KR102239685B1 - Electro-conductive adhesive using activated carbon, electrode current collector, electrode for supercapacitor and the supercapacitor having improved high temperature performance - Google Patents

Electro-conductive adhesive using activated carbon, electrode current collector, electrode for supercapacitor and the supercapacitor having improved high temperature performance Download PDF

Info

Publication number
KR102239685B1
KR102239685B1 KR1020180112691A KR20180112691A KR102239685B1 KR 102239685 B1 KR102239685 B1 KR 102239685B1 KR 1020180112691 A KR1020180112691 A KR 1020180112691A KR 20180112691 A KR20180112691 A KR 20180112691A KR 102239685 B1 KR102239685 B1 KR 102239685B1
Authority
KR
South Korea
Prior art keywords
supercapacitor
activated carbon
current collector
conductive adhesive
electrode
Prior art date
Application number
KR1020180112691A
Other languages
Korean (ko)
Other versions
KR20200034048A (en
Inventor
김홍일
유선경
김한주
김대원
Original Assignee
(주) 퓨리켐
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 퓨리켐 filed Critical (주) 퓨리켐
Priority to KR1020180112691A priority Critical patent/KR102239685B1/en
Publication of KR20200034048A publication Critical patent/KR20200034048A/en
Application granted granted Critical
Publication of KR102239685B1 publication Critical patent/KR102239685B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/08Macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/68Current collectors characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/82Fixing or assembling a capacitive element in a housing, e.g. mounting electrodes, current collectors or terminals in containers or encapsulations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

본 발명은 종래 일반적으로 사용되던 그래핀, 카본나노튜브에 비해 가격이 저렴한 활성탄을 사용하여 고온에서의 접착력을 강화시킨 도전성 접착제와, 상기 도전성 접착제를 고순도 알루미늄 표면에 도포하여 형성되는 전극 집전체와, 활성탄, 도전재 및 바인더의 혼합으로 조성된 슬러리를 상기 전극 집전체의 표면에 도포하여 형성되는 슈퍼커패시터용 전극과, 상기 슈퍼커패시터용 전극을 이용하여 제조됨으로써, 고온에서의 성능이 뛰어난 슈퍼커패시터에 관한 것이다.The present invention relates to a conductive adhesive that enhances adhesion at high temperatures by using activated carbon, which is cheaper than graphene and carbon nanotubes that have been conventionally used, and an electrode current collector formed by applying the conductive adhesive to a high-purity aluminum surface. , A supercapacitor electrode formed by coating a slurry composed of a mixture of activated carbon, a conductive material, and a binder on the surface of the electrode current collector, and a supercapacitor having excellent performance at high temperature by using the electrode for the supercapacitor It is about.

Description

활성탄으로 이루어진 도전성 접착제, 이를 이용한 전극 집전체, 슈퍼커패시터용 전극 및 고온 성능이 우수한 슈퍼커패시터{ELECTRO-CONDUCTIVE ADHESIVE USING ACTIVATED CARBON, ELECTRODE CURRENT COLLECTOR, ELECTRODE FOR SUPERCAPACITOR AND THE SUPERCAPACITOR HAVING IMPROVED HIGH TEMPERATURE PERFORMANCE}Conductive adhesive made of activated carbon, electrode current collector using it, electrode for supercapacitor, and supercapacitor with excellent high-temperature performance {ELECTRO-CONDUCTIVE ADHESIVE USING ACTIVATED CARBON, ELECTRODE CURRENT COLLECTOR, ELECTRODE FOR SUPERCAPACITOR AND THE SUPERCAPACITOR HAVING IMPROVED HIGH TEMPERATURE}

본 발명은 종래 일반적으로 사용되던 그래핀, 카본나노튜브에 비해 가격이 저렴한 활성탄을 사용하여 고온에서의 접착력을 강화시킨 도전성 접착제와, 상기 도전성 접착제를 고순도 알루미늄 표면에 도포하여 형성되는 전극 집전체와, 활성탄, 도전재 및 바인더의 혼합으로 조성된 슬러리를 상기 전극 집전체의 표면에 도포하여 형성되는 슈퍼커패시터용 전극과, 상기 슈퍼커패시터용 전극을 이용하여 제조됨으로써, 고온 성능이 우수한 슈퍼커패시터에 관한 것이다.
The present invention relates to a conductive adhesive that enhances adhesion at high temperatures by using activated carbon, which is cheaper than graphene and carbon nanotubes that have been conventionally used, and an electrode current collector formed by applying the conductive adhesive to a high-purity aluminum surface. , A supercapacitor electrode formed by applying a slurry composed of a mixture of activated carbon, a conductive material, and a binder on the surface of the electrode current collector, and a supercapacitor having excellent high-temperature performance by using the electrode for the supercapacitor. will be.

최근 IT 기술이 일상화, 보편화되어 있는 유비쿼터스 시대를 맞이하여 가전기기, 전자기기 및 물류의 스마트화가 진행되고 있으며, 이로 인해 기기의 신뢰성이 가장 크게 대두되고 있다.Recently, in the ubiquitous era where IT technology is becoming more common and more common, home appliances, electronic devices, and logistics are becoming smarter, and the reliability of the devices has emerged the most.

이 신뢰성에 가장 큰 영향을 끼치는 것은 각 기기의 주변 환경이다. 특히 온난화현상이 심해지면서 고온에서의 성능개선이 각광을 받고 있다.
It is the surrounding environment of each device that has the greatest impact on this reliability. In particular, as the warming phenomenon is getting worse, the performance improvement at high temperature is in the spotlight.

이러한 기기 및 시스템에 높은 신뢰성을 확보하기 위해서는 고온에서도 장수명을 갖는 에너지 저장장치가 필요하다. In order to secure high reliability in such devices and systems, an energy storage device having a long life even at high temperatures is required.

이 조건을 맞출 수 있는 에너지 저장장치로는 슈퍼캐패시터가 적절하다. 이유는, 슈퍼캐패시터는 리튬이차전지에 비해 사용 전압이 낮지만, 높은 온도에서 사용이 가능하고, 장수명의 특성을 가지고 있기 때문이다.As an energy storage device that can meet this condition, a supercapacitor is suitable. The reason is that a supercapacitor has a lower operating voltage than a lithium secondary battery, but can be used at a high temperature and has a long lifespan.

하지만, 이러한 슈퍼캐패시터도 고온에서 장기간 사용하게 되면 기존의 수명이 짧아지게 되어 장수명을 갖는 슈퍼캐패시터로서의 능력이 상실된다.
However, if such a supercapacitor is used for a long time at a high temperature, the existing lifespan is shortened, and the ability as a supercapacitor having a long life is lost.

고온에서도 장기적으로 성능이 우수해지려면 전극, 전해액, 부속부품 등 여러 시각에서 접근하여 해결하여야 하며, 이중 고온에서의 전극 탈리 문제를 개선하고자 도전성 접착제를 적용하는 사례가 늘어가고 있다.In order to achieve excellent long-term performance even at high temperatures, it is necessary to approach and solve the problem from various perspectives, such as electrodes, electrolytes, and accessories, and among them, cases of applying conductive adhesives to improve the problem of electrode detachment at high temperatures are increasing.

그러나 상기 도전성 접착제의 제조에 사용되는 주재료인 그래핀과 카본나노튜브는 단가가 높아 생산에 어려움이 있다.
However, graphene and carbon nanotubes, which are the main materials used in the production of the conductive adhesive, have a high cost and are difficult to produce.

이와 같은 문제를 해결하고자, 본 발명에서는 그래핀과 카본나노튜브에 비해 가격이 저렴한 활성탄을 사용하여 도전성 접착제 개발하고, 상기 도전성 접착제를 사용하여 고온성능이 개선된 슈퍼캐패시터용 전극 및 슈퍼커패시터를 제공하고자 한다.
In order to solve such a problem, the present invention develops a conductive adhesive using activated carbon, which is cheaper than graphene and carbon nanotubes, and provides an electrode for a supercapacitor and a supercapacitor with improved high temperature performance using the conductive adhesive. I want to.

대한민국 등록특허 10-0581232(등록일자 2006.05.11)Korean Patent Registration 10-0581232 (Registration Date 2006.05.11) 대한민국 등록특허 10-1162464(등록일자 2012.06.27)Korean Patent Registration 10-1162464 (Registration Date 2012.06.27) 대한민국 등록특허 10-1381956(등록일자 2014.03.31)Korean Patent Registration 10-1381956 (Registration Date 2014.03.31) 대한민국 공개특허 10-2014-0095475(공개일자 2014.08.01)Republic of Korea Patent Publication 10-2014-0095475 (Publication date 2014.08.01)

상기의 문제를 해결하고자, To solve the above problem,

본 발명은 그래핀, 카본나노튜브에 비해 가격이 저렴한 활성탄을 사용하여 고온에서의 접착력을 강화시킨 도전성 접착제와, 상기 도전성 접착제를 고순도 알루미늄 표면에 도포하여 형성되는 전극 집전체와, 활성탄, 도전재 및 바인더의 혼합으로 조성된 슬러리를 상기 전극 집전체의 표면에 도포하여 형성되는 슈퍼커패시터용 전극과, 상기 슈퍼커패시터용 전극을 이용하여 제조됨으로써, 고온 성능이 우수한 슈퍼커패시터를 제공하고자 하는 것을 발명의 목적으로 한다.
The present invention is a conductive adhesive that enhances adhesion at high temperatures using activated carbon, which is cheaper than graphene and carbon nanotubes, an electrode current collector formed by applying the conductive adhesive to a high-purity aluminum surface, and activated carbon, a conductive material. And a supercapacitor electrode formed by applying a slurry composed of a mixture of a binder on the surface of the electrode current collector, and the supercapacitor electrode, thereby providing a supercapacitor having excellent high-temperature performance. The purpose.

상기 목적을 달성하기 위하여 본 발명은 다음을 제공한다.
In order to achieve the above object, the present invention provides the following.

첫째. 활성탄 2.0 ~ 9.0 wt%; 폴리카르복실산의 분산제 3.0 ~ 15.0 wt%; 증류수 80.0 ~ 90.0 wt%를 혼합하여 분산액을 조성하고,first. 2.0 to 9.0 wt% activated carbon; 3.0 to 15.0 wt% of a dispersant of polycarboxylic acid; Mix 80.0 ~ 90.0 wt% of distilled water to form a dispersion,

상기 조성된 분산액 5.0 ~ 15.0 wt%; 에폭시수지 바인더 10.0 ~ 20.0 wt%; 증류수 65.0 ~ 80.0 wt%;의 혼합으로 조성되는 활성탄으로 이루어진 도전성 접착제를 제공한다.
5.0 to 15.0 wt% of the composition dispersion; Epoxy resin binder 10.0 to 20.0 wt%; It provides a conductive adhesive made of activated carbon composed of a mixture of 65.0 ~ 80.0 wt% of distilled water.

둘째. 알루미늄 표면에 상기 도전성 접착제를 0.5 ~ 5.0 ㎛의 두께로 도포하여 제조된 전극 집전체를 제공한다.
second. An electrode current collector manufactured by applying the conductive adhesive to a thickness of 0.5 to 5.0 µm on an aluminum surface is provided.

셋째. 평균 입자크기가 10.0 ~ 15.0 ㎛인 활성탄 80.0 ~ 90.0 wt%; 카본블랙(Carbon black), 하드카본(Hard carbon), 소프트카본(Soft carbon), 흑연(Graphite), 탄소나노튜브(Carbon nano tube) 중 선택되는 어느 1종 또는 2종 이상의 도전재 5.0 ~ 15.0 wt%; 카르복시메틸셀룰로오스(CMC), 스틸렌부타디엔고무(SBR), 폴리테트라플루오로에틸렌(PTFE) 중 선택되는 어느 1종 또는 2종 이상의 바인더 3.0 ~ 8.0 wt%;를 혼합하여 슬러리를 제조하고,third. 80.0 to 90.0 wt% of activated carbon having an average particle size of 10.0 to 15.0 µm; 5.0 to 15.0 wt of any one or two or more conductive materials selected from carbon black, hard carbon, soft carbon, graphite, carbon nano tube %; 3.0 to 8.0 wt% of any one or two or more binders selected from carboxymethyl cellulose (CMC), styrene butadiene rubber (SBR), and polytetrafluoroethylene (PTFE); to prepare a slurry,

상기 슬러리를 상기 전극 집전체 표면에 도포하여 제조된 슈퍼커패시터용 전극을 제공한다.
It provides an electrode for a supercapacitor manufactured by applying the slurry to the surface of the electrode current collector.

넷째. 분리막을 기준으로 양쪽에 청구항 4의 슈퍼커패시터용 전극을 배치한 후 원통형으로 말아 권취형 소자를 제조하고, 상기 권취형 소자를 125 ~ 135 ℃에서 45 ~ 53 시간 동안 건조하고, 상기 건조한 권취형 소자를 전해액에 15 ~ 25 분간 함침한 후, 함침한 권취형 소자를 알루미늄 캔에 넣고 밀봉하여 셀로 제작한 슈퍼커패시터를 제공한다.
fourth. After arranging the electrodes for the supercapacitor of claim 4 on both sides of the separator, the electrode for a supercapacitor of claim 4 is arranged and rolled into a cylindrical shape to manufacture a wound-up device, and the wound-up device is dried at 125 to 135° C. for 45 to 53 hours, and the dried wound-up device Is impregnated in the electrolyte for 15 to 25 minutes, and then the impregnated wound element is put in an aluminum can and sealed to provide a supercapacitor made of a cell.

본 발명에 따른 활성탄으로 이루어진 도전성 접착제, 이를 이용한 전극 집전체, 슈퍼커패시터용 전극 및 슈퍼커패시터는 다음의 효과를 갖는다.
The conductive adhesive made of activated carbon according to the present invention, an electrode current collector using the same, an electrode for a supercapacitor, and a supercapacitor have the following effects.

첫째. 본 발명의 활성탄으로 이루어진 도전성 접착제는 도 3 및 도 4를 통해 확인되는 바와 같이, 고온에서의 셀의 용량 및 저항 변화율이 적다. 이는 본 발명에서 제시하고 있는 도전성 접착제가 고온에서의 안정성이 뛰어나다는 것을 의미한다.first. The conductive adhesive made of the activated carbon of the present invention has a small capacity and resistance change rate of the cell at high temperature, as confirmed through FIGS. 3 and 4. This means that the conductive adhesive proposed in the present invention has excellent stability at high temperatures.

둘째. 그래핀과 달리 활성탄은 입자의 크기와 모양이 불균일하며, 이로 인해 활성탄으로 이루어진 도전성 접착제로 도포된 면의 표면에너지가 높아져 고온에서의 접착력 향상 특성을 갖는다.second. Unlike graphene, activated carbon has a non-uniform particle size and shape, and as a result, the surface energy of a surface coated with a conductive adhesive made of activated carbon is increased, and thus has a property of improving adhesion at high temperatures.

셋째. 종래 도전성 접착제의 제조에 일반적으로 사용되던 고가의 그래핀, 카본나노튜브를 대체하여 저렴한 활성탄을 사용함으로써 비용절감에 따른 제조단가를 낮출 수 있어 가격경쟁력이 뛰어나다.third. By using inexpensive activated carbon in place of expensive graphene and carbon nanotubes that have been generally used in the manufacture of conventional conductive adhesives, the manufacturing cost according to cost reduction can be lowered, and thus price competitiveness is excellent.

넷째. 본 발명에서 제시하는 활성탄으로 이루어진 도전성 접착제를 사용함으로써 고온에서의 성능이 우수하여 고온상태에서도 장수명의 특성을 그대로 유지할 수 있는 개선된 슈퍼커패시터 전극 및 슈퍼커패시터를 제공한다.
fourth. The present invention provides an improved supercapacitor electrode and supercapacitor capable of maintaining long-life characteristics even in a high-temperature state by using a conductive adhesive made of activated carbon.

도 1은 본 발명에 따른 슈퍼커패시터용 전극의 모식도.
도 2는 본 발명의 실시예 4에 따라 제조된 슈퍼커패시터의 고온 내구성 평가 결과를 나타낸 그래프.
도 3은 본 발명의 실시예 4에 따라 제조된 슈퍼커패시터의 시간에 따라 나타나는 저항(AC-ESR) 변화율을 나타낸 그래프.
1 is a schematic diagram of an electrode for a supercapacitor according to the present invention.
2 is a graph showing the results of high temperature durability evaluation of a supercapacitor manufactured according to Example 4 of the present invention.
3 is a graph showing the rate of change in resistance (AC-ESR) over time of a supercapacitor manufactured according to Example 4 of the present invention.

이하, 본 발명에 따른 활성탄으로 이루어진 도전성 접착제, 이를 이용한 전극 집전체, 슈퍼커패시터용 전극 및 슈퍼커패시터의 구체적인 내용을 살펴보도록 한다.
Hereinafter, a detailed description of a conductive adhesive made of activated carbon according to the present invention, an electrode current collector using the same, an electrode for a supercapacitor, and a supercapacitor will be described.

[ 도전성 접착제 ][Conductive adhesive]

상기한 바와 같이,As mentioned above,

본 발명에 따른 활성탄으로 이루어진 도전성 접착제는 고온에서의 성능이 개선된 것으로서,The conductive adhesive made of activated carbon according to the present invention has improved performance at high temperatures,

활성탄 2.0 ~ 9.0 wt%; 폴리카르복실산의 분산제 3.0 ~ 15.0 wt%; 증류수 80.0 ~ 90.0 wt%를 혼합하여 분산액을 조성하고,2.0 to 9.0 wt% activated carbon; 3.0 to 15.0 wt% of a dispersant of polycarboxylic acid; Mix 80.0 ~ 90.0 wt% of distilled water to form a dispersion,

상기 조성된 분산액 5.0 ~ 15.0 wt%; 에폭시수지 바인더 10.0 ~ 20.0 wt%; 증류수 65.0 ~ 80.0 wt%;의 혼합으로 조성된다.
5.0 to 15.0 wt% of the composition dispersion; Epoxy resin binder 10.0 to 20.0 wt%; It is composed by mixing 65.0 to 80.0 wt% of distilled water;

상기 분산액을 구성하는 활성탄은 전도도 향상의 기능을 갖는 것으로서, 그 사용량이 2.0 wt% 미만인 경우에는 전도도 향상이 미미하고, 9.0 wt%를 초과하게 되는 경우에는 분산액으로서 제조가 어려움으로, 상기 활성탄의 사용량은 분산액의 전체 중량에 대해 2.0 ~ 9.0 wt%의 범위 내로 한정한다.The activated carbon constituting the dispersion has a function of improving conductivity, and when the amount is less than 2.0 wt%, the improvement in conductivity is insignificant, and when it exceeds 9.0 wt%, it is difficult to manufacture as a dispersion, and the amount of the activated carbon is used. It is limited within the range of 2.0 to 9.0 wt% based on the total weight of the silver dispersion.

그리고 상기 활성탄은 평균 입자크기 1.0 ~ 2.0 ㎛, 비표면적 800 ~ 1,000 ㎡/g인 것을 사용한다.
In addition, the activated carbon is used having an average particle size of 1.0 to 2.0 µm and a specific surface area of 800 to 1,000 ㎡/g.

상기 폴리카르복실산의 분산제는 활성탄간의 응집력을 떨어뜨려 분산기능을 갖는 것으로서, 활성탄이 사용량에 따른 점도 조절을 위하여 분산액의 전체 중량에 대해 3.0 ~ 15.0 wt%의 범위 내로 한정한다.
The dispersant of the polycarboxylic acid has a dispersing function by lowering the cohesive strength between activated carbons, and is limited to 3.0 to 15.0 wt% of the total weight of the dispersion in order to adjust the viscosity according to the amount of activated carbon.

상기 증류수는 상기 활성탄과 상기 폴리카르복실산의 사용 비율에 따라 사용량이 결정되는 것으로서, 상기 증류수의 사용량은 분산액의 전체 중량에 대해 80.0 ~ 90.0 wt%의 범위 내로 한정한다.
The amount of distilled water is determined according to the ratio of the activated carbon and the polycarboxylic acid, and the amount of distilled water is limited to 80.0 to 90.0 wt% based on the total weight of the dispersion.

상기 분산액의 구체적인 배합예는 다음의 표 1과 같다.
Specific mixing examples of the dispersion are shown in Table 1 below.

배합예 1Formulation example 1 배합예 2Formulation example 2 배합예 3Formulation example 3 배합예 4Formulation Example 4 배합예 5Formulation Example 5 활성탄Activated carbon 2.0 wt%2.0 wt% 4.0 wt%4.0 wt% 6.0 wt%6.0 wt% 7.0 wt%7.0 wt% 9.0 wt%9.0 wt% 폴리
카르복실산
Poly
Carboxylic acid
15.0 wt%15.0 wt% 12.0 wt%12.0 wt% 10.0 wt%10.0 wt% 5.0 wt%5.0 wt% 3.0 wt%3.0 wt%
증류수Distilled water 83.0 wt%83.0 wt% 84.0 wt%84.0 wt% 84.0 wt%84.0 wt% 88.0 wt%88.0 wt% 88.0 wt%88.0 wt% 합 계Sum 100.0 wt%100.0 wt% 100.0 wt%100.0 wt% 100.0 wt%100.0 wt% 100.0 wt%100.0 wt% 100.0 wt%100.0 wt%

본 발명에 따른 도전성 접착제는 상기 제시된 분산액과 에폭시수지 바인더 및 증류수와 혼합하여 조성된다.
The conductive adhesive according to the present invention is formulated by mixing the above-described dispersion, an epoxy resin binder, and distilled water.

상기 분산액은 성분간의 균일한 배합이 이루어질 수 있도록 하는 것으로서, 도전성 접착제의 전체 중량에 대해 5.0 ~ 15.0 wt%의 범위 내로 사용된다.The dispersion is used in a range of 5.0 to 15.0 wt%, based on the total weight of the conductive adhesive, to allow uniform blending between components.

상기 분산액의 사용량이 5.0 wt% 미만인 경우에는 전도도 향상이 미미하고, 15.0 wt%를 초과하게 되는 경우에는 분산액의 안정성이 떨어져 보관할 수 있는 기간이 짧아지는 문제가 있으므로, 상기 분산액의 사용량은 도전성 접착제의 전체 중량에 대해 5.0 ~ 15.0 wt%의 범위 내로 한정하는 것이 바람직하다.
If the amount of the dispersion is less than 5.0 wt%, the conductivity improvement is insignificant, and if it exceeds 15.0 wt%, the stability of the dispersion decreases and the storage period is shortened. It is preferable to limit it within the range of 5.0 to 15.0 wt% based on the total weight.

상기 에폭시수지 바인더는 분산액에 사용된 활성탄의 분산성을 더 높여주면서, 코팅시 집전체와의 접착력을 향상시키는 기능을 갖는다. 도전성 접착제의 전체 중량에 대해 10.0 ~ 20.0 wt%의 범위 내에서 사용된다.The epoxy resin binder has a function of enhancing the dispersibility of the activated carbon used in the dispersion and improving adhesion to the current collector during coating. It is used within the range of 10.0 to 20.0 wt% based on the total weight of the conductive adhesive.

상기 에폭시수지 바인더의 사용량이 10.0 wt% 미만인 경우에는 접착력이 떨어지는 문제가 있고, 20.0 wt%를 초과하게 되는 경우에는 고점도로 인해 코팅시 적절한 두께의 제어가 어려움으로, 상기 에폭시수지 바인더의 사용량은 도전성 접착제의 전체 중량에 대해 10.0 ~ 20.0 wt%의 범위 내로 한정하는 것이 바람직하다.
When the amount of the epoxy resin binder is less than 10.0 wt%, there is a problem that the adhesive strength decreases, and when it exceeds 20.0 wt%, it is difficult to control the appropriate thickness during coating due to high viscosity, and the amount of the epoxy resin binder is conductive. It is preferable to limit it within the range of 10.0 to 20.0 wt% based on the total weight of the adhesive.

상기 증류수는 상기 분산액, 에폭시수지 바인더의 사용 비율에 따라 사용량이 결정되는 것으로서, 도전성 접착제의 전체 중량에 대해 70.0 ~ 80.0 wt%의 범위 내에서 사용된다.
The amount of distilled water is determined according to the ratio of the dispersion and the epoxy resin binder, and is used within the range of 70.0 to 80.0 wt% based on the total weight of the conductive adhesive.

상기 도전성 접착제의 구체적인 배합예는 다음의 표 2와 같다.
Specific mixing examples of the conductive adhesive are shown in Table 2 below.

배합예 1Formulation example 1 배합예 2Formulation example 2 배합예 3Formulation example 3 배합예 4Formulation Example 4 배합예 5Formulation Example 5 분산액Dispersion 5.0 wt%5.0 wt% 7.0 wt%7.0 wt% 10.0 wt%10.0 wt% 13.0 wt%13.0 wt% 15.0 wt%15.0 wt% 에폭시수지Epoxy resin 15.0 wt%15.0 wt% 16.0 wt%16.0 wt% 18.0 wt%18.0 wt% 19.0 wt%19.0 wt% 20.0 wt%20.0 wt% 증류수Distilled water 80.0 wt%80.0 wt% 77.0 wt%77.0 wt% 72.0 wt%72.0 wt% 68.0 wt%68.0 wt% 65.0 wt%65.0 wt% 합 계Sum 100.0 wt%100.0 wt% 100.0 wt%100.0 wt% 100.0 wt%100.0 wt% 100.0 wt%100.0 wt% 100.0 wt%100.0 wt%

[ 전극 집전체 ][Electrode current collector]

본 발명에 따른 전극 집전체는 알루미늄 표면에 상기 도전성 접착제를 0.5 ~ 5.0 ㎛의 두께로 도포하여 제조된다.
The electrode current collector according to the present invention is manufactured by applying the conductive adhesive to an aluminum surface with a thickness of 0.5 to 5.0 μm.

상기 도전성 접착제의 도포 두께는 전극의 전도도와, 활성탄과 집전체 간의 접착력에 영향을 미치는 것으로서, 그 두께가 0.5 ㎛ 미만인 경우에는 코팅이 제대로 이루어지기 어렵고, 5.0 ㎛를 초과하게 되는 경우에는 상대적으로 활성탄 전극층이 얇아져 정격용량(Capacitance, F)이 낮아지는 문제가 있으므로, 상기 도전성 접착제의 도포 두께는 0.5 ~ 5.0 ㎛의 범위 내에서 한정되는 것이 바람직하다.
The coating thickness of the conductive adhesive affects the conductivity of the electrode and the adhesion between the activated carbon and the current collector. When the thickness is less than 0.5 µm, it is difficult to properly coat, and when it exceeds 5.0 µm, it is relatively active carbon. Since there is a problem in that the electrode layer becomes thin and the rated capacity (F) is lowered, the coating thickness of the conductive adhesive is preferably limited within the range of 0.5 to 5.0 μm.

[ 슈퍼커패시터용 전극 ][Electrode for supercapacitor]

본 발명에 따른 슈퍼커패시터 전극은 활성탄, 도전재 및 바인더의 혼합으로 조성된 슬러리를 상기 전극 집전체의 표면에 도포하여 제조한다.
The supercapacitor electrode according to the present invention is prepared by applying a slurry composed of a mixture of activated carbon, a conductive material, and a binder on the surface of the electrode current collector.

상기 슬러리는 평균 입자크기가 10.0 ~ 15.0 ㎛인 활성탄 80.0 ~ 90.0 wt%; 카본블랙(Carbon black), 하드카본(Hard carbon), 소프트카본(Soft carbon), 흑연(Graphite), 탄소나노튜브(Carbon nano tube) 중 선택되는 어느 1종 또는 2종 이상의 도전재 5.0 ~ 15.0 wt%; 카르복시메틸셀룰로오스(CMC), 스틸렌부타디엔고무(SBR), 폴리테트라플루오로에틸렌(PTFE) 중 선택되는 어느 1종 또는 2종 이상의 바인더 3.0 ~ 8.0 wt%;를 혼합으로 조성된다. 상기 슬러리는 전극 집전체의 표면에 130 ~ 180 ㎛의 두께로 도포된다.The slurry includes 80.0 to 90.0 wt% of activated carbon having an average particle size of 10.0 to 15.0 µm; 5.0 to 15.0 wt of any one or two or more conductive materials selected from carbon black, hard carbon, soft carbon, graphite, carbon nano tube %; Carboxymethyl cellulose (CMC), styrene butadiene rubber (SBR), polytetrafluoroethylene (PTFE) any one or two or more binders selected from 3.0 to 8.0 wt%; is a mixture of the composition. The slurry is applied to a thickness of 130 to 180 µm on the surface of the electrode current collector.

상기 슬러리의 구체적인 배합예는 다음의 표 3과 같다.
Specific mixing examples of the slurry are shown in Table 3 below.

배합예 1Formulation example 1 배합예 2Formulation example 2 배합예 3Formulation example 3 배합예 4Formulation Example 4 배합예 5Formulation Example 5 분산액Dispersion 80.0 wt%80.0 wt% 82.0 wt%82.0 wt% 85.0 wt%85.0 wt% 87.0 wt%87.0 wt% 90.0 wt%90.0 wt% 에폭시수지Epoxy resin 15.0 wt%15.0 wt% 13.0 wt%13.0 wt% 9.0 wt%9.0 wt% 7.0 wt%7.0 wt% 5.0 wt%5.0 wt% 증류수Distilled water 5.0 wt%5.0 wt% 5.0 wt%5.0 wt% 6.0 wt%6.0 wt% 6.0 wt%6.0 wt% 5.0 wt%5.0 wt% 합 계Sum 100.0 wt%100.0 wt% 100.0 wt%100.0 wt% 100.0 wt%100.0 wt% 100.0 wt%100.0 wt% 100.0 wt%100.0 wt%

도 1은 본 발명에 따른 슈퍼커패시터 전극의 구조를 보인 개략도로서, 전극 집전체(10)와, 상기 전극 집전체(10) 표면 위로 도포되는 도전성 접착제(20)와, 상기 도전성 접착제(20) 위로 다시 도포되는 슬러리(30)가 적층 구조로 일체를 이룸을 보이고 있다.
1 is a schematic diagram showing the structure of a supercapacitor electrode according to the present invention, an electrode current collector 10, a conductive adhesive 20 applied on the surface of the electrode current collector 10, and the conductive adhesive 20 It is shown that the slurry 30 to be re-applied is integrated in a stacked structure.

[ 슈퍼커패시터 ][Super capacitor]

본 발명에 따른 슈퍼커패시터는 고온에서도 사용안정성이 뛰어난 것으로서, 분리막을 기준으로 양쪽에 본 발명에 제시하고 있는 슈퍼커패시터용 전극을 배치한 후 원통형으로 말아 권취형 소자를 제조하고, 상기 권취형 소자를 125 ~ 135 ℃에서 45 ~ 53 시간 동안 건조하고, 상기 건조한 권취형 소자를 전해액에 15 ~ 25 분간 함침한 후, 함침한 권취형 소자를 알루미늄 캔에 넣고 밀봉하여 셀로 제작한 것이다.The supercapacitor according to the present invention has excellent stability in use even at high temperatures, and after disposing the electrodes for the supercapacitor proposed in the present invention on both sides based on the separator, the supercapacitor according to the present invention is rolled into a cylindrical shape to manufacture a wound element, and the wound element After drying at 125 to 135° C. for 45 to 53 hours, the dried winding element was impregnated in an electrolytic solution for 15 to 25 minutes, and then the impregnated wound element was put into an aluminum can and sealed to form a cell.

그리고 상기 셀은 권취형 소자의 건조에서부터 수분이 30 ppm 이하로 유지되는 드라이룸 안에서 제조된다.In addition, the cell is manufactured in a dry room in which moisture is maintained at 30 ppm or less from drying of the wound device.

즉 권취형 소자를 125 ~ 135 ℃에서 45 ~ 53 시간 동안 건조하는 과정에서 부터, 함침한 권취형 소자를 알루미늄 캔에 넣고 밀봉하여 셀로 제작하는 과정까지 30 ppm 이하로 유지되는 드라이룸 안에서 이루어진다.
That is, from the process of drying the wound element at 125 ~ 135 ℃ for 45 ~ 53 hours to the process of manufacturing the impregnated wound type element into an aluminum can and sealing it into a cell, it is made in a dry room maintained at 30 ppm or less.

이하, 본 발명에 따른 도전성 접착제, 이를 이용한 전극 집전체, 슈퍼커패시터용 전극 및 슈퍼커패시터의 구체적인 내용을 실시예와 함께 살펴보도록 한다.
Hereinafter, specific details of the conductive adhesive according to the present invention, an electrode current collector using the same, an electrode for a supercapacitor, and a supercapacitor will be described with examples.

[ 도전성 접착제 제조 ][Manufacture of conductive adhesives]

평균 입자크기가 2.0 ㎛인 활성탄 5.0 wt%, 폴리카르복실산의 분산제 10.0 wt%, 증류수 85.0 wt%를 혼합하여 분산액을 제조한다.A dispersion was prepared by mixing 5.0 wt% of activated carbon having an average particle size of 2.0 µm, 10.0 wt% of a polycarboxylic acid dispersant, and 85.0 wt% of distilled water.

상기 분산액 10.0 wt%, 에폭시수지 바인더 15.0 wt%, 증류수 75.0 wt%를 혼합하여, 최종 도전성 접착제를 제조한다.
10.0 wt% of the dispersion, 15.0 wt% of an epoxy resin binder, and 75.0 wt% of distilled water are mixed to prepare a final conductive adhesive.

[비교예 1][Comparative Example 1]

실시예 1와 동일 방식으로 제작하되, 활성탄 대신 그래핀을 이용하여 도전성 접착제를 제조한다.
It was prepared in the same manner as in Example 1, but a conductive adhesive was prepared using graphene instead of activated carbon.

[ 집전체 제조 ][Creator manufacturing]

실시예 1에서 제작된 도전성 접착제를 알루미늄 표면에 도포하여 새로운 집전체를 제조한다. 이때 도전성 접착제의 도포 두께는 5 ㎛로 한다.
A new current collector was manufactured by applying the conductive adhesive prepared in Example 1 to the aluminum surface. At this time, the coating thickness of the conductive adhesive is 5 μm.

[비교예 2][Comparative Example 2]

비교예 1에서 제작된 도전성 접착제를 알루미늄 표면에 도포하여 새로운 집전체를 제조한다. 이때 도전성 접착제의 도포 두께는 5 ㎛로 한다.
The conductive adhesive prepared in Comparative Example 1 was applied to the aluminum surface to prepare a new current collector. At this time, the coating thickness of the conductive adhesive is 5 μm.

[비교예 3][Comparative Example 3]

도전성 접착제가 사용되지 않은 알루미늄 집전체를 그대로 사용한다.
An aluminum current collector without a conductive adhesive is used as it is.

[ 슈퍼캐패시터용 전극 제조 ][Manufacture of electrodes for super capacitors]

평균 입자크기가 13.0 ㎛인 활성탄(CEP17)을 85.0 wt%, 도전재(Super-P) 10.0 wt%, 바인더(CMC/SBR) 5.0 wt%를 혼합하여 슬러리를 제조한다. 실시예 2에서 제조된 집전체 위로 상기 슬러리를 도포하여 슈퍼커패시터용 전극을 제조한다.
A slurry was prepared by mixing 85.0 wt% of activated carbon (CEP17) having an average particle size of 13.0 µm, 10.0 wt% of a conductive material (Super-P), and 5.0 wt% of a binder (CMC/SBR). The slurry was applied on the current collector prepared in Example 2 to prepare an electrode for a supercapacitor.

[비교예 4][Comparative Example 4]

실시예 3에서 제작된 슬러리를 비교예 2에서 제작된 집전체 위로 상기 슬러리를 도포하여 전극을 제조한다.
An electrode was manufactured by applying the slurry prepared in Example 3 onto the current collector prepared in Comparative Example 2.

[비교예 5][Comparative Example 5]

실시예 3에서 제작된 슬러리를 비교예 3의 집전체 위로 상기 슬러리를 도포하여 전극을 제조한다.
The slurry prepared in Example 3 was coated on the current collector of Comparative Example 3 to prepare an electrode.

[ 슈퍼캐패시터 제조 ][Super capacitor manufacturing]

슈퍼 캐패시터를 제조하되, 라디칼 타입으로 제작하기 위하여 분리막을 기준으로 양쪽에 전극을 배치하되,A super capacitor is manufactured, but electrodes are arranged on both sides of the separator in order to be manufactured in a radical type,

실시예 3, 비교예 4 및 비교예 5에 제시된 전극을 각각 배치한 후 원통형으로 말아 3개의 각기 다른 권취형 소자를 제조한다. The electrodes shown in Example 3, Comparative Example 4, and Comparative Example 5 were respectively disposed and then rolled into a cylindrical shape to prepare three different winding-type devices.

다음으로, 권취형 소자의 수분을 제거하기 위하여, 130 ℃에서 48 시간 동안 건조한다.Next, in order to remove moisture from the wound device, it is dried at 130° C. for 48 hours.

그리고 건조된 권취형 소자를 1M TEABF4/AN의 전해액에 20 분 동안 함침하고, 함침된 권취형 소자를 10 × 30 mm 크기의 알루미늄 캔에 넣고 밀봉하여 셀로 제작한다.Then, the dried winding element is impregnated in 1M TEABF 4 /AN electrolyte for 20 minutes, and the impregnated wound element is put into an aluminum can of 10 × 30 mm and sealed to form a cell.

이때, 권취형 소자의 건조부터 캔에 넣어 셀로 제작할 때까지 전 공정은 수분이 30 ppm 이하로 유지되는 드라이룸 안에서 이루어진다.
At this time, the entire process from drying of the wound-type device to manufacturing into a cell by putting it in a can is performed in a dry room where moisture is maintained at 30 ppm or less.

[ 슈퍼캐패시터 평가 ][Super capacitor evaluation]

[시험예 1][Test Example 1]

< 용량 및 저항 평가 ><Capacity and resistance evaluation>

상기 실시예 4에서 제조된 각 셀을 충전/방전특성을 확인하기 위해 정전류-정전압으로 실시하였다. 이때 전류는 100 mA로 평가하였다.(표 4)
Each cell prepared in Example 4 was conducted with a constant current-constant voltage in order to check the charging/discharging characteristics. At this time, the current was evaluated as 100 mA (Table 4).

집전체 구성Current collector composition 축전 용량(F)Power storage capacity (F) DC-ESR(mΩ)DC-ESR(mΩ) AC-ESR(mΩ)AC-ESR(mΩ) 활성탄-도전성접착제
/ 알루미늄 집전체
Activated carbon-conductive adhesive
/ Aluminum current collector
10.0510.05 26.5526.55 14.3414.34
그래핀-도전성접착제
/ 알루미늄 집전체
Graphene-conductive adhesive
/ Aluminum current collector
10.0410.04 26.3226.32 14.2214.22
알루미늄 집전체Aluminum current collector 10.3510.35 27.8127.81 15.5815.58

[시험예 2][Test Example 2]

< 고온 내구성 평가 ><High temperature durability evaluation>

고온 내구성 평가를 진행하기 위해 85℃의 온장고 안에서 2.7 V로 정전류하여 실험을 진행하고, 시간에 따라 셀을 온장고 안에서 꺼내, 실온에서 30 분 정도 놔두어 셀을 열 평준화시켜 평가한다. 이때 평가 기준은 실시예 4를 따른다.
In order to carry out high-temperature durability evaluation, the experiment is conducted with a constant current of 2.7 V in a heating cabinet at 85°C, and according to time, the cell is removed from the heating cabinet and left at room temperature for about 30 minutes to thermally level the cell for evaluation. At this time, the evaluation criteria follow Example 4.

도 2는 본 발명의 실시예 4에 따라 제조된 슈퍼커패시터의 고온 내구성 평가 결과를 나타낸 그래프이다.2 is a graph showing high temperature durability evaluation results of a supercapacitor manufactured according to Example 4 of the present invention.

도 2의 (a)와 (b)는 시간에 따른 용량 변화에 대해 나타낸 것으로서, (a)는 실제 용량이며, (b)는 (a)를 백분율로 계산하여 나타낸 것이다.2(a) and (b) show the change in capacity over time, where (a) is the actual capacity, and (b) shows (a) calculated as a percentage.

도 2에 제시된 평가 결과는, 셀을 85 ℃의 챔버 내에서 2.7 V로 정전류하고, 시간에 따라 셀을 온장고 안에서 꺼내어 충·방전하여 나온 용량이다.
The evaluation result shown in FIG. 2 is the capacity obtained by charging and discharging the cell by carrying out a constant current of 2.7 V in a chamber at 85° C. and taking the cell out of the heating cabinet over time.

도 3은 본 발명의 실시예 4에 따라 제조된 슈퍼커패시터의 시간에 따라 나타나는 저항(AC-ESR) 변화율을 나타낸 그래프이다.3 is a graph showing a change rate of resistance (AC-ESR) over time of a supercapacitor manufactured according to Example 4 of the present invention.

도 3의 (a)와 (b)는 시간에 따른 AC-ESR 변화를 나타낸 것으로서, (a)는 실제 AC-ESR이며, (b)는 (a)를 백분율로 계산하여 나타낸 것이다.3A and 3B show changes in AC-ESR over time, where (a) is an actual AC-ESR, and (b) shows (a) calculated as a percentage.

도 3에 제시된 평가 결과는, 셀을 85 ℃의 챔버 내에서 2.7 V로 정전류하고, 시간에 따라 셀을 온장고 안에서 꺼내어 측정한 AC-ESR 이다.
The evaluation result shown in FIG. 3 is an AC-ESR measured by carrying out a constant current of 2.7 V in a chamber at 85° C. and taking the cell out of the heating cabinet over time.

본 발명은 종래 도전성 접착제의 제조에 일반적으로 사용되던 고가의 그래핀, 카본나노튜브를 대체하여 저렴한 활성탄을 사용함으로써 비용절감에 따른 제조단가를 낮춰 가격경쟁력을 높이며, 고온 조건에서의 성능이 개선된 슈퍼커패시터 전극 및 슈퍼커패시터를 제공함으로써 산업상 이용가능성이 크다.
The present invention uses inexpensive activated carbon in place of expensive graphene and carbon nanotubes generally used in the manufacture of conventional conductive adhesives, thereby lowering the manufacturing cost according to cost reduction, increasing price competitiveness, and improving performance under high temperature conditions. It has great industrial applicability by providing a supercapacitor electrode and a supercapacitor.

10: 전극 집전체 20: 도전성 접착제
30: 슬러리
10: electrode current collector 20: conductive adhesive
30: slurry

Claims (7)

평균 입자크기 1.0 ~ 2.0 ㎛, 비표면적 800 ~ 1,000 ㎡/g인 활성탄 2.0 ~ 9.0 wt%; 폴리카르복실산의 분산제 3.0 ~ 15.0 wt%; 증류수 80.0 ~ 90.0 wt%를 혼합하여 분산액을 구성하고,
상기 구성된 분산액 5.0 ~ 15.0 wt%; 에폭시수지 바인더 10.0 ~ 20.0 wt%; 증류수 70.0 ~ 80.0 wt%;의 혼합으로 구성되는 것을 특징으로 하는 활성탄으로 이루어진 도전성 접착제.
2.0 to 9.0 wt% of activated carbon having an average particle size of 1.0 to 2.0 µm and a specific surface area of 800 to 1,000 ㎡/g; 3.0 to 15.0 wt% of a dispersant of polycarboxylic acid; Mixing 80.0 to 90.0 wt% of distilled water to form a dispersion,
5.0 to 15.0 wt% of the composed dispersion; Epoxy resin binder 10.0 to 20.0 wt%; Conductive adhesive made of activated carbon, characterized in that consisting of a mixture of distilled water 70.0 ~ 80.0 wt%;
삭제delete 평균 입자크기 1.0 ~ 2.0 ㎛, 비표면적 800 ~ 1,000 ㎡/g인 활성탄 2.0 ~ 9.0 wt%; 폴리카르복실산의 분산제 3.0 ~ 15.0 wt%; 증류수 80.0 ~ 90.0 wt%를 혼합하여 분산액을 구성하고,
상기 구성된 분산액 5.0 ~ 15.0 wt%; 에폭시수지 바인더 10.0 ~ 20.0 wt%; 증류수 70.0 ~ 80.0 wt%;의 혼합으로 구성되는 도전성 접착제를 알루미늄 표면에 0.5 ~ 5.0 ㎛의 두께로 도포하여 제조된 것을 특징으로 하는 전극 집전체.
2.0 to 9.0 wt% of activated carbon having an average particle size of 1.0 to 2.0 µm and a specific surface area of 800 to 1,000 ㎡/g; 3.0 to 15.0 wt% of a dispersant of polycarboxylic acid; Mixing 80.0 to 90.0 wt% of distilled water to form a dispersion,
5.0 to 15.0 wt% of the composed dispersion; Epoxy resin binder 10.0 to 20.0 wt%; An electrode current collector manufactured by applying a conductive adhesive comprising a mixture of 70.0 to 80.0 wt% of distilled water to an aluminum surface with a thickness of 0.5 to 5.0 µm.
활성탄 80.0 ~ 90.0 wt%;
카본블랙(Carbon black), 하드카본(Hard carbon), 소프트카본(Soft carbon), 흑연(Graphite), 탄소나노튜브(Carbon nano tube) 중 선택되는 어느 1종 또는 2종 이상의 도전재 5.0 ~ 15.0 wt%;
카르복시메틸셀룰로오스(CMC), 스틸렌부타디엔고무(SBR), 폴리테트라플루오로에틸렌(PTFE) 중 선택되는 어느 1종 또는 2종 이상의 바인더 3.0 ~ 8.0 wt%;를 혼합하여 슬러리를 제조하고,
상기 슬러리를 전극 집전체 표면에 도포하여 제조된 것으로서,
상기 전극 집전체는 평균 입자크기 1.0 ~ 2.0 ㎛, 비표면적 800 ~ 1,000 ㎡/g인 활성탄 2.0 ~ 9.0 wt%; 폴리카르복실산의 분산제 3.0 ~ 15.0 wt%; 증류수 80.0 ~ 90.0 wt%를 혼합하여 분산액을 구성하고,
상기 구성된 분산액 5.0 ~ 15.0 wt%; 에폭시수지 바인더 10.0 ~ 20.0 wt%; 증류수 70.0 ~ 80.0 wt%;의 혼합으로 구성되는 도전성 접착제를 알루미늄 표면에 0.5 ~ 5.0 ㎛의 두께로 도포하여 제조된 것을 특징으로 하는 슈퍼커패시터용 전극.
80.0 to 90.0 wt% of activated carbon;
5.0 to 15.0 wt of any one or two or more conductive materials selected from carbon black, hard carbon, soft carbon, graphite, carbon nano tube %;
Carboxymethyl cellulose (CMC), styrene butadiene rubber (SBR), polytetrafluoroethylene (PTFE) any one or two or more binders selected from 3.0 to 8.0 wt%; mixing to prepare a slurry,
As prepared by applying the slurry to the surface of an electrode current collector,
The electrode current collector has an average particle size of 1.0 to 2.0 µm and a specific surface area of 2.0 to 9.0 wt% of activated carbon with a specific surface area of 800 to 1,000 ㎡/g; 3.0 to 15.0 wt% of a dispersant of polycarboxylic acid; Mixing 80.0 to 90.0 wt% of distilled water to form a dispersion,
5.0 to 15.0 wt% of the composed dispersion; Epoxy resin binder 10.0 to 20.0 wt%; An electrode for a supercapacitor, characterized in that it is manufactured by applying a conductive adhesive composed of a mixture of distilled water of 70.0 to 80.0 wt%; to an aluminum surface with a thickness of 0.5 to 5.0 µm.
청구항 4에 있어서,
슬러리에 포함되는 활성탄은 평균 입자크기가 10.0 ~ 15.0 ㎛인 것을 특징으로 하는 슈퍼커패시터용 전극.
The method of claim 4,
The activated carbon contained in the slurry has an average particle size of 10.0 to 15.0 µm.
분리막을 기준으로 양쪽에 슈퍼커패시터용 전극을 배치한 후 원통형으로 말아 권취형 소자를 제조하고, 상기 권취형 소자를 125 ~ 135 ℃에서 45 ~ 53 시간 동안 건조하고, 상기 건조한 권취형 소자를 전해액에 15 ~ 25 분간 함침한 후, 함침한 권취형 소자를 알루미늄 캔에 넣고 밀봉하여 셀로 제작한 것으로서,
상기 슈퍼커패시터용 전극은 활성탄 80.0 ~ 90.0 wt%;
카본블랙(Carbon black), 하드카본(Hard carbon), 소프트카본(Soft carbon), 흑연(Graphite), 탄소나노튜브(Carbon nano tube) 중 선택되는 어느 1종 또는 2종 이상의 도전재 5.0 ~ 15.0 wt%;
카르복시메틸셀룰로오스(CMC), 스틸렌부타디엔고무(SBR), 폴리테트라플루오로에틸렌(PTFE) 중 선택되는 어느 1종 또는 2종 이상의 바인더 3.0 ~ 8.0 wt%;를 혼합하여 슬러리를 제조하고,
상기 슬러리를 전극 집전체 표면에 도포하여 제조된 것이며,
상기 전극 집전체는 평균 입자크기 1.0 ~ 2.0 ㎛, 비표면적 800 ~ 1,000 ㎡/g인 활성탄 2.0 ~ 9.0 wt%; 폴리카르복실산의 분산제 3.0 ~ 15.0 wt%; 증류수 80.0 ~ 90.0 wt%를 혼합하여 분산액을 구성하고,
상기 구성된 분산액 5.0 ~ 15.0 wt%; 에폭시수지 바인더 10.0 ~ 20.0 wt%; 증류수 70.0 ~ 80.0 wt%;의 혼합으로 구성되는 도전성 접착제를 알루미늄 표면에 0.5 ~ 5.0 ㎛의 두께로 도포하여 제조된 것을 특징으로 하는 슈퍼커패시터.

After arranging the supercapacitor electrodes on both sides of the separation membrane as a reference, the winding-type element was manufactured by rolling it into a cylindrical shape, and the wound-type element was dried at 125-135° C. for 45-53 hours, and the dried wound-type element was placed in an electrolyte solution. After impregnating for 15 to 25 minutes, the impregnated winding element was put in an aluminum can and sealed to form a cell.
The electrode for the supercapacitor is activated carbon 80.0 ~ 90.0 wt%;
5.0 to 15.0 wt of any one or two or more conductive materials selected from carbon black, hard carbon, soft carbon, graphite, carbon nano tube %;
Carboxymethyl cellulose (CMC), styrene butadiene rubber (SBR), polytetrafluoroethylene (PTFE) any one or two or more binders selected from 3.0 to 8.0 wt%; mixing to prepare a slurry,
It is prepared by applying the slurry to the surface of an electrode current collector,
The electrode current collector has an average particle size of 1.0 to 2.0 µm and a specific surface area of 2.0 to 9.0 wt% of activated carbon with a specific surface area of 800 to 1,000 ㎡/g; 3.0 to 15.0 wt% of a dispersant of polycarboxylic acid; Mixing 80.0 to 90.0 wt% of distilled water to form a dispersion,
5.0 to 15.0 wt% of the composed dispersion; Epoxy resin binder 10.0 to 20.0 wt%; A supercapacitor, characterized in that it is manufactured by applying a conductive adhesive composed of a mixture of distilled water of 70.0 to 80.0 wt%; to an aluminum surface with a thickness of 0.5 to 5.0 µm.

삭제delete
KR1020180112691A 2018-09-20 2018-09-20 Electro-conductive adhesive using activated carbon, electrode current collector, electrode for supercapacitor and the supercapacitor having improved high temperature performance KR102239685B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180112691A KR102239685B1 (en) 2018-09-20 2018-09-20 Electro-conductive adhesive using activated carbon, electrode current collector, electrode for supercapacitor and the supercapacitor having improved high temperature performance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180112691A KR102239685B1 (en) 2018-09-20 2018-09-20 Electro-conductive adhesive using activated carbon, electrode current collector, electrode for supercapacitor and the supercapacitor having improved high temperature performance

Publications (2)

Publication Number Publication Date
KR20200034048A KR20200034048A (en) 2020-03-31
KR102239685B1 true KR102239685B1 (en) 2021-04-14

Family

ID=70002019

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180112691A KR102239685B1 (en) 2018-09-20 2018-09-20 Electro-conductive adhesive using activated carbon, electrode current collector, electrode for supercapacitor and the supercapacitor having improved high temperature performance

Country Status (1)

Country Link
KR (1) KR102239685B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116777051B (en) * 2023-05-24 2024-04-09 宁夏浦士达环保科技有限公司 Production method of impregnated activated carbon

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004339325A (en) 2003-05-14 2004-12-02 Matsushita Electric Ind Co Ltd Electrically-conducting adhesive and electronic component mounted body using the same
KR100581232B1 (en) * 2003-08-27 2006-05-17 (주)에스와이하이테크 Electric Conduction Adhesive and Joined Electrode Using The Said Manufacturing Method thereof
KR101227152B1 (en) 2010-04-02 2013-01-28 롯데알미늄 주식회사 Composition for forming conductive adhesive layer of electrode, manufacturing method of electrode, and electrode using the same
KR101661224B1 (en) * 2015-04-30 2016-09-30 (주) 퓨리켐 Current collector for high voltage super-capacitor and super-capacitor therewith
KR101701317B1 (en) 2016-04-01 2017-02-03 (주) 퓨리켐 Electro-conductive adhesive using graphene and preparation of electrode using the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61152777A (en) * 1984-12-26 1986-07-11 Sumitomo Bakelite Co Ltd Electrically-conductive adhesive composition
JP2009277783A (en) 2008-05-13 2009-11-26 Japan Gore Tex Inc Conductive adhesive, electrode for electric double layer capacitor using the same, and electric double layer capacitor
JP5967098B2 (en) 2011-10-27 2016-08-10 日本ゼオン株式会社 Conductive adhesive composition, current collector with adhesive layer, and electrochemical element electrode
KR101381956B1 (en) 2011-12-28 2014-04-10 한국전기연구원 Conductive Paste Adhesive Containing Graphene For Supercapacitor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004339325A (en) 2003-05-14 2004-12-02 Matsushita Electric Ind Co Ltd Electrically-conducting adhesive and electronic component mounted body using the same
KR100581232B1 (en) * 2003-08-27 2006-05-17 (주)에스와이하이테크 Electric Conduction Adhesive and Joined Electrode Using The Said Manufacturing Method thereof
KR101227152B1 (en) 2010-04-02 2013-01-28 롯데알미늄 주식회사 Composition for forming conductive adhesive layer of electrode, manufacturing method of electrode, and electrode using the same
KR101661224B1 (en) * 2015-04-30 2016-09-30 (주) 퓨리켐 Current collector for high voltage super-capacitor and super-capacitor therewith
KR101701317B1 (en) 2016-04-01 2017-02-03 (주) 퓨리켐 Electro-conductive adhesive using graphene and preparation of electrode using the same

Also Published As

Publication number Publication date
KR20200034048A (en) 2020-03-31

Similar Documents

Publication Publication Date Title
Ma et al. Graphene‐based materials for lithium‐ion hybrid supercapacitors
Xiong et al. Graphitic petal electrodes for all‐solid‐state flexible supercapacitors
RU2381586C2 (en) Electrode and current collector for electrochemical capacitor with double electric layer, and electrochemical capacitor with double electric layer made thereof
KR102412621B1 (en) Conductive electrodes and their manufacturing process
TWI601330B (en) Electrode material and energy storage apparatus
KR20100129307A (en) Ionic liquid-containing electrode membrane and electrode, process for producing the electrode membrane and the electrode, and electric storage device
Bhattacharjya et al. Study of electrode processing and cell assembly for the optimized performance of supercapacitor in pouch cell configuration
KR102239685B1 (en) Electro-conductive adhesive using activated carbon, electrode current collector, electrode for supercapacitor and the supercapacitor having improved high temperature performance
JP2010003940A (en) Active carbon for electrode material and energy storage device
KR20190053346A (en) Supercapacitor having excellent stability for high voltage and method for manufacturing the same
US20130038984A1 (en) Composition for electrode active material slurry and electrochemical capacitor including electrode using the same
KR100917408B1 (en) Electrode for electrochemical capacitor and process for preparing the same
JP2014523121A (en) Current conducting electrode and method of manufacturing the same
KR101860755B1 (en) Composite for ultracapacitor electrode, manufacturing method of ultracapacitor electrode using the composite, and ultracapacitor manufactured by the method
KR100542804B1 (en) Method for manufacturing electrode of high generating power type electric double layer capacitor
KR101493976B1 (en) Manufacturing method of Asymmetrical Super Capacitor with Cylindrical Type
KR20220070027A (en) Supercapacitors with biasing electrodes
KR102157384B1 (en) Electrical double layer capacitor including granular activated carbon-carbon nanotube composite
KR101120504B1 (en) Electrode for electrochemical capacitor and process for preparing the same
Huang et al. Ultra-high-voltage capacitor based on aluminum electrolytic–electrochemical hybrid electrodes
KR101724434B1 (en) High-voltage/high-power supercapacitor operatable at 3.2v
KR20150027458A (en) Method for preparing carbon powder for supercapacitor electrode and carbon powder for supercapacitor electrode prepared by the same
KR102116279B1 (en) Manufacturing method of electrode active material for ultracapacitor, manufacturing method of ultracapacitor electrode and manufacturing method of ultracapacitor
TWI794221B (en) Self-supporting carbon electrode
KR20220146153A (en) Extended supercapacitor with high reliability and method for manufacturing thereof

Legal Events

Date Code Title Description
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant