KR102236811B1 - Recovering method of poly methyl methacrylate and poly aluminum sulfate from waste scagliola - Google Patents

Recovering method of poly methyl methacrylate and poly aluminum sulfate from waste scagliola Download PDF

Info

Publication number
KR102236811B1
KR102236811B1 KR1020200101959A KR20200101959A KR102236811B1 KR 102236811 B1 KR102236811 B1 KR 102236811B1 KR 1020200101959 A KR1020200101959 A KR 1020200101959A KR 20200101959 A KR20200101959 A KR 20200101959A KR 102236811 B1 KR102236811 B1 KR 102236811B1
Authority
KR
South Korea
Prior art keywords
waste
sulfuric acid
artificial marble
aluminum
pmma
Prior art date
Application number
KR1020200101959A
Other languages
Korean (ko)
Inventor
강봉현
Original Assignee
강봉현
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 강봉현 filed Critical 강봉현
Priority to KR1020200101959A priority Critical patent/KR102236811B1/en
Application granted granted Critical
Publication of KR102236811B1 publication Critical patent/KR102236811B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • B09B3/0016
    • B09B3/0083
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • B29B2017/0213Specific separating techniques
    • B29B2017/0217Mechanical separating techniques; devices therefor
    • B29B2017/0237Mechanical separating techniques; devices therefor using density difference
    • B29B2017/0244Mechanical separating techniques; devices therefor using density difference in liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • B29B2017/0213Specific separating techniques
    • B29B2017/0293Dissolving the materials in gases or liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • B29B2017/0213Specific separating techniques
    • B29B2017/0293Dissolving the materials in gases or liquids
    • B29B2017/0296Dissolving the materials in aqueous alkaline solutions, e.g. NaOH or KOH
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/04Disintegrating plastics, e.g. by milling
    • B29B2017/0424Specific disintegrating techniques; devices therefor
    • B29B2017/0468Crushing, i.e. disintegrating into small particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/04Disintegrating plastics, e.g. by milling
    • B29B2017/0424Specific disintegrating techniques; devices therefor
    • B29B2017/0496Pyrolysing the materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

The present invention relates to a recovering method of poly methyl methacrylate and poly aluminum sulfate from waste scagliola, and more particularly, to a recovering method of poly methyl methacrylate and poly aluminum sulfate from waste scagliola, in which waste artificial marble powder is pre-treated with sodium stearate mixed with sodium hydroxide and stearic acid to disperse particle sizes of the waste artificial marble powder into small sizes, thereby increasing the reaction surface area with sulfuric acid; reaction heat with sulfuric acid in the initial reaction is increased as the content of the alkali agent is increased by the sodium stearate to improve the responsiveness, achieve excellent recovery efficiency even when a low concentration of waste sulfuric acid is used, to reduce production costs and improve economic feasibility; and aluminum polysulfate is efficient recovered by reacting aluminum hydroxide with sulfuric acid under high pressure and high temperature conditions.

Description

폐인조대리석으로부터 폴리황산알루미늄과 PMMA를 분리 및 회수하는 방법{Recovering method of poly methyl methacrylate and poly aluminum sulfate from waste scagliola}Recovering method of poly methyl methacrylate and poly aluminum sulfate from waste scagliola}

본 발명은 폐인조대리석 분말을 수산화나트륨과 스테아린산을 혼합한 스테아린산나트륨으로 전처리하여 폐인조대리석 분말의 입자크기를 작게 분산시키는 공정과, 고압 및 고온의 조건에서 수산화알루미늄이 황산과 반응하여 폴리황산알루미늄으로 액화되어 분리될 수 있도록 하는 공정을 포함함으로써, 고농도(황산 함량 98 중량%)의 황산을 사용하는 종래 기술과 달리, 폐인조대리석 분말을 저농도(황산 함량 50 ~ 70 중량%)의 폐기물 황산과 반응시키더라도 폴리황산알루미늄 및 PMMA의 회수 효율을 향상시킬 수 있도록 하는, 폐인조대리석으로부터 폴리황산알루미늄과 PMMA를 분리 및 회수하는 방법에 관한 것이다.The present invention is a process of pretreating waste artificial marble powder with sodium stearate in which sodium hydroxide and stearic acid are mixed to reduce the particle size of waste artificial marble powder, and aluminum hydroxide reacts with sulfuric acid under conditions of high pressure and high temperature to produce aluminum polysulfate. By including a process to be liquefied and separated into, unlike the prior art using sulfuric acid with a high concentration (sulfuric acid content of 98% by weight), waste artificial marble powder is converted to waste sulfuric acid with a low concentration (sulfuric acid content of 50 to 70% by weight). The present invention relates to a method for separating and recovering aluminum polysulfate and PMMA from waste artificial marble so that the recovery efficiency of aluminum polysulfate and PMMA can be improved even when reacted.

최근 건축물의 고급화가 진행됨에 따라 인조대리석의 사용이 급증하고 있다. 인조대리석 시장은 요즘 아파트의 인테리어 고급화 경향과 맞물려 내수시장 확대로 놀라운 성장을 보여주고 있다.The use of artificial marble is increasing rapidly as buildings are advanced in recent years. The artificial marble market is showing remarkable growth thanks to the expansion of the domestic market in line with the trend of luxury interiors in apartments these days.

인조대리석은 바닥마감재(로비, 사우나, 마루, 재료분리대 등), 카운터 및 데스크(호텔 및 오피스 로비 등), 벽 및 기둥 마감재(엘리베이터 벽면, 사무실 칸막이, 상점 프론트, 공공건물 등), 욕조 마감, 샤워부스, 윈도우 씰, 주방 벽체 등 그 활용도는 계속 높아지고 있다.Artificial marble is used for floor finishing materials (lobby, sauna, floor, material separator, etc.), counters and desks (hotel and office lobby, etc.), wall and column finishing materials (elevator walls, office partitions, store fronts, public buildings, etc.), bathtub finishing, The use of shower booths, window seals, kitchen walls, etc. continues to increase.

현재 국내에서 널리 사용되고 있는 인조대리석은 주로 수산화알루미늄과 폴리메틸메타크릴레이트(Poly Methyl Methacrylate, 이하 'PMMA'라 한다)가 주성분으로 혼합하여 제조한 것으로, 그 구성성분은 PMMA 약 30~40 중량%, 무기충진제 약 50~60 중량% 및 그 외 소량의 첨가제(소포제, 분산제, 수산화칼슘, 개시제 등)로 이루어져 있다.Artificial marble, which is currently widely used in Korea, is mainly manufactured by mixing aluminum hydroxide and polymethyl methacrylate (Poly Methyl Methacrylate, hereinafter referred to as'PMMA') as main components, and its composition is about 30-40% by weight of PMMA. , It consists of about 50-60% by weight of inorganic filler and a small amount of other additives (antifoam, dispersant, calcium hydroxide, initiator, etc.).

상기 구성성분 중 무기충진제인 알루미늄 화합물은 인조대리석의 강도와 내마모도 증진 및 발색에도 좋은 특성을 갖고 있으므로 국내에서 생산되는 인조대리석 제품에는 거의 대부분 수산화알루미늄을 무기충진제로 사용하고 있다. Among the above constituents, the aluminum compound, which is an inorganic filler, has properties that improve the strength and abrasion resistance of artificial marble, as well as good color development, so aluminum hydroxide is used as an inorganic filler in most of the artificial marble products produced in Korea.

그리고 상기와 같은 구성성분을 갖는 인조대리석은 제조 후 필요한 크기로 가공하여 싱크대나 기타물품의 상판으로 사용하게 되는데 가공과정에서 다량의 스크랩 및 분진이 부산물로 발생하게 되며, 이와 같은 부산물인 스크랩과 분진은 다른 제품화에 사용할 수 없어 거의 대부분이 단순매립하거나 또는 소각에 의해 폐기처분하고 있지만 매립비용의 확보와 매립 후 지반이 불안정할 뿐만 아니라 이차적으로 토양오염이 유발되고, 소각할 경우에는 유해 가스나 악취의 발생 및 이산화탄소의 발생으로 대기 환경의 오염을 유발한다. In addition, artificial marble having the above components is processed to the required size after manufacture and used as a top plate for sinks or other goods. In the process of processing, a large amount of scrap and dust are generated as by-products, such as scrap and dust. Since silver cannot be used for other commercialization, most of them are simply landfilled or disposed of by incineration, but not only the securing of landfill costs and the ground after landfilling is unstable, and secondary soil pollution is caused, and in case of incineration, harmful gases or odors It causes pollution of the air environment by the generation of and the generation of carbon dioxide.

따라서, 상기와 같은 문제점들을 해결하기 위한 방안으로 최근 폐인조대리석이나 또는 인조대리석 부산물을 처리하기 위한 방법들이 개발되어 특허출원된 내용들을 살펴보면, 특허문헌 1에 도 1에 도시된 바와 같이 인조대리석의 스크랩을 파쇄(P1)한 후열분해(P2)한 다음 이 과정에서 발생된 기체성분을 공급받아 응축기로 응축시켜 액상화하고, 응축된 액상을 원심분리기와 유수분리기로 분리하여 물과 불순물을 제거한 MMA(P3)를 회수하고, 잔여 챠르(char) 상태의 잔재물을 소성(P4)시켜 알루미나를 회수(P6)하는 방법과 특허문헌 2에 도 2에 도시된 바와 같이 폐인조대리석을 전처리단계(S1)에서 분쇄한 다음 열분해 처리(S2)하여 분류된 기체화 상태의 수지제 및 첨가제 원료를 응축 및 정제를 반복하여 불순물과 첨가제를 제거하고 정제된 순수 수지제로 재생(S3)시키고, 상기 열분해 처리단계에서 분류된 분말화 상태의 충진제와 첨가제 원료를 고온에서 소성 가열하여 불순물과 첨가제를 제거하고 소성된 충진제를 재생(S4)시키는 것을 특징으로 하는 폐인조대리석의 처리 방법이 알려져 있다.Therefore, as a way to solve the above problems, as a method for treating waste artificial marble or artificial marble by-products has been recently developed, and looking at the contents of the patent application, as shown in Fig. 1 in Patent Document 1, scrap of artificial marble After crushing (P1) and then pyrolysis (P2), the gas component generated in this process is supplied and condensed with a condenser to liquefy, and the condensed liquid phase is separated by a centrifuge and an oil-water separator to remove water and impurities. ), and sintering (P4) the remaining char residue to recover (P6) alumina and pulverize the waste artificial marble in the pretreatment step (S1) as shown in Fig.2 in Patent Document 2 Then, by performing thermal decomposition treatment (S2), the separated gasified resin and additive raw materials are repeatedly condensed and purified to remove impurities and additives, and regenerated (S3) with purified pure resin, and classified in the pyrolysis treatment step. A method for treating waste artificial marble is known, characterized in that the powdered filler and additive raw materials are calcined and heated at a high temperature to remove impurities and additives, and the calcined filler is regenerated (S4).

상기와 같은 특허들의 경우에는 인조대리석 스크랩과 분진을 열분해하여 휘발성 물질인 MMA를 분리하고 이를 정제하여 순수한 MMA를 회수하도록 하고, 열분해가 완료된 잔여물은 소성로를 통해 완전 연소시킴으로써 미량의 불순물이 연소 제거된 순수 알루미나를 수취하게 되는데 이때 생성되는 알루미나에는 연소에 의해 탄화가 발생하여 색상이 검게 나타나고 있다. 이러한 탄화는 1차 MMA 회수과정에서 잔류하는 유기물이 고온의 소성과정을 거치면서 탄화되는 것으로 알루미나의 재활용에 심각한 문제가 발생될 뿐만 아니라 MMA를 회수하기 위한 과정에서 200~700℃의 고온으로 열분해함에 따라 이 과정에서 유기화합물인 MMA가 고온의 열에 의해 일부 연소되어 소실되고, 또한 알루미나를 회수하기 위한 소성과정에서도 고온 열분해함에 따라 많은 에너지가 소요됨에 따라 경제성이 낮은 문제점이 있었다. In the case of the above patents, artificial marble scraps and dust are pyrolyzed to separate volatile MMA and purified to recover pure MMA, and trace impurities are burned and removed by completely burning the residues completed by pyrolysis through a kiln. The resulting pure alumina is received, and the alumina produced at this time is carbonized by combustion, and the color appears black. In this carbonization, organic matter remaining in the first MMA recovery process is carbonized through a high-temperature sintering process, which causes serious problems in recycling of alumina as well as thermal decomposition at a high temperature of 200 to 700°C in the process of recovering MMA. Accordingly, in this process, MMA, an organic compound, is partially burned and lost due to high-temperature heat. Also, in the firing process for recovering alumina, a lot of energy is required due to high-temperature pyrolysis, so there is a problem of low economical efficiency.

그리고 무기충진제인 알루미늄은 휘발되지 않는 물질이며, MMA를 회수하기 위하여 가열하는 과정에서 일부가 수분을 배출하고 산화알루미늄(알루미나)성분으로 변화된다. 이 과정에서 아래 화학식 1과 같이 불필요한 에너지의 손실과 수분이 많이 발생한다. MMA의 재활용 과정에 수분이 혼입되어 어려움이 발생한다.In addition, aluminum, which is an inorganic filler, is a material that does not volatilize, and in the process of heating to recover MMA, some of the moisture is discharged and converted into aluminum oxide (alumina) components. In this process, as shown in Formula 1 below, unnecessary energy loss and a lot of moisture occur. Difficulties arise because moisture is mixed in the recycling process of MMA.

Al(OH)3 → Al2O3 + H2O (화학식 1)Al(OH) 3 → Al 2 O 3 + H 2 O (Chemical Formula 1)

그리고 폐인조대리석으로부터 아크릴 수지 성분의 유기물을 분리 회수하기위한 기술로서, 특허문헌 3과 특허문헌 4에 욕실용재나 키친의 카운터재, 가구재, 내장재, 외장재 등의 건자재 용도로 사용되는 무기 충진제로서 실리카를 함유하는 열강화성 아크릴 수지를 포함하는 플라스틱 폐기물인 아크릴계 인조 대리석을 물이나 알코올, 에테르 등의 유기용매인 아임계 유체(亞臨界 流體)를 사용하여 열강화성 아크릴 수지의 가교부와 실리카를 가수분해한 분해물로부터 유기물을 분리 회수하는 방법이 알려져 있지만, 상기의 특허에서 사용하는 아임계 유체(亞臨界 流體)인 물의 경우에는 실온 부근의 물을 아임계 상태인 180~280℃ 전후까지 승온시키고, 15 MPa 전후까지의 고압을 유지시키기 위해서는 별도의 아임계상태를 형성시키기 위한 별도의 고압임계설비가 필요할 뿐만 아니라 현재까지의 기술수준으로는 아임계유체의 이용효율도 높지 않은 수준이므로 경제적인 측면에서 아직 실용화시키기에는 많은 문제점들을 해결해야 하는 난관이 있다.In addition, as a technology for separating and recovering organic substances of acrylic resin components from waste artificial marble, in Patent Document 3 and Patent Document 4, silica is used as an inorganic filler used for construction materials such as bathroom materials, kitchen counter materials, furniture materials, interior materials, and exterior materials. Hydrolyzed the crosslinked part of the thermosetting acrylic resin and silica by using a subcritical fluid, which is an organic solvent such as water, alcohol, and ether, of acrylic artificial marble, which is a plastic waste containing a thermosetting acrylic resin containing Although a method of separating and recovering organic matter from one decomposition product is known, in the case of water, which is a subcritical fluid used in the above patent, water near room temperature is raised to about 180 to 280°C, which is a subcritical state, and 15 In order to maintain the high pressure before and after MPa, not only requires a separate high pressure critical facility to form a separate subcritical state, but also the utilization efficiency of the subcritical fluid is not high at the level of technology so far. To put it into practical use, there are difficulties that must solve many problems.

이를 해결하기 위하여 특허문헌 5에서는 폐인조대리석으로부터 알루미늄 화합물과 MMA를 회수하는 방법에 있어서, 폐인조대리석의 균일한 분말을 선별하는 전처리 공정(P100)과; 선별된 폐인조대리석 분말에 물을 혼합하여 유동성을 갖도록 하는 슬러리(slurry)화 공정(P200)과; 상기 공정에서 형성시킨 슬러리에 산 화합물을 혼합한 다음 가온하여 폐인조대리석 분말에 함유되어 있는 알루미늄 성분을 산 화합물과 반응시키는 알루미늄 화합물 반응공정(P300) 및; 고액분리 장치를 이용하여 상기 알루미늄 화합물과 고형 상태의 PMMA를 분리하는 고액분리공정(P400);을 포함하는 폐인조대리석으로부터 산처리에 의해 알루미늄 화합물과 MMA를 회수하는 방법을 제안하였다.In order to solve this problem, Patent Document 5 provides a method for recovering aluminum compounds and MMA from waste artificial marble, comprising: a pretreatment step (P100) for selecting uniform powder of waste artificial marble; A slurry forming process (P200) in which water is mixed with the selected waste artificial marble powder to have fluidity; An aluminum compound reaction step (P300) in which an acid compound is mixed with the slurry formed in the above step and then heated to react the aluminum component contained in the waste artificial marble powder with the acid compound; A solid-liquid separation step (P400) for separating the aluminum compound and PMMA in a solid state using a solid-liquid separation device was proposed for recovering aluminum compounds and MMA by acid treatment from waste artificial marble.

즉, 상기 특허문헌 5는 폐인조대리석 또는 인조대리석 스크랩이나 분말로부터 산처리에 의해 액상 알루미늄 화합물의 회수시 고온의 열분해를 하지 않음에 따라 적은 양의 에너지를 사용하여 액상 알루미늄 화합물을 회수할 수 있도록 하며, 또한 종래의 방법이 폐인조대리석을 200~700℃의 고온으로 열분해함에 따라 유기화합물인 PMMA가 고온의 열에 의해 일부 연소되고 소실되어 MMA의 회수율이 낮아지는 것을 보완하기 위하여 폐인조대리석을 산처리함으로써 PMMA가 손실되지 아니하여 MMA의 회수율을 향상시키고자 하였고 또한 일차적으로 폐인조대리석으로부터 액상의 알루미늄 화합물의 분리한 다음 PMMA를 회수함으로서, 에너지 투입 대비 MMA 회수율을 향상시키고자 한 것이다.That is, Patent Document 5 does not perform high-temperature thermal decomposition when recovering liquid aluminum compounds from waste artificial marble or artificial marble scrap or powder by acid treatment, so that liquid aluminum compounds can be recovered using a small amount of energy. In addition, as the conventional method pyrolyzes the waste artificial marble at a high temperature of 200 to 700°C, the organic compound PMMA is partially burned and lost by high temperature heat, thereby reducing the recovery rate of MMA. It was intended to improve the recovery rate of MMA because no PMMA was lost by treatment, and also, primarily by separating the liquid aluminum compound from the waste artificial marble and then recovering the PMMA, thereby improving the MMA recovery rate compared to energy input.

