KR102249135B1 - 골관절염 자연발생 모델 및 이의 용도 - Google Patents

골관절염 자연발생 모델 및 이의 용도 Download PDF

Info

Publication number
KR102249135B1
KR102249135B1 KR1020200146013A KR20200146013A KR102249135B1 KR 102249135 B1 KR102249135 B1 KR 102249135B1 KR 1020200146013 A KR1020200146013 A KR 1020200146013A KR 20200146013 A KR20200146013 A KR 20200146013A KR 102249135 B1 KR102249135 B1 KR 102249135B1
Authority
KR
South Korea
Prior art keywords
osteoarthritis
cbfb
articular cartilage
animal model
expression
Prior art date
Application number
KR1020200146013A
Other languages
English (en)
Inventor
최제용
박나래
김한
차상국
Original Assignee
경북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경북대학교 산학협력단 filed Critical 경북대학교 산학협력단
Application granted granted Critical
Publication of KR102249135B1 publication Critical patent/KR102249135B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/8509Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/105Murine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/8509Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
    • C12N2015/8527Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic for producing animal models, e.g. for tests or diseases

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Biochemistry (AREA)
  • Animal Husbandry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명은 Cbfb (core-binding factor β) 발현이 관절연골에서 특이적으로 억제된 것을 특징으로 하는 골관절염 동물모델에 관한 것으로, 상기 골관절염 동물모델은 타 조직이 아닌 관절연골에서만 특이적으로 Cbfb 유전자를 결실시킨 것으로, 관절연골 특이성이 강하며 16주에 관절연골이 변성되고 골관절염이 유도되는 것으로 골관절염 자연발생 시간도 STR/ort보다 짧고 12개월이 되면 관절연골이 완전히 파괴되어 우수한 말기 골관절염 마우스 모델로 제공이 가능함이 확인됨에 따라, 상기 관절연골 특이적으로 Cbfb가 결실된 마우스를 골관절염 자연발생 모델로 제공하여 골관절염 신약개발 스크리닝에 활용할 수 있다.

Description

골관절염 자연발생 모델 및 이의 용도 {Spontaneous osteoarthritis animal model and use thereof}
본 발명은 TGF-β 신호전달에 관여하는 Cbfb (core-binding factor β gene) 유전자 제어를 이용한 골관절염 자연발생 모델 및 이의 용도에 관한 것이다.
골관절염 (Osteoarthritis, OA)은 몸의 모든 관절에서 일어날 수 있는 만성 퇴행성 질환으로 관절연골의 변성 (degeneration), 연골하골 (subchondral bone)의 재형성 (bone remodeling)과 관절연골의 염증성 변화가 중요한 특징이다. 관절연골 세포는 기계적 부하 (mechanical stress)에 반응하여 비대연골세포 (hypertrophic chondrocyte)로 분화되고, 휴지기연골세포는 기계적 부하에 의하여 연골내막 골화 (endochondral ossification)의 핵심인자인 Runx2가 발현하여 비정상 분화가 계속 진행되어 비대연골세포로 변화한다. 기계적 부하의 작용 하에 연골하골이 자극을 받아 파골세포에서 Tgf-β1 분비가 증가되며, Tgf-β1은 골수줄기세포의 유동성을 증가시키고 조골세포 전사인자인 오스테릭스 (Osterix)의 활성을 증가시켜 신생 뼈의 형성을 촉진한다. 연골하골의 재형성으로 연골하골에 불규칙적인 돌기 (osteophyte)가 형성되어 역학적 부하에 대한 균형이 깨지게 되어 관절연골의 파손이 일어나기 시작한다.
관절연골 표지인자 결실을 이용한 유전자변형마우스를 사용하여 골관절염을 유도한 동물모델은 많지 않다. 문제점은 대부분 중요한 유전자의 결실은 마우스의 관절연골의 생성이상 또는 골발생시의 연골내막골화에 직접적으로 영향을 주어 생 후의 자연적인 골관절염 발생 모델을 얻기가 힘들기 때문이다. 연골세포외기질 주요 구성요소인 아그레칸(Aggrecan)이나 연골의 항상성유지에 중요한 Tgfβ의 신호통로 관여하는 핵심인자 smad3를 결실시킨 글로벌 knockout 마우스는 관절연골뿐만아니라 전체 연골의형성 이상을 초래하게 되어 관절연골모델로만의 동물모델로서는 의미가 없다. 사이토카인인 IL-1β거나 ICE를 결실시킨 글로벌 knockout 마우스에서는 자연적으로 골관절염이 발생하지 않고 골관절염 수술로 유도되어야만 골관절염이 진행이 촉진되는 양상을 나타낸다. 또한 Sirt1 유전자 또는 ephrin-B2 유전자는 Col2 Cre를 이용하여 연골에서 특이적으로 결실시 연골의 발생에 영향을 줄 뿐만 아니라 1년이란 긴 시간이 지난 후 관절연골이 손상받는다는 보고도 있다. 이와 같이 자연적으로 적당한 성체시기(8-12주)에 골관절염 모델로 사용할 수 있는 마우스 동물모델은 아직까지 제대로 개발되지 않은 상황이다.
현재 시판되어 많이 사용되고 있는 골관절염 동물모델은 STR/ort로서 생후 18주부터 골관절염이 발생하고 진행된다고 알려져있다. 그러나 STR/ort마우스는 아직까지 발생 원인을 모르고 완전한 넉아웃 마우스로 관절연골 특이성이 없어서 그 제한성이 있다. 이에 따라, 골관절염 신약개발을 위하여 보다 정확한 스크리닝 모델에 대한 연구가 필요한 실정이다.
대한민국 공개특허 제10-2013-0026783호 (2013.03.14. 공개)
본 발명은 TGF-β 신호전달에 관여하는 Cbfb 유전자 제어를 이용한 골관절염 자연발생 모델 및 이의 용도를 제공하고자 한다.
본 발명은 Cbfb (core-binding factor β) 발현이 억제된 골관절염 동물모델을 제공한다.
또한, 본 발명은 상기 골관절염 동물모델에 후보물질을 처리하는 단계; 상기 후보물질이 처리된 골관절염 동물모델로부터 TGF-β 및 Cbfb로 이루어진 군에서 하나 이상의 유전자 발현 수준을 확인하는 단계; 및 상기 유전자 발현 수준을 비처리군 대조군과 비교하여 증가를 확인하는 단계를 포함하는 골관절염 치료제 스크리닝 방법을 제공한다.
본 발명에 따르면, 타 조직이 아닌 관절연골에서만 특이적으로 Cbfb 유전자를 결실시킨 동물모델은 관절연골 특이성이 강하며 16주에 관절연골이 변성되고 골관절염이 유도되는 것으로 골관절염 자연발생 시간도 STR/ort보다 짧고 12개월이 되면 관절연골이 완전히 파괴되어 우수한 말기 골관절염 마우스 모델로 제공이 가능함이 확인됨에 따라, 상기 관절연골 특이적으로 Cbfb가 결실된 마우스를 골관절염 자연발생 모델로 제공하여 골관절염 신약개발 스크리닝에 활용할 수 있다.
도 1은 X-gal 염색을 이용한 GDF5 cre의 활성 분석한 결과이다.
도 2는 조직면역학염색을 이용한 Cbfb의 결실을 확인한 결과이다.
도 3은 Cbfb△ac/△ac에서의 정상적인 관절연골의 형성과 골 발생을 확인한 결과이다.
도 4는 Cbfb의 결실에 의한 골관절염의 자연발생을 확인한 결과이다.
도 5는 Cbfb의 결실에 의한 말기 골관절염의 형성을 확인한 결과이다.
도 6은 TGF-β에 의한 Cbfb/Runx1의 발현 변화를 확인한 결과이다.
도 7은 TGF-β에 의한 Cbfb 유전자 발현 조절을 활인한 결과이다.
도 8은 Cbfb와 TGF-β 신호전달 연관성을 확인한 결과이다.
도 9는 Cbfb결실에 의한 Runx1 및 관절연골 표지자의 유전자 발현 변화를 확인한 결과이다.
도 10은 Cbfb은 Runx1 단백질의 안전성을 조절을 확인한 결과이다.
이하, 본 발명을 보다 상세하게 설명한다.
본 발명의 발명자들은 Cbfb가 관절연골의 항상성 유지와 재생에 중요한 TGF-β1의 신호전달을 조절하여 골관절염의 발생을 조절하는 것을 확인함에 따라, 타 조직이 아닌 관절연골에서만 특이적으로 Cbfb유전자를 결실시킨 골관절염 마우스를 제작하였으며, 상기 제작된 골관절염 마우스는 관절연골 특이성이 강하며 16주에 관절연골이 변성되고 골관절염이 유도되며, 골관절염 자연발생 시간도 STR/ort보다 짧고 12개월이 되면 관절연골이 완전히 파괴되는 말기 골관절염 마우스 모델로 활용이 가능함을 확인하고 본 발명을 완성하였다.
본 발명은 Cbfb (core-binding factor β) 발현이 억제된 골관절염 동물모델을 제공할 수 있다.
상기 골관절염 동물모델은 GDF5 Cre 마우스와 정상 마우스의 교배에 의해 Cbfb 발현 억제가 유도된 것일 수 있다. 또한, 상기 골관절염 동물모델은 AAV 바이러스를 감염시켜 Cbfb 발현 억제가 유도된 것일 수 있다.
보다 상세하게는 상기 골관절염 동물모델은 Cbfb 발현 억제에 의해 골관절염이 자연발생적으로 유도된 것일 수 있다.
상기 Cbfb 유전자는 TGF-β 신호전달을 조절하는 것일 수 있다.
본 발명은 상기 골관절염 동물모델에 후보물질을 처리하는 단계; 상기 후보물질이 처리된 골관절염 동물모델로부터 TGF-β 및 Cbfb로 이루어진 군에서 하나 이상의 유전자 발현 수준을 확인하는 단계; 및 상기 유전자 발현 수준을 비처리군 대조군과 비교하여 증가를 확인하는 단계를 포함하는 골관절염 치료제 스크리닝 방법을 제공할 수 있다.
상기 골관절염 치료제 스크리닝 방법은 후보물질이 처리된 골관절염 동물모델에서 Runx1 단백질 발현 수준을 추가로 더 확인하는 단계를 포함하는 것일 수 있다.
상기 Runx1 단백질 발현 수준은 후보물질 처리에 의해 증가되는 것일 수 있다.
이하, 본 발명의 이해를 돕기 위하여 실시예를 들어 상세하게 설명하기로 한다. 다만 하기의 실시예는 본 발명의 내용을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.
<실험예>
하기의 실험예들은 본 발명에 따른 각각의 실시예에 공통적으로 적용되는 실험예를 제공하기 위한 것이다.
1. 시약
마우스 단일항체 항-액틴 (actin), 래빗-항 Rux2와 고트 항-Lamin B 항체는 Santa Cruz Biotechnology (Santa Cruz, CA, USA)에서 구입하였으며, 마우스 단일항체 항-Mmp13, 항-타입 II 콜라겐 및 래빗 항-Runx1는 Abcam (Abcam, MA, USA)에서 구입하였다.
2. 실험동물 관리
Cbfbf/f, GDF5 Cre; Cbfbf/+와 GDF5 Cre; Cbfbf/f 12주령과 12개월 수컷마우스를 사용하여 관절연골의 변성 및 골관절염의 진행상황을 관찰하였다. SPF (Specific Pathogen Free) 실험동물 사육실 (온도 25℃, 상대습도 60%)에서 1주일간 적응시킨 후 본 연구에 사용하였다. 사료는 일반식을 주었으며 (Super bead Co, Korea), 모든 동물실험은 경북대학교 동물실험윤리위원회 가이드라인을 따라 수행하였다. (동물실험승인번호: KNU 2011-67).
3. 세포배양
ATDC5 (Chondrocytes cell line) 세포는 DMEM/F12 (1:1)에 hybrid medium (HYCLONE, Lonza, Rockland, ME, USA), 5% (v/v) FBS, 페니실린 (100 units/㎖)과 스트렙토마이신 (100 units/㎖)을 넣고, 10 μg/ml 사람 트랜스페린 (human transferrin, Sigma-Aldrich, St. Louis, MO, USA)와 3×10-8 M 아셀레늄산나트륨 (sodium selenite, Sigma-Aldrich) 넣어서 37℃, 5% (v/v) CO2 항온항습배양기에서 배양하였다.
관절연골세포는 생후 5 - 6일된 마우스 뒷다리 관절에서 추출하였다. 마우스를 희생한 후 인큐베이터에서 마우스를 70% 에탄올에 1번 담가서 피부소독하고 관절을 가위로 분리하고 가위와 핀셋으로 관절부부만 트리밍(trimming)하여 분리하고 PBS로 세척하였다. 콜라겐분해효소 D (Collagenase D) 3mg/ml 첨가된 DMEM 용액에 분리된 관절을 넣고 45분간 37℃에서 관절연골이 아닌 인대 등의 다른 조직을 녹여 제거하였다. 45분 후 관절을 PBS로 2번 세척하고 콜라겐분해효소 D가 0.5mg/ml 첨가된 용액에 넣어서 37℃에서 하룻밤동안 배양하였다.
다음날 1500 rpm에서 5분 원심분리하고 10% (v/v) FBS, 페니실린 (100 units/㎖) 및 스트렙토마이신 (100 units/㎖)이 첨가된 배양액인 DMEM (HYCLONE, Lonza, Rockland, ME, USA)에 재현탁한 후 70μm 거름망에 걸러서 관절연골세포를 얻었다. 세포수를 hemocytometer로 계수한 후 실험에 사용하였다.
4. 사프라닌 O (Safranin O) 염색
태생기 14.5와 16.5의 앞다리, 성체 16주와 12개월인 마우스의 뒷다리를 분리하고, 4℃에서 4% PFA (paraformalehyde)에 뒷다리를 하룻밤동안 고정하고, 4℃에서 10% EDTA로 3주간 탈회한 후 파라핀 샘플을 만듦었다. 관절연골을 중심으로 자른 파라핀 절편을 재수화(rehydration)한 후 Weigert's Iron Hematoxylin 용액에 담궈 세포핵을 염색하고, Fast green 용액으로 사프라닌 O 용액을 이용하여 연골을 염색한 후 mounting하고 현미경으로 분석하였다.
5. 폰코사 (Vonkossa) 염색
뼈의 광화 진행정도를 관찰하기 위하여 Vonkossa 염색을 수행하였다. 태생기 16.5일인 마우스 앞다리와 뒷다리를 분리하여 4℃에서 4% PFA에 하루동안 고정하였다. 고정 후 탈회하지 않은 상태에서 파라핀 샘플을 만듦었다. 파라핀 절편을 재수화한 후 1% AgNO3을 첨가 후 UV 아래에서 5분 동안 반응시켰다. 반응이 끝난 후 3차수로 2번 세척하고 5% sodium thiosulfate를 첨가하여 5분동안 반응시켜 비특이적인 신호를 제거하였다. Eosin으로 counter 염색을 하고 mounting후 현미경으로 분석하였다.
6. 알시안블루 (Alcian blue) & 알리자린레드 (Alizarin red) 염색
Skeletal formation의 양상을 보기 위하여 알시안블루 & 알리자린레드 염색을 수행하였다. 태생기 16.5일인 마우스 피부를 제거하고 95% 에탄올에 하루동안 담궈 고정하고, 0.015% Alcian blue/(20% acetic acid+80% 에탄올)에 24시간 담궈 연골을 염색하였다. 95% 에탄올에 다시 3시간 담궈 비 특이적 염색을 제거하고 2% KOH/ddH2O에 24시간 담궈 남은 피부와 근육조직을 제거하였다. 다음날, 0.005% Alizarin red S/1% KOH 용액에 담궈 석회화된 뼈 조직을 염색하였다. 1% KOH/20% glycerol에 48시간 담궈 비특이적 염색과 남은 근육조직을 제거하고 실물현미경으로 사진 찍고 분석하였다.
7. 조직면역학 염색
관절연골을 중심으로 자른 파라핀 절편을 재수화한 후 Tri-EGTA (Tris 1.211g+EGTA 0.19g/ddH2O 1L; TEG)용액에 넣어서 전자레인지에 끓여서 retriever 하고 상온에서 천천히 식혔다. Retriever된 샘플을 3%H2O2/메탄올과 1% BSA/PBS용액으로 blocking 해주고 0.1% Triton X-100 permibilization시켰다. 그다음 일차 항체를 4℃에서 하룻밤동안 반응시켜주고, 이차 항체를 상온에서 1시간 반응시켰다. 마지막으로 DAB substrate를 이용하여 발색시킨 후 탈수하여 mounting하고 현미경으로 분석하였다.
8. 웨스턴 블롯 (Western blotting)
관절연골세포와 골관절염 표지자의 단백질 발현변화를 확인하기 위해 western blotting을 수행하였다. 일차계대배양된 정상 또는 Cbfb가 결실된 관절연골세포에서 단백질을 추출하여 bradford 방법으로 단백질을 정량화하고, 단백질을 20ug을 8%와 15% Acrylamide 젤에 로딩하였다. 5% 탈지방 밀크를 이용하여 1 시간동안 blocking 하고 TBS-T[(1ml tween 20)/(1L Tris-buffered saline)]로 5분씩 3번 세척한 후 일차항체를 상온에서 1시간 30분 반응시키고, TBST로 3번 세척한 후 2차항체를 상온에서 1시간 반응시켰다. 이후 ECL 용액을 이용하여 발색하여 조골세포분화 표지자의 단백질 발현양을 분석하였다.
9. 실시간 PCR (Real-time PCR)
관절연골항상성유지와 골관절염유도 표지자의 유전자 발현변화를 확인하기 위해 Real-time PCR을 수행하였다. 골수줄기세포를 조골세포로 분화 유도시켜 분화 1일 8일 13일에 RNA 추출 Kit (Easy-blue)를 이용하여 total RNA를 추출하고, 2 ㎍의 Total RNA을 역전사효소를 이용하여 cDNA로 합성하였다. 합성된 cDNA 0.5 ㎕에 2× SYBR green PCR master mixture (5 ㎕)와 specific primer (0.2 ㎕)를 섞어서 real-time PCR을 수행하였다. Real-time PCR에 사용한 프라이머는 표 1에 기록하였다. 프라이머는 Primer Express software (ABI)를 이용하여 디자인하였다.
oligo name sequence
mGAPDH-F gca tct ccc tca caa ttt cca
mGAPDH-R gtg cag cga act tta ttg atg g
mCbfb-Exon5-F gat gca tta gca caa cag gcc t
mCbfb-Exon5-R ttg ctg tct tct tgc ctc cat t
mCbfb-Exon2-3-F gat cgc ttt tgt ggc tac agg a
mCbfb-Exon2-3-R agt cga cat att ccc ggc tag g
mRunx1-F acc agg tgt ctt tga ggc cta a
mRunx1-R tct gcc tcc cat gac tga ttc
mRunx2-F aca tgg cca gat tca cag tgg
mRunx2-R tgg tgc ccg tta gca att g
mRunx3-F ttc aac gac ctt cga ttc gt
mRunx3-R ttg gtg aac acg gtg att gt
mTgfb1-F tgg agc aac atg tgg aac tc
mTgfb1-R gtc agc agc cgg tta cca
mTgfbr2-F agg agg ttt ata aaa tcg aca tgc
mTgfbr2-R tag aaa gtg ggc ggg atg
mCol2a1-F ttc cac ttc agc tat ggc ga
mCol2a1-R gac gtt agc ggt gtt ggg ag
mAgc1-F gag aga ggc gaa tgg aac ga
mAgc1-R cgt gaa ggg cag ctg gta at
mCol10a1-F tgc cgc ttg tca gtg cta ac
mCol10a1-R aag cag aca cgg gca tac ct
mVegf-F cag gct gct gta acg atg aa
mVegf-R gca ttc aca tct gct gtg ct
mMmp13-F gcc aga acttcc caa cca t
mMmp13-R tca gag ccc aga att ttc tcc
<실시예 1> Cbfb 결실 마우스 제작
1. GDF5 cre를 이용한 관절연골 특이적 Cbfb 결실 마우스 제작
관절연골에서 Cbfb를 특이적으로 제거하기 위해, 관절연골의 GDF5 프로모터로부터 Cre 재조합 효소를 특이적으로 발현하는 GDF5 Cre 마우스를 이용하여 ROR26마우스와 교배한 후 X-gal 염색을 수행하였다.
그 결과, 도 1과 같이 태생기 16.5일과 생후 3개월 관절연골에서 모두 특이적으로 GDF5 cre (파란색)가 발현되는 것을 확인하였다.
또한, 교배된 마우스 GDF5 Cre; Cbfbf/f (Cbfb△ac/△ac)의 관절연골에서 Cbfb의 특이적 결실을 확인하기 위하여, 조직면역학염색을 수행하였다.
그 결과, 도 2와 같이 태생기 16.5일과 성체 12주 관절연골에서 Cbfb가 특이적으로 결실된 것을 확인할 수 있었다.
2. AAV 바이러스 감염을 통한 관절연골 특이적 Cbfb 결실 마우스 제작
Cbfbf/f 8주령 수컷 마우스를 확보 후 AAV-Cre를 관절강내에 1X109 PFU/10 μl 투여하여 감염시키고 8주 후 Cbfb의 결실과 골관절염의 진행을 확인하고 골관절염 모델을 확보하였다.
<실시예 2> GDF5 Cre; Cbfb f/f (Cbfb △ac/△ac )가 관절연골의 형성 및 골 발생에 미치는 영향 확인
관절연골에서 Cbfb 특이적 결실이 관절연골의 형성과 골 발생에 주는 영향을 확인하기 위해 Cbfb△ac/△ac 마우스에서 관절연골의 형성과 골 발생 및 골 광화 (bone mineralization)를 확인하기 위해, 사프라닌-O 염색, 알시안 블루 & 알리자린 레드 염색 및 폰코사 염색을 수행하였다.
그 결과, 도 3과 같이 Cbfb△ac/△ac 마우스에서 관절연골의 형성, 골 발생 및 골 광화(bone mineralization)는 대조군 마우스에 같은 양상을 나타내었다.
상기 결과로부터 관절연골에서의 Cbfb 특이적 결실은 관절연골의 형성과 골 발생에 영향을 주지 않는 것이 확인되었다.
<실시예 3> Cbfb 특이적 결실에 의한 골관절염 자연발생 및 말기 골관절염 형성 확인
관절연골에서 특이적으로 Cbfb를 제거한 Cbfb△ac/△ac 마우스 16주령에서 관절연골이 변성되고 골관절염이 발생하는 양상을 확인하기 위해, 조직면역학 염색으로 관절연골 항상성 유지 및 골관절염 유도 표지자의 발현을 확인하였다.
그 결과, 도 4와 같이 Cbfb△ac/△ac 관절연골조직에서 관절연골 항상성유지 단백질인 Runx1 (Runt-related transcription factor 1)과 콜라겐 (Collagen, Col) II가 감소되었으며, 골관절염유도 표지자인 MMP13이 증가하는 것을 확인할 수 있었다.
상기 결과로부터 관절연골에서 Cbfb 특이적 결실에 의하여 골관절염이 자연 발생되는 것이 확인되었다. 상기 결과로부터 골관절염 모델로 골관절염 조기치료 모델로 제공되어 골관절염 치료제의 효능 검증에 사용될 수 있다.
또한, Cbfb 결실 12주 후 골관절염이 자연발생된 후 골관절염의 진행을 확인하였다. 그 결과, 도 5와 같이 생후 12개월에 관절연골이 마모되어 관절연골의 tide-marker와 석회화된 영역(calcified zone)이 없어지고 말기 골관절염 양상을 나타내었다.
상기 결과로부터 말기 골관절염 줄기세포의 치료에 활용하여 유효성 확인을 위한 스크리닝 모델로 제공될 수 있음이 확인되었다.
<실시예 4> TGF-β에 의한 Cbfb 단백질 및 유전자의 발현 조절 확인
TGF-β는 관절연골의 형성, 항상성과 골관절염의 억제 및 관절연골의 재생에 중요한 작용을 하는 것으로 알려짐에 따라, TGF-β와 Cbfb의 연관성을 확인하기 위해 일차 계대배양된 관절연골세포에 TGF-β1을 처리하였다.
관절연골세포를 100π 플레이트에 1×106 세포/plate에 접종하고 24시간 뒤 PBS로 두 번 세척한 후 FBS가 없는 배양액에 1시간 동안 영양소 결핍상태로 배양( starvation)하고, TGF-β1 재조합 단백질을 1, 10 및 100ng/ml 농도로 처리한 후 0, 5, 10, 30, 60 및 120분 마다 단백질을 추출하여 Tgfb1의 신호전달을 관찰하고 24시간 뒤 단백질을 추출하여 웨스턴 블롯을 수행하여 하부유전자의 발현을 확인하였다.
그 결과, 도 6과 같이 TGF-β1의 처리에 의해 관절연골에서 TGF-β1 신호가 활성화되어 세포핵 내에 p-smad2/3가 증가되는 것을 확인하였으며, 신호의 활성화에 의하여 Cbfb 단백질의 발현이 증가되는 것이 확인되었다. 또한, Cbfb의 파트너 단백질인 Runx1이 증가되었으나, Runx2와 Runx3는 발현 변화가 많지 않은 것을 확인하였다. 또한 TGF-β1의 처리에 의하여 관절연골의 항상성 유지에 중요한 ColII의 발현이 증가하고 관절연골 변성에 중요한 ColX의 발현이 감소하는 것을 확인하였다.
상기 결과로부터 TGF-β1은 cbfb의 발현을 증가시키고 Cbfb의 파트너 단백질 중 Runx1의 발현도 증가시킬 뿐만 아니라 ColII와 ColX의 발현을 조절하여 관절연골의 항상성을 조절하는 것이 확인되었다.
또한, TGF-β의 처리에 의한 Cbfb와 그의 파트너 단백질인 Runx1, 2 및 3의 유전자 발현변화를 확인하였다. 연관성을 확인하기 위해, 일차 계대배양된 관절연골세포를 이용하여 TGF-β1 1, 10 및 100ng/ml을 처리한 후 실시간 PCR을 수행하였다.
그 결과, 도 7과 같이 TGF-β1의 처리에 의하여 관절연골에서 Cbfb의 발현이 증가되고 Runx1, 2 및 3의 발현이 증가되는 것을 확인하였다. 또한 골 항상성 표지자인 타입 II 콜라겐 (Type II collagen)과 아그레칸 (Aggrecan)의 발현도 증가되는 것이 확인되었다.
상기 결과로부터 TGF-β는 관절연골의 항상성 표지자의 발현을 조절할뿐만 아니라 Cbfb와 Runx1, 2 및 3의 발현을 조절하는 것이 확인되었다.
<실시예 5> Cbfb 결실에 의한 TGF-β 신호전달 및 Cbfb 회복에 의한 관절연골 항상성 유지표지자의 발현 수준 확인
앞선 실험에서 확인된 바와 같이 Cbfb의 결실이 TGF-β1의 상위 신호전달에 영향을 주는지를 GDF5 Cre; Cbfbf/f (Cbfb△ac/△ac) 마우스에서 확인하였다.
그 결과, 도 8과 같이 smad2/3의 인산화에는 영향을 주지 않지만 Runx1의 단백질 발현에는 양향을 주는 것이 확인되었다. 또한, Cbfb의 결실이 TGF-β1의 하위인 Runx1 및 Col2의 발현을 감소시키는 것을 확인된 반면, Cbfb를 회복시킨 경우 감소되었던 Runx1과 Col2가 다시 회복되고 관절연골 변성표지자인 mmp13의 발현이 감소되는 것이 확인되었다.
상기 결과로부터 Cbfb는 TGF-β1의 상위 신호전달에는 영향을 주지 않지만 하위 신호전달에는 중요한 조절 작용을 하는 것이 확인되었다.
<실시예 6> TGF-β 결실에 의한 Runx1 및 관절연골 표지자의 유전자 발현 변화 확인
관절연골에서 Cbfb 유전자 결실이 Runx1의 발현 및 관절연골 표지자의 유전자 발현변화에 주는 영향을 Cbfb 유전자가 결실된 GDF5 Cre; Cbfbf/f (Cbfb△ac/△ac) 마우스에서 확인하였다.
그 결과, 도 9와 같이 관절연골에서의 cbfb의 결실에 의하여 Runx1의 발현이 증가하고 관절연골 항상성 표지자 Aggrecan과 ColII의 발현이 감소되며 Runx2, ColX, MMP13과 Vegf의 발현이 증가하는 것을 확인하였다.
상기 결과로부터 Cbfb의 결실이 관절연골의 변성을 촉진시키는 것이 확인되었으며, Runx1 단백질이 감소하는 반면, Runx1의 전사 (transcription) 수준이 증가하는 것으로 확인됨에 따라, Cbfb가 Runx1의 유전자 발현이 아닌 단백질의 안전성에 영향을 줄 것으로 제안된다.
<실시예 7> Cbfb의 Runx1 단백질 안정성 조절 효과 확인
상기 실험결과를 바탕으로 Cbfb가 Runx1의 단백질 안전성을 조절하는지를 확인하기 위해, 면역침강법 (Co-immunoprecipitation)을 수행하여 Cbfb Runx1의 결합여부를 확인하였으며, Flag-Runx1과 myc-Cbfb를 연골세포에 transfection 한 후 24시간 뒤 DSP를 1시간 처리하여 단백질의 결합을 강화시키고 IP lysis 용액 [(0.15M NacCl)+(0.01M Tris, pH 7.4)+(5mM EDTA)+(1mM EGTA, pH 8.0)+(1% Triton X-100)+(0.5% NP-40)+(0.2mM sodium ortho-vanadate)+(0.1% protease inhibitor)/(ddH2O)]을 이용하여 세포를 lysis하고 bradford 방법으로 단백질을 정량화한 후 1mg을 취하여 일차항체 monoclonal anti-Flag 2μg과 4℃에서 하룻밤동안 반응시켰다.
다음날 Protein A Sepharose를 50μl 넣고 4℃에서 2시간 반응시키고 IP-lysis 용액을 이용하여 4번 세척하였다. 2× Laemmli sample 용액을 50μl 씩 넣어주고 100℃에서 가열하여 bead와 단백질을 분리하고 원심분리한 후 상등액을 취하여 전기영동과 western blotting을 이용하여 Polyclonal anti-myc 일차항체, 이차항체와 반응시키고 발색하여 myc-Cbfb와 flag-Runx1의 결합을 확인하였다.
또한, Runx1 단백질의 안정성이 Cbfb의 영향을 받는지를 확인하기 위하여 ubiquitination assay를 시행하였다. Flag-Runx1, HA-Ub와 myc-Cbfb를 연골세포에 transfection한 후 24시간 후 Mg132를 2시간 처리하여 단백질의 proteosomal degradation을 억제하였다. IP lysis 용액 [(0.15M NacCl)+(0.01M Tris, pH 7.4)+(5mM EDTA)+(1mM EGTA, pH 8.0)+(1% Triton X-100)+(0.5% NP-40)+(0.2mM sodium ortho-vanadate)+(0.1% protease inhibitor)/(ddH2O)]을 이용하여 세포를 lysis하고 bradford 방법으로 단백질을 정량화한 후 1mg을 취하여 일차항체 monoclonal anti-Flag 2μg과 4℃에서 하룻밤동안 반응시켰다. 다음날 Protein A Sepharose를 50μl 넣고 4℃에서 2시간 반응시키고 IP-lysis 용액을 이용하여 4번 세척하였다. 2× Laemmli sample 용액을 50μl 씩 넣어주고 100℃에서 가열하여 bead와 단백질을 분리하고 원심분리 후 상등액을 취하여 전기영동과 웨스턴 블롯을 수행하여 Polyclonal anti-HA 일차항체, 이차항체와 반응시키고 발색하여 Runx1의 폴리 유비퀴틴화 (poly-ubiquitination) 정도를 확인하였다.
그 결과, 도 10과 같이 두 단백질이 연골세포에서 결합하는 것을 확인하였으며, 폴리 유비퀴틴화를 통하여 Cbfb는 Runx1 단백질의 프로테아좀 관련 분해 (proteosomal degradation)를 저해하는 것이 확인되었다.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.

Claims (8)

  1. GDF5 Cre 마우스와 정상 마우스를 교배시켜 Cbfb 발현을 억제시키는 단계; 및
    상기 Cbfb 발현 억제에 의해 골관절염을 자연발생적으로 유도시키는 단계를 포함하는 Cbfb (core-binding factor β) 발현이 억제된 골관절염 동물모델 제조방법.
  2. 삭제
  3. 삭제
  4. 청구항 1에 있어서, 상기 Cbfb 유전자는 TGF-β 신호전달을 조절하는 것을 특징으로 하는 골관절염 동물모델 제조방법.
  5. 청구항 1의 제조방법에 따른 골관절염 동물모델.
  6. 청구항 5항의 골관절염 동물모델에 후보물질을 처리하는 단계;
    상기 후보물질이 처리된 골관절염 동물모델로부터 TGF-β 및 Cbfb로 이루어진 군에서 하나 이상의 유전자 발현 수준을 확인하는 단계; 및
    상기 유전자 발현 수준을 비처리군 대조군과 비교하여 증가를 확인하는 단계를 포함하는 골관절염 치료제 스크리닝 방법.
  7. 청구항 6에 있어서, 상기 골관절염 치료제 스크리닝 방법은 후보물질이 처리된 골관절염 동물모델에서 Runx1 단백질 발현 수준을 추가로 더 확인하는 단계를 포함하는 것을 특징으로 하는 골관절염 치료제 스크리닝 방법.
  8. 청구항 7에 있어서, 상기 Runx1 단백질 발현 수준은 후보물질 처리에 의해 증가되는 것을 특징으로 하는 골관절염 치료제 스크리닝 방법.
KR1020200146013A 2019-12-31 2020-11-04 골관절염 자연발생 모델 및 이의 용도 KR102249135B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20190178806 2019-12-31
KR1020190178806 2019-12-31

Publications (1)

Publication Number Publication Date
KR102249135B1 true KR102249135B1 (ko) 2021-05-07

Family

ID=75916573

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200146013A KR102249135B1 (ko) 2019-12-31 2020-11-04 골관절염 자연발생 모델 및 이의 용도

Country Status (1)

Country Link
KR (1) KR102249135B1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024063484A1 (ko) * 2022-09-21 2024-03-28 경북대학교 산학협력단 CBFβ 발현 혈관평활근세포 또는 이의 배양액을 유효성분으로 포함하는 노인성 질환 예방 또는 치료용 약학 조성물
KR20240040635A (ko) 2022-09-21 2024-03-28 경북대학교 산학협력단 Cbfβ 발현 혈관평활근세포 또는 이의 배양액을 유효성분으로 포함하는 노인성 질환 예방 또는 치료용 약학 조성물

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130026783A (ko) 2011-09-06 2013-03-14 한림대학교 산학협력단 골관절염 모델 동물

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130026783A (ko) 2011-09-06 2013-03-14 한림대학교 산학협력단 골관절염 모델 동물

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Arthritis Rheumatism.,54(8):2462-2470(2006.8.)* *
J Bone Miner Res.,30(4):715-722(2015.4.)* *
Science.,336(6082):717-721(2012.4.5.)* *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024063484A1 (ko) * 2022-09-21 2024-03-28 경북대학교 산학협력단 CBFβ 발현 혈관평활근세포 또는 이의 배양액을 유효성분으로 포함하는 노인성 질환 예방 또는 치료용 약학 조성물
KR20240040635A (ko) 2022-09-21 2024-03-28 경북대학교 산학협력단 Cbfβ 발현 혈관평활근세포 또는 이의 배양액을 유효성분으로 포함하는 노인성 질환 예방 또는 치료용 약학 조성물

Similar Documents

Publication Publication Date Title
Weng et al. Genetic inhibition of fibroblast growth factor receptor 1 in knee cartilage attenuates the degeneration of articular cartilage in adult mice
Kamekura et al. Contribution of runt‐related transcription factor 2 to the pathogenesis of osteoarthritis in mice after induction of knee joint instability
Martı́nez-Álvarez et al. Snail family members and cell survival in physiological and pathological cleft palates
Tsuchiya et al. Expression of mouse HtrA1 serine protease in normal bone and cartilage and its upregulation in joint cartilage damaged by experimental arthritis
Zhu et al. EGFR signaling suppresses osteoblast differentiation and inhibits expression of master osteoblastic transcription factors Runx2 and Osterix
Richman et al. About face: signals and genes controlling jaw patterning and identity in vertebrates
Wei et al. Progranulin derivative Atsttrin protects against early osteoarthritis in mouse and rat models
KR102249135B1 (ko) 골관절염 자연발생 모델 및 이의 용도
Kallop et al. A death receptor 6-amyloid precursor protein pathway regulates synapse density in the mature CNS but does not contribute to Alzheimer's disease-related pathophysiology in murine models
Hui et al. Expression pattern of Nogo‐A, MAG, and NgR in regenerating urodele spinal cord
Carbonell M et al. Hydrogen peroxide is necessary during tail regeneration in juvenile axolotl
Song et al. Regulation of chondrocyte functions by transient receptor potential cation channel V6 in osteoarthritis
Alvarez et al. Unique and redundant roles of Smad3 in TGF‐β–mediated regulation of long bone development in organ culture
Celá et al. BMP signaling regulates the fate of chondro‐osteoprogenitor cells in facial mesenchyme in a stage‐specific manner
Shi et al. Neuregulin 4 attenuates osteoarthritis progression by inhibiting inflammation and apoptosis of chondrocytes in mice
Torre-Muruzabal et al. Chronic nigral neuromodulation aggravates behavioral deficits and synaptic changes in an α-synuclein based rat model for Parkinson’s disease
Dvorakova et al. Expression of neuropeptide Y and its receptors Y1 and Y2 in the rat heart and its supplying autonomic and spinal sensory ganglia in experimentally induced diabetes
Pizette et al. Early steps in limb patterning and chondrogenesis
Sun F-box and WD repeat domain-containing 7 (FBXW7) mediates the hypoxia inducible factor-1α (HIF-1α)/vascular endothelial growth factor (VEGF) signaling pathway to affect hypoxic-ischemic brain damage in neonatal rats
Ishigami et al. Age‐associated decrease of senescence marker protein‐30/gluconolactonase in individual mouse liver cells: Immunohistochemistry and immunofluorescence
WO2022137964A1 (ja) 軟骨・骨・関節疾患の予防または治療用医薬組成物および軟骨・骨・関節疾患の予防または治療用薬剤のスクリーニング方法
Shi et al. Glypican‐6 and Glypican‐4 stimulate embryonic stomach growth by regulating Hedgehog and noncanonical Wnt signaling
US7723301B2 (en) Pharmaceutical compositions comprising an anti-teratogenic compound and applications of the same
JP6479818B2 (ja) 骨髄増殖性新生物の治療に適した化合物
Chen et al. Characterization of chicken Nf2/merlin indicates regulatory roles in cell proliferation and migration

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant