520b, 520c, 520d 등)으로 분할될 수 있다. 즉, 부호화 단위는 부호화 단위 각각에 관련된 분할 형태 모드 정보에 기초하여 재귀적으로 분할될 수 있다. 따라서 비-정사각형 형태의 부호화 단위에서 정사각형의 부호화 단위가 결정될 수 있고, 이러한 정사각형 형태의 부호화 단위가 재귀적으로 분할되어 비-정사각형 형태의 부호화 단위가 결정될 수도 있다.
도 5를 참조하면, 비-정사각형 형태의 제2 부호화 단위(510)가 분할되어 결정되는 홀수개의 제3 부호화 단위(520b, 520c, 520d) 중 소정의 부호화 단위(예를 들면, 가운데에 위치하는 부호화 단위 또는 정사각형 형태의 부호화 단위)는 재귀적으로 분할될 수 있다. 일 실시예에 따라 홀수개의 제3 부호화 단위(520b, 520c, 520d) 중 하나인 정사각형 형태의 제3 부호화 단위(520b)는 수평 방향으로 분할되어 복수개의 제4 부호화 단위로 분할될 수 있다. 복수개의 제4 부호화 단위(530a, 530b, 530c, 530d) 중 하나인 비-정사각형 형태의 제4 부호화 단위(530b 또는 530d)는 다시 복수개의 부호화 단위들로 분할될 수 있다. 예를 들면, 비-정사각형 형태의 제4 부호화 단위(530b 또는 530d)는 홀수개의 부호화 단위로 다시 분할될 수도 있다. 부호화 단위의 재귀적 분할에 이용될 수 있는 방법에 대하여는 다양한 실시예를 통해 후술하도록 한다.
일 실시예에 따라 영상 복호화 장치(100)는 분할 형태 모드 정보에 기초하여 제3 부호화 단위(520a, 520b, 520c, 520d 등) 각각을 부호화 단위들로 분할할 수 있다. 또한 영상 복호화 장치(100)는 분할 형태 모드 정보에 기초하여 제2 부호화 단위(510)를 분할하지 않는 것으로 결정할 수 있다. 영상 복호화 장치(100)는 일 실시예에 따라 비-정사각형 형태의 제2 부호화 단위(510)를 홀수개의 제3 부호화 단위(520b, 520c, 520d)로 분할할 수 있다. 영상 복호화 장치(100)는 홀수개의 제3 부호화 단위(520b, 520c, 520d) 중 소정의 제3 부호화 단위에 대하여 소정의 제한을 둘 수 있다. 예를 들면 영상 복호화 장치(100)는 홀수개의 제3 부호화 단위(520b, 520c, 520d) 중 가운데에 위치하는 부호화 단위(520c)에 대하여는 더 이상 분할되지 않는 것으로 제한하거나 또는 설정 가능한 횟수로 분할되어야 하는 것으로 제한할 수 있다.
도 5를 참조하면, 영상 복호화 장치(100)는 비-정사각형 형태의 제2 부호화 단위(510)에 포함되는 홀수개의 제3 부호화 단위(520b, 520c, 520d)들 중 가운데에 위치하는 부호화 단위(520c)는 더 이상 분할되지 않거나, 소정의 분할 형태로 분할(예를 들면 4개의 부호화 단위로만 분할하거나 제2 부호화 단위(510)가 분할된 형태에 대응하는 형태로 분할)되는 것으로 제한하거나, 소정의 횟수로만 분할(예를 들면 n회만 분할, n>0)하는 것으로 제한할 수 있다. 다만 가운데에 위치한 부호화 단위(520c)에 대한 상기 제한은 단순한 실시예들에 불과하므로 상술한 실시예들로 제한되어 해석되어서는 안되고, 가운데에 위치한 부호화 단위(520c)가 다른 부호화 단위(520b, 520d)와 다르게 복호화 될 수 있는 다양한 제한들을 포함하는 것으로 해석되어야 한다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 부호화 단위를 분할하기 위해 이용되는 분할 형태 모드 정보를 현재 부호화 단위 내의 소정의 위치에서 획득할 수 있다.
도 6은 일 실시예에 따라 영상 복호화 장치가 홀수개의 부호화 단위들 중 소정의 부호화 단위를 결정하기 위한 방법을 도시한다.
도 6을 참조하면, 현재 부호화 단위(600, 650)의 분할 형태 모드 정보는 현재 부호화 단위(600, 650)에 포함되는 복수개의 샘플 중 소정 위치의 샘플(예를 들면, 가운데에 위치하는 샘플(640, 690))에서 획득될 수 있다. 다만 이러한 분할 형태 모드 정보 중 적어도 하나가 획득될 수 있는 현재 부호화 단위(600) 내의 소정 위치가 도 6에서 도시하는 가운데 위치로 한정하여 해석되어서는 안되고, 소정 위치에는 현재 부호화 단위(600)내에 포함될 수 있는 다양한 위치(예를 들면, 최상단, 최하단, 좌측, 우측, 좌측상단, 좌측하단, 우측상단 또는 우측하단 등)가 포함될 수 있는 것으로 해석되어야 한다. 영상 복호화 장치(100)는 소정 위치로부터 획득되는 분할 형태 모드 정보를 획득하여 현재 부호화 단위를 다양한 형태 및 크기의 부호화 단위들로 분할하거나 분할하지 않는 것으로 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 부호화 단위가 소정의 개수의 부호화 단위들로 분할된 경우 그 중 하나의 부호화 단위를 선택할 수 있다. 복수개의 부호화 단위들 중 하나를 선택하기 위한 방법은 다양할 수 있으며, 이러한 방법들에 대한 설명은 이하의 다양한 실시예를 통해 후술하도록 한다.
일 실시예에 따라 영상 복호화 장치(100) 는 현재 부호화 단위를 복수개의 부호화 단위들로 분할하고, 소정 위치의 부호화 단위를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 홀수개의 부호화 단위들 중 가운데에 위치하는 부호화 단위를 결정하기 위하여 홀수개의 부호화 단위들 각각의 위치를 나타내는 정보를 이용할 수 있다. 도 6을 참조하면, 영상 복호화 장치(100)는 현재 부호화 단위(600) 또는 현재 부호화 단위(650)를 분할하여 홀수개의 부호화 단위들(620a, 620b, 620c) 또는 홀수개의 부호화 단위들(660a, 660b, 660c)을 결정할 수 있다. 영상 복호화 장치(100)는 홀수개의 부호화 단위들(620a, 620b, 620c) 또는 홀수개의 부호화 단위들(660a, 660b, 660c)의 위치에 대한 정보를 이용하여 가운데 부호화 단위(620b)또는 가운데 부호화 단위(660b)를 결정할 수 있다. 예를 들면 영상 복호화 장치(100)는 부호화 단위들(620a, 620b, 620c)에 포함되는 소정의 샘플의 위치를 나타내는 정보에 기초하여 부호화 단위들(620a, 620b, 620c)의 위치를 결정함으로써 가운데에 위치하는 부호화 단위(620b)를 결정할 수 있다. 구체적으로, 영상 복호화 장치(100)는 부호화 단위들(620a, 620b, 620c)의 좌측 상단의 샘플(630a, 630b, 630c)의 위치를 나타내는 정보에 기초하여 부호화 단위들(620a, 620b, 620c)의 위치를 결정함으로써 가운데에 위치하는 부호화 단위(620b)를 결정할 수 있다.
일 실시예에 따라 부호화 단위들(620a, 620b, 620c)에 각각 포함되는 좌측 상단의 샘플(630a, 630b, 630c)의 위치를 나타내는 정보는 부호화 단위들(620a, 620b, 620c)의 픽쳐 내에서의 위치 또는 좌표에 대한 정보를 포함할 수 있다. 일 실시예에 따라 부호화 단위들(620a, 620b, 620c)에 각각 포함되는 좌측 상단의 샘플(630a, 630b, 630c)의 위치를 나타내는 정보는 현재 부호화 단위(600)에 포함되는 부호화 단위들(620a, 620b, 620c)의 너비 또는 높이를 나타내는 정보를 포함할 수 있고, 이러한 너비 또는 높이는 부호화 단위들(620a, 620b, 620c)의 픽쳐 내에서의 좌표 간의 차이를 나타내는 정보에 해당할 수 있다. 즉, 영상 복호화 장치(100)는 부호화 단위들(620a, 620b, 620c)의 픽쳐 내에서의 위치 또는 좌표에 대한 정보를 직접 이용하거나 좌표간의 차이값에 대응하는 부호화 단위의 너비 또는 높이에 대한 정보를 이용함으로써 가운데에 위치하는 부호화 단위(620b)를 결정할 수 있다.
일 실시예에 따라, 상단 부호화 단위(620a)의 좌측 상단의 샘플(630a)의 위치를 나타내는 정보는 (xa, ya) 좌표를 나타낼 수 있고, 가운데 부호화 단위(620b)의 좌측 상단의 샘플(530b)의 위치를 나타내는 정보는 (xb, yb) 좌표를 나타낼 수 있고, 하단 부호화 단위(620c)의 좌측 상단의 샘플(630c)의 위치를 나타내는 정보는 (xc, yc) 좌표를 나타낼 수 있다. 영상 복호화 장치(100)는 부호화 단위들(620a, 620b, 620c)에 각각 포함되는 좌측 상단의 샘플(630a, 630b, 630c)의 좌표를 이용하여 가운데 부호화 단위(620b)를 결정할 수 있다. 예를 들면, 좌측 상단의 샘플(630a, 630b, 630c)의 좌표를 오름차순 또는 내림차순으로 정렬하였을 때, 가운데에 위치하는 샘플(630b)의 좌표인 (xb, yb)를 포함하는 부호화 단위(620b)를 현재 부호화 단위(600)가 분할되어 결정된 부호화 단위들(620a, 620b, 620c) 중 가운데에 위치하는 부호화 단위로 결정할 수 있다. 다만 좌측 상단의 샘플(630a, 630b, 630c)의 위치를 나타내는 좌표는 픽쳐 내에서의 절대적인 위치를 나타내는 좌표를 나타낼 수 있고, 나아가 상단 부호화 단위(620a)의 좌측 상단의 샘플(630a)의 위치를 기준으로, 가운데 부호화 단위(620b)의 좌측 상단의 샘플(630b)의 상대적 위치를 나타내는 정보인 (dxb, dyb)좌표, 하단 부호화 단위(620c)의 좌측 상단의 샘플(630c)의 상대적 위치를 나타내는 정보인 (dxc, dyc)좌표를 이용할 수도 있다. 또한 부호화 단위에 포함되는 샘플의 위치를 나타내는 정보로서 해당 샘플의 좌표를 이용함으로써 소정 위치의 부호화 단위를 결정하는 방법이 상술한 방법으로 한정하여 해석되어서는 안되고, 샘플의 좌표를 이용할 수 있는 다양한 산술적 방법으로 해석되어야 한다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 부호화 단위(600)를 복수개의 부호화 단위들(620a, 620b, 620c)로 분할할 수 있고, 부호화 단위들(620a, 620b, 620c) 중 소정의 기준에 따라 부호화 단위를 선택할 수 있다. 예를 들면, 영상 복호화 장치(100)는 부호화 단위들(620a, 620b, 620c) 중 크기가 다른 부호화 단위(620b)를 선택할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 상단 부호화 단위(620a)의 좌측 상단의 샘플(630a)의 위치를 나타내는 정보인 (xa, ya) 좌표, 가운데 부호화 단위(620b)의 좌측 상단의 샘플(630b)의 위치를 나타내는 정보인 (xb, yb) 좌표, 하단 부호화 단위(620c)의 좌측 상단의 샘플(630c)의 위치를 나타내는 정보인 (xc, yc) 좌표를 이용하여 부호화 단위들(620a, 620b, 620c) 각각의 너비 또는 높이를 결정할 수 있다. 영상 복호화 장치(100)는 부호화 단위들(620a, 620b, 620c)의 위치를 나타내는 좌표인 (xa, ya), (xb, yb), (xc, yc)를 이용하여 부호화 단위들(620a, 620b, 620c) 각각의 크기를 결정할 수 있다. 일 실시예에 따라, 영상 복호화 장치(100)는 상단 부호화 단위(620a)의 너비를 현재 부호화 단위(600)의 너비로 결정할 수 있다. 영상 복호화 장치(100)는 상단 부호화 단위(620a)의 높이를 yb-ya로 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 가운데 부호화 단위(620b)의 너비를 현재 부호화 단위(600)의 너비로 결정할 수 있다. 영상 복호화 장치(100)는 가운데 부호화 단위(620b)의 높이를 yc-yb로 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 하단 부호화 단위의 너비 또는 높이는 현재 부호화 단위의 너비 또는 높이와 상단 부호화 단위(620a) 및 가운데 부호화 단위(620b)의 너비 및 높이를 이용하여 결정할 수 있다. 영상 복호화 장치(100)는 결정된 부호화 단위들(620a, 620b, 620c)의 너비 및 높이에 기초하여 다른 부호화 단위와 다른 크기를 갖는 부호화 단위를 결정할 수 있다. 도 6을 참조하면, 영상 복호화 장치(100)는 상단 부호화 단위(620a) 및 하단 부호화 단위(620c)의 크기와 다른 크기를 가지는 가운데 부호화 단위(620b)를 소정 위치의 부호화 단위로 결정할 수 있다. 다만 상술한 영상 복호화 장치(100)가 다른 부호화 단위와 다른 크기를 갖는 부호화 단위를 결정하는 과정은 샘플 좌표에 기초하여 결정되는 부호화 단위의 크기를 이용하여 소정 위치의 부호화 단위를 결정하는 일 실시예에 불과하므로, 소정의 샘플 좌표에 따라 결정되는 부호화 단위의 크기를 비교하여 소정 위치의 부호화 단위를 결정하는 다양한 과정이 이용될 수 있다.
영상 복호화 장치(100)는 좌측 부호화 단위(660a)의 좌측 상단의 샘플(670a)의 위치를 나타내는 정보인 (xd, yd) 좌표, 가운데 부호화 단위(660b)의 좌측 상단의 샘플(670b)의 위치를 나타내는 정보인 (xe, ye) 좌표, 우측 부호화 단위(660c)의 좌측 상단의 샘플(670c)의 위치를 나타내는 정보인 (xf, yf) 좌표를 이용하여 부호화 단위들(660a, 660b, 660c) 각각의 너비 또는 높이를 결정할 수 있다. 영상 복호화 장치(100)는 부호화 단위들(660a, 660b, 660c)의 위치를 나타내는 좌표인 (xd, yd), (xe, ye), (xf, yf)를 이용하여 부호화 단위들(660a, 660b, 660c) 각각의 크기를 결정할 수 있다.
일 실시예에 따라, 영상 복호화 장치(100)는 좌측 부호화 단위(660a)의 너비를 xe-xd로 결정할 수 있다. 영상 복호화 장치(100)는 좌측 부호화 단위(660a)의 높이를 현재 부호화 단위(650)의 높이로 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 가운데 부호화 단위(660b)의 너비를 xf-xe로 결정할 수 있다. 영상 복호화 장치(100)는 가운데 부호화 단위(660b)의 높이를 현재 부호화 단위(600)의 높이로 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 우측 부호화 단위(660c)의 너비 또는 높이는 현재 부호화 단위(650)의 너비 또는 높이와 좌측 부호화 단위(660a) 및 가운데 부호화 단위(660b)의 너비 및 높이를 이용하여 결정할 수 있다. 영상 복호화 장치(100)는 결정된 부호화 단위들(660a, 660b, 660c)의 너비 및 높이에 기초하여 다른 부호화 단위와 다른 크기를 갖는 부호화 단위를 결정할 수 있다. 도 6을 참조하면, 영상 복호화 장치(100)는 좌측 부호화 단위(660a) 및 우측 부호화 단위(660c)의 크기와 다른 크기를 가지는 가운데 부호화 단위(660b)를 소정 위치의 부호화 단위로 결정할 수 있다. 다만 상술한 영상 복호화 장치(100)가 다른 부호화 단위와 다른 크기를 갖는 부호화 단위를 결정하는 과정은 샘플 좌표에 기초하여 결정되는 부호화 단위의 크기를 이용하여 소정 위치의 부호화 단위를 결정하는 일 실시예에 불과하므로, 소정의 샘플 좌표에 따라 결정되는 부호화 단위의 크기를 비교하여 소정 위치의 부호화 단위를 결정하는 다양한 과정이 이용될 수 있다.
다만 부호화 단위의 위치를 결정하기 위하여 고려하는 샘플의 위치는 상술한 좌측 상단으로 한정하여 해석되어서는 안되고 부호화 단위에 포함되는 임의의 샘플의 위치에 대한 정보가 이용될 수 있는 것으로 해석될 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 부호화 단위의 형태를 고려하여, 현재 부호화 단위가 분할되어 결정되는 홀수개의 부호화 단위들 중 소정 위치의 부호화 단위를 선택할 수 있다. 예를 들면, 현재 부호화 단위가 너비가 높이보다 긴 비-정사각형 형태라면 영상 복호화 장치(100)는 수평 방향에 따라 소정 위치의 부호화 단위를 결정할 수 있다. 즉, 영상 복호화 장치(100)는 수평 방향으로 위치를 달리 하는 부호화 단위들 중 하나를 결정하여 해당 부호화 단위에 대한 제한을 둘 수 있다. 현재 부호화 단위가 높이가 너비보다 긴 비-정사각형 형태라면 영상 복호화 장치(100)는 수직 방향에 따라 소정 위치의 부호화 단위를 결정할 수 있다. 즉, 영상 복호화 장치(100)는 수직 방향으로 위치를 달리 하는 부호화 단위들 중 하나를 결정하여 해당 부호화 단위에 대한 제한을 둘 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 짝수개의 부호화 단위들 중 소정 위치의 부호화 단위를 결정하기 위하여 짝수개의 부호화 단위들 각각의 위치를 나타내는 정보를 이용할 수 있다. 영상 복호화 장치(100)는 현재 부호화 단위를 분할(바이너리 분할)하여 짝수개의 부호화 단위들을 결정할 수 있고 짝수개의 부호화 단위들의 위치에 대한 정보를 이용하여 소정 위치의 부호화 단위를 결정할 수 있다. 이에 대한 구체적인 과정은 도 6에서 상술한 홀수개의 부호화 단위들 중 소정 위치(예를 들면, 가운데 위치)의 부호화 단위를 결정하는 과정에 대응하는 과정일 수 있으므로 생략하도록 한다.
일 실시예에 따라, 비-정사각형 형태의 현재 부호화 단위를 복수개의 부호화 단위로 분할한 경우, 복수개의 부호화 단위들 중 소정 위치의 부호화 단위를 결정하기 위하여 분할 과정에서 소정 위치의 부호화 단위에 대한 소정의 정보를 이용할 수 있다. 예를 들면 영상 복호화 장치(100)는 현재 부호화 단위가 복수개로 분할된 부호화 단위들 중 가운데에 위치하는 부호화 단위를 결정하기 위하여 분할 과정에서 가운데 부호화 단위에 포함된 샘플에 저장된 블록 형태 정보 및 분할 형태 모드 정보 중 적어도 하나를 이용할 수 있다.
도 6을 참조하면 영상 복호화 장치(100)는 분할 형태 모드 정보에 기초하여 현재 부호화 단위(600)를 복수개의 부호화 단위들(620a, 620b, 620c)로 분할할 수 있으며, 복수개의 부호화 단위들(620a, 620b, 620c) 중 가운데에 위치하는 부호화 단위(620b)를 결정할 수 있다. 나아가 영상 복호화 장치(100)는 분할 형태 모드 정보가 획득되는 위치를 고려하여, 가운데에 위치하는 부호화 단위(620b)를 결정할 수 있다. 즉, 현재 부호화 단위(600)의 분할 형태 모드 정보는 현재 부호화 단위(600)의 가운데에 위치하는 샘플(640)에서 획득될 수 있으며, 상기 분할 형태 모드 정보에 기초하여 현재 부호화 단위(600)가 복수개의 부호화 단위들(620a, 620b, 620c)로 분할된 경우 상기 샘플(640)을 포함하는 부호화 단위(620b)를 가운데에 위치하는 부호화 단위로 결정할 수 있다. 다만 가운데에 위치하는 부호화 단위로 결정하기 위해 이용되는 정보가 분할 형태 모드 정보로 한정하여 해석되어서는 안되고, 다양한 종류의 정보가 가운데에 위치하는 부호화 단위를 결정하는 과정에서 이용될 수 있다.
일 실시예에 따라 소정 위치의 부호화 단위를 식별하기 위한 소정의 정보는, 결정하려는 부호화 단위에 포함되는 소정의 샘플에서 획득될 수 있다. 도 6을 참조하면, 영상 복호화 장치(100)는 현재 부호화 단위(600)가 분할되어 결정된 복수개의 부호화 단위들(620a, 620b, 620c) 중 소정 위치의 부호화 단위(예를 들면, 복수개로 분할된 부호화 단위 중 가운데에 위치하는 부호화 단위)를 결정하기 위하여 현재 부호화 단위(600) 내의 소정 위치의 샘플(예를 들면, 현재 부호화 단위(600)의 가운데에 위치하는 샘플)에서 획득되는 분할 형태 모드 정보를 이용할 수 있다. 즉, 영상 복호화 장치(100)는 현재 부호화 단위(600)의 블록 형태를 고려하여 상기 소정 위치의 샘플을 결정할 수 있고, 영상 복호화 장치(100)는 현재 부호화 단위(600)가 분할되어 결정되는 복수개의 부호화 단위들(620a, 620b, 620c) 중, 소정의 정보(예를 들면, 분할 형태 모드 정보)가 획득될 수 있는 샘플이 포함된 부호화 단위(620b)를 결정하여 소정의 제한을 둘 수 있다. 도 6을 참조하면 일 실시예에 따라 영상 복호화 장치(100)는 소정의 정보가 획득될 수 있는 샘플로서 현재 부호화 단위(600)의 가운데에 위치하는 샘플(640)을 결정할 수 있고, 영상 복호화 장치(100)는 이러한 샘플(640)이 포함되는 부호화 단위(620b)를 복호화 과정에서의 소정의 제한을 둘 수 있다. 다만 소정의 정보가 획득될 수 있는 샘플의 위치는 상술한 위치로 한정하여 해석되어서는 안되고, 제한을 두기 위해 결정하려는 부호화 단위(620b)에 포함되는 임의의 위치의 샘플들로 해석될 수 있다.
일 실시예에 따라 소정의 정보가 획득될 수 있는 샘플의 위치는 현재 부호화 단위(600)의 형태에 따라 결정될 수 있다. 일 실시예에 따라 블록 형태 정보는 현재 부호화 단위의 형태가 정사각형인지 또는 비-정사각형인지 여부를 결정할 수 있고, 형태에 따라 소정의 정보가 획득될 수 있는 샘플의 위치를 결정할 수 있다. 예를 들면, 영상 복호화 장치(100)는 현재 부호화 단위의 너비에 대한 정보 및 높이에 대한 정보 중 적어도 하나를 이용하여 현재 부호화 단위의 너비 및 높이 중 적어도 하나를 반으로 분할하는 경계 상에 위치하는 샘플을 소정의 정보가 획득될 수 있는 샘플로 결정할 수 있다. 또다른 예를 들면, 영상 복호화 장치(100)는 현재 부호화 단위에 관련된 블록 형태 정보가 비-정사각형 형태임을 나타내는 경우, 현재 부호화 단위의 긴 변을 반으로 분할하는 경계에 인접하는 샘플 중 하나를 소정의 정보가 획득될 수 있는 샘플로 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 부호화 단위를 복수개의 부호화 단위로 분할한 경우, 복수개의 부호화 단위들 중 소정 위치의 부호화 단위를 결정하기 위하여, 분할 형태 모드 정보를 이용할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 분할 형태 모드 정보를 부호화 단위에 포함된 소정 위치의 샘플에서 획득할 수 있고, 영상 복호화 장치(100)는 현재 부호화 단위가 분할되어 생성된 복수개의 부호화 단위들을 복수개의 부호화 단위 각각에 포함된 소정 위치의 샘플로부터 획득되는 분할 형태 모드 정보를 이용하여 분할할 수 있다. 즉, 부호화 단위는 부호화 단위 각각에 포함된 소정 위치의 샘플에서 획득되는 분할 형태 모드 정보를 이용하여 재귀적으로 분할될 수 있다. 부호화 단위의 재귀적 분할 과정에 대하여는 도 5를 통해 상술하였으므로 자세한 설명은 생략하도록 한다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 부호화 단위를 분할하여 적어도 하나의 부호화 단위를 결정할 수 있고, 이러한 적어도 하나의 부호화 단위가 복호화되는 순서를 소정의 블록(예를 들면, 현재 부호화 단위)에 따라 결정할 수 있다.
도 7는 일 실시예에 따라 영상 복호화 장치가 현재 부호화 단위를 분할하여 복수개의 부호화 단위들을 결정하는 경우, 복수개의 부호화 단위들이 처리되는 순서를 도시한다.
일 실시예에 따라 영상 복호화 장치(100)는 분할 형태 모드 정보에 따라 제1 부호화 단위(700)를 수직 방향으로 분할하여 제2 부호화 단위(710a, 710b)를 결정하거나 제1 부호화 단위(700)를 수평 방향으로 분할하여 제2 부호화 단위(730a, 730b)를 결정하거나 제1 부호화 단위(700)를 수직 방향 및 수평 방향으로 분할하여 제2 부호화 단위(750a, 750b, 750c, 750d)를 결정할 수 있다.
도 7를 참조하면, 영상 복호화 장치(100)는 제1 부호화 단위(700)를 수직 방향으로 분할하여 결정된 제2 부호화 단위(710a, 710b)를 수평 방향(710c)으로 처리되도록 순서를 결정할 수 있다. 영상 복호화 장치(100)는 제1 부호화 단위(700)를 수평 방향으로 분할하여 결정된 제2 부호화 단위(730a, 730b)의 처리 순서를 수직 방향(730c)으로 결정할 수 있다. 영상 복호화 장치(100)는 제1 부호화 단위(700)를 수직 방향 및 수평 방향으로 분할하여 결정된 제2 부호화 단위(750a, 750b, 750c, 750d)를 하나의 행에 위치하는 부호화 단위들이 처리된 후 다음 행에 위치하는 부호화 단위들이 처리되는 소정의 순서(예를 들면, 래스터 스캔 순서((raster scan order) 또는 z 스캔 순서(z scan order)(750e) 등)에 따라 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 부호화 단위들을 재귀적으로 분할할 수 있다. 도 7를 참조하면, 영상 복호화 장치(100)는 제1 부호화 단위(700)를 분할하여 복수개의 부호화 단위들(710a, 710b, 730a, 730b, 750a, 750b, 750c, 750d)을 결정할 수 있고, 결정된 복수개의 부호화 단위들(710a, 710b, 730a, 730b, 750a, 750b, 750c, 750d) 각각을 재귀적으로 분할할 수 있다. 복수개의 부호화 단위들(710a, 710b, 730a, 730b, 750a, 750b, 750c, 750d)을 분할하는 방법은 제1 부호화 단위(700)를 분할하는 방법에 대응하는 방법이 될 수 있다. 이에 따라 복수개의 부호화 단위들(710a, 710b, 730a, 730b, 750a, 750b, 750c, 750d)은 각각 독립적으로 복수개의 부호화 단위들로 분할될 수 있다. 도 7를 참조하면 영상 복호화 장치(100)는 제1 부호화 단위(700)를 수직 방향으로 분할하여 제2 부호화 단위(710a, 710b)를 결정할 수 있고, 나아가 제2 부호화 단위(710a, 710b) 각각을 독립적으로 분할하거나 분할하지 않는 것으로 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 좌측의 제2 부호화 단위(710a)를 수평 방향으로 분할하여 제3 부호화 단위(720a, 720b)로 분할할 수 있고, 우측의 제2 부호화 단위(710b)는 분할하지 않을 수 있다.
일 실시예에 따라 부호화 단위들의 처리 순서는 부호화 단위의 분할 과정에 기초하여 결정될 수 있다. 다시 말해, 분할된 부호화 단위들의 처리 순서는 분할되기 직전의 부호화 단위들의 처리 순서에 기초하여 결정될 수 있다. 영상 복호화 장치(100)는 좌측의 제2 부호화 단위(710a)가 분할되어 결정된 제3 부호화 단위(720a, 720b)가 처리되는 순서를 우측의 제2 부호화 단위(710b)와 독립적으로 결정할 수 있다. 좌측의 제2 부호화 단위(710a)가 수평 방향으로 분할되어 제3 부호화 단위(720a, 720b)가 결정되었으므로 제3 부호화 단위(720a, 720b)는 수직 방향(720c)으로 처리될 수 있다. 또한 좌측의 제2 부호화 단위(710a) 및 우측의 제2 부호화 단위(710b)가 처리되는 순서는 수평 방향(710c)에 해당하므로, 좌측의 제2 부호화 단위(710a)에 포함되는 제3 부호화 단위(720a, 720b)가 수직 방향(720c)으로 처리된 후에 우측 부호화 단위(710b)가 처리될 수 있다. 상술한 내용은 부호화 단위들이 각각 분할 전의 부호화 단위에 따라 처리 순서가 결정되는 과정을 설명하기 위한 것이므로, 상술한 실시예에 한정하여 해석되어서는 안되고, 다양한 형태로 분할되어 결정되는 부호화 단위들이 소정의 순서에 따라 독립적으로 처리될 수 있는 다양한 방법으로 이용되는 것으로 해석되어야 한다.
도 8는 일 실시예에 따라 영상 복호화 장치가 소정의 순서로 부호화 단위가 처리될 수 없는 경우, 현재 부호화 단위가 홀수개의 부호화 단위로 분할되는 것임을 결정하는 과정을 도시한다.
일 실시예에 따라 영상 복호화 장치(100)는 획득된 분할 형태 모드 정보에 기초하여 현재 부호화 단위가 홀수개의 부호화 단위들로 분할되는 것을 결정할 수 있다. 도 8를 참조하면 정사각형 형태의 제1 부호화 단위(800)가 비-정사각형 형태의 제2 부호화 단위(810a, 810b)로 분할될 수 있고, 제2 부호화 단위(810a, 810b)는 각각 독립적으로 제3 부호화 단위(820a, 820b, 820c, 820d, 820e)로 분할될 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 제2 부호화 단위 중 좌측 부호화 단위(810a)는 수평 방향으로 분할하여 복수개의 제3 부호화 단위(820a, 820b)를 결정할 수 있고, 우측 부호화 단위(810b)는 홀수개의 제3 부호화 단위(820c, 820d, 820e)로 분할할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 제3 부호화 단위들(820a, 820b, 820c, 820d, 820e)이 소정의 순서로 처리될 수 있는지 여부를 판단하여 홀수개로 분할된 부호화 단위가 존재하는지를 결정할 수 있다. 도 8를 참조하면, 영상 복호화 장치(100)는 제1 부호화 단위(800)를 재귀적으로 분할하여 제3 부호화 단위(820a, 820b, 820c, 820d, 820e)를 결정할 수 있다. 영상 복호화 장치(100)는 블록 형태 정보 및 분할 형태 모드 정보 중 적어도 하나에 기초하여, 제1 부호화 단위(800), 제2 부호화 단위(810a, 810b) 또는 제3 부호화 단위(820a, 820b, 820c, 820d, 820e)가 분할되는 형태 중 홀수개의 부호화 단위로 분할되는지 여부를 결정할 수 있다. 예를 들면, 제2 부호화 단위(810a, 810b) 중 우측에 위치하는 부호화 단위가 홀수개의 제3 부호화 단위(820c, 820d, 820e)로 분할될 수 있다. 제1 부호화 단위(800)에 포함되는 복수개의 부호화 단위들이 처리되는 순서는 소정의 순서(예를 들면, z-스캔 순서(z-scan order)(830))가 될 수 있고, 영상 복호화 장치(100)는 우측 제2 부호화 단위(810b)가 홀수개로 분할되어 결정된 제3 부호화 단위(820c, 820d, 820e)가 상기 소정의 순서에 따라 처리될 수 있는 조건을 만족하는지를 판단할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 제1 부호화 단위(800)에 포함되는 제3 부호화 단위(820a, 820b, 820c, 820d, 820e)가 소정의 순서에 따라 처리될 수 있는 조건을 만족하는지를 결정할 수 있으며, 상기 조건은 제3 부호화 단위(820a, 820b, 820c, 820d, 820e)의 경계에 따라 제2 부호화 단위(810a, 810b)의 너비 및 높이 중 적어도 하나를 반으로 분할되는지 여부와 관련된다. 예를 들면 비-정사각형 형태의 좌측 제2 부호화 단위(810a)의 높이를 반으로 분할하여 결정되는 제3 부호화 단위(820a, 820b)는 조건을 만족할 수 있다. 우측 제2 부호화 단위(810b)를 3개의 부호화 단위로 분할하여 결정되는 제3 부호화 단위(820c, 820d, 820e)들의 경계가 우측 제2 부호화 단위(810b)의 너비 또는 높이를 반으로 분할하지 못하므로 제3 부호화 단위(820c, 820d, 820e)는 조건을 만족하지 못하는 것으로 결정될 수 있다. 영상 복호화 장치(100)는 이러한 조건 불만족의 경우 스캔 순서의 단절(disconnection)로 판단하고, 판단 결과에 기초하여 우측 제2 부호화 단위(810b)는 홀수개의 부호화 단위로 분할되는 것으로 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 홀수개의 부호화 단위로 분할되는 경우 분할된 부호화 단위들 중 소정 위치의 부호화 단위에 대하여 소정의 제한을 둘 수 있으며, 이러한 제한 내용 또는 소정 위치 등에 대하여는 다양한 실시예를 통해 상술하였으므로 자세한 설명은 생략하도록 한다.
도 9은 일 실시예에 따라 영상 복호화 장치가 제1 부호화 단위를 분할하여 적어도 하나의 부호화 단위를 결정하는 과정을 도시한다.
일 실시예에 따라 영상 복호화 장치(100)는 수신부(110)를 통해 획득한 분할 형태 모드 정보에 기초하여 제1 부호화 단위(900)를 분할할 수 있다. 정사각형 형태의 제1 부호화 단위(900)는 4개의 정사각형 형태를 가지는 부호화 단위로 분할되거나 또는 비-정사각형 형태의 복수개의 부호화 단위로 분할할 수 있다. 예를 들면 도 9을 참조하면, 제1 부호화 단위(900)는 정사각형이고 분할 형태 모드 정보가 비-정사각형의 부호화 단위로 분할됨을 나타내는 경우 영상 복호화 장치(100)는 제1 부호화 단위(900)를 복수개의 비-정사각형의 부호화 단위들로 분할할 수 있다. 구체적으로, 분할 형태 모드 정보가 제1 부호화 단위(900)를 수평 방향 또는 수직 방향으로 분할하여 홀수개의 부호화 단위를 결정하는 것을 나타내는 경우, 영상 복호화 장치(100)는 정사각형 형태의 제1 부호화 단위(900)를 홀수개의 부호화 단위들로서 수직 방향으로 분할되어 결정된 제2 부호화 단위(910a, 910b, 910c) 또는 수평 방향으로 분할되어 결정된 제2 부호화 단위(920a, 920b, 920c)로 분할할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 제1 부호화 단위(900)에 포함되는 제2 부호화 단위(910a, 910b, 910c, 920a, 920b, 920c)가 소정의 순서에 따라 처리될 수 있는 조건을 만족하는지를 결정할 수 있으며, 상기 조건은 제2 부호화 단위(910a, 910b, 910c, 920a, 920b, 920c)의 경계에 따라 제1 부호화 단위(900)의 너비 및 높이 중 적어도 하나를 반으로 분할되는지 여부와 관련된다. 도 9를 참조하면 정사각형 형태의 제1 부호화 단위(900)를 수직 방향으로 분할하여 결정되는 제2 부호화 단위(910a, 910b, 910c)들의 경계가 제1 부호화 단위(900)의 너비를 반으로 분할하지 못하므로 제1 부호화 단위(900)는 소정의 순서에 따라 처리될 수 있는 조건을 만족하지 못하는 것으로 결정될 수 있다. 또한 정사각형 형태의 제1 부호화 단위(900)를 수평 방향으로 분할하여 결정되는 제2 부호화 단위(920a, 920b, 920c)들의 경계가 제1 부호화 단위(900)의 너비를 반으로 분할하지 못하므로 제1 부호화 단위(900)는 소정의 순서에 따라 처리될 수 있는 조건을 만족하지 못하는 것으로 결정될 수 있다. 영상 복호화 장치(100)는 이러한 조건 불만족의 경우 스캔 순서의 단절(disconnection)로 판단하고, 판단 결과에 기초하여 제1 부호화 단위(900)는 홀수개의 부호화 단위로 분할되는 것으로 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 홀수개의 부호화 단위로 분할되는 경우 분할된 부호화 단위들 중 소정 위치의 부호화 단위에 대하여 소정의 제한을 둘 수 있으며, 이러한 제한 내용 또는 소정 위치 등에 대하여는 다양한 실시예를 통해 상술하였으므로 자세한 설명은 생략하도록 한다.
일 실시예에 따라, 영상 복호화 장치(100)는 제1 부호화 단위를 분할하여 다양한 형태의 부호화 단위들을 결정할 수 있다.
도 9을 참조하면, 영상 복호화 장치(100)는 정사각형 형태의 제1 부호화 단위(900), 비-정사각형 형태의 제1 부호화 단위(930 또는 950)를 다양한 형태의 부호화 단위들로 분할할 수 있다.
도 10은 일 실시예에 따라 영상 복호화 장치가 제1 부호화 단위가 분할되어 결정된 비-정사각형 형태의 제2 부호화 단위가 소정의 조건을 만족하는 경우 제2 부호화 단위가 분할될 수 있는 형태가 제한되는 것을 도시한다.
일 실시예에 따라 영상 복호화 장치(100)는 수신부(110)를 통해 획득한 분할 형태 모드 정보에 기초하여 정사각형 형태의 제1 부호화 단위(1000)를 비-정사각형 형태의 제2 부호화 단위(1010a, 1010b, 1020a, 1020b)로 분할하는 것으로 결정할 수 있다. 제2 부호화 단위(1010a, 1010b, 1020a, 1020b)는 독립적으로 분할될 수 있다. 이에 따라 영상 복호화 장치(100)는 제2 부호화 단위(1010a, 1010b, 1020a, 1020b) 각각에 관련된 분할 형태 모드 정보에 기초하여 복수개의 부호화 단위로 분할하거나 분할하지 않는 것을 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 수직 방향으로 제1 부호화 단위(1000)가 분할되어 결정된 비-정사각형 형태의 좌측 제2 부호화 단위(1010a)를 수평 방향으로 분할하여 제3 부호화 단위(1012a, 1012b)를 결정할 수 있다. 다만 영상 복호화 장치(100)는 좌측 제2 부호화 단위(1010a)를 수평 방향으로 분할한 경우, 우측 제2 부호화 단위(1010b)는 좌측 제2 부호화 단위(1010a)가 분할된 방향과 동일하게 수평 방향으로 분할될 수 없도록 제한할 수 있다. 만일 우측 제2 부호화 단위(1010b)가 동일한 방향으로 분할되어 제3 부호화 단위(1014a, 1014b)가 결정된 경우, 좌측 제2 부호화 단위(1010a) 및 우측 제2 부호화 단위(1010b)가 수평 방향으로 각각 독립적으로 분할됨으로써 제3 부호화 단위(1012a, 1012b, 1014a, 1014b)가 결정될 수 있다. 하지만 이는 영상 복호화 장치(100)가 분할 형태 모드 정보에 기초하여 제1 부호화 단위(1000)를 4개의 정사각형 형태의 제2 부호화 단위(1030a, 1030b, 1030c, 1030d)로 분할한 것과 동일한 결과이며 이는 영상 복호화 측면에서 비효율적일 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 수평 방향으로 제1 부호화 단위(1000)가 분할되어 결정된 비-정사각형 형태의 제2 부호화 단위(1020a 또는 1020b)를 수직 방향으로 분할하여 제3 부호화 단위(1022a, 1022b, 1024a, 1024b)를 결정할 수 있다. 다만 영상 복호화 장치(100)는 제2 부호화 단위 중 하나(예를 들면 상단 제2 부호화 단위(1020a))를 수직 방향으로 분할한 경우, 상술한 이유에 따라 다른 제2 부호화 단위(예를 들면 하단 부호화 단위(1020b))는 상단 제2 부호화 단위(1020a)가 분할된 방향과 동일하게 수직 방향으로 분할될 수 없도록 제한할 수 있다.
도 11은 일 실시예에 따라 분할 형태 모드 정보가 4개의 정사각형 형태의 부호화 단위로 분할하는 것을 나타낼 수 없는 경우, 영상 복호화 장치가 정사각형 형태의 부호화 단위를 분할하는 과정을 도시한다.
일 실시예에 따라 영상 복호화 장치(100)는 분할 형태 모드 정보에 기초하여 제1 부호화 단위(1100)를 분할하여 제2 부호화 단위(1110a, 1110b, 1120a, 1120b 등)를 결정할 수 있다. 분할 형태 모드 정보에는 부호화 단위가 분할될 수 있는 다양한 형태에 대한 정보가 포함될 수 있으나, 다양한 형태에 대한 정보에는 정사각형 형태의 4개의 부호화 단위로 분할하기 위한 정보가 포함될 수 없는 경우가 있다. 이러한 분할 형태 모드 정보에 따르면, 영상 복호화 장치(100)는 정사각형 형태의 제1 부호화 단위(1100)를 4개의 정사각형 형태의 제2 부호화 단위(1130a, 1130b, 1130c, 1130d)로 분할하지 못한다. 분할 형태 모드 정보에 기초하여 영상 복호화 장치(100)는 비-정사각형 형태의 제2 부호화 단위(1110a, 1110b, 1120a, 1120b 등)를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 비-정사각형 형태의 제2 부호화 단위(1110a, 1110b, 1120a, 1120b 등)를 각각 독립적으로 분할할 수 있다. 재귀적인 방법을 통해 제2 부호화 단위(1110a, 1110b, 1120a, 1120b 등) 각각이 소정의 순서대로 분할될 수 있으며, 이는 분할 형태 모드 정보에 기초하여 제1 부호화 단위(1100)가 분할되는 방법에 대응하는 분할 방법일 수 있다.
예를 들면 영상 복호화 장치(100)는 좌측 제2 부호화 단위(1110a)가 수평 방향으로 분할되어 정사각형 형태의 제3 부호화 단위(1112a, 1112b)를 결정할 수 있고, 우측 제2 부호화 단위(1110b)가 수평 방향으로 분할되어 정사각형 형태의 제3 부호화 단위(1114a, 1114b)를 결정할 수 있다. 나아가 영상 복호화 장치(100)는 좌측 제2 부호화 단위(1110a) 및 우측 제2 부호화 단위(1110b) 모두 수평 방향으로 분할되어 정사각형 형태의 제3 부호화 단위(1116a, 1116b, 1116c, 1116d)를 결정할 수도 있다. 이러한 경우 제1 부호화 단위(1100)가 4개의 정사각형 형태의 제2 부호화 단위(1130a, 1130b, 1130c, 1130d)로 분할된 것과 동일한 형태로 부호화 단위가 결정될 수 있다.
또 다른 예를 들면 영상 복호화 장치(100)는 상단 제2 부호화 단위(1120a)가 수직 방향으로 분할되어 정사각형 형태의 제3 부호화 단위(1122a, 1122b)를 결정할 수 있고, 하단 제2 부호화 단위(1120b)가 수직 방향으로 분할되어 정사각형 형태의 제3 부호화 단위(1124a, 1124b)를 결정할 수 있다. 나아가 영상 복호화 장치(100)는 상단 제2 부호화 단위(1120a) 및 하단 제2 부호화 단위(1120b) 모두 수직 방향으로 분할되어 정사각형 형태의 제3 부호화 단위(1126a, 1126b, 1126a, 1126b)를 결정할 수도 있다. 이러한 경우 제1 부호화 단위(1100)가 4개의 정사각형 형태의 제2 부호화 단위(1130a, 1130b, 1130c, 1130d)로 분할된 것과 동일한 형태로 부호화 단위가 결정될 수 있다.
도 12는 일 실시예에 따라 복수개의 부호화 단위들 간의 처리 순서가 부호화 단위의 분할 과정에 따라 달라질 수 있음을 도시한 것이다.
일 실시예에 따라 영상 복호화 장치(100)는 분할 형태 모드 정보에 기초하여 제1 부호화 단위(1200)를 분할할 수 있다. 블록 형태가 정사각형이고, 분할 형태 모드 정보가 제1 부호화 단위(1200)가 수평 방향 및 수직 방향 중 적어도 하나의 방향으로 분할됨을 나타내는 경우, 영상 복호화 장치(100)는 제1 부호화 단위(1200)를 분할하여 제2 부호화 단위(예를 들면, 1210a, 1210b, 1220a, 1220b 등)를 결정할 수 있다. 도 12를 참조하면 제1 부호화 단위1200)가 수평 방향 또는 수직 방향만으로 분할되어 결정된 비-정사각형 형태의 제2 부호화 단위(1210a, 1210b, 1220a, 1220b)는 각각에 대한 분할 형태 모드 정보에 기초하여 독립적으로 분할될 수 있다. 예를 들면 영상 복호화 장치(100)는 제1 부호화 단위(1200)가 수직 방향으로 분할되어 생성된 제2 부호화 단위(1210a, 1210b)를 수평 방향으로 각각 분할하여 제3 부호화 단위(1216a, 1216b, 1216c, 1216d)를 결정할 수 있고, 제1 부호화 단위(1200)가 수평 방향으로 분할되어 생성된 제2 부호화 단위(1220a, 1220b)를 수평 방향으로 각각 분할하여 제3 부호화 단위(1226a, 1226b, 1226c, 1226d)를 결정할 수 있다. 이러한 제2 부호화 단위(1210a, 1210b, 1220a, 1220b)의 분할 과정은 도 11과 관련하여 상술하였으므로 자세한 설명은 생략하도록 한다.
일 실시예에 따라 영상 복호화 장치(100)는 소정의 순서에 따라 부호화 단위를 처리할 수 있다. 소정의 순서에 따른 부호화 단위의 처리에 대한 특징은 도 7와 관련하여 상술하였으므로 자세한 설명은 생략하도록 한다. 도 12를 참조하면 영상 복호화 장치(100)는 정사각형 형태의 제1 부호화 단위(1200)를 분할하여 4개의 정사각형 형태의 제3 부호화 단위(1216a, 1216b, 1216c, 1216d, 1226a, 1226b, 1226c, 1226d)를 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 제1 부호화 단위(1200)가 분할되는 형태에 따라 제3 부호화 단위(1216a, 1216b, 1216c, 1216d, 1226a, 1226b, 1226c, 1226d)의 처리 순서를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 수직 방향으로 분할되어 생성된 제2 부호화 단위(1210a, 1210b)를 수평 방향으로 각각 분할하여 제3 부호화 단위(1216a, 1216b, 1216c, 1216d)를 결정할 수 있고, 영상 복호화 장치(100)는 좌측 제2 부호화 단위(1210a)에 포함되는 제3 부호화 단위(1216a, 1216c)를 수직 방향으로 먼저 처리한 후, 우측 제2 부호화 단위(1210b)에 포함되는 제3 부호화 단위(1216b, 1216d)를 수직 방향으로 처리하는 순서(1217)에 따라 제3 부호화 단위(1216a, 1216b, 1216c, 1216d)를 처리할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 수평 방향으로 분할되어 생성된 제2 부호화 단위(1220a, 1220b)를 수직 방향으로 각각 분할하여 제3 부호화 단위(1226a, 1226b, 1226c, 1226d)를 결정할 수 있고, 영상 복호화 장치(100)는 상단 제2 부호화 단위(1220a)에 포함되는 제3 부호화 단위(1226a, 1226b)를 수평 방향으로 먼저 처리한 후, 하단 제2 부호화 단위(1220b)에 포함되는 제3 부호화 단위(1226c, 1226d)를 수평 방향으로 처리하는 순서(1227)에 따라 제3 부호화 단위(1226a, 1226b, 1226c, 1226d)를 처리할 수 있다.
도 12를 참조하면, 제2 부호화 단위(1210a, 1210b, 1220a, 1220b)가 각각 분할되어 정사각형 형태의 제3 부호화 단위(1216a, 1216b, 1216c, 1216d, 1226a, 1226b, 1226c, 1226d)가 결정될 수 있다. 수직 방향으로 분할되어 결정된 제2 부호화 단위(1210a, 1210b) 및 수평 방향으로 분할되어 결정된 제2 부호화 단위(1220a, 1220b)는 서로 다른 형태로 분할된 것이지만, 이후에 결정되는 제3 부호화 단위(1216a, 1216b, 1216c, 1216d, 1226a, 1226b, 1226c, 1226d)에 따르면 결국 동일한 형태의 부호화 단위들로 제1 부호화 단위(1200)가 분할된 결과가 된다. 이에 따라 영상 복호화 장치(100)는 분할 형태 모드 정보에 기초하여 상이한 과정을 통해 재귀적으로 부호화 단위를 분할함으로써 결과적으로 동일한 형태의 부호화 단위들을 결정하더라도, 동일한 형태로 결정된 복수개의 부호화 단위들을 서로 다른 순서로 처리할 수 있다.
도 13은 일 실시예에 따라 부호화 단위가 재귀적으로 분할되어 복수개의 부호화 단위가 결정되는 경우, 부호화 단위의 형태 및 크기가 변함에 따라 부호화 단위의 심도가 결정되는 과정을 도시한다.
일 실시예에 따라 영상 복호화 장치(100)는 부호화 단위의 심도를 소정의 기준에 따라 결정할 수 있다. 예를 들면 소정의 기준은 부호화 단위의 긴 변의 길이가 될 수 있다. 영상 복호화 장치(100)는 현재 부호화 단위의 긴 변의 길이가 분할되기 전의 부호화 단위의 긴 변의 길이보다 2n (n>0) 배로 분할된 경우, 현재 부호화 단위의 심도는 분할되기 전의 부호화 단위의 심도보다 n만큼 심도가 증가된 것으로 결정할 수 있다. 이하에서는 심도가 증가된 부호화 단위를 하위 심도의 부호화 단위로 표현하도록 한다.
도 13을 참조하면, 일 실시예에 따라 정사각형 형태임을 나타내는 블록 형태 정보(예를 들면 블록 형태 정보는 ′0: SQUARE′를 나타낼 수 있음)에 기초하여 영상 복호화 장치(100)는 정사각형 형태인 제1 부호화 단위(1300)를 분할하여 하위 심도의 제2 부호화 단위(1302), 제3 부호화 단위(1304) 등을 결정할 수 있다. 정사각형 형태의 제1 부호화 단위(1300)의 크기를 2Nx2N이라고 한다면, 제1 부호화 단위(1300)의 너비 및 높이를 1/2배로 분할하여 결정된 제2 부호화 단위(1302)는 NxN의 크기를 가질 수 있다. 나아가 제2 부호화 단위(1302)의 너비 및 높이를 1/2크기로 분할하여 결정된 제3 부호화 단위(1304)는 N/2xN/2의 크기를 가질 수 있다. 이 경우 제3 부호화 단위(1304)의 너비 및 높이는 제1 부호화 단위(1300)의 1/4배에 해당한다. 제1 부호화 단위(1300)의 심도가 D인 경우 제1 부호화 단위(1300)의 너비 및 높이의 1/2배인 제2 부호화 단위(1302)의 심도는 D+1일 수 있고, 제1 부호화 단위(1300)의 너비 및 높이의 1/4배인 제3 부호화 단위(1304)의 심도는 D+2일 수 있다.
일 실시예에 따라 비-정사각형 형태를 나타내는 블록 형태 정보(예를 들면 블록 형태 정보는, 높이가 너비보다 긴 비-정사각형임을 나타내는 ′1: NS_VER′ 또는 너비가 높이보다 긴 비-정사각형임을 나타내는 ′2: NS_HOR′를 나타낼 수 있음)에 기초하여, 영상 복호화 장치(100)는 비-정사각형 형태인 제1 부호화 단위(1310 또는 1320)를 분할하여 하위 심도의 제2 부호화 단위(1312 또는 1322), 제3 부호화 단위(1314 또는 1324) 등을 결정할 수 있다.
영상 복호화 장치(100)는 Nx2N 크기의 제1 부호화 단위(1310)의 너비 및 높이 중 적어도 하나를 분할하여 제2 부호화 단위(예를 들면, 1302, 1312, 1322 등)를 결정할 수 있다. 즉, 영상 복호화 장치(100)는 제1 부호화 단위(1310)를 수평 방향으로 분할하여 NxN 크기의 제2 부호화 단위(1302) 또는 NxN/2 크기의 제2 부호화 단위(1322)를 결정할 수 있고, 수평 방향 및 수직 방향으로 분할하여 N/2xN 크기의 제2 부호화 단위(1312)를 결정할 수도 있다.
일 실시예에 따라 영상 복호화 장치(100)는 2NxN 크기의 제1 부호화 단위(1320) 의 너비 및 높이 중 적어도 하나를 분할하여 제2 부호화 단위(예를 들면, 1302, 1312, 1322 등)를 결정할 수도 있다. 즉, 영상 복호화 장치(100)는 제1 부호화 단위(1320)를 수직 방향으로 분할하여 NxN 크기의 제2 부호화 단위(1302) 또는 N/2xN 크기의 제2 부호화 단위(1312)를 결정할 수 있고, 수평 방향 및 수직 방향으로 분할하여 NxN/2 크기의 제2 부호화 단위(1322)를 결정할 수도 있다.
일 실시예에 따라 영상 복호화 장치(100)는 NxN 크기의 제2 부호화 단위(1302) 의 너비 및 높이 중 적어도 하나를 분할하여 제3 부호화 단위(예를 들면, 1304, 1314, 1324 등)를 결정할 수도 있다. 즉, 영상 복호화 장치(100)는 제2 부호화 단위(1302)를 수직 방향 및 수평 방향으로 분할하여 N/2xN/2 크기의 제3 부호화 단위(1304)를 결정하거나 N/4xN/2 크기의 제3 부호화 단위(1314)를 결정하거나 N/2xN/4 크기의 제3 부호화 단위(1324)를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 N/2xN 크기의 제2 부호화 단위(1312)의 너비 및 높이 중 적어도 하나를 분할하여 제3 부호화 단위(예를 들면, 1304, 1314, 1324 등)를 결정할 수도 있다. 즉, 영상 복호화 장치(100)는 제2 부호화 단위(1312)를 수평 방향으로 분할하여 N/2xN/2 크기의 제3 부호화 단위(1304) 또는 N/2xN/4 크기의 제3 부호화 단위(1324)를 결정하거나 수직 방향 및 수평 방향으로 분할하여 N/4xN/2 크기의 제3 부호화 단위(1314)를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 NxN/2 크기의 제2 부호화 단위(1322)의 너비 및 높이 중 적어도 하나를 분할하여 제3 부호화 단위(예를 들면, 1304, 1314, 1324 등)를 결정할 수도 있다. 즉, 영상 복호화 장치(100)는 제2 부호화 단위(1322)를 수직 방향으로 분할하여 N/2xN/2 크기의 제3 부호화 단위(1304) 또는 N/4xN/2 크기의 제3 부호화 단위(1314)를 결정하거나 수직 방향 및 수평 방향으로 분할하여 N/2xN/4크기의 제3 부호화 단위(1324)를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 정사각형 형태의 부호화 단위(예를 들면, 1300, 1302, 1304)를 수평 방향 또는 수직 방향으로 분할할 수 있다. 예를 들면, 2Nx2N 크기의 제1 부호화 단위(1300)를 수직 방향으로 분할하여 Nx2N 크기의 제1 부호화 단위(1310)를 결정하거나 수평 방향으로 분할하여 2NxN 크기의 제1 부호화 단위(1320)를 결정할 수 있다. 일 실시예에 따라 심도가 부호화 단위의 가장 긴 변의 길이에 기초하여 결정되는 경우, 2Nx2N 크기의 제1 부호화 단위(1300)가 수평 방향 또는 수직 방향으로 분할되어 결정되는 부호화 단위의 심도는 제1 부호화 단위(1300)의 심도와 동일할 수 있다.
일 실시예에 따라 제3 부호화 단위(1314 또는 1324)의 너비 및 높이는 제1 부호화 단위(1310 또는 1320)의 1/4배에 해당할 수 있다. 제1 부호화 단위(1310 또는 1320)의 심도가 D인 경우 제1 부호화 단위(1310 또는 1320)의 너비 및 높이의 1/2배인 제2 부호화 단위(1312 또는 1322)의 심도는 D+1일 수 있고, 제1 부호화 단위(1310 또는 1320)의 너비 및 높이의 1/4배인 제3 부호화 단위(1314 또는 1324)의 심도는 D+2일 수 있다.
도 14은 일 실시예에 따라 부호화 단위들의 형태 및 크기에 따라 결정될 수 있는 심도 및 부호화 단위 구분을 위한 인덱스(part index, 이하 PID)를 도시한다.
일 실시예에 따라 영상 복호화 장치(100)는 정사각형 형태의 제1 부호화 단위(1400)를 분할하여 다양한 형태의 제2 부호화 단위를 결정할 수 있다. 도 14를 참조하면, 영상 복호화 장치(100)는 분할 형태 모드 정보에 따라 제1 부호화 단위(1400)를 수직 방향 및 수평 방향 중 적어도 하나의 방향으로 분할하여 제2 부호화 단위(1402a, 1402b, 1404a, 1404b, 1406a, 1406b, 1406c, 1406d)를 결정할 수 있다. 즉, 영상 복호화 장치(100)는 제1 부호화 단위(1400)에 대한 분할 형태 모드 정보에 기초하여 제2 부호화 단위(1402a, 1402b, 1404a, 1404b, 1406a, 1406b, 1406c, 1406d)를 결정할 수 있다.
일 실시예에 따라 정사각형 형태의 제1 부호화 단위(1400)에 대한 분할 형태 모드 정보에 따라 결정되는 제2 부호화 단위(1402a, 1402b, 1404a, 1404b, 1406a, 1406b, 1406c, 1406d)는 긴 변의 길이에 기초하여 심도가 결정될 수 있다. 예를 들면, 정사각형 형태의 제1 부호화 단위(1400)의 한 변의 길이와 비-정사각형 형태의 제2 부호화 단위(1402a, 1402b, 1404a, 1404b)의 긴 변의 길이가 동일하므로, 제1 부호화 단위(1400)와 비-정사각형 형태의 제2 부호화 단위(1402a, 1402b, 1404a, 1404b)의 심도는 D로 동일하다고 볼 수 있다. 이에 반해 영상 복호화 장치(100)가 분할 형태 모드 정보에 기초하여 제1 부호화 단위(1400)를 4개의 정사각형 형태의 제2 부호화 단위(1406a, 1406b, 1406c, 1406d)로 분할한 경우, 정사각형 형태의 제2 부호화 단위(1406a, 1406b, 1406c, 1406d)의 한 변의 길이는 제1 부호화 단위(1400)의 한 변의 길이의 1/2배 이므로, 제2 부호화 단위(1406a, 1406b, 1406c, 1406d)의 심도는 제1 부호화 단위(1400)의 심도인 D보다 한 심도 하위인 D+1의 심도일 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 높이가 너비보다 긴 형태의 제1 부호화 단위(1410)를 분할 형태 모드 정보에 따라 수평 방향으로 분할하여 복수개의 제2 부호화 단위(1412a, 1412b, 1414a, 1414b, 1414c)로 분할할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 너비가 높이보다 긴 형태의 제1 부호화 단위(1420)를 분할 형태 모드 정보에 따라 수직 방향으로 분할하여 복수개의 제2 부호화 단위(1422a, 1422b, 1424a, 1424b, 1424c)로 분할할 수 있다.
일 실시예에 따라 비-정사각형 형태의 제1 부호화 단위(1410 또는 1420)에 대한 분할 형태 모드 정보에 따라 결정되는 제2 부호화 단위(1412a, 1412b, 1414a, 1414b, 1414c. 1422a, 1422b, 1424a, 1424b, 1424c)는 긴 변의 길이에 기초하여 심도가 결정될 수 있다. 예를 들면, 정사각형 형태의 제2 부호화 단위(1412a, 1412b)의 한 변의 길이는 높이가 너비보다 긴 비-정사각형 형태의 제1 부호화 단위(1410)의 한 변의 길이의 1/2배이므로, 정사각형 형태의 제2 부호화 단위(1412a, 1412b)의 심도는 비-정사각형 형태의 제1 부호화 단위(1410)의 심도 D보다 한 심도 하위의 심도인 D+1이다.
나아가 영상 복호화 장치(100)가 분할 형태 모드 정보에 기초하여 비-정사각형 형태의 제1 부호화 단위(1410)를 홀수개의 제2 부호화 단위(1414a, 1414b, 1414c)로 분할할 수 있다. 홀수개의 제2 부호화 단위(1414a, 1414b, 1414c)는 비-정사각형 형태의 제2 부호화 단위(1414a, 1414c) 및 정사각형 형태의 제2 부호화 단위(1414b)를 포함할 수 있다. 이 경우 비-정사각형 형태의 제2 부호화 단위(1414a, 1414c)의 긴 변의 길이 및 정사각형 형태의 제2 부호화 단위(1414b)의 한 변의 길이는 제1 부호화 단위(1410)의 한 변의 길이의 1/2배 이므로, 제2 부호화 단위(1414a, 1414b, 1414c)의 심도는 제1 부호화 단위(1410)의 심도인 D보다 한 심도 하위인 D+1의 심도일 수 있다. 영상 복호화 장치(100)는 제1 부호화 단위(1410)와 관련된 부호화 단위들의 심도를 결정하는 상기 방식에 대응하는 방식으로, 너비가 높이보다 긴 비-정사각형 형태의 제1 부호화 단위(1420)와 관련된 부호화 단위들의 심도를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 분할된 부호화 단위들의 구분을 위한 인덱스(PID)를 결정함에 있어서, 홀수개로 분할된 부호화 단위들이 서로 동일한 크기가 아닌 경우, 부호화 단위들 간의 크기 비율에 기초하여 인덱스를 결정할 수 있다. 도 14를 참조하면, 홀수개로 분할된 부호화 단위들(1414a, 1414b, 1414c) 중 가운데에 위치하는 부호화 단위(1414b)는 다른 부호화 단위들(1414a, 1414c)와 너비는 동일하지만 높이가 다른 부호화 단위들(1414a, 1414c)의 높이의 두 배일 수 있다. 즉, 이 경우 가운데에 위치하는 부호화 단위(1414b)는 다른 부호화 단위들(1414a, 1414c)의 두 개를 포함할 수 있다. 따라서, 스캔 순서에 따라 가운데에 위치하는 부호화 단위(1414b)의 인덱스(PID)가 1이라면 그 다음 순서에 위치하는 부호화 단위(1414c)는 인덱스가 2가 증가한 3일수 있다. 즉 인덱스의 값의 불연속성이 존재할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 이러한 분할된 부호화 단위들 간의 구분을 위한 인덱스의 불연속성의 존재 여부에 기초하여 홀수개로 분할된 부호화 단위들이 서로 동일한 크기가 아닌지 여부를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 부호화 단위로부터 분할되어 결정된 복수개의 부호화 단위들을 구분하기 위한 인덱스의 값에 기초하여 특정 분할 형태로 분할된 것인지를 결정할 수 있다. 도 14를 참조하면 영상 복호화 장치(100)는 높이가 너비보다 긴 직사각형 형태의 제1 부호화 단위(1410)를 분할하여 짝수개의 부호화 단위(1412a, 1412b)를 결정하거나 홀수개의 부호화 단위(1414a, 1414b, 1414c)를 결정할 수 있다. 영상 복호화 장치(100)는 복수개의 부호화 단위 각각을 구분하기 위하여 각 부호화 단위를 나타내는 인덱스(PID)를 이용할 수 있다. 일 실시예에 따라 PID는 각각의 부호화 단위의 소정 위치의 샘플(예를 들면, 좌측 상단 샘플)에서 획득될 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 부호화 단위의 구분을 위한 인덱스를 이용하여 분할되어 결정된 부호화 단위들 중 소정 위치의 부호화 단위를 결정할 수 있다. 일 실시예에 따라 높이가 너비보다 긴 직사각형 형태의 제1 부호화 단위(1410)에 대한 분할 형태 모드 정보가 3개의 부호화 단위로 분할됨을 나타내는 경우 영상 복호화 장치(100)는 제1 부호화 단위(1410)를 3개의 부호화 단위(1414a, 1414b, 1414c)로 분할할 수 있다. 영상 복호화 장치(100)는 3개의 부호화 단위(1414a, 1414b, 1414c) 각각에 대한 인덱스를 할당할 수 있다. 영상 복호화 장치(100)는 홀수개로 분할된 부호화 단위 중 가운데 부호화 단위를 결정하기 위하여 각 부호화 단위에 대한 인덱스를 비교할 수 있다. 영상 복호화 장치(100)는 부호화 단위들의 인덱스에 기초하여 인덱스들 중 가운데 값에 해당하는 인덱스를 갖는 부호화 단위(1414b)를, 제1 부호화 단위(1410)가 분할되어 결정된 부호화 단위 중 가운데 위치의 부호화 단위로서 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 분할된 부호화 단위들의 구분을 위한 인덱스를 결정함에 있어서, 부호화 단위들이 서로 동일한 크기가 아닌 경우, 부호화 단위들 간의 크기 비율에 기초하여 인덱스를 결정할 수 있다. 도 14를 참조하면, 제1 부호화 단위(1410)가 분할되어 생성된 부호화 단위(1414b)는 다른 부호화 단위들(1414a, 1414c)와 너비는 동일하지만 높이가 다른 부호화 단위들(1414a, 1414c)의 높이의 두 배일 수 있다. 이 경우 가운데에 위치하는 부호화 단위(1414b)의 인덱스(PID)가 1이라면 그 다음 순서에 위치하는 부호화 단위(1414c)는 인덱스가 2가 증가한 3일수 있다. 이러한 경우처럼 균일하게 인덱스가 증가하다가 증가폭이 달라지는 경우, 영상 복호화 장치(100)는 다른 부호화 단위들과 다른 크기를 가지는 부호화 단위를 포함하는 복수개의 부호화 단위로 분할된 것으로 결정할 수 있다, 일 실시예에 따라 분할 형태 모드 정보가 홀수개의 부호화 단위로 분할됨을 나타내는 경우, 영상 복호화 장치(100)는 홀수개의 부호화 단위 중 소정 위치의 부호화 단위(예를 들면 가운데 부호화 단위)가 다른 부호화 단위와 크기가 다른 형태로 현재 부호화 단위를 분할할 수 있다. 이 경우 영상 복호화 장치(100)는 부호화 단위에 대한 인덱스(PID)를 이용하여 다른 크기를 가지는 가운데 부호화 단위를 결정할 수 있다. 다만 상술한 인덱스, 결정하고자 하는 소정 위치의 부호화 단위의 크기 또는 위치는 일 실시예를 설명하기 위해 특정한 것이므로 이에 한정하여 해석되어서는 안되며, 다양한 인덱스, 부호화 단위의 위치 및 크기가 이용될 수 있는 것으로 해석되어야 한다.
일 실시예에 따라 영상 복호화 장치(100)는 부호화 단위의 재귀적인 분할이 시작되는 소정의 데이터 단위를 이용할 수 있다.
도 15는 일 실시예에 따라 픽쳐에 포함되는 복수개의 소정의 데이터 단위에 따라 복수개의 부호화 단위들이 결정된 것을 도시한다.
일 실시예에 따라 소정의 데이터 단위는 부호화 단위가 분할 형태 모드 정보를 이용하여 재귀적으로 분할되기 시작하는 데이터 단위로 정의될 수 있다. 즉, 현재 픽쳐를 분할하는 복수개의 부호화 단위들이 결정되는 과정에서 이용되는 최상위 심도의 부호화 단위에 해당할 수 있다. 이하에서는 설명 상 편의를 위해 이러한 소정의 데이터 단위를 기준 데이터 단위라고 지칭하도록 한다.
일 실시예에 따라 기준 데이터 단위는 소정의 크기 및 형태를 나타낼 수 있다. 일 실시예에 따라, 기준 부호화 단위는 MxN의 샘플들을 포함할 수 있다. 여기서 M 및 N은 서로 동일할 수도 있으며, 2의 승수로 표현되는 정수일 수 있다. 즉, 기준 데이터 단위는 정사각형 또는 비-정사각형의 형태를 나타낼 수 있으며, 이후에 정수개의 부호화 단위로 분할될 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 픽쳐를 복수개의 기준 데이터 단위로 분할할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 현재 픽쳐를 분할하는 복수개의 기준 데이터 단위를 각각의 기준 데이터 단위에 대한 분할 형태 모드 정보를 이용하여 분할할 수 있다. 이러한 기준 데이터 단위의 분할 과정은 쿼드 트리(quad-tree)구조를 이용한 분할 과정에 대응될 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 픽쳐에 포함되는 기준 데이터 단위가 가질 수 있는 최소 크기를 미리 결정할 수 있다. 이에 따라, 영상 복호화 장치(100)는 최소 크기 이상의 크기를 갖는 다양한 크기의 기준 데이터 단위를 결정할 수 있고, 결정된 기준 데이터 단위를 기준으로 분할 형태 모드 정보를 이용하여 적어도 하나의 부호화 단위를 결정할 수 있다.
도 15를 참조하면, 영상 복호화 장치(100)는 정사각형 형태의 기준 부호화 단위(1500)를 이용할 수 있고, 또는 비-정사각형 형태의 기준 부호화 단위(1502)를 이용할 수도 있다. 일 실시예에 따라 기준 부호화 단위의 형태 및 크기는 적어도 하나의 기준 부호화 단위를 포함할 수 있는 다양한 데이터 단위(예를 들면, 시퀀스(sequence), 픽쳐(picture), 슬라이스(slice), 슬라이스 세그먼트(slice segment), 타일(tile), 타일 그룹(tile group), 최대부호화단위 등)에 따라 결정될 수 있다.
일 실시예에 따라 영상 복호화 장치(100)의 수신부(110)는 기준 부호화 단위의 형태에 대한 정보 및 기준 부호화 단위의 크기에 대한 정보 중 적어도 하나를 상기 다양한 데이터 단위마다 비트스트림으로부터 획득할 수 있다. 정사각형 형태의 기준 부호화 단위(1500)에 포함되는 적어도 하나의 부호화 단위가 결정되는 과정은 도 3의 현재 부호화 단위(300)가 분할되는 과정을 통해 상술하였고, 비-정사각형 형태의 기준 부호화 단위(1502)에 포함되는 적어도 하나의 부호화 단위가 결정되는 과정은 도 4의 현재 부호화 단위(400 또는 450)가 분할되는 과정을 통해 상술하였으므로 자세한 설명은 생략하도록 한다.
일 실시예에 따라 영상 복호화 장치(100)는 소정의 조건에 기초하여 미리 결정되는 일부 데이터 단위에 따라 기준 부호화 단위의 크기 및 형태를 결정하기 위하여, 기준 부호화 단위의 크기 및 형태를 식별하기 위한 인덱스를 이용할 수 있다. 즉, 수신부(110)는 비트스트림으로부터 상기 다양한 데이터 단위(예를 들면, 시퀀스, 픽쳐, 슬라이스, 슬라이스 세그먼트, 타일, 타일 그룹, 최대부호화단위 등) 중 소정의 조건(예를 들면 슬라이스 이하의 크기를 갖는 데이터 단위)을 만족하는 데이터 단위로서 슬라이스, 슬라이스 세그먼트, 타일, 타일 그룹, 최대부호화 단위 등 마다, 기준 부호화 단위의 크기 및 형태의 식별을 위한 인덱스만을 획득할 수 있다. 영상 복호화 장치(100)는 인덱스를 이용함으로써 상기 소정의 조건을 만족하는 데이터 단위마다 기준 데이터 단위의 크기 및 형태를 결정할 수 있다. 기준 부호화 단위의 형태에 대한 정보 및 기준 부호화 단위의 크기에 대한 정보를 상대적으로 작은 크기의 데이터 단위마다 비트스트림으로부터 획득하여 이용하는 경우, 비트스트림의 이용 효율이 좋지 않을 수 있으므로, 기준 부호화 단위의 형태에 대한 정보 및 기준 부호화 단위의 크기에 대한 정보를 직접 획득하는 대신 상기 인덱스만을 획득하여 이용할 수 있다. 이 경우 기준 부호화 단위의 크기 및 형태를 나타내는 인덱스에 대응하는 기준 부호화 단위의 크기 및 형태 중 적어도 하나는 미리 결정되어 있을 수 있다. 즉, 영상 복호화 장치(100)는 미리 결정된 기준 부호화 단위의 크기 및 형태 중 적어도 하나를 인덱스에 따라 선택함으로써, 인덱스 획득의 기준이 되는 데이터 단위에 포함되는 기준 부호화 단위의 크기 및 형태 중 적어도 하나를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 하나의 최대 부호화 단위에 포함하는 적어도 하나의 기준 부호화 단위를 이용할 수 있다. 즉, 영상을 분할하는 최대 부호화 단위에는 적어도 하나의 기준 부호화 단위가 포함될 수 있고, 각각의 기준 부호화 단위의 재귀적인 분할 과정을 통해 부호화 단위가 결정될 수 있다. 일 실시예에 따라 최대 부호화 단위의 너비 및 높이 중 적어도 하나는 기준 부호화 단위의 너비 및 높이 중 적어도 하나의 정수배에 해당할 수 있다. 일 실시예에 따라 기준 부호화 단위의 크기는 최대부호화단위를 쿼드 트리 구조에 따라 n번 분할한 크기일 수 있다. 즉, 영상 복호화 장치(100)는 최대부호화단위를 쿼드 트리 구조에 따라 n 번 분할하여 기준 부호화 단위를 결정할 수 있고, 다양한 실시예들에 따라 기준 부호화 단위를 블록 형태 정보 및 분할 형태 모드 정보 중 적어도 하나에 기초하여 분할할 수 있다.
도 16은 일 실시예에 따라 픽쳐에 포함되는 기준 부호화 단위의 결정 순서를 결정하는 기준이 되는 프로세싱 블록을 도시한다.
일 실시예에 따라 영상 복호화 장치(100)는 픽쳐를 분할하는 적어도 하나의 프로세싱 블록을 결정할 수 있다. 프로세싱 블록이란, 영상을 분할하는 적어도 하나의 기준 부호화 단위를 포함하는 데이터 단위로서, 프로세싱 블록에 포함되는 적어도 하나의 기준 부호화 단위는 특정 순서대로 결정될 수 있다. 즉, 각각의 프로세싱 블록에서 결정되는 적어도 하나의 기준 부호화 단위의 결정 순서는 기준 부호화 단위가 결정될 수 있는 다양한 순서의 종류 중 하나에 해당할 수 있으며, 각각의 프로세싱 블록에서 결정되는 기준 부호화 단위 결정 순서는 프로세싱 블록마다 상이할 수 있다. 프로세싱 블록마다 결정되는 기준 부호화 단위의 결정 순서는 래스터 스캔(raster scan), Z 스캔(Z-scan), N 스캔(N-scan), 우상향 대각 스캔(up-right diagonal scan), 수평적 스캔(horizontal scan), 수직적 스캔(vertical scan) 등 다양한 순서 중 하나일 수 있으나, 결정될 수 있는 순서는 상기 스캔 순서들에 한정하여 해석되어서는 안 된다.
일 실시예에 따라 영상 복호화 장치(100)는 프로세싱 블록의 크기에 대한 정보를 획득하여 영상에 포함되는 적어도 하나의 프로세싱 블록의 크기를 결정할 수 있다. 영상 복호화 장치(100)는 프로세싱 블록의 크기에 대한 정보를 비트스트림으로부터 획득하여 영상에 포함되는 적어도 하나의 프로세싱 블록의 크기를 결정할 수 있다. 이러한 프로세싱 블록의 크기는 프로세싱 블록의 크기에 대한 정보가 나타내는 데이터 단위의 소정의 크기일 수 있다.
일 실시예에 따라 영상 복호화 장치(100)의 수신부(110)는 비트스트림으로부터 프로세싱 블록의 크기에 대한 정보를 특정의 데이터 단위마다 획득할 수 있다. 예를 들면 프로세싱 블록의 크기에 대한 정보는 영상, 시퀀스, 픽쳐, 슬라이스, 슬라이스 세그먼트, 타일, 타일 그룹 등의 데이터 단위로 비트스트림으로부터 획득될 수 있다. 즉 수신부(110)는 상기 여러 데이터 단위마다 비트스트림으로부터 프로세싱 블록의 크기에 대한 정보를 획득할 수 있고 영상 복호화 장치(100)는 획득된 프로세싱 블록의 크기에 대한 정보를 이용하여 픽쳐를 분할하는 적어도 하나의 프로세싱 블록의 크기를 결정할 수 있으며, 이러한 프로세싱 블록의 크기는 기준 부호화 단위의 정수배의 크기일 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 픽쳐(1600)에 포함되는 프로세싱 블록(1602, 1612)의 크기를 결정할 수 있다. 예를 들면, 영상 복호화 장치(100)는 비트스트림으로부터 획득된 프로세싱 블록의 크기에 대한 정보에 기초하여 프로세싱 블록의 크기를 결정할 수 있다. 도 16을 참조하면, 영상 복호화 장치(100)는 일 실시예에 따라 프로세싱 블록(1602, 1612)의 가로크기를 기준 부호화 단위 가로크기의 4배, 세로크기를 기준 부호화 단위의 세로크기의 4배로 결정할 수 있다. 영상 복호화 장치(100)는 적어도 하나의 프로세싱 블록 내에서 적어도 하나의 기준 부호화 단위가 결정되는 순서를 결정할 수 있다.
일 실시예에 따라, 영상 복호화 장치(100)는 프로세싱 블록의 크기에 기초하여 픽쳐(1600)에 포함되는 각각의 프로세싱 블록(1602, 1612)을 결정할 수 있고, 프로세싱 블록(1602, 1612)에 포함되는 적어도 하나의 기준 부호화 단위의 결정 순서를 결정할 수 있다. 일 실시예에 따라 기준 부호화 단위의 결정은 기준 부호화 단위의 크기의 결정을 포함할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 비트스트림으로부터 적어도 하나의 프로세싱 블록에 포함되는 적어도 하나의 기준 부호화 단위의 결정 순서에 대한 정보를 획득할 수 있고, 획득한 결정 순서에 대한 정보에 기초하여 적어도 하나의 기준 부호화 단위가 결정되는 순서를 결정할 수 있다. 결정 순서에 대한 정보는 프로세싱 블록 내에서 기준 부호화 단위들이 결정되는 순서 또는 방향으로 정의될 수 있다. 즉, 기준 부호화 단위들이 결정되는 순서는 각각의 프로세싱 블록마다 독립적으로 결정될 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 특정 데이터 단위마다 기준 부호화 단위의 결정 순서에 대한 정보를 비트스트림으로부터 획득할 수 있다. 예를 들면, 수신부(110)는 기준 부호화 단위의 결정 순서에 대한 정보를 영상, 시퀀스, 픽쳐, 슬라이스, 슬라이스 세그먼트, 타일, 타일 그룹, 프로세싱 블록 등의 데이터 단위로마다 비트스트림으로부터 획득할 수 있다. 기준 부호화 단위의 결정 순서에 대한 정보는 프로세싱 블록 내에서의 기준 부호화 단위 결정 순서를 나타내므로, 결정 순서에 대한 정보는 정수개의 프로세싱 블록을 포함하는 특정 데이터 단위 마다 획득될 수 있다.
영상 복호화 장치(100)는 일 실시예에 따라 결정된 순서에 기초하여 적어도 하나의 기준 부호화 단위를 결정할 수 있다.
일 실시예에 따라 수신부(110)는 비트스트림으로부터 프로세싱 블록(1602, 1612)과 관련된 정보로서, 기준 부호화 단위 결정 순서에 대한 정보를 획득할 수 있고, 영상 복호화 장치(100)는 상기 프로세싱 블록(1602, 1612)에 포함된 적어도 하나의 기준 부호화 단위를 결정하는 순서를 결정하고 부호화 단위의 결정 순서에 따라 픽쳐(1600)에 포함되는 적어도 하나의 기준 부호화 단위를 결정할 수 있다. 도 16을 참조하면, 영상 복호화 장치(100)는 각각의 프로세싱 블록(1602, 1612)과 관련된 적어도 하나의 기준 부호화 단위의 결정 순서(1604, 1614)를 결정할 수 있다. 예를 들면, 기준 부호화 단위의 결정 순서에 대한 정보가 프로세싱 블록마다 획득되는 경우, 각각의 프로세싱 블록(1602, 1612)과 관련된 기준 부호화 단위 결정 순서는 프로세싱 블록마다 상이할 수 있다. 프로세싱 블록(1602)과 관련된 기준 부호화 단위 결정 순서(1604)가 래스터 스캔(raster scan)순서인 경우, 프로세싱 블록(1602)에 포함되는 기준 부호화 단위는 래스터 스캔 순서에 따라 결정될 수 있다. 이에 반해 다른 프로세싱 블록(1612)과 관련된 기준 부호화 단위 결정 순서(1614)가 래스터 스캔 순서의 역순인 경우, 프로세싱 블록(1612)에 포함되는 기준 부호화 단위는 래스터 스캔 순서의 역순에 따라 결정될 수 있다.
영상 복호화 장치(100)는 일 실시예에 따라, 결정된 적어도 하나의 기준 부호화 단위를 복호화할 수 있다. 영상 복호화 장치(100)는 상술한 실시예를 통해 결정된 기준 부호화 단위에 기초하여 영상을 복호화 할 수 있다. 기준 부호화 단위를 복호화 하는 방법은 영상을 복호화 하는 다양한 방법들을 포함할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 부호화 단위의 형태를 나타내는 블록 형태 정보 또는 현재 부호화 단위를 분할하는 방법을 나타내는 분할 형태 모드 정보를 비트스트림으로부터 획득하여 이용할 수 있다. 분할 형태 모드 정보는 다양한 데이터 단위와 관련된 비트스트림에 포함될 수 있다. 예를 들면, 영상 복호화 장치(100)는 시퀀스 파라미터 세트(sequence parameter set), 픽쳐 파라미터 세트(picture parameter set), 비디오 파라미터 세트(video parameter set), 슬라이스 헤더(slice header), 슬라이스 세그먼트 헤더(slice segment header), 타일 헤더(tile header), 타일 그룹 헤더(tile group header)에 포함된 분할 형태 모드 정보를 이용할 수 있다. 나아가, 영상 복호화 장치(100)는 최대 부호화 단위, 기준 부호화 단위, 프로세싱 블록마다 비트스트림으로부터 블록 형태 정보 또는 분할 형태 모드 정보에 대응하는 신택스 엘리먼트를 비트스트림으로부터 획득하여 이용할 수 있다.
이하 본 개시의 일 실시예에 따른 분할 규칙을 결정하는 방법에 대하여 자세히 설명한다.
영상 복호화 장치(100)는 영상의 분할 규칙을 결정할 수 있다. 분할 규칙은 영상 복호화 장치(100) 및 영상 부호화 장치(2200) 사이에 미리 결정되어 있을 수 있다. 영상 복호화 장치(100)는 비트스트림으로부터 획득된 정보에 기초하여 영상의 분할 규칙을 결정할 수 있다. 영상 복호화 장치(100)는 시퀀스 파라미터 세트(sequence parameter set), 픽쳐 파라미터 세트(picture parameter set), 비디오 파라미터 세트(video parameter set), 슬라이스 헤더(slice header), 슬라이스 세그먼트 헤더(slice segment header), 타일 헤더(tile header), 타일 그룹 헤더(tile group header) 중 적어도 하나로부터 획득된 정보에 기초하여 분할 규칙을 결정할 수 있다. 영상 복호화 장치(100)는 분할 규칙을 프레임, 슬라이스, 타일, 템포럴 레이어(Temporal layer), 최대 부호화 단위 또는 부호화 단위에 따라 다르게 결정할 수 있다.
영상 복호화 장치(100)는 부호화 단위의 블록 형태에 기초하여 분할 규칙을 결정할 수 있다. 블록 형태는 부호화 단위의 크기, 모양, 너비 및 높이의 비율, 방향을 포함할 수 있다. 영상 부호화 장치(2200) 및 영상 복호화 장치(100)는 부호화 단위의 블록 형태에 기초하여 분할 규칙을 결정할 것을 미리 결정할 수 있다. 하지만 이에 한정되는 것은 아니다. 영상 복호화 장치(100)는 영상 부호화 장치(2200)로부터 수신된 비트스트림으로부터 획득된 정보에 기초하여, 분할 규칙을 결정할 수 있다.
부호화 단위의 모양은 정사각형(square) 및 비-정사각형(non-square)을 포함할 수 있다. 부호화 단위의 너비 및 높이의 길이가 같은 경우, 영상 복호화 장치(100)는 부호화 단위의 모양을 정사각형으로 결정할 수 있다. 또한, . 부호화 단위의 너비 및 높이의 길이가 같지 않은 경우, 영상 복호화 장치(100)는 부호화 단위의 모양을 비-정사각형으로 결정할 수 있다.
부호화 단위의 크기는 4x4, 8x4, 4x8, 8x8, 16x4, 16x8, ... , 256x256의 다양한 크기를 포함할 수 있다. 부호화 단위의 크기는 부호화 단위의 긴변의 길이, 짧은 변의 길이또는 넓이에 따라 분류될 수 있다. 영상 복호화 장치(100)는 동일한 그룹으로 분류된 부호화 단위에 동일한 분할 규칙을 적용할 수 있다. 예를 들어 영상 복호화 장치(100)는 동일한 긴변의 길이를 가지는 부호화 단위를 동일한 크기로 분류할 수 있다. 또한 영상 복호화 장치(100)는 동일한 긴변의 길이를 가지는 부호화 단위에 대하여 동일한 분할 규칙을 적용할 수 있다.
부호화 단위의 너비 및 높이의 비율은 1:2, 2:1, 1:4, 4:1, 1:8, 8:1, 1:16, 16:1, 32:1 또는 1:32 등을 포함할 수 있다. 또한, 부호화 단위의 방향은 수평 방향 및 수직 방향을 포함할 수 있다. 수평 방향은 부호화 단위의 너비의 길이가 높이의 길이보다 긴 경우를 나타낼 수 있다. 수직 방향은 부호화 단위의 너비의 길이가 높이의 길이보다 짧은 경우를 나타낼 수 있다.
영상 복호화 장치(100)는 부호화 단위의 크기에 기초하여 분할 규칙을 적응적으로 결정할 수 있다. 영상 복호화 장치(100)는 부호화 단위의 크기에 기초하여 허용가능한 분할 형태 모드를 다르게 결정할 수 있다. 예를 들어, 영상 복호화 장치(100)는 부호화 단위의 크기에 기초하여 분할이 허용되는지 여부를 결정할 수 있다. 영상 복호화 장치(100)는 부호화 단위의 크기에 따라 분할 방향을 결정할 수 있다. 영상 복호화 장치(100)는 부호화 단위의 크기에 따라 허용가능한 분할 타입을 결정할 수 있다.
부호화 단위의 크기에 기초하여 분할 규칙을 결정하는 것은 영상 부호화 장치(2200) 및 영상 복호화 장치(100) 사이에 미리 결정된 분할 규칙일 수 있다. 또한, 영상 복호화 장치(100)는 비트스트림으로부터 획득된 정보에 기초하여, 분할 규칙을 결정할 수 있다.
영상 복호화 장치(100)는 부호화 단위의 위치에 기초하여 분할 규칙을 적응적으로 결정할 수 있다. 영상 복호화 장치(100)는 부호화 단위가 영상에서 차지하는 위치에 기초하여 분할 규칙을 적응적으로 결정할 수 있다.
또한, 영상 복호화 장치(100)는 서로 다른 분할 경로로 생성된 부호화 단위가 동일한 블록 형태를 가지지 않도록 분할 규칙을 결정할 수 있다. 다만 이에 한정되는 것은 아니며 서로 다른 분할 경로로 생성된 부호화 단위는 동일한 블록 형태를 가질 수 있다. 서로 다른 분할 경로로 생성된 부호화 단위들은 서로 다른 복호화 처리 순서를 가질 수 있다. 복호화 처리 순서에 대해서는 도 12와 함께 설명하였으므로 자세한 설명은 생략한다.
이하 도 17 내지 도 20을 참조하여 본 명세서에서 개시된 일 실시예에 따라 비트스트림으로부터 서브 블록 머지 모드의 후보 움직임 벡터를 나타내는 서브 블록 머지 인덱스에 대한 비트열을 획득하고, 비트열에 대해서 미리정해진 컨텍스트 모델을 이용하여 CABAC 복호화를 수행함으로써, 상기 서브 블록 머지 인덱스를 나타내는 심볼의 첫 번째 빈을 획득하고, 비트열에 대해서 바이패스 복호화를 수행함으로써, 상기 서브 블록 머지 인덱스를 나타내는 심볼의 나머지 빈들을 획득하고, 상기 심볼의 첫 번째 빈 및 나머지 빈들에 기초하여, 서브 블록 머지 모드로 현재 블록에 대한 예측을 수행하는 비디오를 부호화 또는 복호화하기 위한 방법 및 장치가 상술된다.
도 17는 일 실시예에 따른 비디오 부호화 장치의 블록도를 도시한다.
일 실시예에 따른 비디오 부호화 장치(1700)는 메모리(1710) 및 메모리(1710)에 접속된 적어도 하나의 프로세서(1720)를 포함할 수 있다. 일 실시예에 따른 비디오 부호화 장치(1700)의 동작들은 개별적인 프로세서로서 작동하거나, 중앙 프로세서의 제어에 의해 작동될 수 있다. 또한, 비디오 부호화 장치(1700)의 메모리(1710)는, 외부로부터 수신한 데이터와, 프로세서에 의해 생성된 데이터, 예를 들어, 서브 블록 머지 인덱스를 나타내는 비트열, 서브 블록 머지 인덱스를 나타내는 심볼의 빈(bin)들 등을 저장할 수 있다.
비디오 부호화 장치(1700)의 프로세서(1720)는 서브 블록 머지 모드로 현재 블록에 대한 예측을 수행하여, 서브 블록 머지 모드의 후보 움직임 벡터를 나타내는 서브 블록 머지 인덱스를 나타내는 심볼을 생성하고, 상기 심볼의 첫 번째 빈에 대해서 미리정해진 컨텍스트 모델을 이용하여 CABAC 부호화를 수행하고, 상기 심볼의 나머지 빈들에 대해서 바이패스 부호화를 수행하고, CABAC 부호화 및 바이패스 부호화 결과에 기초하여, 서브 블록 머지 인덱스에 대한 비트열을 포함하는 비트스트림을 생성할 수 있다.
이하 도 18을 참조하여 일 실시예에 따른 비디오 부호화 장치(1700)가 서브 블록 머지 모드로 현재 블록에 대한 예측을 수행하여, 서브 블록 머지 모드의 후보 움직임 벡터를 나타내는 서브 블록 머지 인덱스를 나타내는 심볼을 생성하고, 상기 심볼의 첫 번째 빈에 대해서 미리정해진 컨텍스트 모델을 이용하여 CABAC 부호화를 수행하고, 상기 심볼의 나머지 빈들에 대해서 바이패스 부호화를 수행하고, CABAC 부호화 및 바이패스 부호화 결과에 기초하여, 서브 블록 머지 인덱스에 대한 비트열을 포함하는 비트스트림을 생성하는 비디오 부호화 방법에 대한 구체적인 동작을 상술한다.
도 18은 일 실시예에 따른 비디오 부호화 방법의 흐름도를 도시한다.
도 18을 참조하면, 단계 s1810에서, 서브 블록 머지 모드로 현재 블록에 대한 예측을 수행하여, 서브 블록 머지 모드의 후보 움직임 벡터를 나타내는 서브 블록 머지 인덱스를 나타내는 심볼을 생성할 수 있다.
일 실시예에 따라, 서브 블록 머지 인덱스를 나타내는 심볼은 절삭형 단항 코딩을 이용하여 표현될 수 있다.
단계 s1830에서, 비디오 부호화 장치(1700)는, 상기 심볼의 첫 번째 빈에 대해서 미리정해진 컨텍스트 모델을 이용하여 CABAC 부호화를 수행할 수 있다.
일 실시예에 따라, 상기 심볼의 첫 번째 빈은 서브 블록 단위 시간적 움직임 벡터 후보가 선택될 확률에 기초하여 결정될 수 있다. "서브 블록 단위 시간적 움직임 벡터 후보"는 도 21과 함께 후술된다.
일 실시예에 따라, 상기 서브 블록 단위 시간적 움직임 벡터 후보는 현재 블록의 서브 블록에 대응되는 시간적 참조 서브 블록의 움직임 벡터일 수 있다.
일 실시예에 따라, 상기 시간적 참조 서브 블록이 포함된 참조 픽처는 현재 블록의 좌측 주변 블록이 인터 모드로 부호화된 블록인 경우에, 상기 좌측 주변 블록의 움직임 벡터가 가리키는 참조 픽처와 동일할 수 있다.
일 실시예에 따라, 상기 현재 블록에 대응되는 참조 블록의 중심에 움직임 벡터가 존재하면, 상기 현재 블록의 서브 블록에 대응되는 시간적 참조 서브 블록의 움직임 벡터가 도출될 수 있다.
다른 실시예에 따라, 상기 CABAC 부호화에는 하나가 아닌 2개의 미리정해진 컨텍스트 모델이 이용될 수 있다.
단계 s1850에서, 비디오 부호화 장치(1700)는, 상기 심볼의 나머지 빈들에 대해서 바이패스 부호화를 수행할 수 있다.
일 실시예에 따라, 상기 바이패스 부호화는 상기 심볼의 첫 번째 빈에 기초하여 수행여부가 결정될 수 있다. 구체적으로, 서브 블록 머지 인덱스를 나타내는 심볼은 절삭형 단항 코딩이 수행되기 때문에, 심볼의 첫 번째 빈에 기초하여 바이패스 부호화 수행 여부가 결정될 수 있다.
단계 s1870에서, CABAC 부호화 및 바이패스 부호화 결과에 기초하여, 서브 블록 머지 인덱스에 대한 비트열을 포함하는 비트스트림을 생성할 수 있다.
일 실시예에 따라, 상기 바이패스 부호화가 수행되지 않는 것으로 결정되면, CABAC 부호화 결과에만 기초하여, 서브 블록 머지 인덱스에 대한 비트열을 포함하는 비트스트림이 생성될 수 있다.
다른 실시예에 따라, 서브 블록 머지 모드는 아핀 머지 모드일 수 있다.
도 19 및 도 20은 위에서 설명한 비디오 부호화 장치 및 비디오 부호화 방법에 각각에 대응하는 일 실시예에 따른 비디오 복호화 장치의 블록도 및 일 실시예에 따른 비디오 복호화 방법의 흐름도를 도시한다.
도 19는 일 실시예에 따른 비디오 복호화 장치의 블록도를 도시한다.
일 실시예에 따른 비디오 복호화 장치(1900)는 메모리(1910) 및 메모리(1910)에 접속된 적어도 하나의 프로세서(1920)를 포함할 수 있다. 일 실시예에 따른 비디오 복호화 장치(1900)의 동작들은 개별적인 프로세서로서 작동하거나, 중앙 프로세서의 제어에 의해 작동될 수 있다. 또한, 비디오 복호화 장치(1900)의 메모리(1910)는, 외부로부터 수신한 데이터와, 프로세서에 의해 생성된 데이터, 예를 들어, 서브 블록 머지 인덱스에 대한 비트열, 서브 블록 머지 인덱스에 대한 심볼의 빈(bin)들 등을 저장할 수 있다.
비디오 복호화 장치(1900)의 프로세서(1920)는 비디오 복호화 장치(1900)는, 비트스트림으로부터 서브 블록 머지 모드의 후보 움직임 벡터를 나타내는 서브 블록 머지 인덱스에 대한 비트열을 획득하고, 상기 비트열에 대해서 미리정해진 컨텍스트 모델을 이용하여 CABAC 복호화를 수행함으로써, 상기 서브 블록 머지 인덱스를 나타내는 심볼의 첫 번째 빈을 획득하고, 상기 비트열에 대해서 바이패스 복호화를 수행함으로써, 상기 서브 블록 머지 인덱스를 나타내는 심볼의 나머지 빈들을 획득하고, 상기 심볼의 첫 번째 빈 및 나머지 빈들에 기초하여, 서브 블록 머지 모드로 현재 블록에 대한 예측을 수행할 수 있다.
이하 도 20을 참조하여 일 실시예에 따른 비디오 복호화 장치(1900)가 비트스트림으로부터 서브 블록 머지 모드의 후보 움직임 벡터를 나타내는 서브 블록 머지 인덱스에 대한 비트열을 획득하고, 상기 비트열에 대해서 미리정해진 컨텍스트 모델을 이용하여 CABAC 복호화를 수행함으로써, 상기 서브 블록 머지 인덱스를 나타내는 심볼의 첫 번째 빈을 획득하고, 상기 비트열에 대해서 바이패스 복호화를 수행함으로써, 상기 서브 블록 머지 인덱스를 나타내는 심볼의 나머지 빈들을 획득하고, 상기 심볼의 첫 번째 빈 및 나머지 빈들에 기초하여, 서브 블록 머지 모드로 현재 블록에 대한 예측을 수행하는 비디오 복호화 방법에 대한 구체적인 동작을 상술한다.
도 20은 일 실시예에 따른 비디오 복호화 방법의 흐름도를 도시한다.
도 20을 참조하면, 단계 s2010에서, 비트스트림으로부터 서브 블록 머지 모드의 후보 움직임 벡터를 나타내는 서브 블록 머지 인덱스에 대한 비트열을 획득할 수 있다.
단계 s2030에서, 비디오 복호화 장치(1900)는, 상기 비트열에 대해서 미리정해진 컨텍스트 모델을 이용하여 CABAC 복호화를 수행함으로써, 상기 서브 블록 머지 인덱스를 나타내는 심볼의 첫 번째 빈을 획득할 수 있다.
일 실시예에 따라, 상기 심볼의 첫 번째 빈은 서브 블록 단위 시간적 움직임 벡터 후보가 선택될 확률에 기초하여 결정될 수 있다.일 실시예에 따라, 상기 서브 블록 단위 시간적 움직임 벡터 후보는 현재 블록의 서브 블록에 대응되는 시간적 참조 서브 블록의 움직임 벡터일 수 있다.
일 실시예에 따라, 상기 시간적 참조 서브 블록이 포함된 참조 픽처는 현재 블록의 좌측 주변 블록이 인터 모드로 복원된 블록인 경우에, 상기 좌측 주변 블록의 움직임 벡터가 가리키는 참조 픽처와 동일할 수 있다.
일 실시예에 따라, 상기 현재 블록에 대응되는 참조 블록의 중심에 움직임 벡터가 존재하면, 상기 현재 블록의 서브 블록에 대응되는 시간적 참조 서브 블록의 움직임 벡터가 도출될 수 있다.
다른 실시예에 따라, 상기 CABAC 복호화에는 하나가 아닌 2개의 미리정해진 컨텍스트 모델이 이용될 수 있다.
단계 s2050에서, 비디오 복호화 장치(1900)는, 상기 비트열에 대해서 바이패스 복호화를 수행함으로써, 상기 서브 블록 머지 인덱스를 나타내는 심볼의 나머지 빈들을 획득할 수 있다.
일 실시예에 따라, 상기 바이패스 복호화는 상기 심볼의 첫 번째 빈에 기초하여 수행여부가 결정될 수 있다. 구체적으로, 서브 블록 머지 인덱스를 나타내는 심볼은 절삭형 단항 코딩이 수행되기 때문에, 심볼의 첫 번째 빈에 기초하여 바이패스 복호화 수행 여부가 결정될 수 있다.
단계 s2070에서, 비디오 복호화 장치(1900)는, 상기 심볼의 첫 번째 빈 및 나머지 빈들에 기초하여, 서브 블록 머지 모드로 현재 블록에 대한 예측을 수행할 수 있다.
일 실시예에 따라, 상기 바이패스 복호화가 수행되지 않는 것으로 결정되면, 심볼의 첫 번째 빈에만 기초하여, 서브 블록 머지 모드로 현재 블록에 대한 예측이 수행될 수 있다.
일 실시예에 따라, 서브 블록 머지 인덱스를 나타내는 심볼은 절삭형 단항 코딩을 이용하여 표현될 수 있다.
다른 실시예에 따라, 서브 블록 머지 모드는 아핀 머지 모드일 수 있다.
도 21은 서브 블록 단위 시간적 움직임 벡터 후보가 결정되는 과정을 도시한다.
도 21을 참고하면, 서브 블록 단위 시간적 움직임 벡터 후보(또는 ATMVP(Alternative Temporal Motion Vector Predictor))를 결정하기 위해, 현재 픽처의 현재 블록(2110)의 좌측 주변 블록(2130)의 예측 모드가 인트라 예측 모드인지 인터 예측 모드인지 먼저 판단된다. 좌측 주변 블록(2130)의 예측 모드가 인터 예측 모드이고, 상기 좌측 주변 블록(2130)의 참조 픽처가 현재 블록(2110)의 콜로케이티드 픽처와 동일한 것으로 판단되면, 시간적 움직임 벡터(2140)은 좌측 주변 블록(2130)의 움직임 벡터로 결정된다. 즉, 좌측 주변 블록이 인터 예측 모드이고 좌측 주변 블록이 현재 블록의 콜로케이티드 픽처와 동일한 참조 인덱스를 가지면, 시간적 움직임 벡터(2140)은 좌측 주변 블록(2130)의 움직임 벡터로 결정된다. 그리고 나서, 시간적 움직임 벡터(2140)이 가리키는 좌측 주변 블록(2130)의 참조 픽처(또는 콜로케이티드 픽처)에서 현재 블록(2110)에 대응되는 참조 블록(2120)의 중심에 대응되는 움직임 벡터가 존재하는지 판단된다. 참조 블록(2120)의 중심에 대응되는 움직임 벡터가 존재하면, 현재 블록(2110)의 서브 블록들, 즉, 16개의 서브 블록에 대응되는 참조 블록(2120)의 서브 블록들의 움직임 벡터가 서브 블록 단위 시간적 움직임 벡터로 결정될 수 있다. 그 후, 결정된 서브 블록 단위 시간적 움직임 벡터에 기초하여 현재 블록(2110)의 움직임 보상이 수행될 수 있다.
다시 도 21을 참고하여, 좌측 주변 블록(2130)의 예측 모드가 인트라 예측 모드이거나, 좌측 주변 블록의 예측 모드가 인터 예측 모드이더라도 상기 좌측 주변 블록(2130)의 참조 픽처가 현재 블록(2110)의 콜로케이티드 픽처와 동일하지 않으면, 시간적 움직임 벡터(2140)은 제로 움직임 벡터로 결정된다. 상기 제로 움직임 벡터가 가리키는 블록의 중심에 대응되는 움직임 벡터가 존재하면, 상기 제로 움직임 벡터가 가리키는 블록의 서브 블록들의 움직임 벡터가 서브 블록 단위 시간적 움직임 벡터로 결정된다.
또한, 좌측 주변 블록이 인터 예측 모드이고 좌측 주변 블록이 현재 블록의 콜로케이티드 픽처와 동일한 참조 인덱스를 가져서, 시간적 움직임 벡터(2140)가 좌측 주변 블록(2130)의 움직임 벡터로 결정된 경우에, 시간적 움직임 벡터(2140)이 가리키는 좌측 주변 블록(2130)의 참조 픽처(또는 콜로케이티드 픽처)에서 현재 블록(2110)에 대응되는 참조 블록(2120)의 중심에 대응되는 움직임 벡터가 존재하지 않으면, 서브 블록 단위 시간적 움직임 벡터 후보가 존재하지 않는 것으로 결정된다.
또한, 시간적 움직임 벡터가 제로 움직임 벡터로 결정된 경우, 제로 움직임 벡터가 가리키는 블록의 중심에 대응되는 움직임 벡터가 존재하지 않으면, 서브 블록 단위 시간적 움직임 벡터 후보가 존재하지 않는 것으로 결정된다.
또한, 좌측 주변 블록(2130)의 예측 모드가 인터 예측 모드이고, 상기 좌측 주변 블록(2130)의 참조 픽처가 현재 블록(2110)의 콜로케이티드 픽처와 동일한 것으로 판단되고, 참조 블록(2120)의 중심에 대응되는 움직임 벡터가 존재하고, 참조 블록(2120)의 서브 블록들의 움직임 벡터가 존재하지 않는다면, 참조 블록의 중심에 대응되는 움직임 벡터가 디폴트 벡터로 이용되어, 현재 블록의 서브 블록들의 움직임 벡터로 결정될 수 있다. 즉, 디폴트 벡터가 서브 블록 단위 시간적 움직임 벡터로 결정될 수 있다. 그 후, 결정된 서브 블록 단위 시간적 움직임 벡터에 기초하여 현재 블록(2110)의 움직임 보상이 수행될 수 있다.
일 실시예에 따라, 서브 블록 단위 시간적 움직임 벡터 후보가 이용가능하면, 기존 HEVC에서의 시간적 움직임 벡터(TMVP)가 옵션으로 이용될 수 있다. 구체적으로, TMVP 후보가 전혀 이용되지 않거나, 슬라이스, 타일, 최대부호화 단위, 부호화 단위 레벨에서, 플래그에 의해 이용되지 않을 수 있다.
서브 블록 단위 시간적 움직임 벡터 후보에서, 서브 블록들은 각각 다른 움직임 벡터들을 가지고 있기 때문에, 각각의 서브 블록에 대한 움직임 보상이 개별적으로 수행될 필요가 있다. 그러므로, 최악의 경우, 메모리 대역은 최소 서브 블록 크기의 움직임 보상 대역으로 정의될 수 있다.
이러한 문제를 해결하기 위해, 일 실시예에 따라, 서브 블록 단위 시간적 움직임 벡터 후보가 이용될 때, 현재 블록의 참조 영역의 높이가 현재 블록의 높이의 A배로, 참조 영역의 너비를 현재 블록의 너비의 B배로 제한될 수 있다. 만약, 현재 블록의 서브 블록들 중 하나가 이러한 참조 영역 밖에 있다면, 참조 영역 밖의 픽셀 값은 참조 영역의 경계 픽셀의 값으로 패딩되거나, 일정한 값으로 설정될 수 있다.
다른 실시예에 따라, 서브 블록 단위 시간적 움직임 벡터 후보가 이용될 때, 현재 블록의 서브 블록의 움직임 벡터의 범위가 특정 범위보다 큰 참조 영역에 접근하지 못하게 하기 위해, 서브 블록의 움직임 벡터의 범위가 특정 참조 영역 내에 있도록 제한될 수 있다. 이를 위해, 현재 블록의 대표적인 움직임 벡터 주위의 직사각형 범위로 정의되고, 정의된 범위 밖의 움직임 벡터는 정의된 범위로 클리핑(clipping)될 수 있다.
다른 실시예에 따라, 서브 블록 단위 시간적 움직임 벡터 후보가 이용될 때, 현재 블록의 서브 블록의 움직임 벡터의 범위가 특정 범위보다 큰 참조 영역에 접근하지 못하게 하기 위해, 서브 블록의 움직임 벡터의 좌표가 참조 영역 밖의 좌표인 경우, 서브 블록의 움직임 벡터의 좌표가 참조 영역 내로 클리핑될 수 있다.
다른 실시예에 따라, 서브 블록 단위 시간적 움직임 벡터 후보가 이용될 때, 참조 영역의 범위를 현재 블록의 높이 또는 너비에 따라 제한하는 동시에, 참조 영역 밖의 움직임 벡터를 참조 영역 안으로 클리핑함으로써, 서브 블록의 움직임 벡터의 범위를 제한할 수 있다.
다른 실시예에 따라, 서브 블록 단위 시간적 움직임 벡터 후보가 이용될 때, 참조 영역의 범위를 현재 블록의 높이 또는 너비에 따라 제한하는 동시에, 서브 블록의 움직임 벡터의 좌표가 참조 영역 밖의 좌표인 경우, 서브 블록의 움직임 벡터의 좌표가 참조 영역 내로 클리핑될 수 있다.
또한, 서브 블록 단위 시간적 움직임 벡터 후보 뿐만 아니라, 아핀 모드, STMVP(Spatial Temporal Motion Vector Prediction) 등의 다양한 서브 블록 머지 모드에서, 최악의 경우, 메모리 대역폭은 가장 작은 크기의 서브 블록에 의해 정의될 수 있다. 따라서, 모든 서브 블록 머지 모드가 동일한 서브 블록 크기를 가지도록 제한될 수 있다. 이에 따라, 설계가 균일하게 되고, 최악의 경우, 메모리 대역폭이 하나의 서브 블록 모드에 의해 결정되지 않도록 하기 위함이다. 대안으로는, 모든 서브 블록 모드가 동일한 서브 블록 영역을 가지도록 제한될 수 있다.
또한, 다양한 서브 블록 모드가 존재하고, 각각의 서브 블록 모드는 각각 고유한 서브 블록 크기를 가질 수 있다. 예를 들어, 아핀 모드에서는 4x4 블록이 이용되는 반면에 ATMVP는 8x8 서브 블록으로 제한될 수 있다. 각각의 서브 블록 모드에 대응되는 서브 블록 크기에 기초한 서브 블록 모드를 이용하여 부호화 단위에 대한 크기 제한이 통합될 수 있다. 예를 들어, 서브 블록 모드의 최소 서브 블록 크기가 MxN이면, 크기가 AxB인 모든 부호화 단위는 A>=M이고 B>=N인 경우에 서브 블록 모드를 이용할 수 있도록 제한될 수 있다. 또는, 서브 블록 모드의 최소 서브 블록 크기가 MxN이면, 크기가 AxB인 모든 부호화 단위는 A>=M이거나, B>=N인 경우에 서브 블록 모드를 이용할 수 있도록 제한될 수 있다. 또는, 서브 블록 모드의 최소 서브 블록 크기가 MxN이면, 크기가 AxB인 모든 부호화 단위는 A>M이고 B>N인 경우에 서브 블록 모드를 이용할 수 있도록 제한될 수 있다. 또는, 서브 블록 모드의 최소 서브 블록 크기가 MxN이면, 크기가 AxB인 모든 부호화 단위는 A>M이거나, B>N인 경우에 서브 블록 모드를 이용할 수 있도록 제한될 수 있다. 또는, 서브 블록 모드의 최소 서브 블록 크기가 MxN이면, 크기가 AxB인 모든 부호화 단위는 A*B>M*N인 경우에 서브 블록 모드를 이용할 수 있도록 제한될 수 있다. 또는, 서브 블록 모드의 최소 서브 블록 크기가 MxN이면, 크기가 AxB인 모든 부호화 단위는 A*B>=M*N인 경우에 서브 블록 모드를 이용할 수 있도록 제한될 수 있다.
도 22는 다른 실시예에 따른 비디오 부호화 방법의 흐름도를 도시한다.
도 17의 비디오 부호화 장치(1700)는 도 22의 비디오 부호화 방법에 따른 동작을 수행할 수 있다.
비디오 부호화 장치(1700)는 메모리(1710) 및 메모리(1710)에 접속된 적어도 하나의 프로세서(1720)를 포함할 수 있다. 일 실시예에 따른 비디오 부호화 장치(1700)의 동작들은 개별적인 프로세서로서 작동하거나, 중앙 프로세서의 제어에 의해 작동될 수 있다. 또한, 비디오 부호화 장치(1700)의 메모리(1710)는, 외부로부터 수신한 데이터와, 프로세서에 의해 생성된 데이터, 예를 들어, 움직임 벡터의 범위에 대한 정보 등을 저장할 수 있다.
비디오 부호화 장치(1700)의 프로세서(1720)는 현재 블록의 움직임 벡터 정밀도가 1/4 픽셀인지 1/16 픽셀인지 판단하고, 움직임 벡터 정밀도가 1/4 픽셀이면, 움직임 벡터의 범위를 16비트로 결정하고, 움직임 벡터 정밀도가 1/16 픽셀이면, 움직임 벡터의 범위를 18비트로 결정하고, 결정된 움직임 벡터의 범위에 기초하여, 상기 현재 블록의 인터 예측을 수행할 수 있다.
도 22를 참조하면, 단계 s2410에서, 비디오 부호화 장치(1700)는, 현재 블록의 움직임 벡터 정밀도가 1/4 픽셀인지 1/16 픽셀인지 판단할 수 있다.
일 실시예에 따라, 현재 블록의 움직임 벡터 정밀도가 1/4 픽셀인지 1/16 픽셀인지는 현재 블록의 예측 모드에 기초하여 결정될 수 있다.
일 실시예에 따라, 현재 블록의 예측 모드가 아핀 모드이면, 움직임 벡터 정밀도가 1/16 픽셀로 결정될 수 있다.
일 실시예에 따라, 현재 블록의 움직임 벡터 정밀도가 1/4 픽셀인지 1/16 픽셀인지 판단되면, 움직임 벡터 정밀도를 나타내는 플래그가 생성될 수 있다.
일 실시예에 따라, 상기 현재 블록의 움직임 벡터 정밀도가 1/4 픽셀인지 1/16 픽셀인지 여부는 SATD(Sum of Transform Difference) 또는 RDO (Rate Distortion Optimization) 계산을 통해 결정되어, 움직임 벡터 정밀도를 나타내는 플래그가 부호화되어 시그널링될 수 있다.
일 실시예에 따라, 움직임 벡터 정밀도를 나타내는 플래그는 픽처의 해상도에 의존하여 설정될 수 있다. 또한, 움직임 벡터 정밀도를 나타내는 플래그는 이용가능한 툴의 설정에 의존하여 결정될 수 있다. 구체적으로, 아핀이 이용가능한 경우, 움직임 벡터 정밀도를 나타내는 플래그는 1/16 픽셀이 움직임 벡터 정밀도인 것으로 자동적으로 설정될 수 있다.
일 실시예에 따라, 현재 블록의 예측 모드가 아핀 모드이면, 움직임 벡터 정밀도를 나타내는 플래그는 움직임 벡터 정밀도가 1/16 픽셀임을 나타내는 것으로 설정될 수 있다.
일 실시예에 따라, 움직임 벡터 정밀도가 1/4 픽셀인지 1/16 픽셀인지를 나타내는 플래그는 시퀀스 파라미터 세트(SPS; Sequence Parameter Set), 픽처 파라미터 세트(PPS; Picture Parameter Set), 슬라이스 헤더, 픽처, 타일 그룹 헤더 등에서 시그널링될 수 있다.
단계 s2230에서, 비디오 부호화 장치(1700)는, 움직임 벡터 정밀도가 1/4 픽셀이면, 움직임 벡터의 범위를 16비트로 결정할 수 있다.
단계 s2250에서, 비디오 부호화 장치(1700)는, 움직임 벡터 정밀도가 1/16 픽셀이면, 움직임 벡터의 범위를 18비트로 결정할 수 있다.
단계 s2270에서, 비디오 부호화 장치(1700)는, 결정된 움직임 벡터의 범위에 기초하여, 상기 현재 블록의 인터 예측을 수행할 수 있다.
도 23은 다른 실시예에 따른 비디오 복호화 방법의 흐름도를 도시한다.
도 19의 비디오 복호화 장치(1900)는 도 23의 비디오 복호화 방법에 따른 동작을 수행할 수 있다.
비디오 복호화 장치(1900)는 메모리(1910) 및 메모리(1910)에 접속된 적어도 하나의 프로세서(1920)를 포함할 수 있다. 일 실시예에 따른 비디오 복호화 장치(1900)의 동작들은 개별적인 프로세서로서 작동하거나, 중앙 프로세서의 제어에 의해 작동될 수 있다. 또한, 비디오 복호화 장치(1900)의 메모리(1910)는, 외부로부터 수신한 데이터와, 프로세서에 의해 생성된 데이터, 예를 들어, 움직임 벡터의 범위에 대한 정보 등을 저장할 수 있다.
비디오 복호화 장치(1900)의 프로세서(1920)는 현재 블록의 움직임 벡터 정밀도가 1/4 픽셀인지 1/16 픽셀인지 판단하고, 움직임 벡터 정밀도가 1/4 픽셀이면, 움직임 벡터의 범위를 16비트로 결정하고, 움직임 벡터 정밀도가 1/16 픽셀이면, 움직임 벡터의 범위를 18비트로 결정하고, 결정된 움직임 벡터의 범위에 기초하여, 상기 현재 블록의 인터 예측을 수행할 수 있다.
도 23을 참조하면, 단계 s2310에서, 비디오 복호화 장치(1900)는, 현재 블록의 움직임 벡터 정밀도가 1/4 픽셀인지 1/16 픽셀인지 판단할 수 있다.
일 실시예에 따라, 현재 블록의 움직임 벡터 정밀도가 1/4 픽셀인지 1/16 픽셀인지는 현재 블록의 예측 모드에 기초하여 결정될 수 있다.
일 실시예에 따라, 현재 블록의 예측 모드가 아핀 모드이면, 움직임 벡터 정밀도가 1/16 픽셀로 결정될 수 있다.
일 실시예에 따라, 현재 블록의 움직임 벡터 정밀도가 1/4 픽셀인지 1/16 픽셀인지는 비트스트림으로부터 획득된 움직임 벡터 정밀도에 대한 플래그에 의해 결정될 수 있다.
일 실시예에 따라, 움직임 벡터 정밀도가 1/4 픽셀인지 1/16 픽셀인지를 나타내는 플래그는 시퀀스 파라미터 세트(SPS; Sequence Parameter Set), 픽처 파라미터 세트(PPS; Picture Parameter Set), 슬라이스 헤더, 픽처, 타일 그룹 헤더 등에서 시그널링되어 획득될 수 있다.
일 실시예에 따라, 움직임 벡터 정밀도를 나타내는 플래그는 픽처의 해상도에 의존하여 설정될 수 있다. 또한, 움직임 벡터 정밀도를 나타내는 플래그는 이용가능한 툴의 설정에 의존하여 결정될 수 있다. 구체적으로, 아핀이 이용가능한 경우, 움직임 벡터 정밀도를 나타내는 플래그는 1/16 픽셀이 움직임 벡터 정밀도인 것으로 자동적으로 설정될 수 있다.
일 실시예에 따라, 현재 블록의 예측 모드가 아핀 모드이면, 상기 움직임 벡터 정밀도에 대한 플래그는 움직임 벡터 정밀도가 1/16 픽셀임을 나타내는 것으로 설정될 수 있다.
단계 s2330에서, 비디오 복호화 장치(1900)는, 움직임 벡터 정밀도가 1/4 픽셀이면, 움직임 벡터의 범위를 16비트로 결정할 수 있다.
단계 s2350에서, 비디오 복호화 장치(1900)는, 움직임 벡터 정밀도가 1/16 픽셀이면, 움직임 벡터의 범위를 18비트로 결정할 수 있다.
단계 s2370에서, 비디오 복호화 장치(1900)는, 결정된 움직임 벡터의 범위에 기초하여, 상기 현재 블록의 인터 예측을 수행할 수 있다.
도 24는 아핀 모드에서 움직임 벡터를 저장하는 방법을 설명하기 위한 도면이다.
도 24를 참고하면, 아핀 부호화 단위는 서브 블록 모드가 적용된다. 이와 관련하여, 2 종류의 움직임 벡터 세트가 존재한다. 1번째로, 아핀 부호화 단위의 각각의 서브 블록에 대한 서브 블록 움직임 벡터들이 존재하고, 2번째로, 부호화 단위의 코너에 대응되는 컨트롤 포인트 움직임 벡터들이 존재한다. 이에 따라, 코너에 위치하는 서브 블록은 컨트롤 포인트 움직임 벡터와 서브 블록 자체의 서브 블록 움직임 벡터를 둘 다 가진다. 여기서, '컨트롤 포인트 움직임 벡터'는 아핀 모드에서 이용되는 아핀 파라미터를 의미한다.
일 실시예에 따라, 코너에 위치하는 서브 블록의 서브 블록 움직임 벡터들을 컨트롤 움직임 벡터로 이용함으로써, 별개의 컨트롤 움직임 벡터가 저장되지 않을 수 있다. 움직임 벡터 버퍼에 접근함으로써 컨트롤 포인트 움직임 벡터가 제공될 수 있다. 따라서, 코너에 위치하는 서브 블록의 서브 블록 움직임 벡터는 다음 블록의 컨트롤 움직임 벡터를 도출하는데 이용될 수도 있다.
일 실시예에 따라, 아핀 부호화 단위의 컨트롤 포인트 움직임 벡터가 서브 블록 움직임 벡터로 이용될 수 있다. 컨트롤 포인트 움직임 벡터는 코너에 대한 것이지 서브 블록에 대한 것이기 때문에 약간 부정확하지만, 컨트롤 포인트 움직임 벡터가 움직임 보상, 디블로킹을 위해 이용되고, 움직임 벡터 버퍼에 저장될 수 있다.
따라서, 코너에 위치하는 서브 블록의 움직임 벡터로, 컨트롤 포인트 움직임 벡터 또는 서브 블록 움직임 벡터 중 하나가 버퍼에의 저장, 움직임 보상, 디블로킹 등 모든 목적에 위해 저장됨으로써, 움직임 벡터 버퍼의 버퍼양이 절감될 수 있다.
다른 실시예에 따라, 현재 블록의 주변 블록에 컨트롤 포인트 움직임 벡터가 저장되어 있는 경우, 주변 블록에 저장된 컨트롤 포인트 움직임 벡터를 이용하여, 아핀 모드가 아닌 현재 블록에 대한 일반적인 움직임 벡터가 도출될 수 있다. 예를 들어, 주변 블록의 컨트롤 포인트 움직임 벡터는 현재 블록의 중심에 대한 움직임 벡터를 도출하기 위해 이용될 수 있다. 이러한 방법은 MVD 예측 방법으로 생각될 수 있다. 이러한 방식으로 생성된 움직임 벡터는 일반적인 머지 모드에서 새로운 후보로 이용될 수 있고, 머지 후보 리스트에서 공간적 후보 이전 또는 이후 순위의 후보로 추가될 수 있다. 또한, 이러한 방식으로 생성된 움직임 벡터는 일반적인 AMVP 유도에서 새로운 후보로 이용될 수 있다.
도 25는 이력 기반 움직임 벡터 예측을 설명하기 위한 도면이다.
이력 기반 움직임 벡터 예측(HMVP)은 이전에 부호화된 블록 또는 이전에 복원된 블록의 움직임 정보들이 HMVP 후보들로 저장된다. 구체적으로, HMVP 후보들이 저장된 룩업 테이블, 즉 HMVP 리스트를 불러오고, HMVP 리스트의 HMVP 후보들에 기초하여 블록이 부호화 또는 복원된다.
도 25를 참고하면, HMVP 룩업 테이블에 저장된 N개의 HMVP 후보 중에서, 가장 최근에 저장된 HMVP 후보의 인덱스가 0이고, 가장 이전에 저장된 HMVP 후보의 인덱스가 N-1이고, 룩업 테이블 순회 순서에 따라, 인덱스가 N-1인 HMVP부터 인덱스가 0인 HMVP가 탐색된다.
또한, HMVP 리스트가 업데이트되어 새로운 HMVP 후보가 추가되면, HMVP 리스트에 저장된 후보들 중 가장 이전에 저장된 HMVP0의 움직임 정보가 제거될 수 있다. 즉, HMVP 리스트는 FIFO(first in first out) 로직에 따라 업데이트된다.
일 실시예에 따라, 가장 최근에 저장된 움직임 정보들은 일반적인 머지 리스트에 저장되어 있는 움직임 정보들과 동일한 움직임 정보가 반복되는 것일 수 있다. 이러한 경우, 가장 최근에 저장된 움직임 정보들은 이용하지 않고, M번째로 최근에 저장된 움직임 정보까지만 이용되도록 HMVP 룩업 테이블 이용방식이 수정될 수 있다.
일 실시예에 따라, 가장 최근에 저장된 움직임 정보들은 이용하지 않고, M번째로 최근에 저장된 움직임 정보까지만 이용하는 HMVP 방식은 AMVP 모드는 상대적으로 적은 후보들을 가지므로, 머지 모드의 경우에만 적용될 수 있다.
일 실시예에 따라, 가장 최근에 저장된 움직임 정보들은 이용하지 않고, M번째로 최근에 저장된 움직임 정보까지만 이용하는 HMVP 방식은, 일반적인 머지 후보에서 HMVP 후보와 동일한 움직임 정보가 반복될 확률이 낮은, 미리정해진 임계 크기, 임계 높이, 임계 너비, 또는 이들의 조합에 의해 정의되는 더 작은 블록에 대한 HMVP 리스트에 적용될 수 있다. 미리정해진 방식에 의해 정의되는 더 작은 블록에 대한 예측에 있어서, 더 작은 블록에 대한 HMVP 리스트가 이용될 때, M번째로 최근에 저장된 움직임 정보까지만 이용될 수 있다.
다른 실시예에 따라, HMVP 방식은, 이전에 복호화된 블록이 주변 블록이 아닌 블록들에 대한 HMVP 후보들에 적용될 수 있다. 구체적으로, 현재 블록 이전에 복호화된 블록이 주변 블록이 아닌 경우, 가장 최근에 저장된 움직임 정보가 현재 블록의 주변 블록이 아니므로, HMVP 리스트가 그대로 이용될 수 있다. 즉, HMVP 리스트에 저장된 모든 움직임 정보를 탐색하여, 탐색 결과가 현재 블록의 예측에 이용될 수 있다.
머지 후보 리스트에서 HMVP 후보의 위치는 공간적 후보 및 시간적 후보 다음일 수 있다. 머지 후보 리스트에서 HMVP 후보의 위치는 이용가능한 주변 블록의 수 및 시간적 후보의 이용가능성에 기초하여 달라질 수 있다.
일 실시예에 따라, 머지 후보 리스트에서 HMVP 후보의 위치는 고정될 수 있다. 예를 들어, 항상 HMVP 후보는 4순위일 수 있다. 또한, 일반적인 머지 후보들에 대해 HMVP 후보들의 프루닝을 통해 HMVP 후보들이 제거될 수 있다.
일 실시예에 따라, HMVP 후보가 시그널링되면, 디코더는 전체 머지 후보 리스트의 구성 없이, 움직임 정보에 직접 접근할 수 있다.
일 실시예에 따라, 머지 모드에 대한 플래그가 시그널링된 후에 HMVP 후보 리스트 또한 별개의 리스트로 시그널링될 수도 있다.
전술된 HMVP와 같이 일반적인 머지 모드와 다른 새로운 후보들이 도입되고 있다. HHVP외에도, 예를 들어, MMVD(merge mode with motion vector difference), 머지 오프셋(merge offset) 등이 있다. 머지 후보 리스트가 후보가 추가될 때, MMVD, 머지 오프셋 모드 등의 다른 모드 후보, 또는 머지 후보 리스트에 기초하여 도출된 다른 후보들에 대하여 프루닝될 수 있다.
"MMVD"는 기본 후보를 선택하고 수평 및 수직 방향으로 움직임 벡터 오프셋을 기본 후보에 추가하는 방식이다. 그러므로, 기본 후보들이 동일한 x성분 또는 y성분을 갖는 경우, 생성된 움직임 벡터 오프셋 중 다수가 서로 비슷할 수 있다. 이러한 경우을 방지하기 위해, MMVD의 기본 벡터들이 프루닝될 수 있다. 구체적으로, 이전에 추가된 기본 벡터 후보로 새로운 기본 벡터 후보를 감산하고, 움직임 벡터의 x성분 또는 y성분의 차이가 0이면, 새로운 기본 벡터는 기본 벡터 후보로 이용되지 않을 수 있다. 다른 예로, 움직임 벡터의 x성분 또는 y성분의 절대차이값(absolute difference)이 임계값 이하이면, 새로운 기본 벡터는 기본 벡터 후보로 이용되지 않도록, 임계값이 설정될 수 있다. 또 다른 예로, 움직임 벡터의 x성분 또는 y성분 중 하나의 차이가 0이고, 다른 성분은 MMVD의 오프셋 값 중 하나와 동일하면, 새로운 기본 벡터는 기본 벡터 후보로 이용되지 않을 수 있다.
도 26은 정규화된 움직임 벡터를 설명하기 위한 도면이다.
도 26을 참고하여, 현재 픽처에 포함된 현재 블록(2610)이 가리키는 움직임 벡터(2630)에 따라 참조 픽처에 포함된 참조 블록(2620)이 결정된다. 여기서, 움직임 벡터(2630)의 크기가 M이고, 현재 픽처와 참조 픽처 사이의 거리가 N poc(picture order count)라고 가정한다. 움직임 벡터의 크기를 픽처 사이의 거리인 N poc로 나누면, M/N의 크기를 가지는 정규화된 움직임 벡터가 획득될 수 있다. 이러한 방식으로 시간적 움직임 벡터가 항상 정규화된 방식으로 저장될 수 있다. 즉, 참조 프레임이 미리정해진 방향으로 N poc만큼 떨어져있다는 가정 하에 시간적 움직임 벡터가 스케일링될 수 있다. 이에 따라, 시간적 움직임 벡터가 도출될 때 시간적 움직임 벡터가 이미 정규화되었기 때문에, 스케일링 처리과정에서 나눗셈은 필요가 없고, 시간적 움직임 벡터를 도출될 때는, 곰셈 또는 시프트 연산만이 필요하게 된다. 이러한 방식은, 현재 프레임의 움직임 벡터의 저장에 확장될 수 있기 때문에, 모든 움직임 버퍼는 정규화된 움직임 벡터를 포함할 수 있다.
도 27은 크로마 블록의 크로마 샘플을 결정하기 위한 크로스 성분 선형 모델이 결정되는 방법을 설명하기 위한 도면이다.
도 27에는, 루마 성분(2710)의 현재 루마 블록(2730)과 현재 루마 블록(2730)의 주변에 위치하는 복원된 주변 루마 블록(2750) 각각에 대응되는 크로마 성분(2720)의 현재 크로마 블록(2740)과 현재 크로마 블록(2740)의 주변에 위치하는 복원된 주변 크로마 블록(2760)이 도시되어 있다.
도 27을 참고하여, 크로스 성분 선형 모델은 주변의 복원된 루마 블록의 샘플 값과 주변의 복원된 크로마 샘플 값을 이용하여 선형 모델을 결정하고, 결정된 선형 모델에 현재 루마 블록의 복원된 루마 샘플 값을 적용하여 현재 크로마 블록의 샘플 값을 획득한다.
도 28은 로컬 휘도 보상을 위한 선형 모델이 결정되는 방법을 설명하기 위한 도면이다.
로컬 휘도 보상을 위한 선형 모델은 현재 프레임(2820)의 현재 블록(2840)에 이웃하는 주변 블록의 복원된 샘플들(2860) 및 현재 블록(2820)의 움직임 정보가 가리키는 참조 프레임(2810)의 참조 블록(2830)에 이웃하는 주변 참조 블록의 참조 샘플들(2850)을 이용하여 선형 모델을 결정하고, 결정된 선형 모델에 현재 블록의 예측 샘플 값을 적용하여 현재 블록의 로컬 휘도 보상이 적용된 샘플 값을 획득한다.
도 27 및 도 28을 참고하여, 로컬 휘도 보상에 적용되는 선형 모델과 크로스 성분 선형 모델 모두 생성하기 위해, 선형 모델을 도출하는데 있어서, 동일한 선형 회귀 함수와 정규화 파라미터를 사용하여 두 방법을 일치화(harmoniztion)시킬 수 있다.
도 27의 크로스 성분 선형 모델은 인트라 코딩 툴의 일 예이다. 이러한 인트라 코딩 툴은 인터 슬라이스에서 이용되면, 비효율적일 수 있다. 구체적으로, 인터 슬라이스(P 슬라이스, B 슬라이스)에서 이용되는 모든 인트라 코딩 툴은 인트라 블록에 대한 인터 슬라이스에서 비효율적일 수 있다. 따라서, 인터 슬라이스에서 개별적으로 인트라 툴을 완전히 허용하지 않거나, 슬라이스, 타일, 최대부호화 단위, 또는 부호화 단위 레벨에서 플래그에 의해 비활성화할 수 있다. 비활성화 될 수 있는 인트라 툴의 예로 루마 및 크로마를 별도로 분할하는 루마 크로마 파티션, 멀티 라인 인트라 예측 등이 있다.
이제까지 다양한 실시예들을 중심으로 살펴보았다. 본 개시가 속하는 기술 분야에서 통상의 지식을 가진 자는 본 개시가 본 개시의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 개시의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 개시에 포함된 것으로 해석되어야 할 것이다.
한편, 상술한 본 개시의 실시예들은 컴퓨터에서 실행될 수 있는 프로그램으로 작성가능하고, 컴퓨터로 읽을 수 있는 기록매체를 이용하여 프로그램을 동작시키는 범용 디지털 컴퓨터에서 구현될 수 있다. 컴퓨터로 읽을 수 있는 기록매체는 마그네틱 저장매체(예를 들면, 롬, 플로피 디스크, 하드디스크 등), 광학적 판독 매체(예를 들면, 시디롬, 디브이디 등)와 같은 저장매체를 포함한다.
Claims (10)
- 비트스트림으로부터 서브 블록 머지 모드의 후보 움직임 벡터를 나타내는 서브 블록 머지 인덱스에 대한 비트열을 획득하는 단계;
상기 비트열에 대해서 미리정해진 컨텍스트 모델을 이용하여 CABAC(Context Adaptive Binary Arithmetic Coding) 복호화를 수행함으로써, 상기 서브 블록 머지 인덱스를 나타내는 심볼의 첫 번째 빈을 획득하는 단계;
상기 비트열에 대해서 바이패스 복호화를 수행함으로써, 상기 서브 블록 머지 인덱스를 나타내는 심볼의 나머지 빈들을 획득하는 단계;
상기 심볼의 첫 번째 빈 및 나머지 빈들에 기초하여, 서브 블록 머지 모드로 현재 블록에 대한 예측을 수행하는 단계를 포함하는, 비디오 복호화 방법. - 제1항에 있어서,
상기 바이패스 복호화는 상기 심볼의 첫 번째 빈에 기초하여 수행여부가 결정되는, 비디오 복호화 방법. - 제1항에 있어서,
상기 심볼의 첫 번째 빈은 서브 블록 단위 시간적 움직임 벡터 후보가 선택될 확률에 기초하여 결정되는, 비디오 복호화 방법. - 제3항에 있어서,
상기 서브 블록 단위 시간적 움직임 벡터 후보는 현재 블록의 서브 블록에 대응되는 시간적 참조 서브 블록의 움직임 벡터인, 비디오 복호화 방법. - 제4항에 있어서,
상기 시간적 참조 서브 블록이 포함된 참조 픽처는 현재 블록의 좌측 주변 블록이 인터 모드로 복원된 블록인 경우에, 상기 좌측 주변 블록의 움직임 벡터가 가리키는 참조 픽처와 동일한, 비디오 복호화 방법. - 제5항에 있어서,
상기 현재 블록에 대응되는 참조 블록의 중심에 움직임 벡터가 존재하면, 상기 현재 블록의 서브 블록에 대응되는 시간적 참조 서브 블록의 움직임 벡터가 도출되는, 비디오 복호화 방법. - 서브 블록 머지 모드로 현재 블록에 대한 예측을 수행하여, 서브 블록 머지 모드의 후보 움직임 벡터를 나타내는 서브 블록 머지 인덱스를 나타내는 심볼을 생성하는 단계;
상기 심볼의 첫 번째 빈에 대해서 미리정해진 컨텍스트 모델을 이용하여 CABAC 부호화를 수행하는 단계;
상기 심볼의 나머지 빈들에 대해서 바이패스 부호화를 수행하는 단계;
CABAC 부호화 및 바이패스 부호화 결과에 기초하여, 서브 블록 머지 인덱스에 대한 비트열을 포함하는 비트스트림을 생성하는 단계를 포함하는, 비디오 부호화 방법. - 제7항에 있어서,
상기 바이패스 부호화는 상기 심볼의 첫 번째 빈에 기초하여 수행여부가 결정되는, 비디오 부호화 방법. - 제7항에 있어서,
상기 심볼의 첫 번째 빈은 서브 블록 단위 시간적 움직임 벡터 후보가 선택될 확률에 기초하여 결정되는, 비디오 부호화 방법. - 제9항에 있어서,
상기 서브 블록 단위 시간적 움직임 벡터 후보는 현재 블록의 서브 블록에 대응되는 시간적 참조 서브 블록의 움직임 벡터인, 비디오 부호화 방법.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862743017P | 2018-10-09 | 2018-10-09 | |
US62/743,017 | 2018-10-09 | ||
PCT/KR2019/013182 WO2020076047A1 (ko) | 2018-10-09 | 2019-10-08 | 비디오 복호화 방법 및 장치, 비디오 부호화 방법 및 장치 |
KR1020217010680A KR20210054569A (ko) | 2018-10-09 | 2019-10-08 | 비디오 복호화 방법 및 장치, 비디오 부호화 방법 및 장치 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020217010680A Division KR20210054569A (ko) | 2018-10-09 | 2019-10-08 | 비디오 복호화 방법 및 장치, 비디오 부호화 방법 및 장치 |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20240049658A true KR20240049658A (ko) | 2024-04-16 |
Family
ID=70164984
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020217010680A KR20210054569A (ko) | 2018-10-09 | 2019-10-08 | 비디오 복호화 방법 및 장치, 비디오 부호화 방법 및 장치 |
KR1020247011745A KR20240049658A (ko) | 2018-10-09 | 2019-10-08 | 비디오 복호화 방법 및 장치, 비디오 부호화 방법 및 장치 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020217010680A KR20210054569A (ko) | 2018-10-09 | 2019-10-08 | 비디오 복호화 방법 및 장치, 비디오 부호화 방법 및 장치 |
Country Status (5)
Country | Link |
---|---|
US (2) | US11558622B2 (ko) |
EP (2) | EP3866473A4 (ko) |
KR (2) | KR20210054569A (ko) |
CN (4) | CN118678108A (ko) |
WO (1) | WO2020076047A1 (ko) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118450139A (zh) | 2018-12-07 | 2024-08-06 | 三星电子株式会社 | 视频解码方法以及视频编码方法 |
US11470340B2 (en) * | 2018-12-10 | 2022-10-11 | Tencent America LLC | Simplified merge list construction for small coding blocks |
JP7437426B2 (ja) * | 2019-09-24 | 2024-02-22 | オッポ広東移動通信有限公司 | インター予測方法および装置、機器、記憶媒体 |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012138032A1 (ko) * | 2011-04-07 | 2012-10-11 | 엘지전자 주식회사 | 영상 정보 부호화 방법 및 복호화 방법 |
US9282338B2 (en) * | 2011-06-20 | 2016-03-08 | Qualcomm Incorporated | Unified merge mode and adaptive motion vector prediction mode candidates selection |
CN103907346B (zh) * | 2011-10-11 | 2017-05-24 | 联发科技股份有限公司 | 运动矢量预测子及视差矢量导出方法及其装置 |
US9088796B2 (en) * | 2011-11-07 | 2015-07-21 | Sharp Kabushiki Kaisha | Video decoder with enhanced CABAC decoding |
US9237358B2 (en) * | 2011-11-08 | 2016-01-12 | Qualcomm Incorporated | Context reduction for context adaptive binary arithmetic coding |
WO2013106987A1 (en) * | 2012-01-16 | 2013-07-25 | Mediatek Singapore Pte. Ltd. | Methods and apparatuses of bypass coding and reducing contexts for some syntax elements |
KR101638720B1 (ko) | 2012-05-29 | 2016-07-20 | 미디어텍 인크. | 샘플 어댑티브 오프셋 정보를 부호화하는 방법 및 장치 |
US9749642B2 (en) * | 2014-01-08 | 2017-08-29 | Microsoft Technology Licensing, Llc | Selection of motion vector precision |
EP4418654A2 (en) * | 2014-10-31 | 2024-08-21 | Samsung Electronics Co., Ltd | Video encoding device and video decoding device using high-precision skip encoding and method thereof |
KR20180074773A (ko) * | 2015-11-22 | 2018-07-03 | 엘지전자 주식회사 | 비디오 신호를 엔트로피 인코딩, 디코딩하는 방법 및 장치 |
US10721489B2 (en) | 2016-09-06 | 2020-07-21 | Qualcomm Incorporated | Geometry-based priority for the construction of candidate lists |
CN110100440B (zh) * | 2016-12-22 | 2023-04-25 | 株式会社Kt | 一种用于对视频进行解码、编码的方法 |
KR102243215B1 (ko) | 2017-03-28 | 2021-04-22 | 삼성전자주식회사 | 비디오 부호화 방법 및 장치, 비디오 복호화 방법 및 장치 |
US10582209B2 (en) * | 2017-03-30 | 2020-03-03 | Mediatek Inc. | Sub-prediction unit temporal motion vector prediction (sub-PU TMVP) for video coding |
KR20210115052A (ko) | 2017-07-07 | 2021-09-24 | 삼성전자주식회사 | 적응적 움직임 벡터 해상도로 결정된 움직임 벡터의 부호화 장치 및 부호화 방법, 및 움직임 벡터의 복호화 장치 및 복호화 방법 |
KR102672759B1 (ko) | 2017-09-28 | 2024-06-05 | 삼성전자주식회사 | 부호화 방법 및 그 장치, 복호화 방법 및 그 장치 |
CN118714295A (zh) | 2018-07-27 | 2024-09-27 | 三星电子株式会社 | 对图像进行编码和解码的方法和装置 |
CN118590662A (zh) | 2018-09-20 | 2024-09-03 | 三星电子株式会社 | 视频解码方法和设备以及视频编码方法和设备 |
KR102660160B1 (ko) | 2018-11-22 | 2024-04-24 | 베이징 바이트댄스 네트워크 테크놀로지 컴퍼니, 리미티드 | 서브 블록 기반 인터 예측을 위한 조정 방법 |
WO2020256310A1 (ko) | 2019-06-21 | 2020-12-24 | 삼성전자 주식회사 | 비디오 복호화 방법 및 장치, 비디오 부호화 방법 및 장치 |
-
2019
- 2019-10-08 CN CN202410905590.6A patent/CN118678108A/zh active Pending
- 2019-10-08 EP EP19871369.5A patent/EP3866473A4/en not_active Withdrawn
- 2019-10-08 CN CN201980081284.2A patent/CN113170211B/zh active Active
- 2019-10-08 US US17/282,946 patent/US11558622B2/en active Active
- 2019-10-08 CN CN202410905671.6A patent/CN118678109A/zh active Pending
- 2019-10-08 WO PCT/KR2019/013182 patent/WO2020076047A1/ko active Search and Examination
- 2019-10-08 EP EP23183551.3A patent/EP4231646A3/en active Pending
- 2019-10-08 CN CN202410905524.9A patent/CN118678107A/zh active Pending
- 2019-10-08 KR KR1020217010680A patent/KR20210054569A/ko active Application Filing
- 2019-10-08 KR KR1020247011745A patent/KR20240049658A/ko active Search and Examination
-
2022
- 2022-12-30 US US18/148,937 patent/US20230146358A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
US20210392336A1 (en) | 2021-12-16 |
CN113170211A (zh) | 2021-07-23 |
EP4231646A3 (en) | 2023-11-01 |
EP3866473A1 (en) | 2021-08-18 |
CN118678109A (zh) | 2024-09-20 |
US11558622B2 (en) | 2023-01-17 |
CN118678107A (zh) | 2024-09-20 |
CN113170211B (zh) | 2024-07-26 |
EP3866473A4 (en) | 2023-02-15 |
CN118678108A (zh) | 2024-09-20 |
EP4231646A2 (en) | 2023-08-23 |
KR20210054569A (ko) | 2021-05-13 |
US20230146358A1 (en) | 2023-05-11 |
WO2020076047A1 (ko) | 2020-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102618498B1 (ko) | 비디오 복호화 방법 및 장치, 비디오 부호화 방법 및 장치 | |
KR102330704B1 (ko) | 비디오 복호화 방법 및 장치, 비디오 부호화 방법 및 장치 | |
KR102610014B1 (ko) | 비디오 부호화 방법 및 장치, 비디오 복호화 방법 및 장치 | |
KR102672759B1 (ko) | 부호화 방법 및 그 장치, 복호화 방법 및 그 장치 | |
KR20200100656A (ko) | 비디오 복호화 방법 및 장치, 비디오 부호화 방법 및 장치 | |
KR102577754B1 (ko) | 부호화 방법 및 그 장치, 복호화 방법 및 그 장치 | |
KR102705000B1 (ko) | 비디오 복호화 방법 및 장치, 비디오 부호화 방법 및 장치 | |
KR102596433B1 (ko) | 비디오 복호화 방법 및 장치, 비디오 부호화 방법 및 장치 | |
KR20240049658A (ko) | 비디오 복호화 방법 및 장치, 비디오 부호화 방법 및 장치 | |
KR20200096550A (ko) | 비디오 복호화 방법 및 장치, 비디오 부호화 방법 및 장치 | |
KR20210072118A (ko) | 비디오 복호화 방법 및 장치, 비디오 부호화 방법 및 장치 | |
KR20210019401A (ko) | 비디오 복호화 방법 및 장치, 비디오 부호화 방법 및 장치 | |
KR102654122B1 (ko) | 비디오 복호화 방법 및 장치, 비디오 부호화 방법 및 장치 | |
KR102618499B1 (ko) | 하드웨어 설계를 고려한 비디오 부호화 방법, 부호화 장치, 비디오 복호화 방법, 복호화 장치 | |
KR102482893B1 (ko) | 비디오 복호화 방법 및 장치, 비디오 부호화 방법 및 장치 | |
KR20200037130A (ko) | 비디오 부호화 방법 및 장치, 비디오 복호화 방법 및 장치 | |
KR102674137B1 (ko) | 비디오 복호화 방법 및 장치, 비디오 부호화 방법 및 장치 | |
KR102712746B1 (ko) | 비디오 복호화 방법 및 장치, 비디오 부호화 방법 및 장치 | |
KR102333181B1 (ko) | 비디오 복호화 방법 및 장치, 비디오 부호화 방법 및 장치 | |
KR20240148944A (ko) | 비디오 복호화 방법 및 장치, 비디오 부호화 방법 및 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A107 | Divisional application of patent | ||
A201 | Request for examination |