하지만 상기 특허문헌 5의 경우 통상 황산 함량 약 98 중량%의 고농도 황산을 사용해야 한다. 그 이유는 초기 물과 고농도 황산을 반응시켜 반응온도를 상승시킨 후, 인조대리석 분말에 포함된 수산화알루미늄과 반응시키기 위한 것이다.However, in the case of Patent Document 5, a high-concentration sulfuric acid having a sulfuric acid content of about 98% by weight should be used. The reason is to raise the reaction temperature by reacting initial water with high concentration sulfuric acid, and then to react with aluminum hydroxide contained in the artificial marble powder.

즉, 상기 특허문헌 5의 경우 폐기물 황산(황산 함량 약 70 중량%의 저농도 황산)을 사용할 경우 초기 물이나 수산화알루미늄과의 반응을 일으키는 반응열이 부족하거나 또는 PMMA에 둘러싸인 수산화알루미늄은 황산과 반응하지 않아 황산알루미늄의 제조 효율이 저하되는 문제점이 있었다.That is, in the case of Patent Document 5, when waste sulfuric acid (low concentration sulfuric acid having a sulfuric acid content of about 70% by weight) is used, the reaction heat causing initial reaction with water or aluminum hydroxide is insufficient, or aluminum hydroxide surrounded by PMMA does not react with sulfuric acid. There is a problem in that the production efficiency of aluminum sulfate is lowered.

더욱이, 기존의 공정에 비해 생산비용이 저렴하여 경제적이고, 폐기물에서 유용한 자원인 수산화알루미늄을 불소 및 인 처리제, 수중의 콜로이드 입자를 응집시키는 무기응집제 용도의 폴리황산알루미늄으로 회수하고자 하는 요구가 있으나, 상기 특허문헌 5의 경우 폴리황산알루미늄을 회수하지 못하는 문제점이 있었다.Moreover, there is a need to recover aluminum hydroxide, which is economical as the production cost is lower than that of the existing process, and is a useful resource in waste, as a fluorine and phosphorus treatment agent, as an inorganic polysulfate used as an inorganic coagulant that agglomerates colloidal particles in water. In the case of Patent Document 5, there is a problem in that the aluminum polysulfate cannot be recovered.

특허문헌 1 : 대한민국 등록특허공보 제10-0891378호 "폐인조대리석으로부터 MMA와 알루미나의 회수방법"Patent Document 1: Republic of Korea Patent Publication No. 10-0891378 "Recovery method of MMA and alumina from waste artificial marble" 특허문헌 2 : 대한민국 등록특허공보 제10-0917105호 "폐인조 대리석 열분해 처리 장치 및 이를 이용한 폐인조 대리석 처리 방법"Patent Document 2: Republic of Korea Patent Publication No. 10-0917105 "Waste artificial marble pyrolysis treatment apparatus and waste artificial marble treatment method using the same" 특허문헌 3 : 일본 공개특허공보 제2006-206638호 "인조 대리석의 분해 방법"Patent Document 3: Japanese Laid-Open Patent Publication No. 2006-206638 "Decomposition method of artificial marble" 특허문헌 4 : 일본 공개특허공보 제2008-184475호 "플라스틱의 분해,회수 방법"Patent Document 4: Japanese Laid-Open Patent Publication No. 2008-184475 "Method of decomposing and recovering plastics" 특허문헌 5 : 대한민국 등록특허공보 제10-0982728호 "폐인조대리석으로부터 산처리에 의해 알루미늄 화합물과 MMA를 회수하는 방법"Patent Document 5: Korean Registered Patent Publication No. 10-0982728 "Method for recovering aluminum compounds and MMA from waste artificial marble by acid treatment"

본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 폐인조대리석 분말을 저농도(황산 함량 50 ~ 70 중량%)의 폐기물 황산과 반응시키더라도 폴리황산알루미늄 및 PMMA의 회수 효율을 향상시킬 수 있도록 함을 과제로 한다.The present invention is to solve the above problems, and it is possible to improve the recovery efficiency of aluminum polysulfate and PMMA even when the waste artificial marble powder is reacted with waste sulfuric acid having a low concentration (sulfuric acid content 50 to 70% by weight). Make it an assignment.

보다 구체적으로 본 발명은 폐인조대리석 분말을 수산화나트륨과 스테아린산을 혼합한 스테아린산나트륨으로 전처리함으로써, 폐인조대리석 분말의 입자크기를 작게 분산시켜 황산과의 반응 표면적을 증가시키고 또한 상기 스테아린산나트륨에 의해 알칼리제의 함량이 증가됨에 따라 초기 반응에서 황산과의 반응열을 증가시켜 그 반응성을 향상시킬 뿐만 아니라 저농도의 폐기물 황산을 사용하더라도 우수한 회수 효율을 구현함에 따라 생산비용이 감소되어 경제성 또한 향상시킬 수 있도록 함을 과제로 한다.More specifically, in the present invention, by pretreating the waste artificial marble powder with sodium stearate in which sodium hydroxide and stearic acid are mixed, the particle size of the waste artificial marble powder is dispersed to a small size to increase the reaction surface area with sulfuric acid, and an alkali agent by the sodium stearate. As the content of is increased, the heat of reaction with sulfuric acid in the initial reaction is increased to improve its reactivity, and even when a low concentration of waste sulfuric acid is used, the production cost is reduced and economical efficiency is also improved by realizing excellent recovery efficiency. Make it an assignment.

아울러, 본 발명은 고압과 고온의 조건에서 수산화알루미늄이 황산과 반응하여 폴리황산알루미늄으로 액화되어 분리될 수 있도록 함을 과제로 한다.In addition, it is an object of the present invention to allow aluminum hydroxide to react with sulfuric acid to be liquefied and separated into aluminum polysulfate under high pressure and high temperature conditions.

본 발명은 폐인조대리석으로부터 폴리황산알루미늄과 PMMA를 회수하는 방법에 있어서, 폐인조대리석 분말에 물을 혼합하고 수산화나트륨 및 스테아린산을 첨가하여 폐인조대리석 분말 입자를 분산시키고 슬러리화시키는 단계(S100); 폐기물 황산에 상기 슬러리를 투입 및 반응시켜 폴리황산알루미늄을 제조한 후, 희석수를 첨가하여 액상의 폴리황산알루미늄을 제조하는 단계(S200); 및 고액분리 장치를 이용하여 상기 액상의 폴리황산알루미늄과 PMMA를 각각 분리 및 회수하는 단계(S300);을 포함하는 것을 특징으로 하는, 폐인조대리석으로부터 폴리황산알루미늄과 PMMA를 회수하는 방법을 과제의 해결 수단으로 한다.The present invention provides a method for recovering aluminum polysulfate and PMMA from waste artificial marble, comprising: mixing water to waste artificial marble powder and adding sodium hydroxide and stearic acid to disperse and slurry the waste artificial marble powder particles (S100); Adding and reacting the slurry to waste sulfuric acid to prepare aluminum polysulfate, and then adding diluted water to prepare liquid aluminum polysulfate (S200); And separating and recovering the liquid aluminum polysulfate and PMMA, respectively, using a solid-liquid separation device (S300); As a solution.

여기서 상기 폐기물 황산은, 황산 함량 50 ~ 70 중량%의 농도를 가지는 황산인 것이 바람직하다.Here, the waste sulfuric acid is preferably sulfuric acid having a concentration of 50 to 70% by weight of sulfuric acid.

한편 상기 S100 단계는, 입자크기 90 ~ 110㎛의 폐인조대리석 분말에 수산화나트륨 및 스테아린산을 첨가하여 입자크기를 5 ~ 15㎛로 분산시키고 슬러리화시키는 것이 바람직하다.Meanwhile, in the step S100, sodium hydroxide and stearic acid are added to the waste artificial marble powder having a particle size of 90 to 110 μm to disperse the particle size to 5 to 15 μm and make a slurry.

그리고 상기 S200 단계는, 폐기물 황산과 슬러리의 반응 시, 압력 5 ~ 7kg/cm2, 온도 130 ~ 200℃에서 2 ~ 3시간 반응시키는 것이 바람직하다.And in the step S200, when the waste sulfuric acid and the slurry are reacted, it is preferable to react for 2 to 3 hours at a pressure of 5 to 7 kg/cm 2 and a temperature of 130 to 200°C.

본 발명은 폐인조대리석 분말은 수산화나트륨과 스테아린산을 혼합한 스테아린산나트륨으로 전처리함으로써, 저농도의 황산을 사용하면서도 고농도의 황산을 사용한 예와 동등 이상의 회수 효율을 가질 수 있는 효과가 있으며, 이로 인해 생산비용이 감소되어 경제성 또한 향상시킬 수 있는 효과가 있고, 아울러, 고압과 고온의 조건에서 수산화알루미늄이 황산과 반응하여 폴리황산알루미늄을 효율적으로 회수할 수 있는 효과가 있다.According to the present invention, the waste artificial marble powder is pretreated with sodium stearate in which sodium hydroxide and stearic acid are mixed, so that it is possible to use a low concentration of sulfuric acid and have a recovery efficiency equal to or higher than that of the example of using a high concentration of sulfuric acid. This is reduced to have an effect of improving economical efficiency. In addition, aluminum hydroxide reacts with sulfuric acid under high pressure and high temperature conditions to efficiently recover aluminum polysulfate.

보다 구체적으로, 본 발명은 폐인조대리석 등의 제품화 과정에서 발생하는 폐인조대리석 분말 및 공정오니와 황산을 고압 및 고온 반응용기에서 반응시켜 생성시킨 폴리황산알루미늄(PAS)을 회수하고 남은 잔여분인 PMMA를 분리 회수한다. 종래의 방법은 단순하게 수산화알루미늄과 황산을 반응하여 저분자 무기응집제인 액체황산알루미늄을 제조하는 공정이다(2Al2(OH)3 + 3H2SO4 → 2Al2(SO4)3 + 6H2O). 종래의 방법은 인조대리석 분진등의 원재료에 대한 고민없이 단순하게 인조대리석 분진을 물에 첨가하여 슬러리를 제조하고 황산을 첨가하여 수산화알루미늄을 용해하여 PMMA에 둘러싸인 수산화알루미늄은 용해되지 않고 PMMA에 잔류하여 열분해과정에서 에너지 비용을 증가시키는 요인으로 작용한다. 본 발명은 인조대리석 폐기물과 물을 혼합하여 슬러리를 제조하는 과정에서 이후 반응공정에서 수산화알루미늄의 회수율을 높이기 위하여 수산화나트륨 및 분산제(스테아린산, Stearic Acid, CH3(CH2)16COOH)를 혼합하여 스테아린산나트륨(Sodium stearate, CH3(CH2)16COONa)을 제조하여 입자를 효율적으로 분산시켜 이후 고압 및 고온 반응을 통하여 고분자 무기응집제인 폴리황산알루미늄[Poly Aluminium Sulfate : Al2(OH)n(SO4)3-n/2]m]을 제조하는 공정이다. 기존의 공정에 비해 생산비용이 저렴한 경제적이고, 폐기물에서 유용한 자원인 수산화알루미늄을 불소 및 인 처리제, 수중의 콜로이드 입자를 응집시키는 무기응집제 용도의 30 ~ 45%의 염기도를 가지는 폴리황산알루미늄(PAS)으로 회수한다. 고압과 고온의 조건에서 수산화알루미늄은 황산과 반응하여 폴리황산알루미늄(PAS)으로 액화되어 분리한다. 기존 특허의 황산알루미늄은 산-알카리 반응으로 단순한 저분자 무기응집제로서 염기도를 가지고 있지 않은 물질이다. 산불용성 성분인 PMMA를 필터프레스를 이용하여 고액 분리하여 회수하고 회수된 PMMA에서 MMA의 회수율을 높인 친환경적 공법인 것이다.More specifically, the present invention recovers aluminum polysulfate (PAS) produced by reacting waste artificial marble powder and process sludge and sulfuric acid generated in the process of commercialization such as waste artificial marble in a high-pressure and high-temperature reaction vessel, and the remaining PMMA Is separated and recovered. The conventional method is a process of simply reacting aluminum hydroxide and sulfuric acid to produce liquid aluminum sulfate, which is a low molecular weight inorganic coagulant (2Al 2 (OH) 3 + 3H 2 SO 4 → 2Al 2 (SO 4 ) 3 + 6H 2 O). . The conventional method is to prepare a slurry by simply adding artificial marble dust to water without worrying about raw materials such as artificial marble dust, and dissolving aluminum hydroxide by adding sulfuric acid, so that the aluminum hydroxide surrounded by PMMA does not dissolve but remains in PMMA. It acts as a factor that increases the energy cost in the pyrolysis process. In the present invention, in the process of preparing a slurry by mixing artificial marble waste and water, sodium hydroxide and a dispersant (stearic acid, Stearic Acid, CH 3 (CH 2 ) 16 COOH) are mixed to increase the recovery rate of aluminum hydroxide in the subsequent reaction process. Sodium stearate (CH 3 (CH 2 ) 16 COONa) is prepared to efficiently disperse the particles, and then through high-pressure and high-temperature reactions, polyaluminium sulfate, a high-molecular inorganic coagulant (Poly Aluminum Sulfate: Al 2 (OH)n( SO 4 ) 3 -n/2]m]. Polysulfate aluminum (PAS) with a basicity of 30 to 45% for use as an inorganic coagulant that agglomerates colloidal particles in water, as a fluorine and phosphorus treatment agent for aluminum hydroxide, which is an economical and useful resource in waste. To be recovered. Under the conditions of high pressure and high temperature, aluminum hydroxide reacts with sulfuric acid to be liquefied into aluminum polysulfate (PAS) and separated. The existing patented aluminum sulfate is a simple low-molecular inorganic coagulant that does not have basicity through an acid-alkali reaction. It is an eco-friendly construction method that recovers PMMA, an acid-insoluble component, by solid-liquid separation using a filter press, and increases the recovery rate of MMA from the recovered PMMA.

한편, 통상 전처리 공정을 거치지 않고 황산과 반응시켜 액체황산알루미늄을 제조하는 기존 공정은 수산화알루미늄의 회수율이 70 ~ 80% 내외로 수산화알루미늄이 잔존하여 차후 PMMA의 열분해 공정에서 에너지 비용이 증가하고 MMA의 회수율 또한 50% 내외로 나타나고 있다. 전처리 공정은 0.1 ~ 10.0wt%의 수산화나트륨[NaOH] 및 0.01 ~ 3.0wt%의 분산제(스테아린산)를 처리함으로 불균일하게 덩어리 형태 통상 입자 크기가 100㎛ 내외로 존재하는 입자 크기를 균일하게 평균 10㎛로 분산시켜 액중에서 침전이 잘 이루어지지 않는 현탁액을 제조하고 황산과의 반응 표면적의 증대 및 수산화나트륨이 첨가되어 알칼리제의 함량을 증가시켜 고압과 고온의 조건에서 반응을 일으켜 초기 반응에서 황산과의 반응열을 증가시켜 반응성을 개선하여 수산화알루미늄의 회수 효율을 높일 수 있다. 분산제는 통상 계면활성제로 액체중에 고체가 분산하고 있는 현탁액(Suspension)을 제조하는데 사용한다. 기존의 공정은 입자가 덩어리 형태로 존재하여 침전이 빨리 발생한다. 그러나 분산제로 폴리아크릴산나트륨, 올레핀-말레인산나트륨 공중합체, 축합인산염, 카르복시메틸셀룰로스, 스테아린산 또는 스테아린산나트륨을 혼합하여 입자를 분산시키면 액중에서 침전이 빨리 일어나지 않으며서 적은 교반속도에서도 수중에 분산성이 양호하다. 특히 스테아린산에 수산화나트륨을 첨가하여 스테아린산나트륨이 생성되면 인조대리석 분진의 분산제로서 효과를 나타낸다. 수산화알루미늄의 회수 효율을 증대시키면 공존하고 있는 물분자를 감소시켜 이후 PMMA의 열분해 공정에서 수산화알루미늄의 불분자를 제거하기 위한 에너지 소비를 감소시켜 열분해 공정에서 효율성을 높일 수 있다. 상기의 반응과정은 고압 및 고온의 압력반응 용기에서 98% 함량의 황산을 투입하고 먼저 반응용기에 투입한 물과 먼저 반응시켜 반응온도를 상승시키고 이후 인조대리석 분말을 투입하여 반응온도를 대략 120 ~ 250℃에서 유지하고, 고압(2Kgf/cm2 ~ 8Kgf/cm2)의 압력을 가하여 인조대리석에 포함된 수산화알루미늄을 용해시켜 폴리황산알루미늄(PAS)을 제조하고 있다. 통상적으로 함량 70% 내외의 폐기물 황산은 초기 물이나 수산화알루미늄과의 반응을 일으키는 반응열이 부족하여 액체황산알루미늄 제조에 사용이 어려움이 있다. 그리나 수산화나트륨 및 스테아린산을 혼합하여 스테아린산나트륨을 생성시켜 전처리 공정에서 사용하면 입자의 형태 및 크기가 도 4에서와 같이 분산되고, 스테아린산나트륨의 생성이후 수산화나트륨[NaOH]에서 잔류하는 OH-기가 상당량 존재하여 유효한 알카리 성분의 증가와 고압과 고온의 반응 조건에서 70%의 황산 농도에서도 쉽게 반응을 일으켜 폴리황산알루미늄(PAS)을 제조할 수 있다. 본 발명은 고압과 고온의 조건으로 반응을 시킴으로 제품의 제조에 어려움이 없다. 이 경우 원재료를 모두 폐기물을 사용함으로 제품의 제조에 원재료비가 전혀 들지 않아 완제품의 가격 경제력이 우수하다. 또한 상기와 같은 반응 조건에서는 인조대리석 분진에 함유된 수산화알루미늄의 회수율은 95% 이상을 나타낸다. 이러한 조건에서 제조된 폴리황산알루미늄(Poly Aluminium Sulfate : Al2(OH)n(SO4)3-n/2]m )의 특징은 아래와 같다. 폴리황산알루미늄은 무색 내지 담황색 투명한 액체로 PAS로 불리며 일반식은 [Al2(OH)n(SO4)3-n/2]m 이고 n은 1≤n≥5이며 m은 m〈 10 이고 염기도는 n/6 × 100% 이다. 염기도, 중합도, PH, 알카리소비량, 다가음이온과의 반응성등은 폴리염화알루미늄(Poly Aluminium Chloride)와 유사한 공통점을 가지고 있다. 폴리황산알루미늄(Poly Aluminium Sulfate)는 액체 황산 알루미늄에 비해 침강속도가 매우 빠르고 흡착활성도가 높아 단단하고 무거운 응집물을 형성하기 때문에 처리성능이 우수한 장점이 있다. 아울러 양전하가 높고 가교성을 보유하고 있어 황산알루미늄에 비해 저탁도에서는 약 1.5배, 고탁도에서는 2.0배 정도 우수한 탁도 제거효과가 있다. 황산알루미늄에 비해 규산, 철, 망간 제거효과가 뛰어나며 착색수 및 오염수 처리에는 황산알루미늄에 비해 탁도에 대한 강력한 흡착성, 가교흡착에 의한 탁도, 색도 제거능력이 좋은 편이다. 또 PH에 대한 응집 범위가 넓기 때문에 처리수의 조건이 변동되더라도 안정적으로 응집침전을 할 수 있는 특징이 있다. 폴리황산알루미늄은 염기도 중합도가 높을수록 물리화학적 영향을 받기 쉬우며, 특히 역학적으로 불안정하게 되므로 고염기성 용액을 만들기 어렵다. PAS의 응집특성은 염기도가 40%정도의 용액이 가장 좋으며 플록(floc)의 응집성능, 제탁효과, 알카리조제의 절감효과, 적정주입율의 범위, 응집 PH범위 등이 폴리염화알루미늄와 유사하다. 또한 폴리황산알루미늄는 폴리염화알루미늄 보다 가수분해속도가 빠르고 희석안정성이 좋지 못하여 원액 또는 2배 희석액을 직접 주입하는 경우가 많다. 반응 압력이 증가함에 따라 염기도도 증가하지만, 제품의 저정안정성이 40% 이상에서 급격히 떨어지는 것으로 나타나고 있다. 적정한 염기도는 35 ~ 40% 정도로 판단된다. 이후 남은 잔여분인 PMMA를 분리 회수함으로써, 종래의 방법과는 달리 폐인조대리석으로부터 폴리황산알루미늄(PSA) 화합물을 회수하여 수산화알루미늄을 열분해를 하지 않음에 따라 적은 양의 에너지를 사용하는 경제적 공법인 것이다. 그리고 남은 PMMA가 열분해되기 위해서는 350 ~ 450℃ 정도의 고온 가열이 필요한 것으로 보고되어 있으나, 400℃ 이상의 고온으로 PMMA를 가열할 경우 열분해에 의한 MMA의 회수율을 떨어뜨리는 역효과가 나타날 수 있으며 생성된 MMA의 탄화 현상이 발생하여 순도가 떨어지며 정제된 MMA 액체의 색상이 엷은 노랑색을 나타내고 순도를 높이는데 어려움이 발생한다. PMMA는 220℃에서 천천히 분해를 시작하여 400℃까지 온도를 높여야 100% 분해가 진행됨을 알 수 있었다. 따라서 PMMA의 분해를 가속화하여 분해온도를 낮추기 위해 PMMA 잔류물에 혼합된 폴리황산알루미늄의 촉매 효과를 검증한 결과 동일한 온도 조건에서 PMMA 단독의 열분해 효율은 39.932%인데 반하여 폴리황산알루미늄이 0.5-5.0% 혼합된 PMMA의 경우 68.346%로 대략 1.7배의 효율 향상이 있다.On the other hand, in the conventional process of producing liquid aluminum sulfate by reacting with sulfuric acid without going through the usual pretreatment process, the recovery rate of aluminum hydroxide is around 70 to 80%, and aluminum hydroxide remains. The recovery rate is also around 50%. The pretreatment process is unevenly agglomerated by treating 0.1 to 10.0 wt% of sodium hydroxide [NaOH] and 0.01 to 3.0 wt% of dispersant (stearic acid). To prepare a suspension that does not precipitate well in the liquid by dispersing with sulfuric acid, the reaction surface area with sulfuric acid and sodium hydroxide are added to increase the content of the alkali agent to cause a reaction under high pressure and high temperature conditions, and the heat of reaction with sulfuric acid in the initial reaction By increasing the reactivity, the recovery efficiency of aluminum hydroxide can be improved. The dispersant is usually a surfactant and is used to prepare a suspension in which a solid is dispersed in a liquid. In the existing process, the particles exist in the form of agglomerates, so precipitation occurs quickly. However, when dispersing the particles by mixing sodium polyacrylate, olefin-sodium maleate copolymer, condensed phosphate, carboxymethylcellulose, stearic acid or sodium stearate as a dispersant, precipitation does not occur quickly in the liquid, so dispersibility in water is good even at a low stirring speed. Do. In particular, when sodium stearate is produced by adding sodium hydroxide to stearic acid, it exhibits an effect as a dispersant for artificial marble dust. Increasing the recovery efficiency of aluminum hydroxide can reduce coexisting water molecules, thereby reducing energy consumption for removing non-molecules of aluminum hydroxide in the subsequent PMMA pyrolysis process, thereby increasing the efficiency in the pyrolysis process. In the above reaction process, 98% of sulfuric acid is added in a pressure reaction vessel at high pressure and high temperature, and the reaction temperature is raised by first reacting with water added to the reaction vessel, and then artificial marble powder is added to increase the reaction temperature to approximately 120 ~. Maintaining at 250 ℃, by applying a pressure of high pressure (2Kgf/cm 2 ~ 8Kgf/cm 2 ) to dissolve the aluminum hydroxide contained in the artificial marble to prepare aluminum polysulfate (PAS). Typically, waste sulfuric acid having a content of about 70% is difficult to use in the production of liquid aluminum sulfate due to lack of heat of reaction causing initial reaction with water or aluminum hydroxide. However, when sodium hydroxide and stearic acid are mixed to produce sodium stearate and used in the pretreatment process, the shape and size of the particles are dispersed as shown in Fig. 4, and there is a significant amount of OH-group remaining in sodium hydroxide [NaOH] after the formation of sodium stearate. Thus, it is possible to produce aluminum polysulfate (PAS) by easily reacting even at a concentration of 70% of sulfuric acid under high-pressure and high-temperature reaction conditions with an increase in the effective alkali component. In the present invention, there is no difficulty in manufacturing a product by reacting under high pressure and high temperature conditions. In this case, since all raw materials are used as waste, the cost of raw materials is not required to manufacture the product, so the cost economy of the finished product is excellent. In addition, under the above reaction conditions, the recovery rate of aluminum hydroxide contained in the artificial marble dust is 95% or more. The characteristics of poly aluminum sulfate (Al2(OH)n(SO4)3-n/2]m) prepared under these conditions are as follows. Aluminum polysulfate is a colorless to pale yellow transparent liquid and is called PAS. The general formula is [Al 2 (OH)n(SO 4 ) 3 -n/2]m, n is 1≤n≥5, m is m<10, and the basicity is It is n/6 × 100%. Basicity, degree of polymerization, PH, alkali consumption, and reactivity with polyanions have similarities to those of Poly Aluminum Chloride. Poly Aluminum Sulfate has an advantage of excellent treatment performance because it forms hard and heavy aggregates with a high sedimentation rate and high adsorption activity compared to liquid aluminum sulfate. In addition, since it has a high positive charge and has crosslinking properties, it has an excellent turbidity removal effect of about 1.5 times in low turbidity and 2.0 times in high turbidity compared to aluminum sulfate. Compared to aluminum sulfate, it has excellent removal effect of silicic acid, iron, and manganese, and it has strong adsorption to turbidity, turbidity by crosslinking adsorption, and color removal ability compared to aluminum sulfate for treatment of colored water and contaminated water. In addition, since the coagulation range for PH is wide, even if the conditions of the treated water are varied, coagulation and precipitation can be stably performed. Aluminum polysulfate is more susceptible to physicochemical effects as the degree of basicity polymerization increases, and it is particularly difficult to make a highly basic solution because it becomes mechanically unstable. The agglomeration properties of PAS are the best with a solution having a basicity of about 40%, and the floc coagulation performance, defrosting effect, reduction effect of alkali preparations, proper injection rate range, and aggregation PH range are similar to those of polyaluminum chloride. In addition, aluminum polysulfate has a faster hydrolysis rate than polyaluminum chloride and has poor dilution stability, so in many cases, an undiluted solution or a double diluted solution is directly injected. As the reaction pressure increases, the basicity also increases, but the low stability of the product appears to drop sharply above 40%. The proper basicity is judged to be around 35 to 40%. By separating and recovering the remaining PMMA, it is an economical construction method that uses a small amount of energy as it does not pyrolyze aluminum hydroxide by recovering aluminum polysulfate (PSA) compounds from waste artificial marble, unlike conventional methods. In addition, it is reported that high-temperature heating of 350 ~ 450℃ is required for the remaining PMMA to be pyrolyzed. However, heating PMMA at a high temperature of 400℃ or higher may have an adverse effect of lowering the recovery rate of MMA due to pyrolysis. The carbonization phenomenon occurs and the purity decreases, and the color of the purified MMA liquid is pale yellow, and it is difficult to increase the purity. It was found that the decomposition of PMMA started slowly at 220° C. and 100% decomposition proceeded only when the temperature was increased to 400° C. Therefore, in order to accelerate the decomposition of PMMA and lower the decomposition temperature, the catalytic effect of aluminum polysulfate mixed in the PMMA residue was verified. The pyrolysis efficiency of PMMA alone was 39.932% under the same temperature condition, whereas the aluminum polysulfate 0.5-5.0% was 0.5-5.0%. In the case of mixed PMMA, there is an efficiency improvement of about 1.7 times to 68.346%.

도 1은 종래의 방법에 따라 폐인조대리석으로부터 MMA와 알루미나를 회수하는 공정을 나타낸 블록도
도 2는 종래의 다른 방법에 따라 폐인조대리석으로부터 MMA와 알루미나를 회수하는 공정을 나타낸 블록도
도 3은 본 발명에 따라 폐인조대리석으로부터 폴리황산알루미늄과 PMMA를 분리 및 회수하는 공정을 나타낸 블록도
도 4는 본 발명에 따라 스테아린산나트륨 처리 전후의 폐인조대리석 분말 입자크기를 비교한 SEM 사진(500배율)
1 is a block diagram showing a process of recovering MMA and alumina from waste artificial marble according to a conventional method.
Figure 2 is a block diagram showing a process of recovering MMA and alumina from waste artificial marble according to another conventional method
3 is a block diagram showing a process of separating and recovering aluminum polysulfate and PMMA from waste artificial marble according to the present invention.
Figure 4 is a SEM photograph comparing the particle size of waste artificial marble powder before and after sodium stearate treatment according to the present invention (500 magnification)

상기의 효과를 달성하기 위한 본 발명은 폐인조대리석으로부터 폴리황산알루미늄과 PMMA를 분리 및 회수하는 방법에 관한 것으로서, 본 발명의 기술적 구성을 이해하는데 필요한 부분만이 설명되며 그 이외 부분의 설명은 본 발명의 요지를 흩트리지 않도록 생략될 것이라는 것을 유의하여야 한다.The present invention for achieving the above effect relates to a method for separating and recovering aluminum polysulfate and PMMA from waste artificial marble, and only parts necessary to understand the technical configuration of the present invention are described, and the description of other parts is the present invention. It should be noted that it will be omitted so as not to obscure the subject matter of the invention.

이하, 본 발명에 따른 폐인조대리석으로부터 폴리황산알루미늄과 PMMA를 분리 및 회수하는 방법을 상세히 설명하면 다음과 같다.Hereinafter, a method of separating and recovering aluminum polysulfate and PMMA from waste artificial marble according to the present invention will be described in detail as follows.

본 발명의 특징에 의하면, 특허문헌 5의 경우 초기 물과 고농도 황산을 반응시켜 반응온도를 상승시키기 위해 황산 함량 약 98 중량%의 고농도 황산을 사용해야 하지만, 본 발명은 폐인조대리석 분말을 수산화나트륨과 스테아린산을 혼합한 스테아린산나트륨으로 전처리함으로써, 폐인조대리석 분말의 입자크기를 작게 분산시켜 황산과의 반응 표면적을 증가시키고 또한 상기 스테아린산나트륨에 의해 알칼리제의 함량이 증가됨에 따라 초기 반응에서 황산과의 반응열을 증가시켜 그 반응성을 향상시킴에 따라 폐인조대리석 분말을 저농도의 폐기물 황산과 반응시키더라도 폴리황산알루미늄 및 PMMA의 회수 효율을 향상시킬 수 있도록 한 것이 특징이다.According to the features of the present invention, in the case of Patent Document 5, high-concentration sulfuric acid having a sulfuric acid content of about 98% by weight should be used in order to increase the reaction temperature by reacting initial water with high-concentration sulfuric acid. By pretreating with sodium stearate mixed with stearic acid, the particle size of the waste artificial marble powder is dispersed to a small size to increase the reaction surface area with sulfuric acid, and as the content of the alkali agent is increased by the sodium stearate, the heat of reaction with sulfuric acid in the initial reaction is reduced. As the reactivity is improved by increasing it, it is possible to improve the recovery efficiency of aluminum polysulfate and PMMA even if the waste artificial marble powder is reacted with the waste sulfuric acid of low concentration.

보다 구체적으로 본 발명은 도 3에 도시된 바와 같이, 폐인조대리석 분말의 슬러리화 단계(S100), 황산과 슬러리의 반응을 통한 액상의 폴리황산알루미늄 제조단계(S200) 및 액상의 폴리황산알루미늄과 PMMA를 고액분리하는 단계(S300)를 포함하여 구성된다.More specifically, the present invention, as shown in Figure 3, the step of slurrying the waste artificial marble powder (S100), the liquid aluminum polysulfate production step (S200) through the reaction of the sulfuric acid and the slurry, and the liquid aluminum polysulfate It is configured to include a step (S300) of solid-liquid separation of PMMA.

상기 S100 단계는, 폐인조대리석 분말에 물을 혼합하고 수산화나트륨 및 스테아린산을 첨가하여 폐인조대리석 분말 입자를 분산시키고 슬러리화시키는 단계로써, 도 4에 도시된 바와 같이, 폐인조대리석 분말을 수산화나트륨과 스테아린산을 혼합한 스테아린산나트륨으로 전처리함에 따라 통상 입자크기 90 ~ 110㎛의 폐인조대리석 분말을 입자크기를 5 ~ 15㎛로 분산시키고 슬러리화시킨다.The step S100 is a step of dispersing and slurrying the waste artificial marble powder particles by mixing water with the waste artificial marble powder and adding sodium hydroxide and stearic acid. As shown in FIG. 4, the waste artificial marble powder is mixed with sodium hydroxide. By pre-treatment with sodium stearate mixed with stearic acid, waste artificial marble powder having a particle size of 90 to 110 μm is dispersed in a particle size of 5 to 15 μm, and then slurry is formed.

따라서, 본 발명은 폐인조대리석 분말의 입자크기를 작게 분산시켜 황산과의 반응 표면적을 증가시키고 또한 상기 스테아린산나트륨에 의해 알칼리제의 함량이 증가됨에 따라 초기 반응에서 황산과의 반응열을 증가시켜 그 반응성을 향상시킬 뿐만 아니라 저농도의 폐기물 황산을 사용하더라도 우수한 회수 효율을 구현한다.Accordingly, the present invention increases the reaction surface area with sulfuric acid by dispersing the particle size of the waste artificial marble powder small, and increases the reaction heat with sulfuric acid in the initial reaction as the content of the alkali agent is increased by the sodium stearate. It not only improves, but also realizes excellent recovery efficiency even when low concentration of waste sulfuric acid is used.

상기 S200 단계는, 폐기물 황산에 상기 슬러리를 투입 및 반응시켜 폴리황산알루미늄을 제조한 후, 희석수를 첨가하여 액상의 폴리황산알루미늄을 제조하는 단계로써 상기 폐기물 황산은 황산 함량 50 ~ 70 중량%의 농도를 가지는 황산을 사용한다.The step S200 is a step of preparing aluminum polysulfate by adding and reacting the slurry to waste sulfuric acid, and then adding diluted water to prepare a liquid aluminum polysulfate, wherein the waste sulfuric acid contains 50 to 70% by weight of sulfuric acid. Use sulfuric acid with a concentration.

여기서, 본 발명은 상술한 바와 같이 황산과의 반응성을 향상시킴으로써 황산 함량 50 ~ 70 중량%의 저농도 폐기물 황산을 사용하면서도 우수한 회수 효율을 구현하며 이로 인해 생산비용이 감소되어 경제성 또한 향상시킬 수 있다.Here, the present invention improves the reactivity with sulfuric acid, as described above, and realizes excellent recovery efficiency while using low-concentration waste sulfuric acid having a sulfuric acid content of 50 to 70% by weight, thereby reducing production costs, thereby improving economic efficiency.

상기 S300 단계는, 고액분리 장치를 이용하여 상기 액상의 폴리황산알루미늄과 PMMA를 각각 분리 및 회수하는 단계로써 고액분리 장치는 통상적인 방법에 의해 필터프레스 등을 포함하는 장치를 사용하여 액상의 폴리황산알루미늄과 PMMA를 각각 분리 및 회수한다.The step S300 is a step of separating and recovering the liquid aluminum polysulfate and PMMA using a solid-liquid separation device, and the solid-liquid separation device is a liquid polysulfuric acid using a device including a filter press or the like by a conventional method. Separate and recover aluminum and PMMA, respectively.

이하, 본 발명을 아래 실시예에 의거하여 더욱 상세히 설명하지만, 본 발명이 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail based on the following examples, but the present invention is not limited by the examples.

1. 폐인조대리석으로부터 폴리황산알루미늄과 PMMA 회수1. Recovery of aluminum polysulfate and PMMA from waste artificial marble

(실시예 1)(Example 1)

폐인조대리석 분말 21 중량%와 물 25 중량%를 혼합하고 수산화나트륨 1 중량% 및 스테아린산 3 중량%를 첨가하여 폐인조대리석 분말 입자를 분산(입자크기 100㎛ → 10㎛)시키면서 폐인조대리석 슬러리를 제조하였다(S100). 그리고 반응탱크에 폐기물 황산(황산 함량 70 중량%) 34 중량%를 먼저 투입하고 상기 슬러리를 투입하여 반응(압력 6kg/cm2, 온도 150℃에서 2시간 반응)시켜 폴리황산알루미늄을 제조한 후, 희석수 16 중량%를 첨가하여 액상의 폴리황산알루미늄을 제조하였다(S200). 그리고 상기 필터프레스를 포함하는 고액분리 장치를 이용하여 상기 액상의 폴리황산알루미늄과 PMMA를 각각 분리 및 회수하였다(S300).21% by weight of waste artificial marble powder and 25% by weight of water are mixed, and 1% by weight of sodium hydroxide and 3% by weight of stearic acid are added to disperse the particles of the waste artificial marble (particle size: 100㎛ → 10㎛) to prepare a waste artificial marble slurry. Was prepared (S100). Then, 34 wt% of waste sulfuric acid (sulfuric acid content 70 wt%) was first added to the reaction tank, and the slurry was added to react (pressure 6 kg/cm 2 , reaction at a temperature of 150° C. for 2 hours) to prepare aluminum polysulfate, A liquid aluminum polysulfate was prepared by adding 16% by weight of diluted water (S200). Then, the liquid aluminum polysulfate and PMMA were separated and recovered, respectively, using a solid-liquid separation device including the filter press (S300).

(실시예 2)(Example 2)

폐인조대리석 분말 18 중량%와 물 25 중량%를 혼합하고 수산화나트륨 0.5 중량% 및 스테아린산 2 중량%를 첨가하여 폐인조대리석 분말 입자를 분산(입자크기 90㎛ → 5㎛)시키면서 폐인조대리석 슬러리를 제조하였다(S100). 그리고 반응탱크에 폐기물 황산(황산 함량 50 중량%) 21 중량%를 먼저 투입하고 상기 슬러리를 투입하여 반응(압력 7kg/cm2, 온도 130℃에서 2시간 반응)시켜 폴리황산알루미늄을 제조한 후, 희석수 33.5 중량%를 첨가하여 액상의 폴리황산알루미늄을 제조하였다(S200). 그리고 상기 필터프레스를 포함하는 고액분리 장치를 이용하여 상기 액상의 폴리황산알루미늄과 PMMA를 각각 분리 및 회수하였다(S300).18% by weight of waste artificial marble powder and 25% by weight of water were mixed, and 0.5% by weight of sodium hydroxide and 2% by weight of stearic acid were added to disperse the particles of the waste artificial marble (particle size: 90㎛ → 5㎛) to prepare a waste artificial marble slurry. Was prepared (S100). Then, 21 wt% of waste sulfuric acid (sulfuric acid content 50 wt%) was first added to the reaction tank, and the slurry was added to react (pressure 7kg/cm 2 , reaction at a temperature of 130° C. for 2 hours) to prepare aluminum polysulfate, A liquid aluminum polysulfate was prepared by adding 33.5% by weight of diluted water (S200). Then, the liquid aluminum polysulfate and PMMA were separated and recovered, respectively, using a solid-liquid separation device including the filter press (S300).

(실시예 3)(Example 3)

폐인조대리석 분말 21 중량%와 물 21 중량%를 혼합하고 수산화나트륨 1.5 중량% 및 스테아린산 3 중량%를 첨가하여 폐인조대리석 분말 입자를 분산(입자크기 110㎛ → 15㎛)시키면서 폐인조대리석 슬러리를 제조하였다(S100). 그리고 반응탱크에 폐기물 황산(황산 함량 70 중량%) 29 중량%를 먼저 투입하고 상기 슬러리를 투입하여 반응(압력 5kg/cm2, 온도 200℃에서 3시간 반응)시켜 폴리황산알루미늄을 제조한 후, 희석수 24.5 중량%를 첨가하여 액상의 폴리황산알루미늄을 제조하였다(S200). 그리고 상기 필터프레스를 포함하는 고액분리 장치를 이용하여 상기 액상의 폴리황산알루미늄과 PMMA를 각각 분리 및 회수하였다(S300).21% by weight of waste artificial marble powder and 21% by weight of water are mixed, and 1.5% by weight of sodium hydroxide and 3% by weight of stearic acid are added to disperse the particles of the waste artificial marble (particle size of 110㎛ → 15㎛) to prepare a waste artificial marble slurry. Was prepared (S100). Then, 29% by weight of waste sulfuric acid (sulfuric acid content 70% by weight) was first added to the reaction tank, and the slurry was added to react (pressure 5kg/cm 2 , reaction at a temperature of 200°C for 3 hours) to prepare aluminum polysulfate, A liquid aluminum polysulfate was prepared by adding 24.5% by weight of diluted water (S200). Then, the liquid aluminum polysulfate and PMMA were separated and recovered, respectively, using a solid-liquid separation device including the filter press (S300).

(비교예 1)(Comparative Example 1)

실시예 1과 동일하게 제조하되, 수산화나트륨 및 스테아린산을 첨가하지 않았고, 일반 황산(황산 함량 98 중량%)을 사용하였다.It was prepared in the same manner as in Example 1, but sodium hydroxide and stearic acid were not added, and general sulfuric acid (sulfuric acid content 98% by weight) was used.

(비교예 2)(Comparative Example 2)

실시예 2와 동일하게 제조하되, 수산화나트륨 및 스테아린산을 첨가하지 않았고, 일반 황산(황산 함량 98 중량%)을 사용하였다.Prepared in the same manner as in Example 2, but sodium hydroxide and stearic acid were not added, and general sulfuric acid (sulfuric acid content 98% by weight) was used.

(비교예 3)(Comparative Example 3)

실시예 3과 동일하게 제조하되, 스테아린산을 첨가하지 않았고, 일반 황산(황산 함량 98 중량%)을 사용하였다.Prepared in the same manner as in Example 3, but no stearic acid was added, and general sulfuric acid (sulfuric acid content 98% by weight) was used.

2. 회수율 평가2. Recovery rate evaluation

황산알루미늄과 PMMA의 회수율을 평가하되, 폴리황산알루미늄의 경우 산화 알루미늄을 용해시켜 폴리황산알루미늄이 제조되므로 산화알루미늄의 함량을 평가하였으며, 그 결과는 아래 [표 1]과 같다.The recovery rates of aluminum sulfate and PMMA were evaluated, but in the case of aluminum polysulfate, aluminum polysulfate was prepared by dissolving aluminum oxide, so the content of aluminum oxide was evaluated, and the results are shown in [Table 1] below.

구분division 실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 비교예 1Comparative Example 1 비교예 2Comparative Example 2 비교예 3Comparative Example 3 폴리황산알루미늄의
산화알루
미늄 함량
Of aluminum polysulfate
Alu oxide
Minium content
8%8% 7%7% 8%8% 6%6% 7%7% 7%7%
PMMA 회수율PMMA recovery rate 8 중량%8% by weight 7 중량%7% by weight 8 중량%8% by weight 6 중량%6% by weight 6 중량%6% by weight 7 중량%7% by weight

상기 [표 1]에서와 같이, 본 발명에 따른 실시예는 비교예와 달리 폐인조대리석 분말은 수산화나트륨과 스테아린산을 혼합한 스테아린산나트륨으로 전처리함으로써, 저농도의 황산을 사용하면서도 고농도의 황산을 사용한 예와 동등 이상의 회수 효율을 가질 수 있음을 알 수 있다.As shown in [Table 1], in the Example according to the present invention, unlike the Comparative Example, the waste artificial marble powder was pretreated with sodium stearate in which sodium hydroxide and stearic acid were mixed, so that a low concentration of sulfuric acid was used while a high concentration of sulfuric acid was used. It can be seen that it can have a recovery efficiency equal to or higher than that.

상술한 바와 같은, 본 발명의 바람직한 실시예에 따른 폐인조대리석으로부터 폴리황산알루미늄과 PMMA를 분리 및 회수하는 방법을 상기한 설명 및 도면에 따라 설명하였지만 이는 예를 들어 설명한 것에 불과하며 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 변화 및 변경이 가능하다는 것을 이 분야의 통상적인 기술자들은 잘 이해할 수 있을 것이다.As described above, a method of separating and recovering aluminum polysulfate and PMMA from waste artificial marble according to a preferred embodiment of the present invention has been described in accordance with the above description and drawings, but this is only described as an example. It will be well understood by those of ordinary skill in the art that various changes and changes are possible within the scope without departing from the idea.

S100 : 폐인조대리석 분말의 슬러리화 단계
S200 : 황산과 슬러리의 반응을 통한 액상의 폴리황산알루미늄 제조단계
S300 : 액상의 폴리황산알루미늄과 PMMA를 고액분리하는 단계
S100: Slurry step of waste artificial marble powder
S200: Manufacturing step of liquid aluminum polysulfate through reaction of sulfuric acid and slurry
S300: Solid-liquid separation of liquid aluminum polysulfate and PMMA

Claims (4)

폐인조대리석으로부터 폴리황산알루미늄과 PMMA를 회수하는 방법에 있어서,
폐인조대리석 분말에 물을 혼합하고 수산화나트륨 및 스테아린산을 첨가하여 폐인조대리석 분말 입자를 분산시키고 슬러리화시키는 단계(S100);
폐기물 황산에 상기 슬러리를 투입 및 반응시켜 폴리황산알루미늄을 제조한 후, 희석수를 첨가하여 액상의 폴리황산알루미늄을 제조하는 단계(S200); 및
고액분리 장치를 이용하여 상기 액상의 폴리황산알루미늄과 PMMA를 각각 분리 및 회수하는 단계(S300);을 포함하는 것을 특징으로 하는, 폐인조대리석으로부터 폴리황산알루미늄과 PMMA를 회수하는 방법.
In the method for recovering aluminum polysulfate and PMMA from waste artificial marble,
Mixing water with the waste artificial marble powder and adding sodium hydroxide and stearic acid to disperse and slurry the waste artificial marble powder particles (S100);
Adding and reacting the slurry to waste sulfuric acid to prepare aluminum polysulfate, and then adding diluted water to prepare liquid aluminum polysulfate (S200); And
Separating and recovering the liquid aluminum polysulfate and PMMA, respectively, using a solid-liquid separation device (S300); a method for recovering aluminum polysulfate and PMMA from waste artificial marble.
제 1항에 있어서,
상기 폐기물 황산은,
황산 함량 50 ~ 70 중량%의 농도를 가지는 황산인 것을 특징으로 하는, 폐인조대리석으로부터 폴리황산알루미늄과 PMMA를 회수하는 방법.
The method of claim 1,
The waste sulfuric acid,
A method for recovering aluminum polysulfate and PMMA from waste artificial marble, characterized in that it is sulfuric acid having a sulfuric acid content of 50 to 70% by weight.
제 1항에 있어서,
상기 S100 단계는,
입자크기 90 ~ 110㎛의 폐인조대리석 분말에 수산화나트륨 및 스테아린산을 첨가하여 입자크기를 5 ~ 15㎛로 분산시키고 슬러리화시키는 것을 특징으로 하는, 폐인조대리석으로부터 폴리황산알루미늄과 PMMA를 회수하는 방법.
The method of claim 1,
The step S100,
A method for recovering aluminum polysulfate and PMMA from waste artificial marble, characterized in that sodium hydroxide and stearic acid are added to waste artificial marble powder having a particle size of 90 to 110 μm to disperse the particle size to 5 to 15 μm and make a slurry.
제 1항에 있어서,
상기 S200 단계는,
폐기물 황산과 슬러리의 반응 시, 압력 5 ~ 7kg/cm2, 온도 130 ~ 200℃에서 2 ~ 3시간 반응시키는 것을 특징으로 하는, 폐인조대리석으로부터 폴리황산알루미늄과 PMMA를 회수하는 방법.
The method of claim 1,
The step S200,
When the waste sulfuric acid and the slurry are reacted, a method for recovering aluminum polysulfate and PMMA from waste artificial marble, characterized in that the reaction is performed for 2 to 3 hours at a pressure of 5 to 7 kg/cm 2 and a temperature of 130 to 200°C.
KR1020200101959A 2020-08-13 2020-08-13 Recovering method of poly methyl methacrylate and poly aluminum sulfate from waste scagliola KR102236811B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200101959A KR102236811B1 (en) 2020-08-13 2020-08-13 Recovering method of poly methyl methacrylate and poly aluminum sulfate from waste scagliola

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200101959A KR102236811B1 (en) 2020-08-13 2020-08-13 Recovering method of poly methyl methacrylate and poly aluminum sulfate from waste scagliola

Publications (1)

Publication Number Publication Date
KR102236811B1 true KR102236811B1 (en) 2021-04-06

Family

ID=75472763

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200101959A KR102236811B1 (en) 2020-08-13 2020-08-13 Recovering method of poly methyl methacrylate and poly aluminum sulfate from waste scagliola

Country Status (1)

Country Link
KR (1) KR102236811B1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006206638A (en) 2005-01-25 2006-08-10 Matsushita Electric Works Ltd Method of decomposing artificial marble
KR20060113154A (en) * 2005-04-29 2006-11-02 김재열 Rubber gloves contained aluminium hydroxide-manganese nano mixture and process for preparation of the same
JP2008184475A (en) 2007-01-26 2008-08-14 Matsushita Electric Works Ltd Method for decomposing and recovering plastic
KR100891378B1 (en) 2008-08-27 2009-04-02 (주)알앤이 Recovering method of methyl methacrylate and alumina from waste artificial marvel
KR100917105B1 (en) 2008-01-29 2009-09-15 이선근 Pyrolysis disposal system for waste-scagliola and method using the same
KR100982728B1 (en) 2010-05-14 2010-09-16 (주)서정화학 Recovering method of methyl methacrylate and aluminum compound from waste scagliola by acids treatment
KR20120104683A (en) * 2011-03-14 2012-09-24 최상근 Method for extracting mma from waste artificial marble
KR101550136B1 (en) * 2014-03-13 2015-09-03 박진효 Recovery Method Of Aluminium Compound And PMMA From Waste Artificial Marble By Physical And Chemical Treatment
KR102125016B1 (en) * 2019-07-03 2020-06-19 조혁래 Method for seperating PMMA and Aluminium hydroxide from waste artificial marble

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006206638A (en) 2005-01-25 2006-08-10 Matsushita Electric Works Ltd Method of decomposing artificial marble
KR20060113154A (en) * 2005-04-29 2006-11-02 김재열 Rubber gloves contained aluminium hydroxide-manganese nano mixture and process for preparation of the same
JP2008184475A (en) 2007-01-26 2008-08-14 Matsushita Electric Works Ltd Method for decomposing and recovering plastic
KR100917105B1 (en) 2008-01-29 2009-09-15 이선근 Pyrolysis disposal system for waste-scagliola and method using the same
KR100891378B1 (en) 2008-08-27 2009-04-02 (주)알앤이 Recovering method of methyl methacrylate and alumina from waste artificial marvel
KR100982728B1 (en) 2010-05-14 2010-09-16 (주)서정화학 Recovering method of methyl methacrylate and aluminum compound from waste scagliola by acids treatment
KR20120104683A (en) * 2011-03-14 2012-09-24 최상근 Method for extracting mma from waste artificial marble
KR101550136B1 (en) * 2014-03-13 2015-09-03 박진효 Recovery Method Of Aluminium Compound And PMMA From Waste Artificial Marble By Physical And Chemical Treatment
KR102125016B1 (en) * 2019-07-03 2020-06-19 조혁래 Method for seperating PMMA and Aluminium hydroxide from waste artificial marble

Similar Documents

Publication Publication Date Title
CN102358679B (en) Sludge conditioner, and deep dehydration method by using the same
JP5851502B2 (en) Metal extraction from aluminum-containing iron ore and titanium-containing iron ore and residues
CN109252053B (en) Method for extracting titanium, carbon and chlorine components from titanium-containing slag by virtue of sectional roasting separation
CN103241758A (en) Method of producing calcium fluoride through bottom mud generated by fluoride waste
CN109293326A (en) A kind of curing agent and its preparation method and application for mud Treatment of Sludge
CN104108814B (en) A kind of method processing Rutile type Titanium Dioxide waste water
CN114804668B (en) Preparation method of activated carbon negative material for producing recycled aggregate
CN103232053A (en) Method for producing calcium fluoride by bottom sludge generated during treatment of industrial fluoride-containing wastewater
CN110304703B (en) Preparation method for producing polyaluminium chloride water purifying agent by using aluminium ash
CN106698887B (en) A kind of preparation method and its application method of composite inorganic flocculant poly aluminium sulfate iron
KR102236811B1 (en) Recovering method of poly methyl methacrylate and poly aluminum sulfate from waste scagliola
CN101067100A (en) Clean green fuel and its prepn process
KR100982728B1 (en) Recovering method of methyl methacrylate and aluminum compound from waste scagliola by acids treatment
CN101054628A (en) Technique for extracting titanium slag form red mud
KR101466011B1 (en) Preparation of acrylic resin and alumina from waste-scagliola by low-temperature pyrolysis under oxygen atmosphere
CN103101944B (en) Method of producing micropowder aluminum hydroxide from pulverized fuel ash
KR101145280B1 (en) Recovering method of methyl methacrylate and aluminum compound from waste scagliola by alkali treatment
CN109201017A (en) A kind of adsorbent and preparation method thereof for sanitary sewage disposal
KR101550136B1 (en) Recovery Method Of Aluminium Compound And PMMA From Waste Artificial Marble By Physical And Chemical Treatment
CN112174279B (en) Polymeric aluminosilicate inorganic flocculant and preparation method and application thereof
CN1363521A (en) Process for preparing anatase crystal type nano TiO2
KR100533904B1 (en) Preparation of low-soda oxidized hematite using by-product of bayer process
CN1410352A (en) Comprehensive utilization method of converting chromium slag totally into light magnesium carbonate and fine iron breeze
CN115353146A (en) Treatment method of titanium tetrachloride dust collection slag
CN1827736A (en) Multi-component compound inorganic flame retardant and preparation method thereof

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant