KR102292221B1 - 전기 절연성 화재-안전용 밀봉 요소 - Google Patents

전기 절연성 화재-안전용 밀봉 요소 Download PDF

Info

Publication number
KR102292221B1
KR102292221B1 KR1020177002404A KR20177002404A KR102292221B1 KR 102292221 B1 KR102292221 B1 KR 102292221B1 KR 1020177002404 A KR1020177002404 A KR 1020177002404A KR 20177002404 A KR20177002404 A KR 20177002404A KR 102292221 B1 KR102292221 B1 KR 102292221B1
Authority
KR
South Korea
Prior art keywords
ring
width dimension
axial width
conductive layer
insulating
Prior art date
Application number
KR1020177002404A
Other languages
English (en)
Other versions
KR20170024047A (ko
Inventor
스티븐 크리스토퍼 콜브
제이슨 데이비드 덴햄
윌리 에이. 젠킨스
벤자민 디. 크레이머
에드워드 바렐라
Original Assignee
엘지씨 유에스 에셋 홀딩스, 엘엘씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=55019790&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=KR102292221(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 엘지씨 유에스 에셋 홀딩스, 엘엘씨 filed Critical 엘지씨 유에스 에셋 홀딩스, 엘엘씨
Publication of KR20170024047A publication Critical patent/KR20170024047A/ko
Application granted granted Critical
Publication of KR102292221B1 publication Critical patent/KR102292221B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/06Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
    • F16J15/10Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing
    • F16J15/12Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing with metal reinforcement or covering
    • F16J15/121Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing with metal reinforcement or covering with metal reinforcement
    • F16J15/122Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing with metal reinforcement or covering with metal reinforcement generally parallel to the surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L17/00Joints with packing adapted to sealing by fluid pressure
    • F16L17/06Joints with packing adapted to sealing by fluid pressure with sealing rings arranged between the end surfaces of the pipes or flanges or arranged in recesses in the pipe ends or flanges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L23/00Flanged joints
    • F16L23/02Flanged joints the flanges being connected by members tensioned axially
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L23/00Flanged joints
    • F16L23/16Flanged joints characterised by the sealing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L23/00Flanged joints
    • F16L23/16Flanged joints characterised by the sealing means
    • F16L23/18Flanged joints characterised by the sealing means the sealing means being rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L25/00Constructive types of pipe joints not provided for in groups F16L13/00 - F16L23/00 ; Details of pipe joints not otherwise provided for, e.g. electrically conducting or insulating means
    • F16L25/02Electrically insulating joints or couplings
    • F16L25/026Electrically insulating joints or couplings for flanged joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L57/00Protection of pipes or objects of similar shape against external or internal damage or wear
    • F16L57/04Protection of pipes or objects of similar shape against external or internal damage or wear against fire or other external sources of extreme heat

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Gasket Seals (AREA)

Abstract

유체의 통과를 위한 2개의 유동 도관 섹션의 대면하는 플랜지들 사이에 사용하기 위한 절연 개스킷. 절연 개스킷은 전기 절연을 제공하기 위해 평판형 금속 코어 링을 덮는 비전도성 층 및 코팅과, 다른 비전도성 층에 인접한 내화성 층을 포함하고, 이러한 나란한 배열은 화재 동안에 시일을 특유한 방식으로 유지한다. 일 형태에서, 평판형 금속 코어 링의 톱니형 링 부분은 볼록한 프로파일을 갖는다.

Description

전기 절연성 화재-안전용 밀봉 요소{ELECTRICALLY ISOLATING, FIRE-SAFE SEALING ELEMENT}
본 발명은 전기 절연성 화재-안전용(fire-safe) 밀봉 요소에 관한 것이다.
결합된 부재들 또는 파이프들 사이에 위치된 개스킷 장치(gasket device)는 결합된 부재들 사이에 시일(seal)을 생성하고 조인트에서 결합된 부재로부터 물질의 누출을 방지하는데 사용된다. 또한, 조인트를 위한 시일을 제공하는 것에 부가하여, 일부 상황에서, 조인트 부재를 전기 절연하는 것이 또한 요망된다. 파이프라인을 위한 내식성의 하나의 예가 음극 방식(cathodic protection)이다. 이러한 타입의 음극 방식은 전형적으로 전기 절연을 제공함으로써 조인트를 밀봉하는 것을 필요로 한다. 다른 예는, 조인트의 양 측부가 전기적으로 절연되지 않으면, 2개의 금속들 사이의 전위차가 갈바니 부식 셀(galvanic corrosion cell)을 형성할 수 있는 상이한 금속으로 조인트의 양 측부가 제조되는 경우이다. 다른 상황에서, 화재 동안에 조인트를 위한 시일을 유지하는 것이 또한 요망될 수 있다. 화재는 파이프라인 작업자에게 위험하지만, 화재는 조인트 사이의 시일이 화재 동안에 파이프 내에 물질을 격납할 수 없다면 훨씬더 위험하고 치명적일 수 있다.
개스킷 장치는 밀봉, 전기 절연, 또는 화재 안전 중 하나를 효과적으로 실행하도록 개발되었다. 그러므로, 이러한 모든 관심사가 존재하여 비용 증가뿐만 아니라 호환성(compatibility) 및 크기 문제를 초래할 수 있는 상황을 방지하기 위해서 다수의 개스킷이 사용되어야 한다. 다수의 개스킷이 사용되는 경우에 다른 문제가 존재하며, 예를 들어 조인트를 효과적으로 밀봉하는 하나의 개스킷 장치가 화재 동안과 같은 고온에서 녹을 수 있어, 플랜지들 사이의 시일이 더 이상 효과적이지 않고 아마도 누출될 수도 있다. 석유 또는 가스와 같은 물질의 누출은 극히 위험할 수 있고 화재의 가능성을 증대시킬 수 있다. 다른 예로서, 변형에 대한 저항성이 있는 일부 물질은 또한 전기를 전도한다. 따라서, 전기 절연성 화재-안전용 효과적인 밀봉 시스템의 분야에 있어서의 개선에 대한 필요성이 여전히 존재한다.
절연성 화재-안전용 개스킷의 개시된 실시예는 화재 또는 일상 적용 동안에 충분한 시일을 유지하면서 전기 절연뿐만 아니라 화재에 대한 방호 신뢰성을 제공한다.
유체의 통과를 위한 2개의 유동 도관 섹션의 대면하는 플랜지들 사이에 사용하기 위한 절연 개스킷의 하나의 예는 하부면과 대향하는 상부면, 및 유체의 통과를 허용하도록 내부에 형성된 개구부를 구비하는 평판형 금속 코어 링을 포함하고, 이러한 평판형 금속 코어 링은 내측 링과 외측 링 사이에 위치된 톱니형 링을 구비한다. 톱니형 링은 상부면 및 하부면을 따라 복수의 톱니부를 구비한다. 절연 개스킷은 내측 링을 위한 유전체 배리어를 제공하기 위해 내측 링의 상부면 및 하부면 상에 배치된 제1 비전도성 층, 톱니형 링을 위한 유전체 배리어를 제공하기 위해 톱니형 링의 상부면 및 하부면을 따른 복수의 톱니부 상에 배치된 비전도성 코팅, 및 외측 링을 위한 유전체 배리어를 제공하기 위해 외측 링의 상부면 및 하부면 상에 배치된 제2 비전도성 층을 포함한다. 또한, 절연 개스킷은 톱니형 링 상에 위치된 비전도성 코팅 상에 배치되는 내화성 층으로서, 이러한 내화성 층은 톱니형 링의 외측 에지로부터 톱니형 링의 중간-영역까지 걸쳐있는, 내화성 층, 및 톱니형 링 상에 위치된 비전도성 코팅 상에 배치되는 제3 비전도성 층으로서, 이러한 제3 비전도성 층은 톱니형 링의 내측 에지로부터 톱니형 링의 중간-영역까지 걸쳐있고, 내화성 층이 제3 비전도성 층에 접하여 있는, 제3 비전도성 층을 포함한다. 일 실시예에서, 내화성 층은 톱니형 링의 내측 에지와 외측 에지 사이의 중간 지점에서 제3 비전도성 층에 접하여 있다.
절연 개스킷을 위한 예시적인 물질은 폴리테트라플루오로에틸렌으로 제조되는 비전도성 코팅, 운모 또는 알루미노규산염으로 제조되는 내화성 층, 이축-연신된 충전제 함유 폴리테트라플루오로에틸렌으로 제조되는 제3 비전도성 층을 포함하며, 이들은 단독으로 또는 서로 조합하여 사용될 수 있다.
제1 실시예에서, 복수의 톱니부는 대응하는 복수의 교대로 있는 정점부 및 홈부를 구비하고, 각각의 정점부는 제1 축방향 폭 치수를 갖고, 각각의 홈부는 제2 축방향 폭 치수를 가지며, 제1 축방향 폭 치수는 각각의 정점부에 대해 실질적으로 동일하고, 제2 축방향 폭 치수는 각각의 홈부에 대해 실질적으로 동일하다. 제2 대안 실시예에서, 복수의 톱니부는 대응하는 복수의 교대로 있는 정점부 및 홈부를 구비하고, 각각의 정점부는 각각의 정점부에 대해 실질적으로 동일한 제1 축방향 폭 치수를 갖고, 복수의 홈부는 톱니형 링의 폭을 가로질러 순차적으로 배열된 5개의 그룹을 포함하고, 복수의 홈부 중 외측의 2개 그룹은 제2 축방향 폭 치수를 갖고, 복수의 홈부 중 중간의 2개 그룹은 제3 축방향 폭 치수를 갖고, 복수의 홈부 중 중앙 그룹은 제4 축방향 폭 치수를 가지며, 제4 축방향 폭 치수는 제3 축방향 폭 치수보다 크고, 제3 축방향 폭 치수는 제2 축방향 폭 치수보다 크다. 제2 실시예에서, 제4 축방향 폭 치수, 제3 축방향 폭 치수 및 제2 축방향 폭 치수는 톱니형 링의 폭에 걸쳐있는 대체로 볼록한 프로파일을 형성한다.
다른 예시적인 실시예에서, 대면하는 플랜지를 갖도록 구성 및 배열되고 관통 보어를 각각 구비하는 한쌍의 결합된 유동 도관 섹션은 대면하는 플랜지들 사이에 사용하기 위한 절연 개스킷과 조합된다. 절연 개스킷은 하부면과 대향하는 상부면, 및 유체의 통과를 허용하도록 내부에 형성된 개구부를 구비하는 평판형 금속 코어 링을 포함하고, 이러한 평판형 금속 코어 링은 내측 링과 외측 링 사이에 위치된 톱니형 링을 구비하고, 이 톱니형 링은 상부면 및 하부면을 따라 복수의 톱니부를 구비한다. 절연 개스킷은 내측 링의 상부면 및 하부면 상에 배치된 제1 비전도성 층, 톱니형 링의 상부면 및 하부면 상에 배치된 비전도성 코팅, 외측 링의 상부면 및 하부면 상에 배치된 제2 비전도성 층, 톱니형 링 상에 위치된 비전도성 코팅 상에 배치되는 내화성 층, 및 톱니형 링 상에 위치된 비전도성 코팅 상에 배치되는 제3 비전도성 층으로서, 이러한 제3 비전도성 층은 내화성 층에 인접하여 있는, 제3 비전도성 층을 포함한다. 일 형태에서, 내화성 층은 톱니형 링의 외경으로부터 톱니형 링의 중간 직경까지 걸쳐있고, 제3 비전도성 층은 중간 직경으로부터 톱니형 링의 내경까지 걸쳐있다.
일 실시예에서, 조합체는, 각각의 대면하는 플랜지에 형성되는 정렬된 보어 내에 위치된 적어도 하나의 절연 슬리브로서, 이러한 절연 슬리브는 절연 개스킷이 대면하는 플랜지들 사이에 위치된 상태에서 각각의 플랜지의 외측 표면 사이의 거리와 실질적으로 동일한 길이를 갖는, 적어도 하나의 절연 슬리브, 대향하는 단부를 갖고, 절연 개스킷이 그 사이에 개재된 상태로 플랜지를 서로 연결하도록 절연 슬리브 내에 수용되는 적어도 하나의 기다란 금속 파스너(elongate metal fastener), 및 플랜지의 외측면에 접하여 적어도 하나의 기다란 금속 파스너 각각 상에 위치된 절연 와셔를 추가로 포함한다. 제1 실시예에서, 절연 와셔는 대향하는 측면을 구비하는 금속 와셔를 포함하고, 대향하는 측면 중 하나에는 유전체 물질의 시트가 적층되어 있고, 유전체 물질은 적어도 플랜지의 외측면에 접하여 있다. 다른 실시예에서, 절연 와셔는 유전체 물질로 코팅된 금속 코어를 포함한다. 일 형태에서, 절연 슬리브는 유리 강화 폴리머 물질, 에폭시 물질, 페놀 물질 및 운모-아라미드 물질 중 하나로 제조된 슬리브를 포함한다. 다른 형태에서, 금속 파스너는 대향하는 단부 중 적어도 하나 상에 너트를 수용하도록 나사가공된 금속 샤프트를 포함한다.
제1 실시예에서, 복수의 톱니부는 대응하는 복수의 교대로 있는 정점부 및 홈부를 구비하고, 각각의 정점부는 제1 축방향 폭 치수를 갖고, 각각의 홈부는 제2 축방향 폭 치수를 가지며, 제1 축방향 폭 치수는 각각의 정점부에 대해 실질적으로 동일하고, 제2 축방향 폭 치수는 각각의 홈부에 대해 실질적으로 동일하다.
제2 실시예에서, 복수의 톱니부는 대응하는 복수의 교대로 있는 정점부 및 홈부를 구비하고, 각각의 정점부는 각각의 정점부에 대해 실질적으로 동일한 제1 축방향 폭 치수를 갖고, 복수의 홈부는 톱니형 링의 폭을 가로질러 순차적으로 배열된 5개의 그룹을 포함하고, 복수의 홈부 중 외측의 2개 그룹은 제2 축방향 폭 치수를 갖고, 복수의 홈부 중 중간의 2개 그룹은 제3 축방향 폭 치수를 갖고, 복수의 홈부 중 중앙 그룹은 제4 축방향 폭 치수를 가지며, 제4 축방향 폭 치수는 제3 축방향 폭 치수보다 크고, 제3 축방향 폭 치수는 제2 축방향 폭 치수보다 크다. 일 형태에서, 제4 축방향 폭 치수, 제3 축방향 폭 치수 및 제2 축방향 폭 치수는 톱니형 링의 폭에 걸쳐있는 대체로 볼록한 프로파일을 형성한다.
유체의 통과를 위한 2개의 유동 도관 섹션의 대면하는 플랜지들 사이에 사용하기 위한 절연 개스킷의 다른 예시적인 실시예에서, 절연 개스킷은 하부면과 대향하는 상부면, 및 유체의 통과를 허용하도록 내부에 형성된 개구부를 구비하는 평판형 금속 코어 링을 포함한다. 이러한 평판형 금속 코어 링은 내측 링과 외측 링 사이에 위치된 톱니형 링을 구비하고, 이 톱니형 링은 상부면 및 하부면을 따라 복수의 톱니부를 구비한다. 제1 비전도성 층은 내측 링을 위한 유전체 배리어를 제공하기 위해 내측 링의 상부면 및 하부면 상에 위치되고, 제2 비전도성 층은 외측 링을 위한 유전체 배리어를 제공하기 위해 외측 링의 상부면 및 하부면 상에 위치되며, 비전도성 코팅은 톱니형 링을 위한 유전체 배리어를 제공하기 위해 톱니형 링의 상부면 및 하부면의 복수의 톱니부 상에 도포된다. 내화성 층 및 제3 비전도성 층은 톱니형 링의 복수의 톱니부 상에 도포된 비전도성 코팅 상에 나란한 배향으로 배열되고, 내화성 층 및 제3 비전도성 층 각각은 톱니형 링의 대략 절반부를 덮는다. 일 실시예에서, 내화성 층 및 제3 비전도성 층이 중첩하지 않도록, 내화성 층은 톱니형 링의 외측 에지로부터 톱니형 링의 중간-영역까지 걸쳐있고, 제3 비전도성 층은 톱니형 링의 내측 에지로부터 톱니형 링의 중간-영역까지 걸쳐있다.
절연 개스킷의 제1 실시예에서, 복수의 톱니부는 대응하는 복수의 교대로 있는 정점부 및 홈부를 구비하고, 각각의 정점부는 제1 축방향 폭 치수를 갖고, 각각의 홈부는 제2 축방향 폭 치수를 가지며, 제1 축방향 폭 치수는 각각의 정점부에 대해 실질적으로 동일하고, 제2 축방향 폭 치수는 각각의 홈부에 대해 실질적으로 동일하다. 절연 개스킷의 제2 실시예에서, 복수의 톱니부는 대응하는 복수의 교대로 있는 정점부 및 홈부를 구비하고, 각각의 정점부는 각각의 정점부에 대해 실질적으로 동일한 제1 축방향 폭 치수를 갖고, 복수의 홈부는 톱니형 링의 폭을 가로질러 순차적으로 배열된 5개의 그룹을 포함하고, 복수의 홈부 중 외측의 2개 그룹은 제2 축방향 폭 치수를 갖고, 복수의 홈부 중 중간의 2개 그룹은 제3 축방향 폭 치수를 갖고, 복수의 홈부 중 중앙 그룹은 제4 축방향 폭 치수를 가지며, 제4 축방향 폭 치수는 제3 축방향 폭 치수보다 크고, 제3 축방향 폭 치수는 제2 축방향 폭 치수보다 크다. 절연 개스킷의 제2 실시예에서, 제4 축방향 폭 치수, 제3 축방향 폭 치수 및 제2 축방향 폭 치수는 톱니형 링의 폭에 걸쳐있는 대체로 볼록한 프로파일을 형성한다.
본 발명의 다른 형태, 목적, 특징, 태양, 이점, 장점 및 실시예가 상세한 설명 및 함께 제공된 도면으로부터 명백해질 것이다.
도 1은 절연 개스킷의 제1 실시예의 상면도를 도시한다.
도 2는 도 1의 실시예에 있어서의 절연 개스킷의 단면도를 도시한다.
도 3은 도 1의 실시예에 있어서의 톱니형 링 상의 비전도성 코팅의 부분 확대도를 도시한다.
도 4는 도 1의 실시예에 있어서의 절연 개스킷으로부터의 평판형 금속 코어 링의 단면도를 도시한다.
도 5는 절연 개스킷의 제2 실시예의 상면도를 도시한다.
도 6은 도 5의 실시예에 있어서의 절연 개스킷으로부터의 톱니형 링의 단면도를 도시한다.
도 7은 도 6의 실시예로부터의 톱니형 링의 단면도를 도시한다.
도 8은 도 1의 실시예에 있어서의 절연 개스킷의 측면도 및 부분 단면도를 도시한다.
도 9는 도 1의 실시예에 있어서의 절연 개스킷의 측면도 및 부분 단면도를 도시한다.
본 발명의 원리의 이해를 증진시키기 위해서, 이제, 도면에 도시된 실시예를 참조할 것이며, 특정 용어가 동일한 것을 설명하는데 사용될 것이다. 그럼에도 불구하고, 이에 의해 본 발명의 범위의 제한이 의도되지 않으며, 도시된 장치의 변경 및 변형과, 그 내에 나타낸 바와 같은 본 발명의 원리의 다른 응용이 본 발명과 관련된 기술분야에 숙련된 자에게 통상적으로 생각나는 바와 같이 본 명세서에서 고려된다는 것이 이해될 것이다. 본 발명의 일 실시예가 매우 상세하게 도시되어 있지만, 본 발명과 관련되지 않은 일부 특징이 명확화를 위해 도시되지 않을 수도 있다는 것이 관련 기술분야에 숙련된 자에게는 자명할 것이다.
예시적인 실시예의 이해를 돕기 위해서, 대표적인 절연 개스킷(isolation gasket)(20)이 도 1, 도 2, 도 3 및 도 4에 개시 및 도시되어 있다. 절연 개스킷(20)은 유체의 통과를 위한 2개의 유동 도관 섹션의 대면하는 플랜지들 사이에 사용하도록 구성된다. 유동 도관 섹션을 통과할 수 있는 일부 타입의 유체는 오일, 석유, 천연 가스, 다른 가연성 물질, 및 많은 다른 타입의 유체를 포함한다. 인식될 수 있는 바와 같이, 임의의 이들 유체의 유체 누출은 극히 위험하고 유독할 수 있다. 절연 개스킷(20)은 하부면(26)에 대향하는 상부면(24), 및 하기에서 보다 상세하게 설명되는 바와 같이 절연 개스킷(20)이 유체 유동 도관 섹션과 조립되는 경우에 유체의 통과를 허용하도록 내부에 형성된 개구부(28)를 구비하는 평판형 금속 코어 링(flat metal core ring)(22)을 포함한다. 절연 개스킷(20)은, 조합하여 내화성(fire resistant) 및 전기 절연성 시일을 생성하는 제1 비전도성 층(70), 제2 비전도성 층(72), 비전도성 코팅(74), 내화성 층(76) 및 제3 비전도성 층(78)을 포함한다. 절연 개스킷(20)의 이들 요소 각각이 다음에 설명될 것이다.
평판형 금속 코어 링(22)은 내측 링(32)과 외측 링(34) 사이에 위치된 톱니형 링(serrated ring)(30)을 구비한다. 내측 링(32)은 개구부(28)의 직경에 대응하는 내경(36)을 갖는다. 일 실시예에서, 내경(36)은 그것이 배치되는 파이프의 유동 섹션의 내경과 일치한다. 다시 말해서, 내경(36)은 보어의 내경과 실질적으로 동일한 크기를 가지며, 이는 부식 가능성을 감소시키는 것으로 밝혀졌다. 내측 링(32)은 이 내측 링(32)과 톱니형 링(30) 사이의 계면(interface)에 대응하는 외경(38)을 갖는다. 내측 링(32)은 내경(36)과 외경(38) 사이에 걸쳐있는 폭(37)을 갖는다. 내측 링(32)은 또한 하부면(42)에 대향하는 상부면(40)을 가지며, 깊이 또는 두께(44)가 상부면(40)과 하부면(42) 사이에 걸쳐있다. 내측 링(32)의 깊이(44)는 외측 링(34)의 깊이(66)보다 크며, 이는 유익하게 부식 가능성을 감소시키는 것으로 밝혀졌다. 일 실시예에서, 상부면(40) 및 하부면(42)은 제1 비전도성 층(70)의 접착력을 향상시키기 위해 0.125 마이크로인치의 표면 마감처리(surface finish)를 갖는다.
톱니형 링(30)은 이 톱니형 링(30)과의 사이에 계면을 형성하는 내측 링(32)의 외경(38)에 대응하는 내경을 갖는다. 톱니형 링(30)은 이 톱니형 링(30)과 외측 링(34) 사이의 계면에 대응하는 외경(46)을 갖는다. 톱니형 링(30)은 내경과 외경(46) 사이에 걸쳐있는 폭(47)을 갖는다. 톱니형 링(30)은 이 톱니형 링(30)의 내경과 외경(46) 사이의 중간부로부터 측정된 중간-영역 또는 중간 직경을 포함한다. 톱니형 링(30)은 또한 하부면(50)에 대향하는 상부면(48)을 가지며, 깊이 또는 두께(52)가 상부면(48)과 하부면(50) 사이에 걸쳐있다. 톱니형 링(30)의 깊이(52)는 내측 링(32)의 깊이(44) 또는 외측 링(34)의 깊이(66)보다 크다. 톱니형 링(30)은 상부면(48) 및 하부면(50)을 따라 걸쳐있는 복수의 톱니부(serration)(54)를 갖는다. 복수의 톱니부(54)는 대응하는 복수의 교대로 있는 정점부(peak)(56) 및 홈부(58)를 구비하고, 각각의 정점부(56)는 제1 축방향 폭 치수를 갖고, 각각의 홈부(58)는 제2 축방향 폭 치수를 갖는다. 제1 축방향 폭 치수는 각각의 정점부(56)에 대해 실질적으로 동일하고, 제2 축방향 폭 치수는 각각의 홈부(58)에 대해 실질적으로 동일하다. 다시 말해서, 모든 정점부(56)의 제1 축방향 폭 치수 사이에 크기 변동이 없으며, 유사하게 모든 홈부(58)의 제2 축방향 폭 치수 사이에 크기 변동이 없다.
외측 링(34)은 톱니형 링(30)의 외경(46)에 대응하는 내경을 갖는다. 외측 링(34)은 또한 평판형 금속 코어 링(22)의 폭에 걸쳐있는 외경(60)을 갖는다. 외측 링(34)은 내경과 외경(60) 사이에 걸쳐있는 폭(61)을 갖는다. 외측 링(34)은 또한 하부면(64)에 대향하는 상부면(62)을 가지며, 깊이 또는 두께(66)가 상부면(62)과 하부면(64) 사이에 걸쳐있다. 일 실시예에서, 상부면(62) 및 하부면(64)은 제2 비전도성 층(72)의 접착력을 향상시키기 위해 0.125 마이크로인치의 표면 마감처리를 갖는다.
평판형 금속 코어 링(22)은 스테인리스강, 316 스테인리스강, 고 니켈 합금, 또는 유동 도관 섹션 및 그 내의 물질에 적절한 다른 금속을 포함하는 금속으로 제조된다. 일부 실시예에서, 금속 코어 링(22)은, 몇 가지만 예로 들면, Inconel® 오스테나이트 니켈-크롬계 초합금, Hastelloy® 고 내식성 금속 합금 및 Duplex 스테인리스강과 같은 특정 물질로 제조된다. 전형적으로, 내측 링(32), 톱니형 링(30) 및 외측 링(34)의 크기는 이들 링이 사용시에 배치되는 유동 도관 섹션의 크기에 대응한다. 하나의 예는 ANSI B16.5 플랜지 코드(Flange Code)에 따라 크기설정된 유동 도관 섹션과, 그에 상응하게 그리고 상기에 언급된 바와 같이 크기설정된 내측 링(32), 톱니형 링(30) 및 외측 링(34)을 포함한다. ANSI B16.5 플랜지 코드와 함께 사용하도록 크기설정된 평판형 금속 코어 링(22)에 대한 하나의 이점은 외측 링(34)의 외경(60)이 대면하는 플랜지의 볼트 원(bolt circle) 내와 절연 개스킷(20)을 자동 정렬할 수 있게 하는 것이다. ANSI B16.5 플랜지 코드와 함께 사용하도록 크기설정된 평판형 금속 코어 링(22)에 대한 다른 이점은, 내측 링(32)의 내경(36)이 ANSI B16.5 플랜지 보어(Flange Bore)와 정확하게 일치하여, 최소 플랜지면 노출을 허용하고 산업계에서 "피크(pigs)"로서 통상 지칭되는 파이프 세척 장치가 조립시에 절연 개스킷(20) 및 플랜지를 통과하게 한다는 것이다. 또 다른 이점은 톱니형 링(30)이 링 타입 조인트 및 융기면(Ring Type Joints and Raised Face) ANSI B16.5 플랜지 양자와 함께 사용하도록 구성된다는 것이다.
절연 개스킷(20)은 또한, 도 1 및 도 2에 도시된 바와 같이, 내측 링(32)의 상부면(40) 및 하부면(42) 상에 배치되어 내측 링(32)을 위한 유전체 배리어 및 전기 절연을 제공하는 제1 비전도성 층(70)을 포함한다. 제1 비전도성 층(70)은 내측 링(32)의 폭(37)에 걸쳐있다. 일 형태에서, 제1 비전도성 층(70)은 또한 내측 링(32)의 내측면의 깊이(44)를 덮는다. 제1 비전도성 층(70)에 적합한 물질은 G10 적층 시트(laminated sheet), G11 적층 시트, 고압 및 고열 하에서 에폭시 수지로 함침된 전기 유리 직물(electrical glass cloth), 폴리머계 비전도성 코팅, 페놀 수지계 물질, 에폭시계 비전도성 코팅, 또는 다른 적합한 유전체 물질을 포함한다. 제1 비전도성 층(70)을 내측 링(32)에 도포하는 많은 기술이 존재한다. 하나의 기술은 두께 게이지를 사용하여 정확한 두께로 스프레이 건(spray gun)을 통해 도포되는 코팅으로서 제1 비전도성 층(70)을 도포하는 것이다. 상이한 물질로서 제1 비전도성 층(70)을 도포하는 제2 기술은 접착제 또는 아교(glue)에 의한 것이다. 제1 비전도성 층(70)은 내고온성, 높은 기계적 성질 및 유전 성질, 및 양호한 내열성의 특성을 갖는다. 예를 들면, 제1 비전도성 층(70)에 선택된 물질은 적어도 화씨 300도의 온도, 적어도 25,000psi 압축 강도, 및 유전체에 대한 적어도 400V/mill.을 허용한다. 제1 비전도성 층(70)에 대한 전형적인 두께 범위는 약 0.2 밀리미터 내지 약 80 밀리미터이다.
절연 개스킷(20)은 또한, 도 1 및 도 2에 도시된 바와 같이, 외측 링(34)의 상부면(62) 및 하부면(64) 상에 배치되어 외측 링(34)을 위한 유전체 배리어 및 전기 절연을 제공하는 제2 비전도성 층(72)을 포함한다. 제2 비전도성 층(72)은 외측 링(34)의 폭(61)에 걸쳐있다. 일 형태에서, 제2 비전도성 층(72)은 또한 외측 링(34)의 외측면의 깊이(66)를 덮는다. 제2 비전도성 층(72)에 적합한 물질은 G10 적층 시트, G11 적층 시트, 고압 및 고열 하에서 에폭시 수지로 함침된 전기 유리 직물, 폴리머계 비전도성 코팅, 페놀 수지계 물질, 에폭시계 비전도성 코팅, 또는 다른 적합한 유전체 물질을 포함한다. 제2 비전도성 층(72)을 외측 링(34)에 도포하는 많은 기술이 존재한다. 하나의 기술은 두께 게이지를 사용하여 정확한 두께로 스프레이 건을 통해 도포되는 코팅으로서 제2 비전도성 층(72)을 도포하는 것이다. 상이한 물질로서 제2 비전도성 층(72)을 도포하는 제2 기술은 접착제 또는 아교에 의한 것이다. 제2 비전도성 층(72)은 내고온성, 높은 기계적 성질 및 유전 성질, 및 양호한 내열성의 특성을 갖는다. 예를 들면, 제2 비전도성 층(72)에 선택된 물질은 적어도 화씨 300도의 온도, 적어도 25,000psi 압축 강도, 및 유전체에 대한 적어도 400V/mill.을 허용한다. 제1 비전도성 층(70)에 대한 전형적인 두께 범위는 약 0.2 밀리미터 내지 약 80 밀리미터이다. 제2 비전도성 층(72)은 특정 세팅에서 절연 개스킷(20)에 대한 요건에 따라 제1 비전도성 층(70)과 동일한 물질 또는 상이한 물질로 제조될 수 있다. 제2 비전도성 층(72)에 대한 전형적인 두께 범위는 약 0.2 밀리미터 내지 약 80 밀리미터이다.
절연 개스킷(20)은 또한, 전기 절연을 제공하기 위해 톱니형 링(30)의 상부면(48) 및 하부면(50)을 완전히 덮도록 정점부(56) 및 홈부(58)를 포함하는 톱니부(54) 상에 배치되는 비전도성 코팅(74)을 포함한다. 또한, 비전도성 코팅(74)은 내측 링(32)의 깊이(44) 또는 외측 링(34)의 깊이(66)를 뺀 깊이(52)에 걸쳐있는 톱니형 링(30)의 노출된 외측면 상에 배치된다. 비전도성 코팅(74)에 적합한 물질은 폴리테트라플루오로에틸렌(PTFE), 임의의 비전도성 폴리머, Halar® ECTFE, 에틸렌 및 클로로트리플루오로에틸렌의 코폴리머(copolymer), 에폭시계 코팅, Xylan® 1200 시리즈 또는 Xylan® 1400 시리즈를 포함하지만 이에 한정되지 않는 PTFE 코팅의 다른 변형물, 또는 다른 적합한 유전체 물질을 포함한다. 비전도성 코팅(74)의 일 실시예는 정점부(56) 및 홈부(58)를 덮도록 톱니부(54) 상에 분무된 약 3 내지 5 밀(mil) 두께의 PTFE 코팅을 포함한다.
절연 개스킷(20)은 또한, 톱니형 링(30)의 상부면(48) 및 하부면(50) 상에 위치되는 비전도성 코팅(74) 상에 배치된 내화성 층(76)을 포함한다. 내화성 층(76)은 모든 비전도성 코팅(74)을 덮지는 않고, 대신에 톱니형 링(30)의 외측 에지로부터 톱니형 링(30)의 중간-영역까지 걸쳐있어 비전도성 코팅(74)의 반경방향 외측 부분을 덮는다. 내화성 층(76)에 적합한 물질은, 몇 가지 물질만 예로 들면, 실리콘 결합제(binder)를 갖는 운모(mica) 시트, 운모계 적층 시트, 알루미노규산염(aluminosilicate), 세라믹 섬유, 및 세라믹 함침 물질을 포함한다. 일 실시예에서, 화재의 경우에, 운모 시트로 제조된 내화성 층(76)은 비전도성 코팅(74)을 보호하고, 약 1000℃(1832℉)까지 녹는 것에 견딘다. 일 실시예에서, 내화성 층(76)은 톱니부(54) 상의 비전도성 코팅(74)에 접착제를 통해 부착된다.
절연 개스킷(20)은 비전도성 코팅(74) 상에 배치된 제3 비전도성 층(78)을 포함하고, 제3 비전도성 층(78)은 절연 개스킷(20)을 위한 전기 절연 및 시일을 제공하기 위해 톱니형 링(30)의 내측 에지로부터 톱니형 링(30)의 중간-영역까지 걸쳐있다. 제3 비전도성 층(78)은 모든 비전도성 코팅(74)을 덮지는 않고, 대신에 톱니형 링(30)의 내측 에지로부터 톱니형 링(30)의 중간-영역까지 걸쳐있어 비전도성 코팅(74)의 반경방향 내측 부분을 덮는다. 내화성 층(76) 및 제3 비전도성 층(78)은 그 사이에 경계부(80)를 형성하고, 그에 따라 내화성 층(76)은 제3 비전도성 층(78)과 중첩하지 않는다. 다시 말해서, 내화성 층(76) 및 제3 비전도성 층(78)은 비전도성 코팅(74) 상에 나란한 배향으로 배열된다. 제3 비전도성 층(78)에 적합한 일부 물질은, 화학적으로 불활성이고 이축-연신된(biaxially-oriented) 충전제 함유 폴리테트라플루오로에틸렌(PTFE) 또는 이축-연신된 고품질 실리카-충전제 함유 PTFE 시트를 포함한다. PTFE 입자의 이축 연신은 시트의 종방향 및 횡방향 모두에서 동등하게 강한 특유한 강도를 생성한다. 이러한 이축 연신 및 실리카와 같은 충전제의 첨가는 PTFE 시트가 하중을 받을 때 크리프(creep) 및 콜드 플로우(cold flow)에 견딜 수 있게 한다. 그러나, 다른 실시예는 톱니형 링(30)의 전기 절연을 또한 제공하는 상이한 물질을 포함할 수 있다. 제3 비전도성 층(78)을 위한 다른 물질은 다른 PTFE계 시트 물질, Viton® 플루오로엘라스토머, 니트릴(nitrile), EPDM 또는 에틸렌 프로필렌 디엔 모노머(M-클래스) 고무, 및 임의의 다른 압축 시트 비전도성 물질을 포함한다.
내화성 층(76), 제3 비전도성 층(78) 및 비전도성 코팅(74)의 조합에 대한 많은 이점 또는 장점이 존재한다. 유익하게는, 비전도성 코팅(74) 상의 페이싱(facing)을 위한 내화성 층(76)과 제3 비전도성 층(78)의 조합은 우수한 시일, 높은 내열 성질, 및 전기 절연의 특유한 이점을 제공한다. 또한, 제3 비전도성 층(78)에 인접한 내화성 층(76)의 특유한 배치는 화재의 경우에 내화성 층(76)이 제3 비전도성 층(78)을 보호하여 시일을 유지할 수 있게 한다. 제3 비전도성 층(78)은 절연 개스킷(20)이 2개의 유동 도관 섹션 사이에 조립될 때 시일을 형성한다. 내화성 층(76)은 전형적으로 제3 비전도성 층(78)만큼 강하지 않고, 그에 따라 제3 비전도성 층(78)은 보다 높은 압력을 견딜 수 있다. 그러므로, 나란한 배향으로, 제3 비전도성 층(78)은 톱니형 링(30)의 내측 에지에 보다 근접하게 배치되고, 내화성 층(76)은 톱니형 링(30)의 외측 에지에 보다 근접하게 배치된다. 또한 유익하게는, 톱니부(54) 상의 비전도성 코팅(74)은, 볼트에 대한 하중이 너무 높아서 톱니부(54)가 내화성 층(76) 및 제3 비전도성 층(78)을 절단하게 하도록 볼트가 과응력을 받으면 전도성을 야기하는 금속간 접촉이 존재하지 않는 가능한 상황에서 유전체 배리어를 유지한다. 또한 유익하게는, 개스킷(20) 상의 제1 비전도성 층(70), 제2 비전도성 층(72) 및 비전도성 코팅(74)은 전기 절연을 제공한다.
절연 개스킷(120)의 제2 실시예가 도 5, 도 6 및 도 7에 개시 및 도시되어 있다. 절연 개스킷(120)은 유체의 통과를 위한 2개의 유동 도관 섹션의 대면하는 플랜지들 사이에 사용하도록 구성된다. 절연 개스킷(120)은 톱니형 링(130)이 톱니형 링(30)과 상이하게 구성되어 있다는 것을 제외하고 모든 측면에서 절연 개스킷(20)과 유사하다. 그러므로, 간결함을 위해서, 절연 개스킷(120) 및 절연 개스킷(20)에 대한 유사한 특징은 설명되지 않을 것이다. 절연 개스킷(120)은 하부면에 대향하는 상부면, 및 하기에서 보다 상세하게 설명되는 바와 같이 절연 개스킷(120)이 유체 유동 도관 섹션과 조립되는 경우에 유체의 통과를 허용하도록 내부에 형성된 개구부(128)를 구비하는 평판형 금속 코어 링을 포함한다. 절연 개스킷(120)은 또한, 절연 개스킷(20)과 모든 측면에서 유사하게 조합하여 내화성 및 전기 절연성 시일을 생성하는 제1 비전도성 층, 제2 비전도성 층, 비전도성 코팅, 내화성 층 및 제3 비전도성 층(일괄적으로 도시되지 않음)을 포함한다.
절연 개스킷(120)의 평판형 금속 코어 링은 내측 링(132)과 외측 링(134) 사이에 위치된 톱니형 링(130)을 구비한다. 톱니형 링(30)과 유사하게, 톱니형 링(130)은 이 톱니형 링(130)과의 사이에 계면을 형성하는 내측 링(132)의 외경(138)에 대응하는 내경을 갖는다. 톱니형 링(130)은 이 톱니형 링(130)과 외측 링(134) 사이의 계면에 대응하는 외경(146)을 갖는다. 톱니형 링(130)은 내경과 외경(146) 사이에 걸쳐있는 폭(147)을 갖는다. 톱니형 링(130)은 또한 하부면(150)에 대향하는 상부면(148)을 가지며, 깊이 또는 두께(152)가 상부면(148)과 하부면(150) 사이에 걸쳐있다.
톱니형 링(130)은 상부면(148) 및 하부면(150)을 따라 걸쳐있는 복수의 톱니부(154)를 갖는다. 복수의 톱니부(154)는 대응하는 복수의 교대로 있는 정점부(156) 및 홈부(158)를 구비하고, 다음에 설명되는 바와 같이, 각각의 정점부(156)는 제1 축방향 폭 치수(X)를 갖고, 각각의 홈부(158)는 대응하는 축방향 폭 치수를 갖는다. 도 6 및 도 7에 도시된 바와 같이, 제1 축방향 폭 치수(X)는 각각의 정점부(156)에 대해 실질적으로 동일하지만, 축방향 폭 치수는 각각의 홈부(158)에 대해 변할 수 있다. 도 6 및 도 7에 도시된 특정 실시예에서, 폭(147)은 5개의 섹션(A, B, C, B, A)으로 나누어진다. 다른 실시예는 폭(147)과 동일한 크기의 폭 내에 추가적인 섹션을 포함할 수 있다. 양쪽 섹션(A)은 동일한 전체 폭 및 동일한 개수의 홈부(158)를 갖는다. 유사하게, 양쪽 섹션(B)은 동일한 전체 폭 및 동일한 개수의 홈부(158)를 갖는다. 섹션(A)에서의 각각의 홈부(158)는 제2 축방향 폭 치수(R)를 가지며, 치수(R)는 섹션(A)에서의 모든 대응 홈(158)에 대해 동일한 크기를 갖는다. 유사하게, 섹션(B)에서의 각각의 홈부(158)는 제3 축방향 폭 치수(S)를 가지며, 치수(S)는 섹션(B)에서의 모든 대응 홈(158)에 대해 동일한 크기를 갖는다. 섹션(C)에서의 각각의 홈부(158)는 제4 축방향 폭 치수(T)를 가지며, 치수(T)는 섹션(C)에서의 모든 대응 홈(158)에 대해 동일한 크기를 갖는다. 일반적으로, 제4 축방향 폭 치수(T)는 제3 축방향 폭 치수(S)보다 크다. 제3 축방향 폭 치수(S)는 제2 축방향 폭 치수(R)보다 크다. 이와 같이, 제2 축방향 폭 치수(R), 제3 축방향 폭 치수(S) 및 제4 축방향 폭 치수(T)는 도 6에 파선으로 나타낸 바와 같이 일괄적으로 대체로 볼록한 프로파일을 형성한다.
도시된 실시예에서, 복수의 홈부(158)는 톱니형 링(130)의 폭(147)을 가로질러 순차적으로 배열된 5개의 그룹 또는 섹션(A, B, C, B, A)을 포함한다. 복수의 홈부(158) 중 외측의 2개 그룹(A, A)은 제2 축방향 폭 치수(R)를 갖고, 복수의 홈부(158) 중 중간의 2개 그룹(B, B)은 제3 축방향 폭 치수(S)를 갖고, 복수의 홈부(158) 중 중앙 그룹(C)은 제4 축방향 폭 치수(T)를 가지며, 여기서 제4 축방향 폭 치수(T)는 제3 축방향 폭 치수(S)보다 크고, 제3 축방향 폭 치수(S)는 제2 축방향 폭 치수(R)보다 크다. 이와 같이, 제4 축방향 폭 치수(T), 제3 축방향 폭 치수(S) 및 제2 축방향 폭 치수(R)는 톱니형 링(130)의 폭(147)에 걸쳐있는 대체로 볼록한 프로파일 또는 볼록한 밀봉 평면을 형성한다.
일 실시예에서, 정점부(156)의 제1 축방향 폭 치수(X)는 약 0.125 인치이다. 이러한 실시예에서, 제1 축방향 폭 치수(X)와 제4 축방향 폭 치수(T) 사이의 차이는 0.012 인치 내지 0.014 인치이다. 제1 축방향 폭 치수(X)와 제3 축방향 폭 치수(S) 사이의 차이는 0.019 인치 내지 0.021 인치이다. 제1 축방향 폭 치수(X)와 제2 축방향 폭 치수(R) 사이의 차이는 0.024 인치 내지 0.026 인치이다. 또한, 이러한 실시예에서, 5개의 별개 섹션(A, B, C, B, A)은 톱니형 링(130)의 폭(147)을 가로질러 균등하게 이격되고 분포되어 있다.
유익하게는, 절연 개스킷(120)의 평판형 금속 코어 링의 톱니형 링(130)은 밀봉-능력에 있어서의 증대된 성능을 제공하고, 플랜지 산업에서 문제가 되는 플랜지 회전, 플랜지 오정렬 및 오버볼팅(over-bolting)에 대한 보다 큰 강인성을 부가한다. 또한, 볼록한 밀봉 평면은 내화성 층(76) 및 제3 비전도성 층(78)이 흘러들게 하는 플랜지 불균일성을 보상한다.
절연 개스킷(20) 및 유사하게 절연 개스킷(120)의 압력-유지 능력 및 성질을 평가함에 있어서, 화재 시험이 API 규격 6FB(Third Edition, Nov. 1998, Non-bending, On-shore or Open-Offshore Fire Test)에 따라 완료되었다. 절연 개스킷(20)만이 시험되었지만, 절연 개스킷(120)은 유사하게 거동하는데, 이는 톱니형 링(130)이 절연 개스킷(120)의 화재 안전 등급에 영향을 미치지 않기 때문이다. 약 6 인치의 외경을 갖는 절연 개스킷(20)이 시험되었다. 시험은 2개의 플랜지들 사이에 절연 개스킷(20)을 부착하고 미국 텍사스주 휴스턴 소재의 유나이티드 밸브 인크(United Valve Inc.)에서의 시험 셋업(test setup)에 플랜지를 끼워맞추는 것을 수반한다. 다음에, 절연 개스킷(20)은 555 psi를 유지하면서 30분 동안 1400℉ 내지 1800℉의 평균 화염 온도로 연소 사이클(burn cycle)을 받았다. 그리고, 연소의 완료시에, 압력은 212℉ 미만의 온도까지의 30분 냉각 동안 유지되었다. 절연 개스킷(20)은 감압되고, 그 후에 555 psi로 다시 가압되며, 추가 5분 동안 유지되었다.
이 시험의 목적은 API 6FB 규격에 따른 재가압 사이클(repressurization cycle)과 함께 연소/냉각 사이클의 지속기간(duration) 동안의 전체 누출을 모니터링하는 것이었다. 누출은 연소/냉각 사이클 동안에 시각적 관측 게이지(visual sight gauge)를 통한 전체 수위 강하에 의해, 그리고 재가압 사이클 동안에 교정 용기에 수동으로 취수하는 것에 의해 결정되었다.
그 결과, 절연 개스킷(20)이 시험 전체에 걸쳐서 화재 안전 특성을 유지할 수 있다는 결론을 내렸다. 30분 연소 및 30분 냉각 주기 동안에, 측정된 누출은 22.765 ml/min의 허용 범위에 대해 단지 0 ml/min이었다. 재가압 사이클 동안의 누출율은 22.765 ml/min의 허용 범위에 대해 5 ml/min이었다. 결론은 절연 개스킷(20)이 API 6FB 시험 프로토콜의 요건을 만족한다는 것이었다.
하기는 API 6FB 규격에 따른 개스킷 화재 시험 동안에 수행된 시험 셋업 및 프로토콜의 개요이다:
1. 절연 개스킷(20)을 2개의 CS 플랜지들 사이에 설치한다.
2. 공급된 B7 스터드(B7 Studs), 2H 너트 유전체 슬리브(2H Nuts Dielectric Sleeves) 및 코팅된 강철 와셔(Coated Steel Washers)를 사용하여 플랜지를 함께 볼트체결한다.
3. 비전도성 PTFE 윤활제를 스터드/볼트에 도포하고 225 ft-lbs까지 토크를 가한다.
4. NPT 파이프 피팅(fitting)을 플랜지 내로 나사체결하고, 시험 셋업에 플랜지 패키지를 부착한다.
5. 모든 압력 및 온도 모니터링 장비를 그 정확한 위치에 연결한다. 장비는 2개의 화염 열전대(flame thermocouple), 플랜지(각각)의 외주부 주위에 120° 이격된 3개의 열전대 및 3개의 열량계 큐브, 및 화염원으로부터 가장 멀리 배치된 제4 열전대/열량계 큐브로 구성되었다.
6. 조립체를 555 psi까지 수중시험하여, 시험전에 모든 피팅/연결부를 누출에 대해 검사한다.
7. 압력을 확인하고, 플랜지 조립체 아래의 버너를 점화하여, 연소 사이클 시계를 시작한다.
8. 시험 프로토콜에 따라서, 화염 열전대의 평균 온도는 점화 2분 이내에 1400℉에 도달하고, 평균 열량계 온도가 1200℉에 도달할 때까지 1300℉ 미만을 나타내지 않고서 1400℉ 내지 1800℉의 평균 온도를 유지하여야 한다.
9. 4개의 열량계 큐브들 사이의 평균 온도는 버너 점화 15분 이내에 1200℉에 도달하여야 한다.
10. 적어도 30분 동안 버너 사이클을 실행한다.
11. 버너 사이클의 완료시에, 밸브를 212℉ 아래로 냉각한다.
12. 시스템을 감압한다.
13. 시스템을 555 psi까지 재가압하고, 5분 동안 유지한다.
14. 허용 누출율을 결정한다:
AL = SD*π = 7.25*π = 22.765 in
여기서, AL = 허용 누출
SD = 평균 개스킷 시일 직경
15. 실제 누출율 대 허용 누출율을 비교한다.
시험 동안에, 데이터가 30초마다 샘플링되었다. 데이터 수집은, 압력, 열량계 블록 온도(4개), 열전대 온도(4개) 및 화염 열전대 온도(2개)로 구성되었다. 수위가 또한 압력 용기 상의 관측 게이지를 통해 시각적으로 모니터링되었다. 주요 데이터 결과의 요약이 하기 표 A에 기술되어 있고, 전체 데이터 결과가 하기 표 B에 기술되어 있다.
[표 A]
Figure 112017009020812-pct00001
[표 B]
Figure 112017009020812-pct00002
Figure 112017009020812-pct00003
Figure 112017009020812-pct00004
시험으로부터 분명해진 바와 같이, 절연 개스킷(20)은 시험 전체에 걸쳐서 화재 안전 특성을 유지할 수 있었다. 30분 연소 및 30분 냉각 주기 동안에, 측정된 누출은 22.765 ml/min의 허용 범위에 대해 0 ml/min이었다. 재가압 사이클 동안의 누출율은 22.765 ml/min의 허용 범위에 대해 5 ml/min이었다. 결론은 절연 개스킷(20)이 API 6FB 시험 프로토콜의 요건을 만족한다는 것이다. 하기의 2개의 데이터 곡선은 가로축을 따라 시험의 시간 지속기간, 및 세로축을 따라 온도 또는 압력을 나타내고 있다.
[데이터 곡선]
Figure 112017009020812-pct00005
Figure 112017009020812-pct00006
이제, 절연 개스킷(20) 또는 절연 개스킷(120)의 제조 및 조립으로 넘어가면, 전형적으로 평판형 금속 코어 링(22)은 선택되는 코어 물질인 0.250" 두께의 대형 시트재로 제조된다. 평판형 금속 코어 링(22)에 사용되는 물질의 하나의 예는 316L 스테인리스강이다. 워터 제트(water jet)가 평판형 금속 코어 링(22)의 내경(36) 및 외경(60)을 절단하는데 사용된다. 그 후에, 선반이 평판형 금속 코어 링(22)을 회전시키는데 사용되는 한편, 내경(36), 외경(60), 내측 링(32), 외측 링(34) 및 톱니형 링(30)이 다양한 공구에 의해 절삭된다. 그 후에, 워터 제트 또는 다른 장치가 제1 비전도성 층(70), 제2 비전도성 층(72), 내화성 층(76) 및 제3 비전도성 층(78)을 각자의 물질의 보다 큰 부재로부터 절삭하는데 사용된다. 그 후에, 접착제 또는 아교가 적절하게 크기설정된 제1 비전도성 층(70), 제2 비전도성 층(72), 내화성 층(76) 및 제3 비전도성 층(78)을 평판형 금속 코어 링(22)에 접착하는데 사용된다.
이제, 절연 개스킷(20) 또는 절연 개스킷(120)의 적용으로 넘어가면, 일 실시예에서, 절연 개스킷(20) 또는 절연 개스킷(120)이 유동 라인 적용에 있어서의 2개의 플랜지들 사이에 사용되지만, 절연 개스킷(20 또는 120)은 다른 파이프 연결에 사용될 수도 있다. 하기의 예는 2개의 파이프 섹션과 조합되는 절연 개스킷(20)을 논의하지만, 이러한 예는 또한 절연 개스킷(120)에도 적용가능하다. 도 8에는, 유동 라인 적용에 있어서, 내측 링(32)의 내경(36)이 파이프 섹션(200)의 직경과 정렬하도록 2개의 파이프 섹션(200) 사이에 위치된 절연 개스킷(20)이 도시되어 있다. 각각의 파이프 섹션(200)은 절연 개스킷(20)이 그 사이에 위치된 상태로 대면 관계로 배치된 플랜지(202)를 포함한다. 플랜지(202)는 너트 및 볼트 세트(206)가 플랜지(202)를 연결하는데 사용될 수 있도록 서로 정렬하는 하나 이상의 보어(bore)(204)를 포함한다.
유익하게는, 플랜지(202) 사이의 전기 절연은 다음에 설명되는 바와 같이 다양한 부품에 의한 연결을 통해 달성된다. 슬리브(206)를 갖는 한쌍의 정렬된 보어(204)는 플랜지(202)들 사이에 구성된다. 슬리브(206)는 유리 강화 폴리머로 제조될 수 있지만, 에폭시, 페놀 및 메타-아라미드 물질과 같은 다른 물질이 사용될 수도 있다. 슬리브(206)는 개스킷(20)이 그 사이에 위치된 상태에서 플랜지(202)의 외측 표면(208)들 사이의 거리와 대략 동일한 길이를 갖는다. 슬리브(206)가 한쌍의 정렬된 보어(204) 내로 삽입되면, 절연 와셔(210)는 플랜지(202)의 외측 표면(208) 상의 보어(204)의 양측 상에 배치된다. 이러한 실시예에서, 그 후에, 금속 와셔(212)가 와셔(210)에 기대어 위치되고, 볼트(206)는 와셔들 및 슬리브(206)를 통과한 후에, 너트(214)에 의해 고정된다. 다른 실시예는 금속 와셔(212)를 포함하지 않을 수도 있다. 각각의 정렬된 보어(204)에서, 동일한 공정이 반복되고, 그 후에 너트(214)가 원하는 압력으로 개스킷(20)을 압축하도록 조여질 수 있다.
절연 와셔(210) 및 슬리브(206)와 조합되는 절연 개스킷(20 또는 120)은 별개의 파이프 섹션(200)의 전기 절연을 제공한다. 절연 와셔(210)는 플랜지(202)의 외측 표면(208)에 기대어 위치되고, 슬리브(206)와 조합하여, 너트 및 볼트 세트(206)와 플랜지(202) 사이의 전기 절연을 제공한다. 일 형태에서, 절연 와셔(210)는 유전체 물질로 코팅된 금속 코어 와셔이다.
본 발명을 설명하는 문맥(특히, 하기의 청구범위의 문맥)에서 부정 관사("a" 및 "an") 및 정관사("the")의 사용은, 본 명세서에 다른 방식으로 지시되거나, 문맥에 의해 명확하게 모순되지 않는 한, 단수 및 복수 모두를 커버하는 것으로 해석되어야 한다. 본 명세서에서의 값의 범위의 기재는, 본 명세서에 다른 방식으로 지시되어 있지 않는 한, 그 범위 내에 있는 각각의 별개 값을 개별적으로 지칭하는 약기 방법(shorthand method)의 역할을 하는 것으로 단지 의도되고, 각각의 별개의 값은 본 명세서에 개별적으로 기재된 것처럼 본 명세서에 합체된다.
본 발명은 상기의 설명에 도시 및 개시되어 있지만, 성질상 예시적이고 비제한적인 것으로 고려되어야 하며, 특정의 바람직한 실시예만이 설명되었을 뿐이고, 본 발명의 사상 내에 있는 모든 변경 및 변형이 보호되도록 소망된다는 것이 이해될 것이다. 또한, 본 명세서에 기재된 모든 참조문헌은 본 기술분야의 기술 수준을 나타내는 것이고, 따라서 그 전체 내용이 참조로 원용된다.

Claims (27)

  1. 유체의 통과를 위한 2개의 유동 도관 섹션의 대면하는 플랜지들 사이에 사용하기 위한 절연 개스킷으로서,
    하부면과 대향하는 상부면, 및 유체의 통과를 허용하도록 내부에 형성된 개구부를 구비하는 평판형 금속 코어 링으로서, 상기 평판형 금속 코어 링은 내측 링과 외측 링 사이에 위치된 톱니형 링을 구비하고, 상기 톱니형 링은 상기 상부면 및 상기 하부면을 따라 복수의 톱니부를 구비하는, 평판형 금속 코어 링;
    상기 내측 링을 위한 유전체 배리어를 제공하기 위해 상기 내측 링의 상부면 및 하부면 상에 배치된 제1 비전도성 층;
    상기 톱니형 링을 위한 유전체 배리어를 제공하기 위해 상기 톱니형 링의 상부면 및 하부면을 따른 상기 복수의 톱니부 상에 배치된 비전도성 코팅;
    상기 외측 링을 위한 유전체 배리어를 제공하기 위해 상기 외측 링의 상부면 및 하부면 상에 배치된 제2 비전도성 층;
    상기 톱니형 링 상에 위치된 상기 비전도성 코팅 상에 배치되는 내화성 층으로서, 상기 내화성 층은 상기 톱니형 링의 외측 에지로부터 상기 톱니형 링의 중간-영역까지 걸쳐있는, 내화성 층; 및
    상기 톱니형 링 상에 위치된 상기 비전도성 코팅 상에 배치되는 제3 비전도성 층으로서, 상기 제3 비전도성 층은 상기 톱니형 링의 내측 에지로부터 상기 톱니형 링의 중간-영역까지 걸쳐있고, 상기 내화성 층이 상기 제3 비전도성 층에 접하여 있는, 제3 비전도성 층을 포함하는, 절연 개스킷.
  2. 제1항에 있어서,
    상기 비전도성 코팅은 폴리테트라플루오로에틸렌으로 제조되는, 절연 개스킷.
  3. 제1항 또는 제2항에 있어서,
    상기 내화성 층은 운모 또는 알루미노규산염으로 제조되는, 절연 개스킷.
  4. 제1항에 있어서,
    상기 제3 비전도성 층은 이축-연신된 충전제 함유 폴리테트라플루오로에틸렌으로 제조되는, 절연 개스킷.
  5. 제1항에 있어서,
    상기 내화성 층은 상기 톱니형 링의 내측 에지와 외측 에지 사이의 중간 지점에서 상기 제3 비전도성 층에 접하는, 절연 개스킷.
  6. 제1항에 있어서,
    상기 복수의 톱니부는 대응하는 복수의 교대로 있는 정점부 및 홈부를 구비하고, 각각의 정점부는 제1 축방향 폭 치수를 갖고, 각각의 홈부는 제2 축방향 폭 치수를 가지며, 상기 제1 축방향 폭 치수는 각각의 정점부에 대해 동일하고, 상기 제2 축방향 폭 치수는 각각의 홈부에 대해 동일한, 절연 개스킷.
  7. 제1항에 있어서,
    상기 복수의 톱니부는 대응하는 복수의 교대로 있는 정점부 및 홈부를 구비하고, 각각의 정점부는 각각의 정점부에 대해 동일한 제1 축방향 폭 치수를 갖고, 복수의 홈부는 상기 톱니형 링의 폭을 가로질러 순차적으로 배열된 5개의 그룹을 포함하고, 상기 복수의 홈부 중 외측의 2개 그룹은 제2 축방향 폭 치수를 갖고, 상기 복수의 홈부 중 중간의 2개 그룹은 제3 축방향 폭 치수를 갖고, 상기 복수의 홈부 중 중앙 그룹은 제4 축방향 폭 치수를 가지며, 상기 제4 축방향 폭 치수는 상기 제3 축방향 폭 치수보다 크고, 상기 제3 축방향 폭 치수는 상기 제2 축방향 폭 치수보다 큰, 절연 개스킷.
  8. 제7항에 있어서,
    상기 제4 축방향 폭 치수, 상기 제3 축방향 폭 치수 및 상기 제2 축방향 폭 치수는 상기 톱니형 링의 폭에 걸쳐있는 볼록한 프로파일을 형성하는, 절연 개스킷.
  9. 대면하는 플랜지를 갖도록 구성 및 배열된 한쌍의 결합된 유동 도관 섹션으로서, 각각의 유동 도관 섹션은 관통 보어를 구비하는, 한쌍의 결합된 유동 도관 섹션; 및
    상기 대면하는 플랜지들 사이에 사용하기 위한 절연 개스킷
    을 포함하는 조합체에 있어서,
    상기 절연 개스킷은,
    하부면과 대향하는 상부면, 및 유체의 통과를 허용하도록 내부에 형성된 개구부를 구비하는 평판형 금속 코어 링으로서, 상기 평판형 금속 코어 링은 내측 링과 외측 링 사이에 위치된 톱니형 링을 구비하고, 상기 톱니형 링은 상기 상부면 및 상기 하부면을 따라 복수의 톱니부를 구비하는, 평판형 금속 코어 링;
    유전체 배리어를 제공하기 위해 상기 내측 링의 상부면 및 하부면 상에 배치된 제1 비전도성 층;
    상기 톱니형 링의 상부면 및 하부면 상에 배치된 비전도성 코팅;
    유전체 배리어를 제공하기 위해 상기 외측 링의 상부면 및 하부면 상에 배치된 제2 비전도성 층;
    상기 톱니형 링 상에 위치된 상기 비전도성 코팅 상에 배치되는 내화성 층; 및
    상기 톱니형 링 상에 위치된 상기 비전도성 코팅 상에 배치되는 제3 비전도성 층으로서, 상기 제3 비전도성 층은 상기 내화성 층에 인접하여 있는, 제3 비전도성 층을 포함하는, 조합체.
  10. 제9항에 따른 조합체에 포함되는 절연 개스킷에 있어서,
    상기 내화성 층은 상기 톱니형 링의 외경으로부터 상기 톱니형 링의 중간 직경까지 걸쳐있고, 상기 제3 비전도성 층은 상기 중간 직경으로부터 상기 톱니형 링의 내경까지 걸쳐있는, 절연 개스킷.
  11. 제9항에 따른 조합체에 포함되는 절연 개스킷에 있어서,
    각각의 대면하는 플랜지에 형성되는 정렬된 보어 내에 위치된 적어도 하나의 절연 슬리브로서, 상기 절연 슬리브는 상기 절연 개스킷이 상기 대면하는 플랜지들 사이에 위치된 상태에서 각각의 플랜지의 외측 표면 사이의 거리와 동일한 길이를 갖는, 적어도 하나의 절연 슬리브;
    대향하는 단부를 갖고, 상기 절연 개스킷이 그 사이에 개재된 상태로 상기 플랜지를 서로 연결하도록 상기 절연 슬리브 내에 수용되는 적어도 하나의 기다란 금속 파스너(elongate metal fastener); 및
    상기 플랜지의 외측면에 접하여 상기 적어도 하나의 기다란 금속 파스너 각각 상에 위치된 절연 와셔를 추가로 포함하는, 절연 개스킷.
  12. 제11항에 있어서,
    상기 절연 와셔는 대향하는 측면을 구비하는 금속 와셔를 포함하고, 상기 대향하는 측면 중 하나에는 유전체 물질의 시트가 적층되어 있고, 상기 유전체 물질은 적어도 상기 플랜지의 외측면에 접하는, 절연 개스킷.
  13. 제11항에 있어서,
    상기 절연 와셔는 유전체 물질로 코팅된 금속 코어를 포함하는, 절연 개스킷.
  14. 제11항에 있어서,
    상기 절연 슬리브는 유리 강화 폴리머 물질, 에폭시 물질, 페놀 물질 및 운모-아라미드 물질 중 하나로 제조된 슬리브를 포함하는, 절연 개스킷.
  15. 제11항에 있어서,
    상기 금속 파스너는 대향하는 단부 중 적어도 하나 상에 너트를 수용하도록 나사가공된 금속 샤프트를 포함하는, 절연 개스킷.
  16. 제9항에 따른 조합체에 포함되는 절연 개스킷에 있어서,
    상기 복수의 톱니부는 대응하는 복수의 교대로 있는 정점부 및 홈부를 구비하고, 각각의 정점부는 제1 축방향 폭 치수를 갖고, 각각의 홈부는 제2 축방향 폭 치수를 가지며, 상기 제1 축방향 폭 치수는 각각의 정점부에 대해 동일하고, 상기 제2 축방향 폭 치수는 각각의 홈부에 대해 동일한, 절연 개스킷.
  17. 제9항에 따른 조합체에 포함되는 절연 개스킷에 있어서,
    상기 복수의 톱니부는 대응하는 복수의 교대로 있는 정점부 및 홈부를 구비하고, 각각의 정점부는 각각의 정점부에 대해 동일한 제1 축방향 폭 치수를 갖고, 복수의 홈부는 상기 톱니형 링의 폭을 가로질러 순차적으로 배열된 5개의 그룹을 포함하고, 상기 복수의 홈부 중 외측의 2개 그룹은 제2 축방향 폭 치수를 갖고, 상기 복수의 홈부 중 중간의 2개 그룹은 제3 축방향 폭 치수를 갖고, 상기 복수의 홈부 중 중앙 그룹은 제4 축방향 폭 치수를 가지며, 상기 제4 축방향 폭 치수는 상기 제3 축방향 폭 치수보다 크고, 상기 제3 축방향 폭 치수는 상기 제2 축방향 폭 치수보다 큰, 절연 개스킷.
  18. 제17항에 있어서,
    상기 제4 축방향 폭 치수, 상기 제3 축방향 폭 치수 및 상기 제2 축방향 폭 치수는 상기 톱니형 링의 폭에 걸쳐있는 볼록한 프로파일을 형성하는, 절연 개스킷.
  19. 유체의 통과를 위한 2개의 유동 도관 섹션의 대면하는 플랜지들 사이에 사용하기 위한 절연 개스킷으로서,
    하부면과 대향하는 상부면, 및 유체의 통과를 허용하도록 내부에 형성된 개구부를 구비하는 평판형 금속 코어 링으로서, 상기 평판형 금속 코어 링은 내측 링과 외측 링 사이에 위치된 톱니형 링을 구비하고, 상기 톱니형 링은 상기 상부면 및 상기 하부면을 따라 복수의 톱니부를 구비하는, 평판형 금속 코어 링;
    상기 내측 링을 위한 유전체 배리어를 제공하기 위해 상기 내측 링의 상부면 및 하부면 상에 배치된 제1 비전도성 층;
    상기 외측 링을 위한 유전체 배리어를 제공하기 위해 상기 외측 링의 상부면 및 하부면 상에 배치된 제2 비전도성 층;
    상기 톱니형 링을 위한 유전체 배리어를 제공하기 위해 상기 톱니형 링의 상부면 및 하부면의 복수의 톱니부 상에 도포된 비전도성 코팅;
    상기 톱니형 링의 복수의 톱니부 상에 도포된 상기 비전도성 코팅 상에 나란한 배향으로 배열되는 내화성 층 및 제3 비전도성 층으로서, 상기 내화성 층 및 상기 제3 비전도성 층 각각은 상기 톱니형 링의 절반부를 덮는, 내화성 층 및 제3 비전도성 층을 포함하는, 절연 개스킷.
  20. 제19항에 있어서,
    상기 내화성 층 및 상기 제3 비전도성 층이 중첩하지 않도록, 상기 내화성 층은 상기 톱니형 링의 외측 에지로부터 상기 톱니형 링의 중간-영역까지 걸쳐있고, 상기 제3 비전도성 층은 상기 톱니형 링의 내측 에지로부터 상기 톱니형 링의 중간-영역까지 걸쳐있는, 절연 개스킷.
  21. 제19항 또는 제20항에 있어서,
    상기 비전도성 코팅은 폴리테트라플루오로에틸렌으로 제조되는, 절연 개스킷.
  22. 제19항에 있어서,
    상기 내화성 층은 운모 또는 알루미노규산염으로 제조되는, 절연 개스킷.
  23. 제19항에 있어서,
    상기 제3 비전도성 층은 이축-연신된 충전제 함유 폴리테트라플루오로에틸렌으로 제조되는, 절연 개스킷.
  24. 제19항에 있어서,
    상기 복수의 톱니부는 대응하는 복수의 교대로 있는 정점부 및 홈부를 구비하고, 각각의 정점부는 제1 축방향 폭 치수를 갖고, 각각의 홈부는 제2 축방향 폭 치수를 가지며, 상기 제1 축방향 폭 치수는 각각의 정점부에 대해 동일하고, 상기 제2 축방향 폭 치수는 각각의 홈부에 대해 동일한, 절연 개스킷.
  25. 제19항에 있어서,
    상기 복수의 톱니부는 대응하는 복수의 교대로 있는 정점부 및 홈부를 구비하고, 각각의 정점부는 각각의 정점부에 대해 동일한 제1 축방향 폭 치수를 갖고, 복수의 홈부는 상기 톱니형 링의 폭을 가로질러 순차적으로 배열된 5개의 그룹을 포함하고, 상기 복수의 홈부 중 외측의 2개 그룹은 제2 축방향 폭 치수를 갖고, 상기 복수의 홈부 중 중간의 2개 그룹은 제3 축방향 폭 치수를 갖고, 상기 복수의 홈부 중 중앙 그룹은 제4 축방향 폭 치수를 가지며, 상기 제4 축방향 폭 치수는 상기 제3 축방향 폭 치수보다 크고, 상기 제3 축방향 폭 치수는 상기 제2 축방향 폭 치수보다 큰, 절연 개스킷.
  26. 제25항에 있어서,
    상기 제4 축방향 폭 치수, 상기 제3 축방향 폭 치수 및 상기 제2 축방향 폭 치수는 상기 톱니형 링의 폭에 걸쳐있는 볼록한 프로파일을 형성하는, 절연 개스킷.
  27. 제10항에 있어서,
    각각의 대면하는 플랜지에 형성되는 정렬된 보어 내에 위치된 적어도 하나의 절연 슬리브로서, 상기 절연 슬리브는 상기 절연 개스킷이 상기 대면하는 플랜지들 사이에 위치된 상태에서 각각의 플랜지의 외측 표면 사이의 거리와 동일한 길이를 갖는, 적어도 하나의 절연 슬리브;
    대향하는 단부를 갖고, 상기 절연 개스킷이 그 사이에 개재된 상태로 상기 플랜지를 서로 연결하도록 상기 절연 슬리브 내에 수용되는 적어도 하나의 기다란 금속 파스너(elongate metal fastener); 및
    상기 플랜지의 외측면에 접하여 상기 적어도 하나의 기다란 금속 파스너 각각 상에 위치된 절연 와셔를 추가로 포함하는, 절연 개스킷.
KR1020177002404A 2014-07-01 2014-07-01 전기 절연성 화재-안전용 밀봉 요소 KR102292221B1 (ko)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2014/045081 WO2016003444A1 (en) 2014-07-01 2014-07-01 Electrically isolating, fire-safe sealing element

Publications (2)

Publication Number Publication Date
KR20170024047A KR20170024047A (ko) 2017-03-06
KR102292221B1 true KR102292221B1 (ko) 2021-08-23

Family

ID=55019790

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020177002404A KR102292221B1 (ko) 2014-07-01 2014-07-01 전기 절연성 화재-안전용 밀봉 요소

Country Status (9)

Country Link
US (1) US10197200B2 (ko)
KR (1) KR102292221B1 (ko)
BR (1) BR112016030682B1 (ko)
CA (1) CA2953900C (ko)
GB (1) GB2541621B (ko)
MX (1) MX2016017146A (ko)
MY (1) MY191144A (ko)
SG (1) SG11201610804XA (ko)
WO (1) WO2016003444A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023049690A1 (en) * 2021-09-21 2023-03-30 Abilene Christian University Stabilizing face ring joint flange and assembly thereof

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO336330B1 (no) * 2013-09-26 2015-08-03 Otechos As Metallisk flensforbindelsespakning
US10001235B2 (en) 2014-01-29 2018-06-19 Garlock Pipeline Technologies, Inc. Sealing system having interlocking inner diameter seal element to resist pressure changes
US10920914B2 (en) 2014-01-29 2021-02-16 Garlock Pipeline Technologies, Inc. Sealing system having interlocking inner diameter seal element to resist pressure changes
GB201514584D0 (en) * 2015-08-17 2015-09-30 Flexitallic Ltd And Flexitallic Invest Inc A gasket
WO2017042590A1 (en) * 2015-09-10 2017-03-16 Lamons Uk Limited Sealing device for flanges
US10738921B2 (en) 2016-08-25 2020-08-11 Marc Rowley Non-metallic high pressure high temperature high chemical compatibility flange isolation gasket
US20180094756A1 (en) 2016-10-05 2018-04-05 Garlock Pipeline Technologies, Inc. Gasket with electrical isolating coatings
US11898637B2 (en) 2016-10-05 2024-02-13 Gpt Industries, Llc Gasket with electrical isolating coatings
CN107061891A (zh) * 2017-04-14 2017-08-18 常熟市海鑫船舶机械制造有限公司 蒸汽管路连接用法兰装置
CN113508253A (zh) * 2019-03-26 2021-10-15 株式会社华尔卡 锯齿形金属垫圈
DE102020000632A1 (de) * 2020-01-28 2021-07-29 Kaco Gmbh + Co. Kg Dichtung
US11773978B2 (en) * 2021-03-11 2023-10-03 Dana Automotive Systems Group, Llc Wire ring combustion seal for automotive engine
US12012827B1 (en) 2023-09-11 2024-06-18 Natura Resources LLC Nuclear reactor integrated oil and gas production systems and methods of operation

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040118510A1 (en) 2002-12-20 2004-06-24 Graftech, Inc. Adhesive backed graphite foil gasket and processes for making the same
US20090243290A1 (en) 2008-03-28 2009-10-01 Corrosion Control Corporation D/B/A Pikotek Isolation Gasket, System, and Method of Manufacture
US20110115170A1 (en) 2008-07-16 2011-05-19 Mico, Spol. S.R.O. Comby Two-Sided Overlain Gasket for Sealing of Dismountable Flanged Joints
US20110140371A1 (en) 2009-09-03 2011-06-16 Christiaan Phillipus Strydom Flange sealing system
US20120235365A1 (en) 2011-03-18 2012-09-20 Alan Stubblefield Alky-one gasket
US20130328270A1 (en) 2011-03-18 2013-12-12 Advanced Sealing, Inc. Alky-One Gasket
US20150060352A1 (en) 2013-09-04 2015-03-05 Garlock Sealing Technologies, Llc Kammprofile gaskets
US20150330509A1 (en) 2014-05-19 2015-11-19 KRAJ Sp. z o. o. Gasket
US20160348817A1 (en) 2015-05-26 2016-12-01 Teadit N.A., Inc. Double-rail serrated metal gasket
US20170074437A1 (en) 2015-09-10 2017-03-16 Lamons Uk Limited Sealing device for flanges

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3561793A (en) 1969-09-03 1971-02-09 Temper Corp Seal element and spacer member for use therewith
GB2010417B (en) 1977-12-17 1982-05-06 Kempchen & Co Gmbh Sealing devices for gaskets and the like
GB2066383B (en) * 1979-12-15 1983-04-07 Flexitallic Gasket Ltd Seals
US4406467A (en) 1982-12-06 1983-09-27 Atlantic Richfield Company High pressure electrical isolation flange gasket
US5551703A (en) 1986-02-25 1996-09-03 Morvant; John D. Pack off seal
US4776600A (en) 1987-11-23 1988-10-11 Pikotek, Inc. Dielectric pipe flange gasket
US5316320A (en) 1992-03-18 1994-05-31 Corrosion Control Corp. Isolation gasket for critical service flow line applications
US5427386A (en) 1992-10-14 1995-06-27 Corrosion Control Corp. Protective seal for use in fluid flow lines and method therefor
US5785322A (en) * 1993-06-30 1998-07-28 Acadia Elastomers Gasket for flange connections
US5511797A (en) * 1993-07-28 1996-04-30 Furon Company Tandem seal gasket assembly
US5564715A (en) 1993-10-15 1996-10-15 Corrosion Control Corp. Tandem seal device for flow line applications
JP2742888B2 (ja) * 1995-01-31 1998-04-22 ニチアス株式会社 電気絶縁ガスケット
US6092811A (en) * 1996-04-30 2000-07-25 Jamco Products, Llc Hybrid gasket
US5758882A (en) 1997-01-24 1998-06-02 Pipeline Seal & Insulator, Inc. Screened gasket for high pressure fluid transmission applications
US6402159B1 (en) 1997-04-08 2002-06-11 Gary A. Kohn Dielectric gasket
US5984316A (en) 1997-12-12 1999-11-16 Bal Seal Engineering Company, Inc. Rotary reciprocating seals with internal metal band
FR2775328B1 (fr) * 1998-02-26 2000-04-28 Christian Loth Joint d'etancheite pour bride de tuyauterie
US6091175A (en) 1998-03-12 2000-07-18 Camco International, Inc. Self-centering rotor bearing assembly for submersible pump motors
DE69933678D1 (de) 1998-08-21 2006-11-30 Advanced Products Company Kompressionsfederabdichtung
US6322087B1 (en) 1998-08-28 2001-11-27 Perkinelmer, Inc. Metallic seal for low load conditions
DE10019567A1 (de) 2000-04-20 2001-10-31 Busak & Shamban Gmbh & Co Dichtung
US20030025327A1 (en) 2001-08-03 2003-02-06 Mannella Gene J. Threaded pipe connection with improved seal
US6682081B2 (en) 2001-10-30 2004-01-27 Inertech, Inc. Reduced area gaskets
JP2004308761A (ja) * 2003-04-07 2004-11-04 Uchiyama Mfg Corp 多機能ガスケット
US20050116427A1 (en) 2003-11-25 2005-06-02 Francis Seidel Corrugated gasket core with profiled surface
WO2005057056A2 (en) 2003-12-05 2005-06-23 Garlock Sealing Technologies, Llc Gasket of non-rounded shape with installation aids
US20050194750A1 (en) 2004-03-05 2005-09-08 Wallace Thomas C. Seal device
CN100578047C (zh) 2004-06-07 2010-01-06 Nok株式会社 密封系统
CA2604849A1 (en) 2005-04-04 2006-10-12 Corrosion Control Corp. D/B/A Pikotek Isolation gasket, system and method of manufacture
JP2008210569A (ja) * 2007-02-23 2008-09-11 Yokogawa Electric Corp コネクタ誤挿入防止構造
KR20130067176A (ko) 2011-12-13 2013-06-21 제일 이엔에스 주식회사 고온고압용 절연가스켓
US10094474B2 (en) * 2015-05-26 2018-10-09 Teadit N.A., Inc. Double-shoulder, double-rail serrated metal gasket

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040118510A1 (en) 2002-12-20 2004-06-24 Graftech, Inc. Adhesive backed graphite foil gasket and processes for making the same
US20090243290A1 (en) 2008-03-28 2009-10-01 Corrosion Control Corporation D/B/A Pikotek Isolation Gasket, System, and Method of Manufacture
US20110115170A1 (en) 2008-07-16 2011-05-19 Mico, Spol. S.R.O. Comby Two-Sided Overlain Gasket for Sealing of Dismountable Flanged Joints
US20110140371A1 (en) 2009-09-03 2011-06-16 Christiaan Phillipus Strydom Flange sealing system
US20120235365A1 (en) 2011-03-18 2012-09-20 Alan Stubblefield Alky-one gasket
US20130328270A1 (en) 2011-03-18 2013-12-12 Advanced Sealing, Inc. Alky-One Gasket
US20150060352A1 (en) 2013-09-04 2015-03-05 Garlock Sealing Technologies, Llc Kammprofile gaskets
US20150330509A1 (en) 2014-05-19 2015-11-19 KRAJ Sp. z o. o. Gasket
US20160348817A1 (en) 2015-05-26 2016-12-01 Teadit N.A., Inc. Double-rail serrated metal gasket
US20170074437A1 (en) 2015-09-10 2017-03-16 Lamons Uk Limited Sealing device for flanges

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023049690A1 (en) * 2021-09-21 2023-03-30 Abilene Christian University Stabilizing face ring joint flange and assembly thereof

Also Published As

Publication number Publication date
BR112016030682A2 (pt) 2018-07-17
BR112016030682B1 (pt) 2022-05-03
US10197200B2 (en) 2019-02-05
CA2953900C (en) 2021-09-07
GB2541621A (en) 2017-02-22
SG11201610804XA (en) 2017-01-27
KR20170024047A (ko) 2017-03-06
WO2016003444A1 (en) 2016-01-07
GB2541621B (en) 2020-07-22
US20170152973A1 (en) 2017-06-01
CA2953900A1 (en) 2016-01-07
MX2016017146A (es) 2018-01-24
GB201621634D0 (en) 2017-02-01
MY191144A (en) 2022-06-01

Similar Documents

Publication Publication Date Title
KR102292221B1 (ko) 전기 절연성 화재-안전용 밀봉 요소
US8678398B2 (en) Isolation gasket, system and method of manufacture
EP1869356B1 (en) Isolation gasket, system and method of manufacture
US11725761B2 (en) Sealing device for flanges
US10865914B2 (en) High temperature leak prevention for piping components and connections
WO1995010720A1 (en) Tandem seal device for flow line applications
CA2657500A1 (en) Current-insulating system for fluid systems
US5553898A (en) Hot-tapping sleeve
WO2015064824A1 (ko) 밀봉시트 장착 고온고압용 절연가스켓
WO2015064825A1 (ko) 금속제 o링 장착 고온고압용 절연가스켓
US20110241342A1 (en) Pipe Repair Clamp with Self Pressurizing Seal
EP3676525A1 (en) Improved gasket
CN209839418U (zh) 一种高温蒸汽管道用法兰
JPH08184393A (ja) 管継手
EP0183510A1 (en) A fitting for clamping a pipe
Ilie et al. Research Regarding the Construction and Reliability of the High-Temperature Performance Testing System for Crimped Copper Pipe and Fitting Assemblies Used in Natural Gas Supply Installations
Bausman et al. An exploration of achievable tightness in ASME B16. 5 standard flanges for various gasket technologies
Mehdi et al. Thermoplastic Lined Pipework for Corrosive Applications
Cipolatti et al. Determination of critical temperature of compressed non-asbestos fiber sheet gaskets
Abid et al. FMEA of gasketed and non-gasketed bolted flanged pipe joints
EP3249275A1 (en) Coupling comprising a body formed of fkm
Veiga et al. Superheated Steam Test Rig for Compressed Non-Asbestos Gaskets Evaluation
WO2018169406A1 (en) Pipe coupling to connect two pipes and methods for connecting two pipes.
Bissett et al. A New Low Stress to Seal Conformable ePTFE Gasket Tape for Large Diameter Glass Lined Steel Equipment

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant