KR102280278B1 - System and Method for Improving Braking Performance of Electric Vehicles using Sliding Mode Control - Google Patents

System and Method for Improving Braking Performance of Electric Vehicles using Sliding Mode Control Download PDF

Info

Publication number
KR102280278B1
KR102280278B1 KR1020200011559A KR20200011559A KR102280278B1 KR 102280278 B1 KR102280278 B1 KR 102280278B1 KR 1020200011559 A KR1020200011559 A KR 1020200011559A KR 20200011559 A KR20200011559 A KR 20200011559A KR 102280278 B1 KR102280278 B1 KR 102280278B1
Authority
KR
South Korea
Prior art keywords
braking force
acceleration
sliding mode
mode control
vehicle
Prior art date
Application number
KR1020200011559A
Other languages
Korean (ko)
Inventor
박정욱
김명원
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Priority to KR1020200011559A priority Critical patent/KR102280278B1/en
Application granted granted Critical
Publication of KR102280278B1 publication Critical patent/KR102280278B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/18Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18072Coasting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18127Regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/10Interpretation of driver requests or demands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/14Acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/24Coasting mode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0002Automatic control, details of type of controller or control system architecture
    • B60W2050/0008Feedback, closed loop systems or details of feedback error signal
    • B60W2050/0009Proportional differential [PD] controller
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0043Signal treatments, identification of variables or parameters, parameter estimation or state estimation
    • B60W2050/005Sampling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/081Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/18Propelling the vehicle
    • B60Y2300/18008Propelling the vehicle related to particular drive situations
    • B60Y2300/18066Coasting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/18Propelling the vehicle
    • B60Y2300/18008Propelling the vehicle related to particular drive situations
    • B60Y2300/18108Braking
    • B60Y2300/18125Regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/30Sensors
    • B60Y2400/303Speed sensors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Abstract

The present invention relates to a device and a method for improving the braking performance of an electric vehicle using sliding mode control. The device of the present invention comprises: a brake control unit for outputting a hydraulic braking force command; a requested acceleration calculating unit for calculating a requested acceleration; a filtering unit for outputting a motor acceleration; and a deceleration controller for outputting a regenerative braking force command.

Description

슬라이딩 모드 제어를 이용한 전기자동차의 제동 성능 향상을 위한 장치 및 방법{System and Method for Improving Braking Performance of Electric Vehicles using Sliding Mode Control}Apparatus and Method for Improving Braking Performance of Electric Vehicles using Sliding Mode Control

본 발명은 전기자동차의 제동 제어에 관한 것으로, 구체적으로 유압 제동의 지연과 차량의 관성 및 마찰력 변화에 무관하게 운전자가 요구하는 제동 성능을 유지시킬 수 있도록 한 슬라이딩 모드 제어를 이용한 전기자동차의 제동 성능 향상을 위한 장치 및 방법에 관한 것이다.The present invention relates to braking control of an electric vehicle, and more specifically, braking performance of an electric vehicle using sliding mode control to maintain the braking performance required by a driver regardless of delay in hydraulic braking and changes in inertia and friction force of the vehicle It relates to an apparatus and method for improvement.

세계적으로 환경오염과 에너지 자원 고갈이 심화됨에 따라 내연기관 자동차의 시대에서 배터리 전기차나 수소연료전지차와 같은 전기 자동차의 시대로 전환하기 위한 움직임이 일어나고 있다.As environmental pollution and energy resource depletion intensify around the world, there is a movement to transition from the era of internal combustion engine vehicles to the era of electric vehicles such as battery electric vehicles and hydrogen fuel cell vehicles.

이러한 전환을 사용자들이 수용하기 위해선 단순히 전기 자동차가 가지는 단점만 보완하는 것뿐만 아니라 승차감과 같이 기존 자동차 분야에서 요구하는 성능들에 대해서도 높은 완성도를 갖춰야한다.In order for users to accept this transition, it is necessary not only to compensate for the shortcomings of electric vehicles, but also to have a high degree of perfection in the performance required in the existing automobile field, such as ride comfort.

전기 자동차는 모터를 사용하기 때문에 제동을 위해 유압식 브레이크의 마찰력뿐만 아니라 모터의 회생 제동력을 이용하여 운동에너지를 전기에너지로 다시 회수할 수 있다.Since an electric vehicle uses a motor, kinetic energy can be recovered as electric energy by using not only the friction force of the hydraulic brake but also the regenerative braking force of the motor for braking.

이 회생제동 기술은 차량의 연비를 향상시킬 수 있는 핵심 분야이기 때문에 전기 자동차에 필수적이다.This regenerative braking technology is essential for electric vehicles because it is a key field that can improve vehicle fuel efficiency.

현재 적용되는 차량에서 순수한 회생제동은 오히려 효율이 더 떨어질 수 있기 때문에 보통 유압식 브레이크와 함께 사용하는 기능(Cross Blending)을 사용한다.Since pure regenerative braking in currently applied vehicles may have lower efficiency, it is usually used with hydraulic brakes (Cross Blending).

따라서, 회생제동과 유압제동 간의 긴밀한 협조 제어를 통해 제동의 안정성과 에너지 회생 비율을 향상시키는 것이 중요하다.Therefore, it is important to improve braking stability and energy regeneration rate through close cooperative control between regenerative braking and hydraulic braking.

그러나 두 제동의 응답 속도의 차이로 인해 회생제동과 유압제동이 변하는 천이구간에서 두 제동력의 합이 요구하는 제동력보다 크거나 작아지게 되는 현상이 일어나게 된다. 이는 차량의 감속도에 영향을 끼쳐 제동시간을 증가시키고 승차감 측면에서 제동 시 운전자에게 이질감(jerk)을 주게 된다.However, due to the difference in the response speed of the two brakes, a phenomenon occurs in which the sum of the two braking forces becomes greater or less than the required braking force in the transition section where the regenerative braking and the hydraulic braking change. This affects the deceleration of the vehicle, increasing the braking time and giving the driver a jerk when braking in terms of ride comfort.

도 1은 종래 기술의 전기자동차의 협조제어를 나타낸 구성도이다.1 is a block diagram showing cooperative control of an electric vehicle of the prior art.

종래 기술의 협조제어에서는 운전자의 요구 제동력을 브레이크 패달로 입력 받으면 BCU(Brake Control unit)에서 제동의 안정성과 에너지의 회생 비율을 고려하여 속도에 따라 유압제동과 회생제동의 비율을 선정하여 분배한다.In the cooperative control of the prior art, when the driver's required braking force is input to the brake pedal, the BCU (Brake Control Unit) selects and distributes the ratio of hydraulic braking and regenerative braking according to the speed in consideration of the stability of braking and the regenerative ratio of energy.

그러나 유압제동의 상대적으로 느린 응답속도와 부정확한 신뢰성으로 인해 제동 시 차가 흔들리는 이질감을 유발한다.However, due to the relatively slow response speed and inaccurate reliability of hydraulic braking, it causes a sense of uneasiness in which the car shakes during braking.

이를 해결하기 위한 방법으로 차량의 가속도를 일정하게 유지하기 위해 회생 제동력을 제어하는 방법이 제안되었다.(공개특허 제 10-2017-0119088호 및 공개특허 제10-2014-0085137호)As a method to solve this problem, a method of controlling the regenerative braking force to keep the acceleration of the vehicle constant has been proposed. (Patent Publication No. 10-2017-0119088 and Patent Publication No. 10-2014-0085137)

그러나 이 방법은 PID 제어기를 사용하기 때문에 안정성을 위해선 차량의 정확한 모델링이 중요하다. 따라서 차량의 가속도를 측정하는 차량 가속도 센서와 도로의 경사를 측정하는 도로 구배도 센서 등이 추가로 필요하며 외란에 매우 취약하다는 단점이 있어 실용화가 어렵다.However, since this method uses a PID controller, accurate modeling of the vehicle is important for stability. Therefore, a vehicle acceleration sensor for measuring the acceleration of a vehicle and a road gradient sensor for measuring the slope of the road are additionally required, and it is difficult to put into practical use because it is very vulnerable to disturbance.

또 다른 방법으로 가속도를 측정하여 하향 학습을 통해 유압 제동력의 비율을 조정하는 방법이 제안되었다.(공개특허 제10-2019-0065618호)As another method, a method of adjusting the ratio of hydraulic braking force through downward learning by measuring acceleration has been proposed. (Patent Publication No. 10-2019-0065618)

그러나 저속에서 정지 직전 상태에서만 고려된 방법이라는 점과 BCU의 속도-토크 map 자체를 수정한다는 점에 이 역시 실제 적용에 제한이 많다.However, the fact that it is considered only in the state just before stopping at low speed and that the speed-torque map of the BCU is modified itself has many limitations in practical application.

따라서, 추가적인 센서 사용없이 운전자 이질감 방지를 위한 가속도의 빠른 추종이 가능하고, 외란에 대한 강인성을 갖는 새로운 전기자동차 제동 성능 향상을 위한 기술의 개발이 요구되고 있다.Accordingly, there is a need to develop a new technology for improving the braking performance of an electric vehicle capable of fast tracking of an acceleration for preventing driver heterogeneity without using an additional sensor and having robustness against disturbance.

대한민국 공개특허 제10-2014-0085137호Republic of Korea Patent Publication No. 10-2014-0085137 대한민국 공개특허 제10-2019-0065618호Republic of Korea Patent Publication No. 10-2019-0065618 대한민국 공개특허 제10-2017-0119088호Republic of Korea Patent Publication No. 10-2017-0119088

본 발명은 종래 기술의 전기자동차의 제동 제어 기술의 문제점을 해결하기 위한 것으로, 회생제동과 유압제동을 함께 사용하는 전기자동차에서 모터의 속도 센서만으로 운전자 이질감 방지를 위한 가속도의 빠른 추종이 가능하고, 외란에 대한 강인성을 갖는 슬라이딩 모드 제어를 이용한 전기자동차의 제동 성능 향상을 위한 장치 및 방법을 제공하는데 그 목적이 있다.The present invention is to solve the problems of the prior art braking control technology of an electric vehicle, and in an electric vehicle that uses both regenerative braking and hydraulic braking, it is possible to quickly follow the acceleration to prevent the driver's sense of heterogeneity only with the speed sensor of the motor, An object of the present invention is to provide an apparatus and method for improving braking performance of an electric vehicle using sliding mode control having robustness against disturbance.

본 발명은 유압 제동의 지연과 차량의 관성 및 마찰력 변화에 무관하게 운전자가 요구하는 제동 성능을 유지시킬 수 있도록 한 슬라이딩 모드 제어를 이용한 전기자동차의 제동 성능 향상을 위한 장치 및 방법을 제공하는데 그 목적이 있다.An object of the present invention is to provide an apparatus and method for improving braking performance of an electric vehicle using sliding mode control, which enables the driver to maintain the braking performance required by the driver regardless of the delay of hydraulic braking and the change in inertia and friction force of the vehicle. There is this.

본 발명은 회생 제동력이 유압제동의 변동분을 보상하여 가속도의 변화가 현저하게 감소되도록 하여 승차감 측면에서 제동 시 운전자에게 이질감(jerk)을 주는 문제를 해결할 수 있도록 한 슬라이딩 모드 제어를 이용한 전기자동차의 제동 성능 향상을 위한 장치 및 방법을 제공하는데 그 목적이 있다.The present invention provides braking of an electric vehicle using sliding mode control, in which the regenerative braking force compensates for changes in hydraulic braking, so that the change in acceleration is remarkably reduced, thereby solving the problem of giving a jerk to the driver during braking in terms of ride comfort. An object of the present invention is to provide an apparatus and method for improving performance.

본 발명은 주행 시 토크제어를 위해 필요했던 속도센서를 그대로 이용하여 센서의 제작 및 유지 비용과 부피 및 무게를 절감할 수 있고, 슬라이딩 모드 제어를 적용함으로써 모델 파라미터의 부정확성에 따른 시스템의 강인성을 보장할 수 있도록 한 슬라이딩 모드 제어를 이용한 전기자동차의 제동 성능 향상을 위한 장치 및 방법을 제공하는데 그 목적이 있다.The present invention can reduce the manufacturing and maintenance cost, volume and weight of the sensor by using the speed sensor required for torque control while driving as it is, and guarantee the robustness of the system according to the inaccuracy of the model parameter by applying the sliding mode control. An object of the present invention is to provide an apparatus and method for improving braking performance of an electric vehicle using sliding mode control.

본 발명의 다른 목적들은 이상에서 언급한 목적으로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.Other objects of the present invention are not limited to the above-mentioned objects, and other objects not mentioned will be clearly understood by those skilled in the art from the following description.

상기와 같은 목적을 달성하기 위한 본 발명에 따른 슬라이딩 모드 제어를 이용한 전기자동차의 제동 성능 향상을 위한 장치는 운전자의 요구 제동력(

Figure 112020010334412-pat00001
) 및 모터의 속도 센서 출력 값(
Figure 112020010334412-pat00002
)을 입력으로 유압 제동력 지령(
Figure 112020010334412-pat00003
)을 출력하는 BCU(Brake Control unit);운전자의 요구 제동력(
Figure 112020010334412-pat00004
)을 차량의 관성 모멘트(
Figure 112020010334412-pat00005
)로 나눠 요구 가속도(
Figure 112020010334412-pat00006
)를 계산하는 요구가속도 산출부;모터의 속도 센서 출력 값(
Figure 112020010334412-pat00007
)을 필터링 후 미분하여 모터 가속도(
Figure 112020010334412-pat00008
)를 출력하는 필터링부;요구 제동력(
Figure 112020010334412-pat00009
)과 속도로 인해 결정된 유압 제동력 지령(
Figure 112020010334412-pat00010
)과 요구 가속도(
Figure 112020010334412-pat00011
), 모터 가속도(
Figure 112020010334412-pat00012
)를 입력으로 받아 회생 제동력 지령(
Figure 112020010334412-pat00013
)을 출력하는 감속도 제어기;를 포함하는 것을 특징으로 한다.In order to achieve the above object, an apparatus for improving braking performance of an electric vehicle using sliding mode control according to the present invention is a driver's required braking force (
Figure 112020010334412-pat00001
) and the motor's speed sensor output value (
Figure 112020010334412-pat00002
) as input to command hydraulic braking force (
Figure 112020010334412-pat00003
BCU (Brake Control Unit) that outputs ); the driver's required braking force (
Figure 112020010334412-pat00004
) is the moment of inertia of the vehicle (
Figure 112020010334412-pat00005
) divided by the required acceleration (
Figure 112020010334412-pat00006
) to calculate the required acceleration; the output value of the motor's speed sensor (
Figure 112020010334412-pat00007
) is filtered and differentiated to obtain the motor acceleration (
Figure 112020010334412-pat00008
) a filtering unit that outputs; the required braking force (
Figure 112020010334412-pat00009
) and the hydraulic braking force command (
Figure 112020010334412-pat00010
) and the required acceleration (
Figure 112020010334412-pat00011
), motor acceleration (
Figure 112020010334412-pat00012
) as input to command the regenerative braking force (
Figure 112020010334412-pat00013
) a deceleration controller that outputs;

다른 목적을 달성하기 위한 본 발명에 따른 슬라이딩 모드 제어를 이용한 전기자동차의 제동 성능 향상을 위한 방법은 모터의 속도 센서 출력 값(

Figure 112020010334412-pat00014
)을 필터링 후 미분하여 모터 가속도(
Figure 112020010334412-pat00015
)를 얻는 단계;운전자의 요구 제동력(
Figure 112020010334412-pat00016
)을 차량의 관성 모멘트(
Figure 112020010334412-pat00017
)로 나눠 요구 가속도(
Figure 112020010334412-pat00018
)를 계산하는 단계;요구 제동력(
Figure 112020010334412-pat00019
)과 속도로 인해 결정된 유압 제동력 지령(
Figure 112020010334412-pat00020
)과 요구 가속도(
Figure 112020010334412-pat00021
), 모터 가속도(
Figure 112020010334412-pat00022
)를 입력으로 받아 감속도 제어기에서 회생 제동력 지령(
Figure 112020010334412-pat00023
)을 발생하는 단계;를 포함하는 것을 특징으로 한다.A method for improving braking performance of an electric vehicle using sliding mode control according to the present invention for achieving another object is a motor speed sensor output value (
Figure 112020010334412-pat00014
) is filtered and differentiated to obtain the motor acceleration (
Figure 112020010334412-pat00015
); the driver's required braking force (
Figure 112020010334412-pat00016
) is the moment of inertia of the vehicle (
Figure 112020010334412-pat00017
) divided by the required acceleration (
Figure 112020010334412-pat00018
); calculating the required braking force (
Figure 112020010334412-pat00019
) and the hydraulic braking force command (
Figure 112020010334412-pat00020
) and the required acceleration (
Figure 112020010334412-pat00021
), motor acceleration (
Figure 112020010334412-pat00022
) as input, and the regenerative braking force command (
Figure 112020010334412-pat00023
) to generate; characterized in that it includes.

이상에서 설명한 바와 같은 본 발명에 따른 슬라이딩 모드 제어를 이용한 전기자동차의 제동 성능 향상을 위한 장치 및 방법은 다음과 같은 효과가 있다.The apparatus and method for improving braking performance of an electric vehicle using sliding mode control according to the present invention as described above have the following effects.

첫째, 회생제동과 유압제동을 함께 사용하는 전기자동차에서 모터의 속도 센서만으로 운전자 이질감 방지를 위한 가속도의 빠른 추종이 가능하고, 외란에 대한 강인성을 갖는 제동 방법을 제공한다.First, in an electric vehicle that uses both regenerative braking and hydraulic braking, it is possible to quickly follow the acceleration to prevent driver heterogeneity with only the speed sensor of the motor, and to provide a braking method having robustness against disturbance.

둘째, 유압 제동의 지연과 차량의 관성 및 마찰력 변화에 무관하게 운전자가 요구하는 제동 성능을 유지시킬 수 있도록 한다.Second, the braking performance required by the driver can be maintained regardless of the delay of hydraulic braking and changes in inertia and friction force of the vehicle.

셋째, 회생 제동력이 유압제동의 변동분을 보상하여 가속도의 변화가 현저하게 감소되도록 하여 승차감 측면에서 제동 시 운전자에게 이질감(jerk)을 주는 문제를 해결할 수 있다.Third, the regenerative braking force compensates for changes in hydraulic braking, so that the change in acceleration is remarkably reduced, thereby solving the problem of giving a jerk to the driver during braking in terms of ride comfort.

넷째, 주행 시 토크제어를 위해 필요했던 속도센서를 그대로 이용하여 센서의 제작 및 유지 비용과 부피 및 무게를 절감할 수 있고, 슬라이딩 모드 제어를 적용함으로써 모델 파라미터의 부정확성에 따른 시스템의 강인성을 보장할 수 있다.Fourth, it is possible to reduce the manufacturing and maintenance cost, volume and weight of the sensor by using the speed sensor required for torque control while driving, and to ensure the robustness of the system according to the inaccuracy of the model parameter by applying the sliding mode control. can

도 1은 종래 기술의 전기자동차의 협조제어를 나타낸 구성도
도 2는 본 발명에 따른 전기자동차의 협조제어를 나타낸 구성도
도 3은 본 발명에 따른 슬라이딩 모드 제어를 이용한 전기자동차의 제동 성능 향상을 위한 장치의 구성도
도 4는 회생제동을 위한 차량 모델 구성도
도 5는 본 발명에 따른 슬라이딩 모드 제어를 이용한 전기자동차의 제동 성능 향상을 위한 방법을 나타낸 플로우 차트
도 6은 본 발명에 따른 슬라이딩 모드 제어를 이용한 전기자동차의 제동 성능 향상을 위한 장치 및 방법의 시뮬레이션 결과 그래프
1 is a configuration diagram showing cooperative control of an electric vehicle of the prior art;
2 is a block diagram showing cooperative control of an electric vehicle according to the present invention;
3 is a block diagram of an apparatus for improving braking performance of an electric vehicle using sliding mode control according to the present invention;
4 is a configuration diagram of a vehicle model for regenerative braking;
5 is a flowchart illustrating a method for improving braking performance of an electric vehicle using sliding mode control according to the present invention;
6 is a graph of simulation results of an apparatus and method for improving braking performance of an electric vehicle using sliding mode control according to the present invention;

이하, 본 발명에 따른 슬라이딩 모드 제어를 이용한 전기자동차의 제동 성능 향상을 위한 장치 및 방법의 바람직한 실시 예에 관하여 상세히 설명하면 다음과 같다.Hereinafter, preferred embodiments of an apparatus and method for improving braking performance of an electric vehicle using sliding mode control according to the present invention will be described in detail as follows.

본 발명에 따른 슬라이딩 모드 제어를 이용한 전기자동차의 제동 성능 향상을 위한 장치 및 방법의 특징 및 이점들은 이하에서의 각 실시 예에 대한 상세한 설명을 통해 명백해질 것이다.Features and advantages of the apparatus and method for improving braking performance of an electric vehicle using sliding mode control according to the present invention will become apparent through detailed description of each embodiment below.

도 2는 본 발명에 따른 전기자동차의 협조제어를 나타낸 구성도이고, 도 3은 본 발명에 따른 슬라이딩 모드 제어를 이용한 전기자동차의 제동 성능 향상을 위한 장치의 구성도이다.2 is a block diagram showing cooperative control of an electric vehicle according to the present invention, and FIG. 3 is a block diagram of an apparatus for improving braking performance of an electric vehicle using sliding mode control according to the present invention.

본 발명에 따른 슬라이딩 모드 제어를 이용한 전기자동차의 제동 성능 향상을 위한 장치 및 방법은 회생제동과 유압제동을 함께 사용하는 전기자동차에서 모터의 속도 센서만으로 운전자 이질감 방지를 위한 가속도의 빠른 추종이 가능하고, 외란에 대한 강인성을 갖는 제동 방법을 제공하기 위한 것으로, 유압 제동의 지연과 차량의 관성 및 마찰력 변화에 무관하게 운전자가 요구하는 제동 성능을 유지시킬 수 있도록 한 것이다.The apparatus and method for improving the braking performance of an electric vehicle using sliding mode control according to the present invention enable fast tracking of acceleration to prevent driver heterogeneity only with the speed sensor of the motor in an electric vehicle using both regenerative braking and hydraulic braking. , to provide a braking method having robustness against disturbance, and to maintain braking performance required by a driver regardless of delay in hydraulic braking and changes in inertia and friction force of the vehicle.

본 발명에 따른 슬라이딩 모드 제어를 이용한 전기자동차의 제동 성능 향상을 위한 장치는 운전자의 요구 제동력(

Figure 112020010334412-pat00024
) 및 모터의 속도 센서 출력 값(
Figure 112020010334412-pat00025
)을 입력으로 유압 제동력 지령(
Figure 112020010334412-pat00026
)을 출력하는 BCU(Brake Control unit)(21)와, 운전자의 요구 제동력(
Figure 112020010334412-pat00027
)을 차량의 관성 모멘트(
Figure 112020010334412-pat00028
)로 나눠 요구 가속도(
Figure 112020010334412-pat00029
)를 계산하는 요구가속도 산출부(22)와, 모터의 속도 센서 출력 값(
Figure 112020010334412-pat00030
)을 필터링 후 미분하여 모터 가속도(
Figure 112020010334412-pat00031
)를 출력하는 필터링부(23)와, 요구 제동력(
Figure 112020010334412-pat00032
)과 속도로 인해 결정된 유압 제동력 지령(
Figure 112020010334412-pat00033
)과 요구 가속도(
Figure 112020010334412-pat00034
), 모터 가속도(
Figure 112020010334412-pat00035
)를 입력으로 받아 회생 제동력 지령(
Figure 112020010334412-pat00036
)을 출력하는 감속도 제어기(24)를 포함한다.The apparatus for improving braking performance of an electric vehicle using sliding mode control according to the present invention provides a driver's required braking force (
Figure 112020010334412-pat00024
) and the motor's speed sensor output value (
Figure 112020010334412-pat00025
) as input to command hydraulic braking force (
Figure 112020010334412-pat00026
BCU (Brake Control Unit) 21 that outputs ), and the driver's required braking force (
Figure 112020010334412-pat00027
) is the moment of inertia of the vehicle (
Figure 112020010334412-pat00028
) divided by the required acceleration (
Figure 112020010334412-pat00029
), the required acceleration calculation unit 22 for calculating the motor speed sensor output value (
Figure 112020010334412-pat00030
) is filtered and differentiated to obtain the motor acceleration (
Figure 112020010334412-pat00031
) and a filtering unit 23 that outputs the required braking force (
Figure 112020010334412-pat00032
) and the hydraulic braking force command (
Figure 112020010334412-pat00033
) and the required acceleration (
Figure 112020010334412-pat00034
), motor acceleration (
Figure 112020010334412-pat00035
) as input to command the regenerative braking force (
Figure 112020010334412-pat00036
) and a deceleration controller 24 that outputs

유압제동의 경우 유압 제동력 지령을 전달한 후 실제 유압 제동력이 발생하기까지 상대적으로 긴 지연을 갖는다. 반면 회생 제동력은 지령 전달 후 거의 즉각적으로 발생시킬 수 있다.In the case of hydraulic braking, there is a relatively long delay until the actual hydraulic braking force is generated after the hydraulic braking force command is transmitted. On the other hand, the regenerative braking force can be generated almost immediately after the command is transmitted.

이러한 두 제동력 간의 응답속도 차이는 유압제동과 회생제동의 비율이 달라지는 천이 구간에서 두 제동력의 합이 운전자가 요구하는 제동력보다 크거나 작아지는 현상으로 일어난다.The difference in response speed between these two braking forces is caused by a phenomenon in which the sum of the two braking forces is greater or less than the braking force required by the driver in the transition section where the ratios of hydraulic braking and regenerative braking are different.

또한, 유압제동의 문제점인 베이퍼 록(Vapor Lock)현상과 페이드(Brake Fade) 현상으로 인해 유압 제동력 지령과 실제 유압 제동력 간의 차이가 발생할 수 있다. 이러한 현상은 차량이 순간적으로 흔들리게 만들어 운전자에게 이질감을 제공한다.Also, a difference between the hydraulic braking force command and the actual hydraulic braking force may occur due to vapor lock and brake fade, which are problems of hydraulic braking. This phenomenon causes the vehicle to momentarily shake, providing a sense of alienation to the driver.

또한 도로의 경사도(구배도)나 노면 재질에 따라 차량에 가해지는 마찰력 또한 운전자의 요구 제동력과 실제 제동력 간의 차이를 발생시키는 주요한 요인으로 존재한다.In addition, the frictional force applied to the vehicle according to the slope (gradient) of the road or the material of the road surface also exists as a major factor in generating the difference between the driver's required braking force and the actual braking force.

본 발명에 따른 감속도 제어기는 이러한 현상을 발생시키는 유압 제동력의 오차와, 도로 및 차량 무게에 의한 마찰력 등을 외란(

Figure 112020010334412-pat00037
)으로 간주하고 슬라이딩 모드 제어를 적용함으로써 응답속도가 빠른 회생제동으로 외란을 보상하여 차량의 가속도가 운전자가 요구하는 가속도를 추종하도록 한다.The deceleration controller according to the present invention generates a disturbance (error of hydraulic braking force, friction force due to road and vehicle weight) that causes this phenomenon.
Figure 112020010334412-pat00037
) and apply sliding mode control to compensate the disturbance with regenerative braking with fast response speed so that the vehicle's acceleration follows the driver's required acceleration.

도 3은 본 발명에 따른 슬라이딩 모드 제어를 이용한 전기자동차의 제동 성능 향상을 위한 장치의 구성도이다.3 is a block diagram of an apparatus for improving braking performance of an electric vehicle using sliding mode control according to the present invention.

도 3의 (30)은 감속도 제어기의 상세 구성이고, (31)은 차량에 구성되는 부분이다.(30) of FIG. 3 is a detailed configuration of the deceleration controller, and (31) is a part configured in the vehicle.

Figure 112020010334412-pat00038
일 때, 이를 수식으로 표현하면 수학식 1에서와 같다.
Figure 112020010334412-pat00038
When , it is expressed as an equation as in Equation 1.

Figure 112020010334412-pat00039
Figure 112020010334412-pat00039

도 4는 회생제동을 위한 차량 모델 구성도이다.4 is a configuration diagram of a vehicle model for regenerative braking.

회생제동과 차량 가속도 사이의 관계를 표현한 도 4에서 전류 제어기의 비례 이득과 적분 이득을 각각 수학식 2에서와 같이 선정하면 회생 제동력의 지령 값과 실제 값 사이가 수학식 3과 같이

Figure 112020010334412-pat00040
의 절점주파수를 갖는 LPF가 됨을 알 수 있다.In FIG. 4, which expresses the relationship between regenerative braking and vehicle acceleration, when the proportional gain and the integral gain of the current controller are selected as in Equation 2, respectively, the difference between the command value of the regenerative braking force and the actual value is as shown in Equation 3
Figure 112020010334412-pat00040
It can be seen that the LPF has a nodal frequency of .

Figure 112021067297480-pat00110

여기서,
Figure 112021067297480-pat00111
는 전류 제어기 비례 이득,
Figure 112021067297480-pat00112
는 전류 제어기 적분 이득,
Figure 112021067297480-pat00113
는 전류 제어기 대역폭,
Figure 112021067297480-pat00114
는 모터 고정자 인덕턴스,
Figure 112021067297480-pat00115
는 모터 고정자 저항이다.
Figure 112021067297480-pat00110

here,
Figure 112021067297480-pat00111
is the current controller proportional gain,
Figure 112021067297480-pat00112
is the current controller integral gain,
Figure 112021067297480-pat00113
is the current controller bandwidth,
Figure 112021067297480-pat00114
is the motor stator inductance,
Figure 112021067297480-pat00115
is the motor stator resistance.

Figure 112020010334412-pat00042
Figure 112020010334412-pat00042

즉, 슬라이딩 모드 제어로 인해 만들어진 회생 제동력 지령의 고주파수 성분들이 완화시킬 수 있음을 의미한다.That is, it means that high-frequency components of the regenerative braking force command generated by the sliding mode control can be relieved.

본 발명에 따른 감속도 제어기의 안정성 검사를 위해 수학식 4와 같은 리아푸노프 함수를 선정한다.In order to check the stability of the deceleration controller according to the present invention, a Riapunov function as in Equation 4 is selected.

Figure 112020010334412-pat00043
Figure 112020010334412-pat00043

요구 제동력에 의한 회생 제동력과 제어기의 출력에 의한 회생 제동력은 각각 다음과 같이 표현된다.The regenerative braking force by the required braking force and the regenerative braking force by the output of the controller are respectively expressed as follows.

Figure 112020010334412-pat00044
Figure 112020010334412-pat00044

Figure 112021067297480-pat00045

여기서,
Figure 112021067297480-pat00116
는 감속도 제어기 이득이다.
Figure 112021067297480-pat00045

here,
Figure 112021067297480-pat00116
is the deceleration controller gain.

시스템이 안정되기 위해선 리아푸노프 함수의 미분이 반드시 음수가 되어야 하므로 다음 조건을 만족한다.In order for the system to be stable, the derivative of the Liapunov function must be negative, so the following condition is satisfied.

Figure 112020010334412-pat00046
Figure 112020010334412-pat00046

즉, 제어 이득을 수학식 8과 같이 선정함으로써 설계한 제어기의 안정성을 보장할 수 있다.That is, by selecting the control gain as in Equation 8, it is possible to ensure the stability of the designed controller.

Figure 112020010334412-pat00047
Figure 112020010334412-pat00047

도 5는 본 발명에 따른 슬라이딩 모드 제어를 이용한 전기자동차의 제동 성능 향상을 위한 방법을 나타낸 플로우 차트이다.5 is a flowchart illustrating a method for improving braking performance of an electric vehicle using sliding mode control according to the present invention.

본 발명에 따른 슬라이딩 모드 제어를 이용한 전기자동차의 제동 성능 향상을 위한 방법은 모터의 속도 센서 출력 값(

Figure 112020010334412-pat00048
)을 필터링 후 미분하여 모터 가속도(
Figure 112020010334412-pat00049
)를 얻는 단계(S501)와, 운전자의 요구 제동력(
Figure 112020010334412-pat00050
)을 차량의 관성 모멘트(
Figure 112020010334412-pat00051
)로 나눠 요구 가속도(
Figure 112020010334412-pat00052
)를 계산하는 단계(S502)와, 요구 제동력(
Figure 112020010334412-pat00053
)과 속도로 인해 결정된 유압 제동력 지령(
Figure 112020010334412-pat00054
)과 요구 가속도(
Figure 112020010334412-pat00055
), 모터 가속도(
Figure 112020010334412-pat00056
)를 입력으로 받아 감속도 제어기에서 회생 제동력 지령(
Figure 112020010334412-pat00057
)을 발생하는 단계(S503)를 포함한다.The method for improving the braking performance of an electric vehicle using the sliding mode control according to the present invention is a motor speed sensor output value (
Figure 112020010334412-pat00048
) is filtered and differentiated to obtain the motor acceleration (
Figure 112020010334412-pat00049
) of obtaining (S501), and the driver's required braking force (
Figure 112020010334412-pat00050
) is the moment of inertia of the vehicle (
Figure 112020010334412-pat00051
) divided by the required acceleration (
Figure 112020010334412-pat00052
) calculating (S502), and the required braking force (
Figure 112020010334412-pat00053
) and the hydraulic braking force command (
Figure 112020010334412-pat00054
) and the required acceleration (
Figure 112020010334412-pat00055
), motor acceleration (
Figure 112020010334412-pat00056
) as input, and the regenerative braking force command (
Figure 112020010334412-pat00057
) is generated (S503).

도 6은 본 발명에 따른 슬라이딩 모드 제어를 이용한 전기자동차의 제동 성능 향상을 위한 장치 및 방법의 시뮬레이션 결과 그래프이다.6 is a graph showing simulation results of an apparatus and method for improving braking performance of an electric vehicle using sliding mode control according to the present invention.

본 발명에 따른 슬라이딩 모드 제어를 이용한 전기자동차의 제동 성능 향상을 위한 장치 및 방법을 검증하기 위해 초기 350 rad/s의 속도에서 운전자가 20Nm의 총 제동력을 요구하는 상황을 가정하여 BCU에서 회생제동과 유압제동의 비율을 바로 결정하는 기존의 방법과 제안한 방법을 비교하였다.In order to verify the apparatus and method for improving the braking performance of an electric vehicle using sliding mode control according to the present invention, it is assumed that the driver requires a total braking force of 20 Nm at the initial speed of 350 rad/s, and regenerative braking and The proposed method was compared with the existing method for directly determining the ratio of hydraulic braking.

두 제동력 변동에 따른 가속도 변화를 확인하기 위해 처음은 회생제동만으로 제동을 하다가, 2.7초 후 회생 제동력과 유압 제동력 지령을 모두 10Nm로 바꾸었다. In order to check the acceleration change due to the change in the two braking forces, braking was performed only with regenerative braking at first, but after 2.7 seconds, both the regenerative braking force and the hydraulic braking force command were changed to 10Nm.

도 6의 (a)를 보면 유압제동은 지령과 실제 값 사이에 지연이 존재한다.Referring to FIG. 6A , there is a delay between the command and the actual value of hydraulic braking.

그러나 도6 (b)의 기존 회생 제동력을 보면 유압제동과 비교했을 때 거의 즉각적으로 반응한다. 이러한 차이로 인해 도 6(c)의 가속도는 크게 출렁임을 확인할 수 있었다.However, looking at the conventional regenerative braking force in FIG. 6(b), it responds almost immediately when compared to hydraulic braking. Due to this difference, it was confirmed that the acceleration of FIG. 6(c) fluctuated significantly.

이에 비하여, 본 발명에 따른 슬라이딩 모드 제어를 이용한 전기자동차의 제동 성능 향상을 위한 장치 및 방법에서는 도 6(b)에서 회생 제동력이 유압제동의 변동분을 보상하여 변함을 확인할 수 있다. 따라서 도 6(c)에서 보듯 가속도의 변화가 현저하게 감소함을 알 수 있다.On the other hand, in the apparatus and method for improving braking performance of an electric vehicle using sliding mode control according to the present invention, it can be confirmed that the regenerative braking force is changed by compensating for a change in hydraulic braking in FIG. 6(b). Accordingly, it can be seen that the change in acceleration is remarkably reduced as shown in FIG. 6(c) .

이상에서 설명한 본 발명에 따른 슬라이딩 모드 제어를 이용한 전기자동차의 제동 성능 향상을 위한 장치 및 방법은 회생 제동력이 유압제동의 변동분을 보상하여 가속도의 변화가 현저하게 감소되도록 하여 승차감 측면에서 제동 시 운전자에게 이질감(jerk)을 주는 문제를 해결할 수 있도록 한 것이다.The apparatus and method for improving the braking performance of an electric vehicle using the sliding mode control according to the present invention described above allow the regenerative braking force to compensate for the change in hydraulic braking to remarkably reduce the change in acceleration, thereby providing the driver with braking in terms of ride comfort. It was designed to solve the problem of giving a feeling of Jerk.

주행 시 토크제어를 위해 필요했던 속도센서를 그대로 이용하여 센서의 제작 및 유지 비용과 부피 및 무게를 절감할 수 있고, 슬라이딩 모드 제어를 적용함으로써 모델 파라미터의 부정확성에 따른 시스템의 강인성을 보장할 수 있도록 한다.By using the speed sensor required for torque control while driving, the manufacturing and maintenance cost, volume, and weight of the sensor can be reduced, and by applying the sliding mode control, the robustness of the system can be ensured according to the inaccuracy of the model parameter. do.

이상에서의 설명에서와 같이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 본 발명이 구현되어 있음을 이해할 수 있을 것이다.It will be understood that the present invention is implemented in a modified form without departing from the essential characteristics of the present invention as described above.

그러므로 명시된 실시 예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 하고, 본 발명의 범위는 전술한 설명이 아니라 특허청구 범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.Therefore, the specified embodiments are to be considered in an illustrative rather than a restrictive sense, the scope of the present invention is indicated in the claims rather than in the foregoing description, and all differences within the scope equivalent thereto are included in the present invention. will have to be interpreted.

21. BCU
22. 요구가속도 산출부
23. 필터링부
24. 감속도 제어기
21. BCU
22. Required acceleration calculation unit
23. Filtering unit
24. Deceleration controller

Claims (6)

운전자의 요구 제동력(
Figure 112021067297480-pat00058
) 및 모터의 속도 센서 출력 값(
Figure 112021067297480-pat00059
)을 입력으로 유압 제동력 지령(
Figure 112021067297480-pat00060
)을 출력하는 BCU(Brake Control unit);
운전자의 요구 제동력(
Figure 112021067297480-pat00061
)을 차량의 관성 모멘트(
Figure 112021067297480-pat00062
)로 나눠 요구 가속도(
Figure 112021067297480-pat00063
)를 계산하는 요구가속도 산출부;
모터의 속도 센서 출력 값(
Figure 112021067297480-pat00064
)을 필터링 후 미분하여 모터 가속도(
Figure 112021067297480-pat00065
)를 출력하는 필터링부;
요구 제동력(
Figure 112021067297480-pat00066
)과 속도로 인해 결정된 유압 제동력 지령(
Figure 112021067297480-pat00067
)과 요구 가속도(
Figure 112021067297480-pat00068
), 모터 가속도(
Figure 112021067297480-pat00069
)를 입력으로 받아 회생 제동력 지령(
Figure 112021067297480-pat00070
)을 출력하는 감속도 제어기;를 포함하고,
Figure 112021067297480-pat00117
일 때, 이를 수식으로 표현하면,
Figure 112021067297480-pat00118
이고,
회생제동과 차량 가속도 사이의 관계를 나타낸 회생제동을 위한 차량 모델에서의 전류 제어기의 비례 이득과 적분 이득을,
Figure 112021067297480-pat00119
로 선정하면 회생 제동력의 지령 값과 실제 값 사이가
Figure 112021067297480-pat00120
와 같이
Figure 112021067297480-pat00121
의 절점주파수를 갖는 LPF가 되어 슬라이딩 모드 제어로 인해 만들어진 회생 제동력 지령의 고주파수 성분들이 완화되고,
여기서,
Figure 112021067297480-pat00122
는 감속도 제어기 이득,
Figure 112021067297480-pat00123
는 전류 제어기 비례 이득,
Figure 112021067297480-pat00124
는 전류 제어기 적분 이득,
Figure 112021067297480-pat00125
는 전류 제어기 대역폭,
Figure 112021067297480-pat00126
는 모터 고정자 인덕턴스,
Figure 112021067297480-pat00127
는 모터 고정자 저항, s는 라플라스 복소 변수인 것을 특징으로 하는 슬라이딩 모드 제어를 이용한 전기자동차의 제동 성능 향상을 위한 장치.
Driver's required braking force (
Figure 112021067297480-pat00058
) and the motor's speed sensor output value (
Figure 112021067297480-pat00059
) as input to command hydraulic braking force (
Figure 112021067297480-pat00060
) to output a BCU (Brake Control unit);
Driver's required braking force (
Figure 112021067297480-pat00061
) is the moment of inertia of the vehicle (
Figure 112021067297480-pat00062
) divided by the required acceleration (
Figure 112021067297480-pat00063
) required acceleration calculation unit for calculating;
The motor's speed sensor output value (
Figure 112021067297480-pat00064
) is filtered and differentiated to obtain the motor acceleration (
Figure 112021067297480-pat00065
) filtering unit to output;
required braking force (
Figure 112021067297480-pat00066
) and the hydraulic braking force command (
Figure 112021067297480-pat00067
) and the required acceleration (
Figure 112021067297480-pat00068
), motor acceleration (
Figure 112021067297480-pat00069
) as input to command the regenerative braking force (
Figure 112021067297480-pat00070
) a deceleration controller that outputs
Figure 112021067297480-pat00117
When expressed as a formula,
Figure 112021067297480-pat00118
ego,
The proportional gain and integral gain of the current controller in the vehicle model for regenerative braking, which shows the relationship between regenerative braking and vehicle acceleration,
Figure 112021067297480-pat00119
is selected, the difference between the command value and the actual value of regenerative braking force
Figure 112021067297480-pat00120
together with
Figure 112021067297480-pat00121
The high-frequency components of the regenerative braking force command made by sliding mode control are relieved by becoming an LPF with a node frequency of
here,
Figure 112021067297480-pat00122
is the deceleration controller gain,
Figure 112021067297480-pat00123
is the current controller proportional gain,
Figure 112021067297480-pat00124
is the current controller integral gain,
Figure 112021067297480-pat00125
is the current controller bandwidth,
Figure 112021067297480-pat00126
is the motor stator inductance,
Figure 112021067297480-pat00127
is a motor stator resistance, and s is a Laplace complex variable. An apparatus for improving braking performance of an electric vehicle using sliding mode control.
삭제delete 제 1 항에 있어서, 감속도 제어기의 안정성 검사를 위해
Figure 112021067297480-pat00076
으로 리아푸노프 함수를 선정하면,
감속도 제어기의 출력에 의한 회생 제동력은
Figure 112021067297480-pat00078
인 것을 특징으로 하는 슬라이딩 모드 제어를 이용한 전기자동차의 제동 성능 향상을 위한 장치.
The method according to claim 1, for the stability test of the deceleration controller
Figure 112021067297480-pat00076
If we choose the Lyapunov function as
The regenerative braking force by the output of the deceleration controller is
Figure 112021067297480-pat00078
A device for improving braking performance of an electric vehicle using sliding mode control, characterized in that
제 3 항에 있어서, 시스템이 안정되기 위해선 리아푸노프 함수의 미분이 반드시 음수가 되어야 하므로,
Figure 112021067297480-pat00079
의 조건을 만족하는 것이고,
여기서,
Figure 112021067297480-pat00128
는 차량 센서의 외란인 것을 특징으로 하는 슬라이딩 모드 제어를 이용한 전기자동차의 제동 성능 향상을 위한 장치.
4. The method according to claim 3, wherein the derivative of the Liapunov function must be negative in order for the system to be stable,
Figure 112021067297480-pat00079
is to satisfy the condition of
here,
Figure 112021067297480-pat00128
A device for improving braking performance of an electric vehicle using sliding mode control, characterized in that is a disturbance of a vehicle sensor.
제 4 항에 있어서, 제어 이득은,
Figure 112020010334412-pat00080
으로 정의되는 것을 특징으로 하는 슬라이딩 모드 제어를 이용한 전기자동차의 제동 성능 향상을 위한 장치.
5. The method of claim 4, wherein the control gain is
Figure 112020010334412-pat00080
A device for improving braking performance of an electric vehicle using sliding mode control, characterized in that it is defined as
모터의 속도 센서 출력 값(
Figure 112021067297480-pat00081
)을 필터링 후 미분하여 모터 가속도(
Figure 112021067297480-pat00082
)를 얻는 단계;
운전자의 요구 제동력(
Figure 112021067297480-pat00083
)을 차량의 관성 모멘트(
Figure 112021067297480-pat00084
)로 나눠 요구 가속도(
Figure 112021067297480-pat00085
)를 계산하는 단계;
요구 제동력(
Figure 112021067297480-pat00086
)과 속도로 인해 결정된 유압 제동력 지령(
Figure 112021067297480-pat00087
)과 요구 가속도(
Figure 112021067297480-pat00088
), 모터 가속도(
Figure 112021067297480-pat00089
)를 입력으로 받아 감속도 제어기에서 회생 제동력 지령(
Figure 112021067297480-pat00090
)을 발생하는 단계;를 포함하고,
Figure 112021067297480-pat00129
일 때, 이를 수식으로 표현하면,
Figure 112021067297480-pat00130
이고,
회생제동과 차량 가속도 사이의 관계를 나타낸 회생제동을 위한 차량 모델에서의 전류 제어기의 비례 이득과 적분 이득을,
Figure 112021067297480-pat00131
로 선정하면 회생 제동력의 지령 값과 실제 값 사이가
Figure 112021067297480-pat00132
와 같이
Figure 112021067297480-pat00133
의 절점주파수를 갖는 LPF가 되어 슬라이딩 모드 제어로 인해 만들어진 회생 제동력 지령의 고주파수 성분들이 완화되고,
여기서,
Figure 112021067297480-pat00134
는 감속도 제어기 이득,
Figure 112021067297480-pat00135
는 전류 제어기 비례 이득,
Figure 112021067297480-pat00136
는 전류 제어기 적분 이득,
Figure 112021067297480-pat00137
는 전류 제어기 대역폭,
Figure 112021067297480-pat00138
는 모터 고정자 인덕턴스,
Figure 112021067297480-pat00139
는 모터 고정자 저항, s는 라플라스 복소 변수인 것을 특징으로 하는 슬라이딩 모드 제어를 이용한 전기자동차의 제동 성능 향상을 위한 방법.
The motor's speed sensor output value (
Figure 112021067297480-pat00081
) is filtered and differentiated to obtain the motor acceleration (
Figure 112021067297480-pat00082
) to obtain;
Driver's required braking force (
Figure 112021067297480-pat00083
) is the moment of inertia of the vehicle (
Figure 112021067297480-pat00084
) divided by the required acceleration (
Figure 112021067297480-pat00085
) to calculate;
required braking force (
Figure 112021067297480-pat00086
) and the hydraulic braking force command (
Figure 112021067297480-pat00087
) and the required acceleration (
Figure 112021067297480-pat00088
), motor acceleration (
Figure 112021067297480-pat00089
) as input, and the regenerative braking force command (
Figure 112021067297480-pat00090
) to generate; including,
Figure 112021067297480-pat00129
When expressed as a formula,
Figure 112021067297480-pat00130
ego,
The proportional gain and integral gain of the current controller in the vehicle model for regenerative braking, which shows the relationship between regenerative braking and vehicle acceleration,
Figure 112021067297480-pat00131
is selected, the difference between the command value and the actual value of regenerative braking force
Figure 112021067297480-pat00132
together with
Figure 112021067297480-pat00133
The high-frequency components of the regenerative braking force command made by sliding mode control are relieved by becoming an LPF with a node frequency of
here,
Figure 112021067297480-pat00134
is the deceleration controller gain,
Figure 112021067297480-pat00135
is the current controller proportional gain,
Figure 112021067297480-pat00136
is the current controller integral gain,
Figure 112021067297480-pat00137
is the current controller bandwidth,
Figure 112021067297480-pat00138
is the motor stator inductance,
Figure 112021067297480-pat00139
is a motor stator resistance, and s is a Laplace complex variable. A method for improving braking performance of an electric vehicle using sliding mode control.
KR1020200011559A 2020-01-31 2020-01-31 System and Method for Improving Braking Performance of Electric Vehicles using Sliding Mode Control KR102280278B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200011559A KR102280278B1 (en) 2020-01-31 2020-01-31 System and Method for Improving Braking Performance of Electric Vehicles using Sliding Mode Control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200011559A KR102280278B1 (en) 2020-01-31 2020-01-31 System and Method for Improving Braking Performance of Electric Vehicles using Sliding Mode Control

Publications (1)

Publication Number Publication Date
KR102280278B1 true KR102280278B1 (en) 2021-07-22

Family

ID=77157909

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200011559A KR102280278B1 (en) 2020-01-31 2020-01-31 System and Method for Improving Braking Performance of Electric Vehicles using Sliding Mode Control

Country Status (1)

Country Link
KR (1) KR102280278B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114393999A (en) * 2022-01-28 2022-04-26 重庆长安新能源汽车科技有限公司 Control method and device for individual driving of new energy automobile and automobile

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140085137A (en) 2012-12-27 2014-07-07 현대자동차주식회사 Control system for hybrid electric vehicle and method thereof
KR20170119088A (en) 2016-04-18 2017-10-26 현대자동차주식회사 Method for improving brake efficiency of vehicle
KR20190052236A (en) * 2017-11-08 2019-05-16 현대자동차주식회사 Method compensating for regenerative braking torque of vehicle
KR20190065618A (en) 2017-12-04 2019-06-12 현대자동차주식회사 Braking control method for eco-friendly vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140085137A (en) 2012-12-27 2014-07-07 현대자동차주식회사 Control system for hybrid electric vehicle and method thereof
KR20170119088A (en) 2016-04-18 2017-10-26 현대자동차주식회사 Method for improving brake efficiency of vehicle
KR20190052236A (en) * 2017-11-08 2019-05-16 현대자동차주식회사 Method compensating for regenerative braking torque of vehicle
KR20190065618A (en) 2017-12-04 2019-06-12 현대자동차주식회사 Braking control method for eco-friendly vehicle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Wheel slip control for improving traction ability and energy efficiency of a personal electric vehicle (2015.07.07.) 1부.* *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114393999A (en) * 2022-01-28 2022-04-26 重庆长安新能源汽车科技有限公司 Control method and device for individual driving of new energy automobile and automobile

Similar Documents

Publication Publication Date Title
KR102048888B1 (en) Method and system for controlling the regenerative braking of an electric or hybrid motor vehicle
US7777439B2 (en) Method and device for determining a gradient-limited cumulative setpoint torque from a setpoint torque of a closed-loop speed control
CN102336191B (en) Model-based anti-shake control method for motor-driven vehicle
US7749132B2 (en) Clutch engagement control apparatus for hybrid vehicle
US5905349A (en) Method of controlling electric motor torque in an electric vehicle
JP5207953B2 (en) Auto cruise control device for hybrid vehicle and automatic braking control device for vehicle
KR20190076146A (en) Braking control system and method for eco-friendly vehicle
JP4293311B2 (en) Reduction ratio selection control method for automatic transmission and vehicle
JP2016028913A (en) Vehicle pitching vibration control device
JPH07264711A (en) Brake for motor operated vehicle
Gerdes et al. Brake system requirements for platooning on an automated highway
KR102280278B1 (en) System and Method for Improving Braking Performance of Electric Vehicles using Sliding Mode Control
CN104442819B (en) hybrid electric vehicle mountain road mode control method
CN110091720A (en) A kind of adaptive Brake energy recovery algorithm of electric car
JPH07264710A (en) Apparatus for braking motor operated vehicle
KR20200116412A (en) Driving force control apparatus for vehicle
CN100374699C (en) Method and device for controlling the drive unit of a vehicle
Yamamura et al. An ACC design method for achieving both string stability and ride comfort
WO2019162225A1 (en) A controller for a vehicle
Ying et al. Research on adaptive cruise control systems and performance analysis using Matlab and Carsim
Chiang et al. Slip-based regenerative ABS control for in-wheel-motor drive EV
US6795755B2 (en) Method for operating a load-dependent power-generating system in a vehicle
Galvagno et al. Drivability enhancement and transient emission reduction for a mild hybrid diesel-electric truck
JP5371855B2 (en) Electric vehicle control device and electric vehicle control method
KR102287320B1 (en) Vehicle control apparatus and method for calculating regenerative braking amount thereof

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant