KR102241508B1 - E-모빌리티 배터리 관리 시스템 - Google Patents

E-모빌리티 배터리 관리 시스템 Download PDF

Info

Publication number
KR102241508B1
KR102241508B1 KR1020210014706A KR20210014706A KR102241508B1 KR 102241508 B1 KR102241508 B1 KR 102241508B1 KR 1020210014706 A KR1020210014706 A KR 1020210014706A KR 20210014706 A KR20210014706 A KR 20210014706A KR 102241508 B1 KR102241508 B1 KR 102241508B1
Authority
KR
South Korea
Prior art keywords
battery pack
battery
bms
voltage
pack
Prior art date
Application number
KR1020210014706A
Other languages
English (en)
Inventor
김성우
박민수
이경훈
Original Assignee
주식회사 베리워즈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 베리워즈 filed Critical 주식회사 베리워즈
Priority to KR1020210014706A priority Critical patent/KR102241508B1/ko
Application granted granted Critical
Publication of KR102241508B1 publication Critical patent/KR102241508B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/14Preventing excessive discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/19Switching between serial connection and parallel connection of battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/427Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)

Abstract

E-모빌리티 배터리 관리 시스템이 제시된다. 본 발명에서 제안하는 E-모빌리티 배터리 관리 시스템은 직렬 연결된 제1 배터리 팩 및 제2 배터리 팩, 외부 입력을 차단하고, 제1 배터리 팩 및 제2 배터리 팩의 완전 방전을 방지하기 위해 제1 배터리 팩과 배터리 컴바이너 사이에 연결된 하나의 스위치, 제1 배터리 팩 및 제2 배터리 팩으로부터 구동 전압을 입력 받아 E-모빌리티 배터리 관리 시스템의 동작을 제어하거나, 또는 제1 배터리 팩 및 제2 배터리 팩으로부터 모터 컨트롤러에 구동 전압이 입력되지 않는 경우 모터 컨트롤러의 동작 정지가 지연되는 동안 완전 방전을 방지하기 위한 포토 커플러 및 제1 배터리 팩과 제2 배터리 팩 각각에 구동 전압을 감압하여 전달하기 위한 두 개의 저항분배회로를 포함하는 배터리 컴바이너(Battery Combiner)를 포함한다.

Description

E-모빌리티 배터리 관리 시스템{System for Management of E-Mobility Battery}
본 발명은 E-모빌리티 배터리 관리 시스템에 관한 것이다.
최근 지구온난화와 같은 환경문제에 대한 관심이 높아짐에 따라, 국온난화의 원인의 주범인 이산화탄소 배출 감소에 대한 요구가 증가하고, 이에 따라 기존의 가솔린을 주연료로 하는 운송수단을 대체하여 전기로 동력을 얻는 전기운송수단에 대한 수요가 늘어나고 있다.
대표적인 운송수단인 이륜차를 살펴보면, 전기를 주연료로 하는 전기이륜차와 가솔린을 주연료로 하는 기존의 가솔린 이륜차를 비교할 수 있는데, 가솔린 이륜차는 엔진오일의 교환, 클러치 슈, 점화 플러그 등과 같은 유지비가 지속적으로 소요된다는 점, 배기가스, 미세먼지, 소음 등을 유발한다는 점에서, 전기이륜차에 비해 불리한 점이 많다. 또한 가솔린 이륜차는 유지 기간이 대략 3년 정도로 기간 도래 후에는 새 모델로 교체해야 하는데, 그 비용이 상당한 것에 반해, 전기이륜차는 특정 부품들만 교체해주면 되기 때문에 그 비용이 상대적으로 매우 저렴하다는 강점을 갖는다.
그러나 전기이륜차는 전기모터 주행을 위해 전기에너지를 소모하고, 주행할 수 있는 거리를 모두 주행하면 배터리를 충전할 필요가 있는데, 배터리의 종류, 전기이륜차의 종류, 제조사 등에 따라 배터리를 충전하는 방법이 상이하다는 점, 전기충전소의 수가 아직 부족하다는 점 등의 한계를 가지고 있다.
종래기술에는 전기이륜차용 배터리와 전기이륜차용 배터리 충전기가 체결되는 경우, 전기이륜차용 배터리 정보를 수신하여 수신된 배터리 정보에 대응되는 충전방식을 통해 배터리를 충전하는 기술이 개시되어 있다.
또 다른 종래기술에 있어서, 최근에는 차량에 사용되는 배터리로서 수명이 길고 전기적 특성이 우수한 리튬 배터리의 사용이 증가하고 있는 추세이다. 리튬 배터리는 그 특성상 완전한 방전을 차단하여야 하므로, 배터리의 충전 상태가 사전 설정된 임계 전압(다시 말해, 방전 하한 전압) 보다 낮아지면 릴레이를 이용하여 차량 시스템과의 전기적 연결을 차단하도록 설치될 수 있다. 이러한 리튬 배터리와 릴레이 등을 구비하는 배터리 시스템은 여러 상황에 따른 적절한 제어가 요구되므로 차량의 배터리 관리 시스템(Battery Management System; BMS)과 같은 별도의 컨트롤러를 이용하여 관리될 필요가 있다.
한편, 친환경 차량인 전기 차량 또는 연료전지 차량은 차량의 시동에 필요한 전원을 제공하고 저전압으로 동작하는 전장 부하들에 전원을 제공하기 위해 저전압 배터리('보조 배터리'라고도 함)를 구비한다. 또한, 일반적인 내연기관 차량에서도 차량의 시동이나 전장 부하들의 전원을 제공하기 위해 충전이 가능한 배터리를 구비할 수 있다.
전기 자동차는 주로 배터리의 전원을 이용하여 AC 또는 DC 모터를 구동하여 동력을 얻으며, 배터리 전용 전기 자동차는 배터리의 전원을 이용하여 모터를 구동하고 전원이 다 소모되면 재충전된다. 또한, 기존의 연료 자동차에서도 소형의 배터리를 사용하여, 전장 내부의 부하를 동작하거나, 시동을 거는 때에 소형 배터리의 에너지를 사용하였다.
이때, 전기 자동차의 경우 시동을 종료한 후 소형의 보조배터리가 방전되는 현상이 발생될 수 있다. 이와 같은 경우, 차량의 동작을 위한 고압 배터리가 있음에도 보조 배터리가 방전종지전압에 도달하면 더 이상 사용할 수 없게 되어, 전기 자동차 시스템도 운전을 재개할 수 없다.
따라서, 전기 자동차 및 전기 이륜차 등과 같은 E-모빌리티에 사용되는 배터리의 과방전을 방지할 수 있는 배터리 관리 시스템이 필요하다.
한국 공개특허 제10-2018-0049588호(2018.05.11) 한국 등록특허 제10-2157783호(2020.09.14)
본 발명이 이루고자 하는 기술적 과제는 전기 이륜차 등 E-모빌리티에 사용되는 배터리의 과방전을 방지하고, 배터리 상태를 확인하여 배터리 잔여량에 대응되는 방식을 통해 배터리를 관리할 수 있는 E-모빌리티 배터리 관리 시스템을 제공하는데 있다.
일 측면에 있어서, 본 발명에서 제안하는 E-모빌리티 배터리 관리 시스템은 직렬 연결된 제1 배터리 팩 및 제2 배터리 팩, 외부 입력을 차단하고, 제1 배터리 팩 및 제2 배터리 팩의 완전 방전을 방지하기 위해 제1 배터리 팩과 배터리 컴바이너 사이에 연결된 하나의 스위치, 제1 배터리 팩 및 제2 배터리 팩으로부터 구동 전압을 입력 받아 E-모빌리티 배터리 관리 시스템의 동작을 제어하거나, 제1 배터리 팩 및 제2 배터리 팩으로부터 모터 컨트롤러에 구동 전압이 입력되지 않는 경우 모터 컨트롤러의 동작 정지가 지연되는 동안 완전 방전을 방지하기 위한 포토 커플러 및 제1 배터리 팩과 제2 배터리 팩 각각에 구동 전압을 감압하여 전달하기 위한 두 개의 저항분배회로를 포함하는 배터리 컴바이너(Battery Combiner)를 포함한다.
상기 제1 배터리 팩 및 제2 배터리 팩 각각은, 복수의 배터리 셀(battery cell)을 포함하는 셀 팩(Cell Pack), 셀 팩과 FET를 전기적으로 연결 및 차단하도록 동작하는 BMS-스위치가 턴온 되면 BMS는 셀 팩의 잔여 전압이 미리 정해진 값 이상인 경우 동작하여 셀 팩의 전압이 양극 출력 단자를 통해 출력되도록 셀 팩과 FET를 전기적으로 연결하도록 동작하고, 셀 팩의 잔여 전압이 미리 정해진 값 미만인 경우 셀 팩과 FET를 전기적으로 연결을 차단함-, 셀 팩의 양극판의 전압을 출력하는 양극 출력 단자, 셀 팩의 음극판의 전압을 출력하는 음극 출력 단자, 셀 팩과 양극 출력 단자 사이에 위치하여 전기적으로 연결 및 차단하는 FET 및 모터 컨트롤러에 의한 역기전력 입력을 방지하기 위해 단방향 다이오드를 포함한다.
배터리 컴바이너는 포토 커플러, 제1 저항분배회로 및 제2 저항분배회로를 포함하고, 상기 스위치의 일단은 제1 배터리 팩의 양극 출력 단자와 연결되고 스위치의 타단은 배터리 컴바이너의 포토 커플러의 일단에 연결되고, 스위치가 온되면, 제1 배터리 팩의 BMS의 입력단자로부터 전달된 DC 전압이 제1 저항분배회로를 통해 감압되어 포토 커플러의 입력단 컨트롤 전압으로 전달되고, 포토 커플러의 타단은 도통되어 제2 배터리 팩의 BMS 입력단자로부터 전달된 DC 전압은 제2 저항분배회로를 통해 감압되어 포토 커플러 타단의 DC 전압에 따라 제2 배터리 팩의 BMS의 구동 전압 입력 단자에 전압을 전달한다.
스위치의 턴온 시 제1 배터리 팩의 셀 팩의 잔여 전압 및 제2 배터리 팩의 셀 팩의 잔여 전압 이 제1 저항분배회로 및 제2 저항분배회로를 통해 각각 감압되고, 감압된 각각의 전압이 제1 배터리 팩의 BMS의 구동 전압 및 제2 배터리 팩의 BMS의 구동 전압으로서 각각의 BMS의 레귤레이터에 입력되고, 레귤레이터에 입력된 구동 전압이 미리 정해진 임계치 이상일 경우 레귤레이터가 활성화되고, 미리 정해진 임계치 미만일 경우 레귤레이터는 비활성화된다.
제1 배터리 팩의 BMS 및 제2 배터리 팩의 BMS는 각각의 해당 배터리 팩의 셀 팩과 모터 컨트롤러 사이에 위치하며, 각각의 셀 팩으로부터 전압을 입력 받고, 입력된 전압을 각각의 FET를 통해 모터 컨트롤러의 구동 전압으로서 출력하고, 배터리 컴바이너는 제1 배터리 팩 및 제2 배터리 팩으로부터 모터 컨트롤러에 구동 전압이 입력되지 않는 경우 제1 배터리 팩 및 제2 배터리 팩의 완전 방전을 방지하기 위해 모터 컨트롤러의 동작 정지가 지연되는 동안 포토 커플러를 통해 제1 배터리 팩의 FET 및 제2 배터리 팩의 FET를 턴오프시킨다.
배터리 컴바이너는 제1 배터리 팩 및 제2 배터리 팩의 완전 방전을 방지하기 위해 제1 배터리 팩 및 제2 배터리 팩이 휴지 상태일 때 제1 배터리 팩의 BMS 및 제2 배터리 팩의 BMS를 오프 상태로 유지하여, 외부로 제1 배터리 팩의 셀 팩 및 제2 배터리 팩의 셀 팩의 전압이 출력되지 않도록 하고, 제1 배터리 팩 및 제2 배터리 팩이 휴지 상태에서 동작 상태로 전환할 시, 제1 배터리 팩의 셀 팩 및 제2 배터리 팩의 셀 팩의 잔여 전압의 크기에 따라 제1 배터리 팩의 BMS 및 제2 배터리 팩의 BMS를 온/오프를 제어한다.
각 배터리 팩의 FET가 턴온된 경우, 모터 컨트롤러는 제1 배터리 팩의 BMS 및 제2 배터리 팩의 BMS로부터 구동 전압을 입력 받고, FET가 턴오프된 경우, 제1 배터리 팩의 역기전력 방지 소자 및 제2 배터리 팩의 역기전력 방지 소자를 통해 모터 컨트롤러가 갖고 있는 커패시턴스 영향으로 인한 역기전력 입력을 방지하고, 제1 배터리 팩의 BMS 및 제2 배터리 팩의 BMS의 오동작 시 출력 단자의 레벨을 보호한다.
제1 배터리 팩 및 제2 배터리 팩은 직렬 연결되고, 제1 배터리 팩과 배터리 컴바이너 사이에 연결된 하나의 스위치만으로 E-모빌리티 배터리 관리 시스템의 전력 연결/차단, 제1 배터리 팩의 BMS의 온/오프 및 제2 배터리 팩의 BMS의 온/으프를 모두 제어할 수 있다.
본 발명의 실시예들에 따르면 전기이륜차 등 E-모빌리티에 사용되는 배터리의 과방전을 방지하고, 배터리 상태를 확인하여 배터리 잔여량에 대응되는 방식을 통해 배터리를 관리할 수 있는 E-모빌리티 배터리 관리 시스템을 제공할 수 있다.
도 1은 본 발명의 일 실시예에 따른 전기이륜차의 전장 구성을 설명하기 위한 개념도이다.
도 2는 본 발명의 일 실시예에 따른 전기이륜차에 적용된 모듈형 배터리 팩의 구성을 설명하기 위한 개략도이다.
도 3은 본 발명의 일 실시예에 따른 제1 배터리 팩 및 제2 배터리 팩의 구성을 설명하기 위한 도면이다.
도 4는 본 발명의 일 실시예에 따른 배터리 컴바이너와 BMS의 연결 구성을 설명하기 위한 도면이다.
도 5는 본 발명의 일 실시예에 따른 배터리 컴바이너의 구성을 설명하기 위한 도면이다.
도 6은 본 발명의 일 실시예에 따른 배터리 컴바이너의 저항분배회로의 구성을 설명하기 위한 도면이다.
본 발명의 일 실시예에 따른 배터리 관리 시스템은 전기 자동차 및 전기 이륜차 등에 사용되는 배터리 관리 시스템일 수 있으나, 이에 한정되지 않는다. 본 발명에서는 전기 이륜차에 적용되는 배터리 관리 시스템을 일 실시예로서 설명한다. 이하, 본 발명의 실시 예를 첨부된 도면을 참조하여 상세하게 설명한다.
도 1은 본 발명의 일 실시예에 따른 전기이륜차의 전장 구성을 설명하기 위한 개략도이다.
본 발명의 일 실시예에 따른 전기이륜차는 전력을 저장하는 배터리 팩(Battery Pack)(110), 내부 장치 및 모터 컨트롤러(Motor Controller)에 필요한 전력(예를 들어, 12V)을 공급하는 DC-DC 컨버터(DC-DC Converter)(120), 모터의 구동을 제어하기 위한 모터 컨트롤러(130), DC-DC 컨버터(120)로부터 전력을 공급받는 Lamp, Horn 등을 포함하는 내부 장치(140), 모터 컨트롤러(130)와 시그널 통신을 수행하고, 내부 장치(140)의 상태를 표시하는 계기판(Speedometer)(150) 및 홀 센서(Hall Sensor)(161)를 포함하고 모터 컨트롤러(130)의 제어에 따라 구동되는 모터(Motor)(160)를 포함한다.
도 2는 본 발명의 일 실시예에 따른 전기이륜차에 적용된 모듈형 배터리 팩의 구성을 설명하기 위한 개략도이다.
본 발명의 일 실시예에 따른 모듈형 배터리 팩은 직렬 연결된 제1 배터리 팩(210) 및 제2 배터리 팩(220)을 포함한다.
제1 배터리 팩(210) 및 제2 배터리 팩(220) 각각은 복수의 배터리 셀(battery cell)을 포함하는 셀 팩(Cell Pack)(211, 221), 셀 팩(211, 221)의 전압을 외부로 출력하는 커넥터(Connector)(213, 223), 셀 팩(211, 221)과 커넥터(Connector)(213, 223) 간의 전기적 연결 또는 차단을 관리하는 배터리 관리 모듈(BMS)(212, 222) 등을 포함할 수 있다. 여기서, 커넥터(Connector)(213, 223)는 전압 공급뿐만 아니라 UART 또는 CAN 등의 전달을 위한 통신(250)을 수행할 수도 있다.
제1 배터리 팩(210) 및 제2 배터리 팩(220)은 본 발명의 일 실시예에 따른 전기이륜차에 장착되어 모터 컨트롤러(230)를 위한 전압을 공급할 수 있다. 이때, 파워라인 보호, 모터 컨트롤러(230)가 갖고 있는 커패시턴스 영향으로 인한 역기전력 입력을 방지하고, 상위 또는 하위 BMS가 오동작 시 출력 단자의 레벨을 보호하기 위한 회로 차단기(예를 들어, 단방향 다이오드)(231)를 포함할 수 있다. 모터 컨트롤러(230)는 제1 배터리 팩(210) 및 제2 배터리 팩(220)으로부터 공급 받은 전압을 이용하여 모터(240)의 구동을 제어할 수 있다.
본 발명의 일 실시예에 따른 모듈형(다시 말해, 포터블(portable)) 배터리 팩은 제1 배터리 팩(210) 및 제2 배터리 팩(220)의 직렬 연결로 구성될 수 있다. 여기서 제1 배터리 팩(210) 및 제2 배터리 팩(220)은 일 실시예일뿐 이에 한정되지 않으며 더 많은 복수의 배터리 팩이 직렬로 연결될 수 있다.
이와 같이, 배터리를 직렬 연결로 구성함으로써, 고 전압의 배터리 성능을 가질 수 있는 동시에 고 전압 배터리가 갖는 위험성을 개선함으로써 배터리 안전성을 확보할 수 있다. 예를 들어, 36V의 제1 배터리 팩(210)과 36V의 제2 배터리 팩(220)을 직렬 연결하여 72V(36V+36V=72V)의 고출력 사양을 만족할 수 있다. 또한, 본 발명의 일 실시예에 따른 모듈형 배터리는 쉽게 교환 가능한 장점을 가질 수 있다. 이하, 제1 배터리 팩(210) 및 제2 배터리 팩(220)의 내부 구성에 대하여 더욱 상세히 설명한다.
도 3은 본 발명의 일 실시예에 따른 제1 배터리 팩 및 제2 배터리 팩의 구성을 설명하기 위한 도면이다.
도 3에 도시한 바와 같이, 본 발명의 일 실시예에 따른 배터리 관리 시스템은 제1 배터리 팩(310) 및 제2 배터리 팩(320), 모터 컨트롤러(Motor Controller)(330), DC/DC 컨버터(340) 및 배터리 컴바이너(Battery Combiner)(350)를 포함한다.
본 발명의 일 실시예에 따른 모듈형 배터리 팩의 통신 구성은 핸드-쉐이크 통신(Hand-Shake Communication)을 이용할 수 있다. 핸드-쉐이크 통신을 통해 모듈형 배터리의 교체 시 각각의 모듈형 배터리에 대한 ADC 입력, 다시 말해 ADC1(361) 및 ADC2(362)를 통해 ID를 구분하고, 구분된 IC에 따른 각 모듈형 배터리의 BMS 데이터를 제공할 수 있다.
또한, 핸드-쉐이크 통신을 통해 SOC 및 배터리 알람을 디스플레이하기 위해 계기판에 BMS 데이터를 제공할 수 있다.
그리고, 배터리 컴바이너(350)로부터 ADC 입력(0~3.3V), 다시 말해 ADC1(361) 및 ADC2(362)을 통해 BMS ID를 구분할 수 있다: 예를 들어, 0V → AA, 3.0V → A1. 이와 같이 구분된 ID에 따른 각 모듈형 배터리의 BMS 데이터를 제공할 수 있다.
핸드-쉐이크 통신은 실시예에 따른 배터리 시스템의 사양에 따라 여러 개의 배터리 팩과 통신 가능하다.
제1 배터리 팩(310) 및 제2 배터리 팩(320) 각각은 셀 팩(Cell Pack)(311, 321), BMS(312, 322), 셀 팩의 양극판의 전압을 출력하는 양극 출력 단자(313, 323), 셀 팩의 음극판의 전압을 출력하는 음극 출력 단자(314, 324), FET(315, 325) 및 역기전력 방지 소자(316, 326)를 포함한다. 셀 팩(311, 321)은 하나 이상의 배터리 셀(battery cell)들을 포함한다.
제1 배터리 팩(310) 및 제2 배터리 팩(320)은 셀 팩(311, 321)의 재료(예를 들어, 리튬) 특성 상 완전 방전을 방지해야 한다. 따라서, 본 발명의 일 실시예에 따른 배터리 관리 시스템은 제1 배터리 팩(310) 및 제2 배터리 팩(320)이 휴지 상태(즉, 비사용 상태)일 때 BMS(312, 322)를 오프(off) 상태로 유지하여, 외부로 셀 팩(311, 321)의 전압이 출력되지 않도록 한다. 또한, 제1 배터리 팩(310) 및 제2 배터리 팩(320)을 휴지 상태에서 동작 상태로 전환할 시, 셀 팩(311, 321)의 잔여 전압의 크기가 안정적인 상태인 경우에만 BMS(312, 322)을 온(on) 시키고, 잔여 전압의 크기가 방전 위험 상태일 경우에는 BMS(312, 322)이 오프 상태로 유지되도록 한다.
FET(315, 325)는 셀 팩(311, 321)과 양극 출력 단자(313, 323) 사이에 위치하여, 전기적으로 연결 및 차단한다. 예를 들어, FET(315, 325) 대용량의 전력을 처리할 수 있는 전력 모스펫(Power MOSFET)을 사용할 수 있다.
FET(315, 325)가 온(on)된 상태에서 셀 팩(311, 321)과 양극 출력 단자(313, 323)가 전기적으로 연결되어 전압이 양극 출력 단자(313, 323)를 통해 외부로 출력된다.
여기서, 파워라인 보호, 모터 컨트롤러(330)가 갖고 있는 커패시턴스 영향으로 인한 역기전력 입력을 방지하고, 상위 또는 하위 BMS가 오동작 시 출력 단자의 레벨을 보호하기 위한 역기전력 방지 소자(316, 326)를 포함할 수 있다. 본 발명의 실시예에 따른 전기 이륜차를 위한 배터리 시스템에서 BMS(312, 322)가 오프된 경우 모터 컨트롤러(330)의 커패시턴스에 의해 FET(315, 325)를 구동시키는 게이트 전압에 영향을 줄 수 있다. 본 발명의 실시예에서와 같이 제1 배터리 팩(310)과 제2 배터리 팩(320)이 직렬로 연결된 경우 더 큰 영향을 줄 수 있다. 이러한 문제점을 해결하기 위해 역기전력 방지 소자(316, 326)는 단방향 다이오드를 이용한다. 단방향 다이오드를 이용함으로써 출력 단자들의 레벨을 맞춰줄 수 있다. 따라서, BMS(312, 322)가 오프된 경우 모터 컨트롤러(330)의 커패시턴스는 제1 배터리 팩(310)과 제2 배터리 팩(320)에 영향을 주지 않는다.
더욱 상세하게는, 단방향 다이오드를 통해 파워라인을 보호하고, 모터 컨트롤러가 갖고 있는 커패시턴스 영향으로 발생하는 역기전력을 차단할 수 있다. 상위 또는 하위 BMS가 오동작 시 출력 단자 레벨을 보호할 수 있다. 예를 들어, 제2 배터의 팩의 BMS(322)(FET(325)) Off 시 P1-=P2+=P2- 는 동일 레벨(GND)이 된다. 일반적으로 사용되는 양방향 다이오드는 출력 단자를 분리 시킴으로써 FET 의 게이트 레벨이 상승하여 FET 부분에 영향을 줄 수 있다.
BMS(312, 322)는 FET(315, 325)의 온/오프(on/off) 구동을 제어한다.
DC/DC 컨버터(340)는 BMS(312, 322)의 제어에 따라 배터리 컴바이너(350)에 필요 전압(예를 들어, 12V)을 공급한다.
이때, BMS(312, 322)는 제1 배터리 팩(310) 및 제2 배터리 팩(320)으로부터 구동 전압을 입력 받으며, 구동 전압이 입력된 경우 FET(315, 325)를 턴온(turn on) 시킨다. BMS(312, 322)는 제1 배터리 팩(310) 및 제2 배터리 팩(320)으로부터 구동 전압이 입력되지 않는 경우, 배터리 컴바이너(Battery Combiner)(350)의 포토 커플러를 통해 동작 정지가 지연되는 동안 FET(315, 325)를 턴오프(turn off) 시킬 수 있다. 예를 들어, BMS(312, 322)는 마이크로프로세서와 입/출력 모듈이 하나의 칩으로 만들어져 정해진 기능을 수행하는 마이크로컨트롤러(micro controller)를 사용할 수 있다.
도 4는 본 발명의 일 실시예에 따른 배터리 컴바이너와 BMS의 연결 구성을 설명하기 위한 도면이다.
도 4를 참조하면, 본 발명의 일 실시예에 따른 배터리 컴바이너(410), 제1 배터리 팩의 BMS(420), 제2 배터리 팩의 BMS(430) 및 제1 배터리 팩의 셀 팩과 BMS(420) 사이에 위치하여 제1 배터리 팩의 셀 팩과 BMS(420)를 전기적으로 연결하거나 또는 차단하는 스위치(Switch)(440)를 도시하였다.
본 발명의 일 실시예에 따른 배터리 관리 시스템은 제1 배터리 팩이 휴지 상태(즉, 비사용 상태) 일 때 BMS(420)을 오프(off) 상태로 유지하여, 외부로 노출된 출력 단자를 통해 셀 팩의 전압이 출력되지 않도록 한다. 또한, 배터리 팩을 휴지 상태에서 동작 상태로 전환할 시, 셀 팩(110)의 잔여 전압의 크기가 안정적인 상태인 경우에만 BMS(420)를 온(on) 시키고, 잔여 전압의 크기가 방전 위험 상태일 경우에는 BMS(420)를 오프 상태로 유지되도록 한다.
스위치(440)의 턴온(turn on) 시 제1 배터리 팩의 셀 팩의 전압에 따른 구동 전압이 BMS(420)로 전달되되, 셀 팩의 잔여 전압의 크기에 따라 BMS(420)이 활성화(enable) 또는 비활성화(unable)될 수 있다. 또한, 스위치(440)가 턴오프(turn off)되면 BMS(420)는 오프(off)될 수 있다.
한편, 본 발명의 일 실시예에 따른 배터리 컴바이너(410)는 BMS(420)의 턴오프(turn off) 시 메모리 저장 시간을 확보하기 위해 동작 정지를 일정 시간 지연시키는 포토 커플러(photo coupler)를 포함할 수 있다.
본 발명의 일 실시예에 따른 배터리 컴바이너(410)는 두 개의 저항분배회로(415, 416) 및 컨트롤 전압(411, 412) 및 DC 전압(413, 414)을 이용하는 포토 커플러를 포함할 수 있다. 본 발명의 일 실시예에 따른 포토 커플러는 도 5를 참조하여 더욱 상세히 설명한다.
BMS(420) 및 BMS(430)는 입력 단자(421, 431)를 통해 각각의 셀 팩으로부터 전압(422, 432)을 입력 받는다.
도 3에서 설명된 바와 같이 FET(315, 325)는 셀 팩(311, 321)과 양극 출력 단자(313, 323) 사이에 위치하여, 전기적으로 연결 및 차단한다. 예를 들어, FET(315, 325) 대용량의 전력을 처리할 수 있는 전력 모스펫(Power MOSFET)을 사용할 수 있다.
FET(315, 325)가 온(on)된 상태에서 셀 팩(311, 321)과 양극 출력 단자(313, 323)가 전기적으로 연결되어 전압이 양극 출력 단자(313, 323)를 통해 외부로 출력된다.
이때, BMS(312, 322)는 내부의 레귤레이터(424, 433)로부터 구동 전압을 입력 받으며, 구동 전압이 입력된 경우 FET(315, 325)를 턴온(turn on) 시킨다. BMS(312, 322)는 레귤레이터(424, 433)로부터의 구동 전압이 입력되지 않는 경우, 배터리 컴바이너(410)의 포토 커플러를 통해 동작 정지가 지연되는 동안 FET(315, 325)를 턴오프(turn off) 시킬 수 있다. 예를 들어, BMS(312, 322)는 마이크로프로세서와 입/출력 모듈이 하나의 칩으로 만들어져 정해진 기능을 수행하는 마이크로컨트롤러(micro controller)를 사용할 수 있다.
BMS(420) 및 BMS(430)는 각각의 해당 배터리 팩의 셀 팩과 모터 컨트롤러 사이에 위치하며, 각각의 셀 팩으로부터 전압(422, 432)을 입력 받고, 입력된 전압을 일정 전압으로 구동된 레귤레이터(424, 433)를 통해 모터 컨트롤러의 구동 전압으로서 출력한다.
예를 들어, 레귤레이터(424, 433)는 셀 팩의 전압(422, 432)을 BMS(420, 430)의 구동에 필요한 전압으로 감압시키는 스텝 다운 레귤레이터(Step-Down Regulator)로서, DC/DC 컨버터(Converter)를 포함할 수 있다.
본 발명의 일 실시예에 따른 배터리 컴바이너(410)의 저항분배회로(415, 416)는 스위치(440)가 온 된 상태에서 BMS(420) 및 BMS(430)를 통해 각각 셀 팩의 전압(422, 432)과 연결되어, 셀 팩의 잔여 전압을 일정 비율로 분배한다.
스위치(440)의 일단은 BMS(420)의 입력단자(421)를 거쳐 셀 팩의 전압(422)과 연결되고 타단은 배터리 컴바이너(410)의 저항분배회로(415)의 일단에 연결된다. 그리고 두 개의 저항분배회로(415, 416)는 포토 커플러와 연결된다. 포토 커플러를 통해 BMS(420) 및 BMS(430)의 레귤레이터(424, 434)가 입력된 전압의 변압 및 출력 동작을 실행하도록 활성화시키기 위해서는, 레귤레이터(424, 434)의 구동 전압 입력 단자(423, 433)로 사전에 설정된 인에이블 전압(enable voltage) 이상의 구동 전압이 전달되어야 한다.
즉, 스위치(440)의 턴온 시 잔여 전압이 저항분배회로(415, 416)를 거쳐 감압되고, 감압된 전압이 구동 전압으로서 레귤레이터(424, 434)에 입력되며, 레귤레이터(424, 434)에 입력된 구동 전압이 임계치(즉, 인에이블 전압) 이상일 경우 레귤레이터(424, 434)가 활성화되고, 임계치 미만일 경우 레귤레이터(424, 434)는 비활성화된다.
이와 같이, 스위치(440)는 외부 입력 및 완전방전을 보호할 수 있다.
사용하는 전압 범위에 따라 저항분배회로를 구성하여 레귤레이터 인에이블신호(Regulator-EN/UV)로 구동전압을 입력할 수 있다(예를 들어, 2.6V 이상).
초기 배터리 팩의 전압 미 출력 상태에서 FET이 오프(Switch off)인 경우 전원 단자(음극/양극)가 노출되어 있는 모듈형 배터리 팩의 안정성을 확보할 수 있다.
FET이 온(Switch on) 및 인에이블 전압이 제한 값 이하인 경우 BMS는 오프되어, 셀 팩의 완전 방전 방지 역할을 수행할 수 있다.
FET이 온(Switch on) 및 인에이블 전압이 제한 값 이상인 경우 BMS는 배터리 팩의 출력을 활성화하여 모터 컨트롤러에 전원을 공급한다.
본 발명의 실시예에 따른 스위치(440) 하나로 적어도 두 개 이상의 BMS 제어가 가능하다.
도 5는 본 발명의 일 실시예에 따른 배터리 컴바이너의 구성을 설명하기 위한 도면이다.
기본적인 배터리 컴바이너는 하나의 포토 커플러로 구성되지만, 도 5는 본 발명의 일 실시예에 따른 배터리 팩 연결을 확장하기 위해서 두 개의 포토 커플러를 사용한 예시를 나타낸다.
본 발명의 일 실시예에 따른 배터리 컴바이너(510)는 두 개의 저항분배회로(513, 514) 및 두 개의 포토 커플러(511, 512)를 포함한다. 제1 배터리 팩을 위한 제1 포토 커플러(511)는 컨트롤 전압(1, 2) 및 DC 전압(3, 4)을 이용하고, 제2 배터리 팩을 위한 제2 포토 커플러(512)는 컨트롤 전압(1', 2') 및 DC 전압(3', 4')을 이용할 수 있다.
본 발명의 또 다른 실시예에서, 더 많은 수의 배터리 팩을 포함하는 경우, 복수의 배터리 팩에 따라 더 많은 수의 BMS(520, 530, 540, 550)를 포함할 수 있고, 복수의 BMS(520, 530, 540, 550)따라 더 많은 수의 저항분배회로(513, 514, 516, 517)와 포토 커플러(511, 512, 515)를 포함할 수 있다. 이하, 본 발명의 실시예에 따른 두 개의 배터리 팩을 포함하는 경우의 배터리 컴바이너의 구성을 예시로서 설명한다.
스위치(560)가 온되면, 제1 배터리 팩의 BMS(520)의 입력단자(521)로부터의 전압이 스위치(560)를 거쳐 제1 저항분배회로(513)로 전달되고, 제1 저항분배회로(513)를 통해 감압된 전압은 제1 포토 커플러(511)의 컨트롤 전압(1, 2)으로 전달되어 제1 배터리 팩의 BMS(520)의 구동 전압 입력 단자(522)로 전압을 전달한다.
제2 배터리 팩의 BMS(530)의 입력단자(531)로부터의 전압이 제2 저항분배회로(514)로 전달되고, 제2 저항분배회로(514)를 통해 감압된 전압은 제1 포토 커플러(511)의 DC 전압(3, 4)으로 전달되고, 제1 포토 커플러(511)의 DC 전압(3, 4)은 제2 포토 커플러(512)의 컨트롤 전압(1', 2')으로 전달되어 제2 배터리 팩의 BMS(530)의 구동 전압 입력 단자(532)로 전압을 전달한다.
BMS의 레귤레이터가 입력된 전압의 변압 및 출력 동작을 실행하도록 활성화시키기 위해서는, 레귤레이터의 구동 전압 입력 단자(522, 532)로 사전에 설정된 인에이블 전압(enable voltage) 이상의 구동 전압이 전달되어야 한다.
즉, 스위치(560)의 턴온 시 잔여 전압이 저항분배회로(513, 514)를 통해 감압되고, 포토 커플러(511, 512)를 거쳐 감압된 전압이 구동 전압으로서 BMS의 레귤레이터에 입력되며, 레귤레이터에 입력된 구동 전압이 임계치(즉, 인에이블 전압) 이상일 경우 레귤레이터가 활성화되고, 임계치 미만일 경우 레귤레이터는 비활성화된다.
레귤레이터가 활성화되면 모터 컨트롤러에 전압을 전달하게 되고, 모터 컨트롤러의 제어에 따라 모터를 구동할 수 있다.
이와 같이, 본 발명의 실시예에 따른 스위치(560)를 통해 외부 입력 및 완전방지를 보호할 수 있다. 다시 말해, 메인 전력 차단용 스위치인 스위치(560)를 BMS 스위치로 겸용할 수 있다. 또한, 배터리 팩의 DOD(Cycle)에 따라 저항분배회로를 조절하여 각각의 BMS 구동 전압의 하한전압을 설정할 수 있다. 본 발명의 실시예에 따라 스위치(560)에 사용자 인식 기능을 추가할 수도 있다.
도 6은 본 발명의 일 실시예에 따른 배터리 컴바이너의 저항분배회로의 구성을 설명하기 위한 도면이다.
배터리 컴바이너의 저항분배회로는 두 개의 저항(611, 612)를 포함한다. 저항분배회로는 제1 저항(611) 및 제2 저항(612)을 포함하고, 제2 저항(612)의 저항 값은 제1 저항(611)보다 작다.
설명의 편의를 위해 스위치(630)와 연결된 제1 배터리 팩(620) 및 제1 배터리 팩(620)과 연결된 하나의 저항분배회로(610)의 연결 관계를 도시하였다. 제1 저항(611)의 일단은 스위치(630)와 연결되고, 타단은 제2 저항(612)과 연결되며, 제2 저항(612)의 타단은 그라운드에 연결된다. 제1 저항(611)과 제2 저항(612)의 접점은 BMS의 인에이블 전압(623)에 연결된다. 셀 팩으로부터 전압(622)을 입력 받는 BMS의 입력 단자(621)에 의해 스위치(630)가 턴온되면, 제1 저항(611)은 전압을 전달 받아 제1 저항(611)과 제2 저항(612)의 크기의 비율에 따라 분배된 전압을 BMS의 인에이블 전압(623)으로서 전달한다.
이와 같이, 제2 저항(612)에 걸리는 전압이 구동 전압으로서 BMS의 레귤레이터로 전달되며, 이러한 구동 전압의 크기는 셀 팩의 잔여 전압 크기에 따라 유동적이다.
다시 말해, 스위치(630)가 온되어 있는 경우 BMS의 입력 단자(621)로부터 전압이 제1 저항(611) 및 제2 저항(612)에 의해 분배되고, 해당 전압이 BMS의 인에이블 전압(623)에 전달된다. 이때, BMS의 인에이블 전압(623)이 미리 정해진 임계치(즉, 인에이블 전압) 이상일 경우 BMS의 레귤레이터가 활성화되고, 임계치 미만일 경우 레귤레이터는 비활성화된다.
본 발명의 실시예에 따른 저항분배회로는 배터리 팩 외부인 배터리 컴바이너에 포함되고, 배터리 팩의 DOD(SOC) 및 사이클에 따라 EN/UV 전압 변경이 가능하다. 또한, 배터리 팩 관리(최대 수명 확보)가 용이하고, 전기 이륜차에서 사용 시에는 BMS의 인에이블 전압을 낮춰 최대 용량을 사용하고, ESS에서 사용 시에는 BMS의 인에이블 전압을 높여 최적(최소) 용량을 사용할 수 있다. 이와 같이 동일한 배터리 팩을 용도에 맞춰 사용함으로써 최대 사이클을 확보할 수 있다. 또한, 단순히 저항변경만으로 설정이 가능하고, BMS 오동작 시에도 완전방전을 방지할 수 있다.
이상에서 설명된 장치는 하드웨어 구성요소, 소프트웨어 구성요소, 및/또는 하드웨어 구성요소 및 소프트웨어 구성요소의 조합으로 구현될 수 있다. 예를 들어, 실시예들에서 설명된 장치 및 구성요소는, 예를 들어, 프로세서, 콘트롤러, ALU(arithmetic logic unit), 디지털 신호 프로세서(digital signal processor), 마이크로컴퓨터, FPA(field programmable array), PLU(programmable logic unit), 마이크로프로세서, 또는 명령(instruction)을 실행하고 응답할 수 있는 다른 어떠한 장치와 같이, 하나 이상의 범용 컴퓨터 또는 특수 목적 컴퓨터를 이용하여 구현될 수 있다. 처리 장치는 운영 체제(OS) 및 상기 운영 체제 상에서 수행되는 하나 이상의 소프트웨어 애플리케이션을 수행할 수 있다.  또한, 처리 장치는 소프트웨어의 실행에 응답하여, 데이터를 접근, 저장, 조작, 처리 및 생성할 수도 있다.  이해의 편의를 위하여, 처리 장치는 하나가 사용되는 것으로 설명된 경우도 있지만, 해당 기술분야에서 통상의 지식을 가진 자는, 처리 장치가 복수 개의 처리 요소(processing element) 및/또는 복수 유형의 처리 요소를 포함할 수 있음을 알 수 있다.  예를 들어, 처리 장치는 복수 개의 프로세서 또는 하나의 프로세서 및 하나의 콘트롤러를 포함할 수 있다.  또한, 병렬 프로세서(parallel processor)와 같은, 다른 처리 구성(processing configuration)도 가능하다.
소프트웨어는 컴퓨터 프로그램(computer program), 코드(code), 명령(instruction), 또는 이들 중 하나 이상의 조합을 포함할 수 있으며, 원하는 대로 동작하도록 처리 장치를 구성하거나 독립적으로 또는 결합적으로(collectively) 처리 장치를 명령할 수 있다.  소프트웨어 및/또는 데이터는, 처리 장치에 의하여 해석되거나 처리 장치에 명령 또는 데이터를 제공하기 위하여, 어떤 유형의 기계, 구성요소(component), 물리적 장치, 가상 장치(virtual equipment), 컴퓨터 저장 매체 또는 장치에 구체화(embody)될 수 있다.  소프트웨어는 네트워크로 연결된 컴퓨터 시스템 상에 분산되어서, 분산된 방법으로 저장되거나 실행될 수도 있다. 소프트웨어 및 데이터는 하나 이상의 컴퓨터 판독 가능 기록 매체에 저장될 수 있다.
실시예에 따른 방법은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다.  상기 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다.  상기 매체에 기록되는 프로그램 명령은 실시예를 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다.  컴퓨터 판독 가능 기록 매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(magnetic media), CD-ROM, DVD와 같은 광기록 매체(optical media), 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다.  프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다. 
이상과 같이 실시예들이 비록 한정된 실시예와 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기의 기재로부터 다양한 수정 및 변형이 가능하다.  예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 시스템, 구조, 장치, 회로 등의 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다.
그러므로, 다른 구현들, 다른 실시예들 및 특허청구범위와 균등한 것들도 후술하는 특허청구범위의 범위에 속한다.

Claims (7)

  1. E-모빌리티 배터리 관리 시스템에 있어서,
    직렬 연결된 제1 배터리 팩 및 제2 배터리 팩;
    외부 입력을 차단하고, 제1 배터리 팩 및 제2 배터리 팩의 완전 방전을 방지하기 위해 제1 배터리 팩과 배터리 컴바이너 사이에 연결된 하나의 스위치;
    제1 배터리 팩 및 제2 배터리 팩으로부터 구동 전압을 입력 받아 E-모빌리티 배터리 관리 시스템의 동작을 제어하거나,
    제1 배터리 팩 및 제2 배터리 팩으로부터 모터 컨트롤러에 구동 전압이 입력되지 않는 경우 모터 컨트롤러의 동작 정지가 지연되는 동안 완전 방전을 방지하기 위한 포토 커플러 및 제1 배터리 팩과 제2 배터리 팩 각각에 구동 전압을 감압하여 전달하기 위한 두 개의 저항분배회로를 포함하는 배터리 컴바이너(Battery Combiner)
    를 포함하고,
    상기 제1 배터리 팩 및 제2 배터리 팩 각각은,
    복수의 배터리 셀(battery cell)을 포함하는 셀 팩(Cell Pack);
    셀 팩과 FET를 전기적으로 연결 및 차단하도록 동작하는 BMS-스위치가 턴온 되면 BMS는 셀 팩의 잔여 전압이 미리 정해진 값 이상인 경우 동작하여 셀 팩의 전압이 양극 출력 단자를 통해 출력되도록 셀 팩과 FET를 전기적으로 연결하도록 동작하고, 셀 팩의 잔여 전압이 미리 정해진 값 미만인 경우 셀 팩과 FET를 전기적으로 연결을 차단함-;
    셀 팩의 양극판의 전압을 출력하는 양극 출력 단자;
    셀 팩의 음극판의 전압을 출력하는 음극 출력 단자;
    셀 팩과 양극 출력 단자 사이에 위치하여 전기적으로 연결 및 차단하는 FET; 및
    모터 컨트롤러에 의한 역기전력 입력을 방지하기 위해 단방향 다이오드를 포함하는 역기전력 방지 소자
    를 포함하는 E-모빌리티 배터리 관리 시스템.
  2. 제1항에 있어서,
    배터리 컴바이너는,
    포토 커플러, 제1 저항분배회로 및 제2 저항분배회로를 포함하고,
    상기 스위치의 일단은 제1 배터리 팩의 BMS의 입력단자와 연결되고 스위치의 타단은 배터리 컴바이너의 제1 저항분배회로의 일단에 연결되고,
    스위치가 온되면, 제1 배터리 팩의 BMS의 입력단자로부터의 전압이 제1 저항분배회로로 전달되고, 제1 저항분배회로를 통해 감압된 전압은 포토 커플러의 컨트롤 전압으로 전달되어 제1 배터리 팩의 BMS의 구동 전압 입력 단자로 전압을 전달하고,
    제2 배터리 팩의 BMS의 입력단자로부터의 전압이 제2 저항분배회로로 전달되고, 제2 저항분배회로를 통해 감압된 전압은 포토 커플러의 DC 전압으로 전달되고, 포토 커플러의 DC 전압은 제2 배터리 팩의 BMS의 구동 전압 입력 단자로 전압을 전달하는
    E-모빌리티 배터리 관리 시스템.
  3. 제2항에 있어서,
    스위치의 턴온 시 제1 배터리 팩의 셀 팩의 잔여 전압 및 제2 배터리 팩의 셀 팩의 잔여 전압 이 제1 저항분배회로 및 제2 저항분배회로를 통해 각각 감압되고, 감압된 각각의 전압이 제1 배터리 팩의 BMS의 구동 전압 및 제2 배터리 팩의 BMS의 구동 전압으로서 각각의 BMS의 레귤레이터에 입력되고, 레귤레이터에 입력된 구동 전압이 미리 정해진 임계치 이상일 경우 레귤레이터가 활성화되고, 미리 정해진 임계치 미만일 경우 레귤레이터는 비활성화되는
    E-모빌리티 배터리 관리 시스템.
  4. 제1항에 있어서,
    제1 배터리 팩의 BMS 및 제2 배터리 팩의 BMS는 각각의 해당 배터리 팩의 셀 팩과 모터 컨트롤러 사이에 위치하며, 각각의 셀 팩으로부터 전압을 입력 받고, 입력된 전압을 각각의 FET를 통해 모터 컨트롤러의 구동 전압으로서 출력하고,
    배터리 컴바이너는 제1 배터리 팩 및 제2 배터리 팩으로부터 모터 컨트롤러에 구동 전압이 입력되지 않는 경우 제1 배터리 팩 및 제2 배터리 팩의 완전 방전을 방지하기 위해 모터 컨트롤러의 동작 정지가 지연되는 동안 포토 커플러를 통해 제1 배터리 팩의 FET 및 제2 배터리 팩의 FET를 턴오프시키는
    E-모빌리티 배터리 관리 시스템.
  5. 제4항에 있어서,
    배터리 컴바이너는,
    제1 배터리 팩 및 제2 배터리 팩의 완전 방전을 방지하기 위해 제1 배터리 팩 및 제2 배터리 팩이 휴지 상태일 때 제1 배터리 팩의 BMS 및 제2 배터리 팩의 BMS를 오프 상태로 유지하여, 외부로 제1 배터리 팩의 셀 팩 및 제2 배터리 팩의 셀 팩의 전압이 출력되지 않도록 하고,
    제1 배터리 팩 및 제2 배터리 팩이 휴지 상태에서 동작 상태로 전환할 시, 제1 배터리 팩의 셀 팩 및 제2 배터리 팩의 셀 팩의 잔여 전압의 크기에 따라 제1 배터리 팩의 BMS 및 제2 배터리 팩의 BMS를 온/오프를 제어하는
    E-모빌리티 배터리 관리 시스템.
  6. 제5항에 있어서,
    모터 컨트롤러는,
    각 배터리 팩의 FET가 턴온된 경우, 제1 배터리 팩의 BMS 및 제2 배터리 팩의 BMS로부터 구동 전압을 입력 받고,
    FET가 턴오프된 경우, 제1 배터리 팩의 역기전력 방지 소자 및 제2 배터리 팩의 역기전력 방지 소자를 통해 모터 컨트롤러가 갖고 있는 커패시턴스 영향으로 인한 역기전력 입력을 방지하고, 제1 배터리 팩의 BMS 및 제2 배터리 팩의 BMS의 오동작 시 출력 단자의 레벨을 보호하는
    E-모빌리티 배터리 관리 시스템.
  7. 제1항에 있어서,
    제1 배터리 팩 및 제2 배터리 팩은 직렬 연결되고, 제1 배터리 팩과 배터리 컴바이너 사이에 연결된 하나의 스위치만으로 E-모빌리티 배터리 관리 시스템의 전력 연결/차단, 제1 배터리 팩의 BMS의 온/오프 및 제2 배터리 팩의 BMS의 온/으프를 모두 제어하는
    E-모빌리티 배터리 관리 시스템.
KR1020210014706A 2021-02-02 2021-02-02 E-모빌리티 배터리 관리 시스템 KR102241508B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210014706A KR102241508B1 (ko) 2021-02-02 2021-02-02 E-모빌리티 배터리 관리 시스템

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210014706A KR102241508B1 (ko) 2021-02-02 2021-02-02 E-모빌리티 배터리 관리 시스템

Publications (1)

Publication Number Publication Date
KR102241508B1 true KR102241508B1 (ko) 2021-04-19

Family

ID=75718745

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210014706A KR102241508B1 (ko) 2021-02-02 2021-02-02 E-모빌리티 배터리 관리 시스템

Country Status (1)

Country Link
KR (1) KR102241508B1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101457986B1 (ko) * 2013-08-09 2014-11-10 주식회사 아이티엠반도체 배터리팩 과충전 방지회로
KR20180049588A (ko) 2016-11-03 2018-05-11 칩월드 주식회사 전기이륜차용 배터리 자동 인식 충전 시스템 및 이의 제어 방법
KR20190113220A (ko) * 2018-03-28 2019-10-08 인하대학교 산학협력단 배터리 밸런싱 회로를 이용한 ev 파워 시스템
KR20200069764A (ko) * 2018-12-07 2020-06-17 주식회사 오토스원 전기 자동차 배터리 관리 시스템

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101457986B1 (ko) * 2013-08-09 2014-11-10 주식회사 아이티엠반도체 배터리팩 과충전 방지회로
KR20180049588A (ko) 2016-11-03 2018-05-11 칩월드 주식회사 전기이륜차용 배터리 자동 인식 충전 시스템 및 이의 제어 방법
KR20190113220A (ko) * 2018-03-28 2019-10-08 인하대학교 산학협력단 배터리 밸런싱 회로를 이용한 ev 파워 시스템
KR20200069764A (ko) * 2018-12-07 2020-06-17 주식회사 오토스원 전기 자동차 배터리 관리 시스템
KR102157783B1 (ko) 2018-12-07 2020-09-18 주식회사 오토스원 전기 자동차 배터리 관리 시스템

Similar Documents

Publication Publication Date Title
US11721972B2 (en) Electric system and method for energizing the electric system
US9174547B2 (en) Electric vehicle and charging control method for auxiliary battery thereof
CN107599852B (zh) 用于车辆的电池管理系统
KR101582577B1 (ko) 전기자동차 및 그 배터리의 충전제어방법.
US7806095B2 (en) Vehicle starting assist system
US20160059712A1 (en) Battery pack and hybrid vehicle including the battery pack
CN108569142A (zh) 用于向电力系统内集成冗余母线架构的系统及方法
JP7039773B2 (ja) バッテリーパックを含む電力システム
KR102200551B1 (ko) 배터리 팩
CN107919723B (zh) 用于控制辅助电池的继电器的系统及方法
KR101795080B1 (ko) 차량의 배터리 충전시스템 및 충전방법
CN110892575B (zh) 具有耦接识别功能的电池组
KR102157783B1 (ko) 전기 자동차 배터리 관리 시스템
KR20140075087A (ko) 차량의 배터리 충전시스템 및 충전방법
KR102241508B1 (ko) E-모빌리티 배터리 관리 시스템
JP2008041620A (ja) 組電池システム
KR101546046B1 (ko) 전동카트의 배터리 방전 방지장치 및 방법
CN115320377A (zh) 用于车辆的电力系统
US20220209543A1 (en) Battery control method and battery system enabling battery control method
JP2004086647A (ja) 情報伝達コネクタの電力供給機構及び情報伝達コネクタ
JP5288435B2 (ja) 二次電池パック
US20050116682A1 (en) Low voltage protection device for batteries
US11217853B2 (en) Power-supplying battery of electric vehicle
KR101501465B1 (ko) 일체형으로 연결된 자동차 밧데리 및 그 이용방법
KR20180019464A (ko) 전기 자동차의 릴레이 구동 장치

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant