KR102272371B1 - New lithium phosphate derivatives and New lithium borate derivatives, the method of preparing the same and electrolyte solution and lithium secondary battery containing the same - Google Patents

New lithium phosphate derivatives and New lithium borate derivatives, the method of preparing the same and electrolyte solution and lithium secondary battery containing the same Download PDF

Info

Publication number
KR102272371B1
KR102272371B1 KR1020170085950A KR20170085950A KR102272371B1 KR 102272371 B1 KR102272371 B1 KR 102272371B1 KR 1020170085950 A KR1020170085950 A KR 1020170085950A KR 20170085950 A KR20170085950 A KR 20170085950A KR 102272371 B1 KR102272371 B1 KR 102272371B1
Authority
KR
South Korea
Prior art keywords
lithium
formula
derivative
secondary battery
electrolyte
Prior art date
Application number
KR1020170085950A
Other languages
Korean (ko)
Other versions
KR20190005389A (en
Inventor
임광민
Original Assignee
임광민
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 임광민 filed Critical 임광민
Priority to KR1020170085950A priority Critical patent/KR102272371B1/en
Publication of KR20190005389A publication Critical patent/KR20190005389A/en
Application granted granted Critical
Publication of KR102272371B1 publication Critical patent/KR102272371B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic System
    • C07F5/02Boron compounds
    • C07F5/027Organoboranes and organoborohydrides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/062Organo-phosphoranes without P-C bonds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

본 발명은 새로운 인산 리튬 유도체와 새로운 붕산 리튬 유도체와, 이의 제조방법, 이를 포함하는 리튬 이차전지용 전해액 및 리튬 이차전지에 관한 것으로서, 본 발명에 따른 신규한 인산 리튬과 붕산 리튬 유도체 및 이의 신규한 제조방법은 전기자동차나 에너지 저장장치(ESS) 등 기존 소형 리튬 이차전지 대비 월등한 고효율의 전지 성능을 요구하는 리튬 이차전지 요구성능에 적합한 전해액 첨가제인 새로운 리튬염 물질을 제공하고 또한 간단하고 경제적으로 위험한 공정없이 고순도 및 고수율로 새로운 리튬염 물질을 제공할 수 있는 효과가 있다.The present invention relates to a novel lithium phosphate derivative and a novel lithium borate derivative, a method for preparing the same, an electrolyte solution for a lithium secondary battery and a lithium secondary battery comprising the same, and the novel lithium phosphate and lithium borate derivative according to the present invention and a novel preparation thereof The method provides a new lithium salt material, an electrolyte additive suitable for the performance requirements of lithium secondary batteries that require superior performance compared to existing small lithium secondary batteries such as electric vehicles or energy storage systems (ESS), and is simple and economically dangerous. There is an effect that it is possible to provide a new lithium salt material with high purity and high yield without a process.

Description

새로운 인산 리튬 유도체과 새로운 붕산 리튬 유도체와, 이의 제조방법, 이를 포함하는 리튬 이차전지용 전해액 및 리튬 이차전지{New lithium phosphate derivatives and New lithium borate derivatives, the method of preparing the same and electrolyte solution and lithium secondary battery containing the same}New lithium phosphate derivative and new lithium borate derivative, manufacturing method thereof, electrolyte solution for lithium secondary battery and lithium secondary battery containing same, the method of preparing the same and electrolyte solution and lithium secondary battery containing the same}

본 발명은 새로운 인산 리튬 유도체와 새로운 붕산 리튬 유도체와, 이의 제조방법, 이를 포함하는 리튬 이차전지용 전해액 및 리튬 이차전지에 관한 것으로서, 보다 상세하게는 리튬 이차전지용 전해액 첨가제 혹은 리튬 염으로 사용될 수 있는 새로운 인산 리튬 유도체와 새로운 붕산 리튬 유도체 및 이를 간단하고 경제적으로 위험한 공정없이 고순도 및 고수율로 제조할 수 있는 제조방법과 이를 포함하는 전해액 및 이차전지에 관한 것이다.The present invention relates to a novel lithium phosphate derivative, a novel lithium borate derivative, a method for preparing the same, an electrolyte for a lithium secondary battery and a lithium secondary battery comprising the same, and more particularly, to a novel electrolyte additive or lithium salt for a lithium secondary battery It relates to a lithium phosphate derivative and a novel lithium borate derivative, a manufacturing method capable of manufacturing the same with high purity and high yield without a simple and economically dangerous process, and an electrolyte solution and a secondary battery including the same.

본 발명의 새로운 인산 리튬 및 붕산 리튬의 리튬 이차전지용 전해액 첨가제 혹은 리튬 염으로 사용한 전해액을 포함하는 리튬 이차전지는 전지의 저항 특성을 향상시키고 고출력을 발휘할 수 있는 장점이 있는 리튬 이차전지에 관한 것이다. The lithium secondary battery comprising an electrolyte used as an electrolyte additive or lithium salt for a lithium secondary battery of lithium phosphate and lithium borate of the present invention improves the resistance characteristics of the battery and relates to a lithium secondary battery having the advantage of exhibiting high output.

최근, 각종 모바일 기기의 상품화에 따라 고성능 이차전지의 필요성이 증대되고 있으며, 전기자동차, 하이브리드 전기자동차의 상용화, 및 전기저장 장치의 개발에 따라 고출력, 고에너지 밀도, 고방전 전압 등의 성능을 갖춘 이차전지가 필요하게 되었다.Recently, with the commercialization of various mobile devices, the need for high-performance secondary batteries is increasing, and with the commercialization of electric vehicles and hybrid electric vehicles, and the development of electric storage devices, it is equipped with performance such as high output, high energy density, and high discharge voltage. A secondary battery is needed.

이를 달성하기 위한 전해액의 조성물 중 리튬염의 중요성이 대두되었으며, 점차 고효율 및 가격 경쟁력 있는 이차 전지의 필요성에 따라 기존 제품 대비 가격경쟁력이 우수하고 더욱 우수한 요구성능을 보유한 전해액 첨가제의 필요성이 대두되고 있다. In order to achieve this, the importance of lithium salt in the composition of the electrolyte has been raised, and the need for an electrolyte additive with excellent price competitiveness and better performance required compared to existing products is emerging according to the need for high-efficiency and price-competitive secondary batteries.

기존 전해액 첨가제로는 리튬 헥사플루오로포스페이트(LiPF6)나 리튬 테트라플루오로보레이트(LiBF4)등 과 같이 간단한 구조의 물질이 다년간 애용되었으나 점차 증대되는 요구성능에 따라 기본구조에서 유도된 새로운 신물질의 개발 필요성이 증대되었고, 이에 따라 기존 대비 탁월한 요구성능을 나타내는 신규한 리튬염에 대한 연구 개발이 필요한 실정이다. Materials with simple structures such as lithium hexafluorophosphate (LiPF 6 ) and lithium tetrafluoroborate (LiBF 4 ) have been used for many years as an additive to the existing electrolyte, but new materials derived from the basic structure have been developed according to the gradually increasing performance requirements. The need for development has increased, and accordingly, it is necessary to research and develop a new lithium salt that exhibits superior performance compared to the existing one.

한국등록특허 제1535733호Korean Patent No. 1535733

본 발명의 목적은 기존 상용 제품의 단점을 극복하고 더욱 성능이 개선된, 리튬 이차 전지용 전해액에 사용될 수 있는 새로운 리튬염인 인산 리튬 유도체와 붕산 리튬 유도체 및 이들을 간단하고 경제적으로 위험한 공정없이 고순도 및 고수율로 제조할 수 있는 제조방법을 제공하여 성능이 향상된 리튬 이차전지를 제공하는 데에 있다.An object of the present invention is to overcome the disadvantages of existing commercial products and to further improve performance, lithium phosphate derivatives and lithium borate derivatives, which are novel lithium salts that can be used in electrolytes for lithium secondary batteries, and high purity and high purity and high-purity products without risky processes simply and economically. An object of the present invention is to provide a lithium secondary battery with improved performance by providing a manufacturing method that can be manufactured in a yield.

상기 목적을 달성하기 위하여, 본 발명은 하기 화학식 1로 표시되는 리튬 유도체를 제공한다.In order to achieve the above object, the present invention provides a lithium derivative represented by the following formula (1).

[화학식 1][Formula 1]

Figure 112017064831622-pat00001
Figure 112017064831622-pat00001

X는 인(P) 또는 붕산(B)이고,X is phosphorus (P) or boric acid (B),

n + m은 4 내지 6이고,n + m is 4 to 6,

L은 HO-SO2-OH, HO-SO2R, H-N(SO2R)2, 또는 H-NH-SO2R 중에서 선택되는 어느 하나의 히드록시 또는 아미노기를 포함하는 술폰계 리간드 화합물이고,L is a sulfone-based ligand compound including any one hydroxy or amino group selected from HO-SO 2 -OH, HO-SO 2 R, HN(SO 2 R) 2 , or H-NH-SO 2 R,

R은 C1 내지 C10의 알킬, C1 내지 C10의 아릴, 할라이드, 또는 C1 내지 C10의 알킬할라이드임.R is C1 to C10 alkyl, C1 to C10 aryl, halide, or C1 to C10 alkyl halide.

또한 본 발명은 상기 리튬 유도체를 포함하는, 리튬 이차전지용 전해액을 제공한다.The present invention also provides an electrolyte solution for a lithium secondary battery comprising the lithium derivative.

또한 본 발명은 리튬 헥사플루오로포스페이트(LiPF6) 용액 또는 리튬 테트라플루오로보레이트(LiBF4) 용액과 용매를 혼합하여 제1혼합물을 준비하는 단계; 상기 제1혼합물에 히드록시 또는 아미노기를 포함하는 술폰계 리간드 화합물을 첨가하여 제2혼합물을 준비하는 단계; 상기 제2혼합물에 유기실릴할라이드(organic silyl halide) 혼합물을 첨가한 후 교반하면서 반응시키는 단계; 및 반응 생성물을 승온시키고, 감압한 후 여과 분리하여 하기 화학식 1로 표시되는 리튬 유도체를 제조하는 단계;를 포함하는, 리튬 유도체 제조방법을 제공한다.In addition, the present invention comprises the steps of preparing a first mixture by mixing a lithium hexafluorophosphate (LiPF 6 ) solution or a lithium tetrafluoroborate (LiBF 4 ) solution and a solvent; preparing a second mixture by adding a sulfone-based ligand compound containing a hydroxy or amino group to the first mixture; adding an organic silyl halide mixture to the second mixture and reacting with stirring; and preparing a lithium derivative represented by the following Chemical Formula 1 by heating the reaction product at a temperature, reducing the pressure, and separating by filtration.

[화학식 1][Formula 1]

Figure 112017064831622-pat00002
Figure 112017064831622-pat00002

X는 인(P) 또는 붕산(B)이고,X is phosphorus (P) or boric acid (B),

n + m은 4 내지 6이고,n + m is 4 to 6,

L은 HO-SO2-OH, HO-SO2R, H-N(SO2R)2, 또는 H-NH-SO2R 중에서 선택되는 어느 하나의 히드록시 또는 아미노기를 포함하는 술폰계 리간드 화합물이고,L is a sulfone-based ligand compound including any one hydroxy or amino group selected from HO-SO 2 -OH, HO-SO 2 R, HN(SO 2 R) 2 , or H-NH-SO 2 R,

R은 C1 내지 C10의 알킬, C1 내지 C10의 아릴, 할라이드, 또는 C1 내지 C10의 알킬할라이드임.R is C1 to C10 alkyl, C1 to C10 aryl, halide, or C1 to C10 alkyl halide.

또한 본 발명은 상기 리튬 유도체; 상기 전해액; 상기 전해액이 리튬의 흡장 및 방출이 가능한 양극활물질을 포함하는 양극; 상기 전해액이 리튬의 흡장 및 방출이 가능한 음극활물질을 포함하는 음극; 및 세퍼레이터;를 포함하는, 리튬 이차전지를 제공한다.In addition, the present invention is the lithium derivative; the electrolyte; a positive electrode in which the electrolyte includes a positive electrode active material capable of intercalating and releasing lithium; an anode in which the electrolyte includes an anode active material capable of occluding and releasing lithium; and a separator; provides a lithium secondary battery comprising.

본 발명에 따른 신규한 인산 리튬과 붕산 리튬 유도체 및 이의 신규한 제조방법은 전기자동차나 에너지 저장장치(ESS) 등 기존 소형 리튬 이차전지 대비 월등한 고효율의 전지 성능을 요구하는 리튬 이차전지 요구성능에 적합한 전해액 첨가제인 새로운 리튬염 물질을 제공하고 또한 간단하고 경제적으로 위험한 공정없이 고순도 및 고수율로 새로운 리튬염 물질을 제공할 수 있는 효과가 있다.A novel lithium phosphate and lithium borate derivative and a novel manufacturing method thereof according to the present invention meet the required performance of a lithium secondary battery that requires superior battery performance compared to existing small lithium secondary batteries such as electric vehicles and energy storage systems (ESS). There is an effect of providing a new lithium salt material that is a suitable electrolyte additive, and also providing a new lithium salt material with high purity and high yield without a simple and economically risky process.

이하, 본 발명인 새로운 인산 리튬 유도체와 새로운 붕산 리튬 유도체와, 이의 제조방법, 이를 포함하는 리튬 이차전지용 전해액 및 리튬 이차전지를 보다 상세하게 설명한다.Hereinafter, a novel lithium phosphate derivative and a novel lithium borate derivative according to the present invention, a manufacturing method thereof, an electrolyte solution for a lithium secondary battery including the same, and a lithium secondary battery will be described in more detail.

본 발명의 발명자는 이차 전지 전해액 첨가제에 대해 연구 개발 하던 중, 기본 구조인 리튬 헥사플루오로포스페이트(LiPF6) 또는 리튬 테트라플루오로보레이트(LiBF4)에 술폰 작용기가 도입된 새로운 유도체를 리튬 이차전지에 적용할 경우, 술폰 작용기가 안정성을 유지하면서도 요구성능을 발휘할 수 있어 다양한 성능을 발휘하면서도 리튬 이차전지 내에서 가혹한 충/방전 등 전기화학적 조건에서도 문제없이 성능을 발휘할 수 있음을 밝혀내어 본 발명을 완성하였다.The inventor of the present invention, while researching and developing the secondary battery electrolyte additive, a lithium secondary battery with a sulfone functional group introduced into the basic structure of lithium hexafluorophosphate (LiPF 6 ) or lithium tetrafluoroborate (LiBF 4 ) When applied to the present invention, it was found that the sulfone functional group can exhibit the required performance while maintaining stability, thereby exhibiting various performances and performing without problems in electrochemical conditions such as severe charge/discharge in the lithium secondary battery. completed.

본 발명은 하기 화학식 1로 표시되는 리튬 유도체를 제공한다.The present invention provides a lithium derivative represented by the following formula (1).

[화학식 1][Formula 1]

Figure 112017064831622-pat00003
Figure 112017064831622-pat00003

X는 인(P) 또는 붕산(B)이고,X is phosphorus (P) or boric acid (B),

n + m은 4 내지 6이고,n + m is 4 to 6,

L은 HO-SO2-OH, HO-SO2R, H-N(SO2R)2, 또는 H-NH-SO2R 중에서 선택되는 어느 하나의 히드록시 또는 아미노기를 포함하는 술폰계 리간드 화합물이고,L is a sulfone-based ligand compound including any one hydroxy or amino group selected from HO-SO 2 -OH, HO-SO 2 R, HN(SO 2 R) 2 , or H-NH-SO 2 R,

R은 C1 내지 C10의 알킬, C1 내지 C10의 아릴, 할라이드, 또는 C1 내지 C10의 알킬할라이드임.R is C1 to C10 alkyl, C1 to C10 aryl, halide, or C1 to C10 alkyl halide.

상기 리튬 유도체는 X는 인(P)이고, n + m은 6일 수 있으며, 이에 제한되는 것은 아니다.In the lithium derivative, X may be phosphorus (P), and n + m may be 6, but is not limited thereto.

상기 리튬 유도체는 하기 화학식 2 내지 화학식 9로 표시되는 화합물 중에서 선택된 어느 하나일 수 있으며, 이에 제한되는 것은 아니다.The lithium derivative may be any one selected from compounds represented by the following Chemical Formulas 2 to 9, but is not limited thereto.

[화학식 2][Formula 2]

Figure 112017064831622-pat00004
Figure 112017064831622-pat00004

[화학식 3][Formula 3]

Figure 112017064831622-pat00005
Figure 112017064831622-pat00005

[화학식 4][Formula 4]

Figure 112017064831622-pat00006
Figure 112017064831622-pat00006

[화학식 5][Formula 5]

Figure 112017064831622-pat00007
Figure 112017064831622-pat00007

[화학식 6][Formula 6]

Figure 112017064831622-pat00008
Figure 112017064831622-pat00008

[화학식 7][Formula 7]

Figure 112017064831622-pat00009
Figure 112017064831622-pat00009

[화학식 8][Formula 8]

Figure 112017064831622-pat00010
Figure 112017064831622-pat00010

[화학식 9][Formula 9]

Figure 112017064831622-pat00011
Figure 112017064831622-pat00011

상기 화학식 2 내지 화학식 9로 표시되는 리튬 유도체는 인산 리튬 유도체이다.The lithium derivatives represented by Formulas 2 to 9 are lithium phosphate derivatives.

상기 리튬 유도체는 X는 붕산(B)이고, n + m은 4일 수 있으며, 이에 제한되는 것은 아니다.In the lithium derivative, X may be boric acid (B), and n + m may be 4, but is not limited thereto.

상기 리튬 유도체은 하기 화학식 10 내지 화학식 17로 표시되는 화합물 중에서 선택된 어느 하나일 수 있으며, 이에 제한되는 것은 아니다.The lithium derivative may be any one selected from compounds represented by the following Chemical Formulas 10 to 17, but is not limited thereto.

[화학식 10][Formula 10]

Figure 112017064831622-pat00012
Figure 112017064831622-pat00012

[화학식 11][Formula 11]

Figure 112017064831622-pat00013
Figure 112017064831622-pat00013

[화학식 12][Formula 12]

Figure 112017064831622-pat00014
Figure 112017064831622-pat00014

[화학식 13][Formula 13]

Figure 112017064831622-pat00015
Figure 112017064831622-pat00015

[화학식 14][Formula 14]

Figure 112017064831622-pat00016
Figure 112017064831622-pat00016

[화학식 15][Formula 15]

Figure 112017064831622-pat00017
Figure 112017064831622-pat00017

[화학식 16][Formula 16]

Figure 112017064831622-pat00018
Figure 112017064831622-pat00018

[화학식 17][Formula 17]

Figure 112017064831622-pat00019
Figure 112017064831622-pat00019

상기 화학식 10 내지 화학식 17로 표시되는 리튬 유도체 붕산 리튬 유도체이다.The lithium derivatives represented by the above Chemical Formulas 10 to 17 are lithium borate derivatives.

또한 본 발명은 상기 리튬 유도체를 포함하는, 리튬 이차전지용 전해액을 제공한다.The present invention also provides an electrolyte solution for a lithium secondary battery comprising the lithium derivative.

상기 리튬 이차전지용 전해액은 상기 리튬 유도체 0.01 내지 30 중량%과, 잔량의 용매로 이루어진 것일 수 있으며, 이에 제한되는 것은 아니다.The electrolyte for a lithium secondary battery may be composed of 0.01 to 30% by weight of the lithium derivative and the remaining amount of the solvent, but is not limited thereto.

상기 리튬 이차전지용 전해액은 리튬 헥사플루오로포스페이트(LiPF6), 리튬테트라플루오로보레이트(LiBF4), 리튬 퍼클로레이트(LiClO4), 리튬 트리플루오로메탄술포네이트(LiCF3SO3), 리튬 디플루오로포스페이트(LiPO2F2), 리튬 비스(프루오로술포닐)이미드[LiN(FSO2)2], 리튬 비스(트리플루오로메탄술포닐)이미드[LiN(CF3SO2)2], 및 비수계용매 중에서 선택된 어느 하나 이상을 더 포함할 수 있으며, 이에 제한되는 것은 아니다.The electrolyte for the lithium secondary battery is lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium perchlorate (LiClO 4 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), lithium difluoro rophosphate (LiPO 2 F 2 ), lithium bis(fluorosulfonyl)imide [LiN(FSO 2 ) 2 ], lithium bis(trifluoromethanesulfonyl)imide [LiN(CF 3 SO 2 ) 2 ], and any one or more selected from a non-aqueous solvent, but is not limited thereto.

상기 비수계용매는 에틸렌카보네이트, 프로필렌카보네이트, 부틸렌카보네이트, 에틸메틸카보네이트, 디메틸카보네이트, 디에틸카보네이트, 디프로필카보네이트, 메틸프로필카보네이트, 에틸프로필카보네이트, 비닐렌카보네이트, 플루오로에틸렌카보네이트 또는 이들의 할로겐화된 카보네이트로 이루어진 군에서 선택된 어느 하나인 카보네이트류; 감마-부티로락톤, 감마-발레로락톤, 감마-카프로락톤, 델타-발레로락톤, 및 입실론-카프로락톤으로 이루어진 군에서 선택된 어느 하나인 락톤류; 메틸아세테이트, 에틸아세테이트, 프로필아세테이트, 또는 메틸프로피오네이트, 및 에틸프로피오네이트로 이루어진 군에서 선택된 어느 하나인 아세테이트류; 3-메톡시 글루타로니트릴, 3-에톡시 글로타로니트릴, 3-디메틸아미노 글루타로니트릴, 티오메톡시 숙시노니트릴, 및 2,2,2-트리플루오로에톡시 글루타로니트릴로 이루어진 군에서 선택된 어느 하나인 니트릴류; 및 1,3-프로판설톤, 1,4-부탄설톤, 1,3-프로펜설톤, 1,4-부텐설톤, 및 1-메틸-1,3-프로펜설톤으로 이루어진 군에서 선택된 어느 하나인 설톤류;로 이루어진 군에서 선택된 어느 하나일 수 있으며, 이에 제한되는 것은 아니다.The non-aqueous solvent is ethylene carbonate, propylene carbonate, butylene carbonate, ethyl methyl carbonate, dimethyl carbonate, diethyl carbonate, dipropyl carbonate, methyl propyl carbonate, ethyl propyl carbonate, vinylene carbonate, fluoroethylene carbonate, or halogenated thereof. carbonates that are any one selected from the group consisting of carbonates; lactones selected from the group consisting of gamma-butyrolactone, gamma-valerolactone, gamma-caprolactone, delta-valerolactone, and epsilon-caprolactone; Acetates selected from the group consisting of methyl acetate, ethyl acetate, propyl acetate, or methyl propionate, and ethyl propionate; From the group consisting of 3-methoxy glutaronitrile, 3-ethoxy glutaronitrile, 3-dimethylamino glutaronitrile, thiomethoxy succinonitrile, and 2,2,2-trifluoroethoxy glutaronitrile any one selected nitrile; and 1,3-propanesultone, 1,4-butanesultone, 1,3-propensultone, 1,4-butensultone, and 1-methyl-1,3-propensultone It may be any one selected from the group consisting of sultones, but is not limited thereto.

상기 리튬 이차전지용 전해액은 0.1 M 내지 2.0 M(mol/ℓ)의 리튬 헥사플루오로포스페이트(LiPF6)를 포함할 수 있으며, 이에 제한되는 것은 아니다.The electrolyte for a lithium secondary battery may include 0.1 M to 2.0 M (mol/l) of lithium hexafluorophosphate (LiPF 6 ), but is not limited thereto.

상기 리튬 이차전지용 전해액은 상기 리튬 유도체 0.01 내지 30 중량%, 리튬 헥사플루오로포스페이트(LiPF6), 리튬테트라플루오로보레이트(LiBF4), 리튬 퍼클로레이트(LiClO4), 리튬 트리플루오로메탄술포네이트(LiCF3SO3), 리튬 디플루오로포스페이트(LiPO2F2), 리튬 비스(프루오로술포닐)이미드[LiN(FSO2)2], 또는 리튬 비스(트리플루오로메탄술포닐)이미드[LiN(CF3SO2)2] 0.01 내지 20 중량%, 및 잔량의 용매로 이루어진 것일 수 있으며, 이에 제한되는 것은 아니다.The lithium secondary battery electrolyte is 0.01 to 30% by weight of the lithium derivative, lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium perchlorate (LiClO 4 ), lithium trifluoromethanesulfonate ( LiCF 3 SO 3 ), lithium difluorophosphate (LiPO 2F 2 ), lithium bis(fluorosulfonyl)imide [LiN(FSO 2 ) 2 ], or lithium bis(trifluoromethanesulfonyl)imide [ LiN(CF 3 SO 2 ) 2 ] 0.01 to 20% by weight, and the remaining amount of the solvent, but is not limited thereto.

또한 본 발명은 리튬 헥사플루오로포스페이트(LiPF6) 용액 또는 리튬 테트라플루오로보레이트(LiBF4) 용액과 용매를 혼합하여 제1혼합물을 준비하는 단계; 상기 제1혼합물에 히드록시 또는 아미노기를 포함하는 술폰계 리간드 화합물을 첨가하여 제2혼합물을 준비하는 단계; 상기 제2혼합물에 유기실릴할라이드(organic silyl halide) 혼합물을 첨가한 후 교반하면서 반응시키는 단계; 및 반응 생성물을 승온시키고, 감압한 후 여과 분리하여 하기 화학식 1로 표시되는 리튬 유도체를 제조하는 단계;를 포함하는, 리튬 유도체 제조방법을 제공한다.In addition, the present invention comprises the steps of preparing a first mixture by mixing a lithium hexafluorophosphate (LiPF 6 ) solution or a lithium tetrafluoroborate (LiBF 4 ) solution and a solvent; preparing a second mixture by adding a sulfone-based ligand compound containing a hydroxy or amino group to the first mixture; adding an organic silyl halide mixture to the second mixture and reacting with stirring; and preparing a lithium derivative represented by the following Chemical Formula 1 by heating the reaction product at a temperature, reducing the pressure, and separating by filtration.

[화학식 1][Formula 1]

Figure 112017064831622-pat00020
Figure 112017064831622-pat00020

X는 인(P) 또는 붕산(B)이고,X is phosphorus (P) or boric acid (B),

n + m은 4 내지 6이고,n + m is 4 to 6,

L은 HO-SO2-OH, HO-SO2R, H-N(SO2R)2, 또는 H-NH-SO2R 중에서 선택되는 어느 하나의 히드록시 또는 아미노기를 포함하는 술폰계 리간드 화합물이고,L is a sulfone-based ligand compound including any one hydroxy or amino group selected from HO-SO 2 -OH, HO-SO 2 R, HN(SO 2 R) 2 , or H-NH-SO 2 R,

R은 C1 내지 C10의 알킬, C1 내지 C10의 아릴, 할라이드, 또는 C1 내지 C10의 알킬할라이드임.R is C1 to C10 alkyl, C1 to C10 aryl, halide, or C1 to C10 alkyl halide.

상기 화학식 1로 표시되는 리튬 유도체는 X는 인산(P)이고, n + m은 6일 수 있으며, 이에 제한되는 것은 아니다.In the lithium derivative represented by Formula 1, X may be phosphoric acid (P), and n + m may be 6, but is not limited thereto.

상기 리튬 유도체는 하기 화학식 2 내지 화학식 9로 표시되는 화합물 중 어느 하나일 수 있으며, 이에 제한되는 것은 아니다.The lithium derivative may be any one of compounds represented by the following Chemical Formulas 2 to 9, but is not limited thereto.

[화학식 2][Formula 2]

Figure 112017064831622-pat00021
Figure 112017064831622-pat00021

[화학식 3][Formula 3]

Figure 112017064831622-pat00022
Figure 112017064831622-pat00022

[화학식 4][Formula 4]

Figure 112017064831622-pat00023
Figure 112017064831622-pat00023

[화학식 5][Formula 5]

Figure 112017064831622-pat00024
Figure 112017064831622-pat00024

[화학식 6][Formula 6]

Figure 112017064831622-pat00025
Figure 112017064831622-pat00025

[화학식 7][Formula 7]

Figure 112017064831622-pat00026
Figure 112017064831622-pat00026

[화학식 8][Formula 8]

Figure 112017064831622-pat00027
Figure 112017064831622-pat00027

[화학식 9][Formula 9]

Figure 112017064831622-pat00028
Figure 112017064831622-pat00028

상기 화학식 2 내지 화학식 9로 표시되는 리튬 유도체는 인산 리튬 유도체이다.The lithium derivatives represented by Formulas 2 to 9 are lithium phosphate derivatives.

본 발명의 일 실시예로서, 상기 화학식 2로 표시되는 리튬 테트라플루오로(술페이토)인산은 하기 반응식 1과 같이 제조될 수 있다. As an embodiment of the present invention, lithium tetrafluoro (sulfato) phosphoric acid represented by Chemical Formula 2 may be prepared as shown in Scheme 1 below.

[반응식 1] [Scheme 1]

LiPF6 + H2SO4 + 2 Me3SiCl ----> LiPF4(SO4) + 2 MeSiF + 2 HClLiPF 6 + H 2 SO 4 + 2 Me 3 SiCl ----> LiPF 4 (SO 4 ) + 2 MeSiF + 2 HCl

상기 반응식 1과 유사하게, 상기 화학식 3 내지 화학식 9로 표시되는 인산 리튬 유도체는 리튬 헥사플루오로포스페이트(LiPF6)를 출발물질로 하여 다양한 히드록시 및 아미노유도체와 유기실릴할라이드 시약과 반응시켜 제조할 수 있다.Similar to Scheme 1, the lithium phosphate derivatives represented by Formulas 3 to 9 can be prepared by reacting lithium hexafluorophosphate (LiPF 6 ) with various hydroxy and amino derivatives with an organosilyl halide reagent using lithium hexafluorophosphate (LiPF 6 ) as a starting material. can

상기 화학식 1로 표시되는 리튬 유도체는 X는 붕산(B)이고, n + m은 4일 수 있으며, 이에 제한되는 것은 아니다.In the lithium derivative represented by Formula 1, X may be boric acid (B), and n + m may be 4, but is not limited thereto.

상기 리튬 유도체는 하기 화학식 10 내지 화학식 17로 표시되는 화합물 중 어느 하나일 수 있으며, 이에 제한되는 것은 아니다.The lithium derivative may be any one of compounds represented by the following Chemical Formulas 10 to 17, but is not limited thereto.

[화학식 10][Formula 10]

Figure 112017064831622-pat00029
Figure 112017064831622-pat00029

[화학식 11][Formula 11]

Figure 112017064831622-pat00030
Figure 112017064831622-pat00030

[화학식 12][Formula 12]

Figure 112017064831622-pat00031
Figure 112017064831622-pat00031

[화학식 13][Formula 13]

Figure 112017064831622-pat00032
Figure 112017064831622-pat00032

[화학식 14][Formula 14]

Figure 112017064831622-pat00033
Figure 112017064831622-pat00033

[화학식 15][Formula 15]

Figure 112017064831622-pat00034
Figure 112017064831622-pat00034

[화학식 16][Formula 16]

Figure 112017064831622-pat00035
Figure 112017064831622-pat00035

[화학식 17][Formula 17]

Figure 112017064831622-pat00036
Figure 112017064831622-pat00036

상기 화학식 10 내지 화학식 17로 표시되는 리튬 유도체는 붕산 리튬 유도체이다.The lithium derivatives represented by Chemical Formulas 10 to 17 are lithium borate derivatives.

본 발명의 일 실시예로서, 상기 화학식 10으로 표시되는 리튬 비스(술페이토)붕산은 하기 반응식 2와 같이 제조될 수 있다. As an embodiment of the present invention, lithium bis(sulfato)boric acid represented by Chemical Formula 10 may be prepared as shown in Scheme 2 below.

[반응식 2] [Scheme 2]

LiBF4 + 2 H2SO4 + 4 Me3SiCl ----> LiB(SO4)2 + 4 MeSiF + 4 HClLiBF 4 + 2 H 2 SO 4 + 4 Me 3 SiCl ----> LiB(SO 4 ) 2 + 4 MeSiF + 4 HCl

상기 반응식 2과 유사하게, 본 발명의 화학식 11 내지 18로 표시되는 리튬 붕산 화합물은 리튬 테트라플루오로보레이트(LiBF4)를 출발물질로 하여 다양한 히드록시 및 아미노유도체와 유기실릴할라이드 시약과 반응시켜 제조할 수 있다.Similar to Scheme 2, the lithium boric acid compounds represented by Formulas 11 to 18 of the present invention are prepared by reacting lithium tetrafluoroborate (LiBF 4 ) with various hydroxy and amino derivatives with an organosilyl halide reagent using lithium tetrafluoroborate (LiBF 4 ) as a starting material. can do.

상기 용매는 디에틸에테르, 디이소프로필 에테르, 및 메틸-t-부틸에테르로 이루어진 군에서 선택된 어느 하나인 에테르류; 디메톡시에탄, 및 디에톡시에탄의 알콕시에탄류; 초산메틸, 초산에틸, 초산프로필, 및 초산부틸로 이루어진 군에서 선택된 어느 하나인 에스테르류; 아세토니트릴, 프로피오니트릴, 및 부티로니트릴로 이루어진 군에서 선택된 어느 하나인 니트릴류; 펜탄, 헥산, 및 헵탄으로 이루어진 군에서 선택된 어느 하나인 탄화수소류; 메탄올, 에탄올, 프로판올, 및 부탄올로 이루어진 군에서 선택된 어느 하나인 알코올류; 아세톤, 메틸에틸케톤, 및 메틸이소프로필 케톤으로 이루어진 군에서 선택된 어느 하나인 케톤류; 및 디메틸카보네이트, 디에틸카보네이트, 및 메틸에틸카보네이트로 이루어진 군에서 선택된 어느 하나인 카보네이트류;로 이루어진 군에서 선택된 어느 하나일 수 있으며, 이에 제한되는 것은 아니다.The solvent is an ether selected from the group consisting of diethyl ether, diisopropyl ether, and methyl-t-butyl ether; alkoxyethanes of dimethoxyethane and diethoxyethane; esters selected from the group consisting of methyl acetate, ethyl acetate, propyl acetate, and butyl acetate; nitriles selected from the group consisting of acetonitrile, propionitrile, and butyronitrile; hydrocarbons selected from the group consisting of pentane, hexane, and heptane; alcohols selected from the group consisting of methanol, ethanol, propanol, and butanol; ketones selected from the group consisting of acetone, methyl ethyl ketone, and methyl isopropyl ketone; and carbonates which are any one selected from the group consisting of dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate; may be any one selected from the group consisting of, but is not limited thereto.

상기 용매는 리튬 헥사플루오로포스페이트(LiPF6) 용액 또는 리튬 테트라플루오로보레이트(LiBF4) 용액 대비 0.5 내지 100 당량비로 사용될 수 있으며, 이에 제한되는 것은 아니다.The solvent may be used in a ratio of 0.5 to 100 equivalents compared to a lithium hexafluorophosphate (LiPF 6 ) solution or a lithium tetrafluoroborate (LiBF 4 ) solution, but is not limited thereto.

상기 제1혼합물에 히드록시 또는 아미노기를 포함하는 술폰계 리간드 화합물과 유기실릴할라이드(organic silyl halide) 혼합물을 첨가하는 순서가 특히 중요하다.The order of adding a mixture of a sulfone-based ligand compound containing a hydroxy or amino group and an organic silyl halide to the first mixture is particularly important.

구체적으로, 리튬 헥사플루오로포스페이트(LiPF6) 용액 또는 리튬 테트라플루오로보레이트(LiBF4) 용액과 용매를 혼합하여 준비한 제1혼합물에 히드록시 또는 아미노기를 포함하는 술폰계 리간드 화합물을 첨가한 후 유기실릴할라이드(organic silyl halide) 혼합물을 첨가하는 것이 바람직하다.Specifically, a sulfone-based ligand compound containing a hydroxy or amino group was added to a first mixture prepared by mixing a lithium hexafluorophosphate (LiPF 6 ) solution or a lithium tetrafluoroborate (LiBF 4 ) solution and a solvent, and then organic It is preferred to add an organic silyl halide mixture.

상기 순서에 따를 경우 불순물이 없는 고순도의 인산 리튬 유도체 또는 붕산 리튬 유도체를 제조할 수 있다. 만약 유기실릴할라이드를 먼저 첨가할 경우, Si-F 결합에너지가 Si-X(X=Cl, Br, I)에 비해 상대적으로 커서 일부 X로 오염된 불순물이 발생하는 문제가 있다.When the above procedure is followed, a high-purity lithium phosphate derivative or lithium borate derivative free from impurities can be prepared. If the organosilyl halide is added first, there is a problem in that the Si-F binding energy is relatively large compared to Si-X (X=Cl, Br, I), so that some impurities contaminated with X are generated.

상기 유기실릴할라이드 혼합물은 하기 화학식 18로 표시되는 화합물인 것일 수 있으며, 이에 제한되는 것은 아니다.The organosilyl halide mixture may be a compound represented by the following Chemical Formula 18, but is not limited thereto.

[화학식 18][Formula 18]

Figure 112017064831622-pat00037
Figure 112017064831622-pat00037

상기 n은 1 내지 3의 정수이고,Wherein n is an integer of 1 to 3,

R은 서로 동일하거나 상이하고, C1 내지 C10의 직쇄 또는 측쇄의 알킬, C2 내지 C10 직쇄 또는 측쇄의 알케닐, 또는 아릴이고,R is the same as or different from each other and is C1 to C10 straight or branched alkyl, C2 to C10 straight or branched alkenyl, or aryl,

X는 서로 동일하거나 상이하고, 염소(Cl), 브롬(Br), 또는 요오드(I)임.X is the same as or different from each other and is chlorine (Cl), bromine (Br), or iodine (I).

상기 R은 메틸, 에틸, 프로필, 및 비닐로 이루어진 군에서 선택된 어느 하나일 수 있으며, 이에 제한되는 것은 아니며, 특히 유기실릴할라이드는 상기 R이 메틸이고, X가 염소(Cl)인 트리메틸클로로실란를 사용하는 것이 안정성, 부식성 측면에서 바람직하다.R may be any one selected from the group consisting of methyl, ethyl, propyl, and vinyl, but is not limited thereto. In particular, as the organosilyl halide, trimethylchlorosilane in which R is methyl and X is chlorine (Cl) is used. It is preferable in terms of stability and corrosion.

상기 유기실릴할라이드 혼합물은 리튬 헥사플루오로포스페이트(LiPF6) 용액 대비 0.1 내지 6.0 당량비, 또는 리튬 테트라플루오로보레이트(LiBF4) 용액 대비 0.1 내지 4.0 당량비로 사용될 수 있으며, 이에 제한되는 것은 아니다.The organosilyl halide mixture may be used in an equivalent ratio of 0.1 to 6.0 equivalents compared to lithium hexafluorophosphate (LiPF 6 ) solution, or 0.1 to 4.0 equivalent ratio compared to lithium tetrafluoroborate (LiBF 4 ) solution, but is not limited thereto.

구체적으로, 상기 화학식 18로 표시되는 유기실릴할라이드 혼합물은 리튬 헥사플루오로포스페이트(LiPF6) 또는 리튬 테트라플루오로보레이트(LiBF4)에 결합되는 히드록시 또는 아미노기를 포함하는 술폰계 리간드 화합물의 당량에 비례하여 R1R2R3SiX1(즉, R3SiX1)일 경우 리튬 헥사플루오로포스페이트(LiPF6) 용액 대비 1.0 당량비로 사용될 수 있고, R1R2SiX1X2(즉, R2SiX2)일 경우 0.5 당량비로 사용될 수 있으며, 또한 R1SiX1X2X3(즉, R1SiX3)일 경우 0.3 당량비로 사용될 수 있다.Specifically, the organosilyl halide mixture represented by Formula 18 is used in the equivalent of a sulfone-based ligand compound containing a hydroxy or amino group bonded to lithium hexafluorophosphate (LiPF 6 ) or lithium tetrafluoroborate (LiBF 4 ). In proportion to R 1 R 2 R 3 SiX 1 (ie, R 3 SiX 1 ), it can be used in a 1.0 equivalent ratio compared to lithium hexafluorophosphate (LiPF 6 ) solution, and R 1 R 2 SiX 1 X 2 (ie, R 2 SiX2) may be used in an equivalent ratio of 0.5, and in the case of R 1 SiX 1 X 2 X 3 (ie, R 1 SiX 3 ), it may be used in an equivalent ratio of 0.3.

상기 반응시키는 단계는 제2혼합물에 유기실릴할라이드(organic silyl halide) 혼합물을 첨가한 후 60 내지 80 rpm으로 교반하면서 -10 내지 80℃로 반응시키는 단계일 수 있으며, 이에 제한되는 것은 아니다.The reacting step may be a step of adding an organic silyl halide mixture to the second mixture and then reacting at -10 to 80° C. while stirring at 60 to 80 rpm, but is not limited thereto.

상기 반응온도 등의 반응조건은 특별히 한정되는 것은 아니고, 상황에 맞춘 임의의 조건에서 실시하면 되나, 반응온도의 상한은 바람직하게는 80℃, 보다 바람직하게는 60℃ 이하이며, 또한, 하한은 바람직하게는 -10℃, 보다 바람직하게는 0℃ 이상이다. 80℃를 초과하면 리튬 헥사플루오로포스페이트(LiPF6)의 분해가 일어나기 때문에 바람직하지 않고, -10℃보다 낮은 온도에서는 반응의 진행이 느리기 때문에 경제적이지 못하다.The reaction conditions such as the reaction temperature are not particularly limited, and may be carried out under any conditions suitable for the situation, but the upper limit of the reaction temperature is preferably 80° C., more preferably 60° C. or less, and the lower limit is preferably Preferably it is -10 degreeC, More preferably, it is 0 degreeC or more. When it exceeds 80 °C, it is not preferable because decomposition of lithium hexafluorophosphate (LiPF 6 ) occurs, and at a temperature lower than -10 °C, it is not economical because the progress of the reaction is slow.

상기 반응 후, 상기 반응물의 온도를 20℃까지 승온시키고, 발생된 산 가스를 감압하에 제거한 후, 바로 용액상으로 사용이 가능하며 필요에 따라 농축 및 결정화하여 생성된 인산 리튬이나 붕산 리튬을 걸러내고 건조시켜 본 발명의 화합물을 제조할 수 있다.After the reaction, the temperature of the reactant is raised to 20° C., the generated acid gas is removed under reduced pressure, and it can be used immediately as a solution, and is concentrated and crystallized as necessary to filter out the lithium phosphate or lithium borate produced. The compounds of the present invention can be prepared by drying.

또한 본 발명은 상기 리튬 유도체; 상기 전해액; 상기 전해액이 리튬의 흡장 및 방출이 가능한 양극활물질을 포함하는 양극; 상기 전해액이 리튬의 흡장 및 방출이 가능한 음극활물질을 포함하는 음극; 및 세퍼레이터;를 포함하는, 리튬 이차전지를 제공한다.In addition, the present invention is the lithium derivative; the electrolyte; a positive electrode in which the electrolyte includes a positive electrode active material capable of intercalating and releasing lithium; an anode in which the electrolyte includes an anode active material capable of occluding and releasing lithium; and a separator; provides a lithium secondary battery comprising.

이하, 하기 실시예에 의해 본 발명인 새로운 인산 리튬 유도체와 새로운 붕산 리튬 유도체와, 이의 제조방법, 이를 포함하는 리튬 이차전지용 전해액 및 리튬 이차전지를 보다 상세하게 설명한다. 다만, 이러한 실시예에 의해 본 발명이 한정되는 것은 아니다.Hereinafter, a novel lithium phosphate derivative and a novel lithium borate derivative according to the present invention, a method for preparing the same, an electrolyte solution for a lithium secondary battery and a lithium secondary battery including the same will be described in more detail by the following examples. However, the present invention is not limited by these examples.

<실시예 1> 트리메틸클로로실란과 리간드로 황산을 이용한 리튬 테트라플루오로(술페이토) 인산 분말(화학식 2)의 합성<Example 1> Synthesis of lithium tetrafluoro (sulfato) phosphoric acid powder (Formula 2) using trimethylchlorosilane and sulfuric acid as a ligand

교반 장치, 콘덴서 및 온도계가 부착된 1000 ㎖ 테플론 플라스크에 질소분위기하에 리튬 헥사플루오로포스페이트(LiPF6) 90.0 g 및 디메틸카보네이트 210.0 g을 상온에서 투입하여 제1혼합물을 준비하였다. A first mixture was prepared by putting 90.0 g of lithium hexafluorophosphate (LiPF 6 ) and 210.0 g of dimethyl carbonate at room temperature in a 1000 ml Teflon flask equipped with a stirring device, a condenser and a thermometer under a nitrogen atmosphere.

상기 제1혼합물을 얼음욕조를 이용하여 5℃로 냉각시키고, 진한 황산(H2SO4) 58.1 g을 첨가하여 제2혼합물을 준비하였다.The first mixture was cooled to 5° C. using an ice bath, and 58.1 g of concentrated sulfuric acid (H 2 SO 4 ) was added to prepare a second mixture.

이어서 제2혼합물에 트리메틸클로로실란 128.7 g을 천천히 첨가하여 60 rpm으로 교반하면서 5℃에서 반응을 진행하여 반응 생성물을 얻었다.Then, 128.7 g of trimethylchlorosilane was slowly added to the second mixture, and the reaction was carried out at 5° C. while stirring at 60 rpm to obtain a reaction product.

반응 완료 후, 서서히 20℃로 승온시킨 후 발생된 염산가스와 트리메틸플루오로실란을 60 mmHg로 감압하여 제거하고, 농축한 후, 디클로로에탄을 가하여 발생된 염을 거름종이로 걸러내고 소량의 디클로로에탄으로 세척하였다. After completion of the reaction, the temperature was gradually raised to 20° C., and the generated hydrochloric acid gas and trimethylfluorosilane were removed under reduced pressure to 60 mmHg, and after concentration, dichloroethane was added to filter the resulting salt with a filter paper and a small amount of dichloroethane. was washed with

세척된 염을 회수하여 40℃로 건조함으로써, 백색분말인 하기 화학식 2로 표시되는 리튬 테트라플루오로(술페이토) 인산 화합물을 수득하였다(수율: 85 %).The washed salt was recovered and dried at 40° C. to obtain a lithium tetrafluoro(sulfato) phosphoric acid compound represented by the following Chemical Formula 2 as a white powder (yield: 85%).

[화학식 2][Formula 2]

Figure 112017064831622-pat00038
Figure 112017064831622-pat00038

<실시예 2> 트리메틸클로로실란과 리간드로 황산을 이용한 리튬 테트라플루오로(술페이토) 인산(화학식 2) 화합물이 포함된 용액의 합성<Example 2> Synthesis of a solution containing a lithium tetrafluoro (sulfato) phosphoric acid (Formula 2) compound using trimethylchlorosilane and sulfuric acid as a ligand

교반 장치, 콘덴서 및 온도계가 부착된 1000 ㎖ 테플론 플라스크에 질소분위기하에 리튬 헥사플루오로포스페이트(LiPF6) 90.0 g 및 디메틸카보네이트 210.0 g을 상온에서 투입하여 제1혼합물을 준비하였다. A first mixture was prepared by putting 90.0 g of lithium hexafluorophosphate (LiPF 6 ) and 210.0 g of dimethyl carbonate at room temperature in a 1000 ml Teflon flask equipped with a stirring device, a condenser and a thermometer under a nitrogen atmosphere.

상기 제1혼합물을 얼음욕조를 이용하여 5℃로 냉각시키고, 진한 황산(H2SO4) 58.1 g을 첨가하여 제2혼합물을 준비하였다.The first mixture was cooled to 5° C. using an ice bath, and 58.1 g of concentrated sulfuric acid (H 2 SO 4 ) was added to prepare a second mixture.

이어서 제2혼합물에 트리메틸클로로실란 128.7 g을 천천히 첨가하여 60 rpm으로 교반하면서 5℃에서 반응을 진행하여 반응 생성물을 얻었다.Then, 128.7 g of trimethylchlorosilane was slowly added to the second mixture, and the reaction was carried out at 5° C. while stirring at 60 rpm to obtain a reaction product.

반응 완료 후, 서서히 20℃로 승온시킨 후 발생된 염산가스와 트리메틸플루오로실란을 60 mmHg로 감압하여 제거함으로써 하기 화학식 2로 표시되는 리튬 테트라플루오로(술페이토) 인산 화합물이 포함된 용액을 수득하였다(291.9 g, 수율: 87 %, 순도: 99 %).After completion of the reaction, the solution containing the lithium tetrafluoro (sulfato) phosphoric acid compound represented by the following Chemical Formula 2 was obtained by slowly raising the temperature to 20 ° C and removing the generated hydrochloric acid gas and trimethylfluorosilane under reduced pressure to 60 mmHg. (291.9 g, yield: 87%, purity: 99%).

[화학식 2][Formula 2]

Figure 112017064831622-pat00039
Figure 112017064831622-pat00039

<실시예 3> 트리메틸클로로실란과 리간드로 황산을 이용한 리튬 디플루오로비스(술페이토) 인산 분말(화학식 3)의 합성<Example 3> Synthesis of lithium difluorobis(sulfato) phosphoric acid powder (Formula 3) using trimethylchlorosilane and sulfuric acid as a ligand

교반 장치, 콘덴서 및 온도계가 부착된 1000 ㎖ 테플론 플라스크에 질소분위기하에 리튬 헥사플루오로포스페이트(LiPF6) 90.0 g 및 디메틸카보네이트 210.0 g을 상온에서 투입하여 제1혼합물을 준비하였다. A first mixture was prepared by putting 90.0 g of lithium hexafluorophosphate (LiPF 6 ) and 210.0 g of dimethyl carbonate at room temperature in a 1000 ml Teflon flask equipped with a stirring device, a condenser and a thermometer under a nitrogen atmosphere.

상기 제1혼합물을 얼음욕조를 이용하여 5℃로 냉각시키고, 진한 황산(H2SO4) 116.2 g을 첨가하여 제2혼합물을 준비하였다.The first mixture was cooled to 5° C. using an ice bath, and 116.2 g of concentrated sulfuric acid (H 2 SO 4 ) was added to prepare a second mixture.

이어서 제2혼합물에 트리메틸클로로실란 257.2 g을 천천히 첨가하여 60 rpm으로 교반하면서 5℃에서 반응을 진행하여 반응 생성물을 얻었다.Then, 257.2 g of trimethylchlorosilane was slowly added to the second mixture, and the reaction proceeded at 5° C. while stirring at 60 rpm to obtain a reaction product.

반응 완료 후, 서서히 20℃로 승온시킨 후 발생된 염산가스와 트리메틸플루오로실란을 60 mmHg로 감압하여 제거하고, 농축한 후, 디클로로에탄을 가하여 발생된 염을 거름종이로 걸러내고 소량의 디클로로에탄으로 세척하였다. After completion of the reaction, the temperature was gradually raised to 20° C., and the generated hydrochloric acid gas and trimethylfluorosilane were removed under reduced pressure to 60 mmHg, and after concentration, dichloroethane was added to filter the resulting salt with a filter paper and a small amount of dichloroethane. was washed with

세척된 염을 회수하여 40℃로 건조함으로써, 백색분말인 하기 화학식 3으로 표시되는 리튬 디플루오로비스(술페이토) 인산 화합물을 수득하였다(수율: 84%).The washed salt was recovered and dried at 40° C. to obtain a lithium difluorobis(sulfato) phosphoric acid compound represented by the following Chemical Formula 3 as a white powder (yield: 84%).

[화학식 3][Formula 3]

Figure 112017064831622-pat00040
Figure 112017064831622-pat00040

<실시예 4> 트리메틸클로로실란과 리간드로 황산을 이용한 리튬 디플루오로비스(술페이토) 인산(화학식 3) 화합물이 포함된 용액의 합성<Example 4> Synthesis of a solution containing a lithium difluorobis(sulfato) phosphoric acid (Formula 3) compound using trimethylchlorosilane and sulfuric acid as a ligand

교반 장치, 콘덴서 및 온도계가 부착된 1000 ㎖ 테플론 플라스크에 질소분위기하에 리튬 헥사플루오로포스페이트(LiPF6) 90.0 g 및 디메틸카보네이트 210.0 g을 상온에서 투입하여 제1혼합물을 준비하였다. A first mixture was prepared by putting 90.0 g of lithium hexafluorophosphate (LiPF 6 ) and 210.0 g of dimethyl carbonate at room temperature in a 1000 ml Teflon flask equipped with a stirring device, a condenser and a thermometer under a nitrogen atmosphere.

상기 제1혼합물을 얼음욕조를 이용하여 5℃로 냉각시키고, 진한 황산(H2SO4) 116.2 g을 첨가하여 제2혼합물을 준비하였다.The first mixture was cooled to 5° C. using an ice bath, and 116.2 g of concentrated sulfuric acid (H 2 SO 4 ) was added to prepare a second mixture.

이어서 제2혼합물에 트리메틸클로로실란 257.2 g을 천천히 첨가하여 60 rpm으로 교반하면서 5℃에서 반응을 진행하여 반응 생성물을 얻었다.Then, 257.2 g of trimethylchlorosilane was slowly added to the second mixture, and the reaction proceeded at 5° C. while stirring at 60 rpm to obtain a reaction product.

반응 완료 후, 서서히 20℃로 승온시킨 후 발생된 염산가스와 트리메틸플루오로실란을 60 mmHg로 감압하여 제거함으로써 하기 화학식 3으로 표시되는 리튬 디플루오로비스(술페이토) 인산 화합물이 포함된 용액을 수득하였다(324.5 g, 수율: 88 %, 순도: 99 %).After completion of the reaction, the solution containing the lithium difluorobis(sulfato) phosphoric acid compound represented by the following Chemical Formula 3 was removed by gradually raising the temperature to 20° C. and then removing the generated hydrochloric acid gas and trimethylfluorosilane under reduced pressure to 60 mmHg. was obtained (324.5 g, yield: 88%, purity: 99%).

[화학식 3][Formula 3]

Figure 112017064831622-pat00041
Figure 112017064831622-pat00041

<실시예 5> 트리메틸클로로실란과 리간드로 메탄술폰산(R=Me)을 이용한 리튬 펜타플루오로(메탄술포닐옥시)인산 분말(화학식 4)의 합성<Example 5> Synthesis of lithium pentafluoro (methanesulfonyloxy) phosphoric acid powder (Formula 4) using trimethylchlorosilane and methanesulfonic acid (R = Me) as a ligand

교반 장치, 콘덴서 및 온도계가 부착된 1000 ㎖ 테플론 플라스크에 질소분위기하에 리튬 헥사플루오로포스페이트(LiPF6) 90.0 g 및 디메틸카보네이트 210.0 g을 상온에서 투입하여 제1혼합물을 준비하였다. A first mixture was prepared by putting 90.0 g of lithium hexafluorophosphate (LiPF 6 ) and 210.0 g of dimethyl carbonate at room temperature in a 1000 ml Teflon flask equipped with a stirring device, a condenser and a thermometer under a nitrogen atmosphere.

상기 제1혼합물을 얼음욕조를 이용하여 5℃로 냉각시키고, 메탄술폰산(MeSO3H) 56.9 g을 첨가하여 제2혼합물을 준비하였다.The first mixture was cooled to 5° C. using an ice bath, and 56.9 g of methanesulfonic acid (MeSO 3 H) was added to prepare a second mixture.

이어서 제2혼합물에 트리메틸클로로실란 64.4 g을 천천히 첨가하여 80 rpm으로 교반하면서 10℃에서 반응을 진행하여 반응 생성물을 얻었다.Then, 64.4 g of trimethylchlorosilane was slowly added to the second mixture, and the reaction was performed at 10° C. while stirring at 80 rpm to obtain a reaction product.

반응 완료 후, 서서히 20℃로 승온시킨 후 발생된 염산가스와 트리메틸플루오로실란을 60 mmHg로 감압하여 제거하고, 농축한 후, 디클로로에탄을 가하여 발생된 염을 거름종이로 걸러내고 소량의 디클로로에탄으로 세척하였다. After completion of the reaction, the temperature was gradually raised to 20° C., and the generated hydrochloric acid gas and trimethylfluorosilane were removed under reduced pressure to 60 mmHg, and after concentration, dichloroethane was added to filter the resulting salt with a filter paper and a small amount of dichloroethane. was washed with

세척된 염을 회수하여 40℃로 건조함으로써, 담황색분말인 하기 화학식 4로 표시되는 리튬 펜타플루오로(메탄술포닐옥시) 인산 화합물을 수득하였다(수율: 87%).The washed salt was recovered and dried at 40° C. to obtain a lithium pentafluoro(methanesulfonyloxy) phosphoric acid compound represented by the following Chemical Formula 4 as a pale yellow powder (yield: 87%).

[화학식 4][Formula 4]

Figure 112017064831622-pat00042
Figure 112017064831622-pat00042

<실시예 6> 트리메틸클로로실란과 리간드로 메탄술폰산(R=Me)을 이용한 리튬 펜타플루오로(메탄술포닐옥시)인산(화학식 4) 화합물이 포함된 용액의 합성<Example 6> Synthesis of a solution containing a lithium pentafluoro (methanesulfonyloxy) phosphoric acid (Formula 4) compound using trimethylchlorosilane and methanesulfonic acid (R = Me) as a ligand

교반 장치, 콘덴서 및 온도계가 부착된 1000 ㎖ 테플론 플라스크에 질소분위기하에 리튬 헥사플루오로포스페이트(LiPF6) 90.0 g 및 디메틸카보네이트 210.0 g을 상온에서 투입하여 제1혼합물을 준비하였다. A first mixture was prepared by putting 90.0 g of lithium hexafluorophosphate (LiPF 6 ) and 210.0 g of dimethyl carbonate at room temperature in a 1000 ml Teflon flask equipped with a stirring device, a condenser and a thermometer under a nitrogen atmosphere.

상기 제1혼합물을 얼음욕조를 이용하여 5℃로 냉각시키고, 메탄술폰산(MeSO3H) 56.9 g을 첨가하여 제2혼합물을 준비하였다.The first mixture was cooled to 5° C. using an ice bath, and 56.9 g of methanesulfonic acid (MeSO 3 H) was added to prepare a second mixture.

이어서 제2혼합물에 트리메틸클로로실란 64.4 g을 천천히 첨가하여 80 rpm으로 교반하면서 10℃에서 반응을 진행하여 반응 생성물을 얻었다.Then, 64.4 g of trimethylchlorosilane was slowly added to the second mixture, and the reaction proceeded at 10° C. while stirring at 80 rpm to obtain a reaction product.

반응 완료 후, 서서히 20℃로 승온시킨 후 발생된 염산가스와 트리메틸플루오로실란을 60 mmHg로 감압하여 제거함으로써 하기 화학식 4로 표시되는 리튬 펜타플루오로(메탄술포닐옥시)인산 화합물이 포함된 용액을 수득하였다(331.6 g, 수율: 90 %, 순도: 99 %).After completion of the reaction, the solution containing the lithium pentafluoro (methanesulfonyloxy) phosphoric acid compound represented by the following formula (4) by removing the hydrochloric acid gas and trimethylfluorosilane under reduced pressure to 60 mmHg after gradually raising the temperature to 20 ° C. was obtained (331.6 g, yield: 90%, purity: 99%).

[화학식 4][Formula 4]

Figure 112017064831622-pat00043
Figure 112017064831622-pat00043

<실시예 7>트리메틸클로로실란과 리간드로 비스(플루오로술포닐)아민(R=F)을 이용한 리튬 펜타플루오로[비스(플루오로술포닐)이미도] 인산 분말(화학식 8)의 합성<Example 7> Synthesis of lithium pentafluoro[bis(fluorosulfonyl)imido] phosphoric acid powder (Formula 8) using trimethylchlorosilane and bis(fluorosulfonyl)amine (R=F) as a ligand

교반 장치, 콘덴서 및 온도계가 부착된 1000 ㎖ 테플론 플라스크에 질소분위기하에 리튬 헥사플루오로포스페이트(LiPF6) 90.0 g 및 디메틸카보네이트 210.0 g을 상온에서 투입하여 제1혼합물을 준비하였다. A first mixture was prepared by putting 90.0 g of lithium hexafluorophosphate (LiPF 6 ) and 210.0 g of dimethyl carbonate at room temperature in a 1000 ml Teflon flask equipped with a stirring device, a condenser and a thermometer under a nitrogen atmosphere.

상기 제1혼합물을 얼음욕조를 이용하여 5℃로 냉각시키고, 비스(플루오로술포닐)아민 107.3 g을 첨가하여 제2혼합물을 준비하였다.The first mixture was cooled to 5° C. using an ice bath, and 107.3 g of bis(fluorosulfonyl)amine was added to prepare a second mixture.

이어서 제2혼합물에 트리메틸클로로실란 64.4 g을 천천히 첨가하여 60 rpm으로 교반하면서 5℃에서 반응을 진행하여 반응 생성물을 얻었다.Then, 64.4 g of trimethylchlorosilane was slowly added to the second mixture, and the reaction proceeded at 5° C. while stirring at 60 rpm to obtain a reaction product.

반응 완료 후, 서서히 20℃로 승온시킨 후 발생된 염산가스와 트리메틸플루오로실란을 60 mmHg로 감압하여 제거하고, 농축한 후, 디클로로에탄을 가하여 발생된 염을 거름종이로 걸러내고 소량의 디클로로에탄으로 세척하였다. After completion of the reaction, the temperature was gradually raised to 20° C., and the generated hydrochloric acid gas and trimethylfluorosilane were removed under reduced pressure to 60 mmHg, and after concentration, dichloroethane was added to filter the resulting salt with a filter paper and a small amount of dichloroethane. was washed with

세척된 염을 회수하여 40℃로 건조함으로써, 백색분말인 하기 화학식 8로 표시되는 리튬 펜타플루오로[비스(플루오로술포닐)이미도] 인산 화합물을 수득하였다(수율: 77%).The washed salt was recovered and dried at 40° C. to obtain a lithium pentafluoro[bis(fluorosulfonyl)imido]phosphoric acid compound represented by the following Chemical Formula 8 as a white powder (yield: 77%).

[화학식 8][Formula 8]

Figure 112017064831622-pat00044
Figure 112017064831622-pat00044

<실시예 8>트리메틸클로로실란과 리간드로 비스(플루오로술포닐)아민(R=F)을 이용한 리튬 펜타플루오로[비스(플루오로술포닐)이미도] 인산(화학식 8) 화합물이 포함된 용액의 합성<Example 8> Lithium pentafluoro [bis (fluorosulfonyl) imido] phosphoric acid (Formula 8) compound using trimethylchlorosilane and bis (fluorosulfonyl) amine (R = F) as a ligand synthesis of solutions

교반 장치, 콘덴서 및 온도계가 부착된 1000 ㎖ 테플론 플라스크에 질소분위기하에 리튬 헥사플루오로포스페이트(LiPF6) 90.0 g 및 디메틸카보네이트 210.0 g을 상온에서 투입하여 제1혼합물을 준비하였다. A first mixture was prepared by putting 90.0 g of lithium hexafluorophosphate (LiPF 6 ) and 210.0 g of dimethyl carbonate at room temperature in a 1000 ml Teflon flask equipped with a stirring device, a condenser and a thermometer under a nitrogen atmosphere.

상기 제1혼합물을 얼음욕조를 이용하여 5℃로 냉각시키고, 비스(플루오로술포닐)아민 107.3 g을 첨가하여 제2혼합물을 준비하였다.The first mixture was cooled to 5° C. using an ice bath, and 107.3 g of bis(fluorosulfonyl)amine was added to prepare a second mixture.

이어서 제2혼합물에 트리메틸클로로실란 64.4 g을 천천히 첨가하여 60 rpm으로 교반하면서 5℃에서 반응을 진행하여 반응 생성물을 얻었다.Then, 64.4 g of trimethylchlorosilane was slowly added to the second mixture, and the reaction proceeded at 5° C. while stirring at 60 rpm to obtain a reaction product.

반응 완료 후, 서서히 20℃로 승온시킨 후 발생된 염산가스와 트리메틸플루오로실란을 60 mmHg로 감압하여 제거함으로써 하기 화학식 8로 표시되는 리튬 펜타플루오로[비스(플루오로술포닐)이미도] 인산 화합물이 포함된 용액을 수득하였다(344.2 g, 수율: 80 %, 순도: 98 %).After completion of the reaction, lithium pentafluoro[bis(fluorosulfonyl)imido]phosphoric acid represented by the following formula 8 by removing the hydrochloric acid gas and trimethylfluorosilane under reduced pressure to 60 mmHg after gradually raising the temperature to 20 ° C. A solution containing the compound was obtained (344.2 g, yield: 80%, purity: 98%).

[화학식 8][Formula 8]

Figure 112017064831622-pat00045
Figure 112017064831622-pat00045

<실시예 9> 트리메틸클로로실란과 리간드로 황산을 이용한 리튬 디플루오로(술페이토) 붕산 분말(화학식 10)의 합성<Example 9> Synthesis of lithium difluoro (sulfato) boric acid powder (Formula 10) using trimethylchlorosilane and sulfuric acid as a ligand

교반 장치, 콘덴서 및 온도계가 부착된 1000 ㎖ 테플론 플라스크에 질소분위기하에 리튬 테트라플루오로보레이트(LiBF4) 60.0 g 및 디메틸카보네이트 340.0 g을 상온에서 투입하여 제1혼합물을 준비하였다. A first mixture was prepared by putting 60.0 g of lithium tetrafluoroborate (LiBF 4 ) and 340.0 g of dimethyl carbonate at room temperature in a 1000 ml Teflon flask equipped with a stirring device, a condenser and a thermometer under a nitrogen atmosphere.

상기 제1혼합물을 얼음욕조를 이용하여 5℃로 냉각시키고, 진한 황산(H2SO4) 62.8 g을 첨가하여 제2혼합물을 준비하였다.The first mixture was cooled to 5° C. using an ice bath, and 62.8 g of concentrated sulfuric acid (H 2 SO 4 ) was added to prepare a second mixture.

이어서 제2혼합물에 트리메틸클로로실란 139.1 g을 천천히 첨가하여 60 rpm으로 교반하면서 5℃에서 반응을 진행하여 반응 생성물을 얻었다.Then, 139.1 g of trimethylchlorosilane was slowly added to the second mixture, and the reaction proceeded at 5° C. while stirring at 60 rpm to obtain a reaction product.

반응 완료 후, 서서히 20℃로 승온시킨 후 발생된 염산가스와 트리메틸플루오로실란을 60 mmHg로 감압하여 제거하고, 농축한 후, 디클로로에탄을 가하여 발생된 염을 거름종이로 걸러내고 소량의 디클로로에탄으로 세척하였다. After completion of the reaction, the temperature was gradually raised to 20° C., and the generated hydrochloric acid gas and trimethylfluorosilane were removed under reduced pressure to 60 mmHg, and after concentration, dichloroethane was added to filter the resulting salt with a filter paper and a small amount of dichloroethane. was washed with

세척된 염을 회수하여 40℃로 건조함으로써, 백색분말인 하기 화학식 10으로 표시되는 리튬 디프루오로(술페이토) 붕산 화합물을 수득하였다(수율: 80%).The washed salt was recovered and dried at 40° C. to obtain a lithium difluoro(sulfato) boric acid compound represented by the following Chemical Formula 10 as a white powder (yield: 80%).

[화학식 10][Formula 10]

Figure 112017064831622-pat00046
Figure 112017064831622-pat00046

<실시예 10> 트리메틸클로로실란과 리간드로 황산을 이용한 리튬 디플루오로(술페이토) 붕산(화학식 10) 화합물이 포함된 용액의 합성<Example 10> Synthesis of a solution containing a compound of lithium difluoro (sulfato) boric acid (Formula 10) using trimethylchlorosilane and sulfuric acid as a ligand

교반 장치, 콘덴서 및 온도계가 부착된 1000 ㎖ 테플론 플라스크에 질소분위기하에 리튬 테트라플루오로보레이트(LiBF4) 60.0 g 및 디메틸카보네이트 340.0 g을 상온에서 투입하여 제1혼합물을 준비하였다. A first mixture was prepared by putting 60.0 g of lithium tetrafluoroborate (LiBF 4 ) and 340.0 g of dimethyl carbonate at room temperature in a 1000 ml Teflon flask equipped with a stirring device, a condenser and a thermometer under a nitrogen atmosphere.

상기 제1혼합물을 얼음욕조를 이용하여 5℃로 냉각시키고, 진한 황산(H2SO4) 62.8 g을 첨가하여 제2혼합물을 준비하였다.The first mixture was cooled to 5° C. using an ice bath, and 62.8 g of concentrated sulfuric acid (H 2 SO 4 ) was added to prepare a second mixture.

이어서 제2혼합물에 트리메틸클로로실란 139.1 g을 천천히 첨가하여 60 rpm으로 교반하면서 5℃에서 반응을 진행하여 반응 생성물을 얻었다.Then, 139.1 g of trimethylchlorosilane was slowly added to the second mixture, and the reaction proceeded at 5° C. while stirring at 60 rpm to obtain a reaction product.

반응 완료 후, 서서히 20℃로 승온시킨 후 발생된 염산가스와 트리메틸플루오로실란을 60 mmHg로 감압하여 제거함으로써 하기 화학식 10으로 표시되는 리튬 디플루오로(술페이토) 붕산 화합물이 포함된 용액을 수득하였다(422.6 g, 수율: 85 %, 순도: 99 %).After completion of the reaction, the solution containing the lithium difluoro (sulfato) boric acid compound represented by the following formula (10) was obtained by slowly raising the temperature to 20 °C and then removing the generated hydrochloric acid gas and trimethylfluorosilane under reduced pressure to 60 mmHg. (422.6 g, yield: 85%, purity: 99%).

[화학식 10][Formula 10]

Figure 112017064831622-pat00047
Figure 112017064831622-pat00047

<실시예 11> 트리메틸클로로실란과 리간드로 메탄술폰산(R=Me)을 이용한 리튬 트리플루오로(메탄술포닐옥시) 붕산 분말(화학식 12)의 합성 <Example 11> Synthesis of lithium trifluoro(methanesulfonyloxy) boric acid powder (Formula 12) using trimethylchlorosilane and methanesulfonic acid (R=Me) as a ligand

교반 장치, 콘덴서 및 온도계가 부착된 1000 ㎖ 테플론 플라스크에 질소분위기하에 리튬 테트라플루오로보레이트(LiBF4) 60.0 g 및 디메틸카보네이트 340.0 g을 상온에서 투입하여 제1혼합물을 준비하였다. A first mixture was prepared by putting 60.0 g of lithium tetrafluoroborate (LiBF 4 ) and 340.0 g of dimethyl carbonate at room temperature in a 1000 ml Teflon flask equipped with a stirring device, a condenser and a thermometer under a nitrogen atmosphere.

상기 제1혼합물을 얼음욕조를 이용하여 5℃로 냉각시키고, 메탄술폰산(MeSO3H) 61.5 g을 첨가하여 제2혼합물을 준비하였다.The first mixture was cooled to 5° C. using an ice bath, and 61.5 g of methanesulfonic acid (MeSO 3 H) was added to prepare a second mixture.

이어서 제2혼합물에 트리메틸클로로실란 69.5 g을 천천히 첨가하여 80 rpm으로 교반하면서 10 ℃에서 반응을 진행하여 반응 생성물을 얻었다.Then, 69.5 g of trimethylchlorosilane was slowly added to the second mixture, and the reaction was carried out at 10° C. while stirring at 80 rpm to obtain a reaction product.

반응 완료 후, 서서히 20℃로 승온시킨 후 발생된 염산가스와 트리메틸플루오로실란을 60 mmHg로 감압하여 제거하고, 농축한 후, 디클로로에탄을 가하여 발생된 염을 거름종이로 걸러내고 소량의 디클로로에탄으로 세척하였다. After completion of the reaction, the temperature was gradually raised to 20° C., and the generated hydrochloric acid gas and trimethylfluorosilane were removed under reduced pressure to 60 mmHg, and after concentration, dichloroethane was added to filter the resulting salt with a filter paper and a small amount of dichloroethane. was washed with

세척된 염을 회수하여 40℃로 건조함으로써, 백색분말인 하기 화학식 12로 표시되는 리튬 트리프루오로(메탄술포닐옥시) 붕산 화합물을 수득하였다(수율: 84%).The washed salt was recovered and dried at 40° C. to obtain a lithium trifluoro(methanesulfonyloxy) boric acid compound represented by the following Chemical Formula 12 as a white powder (yield: 84%).

[화학식 12][Formula 12]

Figure 112017064831622-pat00048
Figure 112017064831622-pat00048

<실시예 12> 트리메틸클로로실란과 리간드로 메탄술폰산(R=Me)을 이용한 리튬 트리플루오로(메탄술포닐옥시) 붕산(화학식 12) 화합물이 포함된 용액의 합성<Example 12> Synthesis of a solution containing lithium trifluoro (methanesulfonyloxy) boric acid (Formula 12) compound using trimethylchlorosilane and methanesulfonic acid (R = Me) as a ligand

교반 장치, 콘덴서 및 온도계가 부착된 1000 ㎖ 테플론 플라스크에 질소분위기하에 리튬 테트라플루오로보레이트(LiBF4) 60.0 g 및 디메틸카보네이트 340.0 g을 상온에서 투입하여 제1혼합물을 준비하였다. A first mixture was prepared by putting 60.0 g of lithium tetrafluoroborate (LiBF 4 ) and 340.0 g of dimethyl carbonate at room temperature in a 1000 ml Teflon flask equipped with a stirring device, a condenser and a thermometer under a nitrogen atmosphere.

상기 제1혼합물을 얼음욕조를 이용하여 5℃로 냉각시키고, 메탄술폰산(MeSO3H) 61.5 g을 첨가하여 제2혼합물을 준비하였다.The first mixture was cooled to 5° C. using an ice bath, and 61.5 g of methanesulfonic acid (MeSO 3 H) was added to prepare a second mixture.

이어서 제2혼합물에 트리메틸클로로실란 69.5 g을 천천히 첨가하여 60 rpm으로 교반하면서 10℃에서 반응을 진행하여 반응 생성물을 얻었다.Subsequently, 69.5 g of trimethylchlorosilane was slowly added to the second mixture, and the reaction was carried out at 10° C. while stirring at 60 rpm to obtain a reaction product.

반응 완료 후, 서서히 20℃로 승온시킨 후 발생된 염산가스와 트리메틸플루오로실란을 60 mmHg로 감압하여 제거함으로써 하기 화학식 12로 표시되는 리튬 트리플루오로(메탄술포닐옥시) 붕산 화합물이 포함된 용액을 수득하였다(432.4 g, 수율: 85 %, 순도: 98 %).After completion of the reaction, a solution containing a lithium trifluoro(methanesulfonyloxy) boric acid compound represented by the following formula 12 by slowly raising the temperature to 20° C. and removing the generated hydrochloric acid gas and trimethylfluorosilane under reduced pressure to 60 mmHg. was obtained (432.4 g, yield: 85%, purity: 98%).

[화학식 12][Formula 12]

Figure 112017064831622-pat00049
Figure 112017064831622-pat00049

<실시예 13> 트리메틸클로로실란과 리간드로 비스(플루오로술포닐)아민(R=F)을 이용한 리튬 트리플루오로[비스(플루오로술포닐)이미도] 붕산 분말(화학식 16)의 합성<Example 13> Synthesis of lithium trifluoro[bis(fluorosulfonyl)imido] boric acid powder (Formula 16) using trimethylchlorosilane and bis(fluorosulfonyl)amine (R=F) as a ligand

교반 장치, 콘덴서 및 온도계가 부착된 1000 ㎖ 테플론 플라스크에 질소분위기하에 리튬 테트라플루오로보레이트(LiBF4) 60.0 g 및 디메틸카보네이트 340.0 g을 상온에서 투입하여 제1혼합물을 준비하였다. A first mixture was prepared by putting 60.0 g of lithium tetrafluoroborate (LiBF 4 ) and 340.0 g of dimethyl carbonate at room temperature in a 1000 ml Teflon flask equipped with a stirring device, a condenser and a thermometer under a nitrogen atmosphere.

상기 제1혼합물을 얼음욕조를 이용하여 5℃로 냉각시키고, 비스(플루오로술포닐)아민 115.9 g을 첨가하여 제2혼합물을 준비하였다.The first mixture was cooled to 5° C. using an ice bath, and 115.9 g of bis(fluorosulfonyl)amine was added to prepare a second mixture.

이어서 제2혼합물에 트리메틸클로로실란 69.5 g을 천천히 첨가하여 교반하면서 5℃에서 반응을 진행하여 반응 생성물을 얻었다.Subsequently, 69.5 g of trimethylchlorosilane was slowly added to the second mixture, and the reaction proceeded at 5° C. while stirring to obtain a reaction product.

반응 완료 후, 서서히 20℃로 승온시킨 후 발생된 염산가스와 트리메틸플루오로실란을 60 mmHg로 감압하여 제거하고, 농축한 후, 디클로로에탄을 가하여 발생된 염을 거름종이로 걸러내고 소량의 디클로로에탄으로 세척하였다. After completion of the reaction, the temperature was gradually raised to 20° C., and the generated hydrochloric acid gas and trimethylfluorosilane were removed under reduced pressure to 60 mmHg, and after concentration, dichloroethane was added to filter the resulting salt with a filter paper and a small amount of dichloroethane. was washed with

걸러낸 염을 회수하여 40℃로 건조함으로써, 백색분말인 하기 화학식 16으로 리튬 트리플루오로[비스(플루오로술포닐)이미도] 붕산 화합물을 수득하였다(수율: 70%).The filtered salt was recovered and dried at 40° C. to obtain a lithium trifluoro[bis(fluorosulfonyl)imido]boric acid compound represented by the following Chemical Formula 16 as a white powder (yield: 70%).

[화학식 16][Formula 16]

Figure 112017064831622-pat00050
Figure 112017064831622-pat00050

<실시예 14> 트리메틸클로로실란과 리간드로 비스(플루오로술포닐)아민(R=F)을 이용한 리튬 트리플루오로[비스(플루오로술포닐)이미도] 붕산(화학식 16) 화합물이 포함된 용액의 합성<Example 14> Lithium trifluoro [bis (fluorosulfonyl) imido] boric acid (Formula 16) compound using trimethylchlorosilane and bis (fluorosulfonyl) amine (R = F) as a ligand synthesis of solutions

교반 장치, 콘덴서 및 온도계가 부착된 1000 ㎖ 테플론 플라스크에 질소분위기하에 리튬 테트라플루오로보레이트(LiBF4) 60.0 g 및 디메틸카보네이트 340.0 g을 상온에서 투입하여 제1혼합물을 준비하였다. A first mixture was prepared by putting 60.0 g of lithium tetrafluoroborate (LiBF 4 ) and 340.0 g of dimethyl carbonate at room temperature in a 1000 ml Teflon flask equipped with a stirring device, a condenser and a thermometer under a nitrogen atmosphere.

상기 제1혼합물을 얼음욕조를 이용하여 5℃로 냉각시키고, 비스(플루오로술포닐)아민 115.9 g을 첨가하여 제2혼합물을 준비하였다.The first mixture was cooled to 5° C. using an ice bath, and 115.9 g of bis(fluorosulfonyl)amine was added to prepare a second mixture.

이어서 제2혼합물에 트리메틸클로로실란 69.5 g을 천천히 첨가하여 교반하면서 5℃에서 반응을 진행하여 반응 생성물을 얻었다.Subsequently, 69.5 g of trimethylchlorosilane was slowly added to the second mixture, and the reaction proceeded at 5° C. while stirring to obtain a reaction product.

반응 완료 후, 서서히 20℃로 승온시킨 후 발생된 염산가스와 트리메틸플루오로실란을 60 mmHg로 감압하여 제거함으로써 하기 화학식 16으로 표시되는 리튬 트리플루오로[비스(플루오로술포닐)이미도] 붕산 화합물이 포함된 용액을 수득하였다(467.2 g, 수율: 78 %, 순도: 98 %).After completion of the reaction, lithium trifluoro[bis(fluorosulfonyl)imido] boric acid represented by the following formula 16 by removing the hydrochloric acid gas and trimethylfluorosilane under reduced pressure to 60 mmHg after gradually raising the temperature to 20 ° C. A solution containing the compound was obtained (467.2 g, yield: 78%, purity: 98%).

[화학식 16][Formula 16]

Figure 112017064831622-pat00051
Figure 112017064831622-pat00051

<전지특성 평가방법><Battery characteristics evaluation method>

상기 실시예에 따라 합성된 리튬 유도체과, 종래 가장 우수한 성능을 나타내는 상용 제품인 리튬 디플루오로포스페이트(LiPO2F2)를 비교하기 위해, 항목별 전지특성을 상대 비교하였다. In order to compare the lithium derivative synthesized according to the above example and lithium difluorophosphate (LiPO 2 F 2 ), a commercial product showing the best performance in the related art, the battery characteristics of each item were compared.

구체적으로, 상기 실시예에 따라 합성된 리튬 유도체 및 비교 시료인 상용 제품인 리튬 디플루오로포스페이트(LiPO2F2)를 각각 1.0 중량%, 비닐렌카보네이트(VC)를 각각 1.5 중량%, 및 1.15 M의 리튬 헥사플루오로포스페이트(LiPF6)의 에틸렌카보네이트(EC)/에틸메틸카보네이트(EMC)/디메틸카보네이트(DMC) = 2 : 4 : 4의 부피비로 혼합한 잔량의 전해액 기본조성(이하 '표준조성')을 첨가하여 만든 비교 조성으로 하기 실험예 1 내지 실험예 6에 따른 전지성능 평가를 수행하였다.Specifically, the lithium derivative synthesized according to the above example and the comparative sample, a commercial product, lithium difluorophosphate (LiPO 2 F 2 ), each contained 1.0% by weight, vinylene carbonate (VC), respectively, 1.5% by weight, and 1.15M of lithium hexafluorophosphate (LiPF 6 ) of ethylene carbonate (EC) / ethyl methyl carbonate (EMC) / dimethyl carbonate (DMC) = 2: 4: Basic composition of the remaining electrolyte solution in a volume ratio of 4: 4 (hereinafter referred to as ‘standard composition’) ') was added, and battery performance was evaluated according to Experimental Examples 1 to 6 below.

<실험예 1>화성(formation) 용량(mAh) 비교<Experimental Example 1> Formation (formation) capacity (mAh) comparison

항목Item 시료별by sample FMC
(mAh)
FMC
(mAh)
STD
(mAh)
STD
(mAh)
No.1No.1 표준조성(첨가제 미첨가)Standard composition (without additives) 915.1915.1 946.3946.3 No.2No.2 표준조성+1.5% VC + 1.0% LiPO 2 F 2 Standard composition + 1.5% VC + 1.0% LiPO 2 F 2 957.2957.2 939.8939.8 No.3No.3 표준조성+1.5% VC + 1.0% 화학식3 Standard composition + 1.5% VC + 1.0% Formula 3 956.5956.5 935.7935.7 No.4No.4 표준조성+1.5% VC + 1.0% 화학식4 Standard composition + 1.5% VC + 1.0% Formula 4 943.3943.3 934.8934.8 No.5No.5 표준조성+1.5% VC + 1.0% 화학식5 Standard composition + 1.5% VC + 1.0% Formula 5 938.5938.5 938.7938.7 No.6No.6 표준조성+1.5% VC + 1.0% 화학식9 Standard composition + 1.5% VC + 1.0% Formula 9 912.8912.8 928.5928.5 No.7No.7 표준조성+1.5% VC + 1.0% 화학식11 Standard composition + 1.5% VC + 1.0% Formula 11 922.5922.5 923.7923.7 No.8No.8 표준조성+1.5% VC + 1.0% 화학식13 Standard composition + 1.5% VC + 1.0% Chemical formula 13 927.1927.1 935.3935.3 No.9No.9 표준조성+1.5% VC + 1.0% 화학식17 Standard composition + 1.5% VC + 1.0% Formula 17 931.8931.8 937.2937.2

상기 표 1은 표준조성으로만 이루어진 전해액(No.1), 상용 제품인 리튬 디플루오로포스페이트(LiPO2F2)를 첨가한 전해액(No.2), 및 본 발명의 실시예에 따라 합성된 인산 리튬 유도체 및 붕산 리튬 유도체를 첨가한 전해액(No.3 내지 No.9)을 이용한 formation 용량을 비교한 것이다.Table 1 shows an electrolyte solution having only a standard composition (No. 1), an electrolyte solution containing commercially available lithium difluorophosphate (LiPO 2 F 2 ) (No. 2), and phosphoric acid synthesized according to an embodiment of the present invention This is a comparison of the formation capacity using electrolytes (No.3 to No.9) containing lithium derivatives and lithium borate derivatives.

구체적으로, 동일 농도를 첨가하였을 때, 본 발명의 실시예에 따라 합성된 인산 리튬 유도체 및 붕산 리튬 유도체를 첨가한 전해액(No.3 내지 No.9)을 이용할 경우 상용 제품인 리튬 디플루오로포스페이트(LiPO2F2)를 첨가하였을 때와 유사한 수준의 formation 용량을 나타내었다.Specifically, when using the electrolyte solution (No. 3 to No. 9) to which the lithium phosphate derivative and the lithium borate derivative synthesized according to the embodiment of the present invention were added at the same concentration, the commercial product lithium difluorophosphate ( LiPO 2 F 2 ) showed a similar level of formation capacity as when added.

<실험예 2> 고온(70℃) 보관 전 후 셀 두께 변화 비교<Experimental Example 2> Comparison of cell thickness change before and after high temperature (70°C) storage

항목Item 시료별by sample 보관전 두께
(mm)
thickness before storage
(mm)
보관후 두께
(mm)
thickness after storage
(mm)
No.1No.1 표준조성(첨가제 미첨가)Standard composition (without additives) 5.65.6 8.2(+2.6)8.2 (+2.6) No.2No.2 표준조성+1.5% VC + 1.0% LiPO 2 F 2 Standard composition + 1.5% VC + 1.0% LiPO 2 F 2 5.65.6 6.8(+1.2)6.8 (+1.2) No.3No.3 표준조성+1.5% VC + 1.0% 화학식3 Standard composition + 1.5% VC + 1.0% Formula 3 5.65.6 6.8(+1.2)6.8 (+1.2) No.4No.4 표준조성+1.5% VC + 1.0% 화학식4 Standard composition + 1.5% VC + 1.0% Formula 4 5.65.6 6.5(+0.9)6.5 (+0.9) No.5No.5 표준조성+1.5% VC + 1.0% 화학식5 Standard composition + 1.5% VC + 1.0% Formula 5 5.65.6 6.9(+1.3)6.9 (+1.3) No.6No.6 표준조성+1.5% VC + 1.0% 화학식9 Standard composition + 1.5% VC + 1.0% Formula 9 5.65.6 6.9(+1.3)6.9 (+1.3) No.7No.7 표준조성+1.5% VC + 1.0% 화학식11 Standard composition + 1.5% VC + 1.0% Formula 11 5.65.6 7.2(+1.6)7.2 (+1.6) No.8No.8 표준조성+1.5% VC + 1.0% 화학식13 Standard composition + 1.5% VC + 1.0% Chemical formula 13 5.65.6 6.8(+1.2)6.8 (+1.2) No.9No.9 표준조성+1.5% VC + 1.0% 화학식17 Standard composition + 1.5% VC + 1.0% Formula 17 5.65.6 7.0(+1.4)7.0 (+1.4)

상기 표 2는 표준조성으로만 이루어진 전해액(No.1), 상용 제품인 리튬 디플루오로포스페이트(LiPO2F2)를 첨가한 전해액(No.2), 및 본 발명의 실시예에 따라 합성된 인산 리튬 유도체 및 붕산 리튬 유도체를 첨가한 전해액(No.3 내지 No.9)을 이용하여 셀을 제작한 후, 70℃에서 1주일 동안 유지하고 제작된 셀의 두께 변화를 나타낸 것이다.Table 2 shows an electrolyte solution (No. 1) having only a standard composition, an electrolyte solution (No. 2 ) to which commercial product lithium difluorophosphate (LiPO 2 F 2 ) is added, and phosphoric acid synthesized according to an embodiment of the present invention Cells were fabricated using electrolytes containing lithium derivatives and lithium borate derivatives (No.3 to No.9), maintained at 70° C. for 1 week, and the thickness of the fabricated cells is shown.

구체적으로, 동일 농도를 첨가하였을 때, 본 발명의 실시예에 따라 합성된 인산 리튬 유도체 및 붕산 리튬 유도체를 첨가한 전해액(No.3 내지 No.9)을 이용할 경우 상용 제품인 리튬 디플루오로포스페이트(LiPO2F2)를 첨가하였을 때와 유사한 수준의 두께 변화를 나타내었다. 이는 첨가제 미첨가시 보다는 두께 증가율이 적어 고온 안정성이 우수함을 알 수 있고, 이 중에서 특히 No.3, No.4, 및 No.8이 우수한 결과를 나타내었다.Specifically, when using the electrolyte solution (No. 3 to No. 9) to which the lithium phosphate derivative and the lithium borate derivative synthesized according to the embodiment of the present invention were added at the same concentration, the commercial product lithium difluorophosphate ( LiPO 2 F 2 ) showed a similar level of thickness change as when added. It can be seen that the high-temperature stability is excellent because the thickness increase rate is smaller than when no additives are added, and among them, No.3, No.4, and No.8 in particular showed excellent results.

<실험예 3> 고온 (70℃) 보관 전 후 개방회로전압(open circuit voltage; 이하 'OCV') 변화 비교<Experimental Example 3> Comparison of changes in open circuit voltage (hereinafter 'OCV') before and after storage at high temperature (70°C)

항목Item 시료별by sample 보관전 전압차
(V)
Voltage difference before storage
(V)
보관후 전압차
(V)
Voltage difference after storage
(V)
No.1No.1 표준조성(첨가제 미첨가)Standard composition (without additives) 4.184.18 4.064.06 No.2No.2 표준조성+1.5% VC + 1.0% LiPO 2 F 2 Standard composition + 1.5% VC + 1.0% LiPO 2 F 2 4.194.19 4.104.10 No.3No.3 표준조성+1.5% VC + 1.0% 화학식3 Standard composition + 1.5% VC + 1.0% Formula 3 4.204.20 4.104.10 No.4No.4 표준조성+1.5% VC + 1.0% 화학식4 Standard composition + 1.5% VC + 1.0% Formula 4 4.184.18 4.104.10 No.5No.5 표준조성+1.5% VC + 1.0% 화학식5 Standard composition + 1.5% VC + 1.0% Formula 5 4.194.19 4.104.10 No.6No.6 표준조성+1.5% VC + 1.0% 화학식9 Standard composition + 1.5% VC + 1.0% Formula 9 4.204.20 4.104.10 No.7No.7 표준조성+1.5% VC + 1.0% 화학식11 Standard composition + 1.5% VC + 1.0% Formula 11 4.204.20 4.094.09 No.8No.8 표준조성+1.5% VC + 1.0% 화학식13 Standard composition + 1.5% VC + 1.0% Chemical formula 13 4.194.19 4.094.09 No.9No.9 표준조성+1.5% VC + 1.0% 화학식17 Standard composition + 1.5% VC + 1.0% Formula 17 4.194.19 4.104.10

상기 표 3은 표준조성으로만 이루어진 전해액(No.1), 상용 제품인 리튬 디플루오로포스페이트(LiPO2F2)를 첨가한 전해액(No.2), 및 본 발명의 실시예에 따라 합성된 인산 리튬 유도체 및 붕산 리튬 유도체를 첨가한 전해액(No.3 내지 No.9)을 이용하여 셀을 제작한 후, 70℃에서 1주일 동안 유지하고 제작된 셀의 OCV 차이를 나타낸 도면이다.Table 3 shows an electrolyte solution (No. 1) having only a standard composition, an electrolyte solution (No. 2 ) to which commercial product lithium difluorophosphate (LiPO 2 F 2 ) is added, and phosphoric acid synthesized according to an embodiment of the present invention It is a diagram showing the difference in OCV of cells manufactured by using electrolytes (No.3 to No.9) to which lithium derivatives and lithium borate derivatives are added, and then maintained at 70° C. for 1 week.

구체적으로, 동일 농도를 첨가하였을 때, 본 발명의 실시예에 따라 합성된 인산 리튬 유도체 및 붕산 리튬 유도체를 첨가한 전해액(No.3 내지 No.9)을 이용할 경우 상용 제품인 리튬 디플루오로포스페이트(LiPO2F2)를 첨가하였을 때와 유사한 수준의 OCV 차이를 나타내었다. 이는 첨가제 미첨가시 보다는 높은 전압차를 유지하며 고온 안정성이 우수함을 알 수 있다.Specifically, when using the electrolyte solution (No. 3 to No. 9) to which the lithium phosphate derivative and the lithium borate derivative synthesized according to the embodiment of the present invention were added at the same concentration, the commercial product lithium difluorophosphate ( LiPO 2 F 2 ) showed a similar level of difference in OCV as when added. It can be seen that this maintains a higher voltage difference than when no additives are added and has excellent high-temperature stability.

<실험예 4> 고온 (70℃) 보관 전 후 내부 저항(Internal Resitance; 이하 'IR') 변화 비교<Experimental Example 4> Comparison of changes in internal resistance (hereinafter 'IR') before and after storage at high temperature (70°C)

항목Item 시료별by sample 보관전 저항
(mΩ)
resistance before storage
(mΩ)
보관후 저항
(mΩ)
resistance after storage
(mΩ)
No.1No.1 표준조성(첨가제 미첨가)Standard composition (without additives) 10.410.4 46.246.2 No.2No.2 표준조성+1.5% VC + 1.0% LiPO 2 F 2 Standard composition + 1.5% VC + 1.0% LiPO 2 F 2 9.99.9 30.930.9 No.3No.3 표준조성+1.5% VC + 1.0% 화학식3 Standard composition + 1.5% VC + 1.0% Formula 3 8.78.7 26.326.3 No.4No.4 표준조성+1.5% VC + 1.0% 화학식4 Standard composition + 1.5% VC + 1.0% Formula 4 10.010.0 28.428.4 No.5No.5 표준조성+1.5% VC + 1.0% 화학식5 Standard composition + 1.5% VC + 1.0% Formula 5 10.310.3 27.327.3 No.6No.6 표준조성+1.5% VC + 1.0% 화학식9 Standard composition + 1.5% VC + 1.0% Formula 9 11.611.6 28.728.7 No.7No.7 표준조성+1.5% VC + 1.0% 화학식11 Standard composition + 1.5% VC + 1.0% Formula 11 11.111.1 28.928.9 No.8No.8 표준조성+1.5% VC + 1.0% 화학식13 Standard composition + 1.5% VC + 1.0% Chemical formula 13 10.910.9 31.331.3 No.9No.9 표준조성+1.5% VC + 1.0% 화학식17 Standard composition + 1.5% VC + 1.0% Formula 17 11.011.0 28.728.7

상기 표 4는 표준조성으로만 이루어진 전해액(No.1), 상용 제품인 리튬 디플루오로포스페이트(LiPO2F2)를 첨가한 전해액(No.2), 및 본 발명의 실시예에 따라 합성된 인산 리튬 유도체 및 붕산 리튬 유도체를 첨가한 전해액(No.3 내지 No.9)을 이용하여 셀을 제작한 후, 70℃에서 1주일 동안 유지하고 제작된 셀의 IR을 나타낸 도면이다.Table 4 shows an electrolyte solution (No. 1) having only a standard composition, an electrolyte solution (No. 2 ) containing lithium difluorophosphate (LiPO 2 F 2 ), a commercial product, and phosphoric acid synthesized according to an embodiment of the present invention It is a diagram showing the IR of the cell manufactured by using the electrolyte solution (No.3 to No.9) to which the lithium derivative and the lithium borate derivative were added, and then maintained at 70° C. for 1 week.

구체적으로, 동일 농도를 첨가하였을 때, 본 발명의 실시예에 따라 합성된 인산 리튬 유도체 및 붕산 리튬 유도체를 첨가한 전해액(No.3 내지 No.9)을 이용할 경우 상용 제품인 리튬 디플루오로포스페이트(LiPO2F2)를 첨가하였을 때 보다 고온 보관 후 특히 낮은 IR 값을 나타내어 상대적으로 우수한 전지특성을 나타냄을 알 수 있다.Specifically, when using the electrolyte solution (No. 3 to No. 9) to which the lithium phosphate derivative and the lithium borate derivative synthesized according to the embodiment of the present invention were added at the same concentration, the commercial product lithium difluorophosphate ( LiPO 2 F 2 ) It can be seen that after storage at a higher temperature than when added, the IR value is particularly low, indicating relatively excellent battery characteristics.

<실험예 5> 고온 (70℃) 보관 전 후 직류저항(이하 'DC-IR') 변화 비교<Experimental Example 5> Comparison of changes in DC resistance (hereinafter 'DC-IR') before and after storage at high temperature (70°C)

항목Item 시료별by sample 보관전 저항
(mΩ)
resistance before storage
(mΩ)
보관후 저항
(mΩ)
resistance after storage
(mΩ)
No.1No.1 표준조성(첨가제 미첨가)Standard composition (without additives) 34.034.0 147.8147.8 No.2No.2 표준조성+1.5% VC + 1.0% LiPO 2 F 2 Standard composition + 1.5% VC + 1.0% LiPO 2 F 2 29.729.7 73.473.4 No.3No.3 표준조성+1.5% VC + 1.0% 화학식3 Standard composition + 1.5% VC + 1.0% Formula 3 29.229.2 69.969.9 No.4No.4 표준조성+1.5% VC + 1.0% 화학식4 Standard composition + 1.5% VC + 1.0% Formula 4 29.529.5 71.671.6 No.5No.5 표준조성+1.5% VC + 1.0% 화학식5 Standard composition + 1.5% VC + 1.0% Formula 5 29.929.9 74.974.9 No.6No.6 표준조성+1.5% VC + 1.0% 화학식9 Standard composition + 1.5% VC + 1.0% Formula 9 31.931.9 77.977.9 No.7No.7 표준조성+1.5% VC + 1.0% 화학식11 Standard composition + 1.5% VC + 1.0% Formula 11 30.130.1 74.074.0 No.8No.8 표준조성+1.5% VC + 1.0% 화학식13 Standard composition + 1.5% VC + 1.0% Chemical formula 13 29.829.8 73.573.5 No.9No.9 표준조성+1.5% VC + 1.0% 화학식17 Standard composition + 1.5% VC + 1.0% Formula 17 30.530.5 73.673.6

상기 표 5는 표준조성으로만 이루어진 전해액(No.1), 상용 제품인 리튬 디플루오로포스페이트(LiPO2F2)를 첨가한 전해액(No.2), 및 본 발명의 실시예에 따라 합성된 인산 리튬 유도체 및 붕산 리튬 유도체를 첨가한 전해액(No.3 내지 No.9)을 이용하여 셀을 제작한 후, 70℃에서 1주일 동안 유지하고 제작된 셀의 DC-IR을 나타낸 도면이다.Table 5 shows an electrolyte (No. 1) having only a standard composition, an electrolyte (No. 2 ) containing lithium difluorophosphate (LiPO 2 F 2 ), a commercial product, and phosphoric acid synthesized according to an embodiment of the present invention It is a diagram showing the DC-IR of the cell manufactured by using the electrolyte solution (No.3 to No.9) to which the lithium derivative and the lithium borate derivative were added, and then maintained at 70° C. for 1 week.

구체적으로, 동일 농도를 첨가하였을 때, 본 발명의 실시예에 따라 합성된 인산 리튬 유도체 및 붕산 리튬 유도체를 첨가한 전해액(No.3 내지 No.9)을 이용할 경우 첨가제를 첨가하지 않은 경우보다 낮은 DC-IR 값을 나타내었고, 또한 상용 제품인 리튬 디플루오로포스페이트(LiPO2F2)를 첨가하였을 때 보다 낮은 상온 및 고온 DC-IR 값을 나타내어 상대적으로 우수한 전지특성을 나타냄을 알 수 있다.Specifically, when the same concentration is added, when the electrolyte solution (No. 3 to No. 9) containing the lithium phosphate derivative and the lithium borate derivative synthesized according to the embodiment of the present invention is used, lower than the case where the additive is not added DC-IR value was exhibited, and it can be seen that the commercial product lithium difluorophosphate (LiPO 2 F 2 ) exhibited lower room temperature and high temperature DC-IR values than when added, indicating relatively excellent battery characteristics.

<실험예 6> 고온 (70℃) 보관 전 후 펄스 전력(Pulse Power; 이하 'PP') 변화 비교<Experimental Example 6> Comparison of changes in pulse power (hereinafter 'PP') before and after storage at high temperature (70°C)

항목Item 시료별by sample 보관전 출력
(W)
output before storage
(W)
보관후 출력
(W)
Output after storage
(W)
No.1No.1 표준조성(첨가제 미첨가)Standard composition (without additives) 83.383.3 13.813.8 No.2No.2 표준조성+1.5% VC + 1.0% LiPO 2 F 2 Standard composition + 1.5% VC + 1.0% LiPO 2 F 2 95.495.4 38.038.0 No.3No.3 표준조성+1.5% VC + 1.0% 화학식3 Standard composition + 1.5% VC + 1.0% Formula 3 97.097.0 40.040.0 No.4No.4 표준조성+1.5% VC + 1.0% 화학식4 Standard composition + 1.5% VC + 1.0% Formula 4 95.495.4 39.439.4 No.5No.5 표준조성+1.5% VC + 1.0% 화학식5 Standard composition + 1.5% VC + 1.0% Formula 5 94.794.7 38.438.4 No.6No.6 표준조성+1.5% VC + 1.0% 화학식9 Standard composition + 1.5% VC + 1.0% Formula 9 89.789.7 35.535.5 No.7No.7 표준조성+1.5% VC + 1.0% 화학식11 Standard composition + 1.5% VC + 1.0% Formula 11 88.988.9 36.036.0 No.8No.8 표준조성+1.5% VC + 1.0% 화학식13 Standard composition + 1.5% VC + 1.0% Chemical formula 13 84.684.6 38.138.1 No.9No.9 표준조성+1.5% VC + 1.0% 화학식17 Standard composition + 1.5% VC + 1.0% Formula 17 87.287.2 37.937.9

상기 표 6은 표준조성으로만 이루어진 전해액(No.1), 상용 제품인 리튬 디플루오로포스페이트(LiPO2F2)를 첨가한 전해액(No.2), 및 본 발명의 실시예에 따라 합성된 인산 리튬 유도체 및 붕산 리튬 유도체를 첨가한 전해액(No.3 내지 No.9)을 이용하여 셀을 제작한 후, 70℃에서 1주일 동안 유지하고 제작된 셀의 PP를 나타낸 도면이다.Table 6 shows an electrolyte solution having only a standard composition (No. 1), an electrolyte solution containing a commercial product lithium difluorophosphate (LiPO 2 F 2 ) (No. 2), and phosphoric acid synthesized according to an embodiment of the present invention It is a diagram showing the PP of the cell manufactured by using the electrolyte solution (No. 3 to No. 9) to which a lithium derivative and a lithium borate derivative are added, and then maintained at 70° C. for 1 week.

구체적으로, 동일 농도를 첨가하였을 때, 본 발명의 실시예에 따라 합성된 인산 리튬 유도체 및 붕산 리튬 유도체를 첨가한 전해액(No.3 내지 No.9)을 이용할 경우 첨가제를 첨가하지 않은 경우보다 높은 PP 값을 나타내었고, 또한 상용 제품인 리튬 디플루오로포스페이트(LiPO2F2)를 첨가하였을 때 보다 높은 상온 및 고온 PP 값을 나타내어 상대적으로 우수한 전지특성을 나타냄을 알 수 있다.Specifically, when the same concentration was added, when the electrolyte solution (No. 3 to No. 9) added with the lithium phosphate derivative and the lithium borate derivative synthesized according to the embodiment of the present invention was used, it was higher than when no additives were added. It can be seen that a PP value was exhibited, and a commercial product, lithium difluorophosphate (LiPO 2 F 2 ), was added, resulting in higher room temperature and high temperature PP values, indicating relatively excellent battery characteristics.

이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술 사상과 아래에 기재될 청구범위의 균등 범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.As described above, although the present invention has been described with reference to limited embodiments and drawings, the present invention is not limited thereto, and the technical spirit of the present invention and the following by those of ordinary skill in the art to which the present invention pertains. Of course, various modifications and variations are possible within the equivalent scope of the claims to be described.

Claims (19)

하기 화학식 1로 표시되는 리튬 유도체를 포함하는 리튬 이차전지용 전해액으로서,
상기 리튬 이차전지용 전해액은 상기 리튬 유도체 0.01 내지 30 중량%; 리튬 헥사플루오로포스페이트(LiPF6), 리튬테트라플루오로보레이트(LiBF4), 리튬 퍼클로레이트(LiClO4), 리튬 트리플루오로메탄술포네이트(LiCF3SO3), 리튬 디플루오로포스페이트(LiPO2F2), 리튬 비스(프루오로술포닐)이미드[LiN(FSO2)2], 또는 리튬 비스(트리플루오로메탄술포닐)이미드[LiN(CF3SO2)2] 0.01 내지 20 중량%; 및 잔량의 용매;로 이루어진 것인, 리튬 이차전지용 전해액:
[화학식 1]
Figure 112020115048410-pat00052

X는 인(P) 또는 붕산(B)이고,
n + m은 4 내지 6이고,
L은 HO-SO2-OH, HO-SO2R, H-N(SO2R)2, 또는 H-NH-SO2R 중에서 선택되는 어느 하나의 히드록시 또는 아미노기를 포함하는 술폰계 리간드 화합물이고,
R은 C1 내지 C10의 알킬, C1 내지 C10의 아릴, 할라이드, 또는 C1 내지 C10의 알킬할라이드임.
An electrolyte for a lithium secondary battery comprising a lithium derivative represented by the following formula (1),
The electrolyte for the lithium secondary battery is 0.01 to 30% by weight of the lithium derivative; Lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium perchlorate (LiClO 4 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), lithium difluorophosphate (LiPO 2 F) 2 ), lithium bis(fluorosulfonyl) imide [LiN(FSO 2 ) 2 ], or lithium bis(trifluoromethanesulfonyl)imide [LiN(CF 3 SO 2 ) 2 ] 0.01 to 20 weight %; And the remaining amount of the solvent; Lithium secondary battery electrolyte solution consisting of:
[Formula 1]
Figure 112020115048410-pat00052

X is phosphorus (P) or boric acid (B),
n + m is 4 to 6,
L is a sulfone-based ligand compound including any one hydroxy or amino group selected from HO-SO 2 -OH, HO-SO 2 R, HN(SO 2 R) 2 , or H-NH-SO 2 R,
R is C1 to C10 alkyl, C1 to C10 aryl, halide, or C1 to C10 alkyl halide.
청구항 1에 있어서,
상기 리튬 유도체는,
X는 인(P)이고,
n + m은 6인 것을 특징으로 하는, 리튬 이차전지용 전해액.
The method according to claim 1,
The lithium derivative is
X is phosphorus (P),
n + m is an electrolyte for a lithium secondary battery, characterized in that 6.
청구항 2에 있어서,
상기 리튬 유도체는,
하기 화학식 2 내지 화학식 9로 표시되는 화합물 중에서 선택된 어느 하나인 것을 특징으로 하는, 리튬 이차전지용 전해액:
[화학식 2]
Figure 112020115048410-pat00053

[화학식 3]
Figure 112020115048410-pat00054

[화학식 4]
Figure 112020115048410-pat00055

[화학식 5]
Figure 112020115048410-pat00056

[화학식 6]
Figure 112020115048410-pat00057

[화학식 7]
Figure 112020115048410-pat00058

[화학식 8]
Figure 112020115048410-pat00059

[화학식 9]
Figure 112020115048410-pat00060
3. The method according to claim 2,
The lithium derivative is
Electrolyte for a lithium secondary battery, characterized in that any one selected from the compounds represented by the following Chemical Formulas 2 to 9:
[Formula 2]
Figure 112020115048410-pat00053

[Formula 3]
Figure 112020115048410-pat00054

[Formula 4]
Figure 112020115048410-pat00055

[Formula 5]
Figure 112020115048410-pat00056

[Formula 6]
Figure 112020115048410-pat00057

[Formula 7]
Figure 112020115048410-pat00058

[Formula 8]
Figure 112020115048410-pat00059

[Formula 9]
Figure 112020115048410-pat00060
청구항 1에 있어서,
상기 리튬 유도체는,
X는 붕산(B)이고,
n + m은 4인 것을 특징으로 하는, 리튬 이차전지용 전해액.
The method according to claim 1,
The lithium derivative is
X is boric acid (B),
n + m is an electrolyte for a lithium secondary battery, characterized in that 4.
청구항 4에 있어서,
상기 리튬 유도체은,
하기 화학식 10 내지 화학식 17로 표시되는 화합물 중에서 선택된 어느 하나인 것을 특징으로 하는, 리튬 이차전지용 전해액:
[화학식 10]
Figure 112020115048410-pat00061

[화학식 11]
Figure 112020115048410-pat00062

[화학식 12]
Figure 112020115048410-pat00063

[화학식 13]
Figure 112020115048410-pat00064

[화학식 14]
Figure 112020115048410-pat00065

[화학식 15]
Figure 112020115048410-pat00066

[화학식 16]
Figure 112020115048410-pat00067

[화학식 17]
Figure 112020115048410-pat00068
5. The method according to claim 4,
The lithium derivative is
An electrolyte for a lithium secondary battery, characterized in that it is any one selected from the compounds represented by the following Chemical Formulas 10 to 17:
[Formula 10]
Figure 112020115048410-pat00061

[Formula 11]
Figure 112020115048410-pat00062

[Formula 12]
Figure 112020115048410-pat00063

[Formula 13]
Figure 112020115048410-pat00064

[Formula 14]
Figure 112020115048410-pat00065

[Formula 15]
Figure 112020115048410-pat00066

[Formula 16]
Figure 112020115048410-pat00067

[Formula 17]
Figure 112020115048410-pat00068
청구항 1에 있어서,
상기 리튬 이차전지용 전해액은,
청구항 1에 따른 리튬 유도체 0.01 내지 30 중량%과, 잔량의 용매로 이루어진 것을 특징으로 하는, 리튬 이차전지용 전해액.
The method according to claim 1,
The electrolyte solution for a lithium secondary battery,
An electrolyte for a lithium secondary battery, comprising 0.01 to 30% by weight of the lithium derivative according to claim 1 and the remaining amount of the solvent.
청구항 1에 있어서,
상기 용매는 에틸렌카보네이트, 프로필렌카보네이트, 부틸렌카보네이트, 에틸메틸카보네이트, 디메틸카보네이트, 디에틸카보네이트, 디프로필카보네이트, 메틸프로필카보네이트, 에틸프로필카보네이트, 비닐렌카보네이트, 플루오로에틸렌카보네이트 또는 이들의 할로겐화된 카보네이트로 이루어진 군에서 선택된 어느 하나인 카보네이트류; 감마-부티로락톤, 감마-발레로락톤, 감마-카프로락톤, 델타-발레로락톤, 및 입실론-카프로락톤으로 이루어진 군에서 선택된 어느 하나인 락톤류; 메틸아세테이트, 에틸아세테이트, 프로필아세테이트, 또는 메틸프로피오네이트, 및 에틸프로피오네이트로 이루어진 군에서 선택된 어느 하나인 아세테이트류; 3-메톡시 글루타로니트릴, 3-에톡시 글로타로니트릴, 3-디메틸아미노 글루타로니트릴, 티오메톡시 숙시노니트릴, 및 2,2,2-트리플루오로에톡시 글루타로니트릴로 이루어진 군에서 선택된 어느 하나인 니트릴류; 및 1,3-프로판설톤, 1,4-부탄설톤, 1,3-프로펜설톤, 1,4-부텐설톤, 및 1-메틸-1,3-프로펜설톤으로 이루어진 군에서 선택된 어느 하나인 설톤류;로 이루어진 군에서 선택된 어느 하나를 포함하는 것을 특징으로 하는, 리튬 이차전지용 전해액.
The method according to claim 1,
The solvent is ethylene carbonate, propylene carbonate, butylene carbonate, ethyl methyl carbonate, dimethyl carbonate, diethyl carbonate, dipropyl carbonate, methyl propyl carbonate, ethyl propyl carbonate, vinylene carbonate, fluoroethylene carbonate, or halogenated carbonates thereof. Any one selected from the group consisting of carbonates; lactones selected from the group consisting of gamma-butyrolactone, gamma-valerolactone, gamma-caprolactone, delta-valerolactone, and epsilon-caprolactone; Acetates selected from the group consisting of methyl acetate, ethyl acetate, propyl acetate, or methyl propionate, and ethyl propionate; From the group consisting of 3-methoxy glutaronitrile, 3-ethoxy glutaronitrile, 3-dimethylamino glutaronitrile, thiomethoxy succinonitrile, and 2,2,2-trifluoroethoxy glutaronitrile any one selected nitrile; and 1,3-propanesultone, 1,4-butanesultone, 1,3-propensultone, 1,4-butensultone, and 1-methyl-1,3-propensultone An electrolyte for a lithium secondary battery, comprising any one selected from the group consisting of sultones.
청구항 1에 있어서,
상기 리튬 이차전지용 전해액은,
0.1 M 내지 2.0 M(mol/ℓ)의 리튬 헥사플루오로포스페이트(LiPF6)를 포함하는 것을 특징으로 하는, 리튬 이차전지용 전해액.
The method according to claim 1,
The electrolyte solution for a lithium secondary battery,
0.1 M to 2.0 M (mol / ℓ) of lithium hexafluorophosphate (LiPF 6 ), characterized in that it comprises an electrolyte for a lithium secondary battery.
리튬 헥사플루오로포스페이트(LiPF6) 용액 또는 리튬 테트라플루오로보레이트(LiBF4) 용액과 용매를 혼합하여 제1혼합물을 준비하는 단계;
상기 제1혼합물에 히드록시 또는 아미노기를 포함하는 술폰계 리간드 화합물을 첨가하여 제2혼합물을 준비하는 단계;
상기 제2혼합물에 유기실릴할라이드(organic silyl halide) 혼합물을 첨가한 후 교반하면서 반응시키는 단계; 및
반응 생성물을 승온시키고, 감압한 후 여과 분리하여 하기 화학식 1로 표시되는 리튬 유도체를 제조하는 단계;
를 포함하는, 리튬 유도체 제조방법:
[화학식 1]
Figure 112020115048410-pat00069

X는 인(P) 또는 붕산(B)이고,
n + m은 4 내지 6이고,
L은 HO-SO2-OH, HO-SO2R, H-N(SO2R)2, 또는 H-NH-SO2R 중에서 선택되는 어느 하나의 히드록시 또는 아미노기를 포함하는 술폰계 리간드 화합물이고,
R은 C1 내지 C10의 알킬, C1 내지 C10의 아릴, 할라이드, 또는 C1 내지 C10의 알킬할라이드임.
preparing a first mixture by mixing a lithium hexafluorophosphate (LiPF 6 ) solution or a lithium tetrafluoroborate (LiBF 4 ) solution and a solvent;
preparing a second mixture by adding a sulfone-based ligand compound containing a hydroxy or amino group to the first mixture;
adding an organic silyl halide mixture to the second mixture and reacting with stirring; and
preparing a lithium derivative represented by the following Chemical Formula 1 by increasing the temperature of the reaction product and separating it by filtration after reducing the pressure;
A method for preparing a lithium derivative comprising:
[Formula 1]
Figure 112020115048410-pat00069

X is phosphorus (P) or boric acid (B),
n + m is 4 to 6,
L is a sulfone-based ligand compound including any one hydroxy or amino group selected from HO-SO 2 -OH, HO-SO 2 R, HN(SO 2 R) 2 , or H-NH-SO 2 R,
R is C1 to C10 alkyl, C1 to C10 aryl, halide, or C1 to C10 alkyl halide.
청구항 9에 있어서,
상기 용매는,
디에틸에테르, 디이소프로필 에테르, 및 메틸-t-부틸에테르로 이루어진 군에서 선택된 어느 하나인 에테르류; 디메톡시에탄, 및 디에톡시에탄의 알콕시에탄류; 초산메틸, 초산에틸, 초산프로필, 및 초산부틸로 이루어진 군에서 선택된 어느 하나인 에스테르류; 아세토니트릴, 프로피오니트릴, 및 부티로니트릴로 이루어진 군에서 선택된 어느 하나인 니트릴류; 펜탄, 헥산, 및 헵탄으로 이루어진 군에서 선택된 어느 하나인 탄화수소류; 메탄올, 에탄올, 프로판올, 및 부탄올로 이루어진 군에서 선택된 어느 하나인 알코올류; 아세톤, 메틸에틸케톤, 및 메틸이소프로필 케톤으로 이루어진 군에서 선택된 어느 하나인 케톤류; 및 디메틸카보네이트, 디에틸카보네이트, 및 메틸에틸카보네이트로 이루어진 군에서 선택된 어느 하나인 카보네이트류;로 이루어진 군에서 선택된 어느 하나인 것을 특징으로 하는, 리튬 유도체 제조방법.
10. The method of claim 9,
The solvent is
ethers selected from the group consisting of diethyl ether, diisopropyl ether, and methyl-t-butyl ether; alkoxyethanes of dimethoxyethane and diethoxyethane; esters selected from the group consisting of methyl acetate, ethyl acetate, propyl acetate, and butyl acetate; nitriles selected from the group consisting of acetonitrile, propionitrile, and butyronitrile; hydrocarbons selected from the group consisting of pentane, hexane, and heptane; alcohols selected from the group consisting of methanol, ethanol, propanol, and butanol; ketones selected from the group consisting of acetone, methyl ethyl ketone, and methyl isopropyl ketone; And dimethyl carbonate, diethyl carbonate, and any one carbonate selected from the group consisting of methyl ethyl carbonate; characterized in that any one selected from the group consisting of, a lithium derivative manufacturing method.
청구항 9에 있어서,
상기 유기실릴할라이드 혼합물은,
하기 화학식 18로 표시되는 화합물인 것을 특징으로 하는, 리튬 유도체 제조방법:
[화학식 18]
Figure 112020115048410-pat00070

상기 n은 1 내지 3의 정수이고,
R은 서로 동일하거나 상이하고, C1 내지 C10의 직쇄 또는 측쇄의 알킬, C2 내지 C10 직쇄 또는 측쇄의 알케닐, 또는 아릴이고,
X는 서로 동일하거나 상이하고, 염소(Cl), 브롬(Br), 또는 요오드(I)임.
10. The method of claim 9,
The organosilyl halide mixture is
A method for preparing a lithium derivative, characterized in that it is a compound represented by the following formula (18):
[Formula 18]
Figure 112020115048410-pat00070

Wherein n is an integer of 1 to 3,
R is the same as or different from each other and is C1 to C10 straight or branched alkyl, C2 to C10 straight or branched alkenyl, or aryl,
X is the same as or different from each other and is chlorine (Cl), bromine (Br), or iodine (I).
청구항 11에 있어서,
상기 R은,
메틸, 에틸, 프로필, 및 비닐로 이루어진 군에서 선택된 어느 하나인 것을 특징으로 하는, 리튬 유도체 제조방법.
12. The method of claim 11,
wherein R is,
A method for producing a lithium derivative, characterized in that any one selected from the group consisting of methyl, ethyl, propyl, and vinyl.
청구항 9에 있어서,
상기 유기실릴할라이드 혼합물은,
리튬 헥사플루오로포스페이트(LiPF6) 용액 대비 0.1 내지 6.0 당량비, 또는 리튬 테트라플루오로보레이트(LiBF4) 용액 대비 0.1 내지 4.0 당량비로 사용되는 것을 특징으로 하는, 리튬 유도체 제조방법.
10. The method of claim 9,
The organosilyl halide mixture is
Lithium hexafluorophosphate (LiPF 6 ) solution compared to 0.1 to 6.0 equivalent ratio, or lithium tetrafluoroborate (LiBF 4 ) solution compared to 0.1 to 4.0 equivalent ratio, characterized in that used in a lithium derivative production method.
하기 화학식 1로 표시되는 리튬 유도체:
[화학식 1]
Figure 112020115048410-pat00071

X는 인(P) 또는 붕산(B)이고,
n + m은 4 내지 6이고,
L은 HO-SO2R, H-N(SO2R)2, 또는 H-NH-SO2R 중에서 선택되는 어느 하나의 히드록시 또는 아미노기를 포함하는 술폰계 리간드 화합물이고,
R은 C1 내지 C10의 알킬, C1 내지 C10의 아릴, 할라이드, 또는 C1 내지 C10의 알킬할라이드임.
A lithium derivative represented by the following formula (1):
[Formula 1]
Figure 112020115048410-pat00071

X is phosphorus (P) or boric acid (B),
n + m is 4 to 6,
L is HO-SO 2 R, HN(SO 2 R) 2 , or H-NH-SO 2 R is a sulfone-based ligand compound containing any one hydroxy or amino group selected from,
R is C1 to C10 alkyl, C1 to C10 aryl, halide, or C1 to C10 alkyl halide.
청구항 14에 있어서,
상기 리튬 유도체는,
X는 인(P)이고,
n + m은 6인 것을 특징으로 하는, 리튬 유도체.
15. The method of claim 14,
The lithium derivative is
X is phosphorus (P),
Lithium derivative, characterized in that n + m is 6.
청구항 15에 있어서,
상기 리튬 유도체는,
하기 화학식 4 내지 화학식 9로 표시되는 화합물 중에서 선택된 어느 하나인 것을 특징으로 하는, 리튬 유도체:
[화학식 4]
Figure 112020115048410-pat00072

[화학식 5]
Figure 112020115048410-pat00073

[화학식 6]
Figure 112020115048410-pat00074

[화학식 7]
Figure 112020115048410-pat00075

[화학식 8]
Figure 112020115048410-pat00076

[화학식 9]
Figure 112020115048410-pat00077
16. The method of claim 15,
The lithium derivative is
A lithium derivative, characterized in that it is any one selected from the compounds represented by the following Chemical Formulas 4 to 9:
[Formula 4]
Figure 112020115048410-pat00072

[Formula 5]
Figure 112020115048410-pat00073

[Formula 6]
Figure 112020115048410-pat00074

[Formula 7]
Figure 112020115048410-pat00075

[Formula 8]
Figure 112020115048410-pat00076

[Formula 9]
Figure 112020115048410-pat00077
청구항 14에 있어서,
상기 리튬 유도체는,
X는 붕산(B)이고,
n + m은 4인 것을 특징으로 하는, 리튬 유도체.
15. The method of claim 14,
The lithium derivative is
X is boric acid (B),
Lithium derivative, characterized in that n + m is 4.
청구항 17에 있어서,
상기 리튬 유도체은,
하기 화학식 12 내지 화학식 17로 표시되는 화합물 중에서 선택된 어느 하나인 것을 특징으로 하는, 리튬 유도체:
[화학식 12]
Figure 112020115048410-pat00078

[화학식 13]
Figure 112020115048410-pat00079

[화학식 14]
Figure 112020115048410-pat00080

[화학식 15]
Figure 112020115048410-pat00081

[화학식 16]
Figure 112020115048410-pat00082

[화학식 17]
Figure 112020115048410-pat00083
18. The method of claim 17,
The lithium derivative is
A lithium derivative, characterized in that it is any one selected from the compounds represented by the following formulas 12 to 17:
[Formula 12]
Figure 112020115048410-pat00078

[Formula 13]
Figure 112020115048410-pat00079

[Formula 14]
Figure 112020115048410-pat00080

[Formula 15]
Figure 112020115048410-pat00081

[Formula 16]
Figure 112020115048410-pat00082

[Formula 17]
Figure 112020115048410-pat00083
청구항 1 내지 청구항 8 중 어느 한 항에 따른 전해액;
상기 전해액이 리튬의 흡장 및 방출이 가능한 양극활물질을 포함하는 양극;
상기 전해액이 리튬의 흡장 및 방출이 가능한 음극활물질을 포함하는 음극; 및
세퍼레이터;
를 포함하는, 리튬 이차전지.
The electrolyte according to any one of claims 1 to 8;
a positive electrode in which the electrolyte includes a positive electrode active material capable of intercalating and releasing lithium;
an anode in which the electrolyte includes an anode active material capable of occluding and releasing lithium; and
separator;
comprising, a lithium secondary battery.
KR1020170085950A 2017-07-06 2017-07-06 New lithium phosphate derivatives and New lithium borate derivatives, the method of preparing the same and electrolyte solution and lithium secondary battery containing the same KR102272371B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170085950A KR102272371B1 (en) 2017-07-06 2017-07-06 New lithium phosphate derivatives and New lithium borate derivatives, the method of preparing the same and electrolyte solution and lithium secondary battery containing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170085950A KR102272371B1 (en) 2017-07-06 2017-07-06 New lithium phosphate derivatives and New lithium borate derivatives, the method of preparing the same and electrolyte solution and lithium secondary battery containing the same

Publications (2)

Publication Number Publication Date
KR20190005389A KR20190005389A (en) 2019-01-16
KR102272371B1 true KR102272371B1 (en) 2021-07-02

Family

ID=65280903

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170085950A KR102272371B1 (en) 2017-07-06 2017-07-06 New lithium phosphate derivatives and New lithium borate derivatives, the method of preparing the same and electrolyte solution and lithium secondary battery containing the same

Country Status (1)

Country Link
KR (1) KR102272371B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021044859A1 (en) * 2019-09-04 2021-03-11 株式会社村田製作所 Electrolyte solution for secondary batteries, and secondary battery
CN111048840B (en) * 2019-12-27 2021-06-18 苏州凌威新能源科技有限公司 Lithium ion battery electrolyte and lithium ion battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103531845A (en) 2013-10-24 2014-01-22 兰州理工大学 Lithium-ion battery electrolyte taking LiBF2SO4 as basic lithium salt
JP2016149311A (en) * 2015-02-13 2016-08-18 ソニー株式会社 Secondary battery, battery pack, motor vehicle, power storage system, power tool, and electronic apparatus
JP2016533624A (en) 2013-07-19 2016-10-27 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Use of reactive lithium alkoxyborate as an electrolyte additive in electrolytes for lithium ion batteries
KR101739936B1 (en) 2016-10-06 2017-06-08 임광민 Novel method for preparing lithium difluorophosphate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9263731B2 (en) 2010-11-12 2016-02-16 A123 Systems Llc High performance lithium or lithium ion cell
KR20150014162A (en) * 2013-07-29 2015-02-06 주식회사 엘지화학 Liquid Electrolyte for Secondary Battery and Lithium Secondary Battery Containing the Same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016533624A (en) 2013-07-19 2016-10-27 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Use of reactive lithium alkoxyborate as an electrolyte additive in electrolytes for lithium ion batteries
CN103531845A (en) 2013-10-24 2014-01-22 兰州理工大学 Lithium-ion battery electrolyte taking LiBF2SO4 as basic lithium salt
JP2016149311A (en) * 2015-02-13 2016-08-18 ソニー株式会社 Secondary battery, battery pack, motor vehicle, power storage system, power tool, and electronic apparatus
KR101739936B1 (en) 2016-10-06 2017-06-08 임광민 Novel method for preparing lithium difluorophosphate

Also Published As

Publication number Publication date
KR20190005389A (en) 2019-01-16

Similar Documents

Publication Publication Date Title
JP4258656B2 (en) Room temperature molten salt, its production method and its use
US7517999B2 (en) Imidazolium compound
EP4087005A1 (en) Phosphorus-containing electrolytes
EP3618163B1 (en) Non-aqueous electrolyte solution, and secondary battery comprising the same
KR20180137527A (en) Heterocyclic type ionic liquid
CA3069975A1 (en) Modified triazine functional compounds
KR102285464B1 (en) Method for producing bis (fluorosulfonyl) imide lithium salt (LiFSI) with reduced fluorine anion content
KR102612816B1 (en) Manufacturing method for lithium bisoxalatoborate with high-purity and Non-aqueous electrolyte for secondary battery
KR101982602B1 (en) Method for producing bis (fluorosulfonyl) imide lithium salt (LiFSI) with reduced fluorine anion content (1)
US7534527B2 (en) Organic lithium salt electrolytes having enhanced safety for rechargeable batteries and methods of making the same
KR101982601B1 (en) Method for producing bis (fluorosulfonyl) imide lithium salt (LiFSI) with reduced fluorine anion content using alkoxytrialkylsilanes
JP2018529638A (en) Process for the production of fluorinated cyclic carbonates and their use for lithium ion batteries
KR101925047B1 (en) Manufactuiring method for crystallization of lithium difluorophosphate having high-purity and Non-aqueous electrolyte for secondary battery
KR102272371B1 (en) New lithium phosphate derivatives and New lithium borate derivatives, the method of preparing the same and electrolyte solution and lithium secondary battery containing the same
JPS5981870A (en) Manufacture of solute for nonaqueous electrolyte
KR102007476B1 (en) New purification method of bis(fluorosulfonyl)imide lithium salt)
EP3656009B1 (en) Modified ionic liquids containing triazine
KR102007477B1 (en) New purification method of bis(fluorosulfonyl)imide
KR102131891B1 (en) Novel lithium salt compounds, method for preparing same and electrolyte for secondary battery comprising same
KR102239499B1 (en) Carbonate compounds containing a fluorosulphonyl group, preparation method and use thereof
JP5796128B2 (en) Bipyridyl cationic ionic liquid having two centers, its preparation method and use
JP3555720B2 (en) Addition compound of lithium hexafluorophosphate, method for producing the same, and electrolyte using the same
KR20220135283A (en) Method for manufacturing sodium bis(fluorosulfonyl)imide
KR20220135281A (en) Method for manufacturing sodium bis(fluorosulfonyl)imide
KR101982603B1 (en) Method for producing bis (fluorosulfonyl) imide lithium salt (LiFSI) with reduced fluorine anion content (2)

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant