KR102285739B1 - 움직임 벡터 해상도에 기초하여 영상을 부호화하는 장치 및 방법, 및 복호화 장치 및 방법 - Google Patents

움직임 벡터 해상도에 기초하여 영상을 부호화하는 장치 및 방법, 및 복호화 장치 및 방법 Download PDF

Info

Publication number
KR102285739B1
KR102285739B1 KR1020217004310A KR20217004310A KR102285739B1 KR 102285739 B1 KR102285739 B1 KR 102285739B1 KR 1020217004310 A KR1020217004310 A KR 1020217004310A KR 20217004310 A KR20217004310 A KR 20217004310A KR 102285739 B1 KR102285739 B1 KR 102285739B1
Authority
KR
South Korea
Prior art keywords
coding unit
information
processing mode
current block
decoding apparatus
Prior art date
Application number
KR1020217004310A
Other languages
English (en)
Other versions
KR20210019138A (ko
Inventor
박민우
이진영
템즈아니쉬
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020217023781A priority Critical patent/KR20210095971A/ko
Publication of KR20210019138A publication Critical patent/KR20210019138A/ko
Application granted granted Critical
Publication of KR102285739B1 publication Critical patent/KR102285739B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/136Incoming video signal characteristics or properties
    • H04N19/137Motion inside a coding unit, e.g. average field, frame or block difference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/523Motion estimation or motion compensation with sub-pixel accuracy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/117Filters, e.g. for pre-processing or post-processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/136Incoming video signal characteristics or properties
    • H04N19/137Motion inside a coding unit, e.g. average field, frame or block difference
    • H04N19/139Analysis of motion vectors, e.g. their magnitude, direction, variance or reliability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/154Measured or subjectively estimated visual quality after decoding, e.g. measurement of distortion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/157Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
    • H04N19/159Prediction type, e.g. intra-frame, inter-frame or bidirectional frame prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/184Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being bits, e.g. of the compressed video stream
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/30Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using hierarchical techniques, e.g. scalability
    • H04N19/33Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using hierarchical techniques, e.g. scalability in the spatial domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/513Processing of motion vectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/90Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using coding techniques not provided for in groups H04N19/10-H04N19/85, e.g. fractals
    • H04N19/91Entropy coding, e.g. variable length coding [VLC] or arithmetic coding

Abstract

현재 블록의 움직임 벡터 해상도에 기초하여, 현재 블록의 복호화를 위한 예측 처리(prediction process), 변환 처리(transform process) 및 필터링 처리(filtering process) 중 적어도 하나의 처리에 포함된 복수의 처리 모드(processing mode)로부터 적어도 하나의 제 1 처리 모드를 결정하는 단계; 및 적어도 하나의 제 1 처리 모드에 기초하여 현재 블록을 복호화하는 단계를 포함하는 것을 특징으로 하는 일 실시예에 따른 영상의 복호화 방법이 개시된다.

Description

움직임 벡터 해상도에 기초하여 영상을 부호화하는 장치 및 방법, 및 복호화 장치 및 방법{APPARATUS AND METHOD FOR ENCODING IMAGE BASED ON MOTION VECTOR RESOLUTION, AND APPARATUS AND METHOD FOR DECODING IMAGE}
본 개시는 영상 부호화 및 복호화 분야에 관한 것이다. 보다 구체적으로, 본 개시는 움직임 벡터 해상도에 기초하여 영상을 부호화하는 방법 및 장치, 복호화하는 방법 및 장치에 관한 것이다.
비디오의 부호화 및 복호화 방법에서는 영상을 부호화하기 위해 하나의 픽처를 매크로블록으로 분할하고, 인터 예측(inter prediction) 또는 인트라 예측(intraprediction)을 통해 각각의 매크로블록을 예측 부호화할 수 있다.
인터 예측은 픽처들 사이의 시간적인 중복성을 제거하여 영상을 압축하는 방법으로 움직임 추정 부호화가 대표적인 예이다. 움직임 추정 부호화는 적어도 하나의 참조 픽처를 이용해 현재 픽처의 블록들을 예측한다. 소정의 평가 함수를 이용하여 현재 블록과 가장 유사한 참조 블록을 소정의 검색 범위에서 검색할 수 있다.
현재 블록을 참조 블록에 기초하여 예측하고, 예측 결과 생성된 예측 블록을 현재 블록으로부터 감산하여 생성된 잔차 블록을 부호화한다. 이 때, 예측을 보다 정확하게 수행하기 위해 참조 픽처의 검색 범위에 대해 보간을 수행하여 정수 화소 단위(integer pel unit)보다 작은 부화소 단위(sub pel unit) 화소들을 생성하고, 생성된 부화소 단위에 기초해 인터 예측을 수행할 수 있다.
인트라 예측은 픽처 내의 공간적인 중복성을 제거하여 영상을 압축하는 기술이다. 인트라 예측은 적어도 하나의 예측 블록 생성 방법에 따라 현재 블록의 주변 픽셀들에 기초하여 예측 블록을 생성한다. 그리고, 예측 블록을 현재 블록으로부터 감산하여 생성된 잔차 블록을 부호화한다.
H.264 AVC(Advanced Video Coding) 및 HEVC(High Efficiency Video Coding)와 같은 코덱에서는 인트라 예측과 인터 예측을 포함하는 예측 기술, 변환 기술 및 필터링 기술을 통해 영상을 부/복호화한다.
일 실시예에 따른 영상의 복호화 방법은, 현재 블록의 움직임 벡터 해상도에 기초하여, 상기 현재 블록의 복호화를 위한 예측 처리(prediction process), 변환 처리(transform process) 및 필터링 처리(filtering process) 중 적어도 하나의 처리에 포함된 복수의 처리 모드(processing mode)로부터 적어도 하나의 제 1 처리 모드를 결정하는 단계; 및 상기 적어도 하나의 제 1 처리 모드에 기초하여 상기 현재 블록을 복호화하는 단계를 포함할 수 있다.
일 실시예에 따른 영상의 부호화 장치 및 부호화 방법, 및 영상의 복호화 장치 및 복호화 방법은 현재 블록의 움직임 벡터 해상도에 따라 현재 블록에 적용 가능한 처리 모드를 미리 결정함으로써, 불필요한 정보를 비트스트림에 포함시킬 필요가 없어지고, 그에 따라 비트량을 감소시킬 수 있다.
본 명세서에서 인용되는 도면을 보다 충분히 이해하기 위하여 각 도면의 간단한 설명이 제공된다.
도 1은 일 실시예에 따라 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여 영상을 복호화 할 수 있는 영상 복호화 장치의 블록도를 도시한다.
도 2는 일 실시예에 따라 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여 영상을 부호화 할 수 있는 영상 부호화 장치의 블록도를 도시한다.
도 3은 일 실시예에 따라 현재 부호화 단위가 분할되어 적어도 하나의 부호화 단위가 결정되는 과정을 도시한다.
도 4는 일 실시예에 따라 비-정사각형의 형태인 부호화 단위가 분할되어 적어도 하나의 부호화 단위가 결정되는 과정을 도시한다.
도 5는 일 실시예에 따라 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여 부호화 단위가 분할되는 과정을 도시한다.
도 6은 일 실시예에 따라 홀수개의 부호화 단위들 중 소정의 부호화 단위가 결정되는 방법을 도시한다.
도 7은 일 실시예에 따라 현재 부호화 단위가 분할되어 복수개의 부호화 단위들이 결정되는 경우, 복수개의 부호화 단위들이 처리되는 순서를 도시한다.
도 8은 일 실시예에 따라 소정의 순서로 부호화 단위가 처리될 수 없는 경우, 현재 부호화 단위가 홀수개의 부호화 단위로 분할되는 것으로 결정되는 과정을 도시한다.
도 9는 일 실시예에 따라 제1 부호화 단위가 분할되어 적어도 하나의 부호화 단위가 결정되는 과정을 도시한다.
도 10은 일 실시예에 따라 제1 부호화 단위가 분할되어 결정된 비-정사각형 형태의 제2 부호화 단위가 소정의 조건을 만족하는 경우, 제2 부호화 단위가 분할될 수 있는 형태가 제한되는 것을 도시한다.
도 11은 일 실시예에 따라 분할 형태 정보가 4개의 정사각형 형태의 부호화 단위로 분할하는 것을 나타낼 수 없는 경우, 정사각형 형태의 부호화 단위가 분할되는 과정을 도시한다
도 12는 일 실시예에 따라 복수개의 부호화 단위들 간의 처리 순서가 부호화 단위의 분할 과정에 따라 달라질 수 있음을 도시한 것이다.
도 13은 일 실시예에 따라 부호화 단위가 재귀적으로 분할되어 복수개의 부호화 단위가 결정되는 경우, 부호화 단위의 형태 및 크기가 변함에 따라 부호화 단위의 심도가 결정되는 과정을 도시한다.
도 14는 일 실시예에 따라 부호화 단위들의 형태 및 크기에 따라 결정될 수 있는 심도 및 부호화 단위 구분을 위한 인덱스(part index, 이하 PID)를 도시한다.
도 15는 일 실시예에 따라 픽쳐에 포함되는 복수개의 소정의 데이터 단위에 따라 복수개의 부호화 단위들이 결정된 것을 도시한다.
도 16은 일 실시예에 따라 픽쳐에 포함되는 기준 부호화 단위의 결정 순서를 결정하는 기준이 되는 프로세싱 블록을 도시한다.
도 17은 일 실시예에 따라 부호화 단위가 분할될 수 있는 형태의 조합이 픽쳐마다 서로 다른 경우, 각각의 픽쳐마다 결정될 수 있는 부호화 단위들을 도시한다.
도 18은 일 실시예에 따라 바이너리(binary)코드로 표현될 수 있는 분할 형태 정보에 기초하여 결정될 수 있는 부호화 단위의 다양한 형태를 도시한다.
도 19는 일 실시예에 따라 바이너리 코드로 표현될 수 있는 분할 형태 정보에 기초하여 결정될 수 있는 부호화 단위의 또 다른 형태를 도시한다.
도 20는 루프 필터링을 수행하는 영상 부호화 및 복호화 시스템의 블록도를 나타낸 도면이다.
도 21은 일 실시예에 따른 최대 부호화 단위에 포함되는 필터링 단위들의 일례와 필터링 단위의 필터링 수행 정보를 나타낸 도면이다.
도 22는 일 실시예에 따라 소정의 부호화 방법에 따라 결정된 부호화 단위들 간의 병합(merge) 또는 분할(split)이 수행되는 과정을 도시한다.
도 23은 일 실시예에 따른 부호화 단위의 Z 스캔 순서에 따른 인덱스를 도시한다.
도 24는 일 실시예에 따른 부호화 단위의 인트라 예측을 위한 참조 샘플을 나타내는 도면이다.
도 25는 일 실시예에 따른 영상 복호화 장치의 구성을 나타내는 블록도이다.
도 26은 일 실시예에 따른 영상 복호화 방법을 설명하기 위한 순서도이다.
도 27은 일 실시예에 따른 영상 부호화 장치의 구성을 나타내는 블록도이다.
도 28은 일 실시예에 따른 영상 부호화 방법을 설명하기 위한 순서도이다.
도 29는 예측 처리, 변환 처리 및 필터링 처리 각각에 포함된 처리 모드들을 나타내는 도면이다.
도 30은 최소 MVR이 1/4 화소 단위 MVR인 경우, 1/4 화소 단위 MVR, 1/2 화소 단위 MVR, 1 화소 단위 MVR 및 2 화소 단위 MVR에 대응하여 움직임 벡터가 가리킬 수 있는 화소들의 위치를 나타내는 도면이다.
도 31은 현재 블록의 MVR 인덱스를 획득하는 과정을 설명하기 위한 예시적인 신택스를 나타내는 도면이다.
도 32 내지 도 34는 MVR에 대해 기 설정된 적용 가능 처리 모드 및/또는 적용 불가능 처리 모드를 도시하는 예시적인 도면이다.
도 35 내지 도 37은 현재 블록의 MVR에 기초하여 특정 처리 모드를 현재 블록에 적용하는 과정을 설명하기 위한 예시적인 신택스이다.
발명의 실시를 위한 최선의 형태
일 실시예에 따른 영상의 복호화 방법은, 현재 블록의 움직임 벡터 해상도에 기초하여, 상기 현재 블록의 복호화를 위한 예측 처리(prediction process), 변환 처리(transform process) 및 필터링 처리(filtering process) 중 적어도 하나의 처리에 포함된 복수의 처리 모드(processing mode)로부터 적어도 하나의 제 1 처리 모드를 결정하는 단계; 및 상기 적어도 하나의 제 1 처리 모드에 기초하여 상기 현재 블록을 복호화하는 단계를 포함할 수 있다.
상기 영상의 복호화 방법은, 상기 적어도 하나의 제 1 처리 모드와 관련된 정보를 비트스트림으로부터 획득하는 단계를 더 포함하고, 상기 복호화하는 단계는, 상기 획득한 정보로부터 상기 적어도 하나의 제 1 처리 모드의 적용이 확인된 경우, 상기 적어도 하나의 제 1 처리 모드에 기초하여 상기 현재 블록을 복호화하는 단계를 포함할 수 있다.
상기 복호화하는 단계는, 상기 적어도 하나의 제 1 처리 모드가 적용되지 않는 것으로 확인되면, 상기 적어도 하나의 제 1 처리 모드와는 상이한 제 2 처리 모드에 기초하여 상기 현재 블록을 복호화하는 단계를 포함할 수 있다.
상기 현재 블록의 움직임 벡터 해상도가 소정 움직임 벡터 해상도에 대응하지 않으면, 비트스트림으로부터 상기 적어도 하나의 제 1 처리 모드와 관련된 정보의 획득이 스킵(skip)될 수 있다.
상기 영상의 복호화 방법은, 상기 현재 블록의 움직임 벡터 해상도가 소정 움직임 벡터 해상도에 대응하지 않으면, 상기 복수의 처리 모드 중 상기 현재 블록의 움직임 벡터 해상도에 대응하는 적어도 하나의 제 2 처리 모드를 결정하는 단계를 더 포함하며, 상기 복호화하는 단계는, 상기 적어도 하나의 제 2 처리 모드에 기초하여 상기 현재 블록을 복호화하는 단계를 포함할 수 있다.
상기 적어도 하나의 제 1 처리 모드보다 먼저 적용 여부가 판단되는 것으로 미리 설정된 제 2 처리 모드가 존재하는 경우, 비트스트림으로부터 상기 제 2 처리 모드와 관련된 정보의 획득은 스킵될 수 있다.
상기 영상의 복호화 방법은, 상기 복수의 처리 모드 중 상기 현재 블록의 움직임 벡터 해상도에 대응하는 적어도 하나의 제 2 처리 모드를 결정하는 단계를 더 포함하고, 상기 비트스트림으로부터 상기 적어도 하나의 제 2 처리 모드와 관련된 정보의 획득은 스킵될 수 있다.
상기 현재 블록의 움직임 벡터 해상도는, 상기 현재 블록을 포함하는 슬라이스 또는 픽처에 대해 결정되며, 상기 적어도 하나의 제 1 처리 모드를 결정하는 단계는, 상기 현재 블록을 포함하는 슬라이스가 P 슬라이스 또는 B 슬라이스이거나, 상기 현재 블록을 포함하는 픽처가 P 픽처 또는 B 픽처인 경우, 상기 움직임 벡터 해상도에 기초하여 상기 슬라이스 또는 픽처에 포함된 모든 블록에 대해 인터 예측 처리 모드가 적용되는 것으로 결정하는 단계를 포함할 수 있다.
상기 적어도 하나의 제 1 처리 모드를 결정하는 단계는, 상기 현재 블록과 동일 슬라이스 또는 동일 픽처에 포함되고, 인트라 예측 처리 모드로 부호화된 블록의 예측 블록 생성 모드를, 상기 현재 블록의 움직임 벡터 해상도에 기초하여 결정하는 단계를 포함할 수 있다.
상기 영상의 복호화 방법은, 현재 블록의 움직임 벡터 해상도에 기초하여, 상기 적어도 하나의 제 1 처리 모드와 관련된 세부 설정 내용을 결정하는 단계를 더 포함하고, 상기 현재 블록을 복호화하는 단계는, 상기 적어도 하나의 제 1 처리 모드의 상기 세부 설정 내용에 따라 상기 현재 블록을 복호화하는 단계를 포함할 수 있다.
상기 예측 처리는, 스킵 처리 모드, 다이렉트 처리 모드, AMVP(Adaptive motion vector prediction) 처리 모드, 어파인(affine) 처리 모드, BIO(Bi-Optical Flow) 처리 모드, DMVD(Decoder-side Motion Vector Derivation) 처리 모드, IC(Illumination Compensation) 처리 모드, 예측 블록 생성 모드, IPR (Inter prediction refinement) 처리 모드 및 OBMC(overlapped Block Motion Compensation) 처리 모드 중 적어도 하나를 포함하고, 상기 변환 처리는, MT(multiple transform) 처리 모드, NSST(Non-Separable Secondary Transform) 처리 모드, ROT(Rotational Transform) 처리 모드, DST 처리 모드 및 DCT 처리 모드 중 적어도 하나를 포함하고, 상기 필터링 처리는, SAO(Sample Adaptive Offset) 처리 모드, BF(Bilateral Filter) 처리 모드 및 ALF(Adaptive Loop Filter) 처리 모드 중 적어도 하나를 포함할 수 있다.
일 실시예에 따른 영상의 복호화 방법은, 현재 블록의 복호화를 위한 예측 처리, 변환 처리 및 필터링 처리 중 적어도 하나의 처리에 포함된 복수의 처리 모드 중 적어도 하나의 제 1 처리 모드와 관련된 정보가 비트스트림에 포함되어 있는지 여부를, 현재 블록의 움직임 벡터 해상도에 기초하여 결정하는 단계; 및 상기 적어도 하나의 제 1 처리 모드와 관련된 정보가 상기 비트스트림에 포함된 경우, 상기 적어도 하나의 제 1 처리 모드에 기초하여 상기 현재 블록을 복호화하는 단계를 포함할 수 있다.
일 실시예에 따른 영상의 복호화 장치는, 현재 블록의 움직임 벡터 해상도에 기초하여, 상기 현재 블록의 복호화를 위한 예측 처리, 변환 처리 및 필터링 처리 중 적어도 하나의 처리에 포함된 복수의 처리 모드로부터 적어도 하나의 제 1 처리 모드를 결정하는 복호화부; 및 상기 적어도 하나의 제 1 처리 모드와 관련된 정보를 비트스트림으로부터 획득하는 비트스트림 획득부를 포함하고, 상기 복호화부는, 상기 획득한 정보에 따라 적어도 하나의 제 1 처리 모드에 기초하여 상기 현재 블록을 복호화할 수 있다.
일 실시예에 따른 영상의 부호화 방법은, 현재 블록의 움직임 벡터 해상도에 기초하여, 상기 현재 블록의 부호화를 위한 예측 처리, 변환 처리 및 필터링 처리 중 적어도 하나의 처리에 포함된 복수의 처리 모드로부터 적어도 하나의 제 1 처리 모드를 결정하는 단계; 및 상기 적어도 하나의 제 1 처리 모드에 기초하여 상기 현재 블록을 부호화하는 단계를 포함할 수 있다.
일 실시예에 따른 영상의 부호화 장치는, 현재 블록의 움직임 벡터 해상도에 기초하여, 상기 현재 블록의 부호화를 위한 예측 처리, 변환 처리 및 필터링 처리 중 적어도 하나의 처리에 포함된 복수의 처리 모드로부터 적어도 하나의 제 1 처리 모드를 결정하고, 상기 적어도 하나의 제 1 처리 모드에 기초하여 상기 현재 블록을 부호화하는 부호화부; 및 상기 적어도 하나의 제 1 처리 모드와 관련된 정보를 포함하는 비트스트림을 생성하는 비트스트림 생성부를 포함할 수 있다.
발명의 실시를 위한 형태
본 개시는 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고, 이를 상세한 설명을 통해 상세히 설명하고자 한다. 그러나, 이는 본 개시의 실시 형태에 대해 한정하려는 것이 아니며, 본 개시는 여러 실시예들의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
실시예를 설명함에 있어서, 관련된 공지 기술에 대한 구체적인 설명이 본 개시의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 명세서의 설명 과정에서 이용되는 숫자(예를 들어, 제 1, 제 2 등)는 하나의 구성요소를 다른 구성요소와 구분하기 위한 식별기호에 불과하다.
또한, 본 명세서에서, 일 구성요소가 다른 구성요소와 "연결된다" 거나 "접속된다" 등으로 언급된 때에는, 상기 일 구성요소가 상기 다른 구성요소와 직접 연결되거나 또는 직접 접속될 수도 있지만, 특별히 반대되는 기재가 존재하지 않는 이상, 중간에 또 다른 구성요소를 매개하여 연결되거나 또는 접속될 수도 있다고 이해되어야 할 것이다.
또한, 본 명세서에서 '~부(유닛)', '모듈' 등으로 표현되는 구성요소는 2개 이상의 구성요소가 하나의 구성요소로 합쳐지거나 또는 하나의 구성요소가 보다 세분화된 기능별로 2개 이상으로 분화될 수도 있다. 또한, 이하에서 설명할 구성요소 각각은 자신이 담당하는 주기능 이외에도 다른 구성요소가 담당하는 기능 중 일부 또는 전부의 기능을 추가적으로 수행할 수도 있으며, 구성요소 각각이 담당하는 주기능 중 일부 기능이 다른 구성요소에 의해 전담되어 수행될 수도 있음은 물론이다.
또한, 본 명세서에서, '영상' 또는 '픽처'는 비디오의 정지영상이거나 동영상, 즉 비디오 그 자체를 나타낼 수 있다.
또한, 본 명세서에서 '샘플'은, 영상의 샘플링 위치에 할당된 데이터로서 프로세싱 대상이 되는 데이터를 의미한다. 예를 들어, 공간영역의 영상에서 화소값, 변환 영역 상의 변환 계수들이 샘플들일 수 있다. 이러한 적어도 하나의 샘플들을 포함하는 단위를 블록이라고 정의할 수 있다.
또한, 본 명세서에서,'현재 블록(Current Block)'은, 부호화 또는 복호화하고자 하는 현재 영상의 최대 부호화 단위, 부호화 단위, 예측 단위 또는 변환 단위의 블록을 의미할 수 있다.
또한, 본 명세서에서, '움직임 벡터 해상도(motion vector resolution)'는, 참조 영상(또는 보간된 참조 영상)에 포함된 화소들 중, 인터 예측을 통해 결정된 움직임 벡터가 가리킬 수 있는 화소의 위치의 정밀도를 의미할 수 있다. 움직임 벡터 해상도가 N 화소 단위(N은 유리수)를 갖는다는 것은, 움직임 벡터가 N 화소 단위의 정밀도를 가질 수 있다는 것을 의미한다. 일 예로서, 1/4 화소 단위의 움직임 벡터 해상도는 움직임 벡터가 보간된 참조 영상에서 1/4 화소 단위(즉, 부화소 단위)의 화소 위치를 가리킬 수 있다는 것을 의미할 수 있고, 1 화소 단위의 움직임 벡터 해상도는 움직임 벡터가 보간된 참조 영상에서 1 화소 단위(즉, 정수 화소 단위)에 대응하는 화소 위치를 가리킬 수 있다는 것을 의미할 수 있다.
또한 본 명세서에서, '후보 움직임 벡터 해상도(candidate of motion vector resolution)'는 블록의 움직임 벡터 해상도로 선택될 수 있는 하나 이상의 움직임 벡터 해상도를 의미한다.
또한, 본 명세서에서 '화소 단위'는 화소 정밀도, 화소 정확도 등의 용어로 대체되어 설명될 수도 있다.
또한, 본 명세서에서, '처리 모드'는 영상 내 블록의 부호화 및 복호화를 위해 블록에 대해 적용 가능한 요소 기술을 의미할 수 있다.
이하에서는, 도 1 내지 도 24를 참조하여, 일 실시예에 따른 트리 구조의 부호화 단위 및 변환 단위에 기초한 영상 부호화 방법 및 그 장치, 영상 복호화 방법 및 그 장치가 개시된다. 도 1 내지 도 24를 참조하여 설명할 영상 부호화 장치(200) 및 영상 복호화 장치(100) 각각은 도 25 내지 도 37를 참조하여 설명할 영상 부호화 장치(2700) 및 영상 복호화 장치(2500) 각각을 포함할 수 있다.
도 1은 일 실시예에 따라 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여 영상을 복호화 할 수 있는 영상 복호화 장치(100)의 블록도를 도시한다.
도 1을 참조하면, 영상 복호화 장치(100)는 일 실시예에 따라 비트스트림으로부터 분할 형태 정보, 블록 형태 정보 등과 같은 소정의 정보를 획득하기 위한 비트스트림 획득부(110), 획득한 정보를 이용하여 영상을 복호화 하기 위한 복호화부(120)를 포함할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)의 비트스트림 획득부(110)에서 블록 형태 정보 및 분할 형태 정보 중 적어도 하나를 획득한 경우, 영상 복호화 장치(100)의 복호화부(120)는 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여 영상을 분할하는 적어도 하나의 부호화 단위를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)의 복호화부(120)는 블록 형태 정보에 기초하여 부호화 단위의 형태를 결정할 수 있다. 예를 들면 블록 형태 정보는 부호화 단위가 정사각형인지 또는 비-정사각형인지 여부를 나타내는 정보를 포함할 수 있다. 복호화부(120)는 블록 형태 정보를 이용하여 부호화 단위의 형태를 결정할 수 있다.
일 실시예에 따라 복호화부(120)는 분할 형태 정보에 기초하여 부호화 단위가 어떤 형태로 분할될지를 결정할 수 있다. 예를 들면 분할 형태 정보는 부호화 단위에 포함되는 적어도 하나의 부호화 단위의 형태에 대한 정보를 나타낼 수 있다.
일 실시예에 따라 복호화부(120)는 분할 형태 정보에 따라 부호화 단위가 분할되는지 분할되지 않는지 여부를 결정할 수 있다. 분할 형태 정보는 부호화 단위에 포함되는 적어도 하나의 부호화 단위에 대한 정보를 포함할 수 있으며, 만일 분할 형태 정보가 부호화 단위에 하나의 부호화 단위만이 포함되는 것을 나타내거나 또는 분할되지 않음을 나타내는 경우, 복호화부(120)는 분할 형태 정보를 포함하는 부호화 단위가 분할되지 않는 것으로 결정할 수 있다. 분할 형태 정보가, 부호화 단위가 복수개의 부호화 단위로 분할됨을 나타내는 경우 복호화부(120)는 분할 형태 정보에 기초하여 부호화 단위에 포함되는 복수개의 부호화 단위로 분할할 수 있다.
일 실시예에 따라 분할 형태 정보는 부호화 단위를 몇 개의 부호화 단위로 분할할 지를 나타내거나 어느 방향으로 분할할지를 나타낼 수 있다. 예를 들면 분할 형태 정보는 수직 방향 및 수평 방향 중 적어도 하나의 방향으로 분할하는 것을 나타내거나 또는 분할하지 않는 것을 나타낼 수 있다.
도 3은 일 실시예에 따라 영상 복호화 장치(100)가 현재 부호화 단위를 분할하여 적어도 하나의 부호화 단위를 결정하는 과정을 도시한다.
블록 형태는 4Nx4N,4Nx2N, 2Nx4N, 4NxN 또는 Nx4N을 포함할 수 있다. 여기서 N은 양의 정수일 수 있다. 블록 형태 정보는 부호화 단위의 모양, 방향, 너비 및 높이의 비율 또는 크기 중 적어도 하나를 나타내는 정보이다.
부호화 단위의 모양은 정사각형(square) 및 비-정사각형(non-square)을 포함할 수 있다. 부호화 단위의 너비 및 높이의 길이가 같은 경우(4Nx4N), 영상 복호화 장치(100)는 부호화 단위의 블록 형태 정보를 정사각형으로 결정할 수 있다. 영상 복호화 장치(100)는 부호화 단위의 모양을 비-정사각형으로 결정할 수 있다.
부호화 단위의 너비 및 높이의 길이가 다른 경우(4Nx2N, 2Nx4N, 4NxN 또는 Nx4N), 영상 복호화 장치(100)는 부호화 단위의 블록 형태 정보를 비-정사각형으로 결정할 수 있다. 부호화 단위의 모양이 비-정사각형인 경우, 영상 복호화 장치(100)는 부호화 단위의 블록 형태 정보 중 너비 및 높이의 비율을 1:2, 2:1, 1:4, 4:1, 1:8 또는 8:1 중 적어도 하나로 결정할 수 있다. 또한, 부호화 단위의 너비의 길이 및 높이의 길이에 기초하여, 영상 복호화 장치(100)는 부호화 단위가 수평 방향인지 수직 방향인지 결정할 수 있다. 또한, 부호화 단위의 너비의 길이, 높이의 길이, 넓이 중 적어도 하나에 기초하여, 영상 복호화 장치(100)는 부호화 단위의 크기를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 블록 형태 정보를 이용하여 부호화 단위의 형태를 결정할 수 있고, 분할 형태 모드에 대한 정보를 이용하여 부호화 단위가 어떤 형태로 분할되는지를 결정할 수 있다. 즉, 영상 복호화 장치(100)가 이용하는 블록 형태 정보가 어떤 블록 형태를 나타내는지에 따라 분할 형태 모드에 대한 정보가 나타내는 부호화 단위의 분할 방법이 결정될 수 있다.
영상 복호화 장치(100)는 비트스트림으로부터 분할 형태 모드에 대한 정보를 획득할 수 있다. 하지만 이에 한정되는 것은 아니며, 영상 복호화 장치(100) 및 영상 부호화 장치(200)는 블록 형태 정보에 기초하여 미리 약속된 분할 형태 모드에 대한 정보를 획득할 수 있다. 영상 복호화 장치(100)는 최대 부호화 단위 또는 최소 부호화 단위에 대하여 미리 약속된 분할 형태 모드에 대한 정보를 획득할 수 있다. 예를 들어 영상 복호화 장치(100)는 최대 부호화 단위의 크기를 256x256으로 결정할 수 있다. 영상 복호화 장치(100)는 미리 약속된 분할 형태 모드에 대한 정보를 쿼드 분할(quad split)로 결정할 수 있다. 쿼드 분할은 부호화 단위의 너비 및 높이를 모두 이등분하는 분할 형태 모드이다. 영상 복호화 장치(100)는 분할 형태 모드에 대한 정보에 기초하여 256x256 크기의 최대 부호화 단위로부터 128x128 크기의 부호화 단위를 획득할 수 있다. 또한 영상 복호화 장치(100)는 최소 부호화 단위의 크기를 4x4로 결정할 수 있다. 영상 복호화 장치(100)는 최소 부호화 단위에 대하여 "분할하지 않음"을 나타내는 분할 형태 모드에 대한 정보를 획득할 수 있다.
일 실시예에 따라, 영상 복호화 장치(100)는 현재 부호화 단위가 정사각형 형태임을 나타내는 블록 형태 정보를 이용할 수 있다. 예를 들어 영상 복호화 장치(100)는 분할 형태 모드에 대한 정보에 따라 정사각형의 부호화 단위를 분할하지 않을지, 수직으로 분할할지, 수평으로 분할할지, 4개의 부호화 단위로 분할할지 등을 결정할 수 있다. 도 3을 참조하면, 현재 부호화 단위(300)의 블록 형태 정보가 정사각형의 형태를 나타내는 경우, 복호화부(120)는 분할되지 않음을 나타내는 분할 형태 모드에 대한 정보에 따라 현재 부호화 단위(300)와 동일한 크기를 가지는 부호화 단위(310a)를 분할하지 않거나, 소정의 분할방법을 나타내는 분할 형태 모드에 대한 정보에 기초하여 분할된 부호화 단위(310b, 310c, 310d 등)를 결정할 수 있다.
도 3을 참조하면 영상 복호화 장치(100)는 일 실시예에 따라 수직방향으로 분할됨을 나타내는 분할 형태 모드에 대한 정보에 기초하여 현재 부호화 단위(300)를 수직방향으로 분할한 두 개의 부호화 단위(310b)를 결정할 수 있다. 영상 복호화 장치(100)는 수평방향으로 분할됨을 나타내는 분할 형태 모드에 대한 정보에 기초하여 현재 부호화 단위(300)를 수평방향으로 분할한 두 개의 부호화 단위(310c)를 결정할 수 있다. 영상 복호화 장치(100)는 수직방향 및 수평방향으로 분할됨을 나타내는 분할 형태 모드에 대한 정보에 기초하여 현재 부호화 단위(300)를 수직방향 및 수평방향으로 분할한 네 개의 부호화 단위(310d)를 결정할 수 있다. 다만 정사각형의 부호화 단위가 분할될 수 있는 분할 형태는 상술한 형태로 한정하여 해석되어서는 안되고, 분할 형태 모드에 대한 정보가 나타낼 수 있는 다양한 형태가 포함될 수 있다. 정사각형의 부호화 단위가 분할되는 소정의 분할 형태들은 이하에서 다양한 실시예를 통해 구체적으로 설명하도록 한다.
도 4는 일 실시예에 따라 영상 복호화 장치(100)가 비-정사각형의 형태인 부호화 단위를 분할하여 적어도 하나의 부호화 단위를 결정하는 과정을 도시한다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 부호화 단위가 비-정사각형 형태임을 나타내는 블록 형태 정보를 이용할 수 있다. 영상 복호화 장치(100)는 분할 형태 모드에 대한 정보에 따라 비-정사각형의 현재 부호화 단위를 분할하지 않을지 소정의 방법으로 분할할지 여부를 결정할 수 있다. 도 4를 참조하면, 현재 부호화 단위(400 또는 450)의 블록 형태 정보가 비-정사각형의 형태를 나타내는 경우, 영상 복호화 장치(100)는 분할되지 않음을 나타내는 분할 형태 모드에 대한 정보에 따라 현재 부호화 단위(400 또는 450)와 동일한 크기를 가지는 부호화 단위(410 또는 460)를 결정하거나, 소정의 분할방법을 나타내는 분할 형태 모드에 대한 정보에 따라 기초하여 분할된 부호화 단위(420a, 420b, 430a, 430b, 430c, 470a, 470b, 480a, 480b, 480c)를 결정할 수 있다. 비-정사각형의 부호화 단위가 분할되는 소정의 분할 방법은 이하에서 다양한 실시예를 통해 구체적으로 설명하도록 한다.
일 실시예에 따라 영상 복호화 장치(100)는 분할 형태 모드에 대한 정보를 이용하여 부호화 단위가 분할되는 형태를 결정할 수 있고, 이 경우 분할 형태 모드에 대한 정보는 부호화 단위가 분할되어 생성되는 적어도 하나의 부호화 단위의 개수를 나타낼 수 있다. 도 4를 참조하면 분할 형태 모드에 대한 정보가 두 개의 부호화 단위로 현재 부호화 단위(400 또는 450)가 분할되는 것을 나타내는 경우, 영상 복호화 장치(100)는 분할 형태 모드에 대한 정보에 기초하여 현재 부호화 단위(400 또는 450)를 분할하여 현재 부호화 단위에 포함되는 두 개의 부호화 단위(420a, 420b, 또는 470a, 470b)를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)가 분할 형태 모드에 대한 정보에 기초하여 비-정사각형의 형태의 현재 부호화 단위(400 또는 450)를 분할하는 경우, 영상 복호화 장치(100)는 비-정사각형의 현재 부호화 단위(400 또는 450)의 긴 변의 위치를 고려하여 현재 부호화 단위를 분할할 수 있다. 예를 들면, 영상 복호화 장치(100)는 현재 부호화 단위(400 또는 450)의 형태를 고려하여 현재 부호화 단위(400 또는 450)의 긴 변을 분할하는 방향으로 현재 부호화 단위(400 또는 450)를 분할하여 복수개의 부호화 단위를 결정할 수 있다.
일 실시예에 따라, 분할 형태 모드에 대한 정보가 홀수개의 블록으로 부호화 단위를 분할(트라이 분할; tri split)하는 것을 나타내는 경우, 영상 복호화 장치(100)는 현재 부호화 단위(400 또는 450)에 포함되는 홀수개의 부호화 단위를 결정할 수 있다. 예를 들면, 분할 형태 모드에 대한 정보가 3개의 부호화 단위로 현재 부호화 단위(400 또는 450)를 분할하는 것을 나타내는 경우, 영상 복호화 장치(100)는 현재 부호화 단위(400 또는 450)를 3개의 부호화 단위(430a, 430b, 430c, 480a, 480b, 480c)로 분할할 수 있다.
일 실시예에 따라, 현재 부호화 단위(400 또는 450)의 너비 및 높이의 비율이 4:1 또는 1:4 일 수 있다. 너비 및 높이의 비율이 4:1 인 경우, 너비의 길이가 높이의 길이보다 길므로 블록 형태 정보는 수평 방향일 수 있다. 너비 및 높이의 비율이 1:4 인 경우, 너비의 길이가 높이의 길이보다 짧으므로 블록 형태 정보는 수직 방향일 수 있다. 영상 복호화 장치(100)는 분할 형태 모드에 대한 정보에 기초하여 현재 부호화 단위를 홀수개의 블록으로 분할할 것을 결정할 수 있다. 또한 영상 복호화 장치(100)는 현재 부호화 단위(400 또는 450)의 블록 형태 정보에 기초하여 현재 부호화 단위(400 또는 450)의 분할 방향을 결정할 수 있다. 예를 들어 현재 부호화 단위(400)가 수직 방향인 경우, 영상 복호화 장치(100)는 현재 부호화 단위(400)를 수평 방향으로 분할 하여 부호화 단위(430a, 430b, 430c)를 결정할 수 있다. 또한 현재 부호화 단위(450)가 수평 방향인 경우, 영상 복호화 장치(100)는 현재 부호화 단위(450)를 수직 방향으로 분할 하여 부호화 단위(480a, 480b, 480c)를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 부호화 단위(400 또는 450)에 포함되는 홀수개의 부호화 단위를 결정할 수 있으며, 결정된 부호화 단위들의 크기 모두가 동일하지는 않을 수 있다. 예를 들면, 결정된 홀수개의 부호화 단위(430a, 430b, 430c, 480a, 480b, 480c) 중 소정의 부호화 단위(430b 또는 480b)의 크기는 다른 부호화 단위(430a, 430c, 480a, 480c)들과는 다른 크기를 가질 수도 있다. 즉, 현재 부호화 단위(400 또는 450)가 분할되어 결정될 수 있는 부호화 단위는 복수의 종류의 크기를 가질 수 있고, 경우에 따라서는 홀수개의 부호화 단위(430a, 430b, 430c, 480a, 480b, 480c)가 각각 서로 다른 크기를 가질 수도 있다.
일 실시예에 따라 분할 형태 모드에 대한 정보가 홀수개의 블록으로 부호화 단위가 분할되는 것을 나타내는 경우, 영상 복호화 장치(100)는 현재 부호화 단위(400 또는 450)에 포함되는 홀수개의 부호화 단위를 결정할 수 있고, 나아가 영상 복호화 장치(100)는 분할하여 생성되는 홀수개의 부호화 단위들 중 적어도 하나의 부호화 단위에 대하여 소정의 제한을 둘 수 있다. 도 4를 참조하면 영상 복호화 장치(100)는 현재 부호화 단위(400 또는 450)가 분할되어 생성된 3개의 부호화 단위(430a, 430b, 430c, 480a, 480b, 480c)들 중 중앙에 위치하는 부호화 단위(430b, 480b)에 대한 복호화 과정을 다른 부호화 단위(430a, 430c, 480a, 480c)와 다르게 할 수 있다. 예를 들면, 영상 복호화 장치(100)는 중앙에 위치하는 부호화 단위(430b, 480b)에 대하여는 다른 부호화 단위(430a, 430c, 480a, 480c)와 달리 더 이상 분할되지 않도록 제한하거나, 소정의 횟수만큼만 분할되도록 제한할 수 있다.
도 5는 일 실시예에 따라 영상 복호화 장치(100)가 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 부호화 단위를 분할하는 과정을 도시한다.
일 실시예에 따라 영상 복호화 장치(100)는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 정사각형 형태의 제1 부호화 단위(500)를 부호화 단위들로 분할하거나 분할하지 않는 것으로 결정할 수 있다. 일 실시예에 따라 분할 형태 모드에 대한 정보가 수평 방향으로 제1 부호화 단위(500)를 분할하는 것을 나타내는 경우, 영상 복호화 장치(100)는 제1 부호화 단위(500)를 수평 방향으로 분할하여 제2 부호화 단위(510)를 결정할 수 있다. 일 실시예에 따라 이용되는 제1 부호화 단위, 제2 부호화 단위, 제3 부호화 단위는 부호화 단위 간의 분할 전후 관계를 이해하기 위해 이용된 용어이다. 예를 들면, 제1 부호화 단위를 분할하면 제2 부호화 단위가 결정될 수 있고, 제2 부호화 단위가 분할되면 제3 부호화 단위가 결정될 수 있다. 이하에서는 이용되는 제1 부호화 단위, 제2 부호화 단위 및 제3 부호화 단위의 관계는 상술한 특징에 따르는 것으로 이해될 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 결정된 제2 부호화 단위(510)를 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 부호화 단위들로 분할하거나 분할하지 않는 것으로 결정할 수 있다. 도 5를 참조하면 영상 복호화 장치(100)는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 제1 부호화 단위(500)를 분할하여 결정된 비-정사각형의 형태의 제2 부호화 단위(510)를 적어도 하나의 제3 부호화 단위(520a, 520b, 520c, 520d 등)로 분할하거나 제2 부호화 단위(510)를 분할하지 않을 수 있다. 영상 복호화 장치(100)는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나를 획득할 수 있고 영상 복호화 장치(100)는 획득한 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 제1 부호화 단위(500)를 분할하여 다양한 형태의 복수개의 제2 부호화 단위(예를 들면, 510)를 분할할 수 있으며, 제2 부호화 단위(510)는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 제1 부호화 단위(500)가 분할된 방식에 따라 분할될 수 있다. 일 실시예에 따라, 제1 부호화 단위(500)가 제1 부호화 단위(500)에 대한 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 제2 부호화 단위(510)로 분할된 경우, 제2 부호화 단위(510) 역시 제2 부호화 단위(510)에 대한 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 제3 부호화 단위(예를 들면, 520a, 520b, 520c, 520d 등)으로 분할될 수 있다. 즉, 부호화 단위는 부호화 단위 각각에 관련된 분할 형태 모드에 대한 정보 및 블록 형태 정보 중 적어도 하나에 기초하여 재귀적으로 분할될 수 있다. 따라서 비-정사각형 형태의 부호화 단위에서 정사각형의 부호화 단위가 결정될 수 있고, 이러한 정사각형 형태의 부호화 단위가 재귀적으로 분할되어 비-정사각형 형태의 부호화 단위가 결정될 수도 있다.
도 5를 참조하면, 비-정사각형 형태의 제2 부호화 단위(510)가 분할되어 결정되는 홀수개의 제3 부호화 단위(520b, 520c, 520d) 중 소정의 부호화 단위(예를 들면, 가운데에 위치하는 부호화 단위 또는 정사각형 형태의 부호화 단위)는 재귀적으로 분할될 수 있다. 일 실시예에 따라 홀수개의 제3 부호화 단위(520b, 520c, 520d) 중 하나인 정사각형 형태의 제3 부호화 단위(520b)는 수평 방향으로 분할되어 복수개의 제4 부호화 단위로 분할될 수 있다. 복수개의 제4 부호화 단위(530a, 530b, 530c, 530d) 중 하나인 비-정사각형 형태의 제4 부호화 단위(530b 또는 530d)는 다시 복수개의 부호화 단위들로 분할될 수 있다. 예를 들면, 비-정사각형 형태의 제4 부호화 단위(530b 또는 530d)는 홀수개의 부호화 단위로 다시 분할될 수도 있다. 부호화 단위의 재귀적 분할에 이용될 수 있는 방법에 대하여는 다양한 실시예를 통해 후술하도록 한다.
일 실시예에 따라 영상 복호화 장치(100)는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 제3 부호화 단위(520a, 520b, 520c, 520d 등) 각각을 부호화 단위들로 분할할 수 있다. 또한 영상 복호화 장치(100)는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 제2 부호화 단위(510)를 분할하지 않는 것으로 결정할 수 있다. 영상 복호화 장치(100)는 일 실시예에 따라 비-정사각형 형태의 제2 부호화 단위(510)를 홀수개의 제3 부호화 단위(520b, 520c, 520d)로 분할할 수 있다. 영상 복호화 장치(100)는 홀수개의 제3 부호화 단위(520b, 520c, 520d) 중 소정의 제3 부호화 단위에 대하여 소정의 제한을 둘 수 있다. 예를 들면 영상 복호화 장치(100)는 홀수개의 제3 부호화 단위(520b, 520c, 520d) 중 가운데에 위치하는 부호화 단위(520c)에 대하여는 더 이상 분할되지 않는 것으로 제한하거나 또는 설정 가능한 횟수로 분할되어야 하는 것으로 제한할 수 있다.
도 5를 참조하면, 영상 복호화 장치(100)는 비-정사각형 형태의 제2 부호화 단위(510)에 포함되는 홀수개의 제3 부호화 단위(520b, 520c, 520d)들 중 가운데에 위치하는 부호화 단위(520c)는 더 이상 분할되지 않거나, 소정의 분할 형태로 분할(예를 들면 4개의 부호화 단위로만 분할하거나 제2 부호화 단위(510)가 분할된 형태에 대응하는 형태로 분할)되는 것으로 제한하거나, 소정의 횟수로만 분할(예를 들면 n회만 분할, n>0)하는 것으로 제한할 수 있다. 다만 가운데에 위치한 부호화 단위(520c)에 대한 상기 제한은 단순한 실시예들에 불과하므로 상술한 실시예들로 제한되어 해석되어서는 안되고, 가운데에 위치한 부호화 단위(520c)가 다른 부호화 단위(520b, 520d)와 다르게 복호화 될 수 있는 다양한 제한들을 포함하는 것으로 해석되어야 한다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 부호화 단위를 분할하기 위해 이용되는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나를 현재 부호화 단위 내의 소정의 위치에서 획득할 수 있다.
도 6은 일 실시예에 따라 영상 복호화 장치(100)가 홀수개의 부호화 단위들 중 소정의 부호화 단위를 결정하기 위한 방법을 도시한다.
도 6을 참조하면, 현재 부호화 단위(600, 650)의 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나는 현재 부호화 단위(600, 650)에 포함되는 복수개의 샘플 중 소정 위치의 샘플(예를 들면, 가운데에 위치하는 샘플(640, 690))에서 획득될 수 있다. 다만 이러한 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나가 획득될 수 있는 현재 부호화 단위(600) 내의 소정 위치가 도 6에서 도시하는 가운데 위치로 한정하여 해석되어서는 안되고, 소정 위치에는 현재 부호화 단위(600)내에 포함될 수 있는 다양한 위치(예를 들면, 최상단, 최하단, 좌측, 우측, 좌측상단, 좌측하단, 우측상단 또는 우측하단 등)가 포함될 수 있는 것으로 해석되어야 한다. 영상 복호화 장치(100)는 소정 위치로부터 획득되는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나를 획득하여 현재 부호화 단위를 다양한 형태 및 크기의 부호화 단위들로 분할하거나 분할하지 않는 것으로 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 부호화 단위가 소정의 개수의 부호화 단위들로 분할된 경우 그 중 하나의 부호화 단위를 선택할 수 있다. 복수개의 부호화 단위들 중 하나를 선택하기 위한 방법은 다양할 수 있으며, 이러한 방법들에 대한 설명은 이하의 다양한 실시예를 통해 후술하도록 한다.
일 실시예에 따라 영상 복호화 장치(100) 는 현재 부호화 단위를 복수개의 부호화 단위들로 분할하고, 소정 위치의 부호화 단위를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 홀수개의 부호화 단위들 중 가운데에 위치하는 부호화 단위를 결정하기 위하여 홀수개의 부호화 단위들 각각의 위치를 나타내는 정보를 이용할 수 있다. 도 6을 참조하면, 영상 복호화 장치(100)는 현재 부호화 단위(600) 또는 현재 부호화 단위(650)를 분할하여 홀수개의 부호화 단위들(620a, 620b, 620c) 또는 홀수개의 부호화 단위들(660a, 660b, 660c)을 결정할 수 있다. 영상 복호화 장치(100)는 홀수개의 부호화 단위들(620a, 620b, 620c) 또는 홀수개의 부호화 단위들(660a, 660b, 660c)의 위치에 대한 정보를 이용하여 가운데 부호화 단위(620b)또는 가운데 부호화 단위(660b)를 결정할 수 있다. 예를 들면 영상 복호화 장치(100)는 부호화 단위들(620a, 620b, 620c)에 포함되는 소정의 샘플의 위치를 나타내는 정보에 기초하여 부호화 단위들(620a, 620b, 620c)의 위치를 결정함으로써 가운데에 위치하는 부호화 단위(620b)를 결정할 수 있다. 구체적으로, 영상 복호화 장치(100)는 부호화 단위들(620a, 620b, 620c)의 좌측 상단의 샘플(630a, 630b, 630c)의 위치를 나타내는 정보에 기초하여 부호화 단위들(620a, 620b, 620c)의 위치를 결정함으로써 가운데에 위치하는 부호화 단위(620b)를 결정할 수 있다.
일 실시예에 따라 부호화 단위들(620a, 620b, 620c)에 각각 포함되는 좌측 상단의 샘플(630a, 630b, 630c)의 위치를 나타내는 정보는 부호화 단위들(620a, 620b, 620c)의 픽쳐 내에서의 위치 또는 좌표에 대한 정보를 포함할 수 있다. 일 실시예에 따라 부호화 단위들(620a, 620b, 620c)에 각각 포함되는 좌측 상단의 샘플(630a, 630b, 630c)의 위치를 나타내는 정보는 현재 부호화 단위(600)에 포함되는 부호화 단위들(620a, 620b, 620c)의 너비 또는 높이를 나타내는 정보를 포함할 수 있고, 이러한 너비 또는 높이는 부호화 단위들(620a, 620b, 620c)의 픽쳐 내에서의 좌표 간의 차이를 나타내는 정보에 해당할 수 있다. 즉, 영상 복호화 장치(100)는 부호화 단위들(620a, 620b, 620c)의 픽쳐 내에서의 위치 또는 좌표에 대한 정보를 직접 이용하거나 좌표간의 차이값에 대응하는 부호화 단위의 너비 또는 높이에 대한 정보를 이용함으로써 가운데에 위치하는 부호화 단위(620b)를 결정할 수 있다.
일 실시예에 따라, 상단 부호화 단위(620a)의 좌측 상단의 샘플(630a)의 위치를 나타내는 정보는 (xa, ya) 좌표를 나타낼 수 있고, 가운데 부호화 단위(620b)의 좌측 상단의 샘플(530b)의 위치를 나타내는 정보는 (xb, yb) 좌표를 나타낼 수 있고, 하단 부호화 단위(620c)의 좌측 상단의 샘플(630c)의 위치를 나타내는 정보는 (xc, yc) 좌표를 나타낼 수 있다. 영상 복호화 장치(100)는 부호화 단위들(620a, 620b, 620c)에 각각 포함되는 좌측 상단의 샘플(630a, 630b, 630c)의 좌표를 이용하여 가운데 부호화 단위(620b)를 결정할 수 있다. 예를 들면, 좌측 상단의 샘플(630a, 630b, 630c)의 좌표를 오름차순 또는 내림차순으로 정렬하였을 때, 가운데에 위치하는 샘플(630b)의 좌표인 (xb, yb)를 포함하는 부호화 단위(620b)를 현재 부호화 단위(600)가 분할되어 결정된 부호화 단위들(620a, 620b, 620c) 중 가운데에 위치하는 부호화 단위로 결정할 수 있다. 다만 좌측 상단의 샘플(630a, 630b, 630c)의 위치를 나타내는 좌표는 픽쳐 내에서의 절대적인 위치를 나타내는 좌표를 나타낼 수 있고, 나아가 상단 부호화 단위(620a)의 좌측 상단의 샘플(630a)의 위치를 기준으로, 가운데 부호화 단위(620b)의 좌측 상단의 샘플(630b)의 상대적 위치를 나타내는 정보인 (dxb, dyb)좌표, 하단 부호화 단위(620c)의 좌측 상단의 샘플(630c)의 상대적 위치를 나타내는 정보인 (dxc, dyc)좌표를 이용할 수도 있다. 또한 부호화 단위에 포함되는 샘플의 위치를 나타내는 정보로서 해당 샘플의 좌표를 이용함으로써 소정 위치의 부호화 단위를 결정하는 방법이 상술한 방법으로 한정하여 해석되어서는 안되고, 샘플의 좌표를 이용할 수 있는 다양한 산술적 방법으로 해석되어야 한다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 부호화 단위(600)를 복수개의 부호화 단위들(620a, 620b, 620c)로 분할할 수 있고, 부호화 단위들(620a, 620b, 620c) 중 소정의 기준에 따라 부호화 단위를 선택할 수 있다. 예를 들면, 영상 복호화 장치(100)는 부호화 단위들(620a, 620b, 620c) 중 크기가 다른 부호화 단위(620b)를 선택할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 상단 부호화 단위(620a)의 좌측 상단의 샘플(630a)의 위치를 나타내는 정보인 (xa, ya) 좌표, 가운데 부호화 단위(620b)의 좌측 상단의 샘플(630b)의 위치를 나타내는 정보인 (xb, yb) 좌표, 하단 부호화 단위(620c)의 좌측 상단의 샘플(630c)의 위치를 나타내는 정보인 (xc, yc) 좌표를 이용하여 부호화 단위들(620a, 620b, 620c) 각각의 너비 또는 높이를 결정할 수 있다. 영상 복호화 장치(100)는 부호화 단위들(620a, 620b, 620c)의 위치를 나타내는 좌표인 (xa, ya), (xb, yb), (xc, yc)를 이용하여 부호화 단위들(620a, 620b, 620c) 각각의 크기를 결정할 수 있다. 일 실시예에 따라, 영상 복호화 장치(100)는 상단 부호화 단위(620a)의 너비를 현재 부호화 단위(600)의 너비로 결정할 수 있다. 영상 복호화 장치(100)는 상단 부호화 단위(620a)의 높이를 yb-ya로 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 가운데 부호화 단위(620b)의 너비를 현재 부호화 단위(600)의 너비로 결정할 수 있다. 영상 복호화 장치(100)는 가운데 부호화 단위(620b)의 높이를 yc-yb로 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 하단 부호화 단위의 너비 또는 높이는 현재 부호화 단위의 너비 또는 높이와 상단 부호화 단위(620a) 및 가운데 부호화 단위(620b)의 너비 및 높이를 이용하여 결정할 수 있다. 영상 복호화 장치(100)는 결정된 부호화 단위들(620a, 620b, 620c)의 너비 및 높이에 기초하여 다른 부호화 단위와 다른 크기를 갖는 부호화 단위를 결정할 수 있다. 도 6을 참조하면, 영상 복호화 장치(100)는 상단 부호화 단위(620a) 및 하단 부호화 단위(620c)의 크기와 다른 크기를 가지는 가운데 부호화 단위(620b)를 소정 위치의 부호화 단위로 결정할 수 있다. 다만 상술한 영상 복호화 장치(100)가 다른 부호화 단위와 다른 크기를 갖는 부호화 단위를 결정하는 과정은 샘플 좌표에 기초하여 결정되는 부호화 단위의 크기를 이용하여 소정 위치의 부호화 단위를 결정하는 일 실시예에 불과하므로, 소정의 샘플 좌표에 따라 결정되는 부호화 단위의 크기를 비교하여 소정 위치의 부호화 단위를 결정하는 다양한 과정이 이용될 수 있다.
영상 복호화 장치(100)는 좌측 부호화 단위(660a)의 좌측 상단의 샘플(670a)의 위치를 나타내는 정보인 (xd, yd) 좌표, 가운데 부호화 단위(660b)의 좌측 상단의 샘플(670b)의 위치를 나타내는 정보인 (xe, ye) 좌표, 우측 부호화 단위(660c)의 좌측 상단의 샘플(670c)의 위치를 나타내는 정보인 (xf, yf) 좌표를 이용하여 부호화 단위들(660a, 660b, 660c) 각각의 너비 또는 높이를 결정할 수 있다. 영상 복호화 장치(100)는 부호화 단위들(660a, 660b, 660c)의 위치를 나타내는 좌표인 (xd, yd), (xe, ye), (xf, yf)를 이용하여 부호화 단위들(660a, 660b, 660c) 각각의 크기를 결정할 수 있다.
일 실시예에 따라, 영상 복호화 장치(100)는 좌측 부호화 단위(660a)의 너비를 xe-xd로 결정할 수 있다. 영상 복호화 장치(100)는 좌측 부호화 단위(660a)의 높이를 현재 부호화 단위(650)의 높이로 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 가운데 부호화 단위(660b)의 너비를 xf-xe로 결정할 수 있다. 영상 복호화 장치(100)는 가운데 부호화 단위(660b)의 높이를 현재 부호화 단위(600)의 높이로 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 우측 부호화 단위(660c)의 너비 또는 높이는 현재 부호화 단위(650)의 너비 또는 높이와 좌측 부호화 단위(660a) 및 가운데 부호화 단위(660b)의 너비 및 높이를 이용하여 결정할 수 있다. 영상 복호화 장치(100)는 결정된 부호화 단위들(660a, 660b, 660c)의 너비 및 높이에 기초하여 다른 부호화 단위와 다른 크기를 갖는 부호화 단위를 결정할 수 있다. 도 6을 참조하면, 영상 복호화 장치(100)는 좌측 부호화 단위(660a) 및 우측 부호화 단위(660c)의 크기와 다른 크기를 가지는 가운데 부호화 단위(660b)를 소정 위치의 부호화 단위로 결정할 수 있다. 다만 상술한 영상 복호화 장치(100)가 다른 부호화 단위와 다른 크기를 갖는 부호화 단위를 결정하는 과정은 샘플 좌표에 기초하여 결정되는 부호화 단위의 크기를 이용하여 소정 위치의 부호화 단위를 결정하는 일 실시예에 불과하므로, 소정의 샘플 좌표에 따라 결정되는 부호화 단위의 크기를 비교하여 소정 위치의 부호화 단위를 결정하는 다양한 과정이 이용될 수 있다.
다만 부호화 단위의 위치를 결정하기 위하여 고려하는 샘플의 위치는 상술한 좌측 상단으로 한정하여 해석되어서는 안되고 부호화 단위에 포함되는 임의의 샘플의 위치에 대한 정보가 이용될 수 있는 것으로 해석될 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 부호화 단위의 형태를 고려하여, 현재 부호화 단위가 분할되어 결정되는 홀수개의 부호화 단위들 중 소정 위치의 부호화 단위를 선택할 수 있다. 예를 들면, 현재 부호화 단위가 너비가 높이보다 긴 비-정사각형 형태라면 영상 복호화 장치(100)는 수평 방향에 따라 소정 위치의 부호화 단위를 결정할 수 있다. 즉, 영상 복호화 장치(100)는 수평 방향으로 위치를 달리 하는 부호화 단위들 중 하나를 결정하여 해당 부호화 단위에 대한 제한을 둘 수 있다. 현재 부호화 단위가 높이가 너비보다 긴 비-정사각형 형태라면 영상 복호화 장치(100)는 수직 방향에 따라 소정 위치의 부호화 단위를 결정할 수 있다. 즉, 영상 복호화 장치(100)는 수직 방향으로 위치를 달리 하는 부호화 단위들 중 하나를 결정하여 해당 부호화 단위에 대한 제한을 둘 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 짝수개의 부호화 단위들 중 소정 위치의 부호화 단위를 결정하기 위하여 짝수개의 부호화 단위들 각각의 위치를 나타내는 정보를 이용할 수 있다. 영상 복호화 장치(100)는 현재 부호화 단위를 분할(바이 분할; binarysplit)하여 짝수개의 부호화 단위들을 결정할 수 있고 짝수개의 부호화 단위들의 위치에 대한 정보를 이용하여 소정 위치의 부호화 단위를 결정할 수 있다. 이에 대한 구체적인 과정은 도 6에서 상술한 홀수개의 부호화 단위들 중 소정 위치(예를 들면, 가운데 위치)의 부호화 단위를 결정하는 과정에 대응하는 과정일 수 있으므로 생략하도록 한다.
일 실시예에 따라, 비-정사각형 형태의 현재 부호화 단위를 복수개의 부호화 단위로 분할한 경우, 복수개의 부호화 단위들 중 소정 위치의 부호화 단위를 결정하기 위하여 분할 과정에서 소정 위치의 부호화 단위에 대한 소정의 정보를 이용할 수 있다. 예를 들면 영상 복호화 장치(100)는 현재 부호화 단위가 복수개로 분할된 부호화 단위들 중 가운데에 위치하는 부호화 단위를 결정하기 위하여 분할 과정에서 가운데 부호화 단위에 포함된 샘플에 저장된 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나를 이용할 수 있다.
도 6을 참조하면 영상 복호화 장치(100)는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 현재 부호화 단위(600)를 복수개의 부호화 단위들(620a, 620b, 620c)로 분할할 수 있으며, 복수개의 부호화 단위들(620a, 620b, 620c) 중 가운데에 위치하는 부호화 단위(620b)를 결정할 수 있다. 나아가 영상 복호화 장치(100)는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나가 획득되는 위치를 고려하여, 가운데에 위치하는 부호화 단위(620b)를 결정할 수 있다. 즉, 현재 부호화 단위(600)의 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나는 현재 부호화 단위(600)의 가운데에 위치하는 샘플(640)에서 획득될 수 있으며, 상기 블록 형태 정보 및 상기 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 현재 부호화 단위(600)가 복수개의 부호화 단위들(620a, 620b, 620c)로 분할된 경우 상기 샘플(640)을 포함하는 부호화 단위(620b)를 가운데에 위치하는 부호화 단위로 결정할 수 있다. 다만 가운데에 위치하는 부호화 단위로 결정하기 위해 이용되는 정보가 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나로 한정하여 해석되어서는 안되고, 다양한 종류의 정보가 가운데에 위치하는 부호화 단위를 결정하는 과정에서 이용될 수 있다.
일 실시예에 따라 소정 위치의 부호화 단위를 식별하기 위한 소정의 정보는, 결정하려는 부호화 단위에 포함되는 소정의 샘플에서 획득될 수 있다. 도 6을 참조하면, 영상 복호화 장치(100)는 현재 부호화 단위(600)가 분할되어 결정된 복수개의 부호화 단위들(620a, 620b, 620c) 중 소정 위치의 부호화 단위(예를 들면, 복수개로 분할된 부호화 단위 중 가운데에 위치하는 부호화 단위)를 결정하기 위하여 현재 부호화 단위(600) 내의 소정 위치의 샘플(예를 들면, 현재 부호화 단위(600)의 가운데에 위치하는 샘플)에서 획득되는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나를 이용할 수 있다. 즉, 영상 복호화 장치(100)는 현재 부호화 단위(600)의 블록 형태를 고려하여 상기 소정 위치의 샘플을 결정할 수 있고, 영상 복호화 장치(100)는 현재 부호화 단위(600)가 분할되어 결정되는 복수개의 부호화 단위들(620a, 620b, 620c) 중, 소정의 정보(예를 들면, 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나)가 획득될 수 있는 샘플이 포함된 부호화 단위(620b)를 결정하여 소정의 제한을 둘 수 있다. 도 6을 참조하면 일 실시예에 따라 영상 복호화 장치(100)는 소정의 정보가 획득될 수 있는 샘플로서 현재 부호화 단위(600)의 가운데에 위치하는 샘플(640)을 결정할 수 있고, 영상 복호화 장치(100)는 이러한 샘플(640)이 포함되는 부호화 단위(620b)를 복호화 과정에서의 소정의 제한을 둘 수 있다. 다만 소정의 정보가 획득될 수 있는 샘플의 위치는 상술한 위치로 한정하여 해석되어서는 안되고, 제한을 두기 위해 결정하려는 부호화 단위(620b)에 포함되는 임의의 위치의 샘플들로 해석될 수 있다.
일 실시예에 따라 소정의 정보가 획득될 수 있는 샘플의 위치는 현재 부호화 단위(600)의 형태에 따라 결정될 수 있다. 일 실시예에 따라 블록 형태 정보는 현재 부호화 단위의 형태가 정사각형인지 또는 비-정사각형인지 여부를 결정할 수 있고, 형태에 따라 소정의 정보가 획득될 수 있는 샘플의 위치를 결정할 수 있다. 예를 들면, 영상 복호화 장치(100)는 현재 부호화 단위의 너비에 대한 정보 및 높이에 대한 정보 중 적어도 하나를 이용하여 현재 부호화 단위의 너비 및 높이 중 적어도 하나를 반으로 분할하는 경계 상에 위치하는 샘플을 소정의 정보가 획득될 수 있는 샘플로 결정할 수 있다. 또다른 예를 들면, 영상 복호화 장치(100)는 현재 부호화 단위에 관련된 블록 형태 정보가 비-정사각형 형태임을 나타내는 경우, 현재 부호화 단위의 긴 변을 반으로 분할하는 경계에 인접하는 샘플 중 하나를 소정의 정보가 획득될 수 있는 샘플로 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 부호화 단위를 복수개의 부호화 단위로 분할한 경우, 복수개의 부호화 단위들 중 소정 위치의 부호화 단위를 결정하기 위하여, 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나를 이용할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나를 부호화 단위에 포함된 소정 위치의 샘플에서 획득할 수 있고, 영상 복호화 장치(100)는 현재 부호화 단위가 분할되어 생성된 복수개의 부호화 단위들을 복수개의 부호화 단위 각각에 포함된 소정 위치의 샘플로부터 획득되는 분할 형태 모드에 대한 정보 및 블록 형태 정보 중 적어도 하나를 이용하여 분할할 수 있다. 즉, 부호화 단위는 부호화 단위 각각에 포함된 소정 위치의 샘플에서 획득되는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나를 이용하여 재귀적으로 분할될 수 있다. 부호화 단위의 재귀적 분할 과정에 대하여는 도 5를 통해 상술하였으므로 자세한 설명은 생략하도록 한다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 부호화 단위를 분할하여 적어도 하나의 부호화 단위를 결정할 수 있고, 이러한 적어도 하나의 부호화 단위가 복호화되는 순서를 소정의 블록(예를 들면, 현재 부호화 단위)에 따라 결정할 수 있다.
도 7은 일 실시예에 따라 영상 복호화 장치(100)가 현재 부호화 단위를 분할하여 복수개의 부호화 단위들을 결정하는 경우, 복수개의 부호화 단위들이 처리되는 순서를 도시한다.
일 실시예에 따라 영상 복호화 장치(100)는 블록 형태 정보 및 분할 형태 모드에 대한 정보에 따라 제1 부호화 단위(700)를 수직 방향으로 분할하여 제2 부호화 단위(710a, 710b)를 결정하거나 제1 부호화 단위(700)를 수평 방향으로 분할하여 제2 부호화 단위(730a, 730b)를 결정하거나 제1 부호화 단위(700)를 수직 방향 및 수평 방향으로 분할하여 제2 부호화 단위(750a, 750b, 750c, 750d)를 결정할 수 있다.
도 7을 참조하면, 영상 복호화 장치(100)는 제1 부호화 단위(700)를 수직 방향으로 분할하여 결정된 제2 부호화 단위(710a, 710b)를 수평 방향(710c)으로 처리되도록 순서를 결정할 수 있다. 영상 복호화 장치(100)는 제1 부호화 단위(700)를 수평 방향으로 분할하여 결정된 제2 부호화 단위(730a, 730b)의 처리 순서를 수직 방향(730c)으로 결정할 수 있다. 영상 복호화 장치(100)는 제1 부호화 단위(700)를 수직 방향 및 수평 방향으로 분할하여 결정된 제2 부호화 단위(750a, 750b, 750c, 750d)를 하나의 행에 위치하는 부호화 단위들이 처리된 후 다음 행에 위치하는 부호화 단위들이 처리되는 소정의 순서(예를 들면, 래스터 스캔 순서((raster scan order) 또는 z 스캔 순서(z scan order)(750e) 등)에 따라 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 부호화 단위들을 재귀적으로 분할할 수 있다. 도 7을 참조하면, 영상 복호화 장치(100)는 제1 부호화 단위(700)를 분할하여 복수개의 부호화 단위들(710a, 710b, 730a, 730b, 750a, 750b, 750c, 750d)을 결정할 수 있고, 결정된 복수개의 부호화 단위들(710a, 710b, 730a, 730b, 750a, 750b, 750c, 750d) 각각을 재귀적으로 분할할 수 있다. 복수개의 부호화 단위들(710a, 710b, 730a, 730b, 750a, 750b, 750c, 750d)을 분할하는 방법은 제1 부호화 단위(700)를 분할하는 방법에 대응하는 방법이 될 수 있다. 이에 따라 복수개의 부호화 단위들(710a, 710b, 730a, 730b, 750a, 750b, 750c, 750d)은 각각 독립적으로 복수개의 부호화 단위들로 분할될 수 있다. 도 7을 참조하면 영상 복호화 장치(100)는 제1 부호화 단위(700)를 수직 방향으로 분할하여 제2 부호화 단위(710a, 710b)를 결정할 수 있고, 나아가 제2 부호화 단위(710a, 710b) 각각을 독립적으로 분할하거나 분할하지 않는 것으로 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 좌측의 제2 부호화 단위(710a)를 수평 방향으로 분할하여 제3 부호화 단위(720a, 720b)로 분할할 수 있고, 우측의 제2 부호화 단위(710b)는 분할하지 않을 수 있다.
일 실시예에 따라 부호화 단위들의 처리 순서는 부호화 단위의 분할 과정에 기초하여 결정될 수 있다. 다시 말해, 분할된 부호화 단위들의 처리 순서는 분할되기 직전의 부호화 단위들의 처리 순서에 기초하여 결정될 수 있다. 영상 복호화 장치(100)는 좌측의 제2 부호화 단위(710a)가 분할되어 결정된 제3 부호화 단위(720a, 720b)가 처리되는 순서를 우측의 제2 부호화 단위(710b)와 독립적으로 결정할 수 있다. 좌측의 제2 부호화 단위(710a)가 수평 방향으로 분할되어 제3 부호화 단위(720a, 720b)가 결정되었으므로 제3 부호화 단위(720a, 720b)는 수직 방향(720c)으로 처리될 수 있다. 또한 좌측의 제2 부호화 단위(710a) 및 우측의 제2 부호화 단위(710b)가 처리되는 순서는 수평 방향(710c)에 해당하므로, 좌측의 제2 부호화 단위(710a)에 포함되는 제3 부호화 단위(720a, 720b)가 수직 방향(720c)으로 처리된 후에 우측 부호화 단위(710b)가 처리될 수 있다. 상술한 내용은 부호화 단위들이 각각 분할 전의 부호화 단위에 따라 처리 순서가 결정되는 과정을 설명하기 위한 것이므로, 상술한 실시예에 한정하여 해석되어서는 안되고, 다양한 형태로 분할되어 결정되는 부호화 단위들이 소정의 순서에 따라 독립적으로 처리될 수 있는 다양한 방법으로 이용되는 것으로 해석되어야 한다.
도 8은 일 실시예에 따라 영상 복호화 장치(100)가 소정의 순서로 부호화 단위가 처리될 수 없는 경우, 현재 부호화 단위가 홀수개의 부호화 단위로 분할되는 것임을 결정하는 과정을 도시한다.
일 실시예에 따라 영상 복호화 장치(100)는 획득된 블록 형태 정보 및 분할 형태 모드에 대한 정보에 기초하여 현재 부호화 단위가 홀수개의 부호화 단위들로 분할되는 것을 결정할 수 있다. 도 8을 참조하면 정사각형 형태의 제1 부호화 단위(800)가 비-정사각형 형태의 제2 부호화 단위(810a, 810b)로 분할될 수 있고, 제2 부호화 단위(810a, 810b)는 각각 독립적으로 제3 부호화 단위(820a, 820b, 820c, 820d, 820e)로 분할될 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 제2 부호화 단위 중 좌측 부호화 단위(810a)는 수평 방향으로 분할하여 복수개의 제3 부호화 단위(820a, 820b)를 결정할 수 있고, 우측 부호화 단위(810b)는 홀수개의 제3 부호화 단위(820c, 820d, 820e)로 분할할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 제3 부호화 단위들(820a, 820b, 820c, 820d, 820e)이 소정의 순서로 처리될 수 있는지 여부를 판단하여 홀수개로 분할된 부호화 단위가 존재하는지를 결정할 수 있다. 도 8을 참조하면, 영상 복호화 장치(100)는 제1 부호화 단위(800)를 재귀적으로 분할하여 제3 부호화 단위(820a, 820b, 820c, 820d, 820e)를 결정할 수 있다. 영상 복호화 장치(100)는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여, 제1 부호화 단위(800), 제2 부호화 단위(810a, 810b) 또는 제3 부호화 단위(820a, 820b, 820c, 820d, 820e)가 분할되는 형태 중 홀수개의 부호화 단위로 분할되는지 여부를 결정할 수 있다. 예를 들면, 제2 부호화 단위(810a, 810b) 중 우측에 위치하는 부호화 단위가 홀수개의 제3 부호화 단위(820c, 820d, 820e)로 분할될 수 있다. 제1 부호화 단위(800)에 포함되는 복수개의 부호화 단위들이 처리되는 순서는 소정의 순서(예를 들면, z-스캔 순서(z-scan order)(830))가 될 수 있고, 영상 복호화 장치(100)는 우측 제2 부호화 단위(810b)가 홀수개로 분할되어 결정된 제3 부호화 단위(820c, 820d, 820e)가 상기 소정의 순서에 따라 처리될 수 있는 조건을 만족하는지를 판단할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 제1 부호화 단위(800)에 포함되는 제3 부호화 단위(820a, 820b, 820c, 820d, 820e)가 소정의 순서에 따라 처리될 수 있는 조건을 만족하는지를 결정할 수 있으며, 상기 조건은 제3 부호화 단위(820a, 820b, 820c, 820d, 820e)의 경계에 따라 제2 부호화 단위(810a, 810b)의 너비 및 높이 중 적어도 하나를 반으로 분할되는지 여부와 관련된다. 예를 들면 비-정사각형 형태의 좌측 제2 부호화 단위(810a)의 높이를 반으로 분할하여 결정되는 제3 부호화 단위(820a, 820b)는 조건을 만족할 수 있다. 우측 제2 부호화 단위(810b)를 3개의 부호화 단위로 분할하여 결정되는 제3 부호화 단위(820c, 820d, 820e)들의 경계가 우측 제2 부호화 단위(810b)의 너비 또는 높이를 반으로 분할하지 못하므로 제3 부호화 단위(820c, 820d, 820e)는 조건을 만족하지 못하는 것으로 결정될 수 있다. 영상 복호화 장치(100)는 이러한 조건 불만족의 경우 스캔 순서의 단절(disconnection)로 판단하고, 판단 결과에 기초하여 우측 제2 부호화 단위(810b)는 홀수개의 부호화 단위로 분할되는 것으로 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 홀수개의 부호화 단위로 분할되는 경우 분할된 부호화 단위들 중 소정 위치의 부호화 단위에 대하여 소정의 제한을 둘 수 있으며, 이러한 제한 내용 또는 소정 위치 등에 대하여는 다양한 실시예를 통해 상술하였으므로 자세한 설명은 생략하도록 한다.
도 9는 일 실시예에 따라 영상 복호화 장치(100)가 제1 부호화 단위(900)를 분할하여 적어도 하나의 부호화 단위를 결정하는 과정을 도시한다.
일 실시예에 따라 영상 복호화 장치(100)는 비트스트림 획득부(110)를 통해 획득한 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 제1 부호화 단위(900)를 분할할 수 있다. 정사각형 형태의 제1 부호화 단위(900)는 4개의 정사각형 형태를 가지는 부호화 단위로 분할되거나 또는 비-정사각형 형태의 복수개의 부호화 단위로 분할할 수 있다. 예를 들면 도 9를 참조하면, 블록 형태 정보가 제1 부호화 단위(900)는 정사각형임을 나타내고 분할 형태 모드에 대한 정보가 비-정사각형의 부호화 단위로 분할됨을 나타내는 경우 영상 복호화 장치(100)는 제1 부호화 단위(900)를 복수개의 비-정사각형의 부호화 단위들로 분할할 수 있다. 구체적으로, 분할 형태 모드에 대한 정보가 제1 부호화 단위(900)를 수평 방향 또는 수직 방향으로 분할하여 홀수개의 부호화 단위를 결정하는 것을 나타내는 경우, 영상 복호화 장치(100)는 정사각형 형태의 제1 부호화 단위(900)를 홀수개의 부호화 단위들로서 수직 방향으로 분할되어 결정된 제2 부호화 단위(910a, 910b, 910c) 또는 수평 방향으로 분할되어 결정된 제2 부호화 단위(920a, 920b, 920c)로 분할할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 제1 부호화 단위(900)에 포함되는 제2 부호화 단위(910a, 910b, 910c, 920a, 920b, 920c)가 소정의 순서에 따라 처리될 수 있는 조건을 만족하는지를 결정할 수 있으며, 상기 조건은 제2 부호화 단위(910a, 910b, 910c, 920a, 920b, 920c)의 경계에 따라 제1 부호화 단위(900)의 너비 및 높이 중 적어도 하나를 반으로 분할되는지 여부와 관련된다. 도 9를 참조하면 정사각형 형태의 제1 부호화 단위(900)를 수직 방향으로 분할하여 결정되는 제2 부호화 단위(910a, 910b, 910c)들의 경계가 제1 부호화 단위(900)의 너비를 반으로 분할하지 못하므로 제1 부호화 단위(900)는 소정의 순서에 따라 처리될 수 있는 조건을 만족하지 못하는 것으로 결정될 수 있다. 또한 정사각형 형태의 제1 부호화 단위(900)를 수평 방향으로 분할하여 결정되는 제2 부호화 단위(920a, 920b, 920c)들의 경계가 제1 부호화 단위(900)의 너비를 반으로 분할하지 못하므로 제1 부호화 단위(900)는 소정의 순서에 따라 처리될 수 있는 조건을 만족하지 못하는 것으로 결정될 수 있다. 영상 복호화 장치(100)는 이러한 조건 불만족의 경우 스캔 순서의 단절(disconnection)로 판단하고, 판단 결과에 기초하여 제1 부호화 단위(900)는 홀수개의 부호화 단위로 분할되는 것으로 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 홀수개의 부호화 단위로 분할되는 경우 분할된 부호화 단위들 중 소정 위치의 부호화 단위에 대하여 소정의 제한을 둘 수 있으며, 이러한 제한 내용 또는 소정 위치 등에 대하여는 다양한 실시예를 통해 상술하였으므로 자세한 설명은 생략하도록 한다.
일 실시예에 따라, 영상 복호화 장치(100)는 제1 부호화 단위를 분할하여 다양한 형태의 부호화 단위들을 결정할 수 있다.
도 9를 참조하면, 영상 복호화 장치(100)는 정사각형 형태의 제1 부호화 단위(900), 비-정사각형 형태의 제1 부호화 단위(930 또는 950)를 다양한 형태의 부호화 단위들로 분할할 수 있다.
도 10은 일 실시예에 따라 영상 복호화 장치(100)가 제1 부호화 단위(1000)가 분할되어 결정된 비-정사각형 형태의 제2 부호화 단위가 소정의 조건을 만족하는 경우 제2 부호화 단위가 분할될 수 있는 형태가 제한되는 것을 도시한다.
일 실시예에 따라 영상 복호화 장치(100)는 비트스트림 획득부(110)를 통해 획득한 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 정사각형 형태의 제1 부호화 단위(1000)를 비-정사각형 형태의 제2 부호화 단위(1010a, 1010b, 1020a, 1020b)로 분할하는 것으로 결정할 수 있다. 제2 부호화 단위(1010a, 1010b, 1020a, 1020b)는 독립적으로 분할될 수 있다. 이에 따라 영상 복호화 장치(100)는 제2 부호화 단위(1010a, 1010b, 1020a, 1020b) 각각에 관련된 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 복수개의 부호화 단위로 분할하거나 분할하지 않는 것을 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 수직 방향으로 제1 부호화 단위(1000)가 분할되어 결정된 비-정사각형 형태의 좌측 제2 부호화 단위(1010a)를 수평 방향으로 분할하여 제3 부호화 단위(1012a, 1012b)를 결정할 수 있다. 다만 영상 복호화 장치(100)는 좌측 제2 부호화 단위(1010a)를 수평 방향으로 분할한 경우, 우측 제2 부호화 단위(1010b)는 좌측 제2 부호화 단위(1010a)가 분할된 방향과 동일하게 수평 방향으로 분할될 수 없도록 제한할 수 있다. 만일 우측 제2 부호화 단위(1010b)가 동일한 방향으로 분할되어 제3 부호화 단위(1014a, 1014b)가 결정된 경우, 좌측 제2 부호화 단위(1010a) 및 우측 제2 부호화 단위(1010b)가 수평 방향으로 각각 독립적으로 분할됨으로써 제3 부호화 단위(1012a, 1012b, 1014a, 1014b)가 결정될 수 있다. 하지만 이는 영상 복호화 장치(100)가 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 제1 부호화 단위(1000)를 4개의 정사각형 형태의 제2 부호화 단위(1030a, 1030b, 1030c, 1030d)로 분할한 것과 동일한 결과이며 이는 영상 복호화 측면에서 비효율적일 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 수평 방향으로 제1 부호화 단위(1000)가 분할되어 결정된 비-정사각형 형태의 제2 부호화 단위(1020a 또는 1020b)를 수직 방향으로 분할하여 제3 부호화 단위(1022a, 1022b, 1024a, 1024b)를 결정할 수 있다. 다만 영상 복호화 장치(100)는 제2 부호화 단위 중 하나(예를 들면 상단 제2 부호화 단위(1020a))를 수직 방향으로 분할한 경우, 상술한 이유에 따라 다른 제2 부호화 단위(예를 들면 하단 부호화 단위(1020b))는 상단 제2 부호화 단위(1020a)가 분할된 방향과 동일하게 수직 방향으로 분할될 수 없도록 제한할 수 있다.
도 11은 일 실시예에 따라 분할 형태 모드에 대한 정보가 4개의 정사각형 형태의 부호화 단위로 분할하는 것을 나타낼 수 없는 경우, 영상 복호화 장치(100)가 정사각형 형태의 부호화 단위를 분할하는 과정을 도시한다.
일 실시예에 따라 영상 복호화 장치(100)는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 제1 부호화 단위(1100)를 분할하여 제2 부호화 단위(1110a, 1110b, 1120a, 1120b 등)를 결정할 수 있다. 분할 형태 모드에 대한 정보에는 부호화 단위가 분할될 수 있는 다양한 형태에 대한 정보가 포함될 수 있으나, 다양한 형태에 대한 정보에는 정사각형 형태의 4개의 부호화 단위로 분할하기 위한 정보가 포함될 수 없는 경우가 있다. 이러한 분할 형태 모드에 대한 정보에 따르면, 영상 복호화 장치(100)는 정사각형 형태의 제1 부호화 단위(1100)를 4개의 정사각형 형태의 제2 부호화 단위(1130a, 1130b, 1130c, 1130d)로 분할하지 못한다. 분할 형태 모드에 대한 정보에 기초하여 영상 복호화 장치(100)는 비-정사각형 형태의 제2 부호화 단위(1110a, 1110b, 1120a, 1120b 등)를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 비-정사각형 형태의 제2 부호화 단위(1110a, 1110b, 1120a, 1120b 등)를 각각 독립적으로 분할할 수 있다. 재귀적인 방법을 통해 제2 부호화 단위(1110a, 1110b, 1120a, 1120b 등) 각각이 소정의 순서대로 분할될 수 있으며, 이는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 제1 부호화 단위(1100)가 분할되는 방법에 대응하는 분할 방법일 수 있다.
예를 들면 영상 복호화 장치(100)는 좌측 제2 부호화 단위(1110a)가 수평 방향으로 분할되어 정사각형 형태의 제3 부호화 단위(1112a, 1112b)를 결정할 수 있고, 우측 제2 부호화 단위(1110b)가 수평 방향으로 분할되어 정사각형 형태의 제3 부호화 단위(1114a, 1114b)를 결정할 수 있다. 나아가 영상 복호화 장치(100)는 좌측 제2 부호화 단위(1110a) 및 우측 제2 부호화 단위(1110b) 모두 수평 방향으로 분할되어 정사각형 형태의 제3 부호화 단위(1116a, 1116b, 1116c, 1116d)를 결정할 수도 있다. 이러한 경우 제1 부호화 단위(1100)가 4개의 정사각형 형태의 제2 부호화 단위(1130a, 1130b, 1130c, 1130d)로 분할된 것과 동일한 형태로 부호화 단위가 결정될 수 있다.
또 다른 예를 들면 영상 복호화 장치(100)는 상단 제2 부호화 단위(1120a)가 수직 방향으로 분할되어 정사각형 형태의 제3 부호화 단위(1122a, 1122b)를 결정할 수 있고, 하단 제2 부호화 단위(1120b)가 수직 방향으로 분할되어 정사각형 형태의 제3 부호화 단위(1124a, 1124b)를 결정할 수 있다. 나아가 영상 복호화 장치(100)는 상단 제2 부호화 단위(1120a) 및 하단 제2 부호화 단위(1120b) 모두 수직 방향으로 분할되어 정사각형 형태의 제3 부호화 단위(1126a, 1126b, 1126a, 1126b)를 결정할 수도 있다. 이러한 경우 제1 부호화 단위(1100)가 4개의 정사각형 형태의 제2 부호화 단위(1130a, 1130b, 1130c, 1130d)로 분할된 것과 동일한 형태로 부호화 단위가 결정될 수 있다.
도 12는 일 실시예에 따라 복수개의 부호화 단위들 간의 처리 순서가 부호화 단위의 분할 과정에 따라 달라질 수 있음을 도시한 것이다.
일 실시예에 따라 영상 복호화 장치(100)는 블록 형태 정보 및 분할 형태 모드에 대한 정보에 기초하여 제1 부호화 단위(1200)를 분할할 수 있다. 블록 형태 정보가 정사각형 형태를 나타내고, 분할 형태 모드에 대한 정보가 제1 부호화 단위(1200)가 수평 방향 및 수직 방향 중 적어도 하나의 방향으로 분할됨을 나타내는 경우, 영상 복호화 장치(100)는 제1 부호화 단위(1200)를 분할하여 제2 부호화 단위(예를 들면, 1210a, 1210b, 1220a, 1220b 등)를 결정할 수 있다. 도 12를 참조하면 제1 부호화 단위1200)가 수평 방향 또는 수직 방향만으로 분할되어 결정된 비-정사각형 형태의 제2 부호화 단위(1210a, 1210b, 1220a, 1220b)는 각각에 대한 블록 형태 정보 및 분할 형태 모드에 대한 정보에 기초하여 독립적으로 분할될 수 있다. 예를 들면 영상 복호화 장치(100)는 제1 부호화 단위(1200)가 수직 방향으로 분할되어 생성된 제2 부호화 단위(1210a, 1210b)를 수평 방향으로 각각 분할하여 제3 부호화 단위(1216a, 1216b, 1216c, 1216d)를 결정할 수 있고, 제1 부호화 단위(1200)가 수평 방향으로 분할되어 생성된 제2 부호화 단위(1220a, 1220b)를 수평 방향으로 각각 분할하여 제3 부호화 단위(1226a, 1226b, 1226c, 1226d)를 결정할 수 있다. 이러한 제2 부호화 단위(1210a, 1210b, 1220a, 1220b)의 분할 과정은 도 11과 관련하여 상술하였으므로 자세한 설명은 생략하도록 한다.
일 실시예에 따라 영상 복호화 장치(100)는 소정의 순서에 따라 부호화 단위를 처리할 수 있다. 소정의 순서에 따른 부호화 단위의 처리에 대한 특징은 도 7과 관련하여 상술하였으므로 자세한 설명은 생략하도록 한다. 도 12를 참조하면 영상 복호화 장치(100)는 정사각형 형태의 제1 부호화 단위(1200)를 분할하여 4개의 정사각형 형태의 제3 부호화 단위(1216a, 1216b, 1216c, 1216d, 1226a, 1226b, 1226c, 1226d)를 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 제1 부호화 단위(1200)가 분할되는 형태에 따라 제3 부호화 단위(1216a, 1216b, 1216c, 1216d, 1226a, 1226b, 1226c, 1226d)의 처리 순서를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 수직 방향으로 분할되어 생성된 제2 부호화 단위(1210a, 1210b)를 수평 방향으로 각각 분할하여 제3 부호화 단위(1216a, 1216b, 1216c, 1216d)를 결정할 수 있고, 영상 복호화 장치(100)는 좌측 제2 부호화 단위(1210a)에 포함되는 제3 부호화 단위(1216a, 1216c)를 수직 방향으로 먼저 처리한 후, 우측 제2 부호화 단위(1210b)에 포함되는 제3 부호화 단위(1216b, 1216d)를 수직 방향으로 처리하는 순서(1217)에 따라 제3 부호화 단위(1216a, 1216b, 1216c, 1216d)를 처리할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 수평 방향으로 분할되어 생성된 제2 부호화 단위(1220a, 1220b)를 수직 방향으로 각각 분할하여 제3 부호화 단위(1226a, 1226b, 1226c, 1226d)를 결정할 수 있고, 영상 복호화 장치(100)는 상단 제2 부호화 단위(1220a)에 포함되는 제3 부호화 단위(1226a, 1226b)를 수평 방향으로 먼저 처리한 후, 하단 제2 부호화 단위(1220b)에 포함되는 제3 부호화 단위(1226c, 1226d)를 수평 방향으로 처리하는 순서(1227)에 따라 제3 부호화 단위(1226a, 1226b, 1226c, 1226d)를 처리할 수 있다.
도 12를 참조하면, 제2 부호화 단위(1210a, 1210b, 1220a, 1220b)가 각각 분할되어 정사각형 형태의 제3 부호화 단위(1216a, 1216b, 1216c, 1216d, 1226a, 1226b, 1226c, 1226d)가 결정될 수 있다. 수직 방향으로 분할되어 결정된 제2 부호화 단위(1210a, 1210b) 및 수평 방향으로 분할되어 결정된 제2 부호화 단위(1220a, 1220b)는 서로 다른 형태로 분할된 것이지만, 이후에 결정되는 제3 부호화 단위(1216a, 1216b, 1216c, 1216d, 1226a, 1226b, 1226c, 1226d)에 따르면 결국 동일한 형태의 부호화 단위들로 제1 부호화 단위(1200)가 분할된 결과가 된다. 이에 따라 영상 복호화 장치(100)는 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 상이한 과정을 통해 재귀적으로 부호화 단위를 분할함으로써 결과적으로 동일한 형태의 부호화 단위들을 결정하더라도, 동일한 형태로 결정된 복수개의 부호화 단위들을 서로 다른 순서로 처리할 수 있다.
도 13은 일 실시예에 따라 부호화 단위가 재귀적으로 분할되어 복수개의 부호화 단위가 결정되는 경우, 부호화 단위의 형태 및 크기가 변함에 따라 부호화 단위의 심도가 결정되는 과정을 도시한다.
일 실시예에 따라 영상 복호화 장치(100)는 부호화 단위의 심도를 소정의 기준에 따라 결정할 수 있다. 예를 들면 소정의 기준은 부호화 단위의 긴 변의 길이가 될 수 있다. 영상 복호화 장치(100)는 현재 부호화 단위의 긴 변의 길이가 분할되기 전의 부호화 단위의 긴 변의 길이보다 2n (n>0) 배로 분할된 경우, 현재 부호화 단위의 심도는 분할되기 전의 부호화 단위의 심도보다 n만큼 심도가 증가된 것으로 결정할 수 있다. 이하에서는 심도가 증가된 부호화 단위를 하위 심도의 부호화 단위로 표현하도록 한다.
도 13을 참조하면, 일 실시예에 따라 정사각형 형태임을 나타내는 블록 형태 정보(예를 들면 블록 형태 정보는 ′0: SQUARE′를 나타낼 수 있음)에 기초하여 영상 복호화 장치(100)는 정사각형 형태인 제1 부호화 단위(1300)를 분할하여 하위 심도의 제2 부호화 단위(1302), 제3 부호화 단위(1304) 등을 결정할 수 있다. 정사각형 형태의 제1 부호화 단위(1300)의 크기를 2Nx2N이라고 한다면, 제1 부호화 단위(1300)의 너비 및 높이를 1/2배로 분할하여 결정된 제2 부호화 단위(1302)는 NxN의 크기를 가질 수 있다. 나아가 제2 부호화 단위(1302)의 너비 및 높이를 1/2크기로 분할하여 결정된 제3 부호화 단위(1304)는 N/2xN/2의 크기를 가질 수 있다. 이 경우 제3 부호화 단위(1304)의 너비 및 높이는 제1 부호화 단위(1300)의 1/4배에 해당한다. 제1 부호화 단위(1300)의 심도가 D인 경우 제1 부호화 단위(1300)의 너비 및 높이의 1/2배인 제2 부호화 단위(1302)의 심도는 D+1일 수 있고, 제1 부호화 단위(1300)의 너비 및 높이의 1/4배인 제3 부호화 단위(1304)의 심도는 D+2일 수 있다.
일 실시예에 따라 비-정사각형 형태를 나타내는 블록 형태 정보(예를 들면 블록 형태 정보는, 높이가 너비보다 긴 비-정사각형임을 나타내는 ′1: NS_VER′ 또는 너비가 높이보다 긴 비-정사각형임을 나타내는 ′2: NS_HOR′를 나타낼 수 있음)에 기초하여, 영상 복호화 장치(100)는 비-정사각형 형태인 제1 부호화 단위(1310 또는 1320)를 분할하여 하위 심도의 제2 부호화 단위(1312 또는 1322), 제3 부호화 단위(1314 또는 1324) 등을 결정할 수 있다.
영상 복호화 장치(100)는 Nx2N 크기의 제1 부호화 단위(1310)의 너비 및 높이 중 적어도 하나를 분할하여 제2 부호화 단위(예를 들면, 1302, 1312, 1322 등)를 결정할 수 있다. 즉, 영상 복호화 장치(100)는 제1 부호화 단위(1310)를 수평 방향으로 분할하여 NxN 크기의 제2 부호화 단위(1302) 또는 NxN/2 크기의 제2 부호화 단위(1322)를 결정할 수 있고, 수평 방향 및 수직 방향으로 분할하여 N/2xN 크기의 제2 부호화 단위(1312)를 결정할 수도 있다.
일 실시예에 따라 영상 복호화 장치(100)는 2NxN 크기의 제1 부호화 단위(1320) 의 너비 및 높이 중 적어도 하나를 분할하여 제2 부호화 단위(예를 들면, 1302, 1312, 1322 등)를 결정할 수도 있다. 즉, 영상 복호화 장치(100)는 제1 부호화 단위(1320)를 수직 방향으로 분할하여 NxN 크기의 제2 부호화 단위(1302) 또는 N/2xN 크기의 제2 부호화 단위(1312)를 결정할 수 있고, 수평 방향 및 수직 방향으로 분할하여 NxN/2 크기의 제2 부호화 단위(1322)를 결정할 수도 있다.
일 실시예에 따라 영상 복호화 장치(100)는 NxN 크기의 제2 부호화 단위(1302) 의 너비 및 높이 중 적어도 하나를 분할하여 제3 부호화 단위(예를 들면, 1304, 1314, 1324 등)를 결정할 수도 있다. 즉, 영상 복호화 장치(100)는 제2 부호화 단위(1302)를 수직 방향 및 수평 방향으로 분할하여 N/2xN/2 크기의 제3 부호화 단위(1304)를 결정하거나 N/4xN/2 크기의 제3 부호화 단위(1314)를 결정하거나 N/2xN/4 크기의 제3 부호화 단위(1324)를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 N/2xN 크기의 제2 부호화 단위(1312)의 너비 및 높이 중 적어도 하나를 분할하여 제3 부호화 단위(예를 들면, 1304, 1314, 1324 등)를 결정할 수도 있다. 즉, 영상 복호화 장치(100)는 제2 부호화 단위(1312)를 수평 방향으로 분할하여 N/2xN/2 크기의 제3 부호화 단위(1304) 또는 N/2xN/4 크기의 제3 부호화 단위(1324)를 결정하거나 수직 방향 및 수평 방향으로 분할하여 N/4xN/2 크기의 제3 부호화 단위(1314)를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 NxN/2 크기의 제2 부호화 단위(1322)의 너비 및 높이 중 적어도 하나를 분할하여 제3 부호화 단위(예를 들면, 1304, 1314, 1324 등)를 결정할 수도 있다. 즉, 영상 복호화 장치(100)는 제2 부호화 단위(1322)를 수직 방향으로 분할하여 N/2xN/2 크기의 제3 부호화 단위(1304) 또는 N/4xN/2 크기의 제3 부호화 단위(1314)를 결정하거나 수직 방향 및 수평 방향으로 분할하여 N/2xN/4크기의 제3 부호화 단위(1324)를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 정사각형 형태의 부호화 단위(예를 들면, 1300, 1302, 1304)를 수평 방향 또는 수직 방향으로 분할할 수 있다. 예를 들면, 2Nx2N 크기의 제1 부호화 단위(1300)를 수직 방향으로 분할하여 Nx2N 크기의 제1 부호화 단위(1310)를 결정하거나 수평 방향으로 분할하여 2NxN 크기의 제1 부호화 단위(1320)를 결정할 수 있다. 일 실시예에 따라 심도가 부호화 단위의 가장 긴 변의 길이에 기초하여 결정되는 경우, 2Nx2N 크기의 제1 부호화 단위(1300)가 수평 방향 또는 수직 방향으로 분할되어 결정되는 부호화 단위의 심도는 제1 부호화 단위(1300)의 심도와 동일할 수 있다.
일 실시예에 따라 제3 부호화 단위(1314 또는 1324)의 너비 및 높이는 제1 부호화 단위(1310 또는 1320)의 1/4배에 해당할 수 있다. 제1 부호화 단위(1310 또는 1320)의 심도가 D인 경우 제1 부호화 단위(1310 또는 1320)의 너비 및 높이의 1/2배인 제2 부호화 단위(1312 또는 1322)의 심도는 D+1일 수 있고, 제1 부호화 단위(1310 또는 1320)의 너비 및 높이의 1/4배인 제3 부호화 단위(1314 또는 1324)의 심도는 D+2일 수 있다.
도 14는 일 실시예에 따라 부호화 단위들의 형태 및 크기에 따라 결정될 수 있는 심도 및 부호화 단위 구분을 위한 인덱스(part index, 이하 PID)를 도시한다.
일 실시예에 따라 영상 복호화 장치(100)는 정사각형 형태의 제1 부호화 단위(1400)를 분할하여 다양한 형태의 제2 부호화 단위를 결정할 수 있다. 도 14를 참조하면, 영상 복호화 장치(100)는 분할 형태 모드에 대한 정보에 따라 제1 부호화 단위(1400)를 수직 방향 및 수평 방향 중 적어도 하나의 방향으로 분할하여 제2 부호화 단위(1402a, 1402b, 1404a, 1404b, 1406a, 1406b, 1406c, 1406d)를 결정할 수 있다. 즉, 영상 복호화 장치(100)는 제1 부호화 단위(1400)에 대한 분할 형태 모드에 대한 정보에 기초하여 제2 부호화 단위(1402a, 1402b, 1404a, 1404b, 1406a, 1406b, 1406c, 1406d)를 결정할 수 있다.
일 실시예에 따라 정사각형 형태의 제1 부호화 단위(1400)에 대한 분할 형태 모드에 대한 정보에 따라 결정되는 제2 부호화 단위(1402a, 1402b, 1404a, 1404b, 1406a, 1406b, 1406c, 1406d)는 긴 변의 길이에 기초하여 심도가 결정될 수 있다. 예를 들면, 정사각형 형태의 제1 부호화 단위(1400)의 한 변의 길이와 비-정사각형 형태의 제2 부호화 단위(1402a, 1402b, 1404a, 1404b)의 긴 변의 길이가 동일하므로, 제1 부호화 단위(1400)와 비-정사각형 형태의 제2 부호화 단위(1402a, 1402b, 1404a, 1404b)의 심도는 D로 동일하다고 볼 수 있다. 이에 반해 영상 복호화 장치(100)가 분할 형태 모드에 대한 정보에 기초하여 제1 부호화 단위(1400)를 4개의 정사각형 형태의 제2 부호화 단위(1406a, 1406b, 1406c, 1406d)로 분할한 경우, 정사각형 형태의 제2 부호화 단위(1406a, 1406b, 1406c, 1406d)의 한 변의 길이는 제1 부호화 단위(1400)의 한 변의 길이의 1/2배 이므로, 제2 부호화 단위(1406a, 1406b, 1406c, 1406d)의 심도는 제1 부호화 단위(1400)의 심도인 D보다 한 심도 하위인 D+1의 심도일 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 높이가 너비보다 긴 형태의 제1 부호화 단위(1410)를 분할 형태 모드에 대한 정보에 따라 수평 방향으로 분할하여 복수개의 제2 부호화 단위(1412a, 1412b, 1414a, 1414b, 1414c)로 분할할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 너비가 높이보다 긴 형태의 제1 부호화 단위(1420)를 분할 형태 모드에 대한 정보에 따라 수직 방향으로 분할하여 복수개의 제2 부호화 단위(1422a, 1422b, 1424a, 1424b, 1424c)로 분할할 수 있다.
일 실시예에 따라 비-정사각형 형태의 제1 부호화 단위(1410 또는 1420)에 대한 분할 형태 모드에 대한 정보에 따라 결정되는 제2 부호화 단위(1412a, 1412b, 1414a, 1414b, 1414c. 1422a, 1422b, 1424a, 1424b, 1424c)는 긴 변의 길이에 기초하여 심도가 결정될 수 있다. 예를 들면, 정사각형 형태의 제2 부호화 단위(1412a, 1412b)의 한 변의 길이는 높이가 너비보다 긴 비-정사각형 형태의 제1 부호화 단위(1410)의 한 변의 길이의 1/2배이므로, 정사각형 형태의 제2 부호화 단위(1412a, 1412b)의 심도는 비-정사각형 형태의 제1 부호화 단위(1410)의 심도 D보다 한 심도 하위의 심도인 D+1이다.
나아가 영상 복호화 장치(100)가 분할 형태 모드에 대한 정보에 기초하여 비-정사각형 형태의 제1 부호화 단위(1410)를 홀수개의 제2 부호화 단위(1414a, 1414b, 1414c)로 분할할 수 있다. 홀수개의 제2 부호화 단위(1414a, 1414b, 1414c)는 비-정사각형 형태의 제2 부호화 단위(1414a, 1414c) 및 정사각형 형태의 제2 부호화 단위(1414b)를 포함할 수 있다. 이 경우 비-정사각형 형태의 제2 부호화 단위(1414a, 1414c)의 긴 변의 길이 및 정사각형 형태의 제2 부호화 단위(1414b)의 한 변의 길이는 제1 부호화 단위(1410)의 한 변의 길이의 1/2배 이므로, 제2 부호화 단위(1414a, 1414b, 1414c)의 심도는 제1 부호화 단위(1410)의 심도인 D보다 한 심도 하위인 D+1의 심도일 수 있다. 영상 복호화 장치(100)는 제1 부호화 단위(1410)와 관련된 부호화 단위들의 심도를 결정하는 상기 방식에 대응하는 방식으로, 너비가 높이보다 긴 비-정사각형 형태의 제1 부호화 단위(1420)와 관련된 부호화 단위들의 심도를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 분할된 부호화 단위들의 구분을 위한 인덱스(PID)를 결정함에 있어서, 홀수개로 분할된 부호화 단위들이 서로 동일한 크기가 아닌 경우, 부호화 단위들 간의 크기 비율에 기초하여 인덱스를 결정할 수 있다. 도 14를 참조하면, 홀수개로 분할된 부호화 단위들(1414a, 1414b, 1414c) 중 가운데에 위치하는 부호화 단위(1414b)는 다른 부호화 단위들(1414a, 1414c)와 너비는 동일하지만 높이가 다른 부호화 단위들(1414a, 1414c)의 높이의 두 배일 수 있다. 즉, 이 경우 가운데에 위치하는 부호화 단위(1414b)는 다른 부호화 단위들(1414a, 1414c)의 두 개를 포함할 수 있다. 따라서, 스캔 순서에 따라 가운데에 위치하는 부호화 단위(1414b)의 인덱스(PID)가 1이라면 그 다음 순서에 위치하는 부호화 단위(1414c)는 인덱스가 2가 증가한 3일수 있다. 즉 인덱스의 값의 불연속성이 존재할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 이러한 분할된 부호화 단위들 간의 구분을 위한 인덱스의 불연속성의 존재 여부에 기초하여 홀수개로 분할된 부호화 단위들이 서로 동일한 크기가 아닌지 여부를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 부호화 단위로부터 분할되어 결정된 복수개의 부호화 단위들을 구분하기 위한 인덱스의 값에 기초하여 특정 분할 형태로 분할된 것인지를 결정할 수 있다. 도 14를 참조하면 영상 복호화 장치(100)는 높이가 너비보다 긴 직사각형 형태의 제1 부호화 단위(1410)를 분할하여 짝수개의 부호화 단위(1412a, 1412b)를 결정하거나 홀수개의 부호화 단위(1414a, 1414b, 1414c)를 결정할 수 있다. 영상 복호화 장치(100)는 복수개의 부호화 단위 각각을 구분하기 위하여 각 부호화 단위를 나타내는 인덱스(PID)를 이용할 수 있다. 일 실시예에 따라 PID는 각각의 부호화 단위의 소정 위치의 샘플(예를 들면, 좌측 상단 샘플)에서 획득될 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 부호화 단위의 구분을 위한 인덱스를 이용하여 분할되어 결정된 부호화 단위들 중 소정 위치의 부호화 단위를 결정할 수 있다. 일 실시예에 따라 높이가 너비보다 긴 직사각형 형태의 제1 부호화 단위(1410)에 대한 분할 형태 모드에 대한 정보가 3개의 부호화 단위로 분할됨을 나타내는 경우 영상 복호화 장치(100)는 제1 부호화 단위(1410)를 3개의 부호화 단위(1414a, 1414b, 1414c)로 분할할 수 있다. 영상 복호화 장치(100)는 3개의 부호화 단위(1414a, 1414b, 1414c) 각각에 대한 인덱스를 할당할 수 있다. 영상 복호화 장치(100)는 홀수개로 분할된 부호화 단위 중 가운데 부호화 단위를 결정하기 위하여 각 부호화 단위에 대한 인덱스를 비교할 수 있다. 영상 복호화 장치(100)는 부호화 단위들의 인덱스에 기초하여 인덱스들 중 가운데 값에 해당하는 인덱스를 갖는 부호화 단위(1414b)를, 제1 부호화 단위(1410)가 분할되어 결정된 부호화 단위 중 가운데 위치의 부호화 단위로서 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 분할된 부호화 단위들의 구분을 위한 인덱스를 결정함에 있어서, 부호화 단위들이 서로 동일한 크기가 아닌 경우, 부호화 단위들 간의 크기 비율에 기초하여 인덱스를 결정할 수 있다. 도 14를 참조하면, 제1 부호화 단위(1410)가 분할되어 생성된 부호화 단위(1414b)는 다른 부호화 단위들(1414a, 1414c)와 너비는 동일하지만 높이가 다른 부호화 단위들(1414a, 1414c)의 높이의 두 배일 수 있다. 이 경우 가운데에 위치하는 부호화 단위(1414b)의 인덱스(PID)가 1이라면 그 다음 순서에 위치하는 부호화 단위(1414c)는 인덱스가 2가 증가한 3일수 있다. 이러한 경우처럼 균일하게 인덱스가 증가하다가 증가폭이 달라지는 경우, 영상 복호화 장치(100)는 다른 부호화 단위들과 다른 크기를 가지는 부호화 단위를 포함하는 복수개의 부호화 단위로 분할된 것으로 결정할 수 있다, 일 실시예에 따라 분할 형태 모드에 대한 정보가 홀수개의 부호화 단위로 분할됨을 나타내는 경우, 영상 복호화 장치(100)는 홀수개의 부호화 단위 중 소정 위치의 부호화 단위(예를 들면 가운데 부호화 단위)가 다른 부호화 단위와 크기가 다른 형태로 현재 부호화 단위를 분할할 수 있다. 이 경우 영상 복호화 장치(100)는 부호화 단위에 대한 인덱스(PID)를 이용하여 다른 크기를 가지는 가운데 부호화 단위를 결정할 수 있다. 다만 상술한 인덱스, 결정하고자 하는 소정 위치의 부호화 단위의 크기 또는 위치는 일 실시예를 설명하기 위해 특정한 것이므로 이에 한정하여 해석되어서는 안되며, 다양한 인덱스, 부호화 단위의 위치 및 크기가 이용될 수 있는 것으로 해석되어야 한다.
일 실시예에 따라 영상 복호화 장치(100)는 부호화 단위의 재귀적인 분할이 시작되는 소정의 데이터 단위를 이용할 수 있다.
도 15는 일 실시예에 따라 픽쳐에 포함되는 복수개의 소정의 데이터 단위에 따라 복수개의 부호화 단위들이 결정된 것을 도시한다.
일 실시예에 따라 소정의 데이터 단위는 부호화 단위가 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나를 이용하여 재귀적으로 분할되기 시작하는 데이터 단위로 정의될 수 있다. 즉, 현재 픽쳐를 분할하는 복수개의 부호화 단위들이 결정되는 과정에서 이용되는 최상위 심도의 부호화 단위에 해당할 수 있다. 이하에서는 설명 상 편의를 위해 이러한 소정의 데이터 단위를 기준 데이터 단위라고 지칭하도록 한다.
일 실시예에 따라 기준 데이터 단위는 소정의 크기 및 형태를 나타낼 수 있다. 일 실시예에 따라, 기준 부호화 단위는 MxN의 샘플들을 포함할 수 있다. 여기서 M 및 N은 서로 동일할 수도 있으며, 2의 승수로 표현되는 정수일 수 있다. 즉, 기준 데이터 단위는 정사각형 또는 비-정사각형의 형태를 나타낼 수 있으며, 이후에 정수개의 부호화 단위로 분할될 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 픽쳐를 복수개의 기준 데이터 단위로 분할할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 현재 픽쳐를 분할하는 복수개의 기준 데이터 단위를 각각의 기준 데이터 단위에 대한 분할 형태 모드에 대한 정보를 이용하여 분할할 수 있다. 이러한 기준 데이터 단위의 분할 과정은 쿼드 트리(quad-tree)구조를 이용한 분할 과정에 대응될 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 픽쳐에 포함되는 기준 데이터 단위가 가질 수 있는 최소 크기를 미리 결정할 수 있다. 이에 따라, 영상 복호화 장치(100)는 최소 크기 이상의 크기를 갖는 다양한 크기의 기준 데이터 단위를 결정할 수 있고, 결정된 기준 데이터 단위를 기준으로 블록 형태 정보 및 분할 형태 모드에 대한 정보를 이용하여 적어도 하나의 부호화 단위를 결정할 수 있다.
도 15를 참조하면, 영상 복호화 장치(100)는 정사각형 형태의 기준 부호화 단위(1500)를 이용할 수 있고, 또는 비-정사각형 형태의 기준 부호화 단위(1502)를 이용할 수도 있다. 일 실시예에 따라 기준 부호화 단위의 형태 및 크기는 적어도 하나의 기준 부호화 단위를 포함할 수 있는 다양한 데이터 단위(예를 들면, 시퀀스(sequence), 픽쳐(picture), 슬라이스(slice), 슬라이스 세그먼트(slice segment), 최대부호화단위 등)에 따라 결정될 수 있다.
일 실시예에 따라 영상 복호화 장치(100)의 비트스트림 획득부(110)는 기준 부호화 단위의 형태에 대한 정보 및 기준 부호화 단위의 크기에 대한 정보 중 적어도 하나를 상기 다양한 데이터 단위마다 비트스트림으로부터 획득할 수 있다. 정사각형 형태의 기준 부호화 단위(1500)에 포함되는 적어도 하나의 부호화 단위가 결정되는 과정은 도 3의 현재 부호화 단위(300)가 분할되는 과정을 통해 상술하였고, 비-정사각형 형태의 기준 부호화 단위(1502)에 포함되는 적어도 하나의 부호화 단위가 결정되는 과정은 도 4의 현재 부호화 단위(400 또는 450)가 분할되는 과정을 통해 상술하였으므로 자세한 설명은 생략하도록 한다.
일 실시예에 따라 영상 복호화 장치(100)는 소정의 조건에 기초하여 미리 결정되는 일부 데이터 단위에 따라 기준 부호화 단위의 크기 및 형태를 결정하기 위하여, 기준 부호화 단위의 크기 및 형태를 식별하기 위한 인덱스를 이용할 수 있다. 즉, 비트스트림 획득부(110)는 비트스트림으로부터 상기 다양한 데이터 단위(예를 들면, 시퀀스, 픽쳐, 슬라이스, 슬라이스 세그먼트, 최대부호화단위 등) 중 소정의 조건(예를 들면 슬라이스 이하의 크기를 갖는 데이터 단위)을 만족하는 데이터 단위로서 슬라이스, 슬라이스 세그먼트, 최대부호화 단위 등 마다, 기준 부호화 단위의 크기 및 형태의 식별을 위한 인덱스만을 획득할 수 있다. 영상 복호화 장치(100)는 인덱스를 이용함으로써 상기 소정의 조건을 만족하는 데이터 단위마다 기준 데이터 단위의 크기 및 형태를 결정할 수 있다. 기준 부호화 단위의 형태에 대한 정보 및 기준 부호화 단위의 크기에 대한 정보를 상대적으로 작은 크기의 데이터 단위마다 비트스트림으로부터 획득하여 이용하는 경우, 비트스트림의 이용 효율이 좋지 않을 수 있으므로, 기준 부호화 단위의 형태에 대한 정보 및 기준 부호화 단위의 크기에 대한 정보를 직접 획득하는 대신 상기 인덱스만을 획득하여 이용할 수 있다. 이 경우 기준 부호화 단위의 크기 및 형태를 나타내는 인덱스에 대응하는 기준 부호화 단위의 크기 및 형태 중 적어도 하나는 미리 결정되어 있을 수 있다. 즉, 영상 복호화 장치(100)는 미리 결정된 기준 부호화 단위의 크기 및 형태 중 적어도 하나를 인덱스에 따라 선택함으로써, 인덱스 획득의 기준이 되는 데이터 단위에 포함되는 기준 부호화 단위의 크기 및 형태 중 적어도 하나를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 하나의 최대 부호화 단위에 포함하는 적어도 하나의 기준 부호화 단위를 이용할 수 있다. 즉, 영상을 분할하는 최대 부호화 단위에는 적어도 하나의 기준 부호화 단위가 포함될 수 있고, 각각의 기준 부호화 단위의 재귀적인 분할 과정을 통해 부호화 단위가 결정될 수 있다. 일 실시예에 따라 최대 부호화 단위의 너비 및 높이 중 적어도 하나는 기준 부호화 단위의 너비 및 높이 중 적어도 하나의 정수배에 해당할 수 있다. 일 실시예에 따라 기준 부호화 단위의 크기는 최대부호화단위를 쿼드 트리 구조에 따라 n번 분할한 크기일 수 있다. 즉, 영상 복호화 장치(100)는 최대부호화단위를 쿼드 트리 구조에 따라 n 번 분할하여 기준 부호화 단위를 결정할 수 있고, 다양한 실시예들에 따라 기준 부호화 단위를 블록 형태 정보 및 분할 형태 모드에 대한 정보 중 적어도 하나에 기초하여 분할할 수 있다.
도 16은 일 실시예에 따라 픽쳐(1600)에 포함되는 기준 부호화 단위의 결정 순서를 결정하는 기준이 되는 프로세싱 블록을 도시한다.
일 실시예에 따라 영상 복호화 장치(100)는 픽쳐를 분할하는 적어도 하나의 프로세싱 블록을 결정할 수 있다. 프로세싱 블록이란, 영상을 분할하는 적어도 하나의 기준 부호화 단위를 포함하는 데이터 단위로서, 프로세싱 블록에 포함되는 적어도 하나의 기준 부호화 단위는 특정 순서대로 결정될 수 있다. 즉, 각각의 프로세싱 블록에서 결정되는 적어도 하나의 기준 부호화 단위의 결정 순서는 기준 부호화 단위가 결정될 수 있는 다양한 순서의 종류 중 하나에 해당할 수 있으며, 각각의 프로세싱 블록에서 결정되는 기준 부호화 단위 결정 순서는 프로세싱 블록마다 상이할 수 있다. 프로세싱 블록마다 결정되는 기준 부호화 단위의 결정 순서는 래스터 스캔(raster scan), Z 스캔(Z-scan), N 스캔(N-scan), 우상향 대각 스캔(up-right diagonal scan), 수평적 스캔(horizontal scan), 수직적 스캔(vertical scan) 등 다양한 순서 중 하나일 수 있으나, 결정될 수 있는 순서는 상기 스캔 순서들에 한정하여 해석되어서는 안 된다.
일 실시예에 따라 영상 복호화 장치(100)는 프로세싱 블록의 크기에 대한 정보를 획득하여 영상에 포함되는 적어도 하나의 프로세싱 블록의 크기를 결정할 수 있다. 영상 복호화 장치(100)는 프로세싱 블록의 크기에 대한 정보를 비트스트림으로부터 획득하여 영상에 포함되는 적어도 하나의 프로세싱 블록의 크기를 결정할 수 있다. 이러한 프로세싱 블록의 크기는 프로세싱 블록의 크기에 대한 정보가 나타내는 데이터 단위의 소정의 크기일 수 있다.
일 실시예에 따라 영상 복호화 장치(100)의 비트스트림 획득부(110)는 비트스트림으로부터 프로세싱 블록의 크기에 대한 정보를 특정의 데이터 단위마다 획득할 수 있다. 예를 들면 프로세싱 블록의 크기에 대한 정보는 영상, 시퀀스, 픽쳐, 슬라이스, 슬라이스 세그먼트 등의 데이터 단위로 비트스트림으로부터 획득될 수 있다. 즉 비트스트림 획득부(110)는 상기 여러 데이터 단위마다 비트스트림으로부터 프로세싱 블록의 크기에 대한 정보를 획득할 수 있고 영상 복호화 장치(100)는 획득된 프로세싱 블록의 크기에 대한 정보를 이용하여 픽쳐를 분할하는 적어도 하나의 프로세싱 블록의 크기를 결정할 수 있으며, 이러한 프로세싱 블록의 크기는 기준 부호화 단위의 정수배의 크기일 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 픽쳐(1600)에 포함되는 프로세싱 블록(1602, 1612)의 크기를 결정할 수 있다. 예를 들면, 영상 복호화 장치(100)는 비트스트림으로부터 획득된 프로세싱 블록의 크기에 대한 정보에 기초하여 프로세싱 블록의 크기를 결정할 수 있다. 도 16을 참조하면, 영상 복호화 장치(100)는 일 실시예에 따라 프로세싱 블록(1602, 1612)의 가로크기를 기준 부호화 단위 가로크기의 4배, 세로크기를 기준 부호화 단위의 세로크기의 4배로 결정할 수 있다. 영상 복호화 장치(100)는 적어도 하나의 프로세싱 블록 내에서 적어도 하나의 기준 부호화 단위가 결정되는 순서를 결정할 수 있다.
일 실시예에 따라, 영상 복호화 장치(100)는 프로세싱 블록의 크기에 기초하여 픽쳐(1600)에 포함되는 각각의 프로세싱 블록(1602, 1612)을 결정할 수 있고, 프로세싱 블록(1602, 1612)에 포함되는 적어도 하나의 기준 부호화 단위의 결정 순서를 결정할 수 있다. 일 실시예에 따라 기준 부호화 단위의 결정은 기준 부호화 단위의 크기의 결정을 포함할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 비트스트림으로부터 적어도 하나의 프로세싱 블록에 포함되는 적어도 하나의 기준 부호화 단위의 결정 순서에 대한 정보를 획득할 수 있고, 획득한 결정 순서에 대한 정보에 기초하여 적어도 하나의 기준 부호화 단위가 결정되는 순서를 결정할 수 있다. 결정 순서에 대한 정보는 프로세싱 블록 내에서 기준 부호화 단위들이 결정되는 순서 또는 방향으로 정의될 수 있다. 즉, 기준 부호화 단위들이 결정되는 순서는 각각의 프로세싱 블록마다 독립적으로 결정될 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 특정 데이터 단위마다 기준 부호화 단위의 결정 순서에 대한 정보를 비트스트림으로부터 획득할 수 있다. 예를 들면, 비트스트림 획득부(110)는 기준 부호화 단위의 결정 순서에 대한 정보를 영상, 시퀀스, 픽쳐, 슬라이스, 슬라이스 세그먼트, 프로세싱 블록 등의 데이터 단위로마다 비트스트림으로부터 획득할 수 있다. 기준 부호화 단위의 결정 순서에 대한 정보는 프로세싱 블록 내에서의 기준 부호화 단위 결정 순서를 나타내므로, 결정 순서에 대한 정보는 정수개의 프로세싱 블록을 포함하는 특정 데이터 단위 마다 획득될 수 있다.
영상 복호화 장치(100)는 일 실시예에 따라 결정된 순서에 기초하여 적어도 하나의 기준 부호화 단위를 결정할 수 있다.
일 실시예에 따라 비트스트림 획득부(110)는 비트스트림으로부터 프로세싱 블록(1602, 1612)과 관련된 정보로서, 기준 부호화 단위 결정 순서에 대한 정보를 획득할 수 있고, 영상 복호화 장치(100)는 상기 프로세싱 블록(1602, 1612)에 포함된 적어도 하나의 기준 부호화 단위를 결정하는 순서를 결정하고 부호화 단위의 결정 순서에 따라 픽쳐(1600)에 포함되는 적어도 하나의 기준 부호화 단위를 결정할 수 있다. 도 16을 참조하면, 영상 복호화 장치(100)는 각각의 프로세싱 블록(1602, 1612)과 관련된 적어도 하나의 기준 부호화 단위의 결정 순서(1604, 1614)를 결정할 수 있다. 예를 들면, 기준 부호화 단위의 결정 순서에 대한 정보가 프로세싱 블록마다 획득되는 경우, 각각의 프로세싱 블록(1602, 1612)과 관련된 기준 부호화 단위 결정 순서는 프로세싱 블록마다 상이할 수 있다. 프로세싱 블록(1602)과 관련된 기준 부호화 단위 결정 순서(1604)가 래스터 스캔(raster scan)순서인 경우, 프로세싱 블록(1602)에 포함되는 기준 부호화 단위는 래스터 스캔 순서에 따라 결정될 수 있다. 이에 반해 다른 프로세싱 블록(1612)과 관련된 기준 부호화 단위 결정 순서(1614)가 래스터 스캔 순서의 역순인 경우, 프로세싱 블록(1612)에 포함되는 기준 부호화 단위는 래스터 스캔 순서의 역순에 따라 결정될 수 있다.
영상 복호화 장치(100)는 일 실시예에 따라, 결정된 적어도 하나의 기준 부호화 단위를 복호화할 수 있다. 영상 복호화 장치(100)는 상술한 실시예를 통해 결정된 기준 부호화 단위에 기초하여 영상을 복호화 할 수 있다. 기준 부호화 단위를 복호화 하는 방법은 영상을 복호화 하는 다양한 방법들을 포함할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 현재 부호화 단위의 형태를 나타내는 블록 형태 정보 또는 현재 부호화 단위를 분할하는 방법을 나타내는 분할 형태 모드에 대한 정보를 비트스트림으로부터 획득하여 이용할 수 있다. 블록 형태 정보 또는 분할 형태 모드에 대한 정보는 다양한 데이터 단위와 관련된 비트스트림에 포함될 수 있다. 예를 들면, 영상 복호화 장치(100)는 시퀀스 파라미터 세트(sequence parameter set), 픽쳐 파라미터 세트(picture parameter set), 비디오 파라미터 세트(video parameter set), 슬라이스 헤더(slice header), 슬라이스 세그먼트 헤더(slice segment header)에 포함된 블록 형태 정보 또는 분할 형태 모드에 대한 정보를 이용할 수 있다. 나아가, 영상 복호화 장치(100)는 최대 부호화 단위, 기준 부호화 단위, 프로세싱 블록마다 비트스트림으로부터 블록 형태 정보 또는 분할 형태 모드에 대한 정보에 대응하는 신택스 엘리먼트를 비트스트림으로부터 획득하여 이용할 수 있다.
도 17은 일 실시예에 따라 부호화 단위가 분할될 수 있는 형태의 조합이 픽쳐마다 서로 다른 경우, 각각의 픽쳐마다 결정될 수 있는 부호화 단위들을 도시한다.
도 17을 참조하면, 영상 복호화 장치(100)는 픽쳐마다 부호화 단위가 분할될 수 있는 분할 형태들의 조합을 다르게 결정할 수 있다. 예를 들면, 영상 복호화 장치(100)는 영상에 포함되는 적어도 하나의 픽쳐들 중 4개의 부호화 단위로 분할될 수 있는 픽쳐(1700), 2개 또는 4개의 부호화 단위로 분할될 수 있는 픽쳐(1710) 및 2개, 3개 또는 4개의 부호화 단위로 분할될 수 있는 픽쳐(1720)를 이용하여 영상을 복호화 할 수 있다. 영상 복호화 장치(100)는 픽쳐(1700)를 복수개의 부호화 단위로 분할하기 위하여, 4개의 정사각형의 부호화 단위로 분할됨을 나타내는 분할 형태 정보만을 이용할 수 있다. 영상 복호화 장치(100)는 픽쳐(1710)를 분할하기 위하여, 2개 또는 4개의 부호화 단위로 분할됨을 나타내는 분할 형태 정보만을 이용할 수 있다. 영상 복호화 장치(100)는 픽쳐(1720)를 분할하기 위하여, 2개, 3개 또는 4개의 부호화 단위로 분할됨을 나타내는 분할 형태 정보만을 이용할 수 있다. 상술한 분할 형태의 조합은 영상 복호화 장치(100)의 동작을 설명하기 위한 실시예에 불과하므로 상술한 분할 형태의 조합은 상기 실시예에 한정하여 해석되어서는 안되며 소정의 데이터 단위마다 다양한 형태의 분할 형태의 조합이 이용될 수 있는 것으로 해석되어야 한다.
일 실시예에 따라 영상 복호화 장치(100)의 비트스트림 획득부(110)는 분할 형태 정보의 조합을 나타내는 인덱스를 포함하는 비트스트림을 소정의 데이터 단위 단위(예를 들면, 시퀀스, 픽쳐, 슬라이스 등)마다 획득할 수 있다. 예를 들면, 비트스트림 획득부(110)는 시퀀스 파라미터 세트(Sequence Parameter Set), 픽쳐 파라미터 세트(Picture Parameter Set) 또는 슬라이스 헤더(Slice Header)에서 분할 형태 정보의 조합을 나타내는 인덱스를 획득할 수 있다. 영상 복호화 장치(100)의 영상 복호화 장치(100)는 획득한 인덱스를 이용하여 소정의 데이터 단위마다 부호화 단위가 분할될 수 있는 분할 형태의 조합을 결정할 수 있으며, 이에 따라 소정의 데이터 단위마다 서로 다른 분할 형태의 조합을 이용할 수 있다.
도 18은 일 실시예에 따라 바이너리(binary)코드로 표현될 수 있는 분할 형태 정보에 기초하여 결정될 수 있는 부호화 단위의 다양한 형태를 도시한다.
일 실시예에 따라 영상 복호화 장치(100)는 비트스트림 획득부(110)를 통해 획득한 블록 형태 정보 및 분할 형태 정보를 이용하여 부호화 단위를 다양한 형태로 분할할 수 있다. 분할될 수 있는 부호화 단위의 형태는 상술한 실시예들을 통해 설명한 형태들을 포함하는 다양한 형태에 해당할 수 있다.
도 18을 참조하면, 영상 복호화 장치(100)는 분할 형태 정보에 기초하여 정사각형 형태의 부호화 단위를 수평 방향 및 수직 방향 중 적어도 하나의 방향으로 분할할 수 있고, 비-정사각형 형태의 부호화 단위를 수평 방향 또는 수직 방향으로 분할할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)가 정사각형 형태의 부호화 단위를 수평 방향 및 수직 방향으로 분할하여 4개의 정사각형의 부호화 단위로 분할할 수 있는 경우, 정사각형의 부호화 단위에 대한 분할 형태 정보가 나타낼 수 있는 분할 형태는 4가지일 수 있다. 일 실시예에 따라 분할 형태 정보는 2자리의 바이너리 코드로써 표현될 수 있으며, 각각의 분할 형태마다 바이너리 코드가 할당될 수 있다. 예를 들면 부호화 단위가 분할되지 않는 경우 분할 형태 정보는 (00)b로 표현될 수 있고, 부호화 단위가 수평 방향 및 수직 방향으로 분할되는 경우 분할 형태 정보는 (01)b로 표현될 수 있고, 부호화 단위가 수평 방향으로 분할되는 경우 분할 형태 정보는 (10)b로 표현될 수 있고 부호화 단위가 수직 방향으로 분할되는 경우 분할 형태 정보는 (11)b로 표현될 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 비-정사각형 형태의 부호화 단위를 수평 방향 또는 수직 방향으로 분할하는 경우 분할 형태 정보가 나타낼 수 있는 분할 형태의 종류는 몇 개의 부호화 단위로 분할하는지에 따라 결정될 수 있다. 도 18을 참조하면, 영상 복호화 장치(100)는 일 실시예에 따라 비-정사각형 형태의 부호화 단위를 3개까지 분할할 수 있다. 영상 복호화 장치(100)는 부호화 단위를 두 개의 부호화 단위로 분할할 수 있으며, 이 경우 분할 형태 정보는 (10)b로 표현될 수 있다. 영상 복호화 장치(100)는 부호화 단위를 세 개의 부호화 단위로 분할할 수 있으며, 이 경우 분할 형태 정보는 (11)b로 표현될 수 있다. 영상 복호화 장치(100)는 부호화 단위를 분할하지 않는 것으로 결정할 수 있으며, 이 경우 분할 형태 정보는 (0)b로 표현될 수 있다. 즉, 영상 복호화 장치(100)는 분할 형태 정보를 나타내는 바이너리 코드를 이용하기 위하여 고정길이 코딩(FLC: Fixed Length Coding)이 아니라 가변길이 코딩(VLC: Varaible Length Coding)을 이용할 수 있다.`
일 실시예에 따라 도 18을 참조하면, 부호화 단위가 분할되지 않는 것을 나타내는 분할 형태 정보의 바이너리 코드는 (0)b로 표현될 수 있다. 만일 부호화 단위가 분할되지 않음을 나타내는 분할 형태 정보의 바이너리 코드가 (00)b로 설정된 경우라면, (01)b로 설정된 분할 형태 정보가 없음에도 불구하고 2비트의 분할 형태 정보의 바이너리 코드를 모두 이용하여야 한다. 하지만 도 18에서 도시하는 바와 같이, 비-정사각형 형태의 부호화 단위에 대한 3가지의 분할 형태를 이용하는 경우라면, 영상 복호화 장치(100)는 분할 형태 정보로서 1비트의 바이너리 코드(0)b를 이용하더라도 부호화 단위가 분할되지 않는 것을 결정할 수 있으므로, 비트스트림을 효율적으로 이용할 수 있다. 다만 분할 형태 정보가 나타내는 비-정사각형 형태의 부호화 단위의 분할 형태는 단지 도 18에서 도시하는 3가지 형태만으로 국한되어 해석되어서는 안되고, 상술한 실시예들을 포함하는 다양한 형태로 해석되어야 한다.
도 19는 일 실시예에 따라 바이너리 코드로 표현될 수 있는 분할 형태 정보에 기초하여 결정될 수 있는 부호화 단위의 또 다른 형태를 도시한다.
도 19를 참조하면 영상 복호화 장치(100)는 분할 형태 정보에 기초하여 정사각형 형태의 부호화 단위를 수평 방향 또는 수직 방향으로 분할할 수 있고, 비-정사각형 형태의 부호화 단위를 수평 방향 또는 수직 방향으로 분할할 수 있다. 즉, 분할 형태 정보는 정사각형 형태의 부호화 단위를 한쪽 방향으로 분할되는 것을 나타낼 수 있다. 이러한 경우 정사각형 형태의 부호화 단위가 분할되지 않는 것을 나타내는 분할 형태 정보의 바이너리 코드는 (0)b로 표현될 수 있다. 만일 부호화 단위가 분할되지 않음을 나타내는 분할 형태 정보의 바이너리 코드가 (00)b로 설정된 경우라면, (01)b로 설정된 분할 형태 정보가 없음에도 불구하고 2비트의 분할 형태 정보의 바이너리 코드를 모두 이용하여야 한다. 하지만 도 19에서 도시하는 바와 같이, 정사각형 형태의 부호화 단위에 대한 3가지의 분할 형태를 이용하는 경우라면, 영상 복호화 장치(100)는 분할 형태 정보로서 1비트의 바이너리 코드(0)b를 이용하더라도 부호화 단위가 분할되지 않는 것을 결정할 수 있으므로, 비트스트림을 효율적으로 이용할 수 있다. 다만 분할 형태 정보가 나타내는 정사각형 형태의 부호화 단위의 분할 형태는 단지 도 19에서 도시하는 3가지 형태만으로 국한되어 해석되어서는 안되고, 상술한 실시예들을 포함하는 다양한 형태로 해석되어야 한다.
일 실시예에 따라 블록 형태 정보 또는 분할 형태 정보는 바이너리 코드를 이용하여 표현될 수 있고, 이러한 정보가 곧바로 비트스트림으로 생성될 수 있다. 또한 바이너리 코드로 표현될 수 있는 블록 형태 정보 또는 분할 형태 정보는 바로 비트스트림으로 생성되지 않고 CABAC(context adaptive binary arithmetic coding)에서 입력되는 바이너리 코드로서 이용될 수도 있다.
일 실시예에 따라 영상 복호화 장치(100)는 CABAC을 통해 블록 형태 정보 또는 분할 형태 정보에 대한 신택스를 획득하는 과정을 설명한다. 비트스트림 획득부(110)를 통해 상기 신택스에 대한 바이너리 코드를 포함하는 비트스트림을 획득할 수 있다. 영상 복호화 장치(100)는 획득한 비트스트림에 포함되는 빈 스트링(bin string)을 역 이진화하여 블록 형태 정보 또는 분할 형태 정보를 나타내는 신택스 요소(syntax element)를 검출할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 복호화할 신택스 요소에 해당하는 바이너리 빈 스트링의 집합을 구하고, 확률 정보를 이용하여 각각의 빈을 복호화할 수 있고, 영상 복호화 장치(100)는 이러한 복호화된 빈으로 구성되는 빈 스트링이 이전에 구한 빈 스트링들 중 하나와 같아질 때까지 반복할수 있다. 영상 복호화 장치(100)는 빈 스트링의 역 이진화를 수행하여 신택스 요소를 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 적응적 이진 산술 코딩(adaptive binary arithmetic coding)의 복호화 과정을 수행하여 빈 스트링에 대한 신택스를 결정할 수 있고, 영상 복호화 장치(100)는 비트스트림 획득부(110)를 통해 획득한 빈들에 대한 확률 모델을 갱신할 수 있다. 도 18을 참조하면, 영상 복호화 장치(100)의 비트스트림 획득부(110)는 일 실시예에 따라 분할 형태 정보를 나타내는 바이너리 코드를 나타내는 비트스트림을 획득할 수 있다. 획득한 1비트 또는 2비트의 크기를 가지는 바이너리 코드를 이용하여 영상 복호화 장치(100)는 분할 형태 정보에 대한 신택스를 결정할 수 있다. 영상 복호화 장치(100)는 분할 형태 정보에 대한 신택스를 결정하기 위하여, 2비트의 바이너리 코드 중 각각의 비트에 대한 확률을 갱신할 수 있다. 즉, 영상 복호화 장치(100)는 2비트의 바이너리 코드 중 첫번째 빈의 값이 0 또는 1 중 어떤 값이냐에 따라, 다음 빈을 복호화 할 때 0 또는 1의 값을 가질 확률을 갱신할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 신택스를 결정하는 과정에서, 신택스에 대한 빈 스트링의 빈들을 복호화 하는 과정에서 이용되는 빈들에 대한 확률을 갱신할 수 있으며, 영상 복호화 장치(100)는 상기 빈 스트링 중 특정 비트에서는 확률을 갱신하지 않고 동일한 확률을 가지는 것으로 결정할 수 있다.
도 18을 참조하면, 비-정사각형 형태의 부호화 단위에 대한 분할 형태 정보를 나타내는 빈 스트링을 이용하여 신택스를 결정하는 과정에서, 영상 복호화 장치(100)는 비-정사각형 형태의 부호화 단위를 분할하지 않는 경우에는 0의 값을 가지는 하나의 빈을 이용하여 분할 형태 정보에 대한 신택스를 결정할 수 있다. 즉, 블록 형태 정보가 현재 부호화 단위는 비-정사각형 형태임을 나타내는 경우, 분할 형태 정보에 대한 빈 스트링의 첫번째 빈은, 비-정사각형 형태의 부호화 단위가 분할되지 않는 경우 0이고, 2개 또는 3개의 부호화 단위로 분할되는 경우 1일 수 있다. 이에 따라 비-정사각형의 부호화 단위에 대한 분할 형태 정보의 빈 스트링의 첫번째 빈이 0일 확률은 1/3, 1일 확률은 2/3일 수 있다. 상술하였듯이 영상 복호화 장치(100)는 비-정사각형 형태의 부호화 단위가 분할되지 않는 것을 나타내는 분할 형태 정보는 0의 값을 가지는 1비트의 빈 스트링만을 표현될 수 있으므로, 영상 복호화 장치(100)는 분할 형태 정보의 첫번째 빈이 1인 경우에만 두번째 빈이 0인지 1인지 판단하여 분할 형태 정보에 대한 신택스를 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 분할 형태 정보에 대한 첫번째 빈이 1인 경우, 두번째 빈이 0 또는 1일 확률은 서로 동일한 확률인 것으로 보고 빈을 복호화할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 분할 형태 정보에 대한 빈 스트링의 빈을 결정하는 과정에서 각각의 빈에 대한 다양한 확률을 이용할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 비-정사각형 블록의 방향에 따라 분할 형태 정보에 대한 빈의 확률을 다르게 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 현재 부호화 단위의 넓이 또는 긴 변의 길이에 따라 분할 형태 정보에 대한 빈의 확률을 다르게 결정할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 현재 부호화 단위의 형태 및 긴 변의 길이 중 적어도 하나에 따라 분할 형태 정보에 대한 빈의 확률을 다르게 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 소정 크기 이상의 부호화 단위들에 대하여는 분할 형태 정보에 대한 빈의 확률을 동일한 것으로 결정할 수 있다. 예를 들면, 부호화 단위의 긴 변의 길이를 기준으로 64샘플 이상의 크기의 부호화 단위들에 대하여는 분할 형태 정보에 대한 빈의 확률이 동일한 것으로 결정할 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 분할 형태 정보의 빈 스트링을 구성하는 빈들에 대한 초기 확률은 슬라이스 타입(예를 들면, I 슬라이스, P 슬라이스 또는 B 슬라이스…)에 기초하여 결정될 수 있다.
도 20는 루프 필터링을 수행하는 영상 부호화 및 복호화 시스템의 블록도를 나타낸 도면이다.
영상 부호화 및 복호화 시스템(2000)의 부호화단(2010)은 영상의 부호화된 비트스트림을 전송하고, 복호화단(2050)은 비트스트림을 수신하여 복호화함으로써 복원 영상을 출력한다. 여기서 부호화단(2010)은 후술할 영상 부호화 장치(200)에 유사한 구성일 수 있고, 복호화단(2050)은 영상 복호화 장치(100)에 유사한 구성일 수 있다.
부호화단(2010)에서, 예측 부호화부(2015)는 인터 예측 및 인트라 예측을 통해 참조 영상을 출력하고, 변환 및 양자화부(2020)는 참조 영상과 현재 입력 영상 간의 레지듀얼 데이터를 양자화된 변환 계수로 양자화하여 출력한다. 엔트로피 부호화부(2025)는 양자화된 변환 계수를 부호화하여 변환하고 비트스트림으로 출력한다. 양자화된 변환 계수는 역양자화 및 역변환부(2030)을 거쳐 공간 영역의 데이터로 복원되고, 복원된 공간 영역의 데이터는 디블로킹 필터링부(2035) 및 루프 필터링부(2040)를 거쳐 복원 영상으로 출력된다. 복원 영상은 예측 부호화부(2015)를 거쳐 다음 입력 영상의 참조 영상으로 사용될 수 있다.
복호화단(2050)으로 수신된 비트스트림 중 부호화된 영상 데이터는, 엔트로피 복호화부(2055) 및 역양자화 및 역변환부(2060)를 거쳐 공간 영역의 레지듀얼 데이터로 복원된다. 예측 복호화부(2075)로부터 출력된 참조 영상 및 레지듀얼 데이터가 조합되어 공간 영역의 영상 데이터가 구성되고, 디블로킹 필터링부(2065) 및 루프 필터링부(2070)는 공간 영역의 영상 데이터에 대해 필터링을 수행하여 현재 원본 영상에 대한 복원 영상을 출력할 수 있다. 복원 영상은 예측 복호화부(2075)에 의해 다음 원본 영상에 대한 참조 영상으로서 이용될 수 있다.
부호화단(2010)의 루프 필터링부(2040)는 사용자 입력 또는 시스템 설정에 따라 입력된 필터 정보를 이용하여 루프 필터링을 수행한다. 루프 필터링부(2040)에 의해 사용된 필터 정보는 엔트로피 부호화부(2010)로 출력되어, 부호화된 영상 데이터와 함께 복호화단(2050)으로 전송된다. 복호화단(2050)의 루프 필터링부(2070)는 복호화단(2050)으로부터 입력된 필터 정보에 기초하여 루프 필터링을 수행할 수 있다.
도 21은 일 실시예에 따른 최대 부호화 단위에 포함되는 필터링 단위들의 일례와 필터링 단위의 필터링 수행 정보를 나타낸 도면이다.
부호화단(2010)의 루프 필터링부(2040) 및 복호화단(2050)의 루프 필터링부(2070)의 필터링 단위가, 도 3 내지 도 5를 통해 전술한 일 실시예에 따른 부호화 단위와 유사한 데이터 단위로 구성된다면, 필터 정보는 필터링 단위를 나타내기 위한 데이터 단위의 블록 형태 정보 및 분할 형태 정보, 그리고 필터링 단위에 대한 루프 필터링 수행 여부를 나타내는 루프 필터링 수행 정보를 포함할 수 있다.
일 실시예에 따른 최대 부호화 단위(2100)에 포함된 필터링 단위들은 최대 부호화 단위(2100)에 포함된 부호화 단위들과 동일한 블록 형태 및 분할 형태를 가질 수 있다. 또한, 일 실시예에 따른 최대 부호화 단위(2100)에 포함된 필터링 단위들은 최대 부호화 단위(2100)에 포함된 부호화 단위들의 크기를 기준으로 분할될 수 있다. 도 21을 참조하여 예를 들면, 필터링 단위들은 심도 D의 정사각형 형태의 필터링 단위(2140), 심도 D의 비-정사각형 형태의 필터링 단위(2132, 2134), 심도 D+1의 정사각형 형태의 필터링 단위(2112, 2114, 2116, 2152, 2154, 2164), 심도 D+1의 비-정사각형 형태의 필터링 단위(2162, 2166), 심도 D+2의 정사각형 형태의 필터링 단위(2122, 2124, 2126, 2128)를 포함할 수 있다.
최대 부호화 단위(2100)에 포함된 필터링 단위들의 블록 형태 정보, 분할 형태 정보(심도) 및 루프 필터링 수행 정보는 아래 표 1과 같이 부호화될 수 있다.
Figure 112021017343814-pat00001
일 실시예에 따른 블록 형태 정보 및 블록 분할 정보에 따라 부호화 단위가 재귀적으로 분할되어 복수개의 부호화 단위가 결정되는 과정은, 도 13을 통해 전술한 바와 같다. 일 실시예에 따른 필터링 단위들의 루프 필터링 수행 정보는, 플래그 값이 1인 경우 해당 필터링 단위에 대해 루프 필터링이 수행됨을 나타내며, 0인 경우 루프 필터링이 수행되지 않음을 나타낸다. 표 1을 참조하면, 루프 필터링부(2040, 2070)에 의해 필터링의 대상이 되는 필터링 단위를 결정하기 위한 데이터 단위의 정보들은 필터 정보로서 모두 부호화되어 전송될 수 있다.
일 실시예에 따라 구성된 부호화 단위들은, 원본 영상과의 오차를 최소화하는 형태로 구성된 부호화 단위이므로, 부호화 단위 내에서 공간적 상관도가 높다고 예상된다. 따라서, 일 실시예에 따른 부호화 단위에 기반하여 필터링 단위가 결정됨으로써, 부호화 단위의 결정과 별도로 필터링 단위를 결정하는 동작이 생략될 수도 있다. 또한 이에 따라, 일 실시예에 따른 부호화 단위에 기반하여 필터링 단위를 결정함으로써 필터링 단위의 분할 형태를 결정하기 위한 정보를 생략할 수 있으므로 필터 정보의 전송 비트레이트를 절약할 수 있다.
전술한 실시예에서는 필터링 단위가 일 실시예에 따른 부호화 단위에 기반하여 결정되는 것으로 설명하였지만, 부호화 단위에 기반하여 필터링 단위의 분할을 수행하다가 임의의 심도에서 더 이상 분할하지 않고 해당 심도까지만 필터링 단위의 형태가 결정될 수도 있다.
전술한 실시예에 개시된 필터링 단위의 결정은 루프 필터링 뿐만 아니라, 디블로킹 필터링, 적응적 루프 필터링 등 다양한 실시예에도 적용될 수 있다.
일 실시예에 따라 영상 복호화 장치(100)는 블록 형태 정보 및 분할 형태 정보 중 적어도 하나를 이용하여 현재 부호화 단위를 분할할 수 있으며, 블록 형태 정보는 정사각형 형태만을 이용하는 것으로 미리 결정되고, 분할 형태 정보는 분할하지 않거나 또는 4개의 정사각형 형태의 부호화 단위로 분할됨을 나타낼 수 있는 것으로 미리 결정될 수 있다. 즉, 현재 부호화 단위는 상기 블록 형태 정보에 따르면 부호화 단위는 항상 정사각형 형태를 가지고, 상기 분할 형태 정보에 기초하여 분할되지 않거나 4개의 정사각형 형태의 부호화 단위들로 분할될 수 있다. 영상 복호화 장치(100)는 이러한 블록 형태 및 분할 형태만을 이용하는 것으로 미리 결정된 소정의 부호화 방법을 이용하여 생성된 비트스트림을 비트스트림 획득부(110)를 통해 획득할 수 있고, 영상 복호화 장치(100)는 미리 결정된 블록 형태 및 분할 형태만을 이용할 수 있다. 이러한 경우 영상 복호화 장치(100)는 상술한 소정의 부호화 방법과 유사한 소정의 복호화 방법을 이용함으로써 소정의 부호화 방법과의 호환성 문제를 해결할 수 있다. 일 실시예에 따라 영상 복호화 장치(100)는 블록 형태 정보 및 분할 형태 정보가 나타낼 수 있는 다양한 형태들 중 미리 결정된 블록 형태 및 분할 형태만을 이용하는 상술한 소정의 복호화 방법을 이용하는 경우, 블록 형태 정보는 정사각형 형태만을 나타내게 되므로 영상 복호화 장치(100)는 비트스트림으로부터 블록 형태 정보를 획득하는 과정을 생략할 수 있다. 상술한 소정의 복호화 방법을 이용할 것인지 여부를 나타내는 신택스가 이용될 수 있고, 이러한 신택스는 시퀀스, 픽쳐, 슬라이스 단위, 최대부호화단위 등 복수개의 부호화 단위를 포함할 수 있는 다양한 형태의 데이터 단위마다 비트스트림으로부터 획득될 수 있다. 즉, 비트스트림 획득부(110)는 소정의 복호화 방법의 사용 여부를 나타내는 신택스에 기초하여 블록 형태 정보를 나타내는 신택스를 비트스트림으로부터 획득하는지 여부를 결정할 수 있다.
도 23은 일 실시예에 따른 부호화 단위의 Z 스캔 순서에 따른 인덱스를 도시한다.
일 실시예에 따른 영상 복호화 장치(100)는, 상위 데이터 단위에 포함된 하위 데이터 단위들을 Z 스캔 순서에 따라 스캔할 수 있다. 또한, 일 실시예에 따른 영상 복호화 장치(100)는 최대 부호화 단위 또는 프로세싱 블록에 포함되는 부호화 단위 내의 Z 스캔 인덱스에 따라 데이터를 순차적으로 액세스할 수 있다.
일 실시예에 따른 영상 복호화 장치(100)가 기준 부호화 단위를 적어도 하나의 부호화 단위로 분할할 수 있음은 도 3 내지 도 4를 참조하여 전술한 바와 같다. 이 때, 기준 부호화 단위 내에는 정사각형 형태의 부호화 단위들과 비-정사각형 형태의 부호화 단위들이 혼재할 수 있다. 일 실시예에 따른 영상 복호화 장치(100)는, 기준 부호화 단위 내의 각 부호화 단위에 포함된 Z 스캔 인덱스에 따라 데이터 액세스를 수행할 수 있다. 이 때, 기준 부호화 단위 내에 비-정사각형 형태의 부호화 단위가 존재하는지 여부에 따라 Z 스캔 인덱스를 적용하는 방식이 상이해질 수 있다.
일 실시예에 따라, 기준 부호화 단위 내에 비-정사각형 형태의 부호화 단위가 존재하지 않는 경우, 기준 부호화 단위 내의 하위 심도의 부호화 단위들끼리는 연속된 Z 스캔 인덱스를 가질 수 있다. 예를 들어, 일 실시예에 따라 상위 심도의 부호화 단위는 하위 심도의 부호화 단위 4 개를 포함할 수 있다. 여기서, 4 개의 하위 심도의 부호화 단위들은 서로 인접하는 경계가 연속적일 수 있으며, 각각의 하위 심도의 부호화 단위들은 Z 스캔 순서를 나타내는 인덱스에 따라 Z 스캔 순서로 스캔될 수 있다. 일 실시예에 따른 Z 스캔 순서를 나타내는 인덱스는 각 부호화 단위에 대해 Z 스캔 순서에 따라 증가하는 수로 설정될 수 있다. 이 경우, 동일한 심도의 심도별 부호화 단위들끼리 Z 스캔 순서에 따라 스캔이 가능하다.
일 실시예에 따라, 기준 부호화 단위 내에 비-정사각형 형태의 부호화 단위가 적어도 하나 이상 존재하는 경우, 영상 복호화 장치(100)는 기준 부호화 단위 내의 부호화 단위들을 각각 서브 블록들로 분할하여, 분할된 서브 블록들에 대해 Z 스캔 순서에 따른 스캔을 수행할 수 있다. 예를 들어, 기준 부호화 단위 내에 수직 방향 또는 수평 방향의 비-정사각형 형태의 부호화 단위가 존재하는 경우 분할된 서브 블록들을 이용하여 Z 스캔을 수행할 수 있다. 또한, 예를 들어, 기준 부호화 단위 내에서 홀수 개의 부호화 단위들로 분할이 수행된 경우 서브 블록들을 이용하여 Z 스캔을 수행할 수 있다. 서브 블록은, 더 이상 분할되지 않는 부호화 단위 또는 임의의 부호화 단위가 분할된 것으로서, 정사각형 형태일 수 있다. 예를 들어, 정사각형 형태의 부호화 단위로부터 4개의 정사각형 형태의 서브 블록들이 분할될 수 있다. 또한, 예를 들어, 비-정사각형 형태의 부호화 단위로부터는 2 개의 정사각형 형태의 서브 블록들이 분할될 수 있다.
도 23을 참조하여 예를 들면, 일 실시예에 따른 영상 복호화 장치(100)는, 부호화 단위(2300) 내에서 하위 심도의 부호화 단위들(2302, 2304, 2306, 2308, 2310)을 Z 스캔 순서에 따라 스캔할 수 있다. 부호화 단위(2300) 및 부호화 단위(2302, 2304, 2306, 2308, 2310)는, 각각 상대적으로 상위 부호화 단위 및 하위 부호화 단위이다. 부호화 단위(2300)는 수평 방향의 비-정사각형 형태의 부호화 단위(2306, 2310)를 포함한다. 이들 비-정사각형 형태의 부호화 단위들(2306, 2310)은 인접한 정사각형 형태의 부호화 단위(2302, 2304)와의 경계가 불연속적이다. 또한, 부호화 단위(2308)는 정사각형 형태이며, 비-정사각형 형태의 부호화 단위가 홀수 개로 분할 시 중간에 위치한 부호화 단위이다. 비-정사각형 형태의 부호화 단위들(2306, 2310)과 마찬가지로, 부호화 단위(2308)는 인접한 정사각형 형태의 부호화 단위(2302, 2304)와의 경계가 불연속적이다. 부호화 단위(2300) 내에 비-정사각형 형태의 부호화 단위(2306, 2310)가 포함되거나 비-정사각형 형태의 부호화 단위가 홀수 개로 분할 시 중간에 위치한 부호화 단위(2308)가 포함된 경우, 부호화 단위들 간에 인접하는 경계가 불연속적이기 때문에 연속적인 Z 스캔 인덱스가 설정될 수 없다. 따라서, 영상 복호화 장치(100)는 부호화 단위들을 서브 블록들로 분할함으로써 Z 스캔 인덱스를 연속적으로 설정할 수 있다. 또한, 영상 복호화 장치(100)는, 비-정사각형 형태의 부호화 단위(2306, 2310) 또는 홀수 개로 분할된 비-정사각형 형태의 부호화 단위의 중간에 위치한 부호화 단위(2308)에 대해 연속된 Z 스캔을 수행할 수 있다.
도 23에 도시된 부호화 단위(2320)는 부호화 단위(2300) 내의 부호화 단위들(2302, 2304, 2306, 2308, 2310)을 서브 블록들로 분할한 것이다. 서브 블록들 각각에 대해 Z 스캔 인덱스가 설정될 수 있고, 서브 블록들 간의 인접하는 경계는 연속적이므로, 서브 블록들끼리 Z 스캔 순서에 따라 스캔이 가능하다. 예를 들어, 일 실시예에 따른 복호화 장치에서, 부호화 단위(2308)는 서브 블록들(2322, 2324, 2326, 2328)로 분할될 수 있다. 이 때, 서브 블록(2322, 2324)은 서브 블록(2330)에 대한 데이터 처리 이후에 스캔될 수 있으며, 서브 블록(2326, 2328)은 서브 블록(2332)에 대한 데이터 처리 이후에 스캔될 수 있다. 또한, 각각의 서브 블록들끼리 Z 스캔 순서에 따라 스캔될 수 있다.
전술한 실시예에서, 데이터 단위들에 대해 Z 스캔 순서에 따라 스캔하는 것은, 데이터 저장, 데이터 로딩, 데이터 액세스 등을 위한 것일 수 있다.
또한, 전술한 실시예에서는, 데이터 단위들을 Z 스캔 순서에 따라 스캔할 수 있음을 설명하였지만, 데이터 단위들의 스캔 순서는 래스터 스캔, N 스캔, 우상향 대각 스캔, 수평적 스캔, 수직적 스캔 등 다양한 스캔 순서로 수행될 수 있고, Z 스캔 순서에 한정하여 해석되는 것은 아니다.
또한, 전술한 실시예에서는, 기준 부호화 단위 내의 부호화 단위들에 대해 스캔을 수행하는 것으로 설명하였지만, 이에 한정하여 해석되어서는 안되며, 스캔 수행의 대상은 최대 부호화 단위 또는 프로세싱 블록 내의 임의의 블록일 수 있다.
또한, 전술한 실시예에서는, 비-정사각형 형태의 블록이 적어도 하나 이상 존재하는 경우에만 서브 블록들로 분할하여 Z 스캔 순서에 따른 스캔을 수행하는 것으로 설명하였지만, 단순화된 구현을 위해 비-정사각형 형태의 블록이 존재하지 않는 경우에도 서브 블록들을 분할하여 Z 스캔 순서에 따른 스캔을 수행할 수도 있다.
일 실시예에 따른 영상 복호화 장치(100)는, 부호화 단위에 대한 인터 예측 또는 인트라 예측을 수행하여 예측 데이터를 생성하고, 현재 부호화 단위에 포함된 변환 단위에 대해 역변환을 수행하여 레지듀얼 데이터를 생성하며, 생성된 예측 데이터와 레지듀얼 데이터를 이용하여 현재 부호화 단위를 복원할 수 있다.
일 실시예에 따른 부호화 단위의 예측 모드는 인트라 모드, 인터 모드 및 스킵 모드 중 적어도 하나일 수 있다. 일 실시예에 따라, 부호화 단위 마다 독립적으로 예측 모드가 선택될 수 있다.
일 실시예에 따른 2Nx2N 형태의 부호화 단위가 분할하여 두 개의 2NxN 또는 두 개의 Nx2N 형태의 부호화 단위들로 분할된 경우, 이들 각각의 부호화 단위에 대해서 인터 모드 예측 및 인트라 모드 예측이 별개로 수행될 수도 있다. 또한, 일 실시예에 따른 2NxN 또는 Nx2N 형태의 부호화 단위에 대해서는 스킵 모드가 적용될 수도 있다.
한편, 일 실시예에 따른 영상 복호화 장치(100)는, 8x4 또는 4x8 형태의 부호화 단위의 스킵 모드에서 양방향 예측(bi-prediction)의 수행이 허용될 수도 있다. 스킵 모드에서는 부호화 단위에 대해 스킵 모드 정보만을 전송받기 때문에 해당 부호화 단위에 대한 레지듀얼 데이터의 이용이 생략된다. 따라서, 이 경우 역양자화 및 역변환에 대한 오버헤드(overhead)를 절약할 수 있다. 그 대신, 일 실시예에 따른 영상 복호화 장치(100)는 스킵 모드가 적용되는 부호화 단위에 대해 양방향 예측을 허용하여 복호화 효율을 높일 수 있다. 또한, 일 실시예에 따른 영상 복호화 장치(100)는 8x4 또는 4x8 형태의 부호화 단위에 대해 양방향 예측을 허용하되, 움직임 보상 단계에서 보간 탭(interpolation tap) 수를 상대적으로 적게 설정하여 메모리 대역폭을 효율적으로 사용할 수 있다. 일 예로, 8-탭의 보간 필터를 사용하는 대신 8 미만의 탭 수의 보간 필터(예를 들어, 2-탭 보간 필터)를 사용할 수도 있다.
또한, 일 실시예에 따른 영상 복호화 장치(100)는 현재 부호화 단위에 포함된 영역을 미리설정된 형태로 분할(예를 들어, 사선 기반 분할)하여 분할된 각 영역에 대한 인트라 또는 인터 예측 정보를 시그널링할 수도 있다.
일 실시예에 따른 영상 복호화 장치(100)는 인트라 모드를 이용하여 현재 부호화 단위의 예측 샘플을 현재 부호화 단위의 주변 샘플을 이용하여 획득할 수 있다. 이 때, 인트라 예측은 주변의 이미 재구성된 샘플들을 사용하여 예측을 수행하는데 이러한 샘플들을 참조 샘플이라고 한다.
도 24는 일 실시예에 따른 부호화 단위의 인트라 예측을 위한 참조 샘플을 나타내는 도면이다. 도 24를 참조하면, 블록 형태가 비-사각형 형태이고 수평 방향의 길이가 w, 수직 방향의 길이가 h인 현재 부호화 단위(2300)에 대하여, 상단의 참조 샘플(2302)이 w+h 개, 좌측의 참조 샘플(2304)이 w+h 개, 좌측 상단의 참조 샘플(2306)에 한 개로 총 2(w+h)+1 개의 참조 샘플이 필요하다. 참조 샘플의 준비를 위해, 참조 샘플이 존재하지 않는 부분에 대해 패딩을 수행하는 단계를 거치며, 재구성된 참조 샘플에 포함된 양자화 에러를 줄이기 위한 예측 모드별 참조 샘플 필터링 과정을 거칠 수도 있다.
전술한 실시예에서는 현재 부호화 단위의 블록 형태가 비-사각형 형태인 경우의 참조 샘플의 개수를 설명하였으나, 이러한 참조 샘플의 개수는 현재 부호화 단위가 사각형 형태의 블록 형태인 경우에도 동일하게 적용된다.
상술한 다양한 실시예들은 영상 복호화 장치(100)이 수행하는 영상 복호화 방법과 관련된 동작을 설명한 것이다. 이하에서는 이러한 영상 복호화 방법에 역순의 과정에 해당하는 영상 부호화 방법을 수행하는 영상 부호화 장치(200)의 동작을 다양한 실시예를 통해 설명하도록 한다.
도 2는 일 실시예에 따라 블록 형태 정보 및 분할 형태 정보 중 적어도 하나에 기초하여 영상을 부호화 할 수 있는 영상 부호화 장치(200)의 블록도를 도시한다.
영상 부호화 장치(200)는 부호화부(220) 및 비트스트림 생성부(210)를 포함할 수 있다. 부호화부(220)는 입력 영상을 수신하여 입력 영상을 부호화할 수 있다. 부호화부(220)는 입력 영상을 부호화하여 적어도 하나의 신택스 엘리먼트를 획득할 수 있다. 신택스 엘리먼트는 skip flag, prediction mode, motion vector difference, motion vector prediction method (or index), transform quantized coefficient, coded block pattern, coded block flag, intra prediction mode, direct flag, merge flag, delta QP, reference index, prediction direction, transform index 중 적어도 하나를 포함할 수 있다. 부호화부(220)는 부호화 단위의 모양, 방향, 너비 및 높이의 비율 또는 크기 중 적어도 하나를 포함하는 블록 형태 정보에 기초하여 컨텍스트 모델을 결정할 수 있다.
비트스트림 생성부(210)는 부호화된 입력 영상에 기초하여 비트스트림을 생성할 수 있다. 예를 들어 비트스트림 생성부(210)는 컨텍스트 모델에 기초하여 신택스 엘리먼트를 엔트로피 부호화함으로써 비트스트림을 생성할 수 있다. 또한 영상 부호화 장치(200)는 비트스트림을 비디오 복호화 장치(100)로 전송할 수 있다.
일 실시예에 따라 영상 부호화 장치(200)의 부호화부(220)는 부호화 단위의 형태를 결정할 수 있다. 예를 들면 부호화 단위가 정사각형인지 또는 비-정사각형의 형태를 가질 수 있고, 이러한 형태를 나타내는 정보는 블록 형태 정보에 포함될 수 있다.
일 실시예에 따라 부호화부(220)는 부호화 단위가 어떤 형태로 분할될지를 결정할 수 있다. 부호화부(220)는 부호화 단위에 포함되는 적어도 하나의 부호화 단위의 형태를 결정할 수 있고 비트스트림 생성부(210)는 이러한 부호화 단위의 형태에 대한 정보를 포함하는 분할 형태 정보를 포함하는 비트스트림을 생성할 수 있다.
일 실시예에 따라 부호화부(220)는 부호화 단위가 분할되는지 분할되지 않는지 여부를 결정할 수 있다. 부호화부(220)가 부호화 단위에 하나의 부호화 단위만이 포함되거나 또는 부호화 단위가 분할되지 않는 것으로 결정하는 경우 비트스트림 생성부(210)는 부호화 단위가 분할되지 않음을 나타내는 분할 형태 정보를 포함하는 비트스트림을 생성할 수 있다. 또한 부호화부(220)는 부호화 단위에 포함되는 복수개의 부호화 단위로 분할할 수 있고, 비트스트림 생성부(210)는 부호화 단위는 복수개의 부호화 단위로 분할됨을 나타내는 분할 형태 정보를 포함하는 비트스트림을 생성할 수 있다.
일 실시예에 따라 부호화 단위를 몇 개의 부호화 단위로 분할할 지를 나타내거나 어느 방향으로 분할할지를 나타내는 정보가 분할 형태 정보에 포함될 수 있다. 예를 들면 분할 형태 정보는 수직 방향 및 수평 방향 중 적어도 하나의 방향으로 분할하는 것을 나타내거나 또는 분할하지 않는 것을 나타낼 수 있다.
영상 부호화 장치(200)는 부호화 단위의 분할 형태 모드에 기초하여 분할 형태 모드에 대한 정보를 결정한다. 영상 부호화 장치(200)는 부호화 단위의 모양, 방향, 너비 및 높이의 비율 또는 크기 중 적어도 하나에 기초하여 컨텍스트 모델을 결정한다. 그리고, 영상 부호화 장치(200)는 컨텍스트 모델에 기초하여 부호화 단위를 분할하기 위한 분할 형태 모드에 대한 정보를 비트스트림으로 생성한다.
영상 부호화 장치(200)는 컨텍스트 모델을 결정하기 위하여, 부호화 단위의 모양, 방향, 너비 및 높이의 비율 또는 크기 중 적어도 하나와 컨텍스트 모델에 대한 인덱스를 대응시키기 위한 배열을 획득할 수 있다. 영상 부호화 장치(200)는 배열에서 부호화 단위의 모양, 방향, 너비 및 높이의 비율 또는 크기 중 적어도 하나에 기초하여 컨텍스트 모델에 대한 인덱스를 획득할 수 있다. 영상 부호화 장치(200)는 컨텍스트 모델에 대한 인덱스에 기초하여 컨텍스트 모델을 결정할 수 있다.
영상 부호화 장치(200)는, 컨텍스트 모델을 결정하기 위하여, 부호화 단위에 인접한 주변 부호화 단위의 모양, 방향, 너비 및 높이의 비율 또는 크기 중 적어도 하나를 포함하는 블록 형태 정보에 더 기초하여 컨텍스트 모델을 결정할 수 있다. 또한 주변 부호화 단위는 부호화 단위의 좌하측, 좌측, 좌상측, 상측, 우상측, 우측 또는 우하측에 위치한 부호화 단위 중 적어도 하나를 포함할 수 있다.
또한, 영상 부호화 장치(200)는, 컨텍스트 모델을 결정하기 위하여, 상측 주변 부호화 단위의 너비의 길이와 부호화 단위의 너비의 길이를 비교할 수 있다. 또한, 영상 부호화 장치(200)는 좌측 및 우측의 주변 부호화 단위의 높이의 길이와 부호화 단위의 높이의 길이를 비교할 수 있다. 또한, 영상 부호화 장치(200)는 비교 결과들에 기초하여 컨텍스트 모델을 결정할 수 있다.
영상 부호화 장치(200)의 동작은 도 3 내지 도 24에서 설명한 비디오 복호화 장치(100)의 동작과 유사한 내용을 포함하고 있으므로, 상세한 설명은 생략한다.
이하 도 25 내지 도 37를 참조하여, 일 실시예에 따른 영상의 복호화 장치(2500) 및 방법, 및 영상의 부호화 장치(2700) 및 방법이 제안된다.
도 25는 일 실시예에 따른 영상 복호화 장치(2500)의 구성을 나타내는 블록도이다.
영상 복호화 장치(2500)는 비트스트림을 획득 및 복호화하여 복원 영상을 출력한다.
영상 복호화 장치(2500)가 획득한 비트스트림 중 부호화된 영상 데이터는, 엔트로피 복호화, 역양자화 및 역변환을 거쳐 공간 영역의 레지듀얼(residual) 데이터로 복원된다.
영상 복호화 장치(2500)는 이전에 복호화된 참조 영상 또는 이전에 복호화된 주변 샘플에 기초하여 예측 샘플을 생성하고, 예측 샘플과 레지듀얼 데이터를 조합하여 공간 영역의 영상 데이터를 구성한다. 그리고, 영상 복호화 장치(2500)는 공간 영역의 영상 데이터에 대해 필터링 처리를 하여 복원 영상을 출력할 수 있다. 복원 영상은 다음 원본 영상에 대한 참조 영상으로 이용될 수 있다.
영상의 복호화를 위해 영상 복호화 장치(2500)에 의해 수행되는 처리는 예측 처리, 변환 처리 및 필터링 처리를 포함할 수 있다. 예측 처리는 현재 블록에 대한 예측 블록을 생성하는 프로세스를 의미하며, 변환 처리는 현재 블록에 대응하는 주파수 영역의 레지듀얼 데이터를 공간 영역의 레지듀얼 데이터로 변환 또는 역변환하는 프로세스를 의미한다. 또한, 필터링 처리는 예측 블록과 레지듀얼 데이터의 조합으로 생성된 영상 데이터의 화소 값을 변경하는 프로세스를 의미한다.
일 실시예에 따르면, 예측 처리, 변환 처리 및 필터링 처리 각각은 적어도 하나의 처리 모드를 포함할 수 있다.
영상 복호화 장치(2500)는 현재 블록의 움직임 벡터 해상도(Motion Vector Resolution, 이하, MVR)에 기초하여 현재 블록에 대해 적용 가능한 처리 모드를 결정하고, 결정된 처리 모드에 따라 현재 블록을 복호화할 수 있다.
도 29는 예측 처리, 변환 처리 및 필터링 처리 각각에 포함된 처리 모드들을 도시하고 있다.
일 실시예에서, 예측 처리는 인터 예측(inter prediction) 처리 모드, 인트라 예측(intra prediction) 처리 모드, 스킵(skip) 처리 모드, 다이렉트(direct) 처리 모드, AMVP(Adaptive motion vector prediction) 처리 모드, 어파인(affine) 처리 모드, BIO(Bi-Optical Flow) 처리 모드, DMVD(Decoder-side Motion Vector Derivation) 처리 모드, IC(Illumination Compensation) 처리 모드, OBMC(overlapped Block Motion Compensation) 처리 모드, IPR (Inter prediction refinement) 처리 모드 및 예측 블록 생성 모드 중 적어도 하나를 포함할 수 있다.
일 실시예에서, 변환 처리는 MT(multiple transform) 처리 모드, NSST(Non-Separable Secondary Transform) 처리 모드, ROT(Rotational Transform) 처리 모드, DST(Discrete Sine Transforms) 처리 모드 및 DCT(Discrete Cosine Transforms) 처리 모드 중 적어도 하나를 포함할 수 있다.
일 실시예에서, 필터링 처리는 디블로킹(deblocking) 처리 모드, SAO(Sample Adaptive Offset) 처리 모드, BF(Bilateral Filter) 처리 모드 및 ALF(Adaptive Loop Filter) 처리 모드 중 적어도 하나를 포함할 수 있다.
먼저, 예측 처리, 변환 처리 및 필터링 처리에 포함된 처리 모드들에 대해 간략히 설명한다. 본 개시에 따른 실시예들의 명확한 설명을 위해 이하의 처리 모드들의 구체적인 알고리즘에 대한 설명은 생략한다.
인터 예측(inter prediction) 처리 모드는 현재 영상과 다른 영상 간의 유사성을 이용하는 처리 방법을 의미한다. 현재 영상보다 먼저 복호화된 참조 영상 중에서, 현재 영상의 현재 블록과 유사한 참조 블록이 검출되고, 참조 블록으로부터 예측 블록이 결정된다. 또한, 현재 블록과 예측 블록 사이의 좌표상의 거리가 움직임 벡터로 표현되고 현재 블록과 예측 블록 간의 화소 값들의 차이가 잔차(Residual) 데이터로 표현될 수 있다. 따라서, 현재 블록에 대한 인터 예측에 의해, 현재 블록의 영상 정보를 직접 출력하는 대신에, 참조 영상을 가리키는 인덱스, 움직임 벡터 및 잔차 데이터를 출력하여 부호화 및 복호화의 효율을 향상시킬 수 있다.
인트라 예측(intra prediction) 처리 모드는 하나의 영상 내 공간적인 유사성을 이용하는 처리 방법을 의미한다. 현재 블록의 주변 화소 값으로부터 현재 블록과 유사한 예측 블록이 생성되고, 현재 블록과 예측 블록 간의 화소 값들의 차이가 잔차 데이터로 표현될 수 있다. 현재 블록의 영상 정보를 직접 출력하는 대신에, 예측 블록 생성 모드에 대한 정보 및 잔차 데이터를 출력하여 부호화 및 복호화의 효율을 향상시킬 수 있다.
스킵 처리(skip) 모드는 인접 블록의 움직임 정보를 현재 블록의 움직임 정보로 이용하여 참조 영상에서 참조 블록을 검색한다. 참조 블록으로부터 결정된 예측 블록이 현재 블록으로 결정한다.
다이렉트(direct) 처리 모드는 인터 예측 처리 모드의 일 방법으로서, 인접 블록의 움직임 정보를 현재 블록의 움직임 정보로 이용하여 참조 영상에서 참조 블록을 검색하고, 참조 블록으로부터 예측 블록을 결정한다. 그리고, 레지듀얼 데이터와 예측 블록의 조합으로 현재 블록을 복원한다. 다이렉트 처리 모드는 머지(merge) 처리 모드로 참조될 수도 있다.
AMVP(Adaptive motion vector prediction) 처리 모드는 인터 예측 처리 모드의 일 방법으로서, 인접 블록의 움직임 벡터에 잔차 움직임 벡터를 합하여 현재 블록의 움직임 벡터로 결정하고, 참조 영상 리스트, 참조 영상 인덱스에 기초하여 특정된 참조 영상 중 움직임 벡터에 대응하는 참조 블록을 검색한다. 그리고, 예측 블록과 레지듀얼 데이터의 조합으로 현재 블록을 복원한다.
어파인(affine) 처리 모드는, 병진 운동(translation motion)을 나타내는 블록의 움직임 벡터를 회전 운동, 줌인(zoom-in), 줌아웃(zoom-out)을 나타내는 움직임 벡터로 변환하거나, 역변환하는 처리를 나타낸다.
BIO(Bi-Optical Flow) 처리 모드는, 양방향 예측을 위한 블록 기반(block-wise) 움직임 보상에 대해 수행되는 샘플 기반(sample-wise)의 움직임 벡터 개선 처리를 나타낸다.
DMVD(Decoder-side Motion Vector Derivation) 처리 모드는, 디코더 측에서 움직임 벡터를 유도하는 기술로서, 템플릿 매칭(template matching) 또는 양방향 매칭(bilateral matching)을 통해 현재 블록의 움직임 벡터를 유도한다.
IC(Illumination Compensation) 처리 모드는, 인터 예측 처리 모드로 현재 블록을 복호화하는데 있어, 현재 블록 및/또는 참조 영상 내 참조 블록의 조도를 보상하여 예측 효율을 높이는 기술이다.
OBMC(overlapped Block Motion Compensation) 처리 모드는, 움직임 보상을 수행할 시, 주변 블록들의 움직임에 의한 현 위치에서의 복원 화소들을 현재 블록의 복원 화소들과 가중 합하여 움직임 보상을 수행하는 기술이다.
IPR (Inter prediction refinement) 처리 모드는, 복원된 블록과 예측 블록 사이의 선형 모델을 이용하여, 현재 블록의 참조 영상으로부터 결정된 예측 블록의 픽셀 값들을 변경하는 기술이다.
예측 블록 생성 모드는, 인터 예측 처리 모드에서 현재 블록의 예측 블록을 생성하는 방법을 나타내며, 예를 들어, 예측 블록 생성 모드는 복수 개의 서로 다른 예측 블록 생성 모드를 포함할 수 있다. HEVC에서는 예측 블록 생성 모드로서, Intra_Planar 모드, Intra_DC 모드, Intral_Angular 모드를 포함하는 총 35가지의 모드를 개시하고 있다.
MT(multiple transform) 처리 모드는 복수의 변환 커널을 순차적으로 이용하여 공간 영역의 레지듀얼 데이터로부터 주파수 영역의 레지듀얼 데이터로 변환하거나, 주파수 영역의 레지듀얼 데이터를 공간 영역의 레지듀얼 데이터로 역변환하는 기술을 나타낸다.
NSST(Non-Separable Secondary Transform) 처리 모드는, 코어 변환(core transform)과 양자화 사이, 역양자화와 역 코어 변환(inverse core transform) 사이에 수행되는 변환 기술로서, 현재 블록 중 일부의 영역에 대해서만 적용될 수 있다.
ROT(Rotational Transform) 처리 모드는 주파수 계수 매트릭스의 행들 사이 및 열들 사이 중 적어도 하나를 부분적으로 교환하는 기술을 의미한다. 행들 사이의 부분적인 교환 또는 열들 사이의 부분적인 교환이란, 특정 행 또는 열의 값들을 무조건 1:1로 교환하는 것이 아니라 삼각 함수와 같은 특정 함수를 이용해 두 행들 또는 열들 사이의 값을 부분적으로 교환하는 것을 의미할 수 있다.
DST(Discrete Sine Transforms) 처리 모드는, DST 변환 커널을 이용하여 공간 영역의 레지듀얼 데이터를 주파수 영역의 레지듀얼 데이터로 변환하거나, 주파수 영역의 레지듀얼 데이터를 공간 영역의 레지듀얼 데이터로 역변환하는 기술을 나타낸다.
DCT(Discrete Cosine Transforms) 처리 모드는, DCT 변환 커널을 이용하여 공간 영역의 레지듀얼 데이터를 주파수 영역의 레지듀얼 데이터로 변환하거나, 주파수 영역의 레지듀얼 데이터를 공간 영역의 레지듀얼 데이터로 역변환하는 기술을 나타낸다.
디블로킹(deblocking) 처리 모드는, 블록 사이의 경계에서 발생하는 왜곡 현상인 블로킹 열화를 개선하기 위한 기술을 나타낸다.
SAO(Sample Adaptive Offset) 처리 모드는 복원 샘플에 오프셋(offset)을 더하여 복원 영상과 원본 영상 간의 에러를 최소화시키는 기술을 나타낸다.
BF(Bilateral Filter) 처리 모드는 복원 블록의 화소 값들을, 현재 블록의 화소 값들과 주변 블록의 화소 값들의 가중 평균으로 교체하는 기술을 나타낸다.
ALF(Adaptive Loop Filter) 처리 모드는, 복원된 현재 블록에 포함된 복수의 화소 그룹들 각각에 대해, 복수의 필터 중에서 선택된 하나의 필터를 이용하여 화소 값들을 변경하는 기술을 나타낸다.
일 실시예에서, 도 29에 도시된 처리 모드들의 적용 여부의 판단 순서는 기 설정되어 있을 수 있다. 또한, 기 설정된 신택스(syntax)에 따라 어느 하나의 처리 모드의 적용 여부가 판단되면, 판단 결과에 따라 다른 처리 모드의 적용 여부의 판단이 이루어지지 않을 수도 있다. 일 예로서, 예측 처리에서 스킵 처리 모드의 적용 여부가 결정된 이후, 인터 예측 처리 모드, 다이렉트 처리 모드 및 AMVP 처리 모드의 순서대로 적용 여부가 결정될 수 있다. 스킵 처리 모드의 적용 여부가 결정되면, 인터 예측 처리 모드의 적용 여부가 결정될 수 있는데, 스킵 처리 모드의 적용이 결정되면, 인터 예측 처리 모드, 다이렉트 처리 모드 및 AMVP 처리 모드의 적용 여부는 결정되지 않을 수 있다. 즉, 인터 예측 처리 모드, 다이렉트 처리 모드 및 AMVP 처리 모드와 관련된 정보의 획득은 스킵될 수 있다.
일 실시예에서, 영상 복호화 장치(2500)는 현재 블록의 MVR에 기초하여 현재 블록에 대해 적용 가능 처리 모드가 특정되면, 특정된 처리 모드로 현재 블록을 복호화할 수 있다.
도 25를 참조하면, 일 실시예에 따른 영상 복호화 장치(2500)는 비트스트림 획득부(2510) 및 복호화부(2530)를 포함할 수 있다.
영상 복호화 장치(2500)는 전술한 영상 복호화 장치(100)에 포함될 수 있다. 예를 들어, 비트스트림 획득부(2510)는 도 1에 도시된 영상 복호화 장치(100)의 비트스트림 획득부(110)에 포함될 수 있고, 복호화부(2530)는 영상 복호화 장치(100)의 복호화부(120)에 포함될 수 있다.
비트스트림 획득부(2510)는 부호화된 영상에 대한 비트스트림을 획득한다. 비트스트림은 부호화된 영상 데이터와 부호화 모드에 대한 정보를 포함할 수 있다.
복호화부(2530)는 비트스트림으로부터 획득된 정보에 기초하여 영상을 복호화한다. 일 실시예에서, 복호화부(2530)는 복호화 대상인 블록에 대해, 예측 처리, 변환 처리 및 필터링 처리를 하여 복원 영상을 출력할 수 있다.
상기 블록의 타입은 정사각형 또는 직사각형일 수 있으며, 임의의 기하학적 형태일 수도 있다. 일 실시예에 따른 블록은 일정한 크기의 데이터 단위로 제한되는 것은 아니며, 트리 구조에 따른 부호화 단위들 중에서는, 최대 부호화 단위, 부호화 단위, 예측 단위, 변환 단위 등을 포함할 수 있다.
일 실시예에서, 복호화부(2530)는 현재 블록에 대응하는 MVR에 기초하여 현재 블록에 대해 적용 가능 처리 모드를 결정할 수 있다. 적용 가능 처리 모드란, 현재 블록에 대해 적용될 가능성이 있는 처리 모드로서, 적용 가능 처리 모드는 현재 블록에 대해 실제 적용될 수도 있고, 비트스트림에 포함된 정보에 따라 실제 적용되지 않을 수도 있다. 후술하는 적용 불가능 처리 모드는 현재 블록에 대해 적용될 가능성이 없는 처리 모드를 의미한다.
현재 블록의 MVR은 참조 영상(또는 보간된 참조 영상)에 포함된 화소들 중 현재 블록의 움직임 벡터가 가리킬 수 있는 화소의 위치의 정밀도를 의미할 수 있다. 현재 블록의 MVR은 적어도 하나의 후보 MVR 중에서 선택될 수 있다. 적어도 하나의 후보 MVR은 예를 들어, 1/8 화소 단위의 MVR, 1/4 화소 단위의 MVR, 1/2 화소 단위의 MVR, 1 화소 단위의 MVR, 2 화소 단위의 MVR, 4 화소 단위의 MVR 및 8 화소 단위의 MVR 중 적어도 하나를 포함할 수 있으나 이에 한정되는 것은 아니다. 구현예에 따라서 후보 MVR은 하나의 MVR만을 포함할 수도 있다.
도 30은 현재 블록에 대해 선택 가능한 최소 MVR이 1/4 화소 단위 MVR인 경우, 1/4 화소 단위 MVR, 1/2 화소 단위 MVR, 1 화소 단위 MVR 및 2 화소 단위 MVR에 대응하여 움직임 벡터가 가리킬 수 있는 화소들의 위치를 나타낸다.
도 30의 (a), (b), (c), (d)는 각각 좌표 (0, 0)을 기준으로 1/4 화소 단위 MVR, 1/2 화소 단위 MVR, 1 화소 단위 MVR 및 2 화소 단위 MVR의 움직임 벡터가 가리킬 수 있는 화소의 좌표(검정색 사각형으로 표시)들을 나타낸다.
최소 MVR이 1/4 화소 단위 MVR인 경우, 1/4 화소 단위 MVR의 움직임 벡터가 가리킬 수 있는 화소의 좌표는 (a/4, b/4)(a, b는 정수)가 되고, 1/2 화소 단위 MVR의 움직임 벡터가 가리킬 수 있는 화소의 좌표는 (2c/4, 2d/4)(c, d는 정수)가 되고, 1 화소 단위 MVR의 움직임 벡터가 가리킬 수 있는 화소의 좌표는 (4e/4, 4f/4)(e, f는 정수)가 되고, 2 화소 단위 MVR의 움직임 벡터가 가리킬 수 있는 화소의 좌표는 (8g/4, 8h/4)(g, h는 정수)가 된다. 즉, 최소 MVR이 2m(m은 정수) 화소 단위를 갖는 경우, 2n(n은 정수) 화소 단위 MVR이 가리킬 수 있는 화소의 좌표는 (2n-m*i/2-m, 2n-m*j/2-m)(i, j는 정수)이 된다. 움직임 벡터가 특정의 MVR에 따라 결정되더라도, 움직임 벡터는 최소 MVR인 1/4 화소 단위에 따라 보간된 영상 내 좌표로 표현되게 된다.
일 실시예에서, 영상 부호화 장치(2700)는 최소 MVR에 따라 보간된 영상에서 움직임 벡터를 결정하므로, 움직임 벡터(및 예측 움직임 벡터)가 정수로 표현될 수 있도록, 움직임 벡터(및 예측 움직임 벡터)에 최소 MVR의 화소 단위 값의 역수, 예를 들어, 최소 MVR이 2m(m은 정수) 화소 단위를 갖는 경우, 2-m을 곱하여 정수 단위의 움직임 벡터를 나타낼 수 있다. 2-m을 곱한 정수 단위의 움직임 벡터가 영상 부호화 장치(2700) 및 영상 복호화 장치(2500)에서 이용될 수 있다.
만약, 좌표(0,0)에서 출발한 1/2 화소 단위 MVR의 움직임 벡터가 좌표 (2/4, 6/4)을 가리키고, 최소 MVR이 1/4 화소 단위를 갖는다면, 영상 부호화 장치(2700) 및 영상 복호화 장치(2500)는 움직임 벡터에 정수 4를 곱한 값인 (2, 6)를 움직임 벡터로 결정할 수 있다.
일 실시예에서, 비트스트림 획득부(2510)는 현재 블록의 MVR에 대한 정보를 비트스트림으로부터 블록 단위, 슬라이스 단위 또는 픽처 단위로 획득할 수 있다. 복호화부(2530)는 비트스트림에 포함된 MVR에 대한 정보로부터 현재 블록의 MVR를 결정할 수 있다. 또는, 복호화부(2530)는 MVR에 대한 정보의 획득 없이 직접 소정 기준에 따라 현재 블록의 MVR를 결정할 수도 있다.
일 실시예에서, 비트스트림 획득부(2510)는 MVR에 대한 정보를 인터 예측된 부호화 단위마다 획득할 수도 있다. 도 31은 비트스트림으로부터 MVR에 대한 정보를 획득하는 신택스를 나타내는 도면이다.
도 31을 참조하면, a 구문에서 현재 부호화 단위를 포함하는 슬라이스가 I 슬라이스가 아니라면, b 구문에서 cu_skip_flag가 추출된다. cu_skip_flag는 현재 부호화 단위에 대해 스킵 처리 모드를 적용할지 여부를 나타낸다. c 구문에서 스킵 처리 모드의 적용이 확인되면, 현재 부호화 단위를 스킵 처리 모드에 따라 처리하게 된다. d 구문에서 스킵 처리 모드의 미적용이 확인되면, e 구문에서 pred_mode_flag가 추출된다. pred_mode_flag는 현재 부호화 단위가 인트라 예측되었는지, 인터 예측 되었는지를 나타낸다. f 구문에서 현재 부호화 단위가 인트라 예측된 것이 아니라면, 즉, 인터 예측되었다면 g 구문에서 pred_mvr_idx가 추출된다. pred_mvr_idx는 현재 부호화 단위의 MVR을 나타내는 인덱스이며, 각 인덱스에 대응하는 MVR은 아래의 표 2와 같다.
MVR Index 0 1 2 3 4
Resolution (R) in pel 1/4 1/2 1 2 4
일 실시예에서, 복호화부(2530)는 현재 블록의 MVR이 결정되면, 예측 처리, 변환 처리 및 필터링 처리 중 적어도 하나의 처리에 포함된 복수의 처리 모드 중 현재 블록의 MVR에 대응하는 처리 모드를 결정한다. 현재 블록의 MVR에 대응하는 처리 모드의 개수는 하나 이상일 수 있다. 일 실시예에서, 복호화부(2530)는 현재 블록의 MVR에 기초하여 적용 가능한(applicable) 적어도 하나의 처리 모드를 결정할 수 있다. 예를 들어, 현재 블록의 MVR에 따라 예측 처리의 어파인 처리 모드가 적용 가능한 것으로 결정될 수 있고, 예측 처리의 어파인 처리 모드 및 변환 처리의 MT 처리 모드가 적용 가능한 것으로 결정될 수 있다.
일 실시예에서, 복호화부(2530)는 현재 블록의 MVR에 기초하여 적용 불가능한(inapplicable) 적어도 하나의 처리 모드를 결정할 수도 있다.
또한, 일 실시예에서, 복호화부(2530)는 현재 블록의 MVR에 기초하여 적용 가능한 적어도 하나의 처리 모드와 적용 불가능한 적어도 하나의 처리 모드를 결정할 수도 있다.
일 실시예에서, 복호화부(2530)는 현재 블록의 MVR이 소정 MVR에 대응하면, 현재 블록에 대해 적용 가능한 적어도 하나의 처리 모드 및/또는 적용 불가능한 적어도 하나의 처리 모드를 결정할 수 있다.
예를 들어, 복호화부(2530)는 소정 움직임 벡터가 1/4 화소 단위인 경우, 현재 블록의 움직임 벡터가 1/4 화소 단위이면, 현재 블록에 대해 적용 가능 처리 모드로 어파인 처리 모드를 결정할 수 있다. 또는, 현재 블록의 움직임 벡터가 1/4 화소 단위이면, 현재 블록에 대해 적용 불가능 처리 모드로 스킵 처리 모드 및 다이렉트 처리 모드를 결정할 수 있다. 또는, 현재 블록의 움직임 벡터가 1/4 화소 단위이면, 현재 블록에 대해 적용 가능 처리 모드로 BIO 처리 모드를 결정하고, 적용 불가능 처리 모드로 IC 처리 모드를 결정할 수도 있다.
도 32 내지 도 34은 MVR에 대해 기 설정된 적용 가능 처리 모드 및/또는 적용 불가능 처리 모드를 도시하는 예시적인 도면이다.
도 32를 참조하면, 현재 블록의 MVR이 1/4 화소 단위인 경우, 현재 블록에 대해 어파인 처리 모드가 적용 가능한 것으로 결정되고, 현재 블록의 MVR이 1/2 화소 단위, 1 화소 단위 또는 2 화소 단위인 경우, 현재 블록에 대해 DMVD 처리 모드가 적용 가능한 것으로 결정된다.
도 33을 참조하면, 현재 블록의 MVR이 1/4 화소 단위인 경우, 현재 블록에 대해 DST 처리 모드가 적용 불가능한 것으로 결정되고, 현재 블록의 MVR이 1/2 화소 단위, 1 화소 단위 또는 2 화소 단위인 경우, 현재 블록에 대해 ROT 처리 모드가 적용 불가능한 것으로 결정된다.
또한, 도 34를 참조하면, 현재 블록의 MVR이 1/4 화소 단위인 경우, 현재 블록에 대해 어파인 처리 모드 및 IC 처리 모드가 적용 가능한 것으로 결정되고, BF 처리 모드는 적용 불가능한 것으로 결정된다. 현재 블록의 MVR이 1/2 화소 단위, 1 화소 단위 또는 2 화소 단위인 경우, 현재 블록에 대해 ROT 처리 모드가 적용 가능한 것으로 결정되고, OBMC 처리 모드 및 SAO 처리 모드는 적용 불가능한 것으로 결정된다.
일 실시예에서, 복호화부(2530)는 현재 블록의 움직임 벡터에 기초하여 현재 블록에 대해 적어도 하나의 적용 가능 처리 모드를 결정하고, 비트스트림으로부터 적용 가능 처리 모드에 관한 정보를 획득할 수 있다. 적용 가능 처리 모드에 관한 정보는 예를 들어, 처리 모드의 적용 여부 및 처리 모드와 관련된 세부 설정 내용 중 적어도 하나에 대한 정보를 포함할 수 있다.
복호화부(2530)는 비트스트림으로부터 적용 가능 처리 모드에 관한 정보를 획득하고, 상기 적용 가능 처리 모드에 기초하여 현재 블록을 복호화할 수 있다. 일 실시예에서, 복호화부(2530)는 비트스트림으로부터 획득한 정보에 기초하여, 상기 적용 가능 처리 모드를 현재 블록에 대해 적용시킬 것인지를 결정하고, 확인 결과에 따라 상기 적용 가능 처리 모드로 현재 블록을 복호화할 수도 있다.
일 실시예에서, 적용 가능 처리 모드에 따라 현재 블록을 복호화한다는 것은, 적용 가능 처리 모드만 현재 블록에 적용한다는 것을 의미하는 것은 아니다. 일 실시예에서, 복호화부(2530)는 기 설정된 순서, 다시 말하면 기 설정된 신택스(syntax)에 따라 상기 적용 가능 처리 모드보다 먼저 적용 여부가 결정되어야 하는 다른 처리 모드에 따라 현재 블록을 처리한 후, 상기 적용 가능 처리 모드를 현재 블록에 적용할 수 있다. 또는, 적용 가능 처리 모드에 따라 현재 블록을 처리한 이후, 기 설정된 신택스에 따라 적용 여부가 결정되는 다른 처리 모드에 따라 현재 블록을 복호화할 수 있다.
일 예로서, MVR에 대응하는 적용 가능 처리 모드가 어파인 처리 모드인 경우, 복호화부(2530)는 현재 블록에 대해 어파인 처리 모드에 따라 예측 처리를 하고, 예측 처리된 현재 블록에 대해, 변환 처리에 포함된 처리 모드 및 필터링 처리에 포함된 처리 모드를 적용하여 현재 블록을 복호화할 수 있다.
일 예로서, MVR에 대응하는 적용 가능 처리 모드가 SAO 처리 모드인 경우, 복호화부(2530)는 예측 처리의 처리 모드 및 변환 처리의 처리 모드가 적용된 현재 블록에 대해 SAO 처리 모드를 적용하여 현재 블록을 복호화할 수도 있다.
도 35 내지 도 37은 일 실시예에 따른 신택스의 일부를 도시하고 있다. 도 35를 참조하면, A 구문에서 현재 블록이 인터 예측되었고, 현재 슬라이스가 P 슬라이스라면, B 구문에서 MVR의 인덱스가 0(즉, 1/4 화소 단위)에 해당하는지가 판단된다. MVR의 인덱스가 0이라면, 현재 블록에 대한 적용 가능 처리 모드로서 다이렉트 처리 모드가 결정된다. C 구문에서 다이렉트 처리 모드의 적용 여부를 나타내는 cu_direct가 추출되고, 추출된 정보에 따라 다이렉트 처리 모드가 현재 블록에 적용될 수 있다.
도 35의 A 구문에서 현재 블록이 인터 예측된 경우, 도 36에 도시된 D 구문에서 현재 슬라이스가 B 슬라이스인지가 판단된다. 현재 슬라이스가 B 슬라이스이면, E 구문에서 MVR의 인덱스가 0(즉, 1/4 화소 단위)에 해당하는지가 판단된다. MVR의 인덱스가 0이라면, 현재 블록에 대한 적용 가능 처리 모드로서 다이렉트 처리 모드가 결정된다. F 구문에서 다이렉트 처리 모드의 적용 여부를 나타내는 cu_direct가 추출되고, 추출된 정보에 따라 다이렉트 처리 모드가 현재 블록에 적용될 수 있다.
도 35 및 도 36을 참조하면, 현재 블록의 MVR이 1/4 화소 단위에 대응하면, 다이렉트 처리 모드가 적용 가능 처리 모드로 결정되고, 비트스트림으로부터 획득되는 적용 여부에 대한 정보에 따라 현재 블록에 다이렉트 처리 모드가 적용되는 것을 알 수 있다.
도 37을 참조하면, G 구문에서 현재 블록의 MVR 인덱스가 0 (즉, 1/4 화소 단위) 또는 3 (즉, 2 화소 단위)에 대응하는지가 판단되고, 그에 따라 H 구문에서 ipr_flag가 추출된다. ipr_flag는 현재 블록에 대해 IPR 처리 모드를 적용할지를 나타낸다. 즉, 현재 블록의 MVR 인덱스가 1/4 화소 단위 또는 2 화소 단위에 대응하면, IPR 처리 모드가 적용 가능 처리 모드로 결정되고, 비트스트림으로부터 획득되는 적용 여부에 대한 정보에 따라 현재 블록에 IPR 처리 모드가 적용되는 것을 알 수 있다.
한편, 도시되어 있지는 않지만, 현재 블록의 MVR 인덱스가 0 (즉, 1/4 화소 단위)인 경우, mtr_idx가 추출될 수 있다. mtr_idx는 현재 블록에 대해 MT 처리 모드가 적용되는지 여부를 나타낸다. 즉, 현재 블록의 MVR 인덱스가 1/4 화소 단위에 대응하면, MT 처리 모드가 적용 가능 처리 모드로 결정되고, 비트스트림으로부터 획득되는 적용 여부에 대한 정보에 따라 현재 블록에 MT 처리 모드가 적용될 수 있다.
또한, 일 예로서, 현재 블록의 MVR 인덱스가 0 (즉, 1/4 화소 단위)인 경우, 현재 블록에 대해 BIO 처리 모드가 적용되는지 여부를 나타내는 정보가 추출될 수 있다. 즉, 현재 블록의 MVR 인덱스가 1/4 화소 단위에 대응하면, BIO 처리 모드가 적용 가능 처리 모드로 결정되고, 비트스트림으로부터 획득되는 적용 여부에 대한 정보에 따라 현재 블록에 BIO 처리 모드가 적용될 수 있다.
일 실시예에서, 복호화부(2530)는 현재 블록의 MVR에 기초하여 현재 블록에 대해 적용 불가능 처리 모드를 결정하고, 비트스트림으로부터 상기 결정된 처리 모드와 관련된 정보의 획득은 스킵(skip)할 수 있다. 여기서, 정보의 획득을 스킵한다는 것은, 특정 처리 모드와 관련된 정보를 비트스트림으로부터 획득하지 않는다는 것을 의미한다. 적용 불가능 처리 모드와 관련된 정보의 획득이 스킵되면, 신택스에 따라 다른 처리 모드에 관한 정보가 획득될 수 있다.
일 실시예에서, 복호화부(2530)는 소정 MVR에 대응하여 어느 하나의 처리 모드가 적용 가능 처리 모드로 결정되어 있는 상태에서, 현재 블록의 MVR이 소정 MVR과 상이하면, 상기 어느 하나의 처리 모드를 현재 블록에 대한 적용 불가능 처리 모드로 결정할 수 있다.
또한, 일 실시예에서, 복호화부(2530)는 소정 MVR에 대응하여 어느 하나의 처리 모드가 적용 불가능 처리 모드로 결정되어 있는 상태에서, 현재 블록의 MVR이 소정 MVR과 동일하면, 상기 어느 하나의 처리 모드를 현재 블록에 대한 적용 불가능 처리 모드로 결정할 수 있다.
일 예로서, 1/4 화소 단위의 MVR에 대응하는 적용 가능 처리 모드가 어파인 처리 모드인 경우, 복호화부(2530)는 현재 블록의 MVR이 1/4 화소 단위가 아닌 경우, 어파인 처리 모드를 적용 불가능 처리 모드로 결정하고, 비트스트림으로부터 어파인 처리 모드와 관련된 정보의 획득은 스킵할 수 있다.
또한, 일 예로서, 1/4 화소 단위의 MVR에 대응하는 적용 불가능 처리 모드가 어파인 처리 모드인 경우, 복호화부(2530)는 현재 블록의 MVR이 1/4 화소 단위이면, 비트스트림으로부터 어파인 처리 모드와 관련된 정보의 획득은 스킵할 수 있다.
또한, 일 실시예에서, 복호화부(2530)는 현재 블록의 MVR에 기초하여 현재 블록에 대해 적용 가능 처리 모드와 적용 불가능 처리 모드를 결정한다. 그리고, 복호화부(2530)는 비트스트림으로부터 상기 적용 가능 처리 모드 관련 정보를 획득하고, 상기 적용 불가능 처리 모드 관련 정보의 획득은 스킵한다. 복호화부(2530)는 비트스트림으로부터 적용 가능 처리 모드와 관련된 정보를 획득하고, 적용 불가능 처리 모드와 관련된 정보의 획득은 스킵하므로, 다시 말하면, 복호화부(2530)는 복수의 처리 모드 중 적어도 하나의 처리 모드와 관련된 정보를 비트스트림으로부터 획득할지 여부를, 현재 블록의 MVR에 기초하여 판단할 수 있다.
즉, 특정 처리 모드가 1/4 화소 단위에 대해 적용 가능한 것으로 기 설정되어 있는 경우, 복호화부(2530)는 특정 처리 모드와 관련된 정보를 비트스트림으로부터 획득할지 여부를 현재 블록의 MVR과 1/4 화소 단위의 MVR의 비교 결과에 기초하여 판단할 수 있다. 현재 블록의 MVR이 1/4 화소 단위인 경우, 복호화부(2530)는 특정 처리 모드와 관련된 정보를 비트스트림으로부터 획득하는 것으로 결정하고, 현재 블록의 MVR이 1/4 화소 단위가 아닌 경우, 복호화부(2530)는 특정 처리 모드와 관련된 정보를 비트스트림으로부터 획득하지 않는 것으로 결정할 수 있다.
일 실시예에서, 현재 블록의 MVR에 기초하여 적용 가능 처리 모드가 결정되고, 상기 적용 가능 처리 모드의 적용이 확인되면, 복호화부(2530)는 적용 가능 처리 모드와 중복 적용이 불가능한 처리 모드를 확인하고, 비트스트림으로부터 상기 확인된 처리 모드와 관련된 정보의 획득은 스킵할 수 있다. 기 설정된 신택스에 따라 여러 처리 모드들 중 하나의 처리 모드의 적용만이 가능한 경우, 상기 여러 처리 모드들을 중복 처리 모드라 참조할 수 있다.
일 예로서, MT 처리 모드, NSST 처리 모드, ROT 처리 모드, DST 처리 모드 및 DCT 처리 모드가 중복 처리 모드에 해당하는 경우, 현재 블록의 적용 가능 처리 모드가 MT 처리 모드이고, 현재 블록에 대한 MT 처리 모드의 적용이 결정된 경우, 이와 중복 적용이 불가능한 NSST 처리 모드, ROT 처리 모드, DST 처리 모드 및 DCT 처리 모드와 관련된 정보의 획득은 스킵될 수 있다.
또한, 일 실시예에서, 복호화부(2530)는 현재 블록의 MVR에 따라 결정된 적용 가능 처리 모드를 현재 블록에 적용하기 전에, 기 설정된 신택스에 따라 먼저 적용 여부가 판단되어야 하는 처리 모드에 대해서는, 비트스트림으로부터의 정보의 획득을 스킵할 수 있다. 이 경우, 적용 가능 처리 모드와, 신택스에 따라 먼저 적용 여부가 판단되어야 하는 처리 모드는 예측 처리, 변환 처리 및 필터링 처리 중 동일한 어느 하나의 처리에 포함될 수 있다.
구체적으로, 신택스에 따라, p 처리 모드를 현재 블록에 적용하기 위해서, q 처리 모드의 적용 여부가 선결적으로 판단되어야 하는 경우, 복호화부(2530)는 p 처리 모드가 적용 가능 처리 모드로 결정되면, 상기 q 처리 모드 관련 정보의 획득을 스킵하여 q 처리 모드의 적용 여부의 판단을 하지 않을 수 있는 것이다.
일 예로서, 복호화부(2530)는 현재 블록에 대해 적용 가능 처리 모드가 AMVP 처리 모드인 경우, 신택스에 따라 AMVP 처리 모드를 현재 블록에 적용하기 전에 선결적으로 그 적용 여부가 판단되어야 할 스킵 처리 모드 및 다이렉트 처리 모드와 관련된 정보의 획득은 스킵할 수 있다.
일 실시예에서, 복호화부(2530)는 현재 블록의 MVR에 기초하여 적용 가능 처리 모드를 결정하였지만, 비트스트림으로부터 획득된 정보에 따라 적용 가능 처리 모드의 미적용이 확인되면, 상기 적용 가능 처리 모드가 포함된 처리(즉, 예측 처리, 변환 처리 또는 필터링 처리)와 동일한 처리에 포함된 다른 처리 모드를 현재 블록에 적용할 수 있다.
또한, 일 실시예에서, 복호화부(2530)는 현재 블록의 MVR에 기초하여 적용 불가능 처리 모드가 결정되면, 상기 적용 불가능 처리 모드와 동일한 처리에 포함된 다른 처리 모드를 현재 블록에 적용할 수 있다.
일 실시예에서, 복호화부(2530)는 현재 블록의 MVR에 기초하여 현재 블록에 대해 적용 가능 처리 모드, 및 상기 적용 가능 처리 모드와 관련된 세부 설정 내용을 결정할 수도 있다. 세부 설정 내용은 처리 모드에 따라 현재 블록을 처리하는데 있어 고려되어야 할 옵션을 의미할 수 있다. 하나의 처리 모드라도 여러 옵션이 있을 수 있는데, 복호화부(2530)는 현재 블록의 MVR에 기초하여 적용 가능 처리 모드, 및 적용 가능 처리 모드와 관련된 옵션을 확인할 수 있는 것이다.
예를 들어, AMVP 처리 모드의 세부 설정 내용은 단방향 예측 여부 및 양방향 예측 여부에 대한 정보를 포함할 수 있다. 또한, 어파인 처리 모드의 세부 설정 정보는 어파인 타입, 예를 들어, 회전 타입인지 여부, 줌(zoom) 타입인지 여부에 대한 정보를 포함할 수 있다. 또는, DCT 처리 모드의 세부 설정 정보는 커널의 종류, 예를 들어, DCT-II 커널인지 여부, DCT-VIII 커널인지 여부에 대한 정보를 포함할 수 있다.
앞서 설명한 바와 같이, 현재 블록의 MVR은 현재 블록을 포함하는 슬라이스 또는 픽처에 대해 결정될 수 있다. 슬라이스 또는 픽처에 대해 결정된 MVR은 슬라이스 또는 픽처에 포함된 각 블록의 MVR이 될 수 있다.
일 실시예에서, 복호화부(2530)는 현재 슬라이스가 P(predictive) 슬라이스 또는 B(bi-predictive) 슬라이스이거나, 현재 픽처가 P(predictive) 픽처 또는 B(bi-predictive) 픽처인 경우, 현재 블록의 MVR이 소정 MVR에 대응하면, 현재 슬라이스 또는 현재 픽처에 포함된 모든 블록에 대해 인터 예측 처리 모드를 적용할 수 있다. 즉, 복호화부(2530)는 현재 슬라이스 또는 현재 픽처에 포함된 모든 블록에 대해 시간적 중복성을 고려한 예측 방법인 인터 예측 방법으로 처리할 수 있다. 일반적으로, P 슬라이스, B 슬라이스, P 픽처 및 B 픽처는 인터 예측된 블록과 인트라 예측된 블록을 모두 포함할 수 있지만, 복호화부(2530)는 픽처 또는 슬라이스에 대해 결정된 MVR이 소정 MVR에 대응하면, 해당 슬라이스 또는 해당 픽처에 포함된 모든 블록들이 인터 예측된 것으로 판단할 수 있다.
또한, 일 실시예에서, 현재 블록의 MVR이 현재 블록을 포함하는 슬라이스 또는 픽처에 대해 결정된 경우, 복호화부(2530)는 현재 블록을 포함하는 현재 슬라이스 또는 현재 픽처에 포함된, 인트라 예측 처리 모드로 부호화된 블록을 현재 블록의 MVR에 대응하는 예측 블록 생성 모드로 처리할 수 있다.
앞서 설명한 바와 같이, 예측 블록 생성 모드는 인트라 예측 처리 모드에 따라 현재 블록의 예측 블록을 생성하는데 있어, 어떠한 방식으로 예측 블록을 생성하였는지를 나타낸다. 일 실시예에서, 복호화부(2530)는 인트라 예측에 따라 예측 블록을 생성하기 위한 복수의 예측 블록 생성 모드 중 현재 블록의 MVR에 대응하는 예측 블록 생성 모드를 결정할 수 있다. 그리고, 복호화부(2530)는 현재 슬라이스 또는 현재 픽처에 포함된 블록들 중 인트라 예측 처리 모드로 부호화된 블록에 대해서는 현재 블록의 MVR에 대응하는 하나의 예측 블록 생성 모드로 예측 블록을 생성할 수 있다.
앞서 살펴본 바와 같이, 현재 블록의 MVR에 기초하여 현재 블록에 대해 적용 가능 처리 모드 및/또는 적용 불가능 처리 모드가 결정될 수 있다. 일 실시예에서, 복호화부(2530)는 현재 블록에 적용된 처리 모드의 종류에 기초하여 현재 블록의 MVR을 결정할 수도 있다. 복호화부(2530)는 현재 블록에 대해 적용된 처리 모드가, 적용 가능 처리 모드로서 매핑된 MVR을 현재 블록의 MVR로 결정할 수 있다. 다시 말하면, 현재 블록에 어파인 처리 모드가 적용된 경우, 어파인 처리 모드가 적용 가능 처리 모드로서 1/4 화소 단위 해상도에 매핑된 경우, 복호화부(2530)는 현재 블록의 MVR을 1/4 화소 단위로 결정할 수 있다.
도 32를 참조하여 설명하면, 복호화부(2530)는 현재 블록에 어파인 처리 모드가 적용되면 현재 블록의 MVR을 1/4 화소 단위로 결정하고, 현재 블록에 DMVD 처리 모드가 적용되면, 현재 블록의 MVR을 1/2 화소 단위, 1 화소 단위 및 2 화소 단위 중 어느 하나의 화소 단위로 결정할 수 있다.
도 26은 일 실시예에 따른 영상 복호화 방법을 설명하기 위한 순서도이다.
S2610 단계에서, 영상 복호화 장치(2500)는 현재 블록의 MVR에 기초하여 현재 블록에 대한 적용 가능 처리 모드를 결정한다.
앞서 설명한 바와 같이, 영상 복호화 장치(2500)는 비트스트림으로부터 현재 블록의 MVR을 나타내는 정보를 획득하고, 획득한 정보에 기초하여 현재 블록의 MVR을 결정할 수 있다. 일 실시예에서, 영상 복호화 장치(2500)는 직접 현재 블록의 MVR을 결정할 수도 있다.
또한, 일 실시예에서, 영상 복호화 장치(2500)는 현재 블록의 MVR에 기초하여 현재 블록에 대한 적용 불가능 처리 모드를 결정할 수도 있다.
S2620 단계에서, 영상 복호화 장치(2500)는 비트스트림으로부터 적용 가능 처리 모드에 관한 정보를 획득하고, 획득한 정보에 따라 상기 적용 가능 처리 모드에 기초하여 현재 블록을 복호화할 수 있다.
영상 복호화 장치(2500)는 현재 블록에 대한 적용 불가능 처리 모드에 대해서는 비트스트림으로부터 관련 정보의 획득을 스킵할 수 있다.
영상 복호화 장치(2500)는 현재 블록에 대한 적용 가능 처리 모드의 적용 여부를, 비트스트림으로부터 획득한 정보에 기초하여 판단하고, 적용 가능 처리 모드의 적용이 확인되면, 적용 가능 처리 모드에 따라 현재 블록을 복호화할 수 있다.
일 실시예에서, 영상 복호화 장치(2500)는 적용 가능 처리 모드의 미적용이 확인되면, 다른 처리 모드에 따라 현재 블록을 복호화할 수 있다.
일 실시예에서, 영상 복호화 장치(2500)는 적용 불가능 처리 모드의 적용 없이 다른 처리 모드에 따라 현재 블록을 복호화할 수도 있다.
도 27은 일 실시예에 따른 영상 부호화 장치(2700)의 구성을 나타내는 블록도이다.
도 27을 참조하면, 일 실시예에 따른 영상 부호화 장치(2700)는 부호화부(2710) 및 비트스트림 생성부(2730)를 포함할 수 있다. 영상 부호화 장치(2700)는 앞서 설명한 영상 부호화 장치(200)에 포함될 수 있다. 예를 들어, 영상 부호화 장치(2700)의 부호화부(2710)는 영상 부호화 장치(200)의 부호화부(220)에 포함될 수 있고, 영상 부호화 장치(2700)의 비트스트림 생성부(2730)는 영상 부호화 장치(200)의 비트스트림 생성부(210)에 포함될 수 있다.
영상 부호화 장치(2700)는 원본 영상을 예측 처리, 변환 처리 및 필터링 처리하여 원본 영상을 부호화하고, 영상과 관련된 데이터를 포함하는 비트스트림을 생성할 수 있다.
부호화부(2710)는 현재 블록에 대응하는 MVR을 결정할 수 있다. 현재 블록의 MVR은 적어도 하나의 후보 MVR 중에서 선택될 수 있다. 적어도 하나의 후보 MVR은 예를 들어, 1/8 화소 단위의 MVR, 1/4 화소 단위의 MVR, 1/2 화소 단위의 MVR, 1 화소 단위의 MVR, 2 화소 단위의 MVR, 4 화소 단위의 MVR 및 8 화소 단위의 MVR 중 적어도 하나를 포함할 수 있으나 이에 한정되는 것은 아니다.
일 실시예에서, 부호화부(2710)는 적어도 하나의 후보 MVR 중 하나의 후보 MVR을 현재 블록의 MVR로 선택하고, 선택된 MVR에 따라 현재 블록의 움직임 벡터를 결정할 수 있다.
부호화부(2710)는 현재 블록의 움직임 벡터를 결정하기 위해, 적어도 하나의 후보 MVR 중 최소 MVR로 참조 영상을 보간(interpolation)할 수 있다.
일 실시예에서, 적어도 하나의 후보 MVR 중 가장 작은 화소 단위의 후보 MVR(즉, 최소 MVR)이 1/n 화소 단위 (상기 n은 자연수)를 가질 때, 움직임 추정을 위해 부호화부(2710)는 참조 영상의 정수 화소로부터 1/n 화소 단위의 부화소 픽셀을 생성할 수 있고, 최대 1/n 화소 단위의 부화소 픽셀을 가리키는 현재 블록의 움직임 벡터를 결정할 수 있다.
현재 영상의 특성에 따라 언제나 작은 화소 단위의 MVR로 움직임 벡터를 결정하는 것이 높은 화소 단위의 MVR로 움직임 벡터를 결정하는 것보다 비효율적일 수 있다. 작은 화소 단위의 MVR로 움직임 벡터를 결정한 경우, 움직임 벡터(또는 잔차 움직임 벡터)의 크기를 표현하는데 있어 큰 화소 단위의 MVR로 움직임 벡터를 결정하는 것보다 보다 많은 비트량을 필요로 하며 이는 비트레이트 측면에서 비효율적일 수 있다. 따라서, 예를 들어, 영상의 해상도에 따라 적응적으로 MVR을 결정하여 비트레이트를 감소시키는 동시에 복원 영상의 퀄리티 저감을 최소화할 수 있다.
일 실시예에 따른 부호화부(2710)는 현재 블록의 MVR을 적응적으로 결정하고, 결정된 MVR의 화소 단위로 움직임 벡터를 결정할 수 있다. 예를 들어, 현재 블록의 MVR의 화소 단위가 1/2인 경우, 부호화부(2710)는 최소 MVR에 따라 보간된 참조 영상에서 1/2 화소 단위의 픽셀을 가리키는 움직임 벡터를 결정할 수 있다.
일 예로서, 부호화부(2710)는 적어도 하나의 후보 MVR로서, 1/4 화소 단위의 MVR, 1/2 화소 단위의 MVR 및 1 화소 단위의 MVR을 포함하는 경우, 최소 MVR인 1/4 화소 단위 MVR에 따라 보간된 참조 영상에서 1/4 화소 단위로 현재 블록의 움직임 벡터를 결정하고, 1/4 화소 단위 MVR에 따라 보간된 참조 영상에서 1/2 화소 단위로 현재 블록의 움직임 벡터를 결정하고, 1/4 화소 단위 MVR에 따라 보간된 참조 영상에서 1 화소 단위로 현재 블록의 움직임 벡터를 결정할 수 있다. 그리고, 부호화부(2710)는 코스트(cost)에 기초하여 선택된 어느 하나의 후보 MVR을 현재 블록의 MVR로 결정할 수 있다. 코스트 계산시 율-왜곡 비용(rate-distortion cost)이 이용될 수 있다.
일 실시예에서, 부호화부(2710)는 소정 기준에 따라 픽처, 슬라이스 또는 블록별로 MVR을 결정할 수도 있다.
일 실시예에서, 현재 블록의 MVR이 결정되면, 부호화부(2710)는 예측 처리, 변환 처리 및 필터링 처리 중 적어도 하나의 처리에 포함된 복수의 처리 모드 중 상기 현재 블록의 MVR에 대응하는 적어도 하나의 처리 모드를 결정할 수 있다. 현재 블록의 MVR에 대응하는 처리 모드의 개수는 하나 이상일 수 있다.
일 실시예에서, 부호화부(2710)는 현재 블록의 MVR에 기초하여 적용 가능한(applicable) 적어도 하나의 처리 모드를 결정할 수 있다.
일 실시예에서, 부호화부(2710)는 현재 블록의 MVR에 기초하여 적용 불가능한(inapplicable) 적어도 하나의 처리 모드를 결정할 수도 있다.
또한, 일 실시예에서, 부호화부(2710)는 현재 블록의 MVR에 기초하여 적용 가능한 적어도 하나의 처리 모드와 적용 불가능한 적어도 하나의 처리 모드를 결정할 수도 있다.
일 실시예에서, 부호화부(2710)는 현재 블록의 MVR이 소정 MVR에 대응하면, 현재 블록에 대해 적용 가능한 적어도 하나의 처리 모드 및/또는 적용 불가능한 적어도 하나의 처리 모드를 결정할 수 있다.
일 실시예에서, 부호화부(2710)는 1/4 화소 단위 MVR에 대해 어파인 처리 모드가 적용 가능 처리 모드로 매핑된 경우, 현재 블록의 MVR이 1/4 화소 단위인 경우, 상기 어파인 처리 모드를 적용 가능 처리 모드로 결정할 수 있다.
또한, 일 실시예에서, 부호화부(2710)는 1/4 화소 단위 MVR에 대해 어파인 처리 모드가 적용 가능 처리 모드로 매핑된 경우, 현재 블록의 MVR이 1/4 화소 단위와 상이하면, 상기 어파인 처리 모드를 적용 불가능 처리 모드로 결정할 수 있다.
또한, 일 실시예에서, 부호화부(2710)는 1/2 화소 단위 MVR에 대해 어파인 처리 모드가 적용 불가능 처리 모드로 매핑된 경우, 현재 블록의 MVR이 1/2 화소 단위이면, 상기 어파인 처리 모드를 적용 불가능 처리 모드로 결정할 수 있다.
일 실시예에서, 부호화부(2710)는 현재 블록에 대한 적용 가능 처리 모드에 따라 현재 블록을 부호화할 수 있다. 일 실시예에서, 부호화부(2710)는 현재 블록에 대한 적용 불가능 처리 모드는 현재 블록에 적용하지 않을 수 있다.
일 실시예에서, 부호화부(2710)는 상기 적용 가능 처리 모드를 현재 블록에 대해 적용할 것인지를 판단하고, 판단 결과에 따라 적용 가능 처리 모드에 기초하여 현재 블록을 부호화할 수도 있다. 일 예로서, 적용 가능 처리 모드가 어파인 처리 모드인 경우, 현재 블록에 대해 어파인 처리 모드를 적용할지 여부를 결정하고, 적용할 것으로 결정되면, 현재 블록에 어파인 처리 모드를 적용할 수 있다.
일 실시예에서, 적용 가능 처리 모드에 따라 현재 블록을 부호화한다는 것은, 적용 가능 처리 모드만 현재 블록에 적용한다는 것을 의미하는 것은 아니다. 일 실시예에서, 부호화부(2710)는 기 설정된 순서, 다시 말하면 기 설정된 신택스(syntax)에 따라 상기 적용 가능 처리 모드보다 먼저 적용 여부가 결정되어야 하는 다른 처리 모드에 따라 현재 블록을 처리한 후, 상기 적용 가능 처리 모드를 현재 블록에 적용할 수 있다. 또는, 적용 가능 처리 모드에 따라 현재 블록을 처리한 이후, 기 설정된 신택스에 따라 적용 여부가 결정되는 다른 처리 모드에 따라 현재 블록을 부호화할 수 있다.
일 실시예에서, 부호화부(2710)는 현재 블록에 대한 적용 불가능 처리 모드가 결정되면, 적용 불가능 처리 모드 이외의 다른 처리 모드로 현재 블록을 부호화할 수 있다.
또한, 일 실시예에서, 부호화부(2710)는 현재 블록의 MVR에 기초하여 결정된 적용 가능 처리 모드의 미적용이 결정되면, 적용 가능 처리 모드 이외의 다른 처리 모드로 현재 블록을 부호화할 수 있다.
일 실시예에서, 비트스트림 생성부(2730)는 현재 블록에 대해 적용된 처리 모드와 관련된 정보를 포함하는 비트스트림을 생성할 수 있다. 일 실시예에서, 비트스트림 생성부(2730)는 현재 블록의 MVR에 대한 정보를 비트스트림에 포함시킬 수 있다.
일 실시예에서, 비트스트림 생성부(2730)는 현재 블록의 MVR에 기초하여 결정된 적용 가능 처리 모드가 현재 블록에 대해 적용된 경우, 적용 가능 처리 모드 관련 정보를 포함하는 비트스트림을 생성할 수 있다.
일 실시예에서, 현재 블록의 MVR에 기초하여 결정된 적용 불가능 처리 모드와 관련된 정보는 비트스트림에 포함되지 않을 수 있다.
일 실시예에서, 현재 블록의 MVR에 기초하여 적용 가능 처리 모드가 결정되고, 상기 적용 가능 처리 모드의 적용이 확인되면, 부호화부(2710)는 적용 가능 처리 모드와 중복 적용이 불가능한 처리 모드를 확인한다. 비트스트림 생성부(2730)에 의해 생성된 비트스트림에는 상기 중복 적용이 불가능한 처리 모드와 관련된 정보는 포함되지 않을 수 있다. 기 설정된 신택스에 따라 여러 처리 모드들 중 하나의 처리 모드의 적용만이 가능한 경우, 상기 여러 처리 모드들을 중복 처리 모드라 참조할 수 있다.
또한, 일 실시예에서, 부호화부(2710)는 현재 블록의 MVR에 따라 결정된 적용 가능 처리 모드를 현재 블록에 적용하기 전에, 기 설정된 신택스에 따라 먼저 적용 여부가 판단되어야 하는 처리 모드를 적용 불가능 처리 모드로 결정할 수도 있다. 이 경우, 적용 가능 처리 모드와, 신택스에 따라 먼저 적용 여부가 판단되어야 하는 처리 모드는 예측 처리, 변환 처리 및 필터링 처리 중 동일한 어느 하나의 처리에 포함될 수 있다.
구체적으로, 신택스에 따라, 어느 하나의 처리 모드를 현재 블록에 적용하기 위해서, 다른 처리 모드의 적용 여부가 선결적으로 판단되어야 하는 경우, 부호화부(2710)는 어느 하나의 처리 모드가 적용 가능 처리 모드로 결정되면, 상기 다른 처리 모드는 적용 불가능 처리 모드로 결정할 수 있는 것이다. 적용 불가능 처리 모드로 결정된 처리 모드와 관련된 정보는 비트스트림에 포함되지 않을 수 있다.
일 실시예에서, 현재 블록의 MVR에 기초하여 결정된 적용 가능 처리 모드가 현재 블록에 적용되지 않은 경우, 적용 가능 처리 모드와 관련된 정보는 비트스트림에 포함되지 않을 수 있다.
일 실시예에서, 부호화부(2710)는 현재 블록의 MVR에 기초하여 현재 블록에 대해 적용 가능 처리 모드, 및 상기 적용 가능 처리 모드와 관련된 세부 설정 내용을 결정할 수도 있다. 세부 설정 내용은 처리 모드에 따라 현재 블록을 처리하는데 있어 고려되어야 할 옵션을 의미할 수 있다.
앞서 설명한 바와 같이, 현재 블록의 MVR은 현재 블록을 포함하는 슬라이스 또는 픽처에 대해 결정될 수 있다. 슬라이스 또는 픽처에 대해 결정된 MVR은 슬라이스 또는 픽처에 포함된 각 블록의 MVR이 될 수 있다.
일 실시예에서, 부호화부(2710)는 현재 슬라이스가 P(predictive) 슬라이스 또는 B(bi-predictive) 슬라이스이거나, 현재 픽처가 P(predictive) 픽처 또는 B(bi-predictive) 픽처인 경우, 현재 블록의 MVR이 소정 MVR에 대응하면, 현재 슬라이스 또는 현재 픽처에 포함된 모든 블록에 대해 인터 예측 처리 모드를 적용할 수 있다.
또한, 일 실시예에서, 현재 블록의 MVR이 현재 블록을 포함하는 슬라이스 또는 픽처에 대해 결정된 경우, 부호화부(2710)는 현재 블록을 포함하는 현재 슬라이스 또는 현재 픽처에 포함된, 인트라 예측 처리 모드가 적용될 블록에 대해, 현재 블록의 MVR에 대응하는 예측 블록 생성 모드에 따라 예측 블록을 생성할 수 있다.
앞서 살펴본 바와 같이, 현재 블록의 MVR에 기초하여 현재 블록에 대해 적용 가능 처리 모드 및/또는 적용 불가능 처리 모드가 결정될 수 있다. 일 실시예에서, 부호화부(2710)는 현재 블록에 적용될 처리 모드의 종류에 기초하여 현재 블록의 MVR을 결정할 수도 있다. 부호화부(2710)는 현재 블록에 대해 적용될 처리 모드가, 적용 가능 처리 모드로서 매핑된 MVR을 현재 블록의 MVR로 결정할 수 있다. 다시 말하면, 현재 블록에 어파인 처리 모드가 적용될 경우, 어파인 처리 모드가 적용 가능 처리 모드로서 1/4 화소 단위 해상도에 매핑된 경우, 부호화부(2710)는 현재 블록의 MVR을 1/4 화소 단위로 결정할 수 있다.
도 32를 참조하여 설명하면, 부호화부(2710)는 현재 블록에 어파인 처리 모드를 적용할 것으로 결정하면 현재 블록의 MVR을 1/4 화소 단위로 결정하고, 현재 블록에 DMVD 처리 모드를 적용할 것으로 결정하면 현재 블록의 MVR을 1/2 화소 단위, 1 화소 단위 및 2 화소 단위 중 어느 하나의 화소 단위로 결정할 수 있다.
도 28은 일 실시예에 따른 영상 부호화 방법을 설명하기 위한 순서도이다.
S2810 단계에서, 영상 부호화 장치(2700)는 현재 블록의 MVR에 기초하여 적용 가능 처리 모드를 결정한다.
영상 부호화 장치(2700)는 적어도 하나의 후보 MVR 중 어느 하나의 후보 MVR을 현재 블록의 MVR로 결정할 수 있다. 일 실시예에서, 영상 부호화 장치(2700)는 픽처, 슬라이스 또는 블록 별로 MVR을 결정할 수 있다. 픽처, 슬라이스 또는 최대 부호화 단위에 대해 결정된 MVR이, 이들에 포함된 블록들의 MVR이 될 수 있다.
또한, 일 실시예에서, 영상 부호화 장치(2700)는 현재 블록의 MVR에 기초하여 현재 블록에 대한 적용 불가능 처리 모드를 결정할 수도 있다.
S2820 단계에서, 영상 부호화 장치(2700)는 적용 가능 처리 모드에 기초하여 현재 블록을 부호화할 수 있다.
*영상 부호화 장치(2700)는 현재 블록에 대해 결정된 적용 불가능 처리 모드는 현재 블록에 적용하지 않을 수 있다. 일 실시예에서, 영상 부호화 장치(2700)는 적용 불가능 처리 모드 대신 다른 처리 모드에 따라 현재 블록을 부호화할 수 있다.
영상 부호화 장치(2700)는 현재 블록에 대한 적용 가능 처리 모드의 적용 여부를 결정하고, 적용할 것으로 결정되면, 적용 가능 처리 모드에 따라 현재 블록을 부호화할 수 있다.
일 실시예에서, 영상 부호화 장치(2700)는 적용 가능 처리 모드의 미적용이 결정되면, 다른 처리 모드에 따라 현재 블록을 부호화할 수 있다.
일 실시예에서, 영상 부호화 장치(2700)는 현재 블록의 MVR을 나타내는 정보 및 현재 블록에 대해 적용된 처리 모드와 관련된 정보를 포함하는 비트스트림을 생성할 수 있다.
상기 생성된 비트스트림에는, 적용 불가능 처리 모드 관련 정보, 적용 가능 처리 모드로 결정되었지만 실제 현재 블록에 적용되지 않은 처리 모드 관련 정보 및 적용 가능 처리 모드가 현재 블록에 적용됨으로써 적용 불가능 처리 모드로 결정된 처리 모드 관련 정보는 포함되지 않을 수 있다.
한편, 상술한 실시예들은 컴퓨터에서 실행될 수 있는 프로그램으로 작성가능하고, 작성된 프로그램은 매체에 저장될 수 있다.
매체는 컴퓨터로 실행 가능한 프로그램을 계속 저장하거나, 실행 또는 다운로드를 위해 임시 저장하는 것일 수도 있다. 또한, 매체는 단일 또는 수개 하드웨어가 결합된 형태의 다양한 기록수단 또는 저장수단일 수 있는데, 어떤 컴퓨터 시스템에 직접 접속되는 매체에 한정되지 않고, 네트워크 상에 분산 존재하는 것일 수도 있다. 매체의 예시로는, 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체, CD-ROM 및 DVD와 같은 광기록 매체, 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical medium), 및 ROM, RAM, 플래시 메모리 등을 포함하여 프로그램 명령어가 저장되도록 구성된 것이 있을 수 있다. 또한, 다른 매체의 예시로, 애플리케이션을 유통하는 앱 스토어나 기타 다양한 소프트웨어를 공급 내지 유통하는 사이트, 서버 등에서 관리하는 기록매체 내지 저장매체도 들 수 있다.
이상, 본 개시의 기술적 사상을 바람직한 실시예를 들어 상세하게 설명하였으나, 본 개시의 기술적 사상은 상기 실시예들에 한정되지 않고, 본 개시의 기술적 사상의 범위 내에서 당 분야에서 통상의 지식을 가진 자에 의하여 여러 가지 변형 및 변경이 가능하다.

Claims (2)

  1. 현재 블록의 움직임 벡터 해상도를 나타내는 정보를 획득하는 단계;
    상기 현재 블록의 움직임 벡터 해상도를 나타내는 정보가, 상기 현재 블록의 움직임 벡터 해상도가 기 설정된 움직임 벡터 해상도임을 나타내면, 상기 현재 블록에 대한 머지 모드의 적용 여부를 나타내는 정보를 획득하는 단계;
    상기 머지 모드의 적용 여부를 나타내는 정보가 상기 머지 모드의 적용을 나타내면, 인접 블록의 움직임 벡터를 상기 현재 블록의 움직임 벡터로 결정하고, 참조 영상 중 상기 현재 블록의 움직임 벡터에 대응하는 블록에 잔차 데이터를 적용하여 상기 현재 블록을 복원하는 단계; 및
    상기 머지 모드의 적용 여부를 나타내는 정보가 상기 머지 모드의 미적용을 나타내면, 인접 블록의 움직임 벡터에 잔차 움직임 벡터를 적용하여 상기 현재 블록의 움직임 벡터를 결정하고, 참조 영상 중 상기 현재 블록의 움직임 벡터에 대응하는 블록에 잔차 데이터를 적용하여 상기 현재 블록을 복원하는 단계를 포함하는 것을 특징으로 하는 영상의 복호화 방법.
  2. 현재 블록의 움직임 벡터 해상도를 나타내는 정보를 획득하고, 상기 현재 블록의 움직임 벡터 해상도를 나타내는 정보가, 상기 현재 블록의 움직임 벡터 해상도가 기 설정된 움직임 벡터 해상도임을 나타내면, 상기 현재 블록에 대한 머지 모드의 적용 여부를 나타내는 정보를 획득하는 비트스트림 획득부; 및
    상기 머지 모드의 적용 여부를 나타내는 정보가 상기 머지 모드의 적용을 나타내면, 인접 블록의 움직임 벡터를 상기 현재 블록의 움직임 벡터로 결정하고, 참조 영상 중 상기 현재 블록의 움직임 벡터에 대응하는 블록에 잔차 데이터를 적용하여 상기 현재 블록을 복원하고, 상기 머지 모드의 적용 여부를 나타내는 정보가 상기 머지 모드의 미적용을 나타내면, 인접 블록의 움직임 벡터에 잔차 움직임 벡터를 적용하여 상기 현재 블록의 움직임 벡터를 결정하고, 참조 영상 중 상기 현재 블록의 움직임 벡터에 대응하는 블록에 잔차 데이터를 적용하여 상기 현재 블록을 복원하는 복호화부를 포함하는 것을 특징으로 하는 영상의 복호화 장치.
KR1020217004310A 2017-11-09 2018-03-30 움직임 벡터 해상도에 기초하여 영상을 부호화하는 장치 및 방법, 및 복호화 장치 및 방법 KR102285739B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020217023781A KR20210095971A (ko) 2017-11-09 2018-03-30 움직임 벡터 해상도에 기초하여 영상을 부호화하는 장치 및 방법, 및 복호화 장치 및 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762583748P 2017-11-09 2017-11-09
US62/583,748 2017-11-09
KR1020207009554A KR102218647B1 (ko) 2017-11-09 2018-03-30 움직임 벡터 해상도에 기초하여 영상을 부호화하는 장치 및 방법, 및 복호화 장치 및 방법
PCT/KR2018/003814 WO2019093597A1 (ko) 2017-11-09 2018-03-30 움직임 벡터 해상도에 기초하여 영상을 부호화하는 장치 및 방법, 및 복호화 장치 및 방법

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020207009554A Division KR102218647B1 (ko) 2017-11-09 2018-03-30 움직임 벡터 해상도에 기초하여 영상을 부호화하는 장치 및 방법, 및 복호화 장치 및 방법

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020217023781A Division KR20210095971A (ko) 2017-11-09 2018-03-30 움직임 벡터 해상도에 기초하여 영상을 부호화하는 장치 및 방법, 및 복호화 장치 및 방법

Publications (2)

Publication Number Publication Date
KR20210019138A KR20210019138A (ko) 2021-02-19
KR102285739B1 true KR102285739B1 (ko) 2021-08-04

Family

ID=66438479

Family Applications (3)

Application Number Title Priority Date Filing Date
KR1020217004310A KR102285739B1 (ko) 2017-11-09 2018-03-30 움직임 벡터 해상도에 기초하여 영상을 부호화하는 장치 및 방법, 및 복호화 장치 및 방법
KR1020217023781A KR20210095971A (ko) 2017-11-09 2018-03-30 움직임 벡터 해상도에 기초하여 영상을 부호화하는 장치 및 방법, 및 복호화 장치 및 방법
KR1020207009554A KR102218647B1 (ko) 2017-11-09 2018-03-30 움직임 벡터 해상도에 기초하여 영상을 부호화하는 장치 및 방법, 및 복호화 장치 및 방법

Family Applications After (2)

Application Number Title Priority Date Filing Date
KR1020217023781A KR20210095971A (ko) 2017-11-09 2018-03-30 움직임 벡터 해상도에 기초하여 영상을 부호화하는 장치 및 방법, 및 복호화 장치 및 방법
KR1020207009554A KR102218647B1 (ko) 2017-11-09 2018-03-30 움직임 벡터 해상도에 기초하여 영상을 부호화하는 장치 및 방법, 및 복호화 장치 및 방법

Country Status (5)

Country Link
US (3) US11184620B2 (ko)
EP (1) EP3709640A4 (ko)
KR (3) KR102285739B1 (ko)
CN (3) CN116389721A (ko)
WO (1) WO2019093597A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3791578A1 (en) * 2018-05-09 2021-03-17 InterDigital VC Holdings, Inc. Motion compensation for video encoding and decoding
CN112655216B (zh) 2018-07-06 2023-10-24 Lg电子株式会社 基于变换的图像编码方法及装置
CN111131822B (zh) 2018-10-31 2023-08-01 北京字节跳动网络技术有限公司 具有从邻域导出的运动信息的重叠块运动补偿
CN116744003A (zh) * 2018-12-19 2023-09-12 Lg电子株式会社 编解码方法、存储介质和发送方法
KR20220155033A (ko) 2021-05-14 2022-11-22 한국전자통신연구원 비디오 부호화 복잡도 감소를 위한 어파인 고속 부호화 방법 및 장치

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012042719A1 (ja) 2010-09-30 2012-04-05 三菱電機株式会社 動画像符号化装置、動画像復号装置、動画像符号化方法及び動画像復号方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011021915A2 (ko) * 2009-08-21 2011-02-24 에스케이텔레콤 주식회사 적응적 움직임 벡터 해상도를 이용한 영상 부호화/복호화 방법 및 장치
KR101418104B1 (ko) * 2010-03-08 2014-07-16 에스케이 텔레콤주식회사 움직임 벡터 해상도 조합을 이용한 움직임 벡터 부호화/복호화 방법 및 장치와 그를 이용한 영상 부호화/복호화 방법 및 장치
KR20140092423A (ko) * 2012-12-20 2014-07-24 주식회사 팬택 계층적 영상 부/복호화 모드 결정 방법 및 이러한 방법을 사용하는 장치
KR102126855B1 (ko) * 2013-02-15 2020-06-26 한국전자통신연구원 부호화 모드 결정 방법 및 장치
GB2524476B (en) * 2014-03-14 2016-04-27 Canon Kk Method, device and computer program for optimizing transmission of motion vector related information when transmitting a video stream
CN111741310B (zh) * 2014-10-31 2024-03-19 三星电子株式会社 用于对运动矢量进行编码/解码的方法和装置
WO2017039117A1 (ko) 2015-08-30 2017-03-09 엘지전자(주) 영상의 부호화/복호화 방법 및 이를 위한 장치
US10491922B2 (en) * 2015-09-29 2019-11-26 Qualcomm Incorporated Non-separable secondary transform for video coding

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012042719A1 (ja) 2010-09-30 2012-04-05 三菱電機株式会社 動画像符号化装置、動画像復号装置、動画像符号化方法及び動画像復号方法

Also Published As

Publication number Publication date
US20220086452A1 (en) 2022-03-17
CN111602392B (zh) 2023-04-14
KR20200042949A (ko) 2020-04-24
CN111602392A (zh) 2020-08-28
US11700380B2 (en) 2023-07-11
CN116389720A (zh) 2023-07-04
CN116389721A (zh) 2023-07-04
US11700379B2 (en) 2023-07-11
KR20210095971A (ko) 2021-08-03
EP3709640A4 (en) 2021-08-25
US11184620B2 (en) 2021-11-23
KR20210019138A (ko) 2021-02-19
US20220070467A1 (en) 2022-03-03
EP3709640A1 (en) 2020-09-16
WO2019093597A1 (ko) 2019-05-16
US20200288139A1 (en) 2020-09-10
KR102218647B1 (ko) 2021-02-22

Similar Documents

Publication Publication Date Title
KR102206084B1 (ko) 적응적 움직임 벡터 해상도로 결정된 움직임 벡터의 부호화 장치 및 부호화 방법, 및 움직임 벡터의 복호화 장치 및 복호화 방법
KR102285739B1 (ko) 움직임 벡터 해상도에 기초하여 영상을 부호화하는 장치 및 방법, 및 복호화 장치 및 방법
KR102483331B1 (ko) 움직임 정보의 부호화 장치 및 방법, 및 복호화 장치 및 방법
KR20180107087A (ko) 인트라 예측오차의 감소를 위한 인트라 예측 방법 및 그 장치
KR102232245B1 (ko) 기본 움직임 벡터를 이용하여 움직임 벡터를 부호화하는 장치 및 방법, 및 복호화 장치 및 방법
KR20230019258A (ko) 툴 세트를 이용하는 영상 복호화 장치 및 이에 의한 영상 복호화 방법, 및 영상 부호화 장치 및 이에 의한 영상 부호화 방법
KR20210115053A (ko) 서브 블록 기반으로 영상을 복호화하는 방법 및 장치, 부호화 방법 및 장치
KR20210014094A (ko) 움직임 정보의 부호화 장치 및 부호화 방법, 및 움직임 정보의 복호화 장치 및 복호화 방법
KR102493125B1 (ko) 툴 세트를 이용하는 영상 복호화 장치 및 이에 의한 영상 복호화 방법, 및 영상 부호화 장치 및 이에 의한 영상 부호화 방법

Legal Events

Date Code Title Description
A107 Divisional application of patent
E701 Decision to grant or registration of patent right
A107 Divisional application of patent
GRNT Written decision to grant