KR102223117B1 - 트랜지션 피스과 이를 포함하는 연소기 및 가스 터빈 - Google Patents

트랜지션 피스과 이를 포함하는 연소기 및 가스 터빈 Download PDF

Info

Publication number
KR102223117B1
KR102223117B1 KR1020190063314A KR20190063314A KR102223117B1 KR 102223117 B1 KR102223117 B1 KR 102223117B1 KR 1020190063314 A KR1020190063314 A KR 1020190063314A KR 20190063314 A KR20190063314 A KR 20190063314A KR 102223117 B1 KR102223117 B1 KR 102223117B1
Authority
KR
South Korea
Prior art keywords
transition piece
turbine
cooling
body portion
flange portion
Prior art date
Application number
KR1020190063314A
Other languages
English (en)
Other versions
KR20200137262A (ko
Inventor
박성완
Original Assignee
두산중공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 두산중공업 주식회사 filed Critical 두산중공업 주식회사
Priority to KR1020190063314A priority Critical patent/KR102223117B1/ko
Publication of KR20200137262A publication Critical patent/KR20200137262A/ko
Application granted granted Critical
Publication of KR102223117B1 publication Critical patent/KR102223117B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/023Transition ducts between combustor cans and first stage of the turbine in gas-turbine engines; their cooling or sealings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/16Cooling of plants characterised by cooling medium
    • F02C7/18Cooling of plants characterised by cooling medium the medium being gaseous, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/42Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/35Combustors or associated equipment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03041Effusion cooled combustion chamber walls or domes

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

본 발명은 트랜지션 피스에 관한 것으로서, 본 발명의 일 측면에 의하면 상기 트랜지션 피스는 고온의 가스가 유입되어 상기 터빈으로 유동되는 내부공간이 구비되고 적어도 한 개 이상의 냉각홀이 구비되는 몸체부;와 상기 몸체부가 터빈측에 고정되기 위해 상기 몸체부와 결합되고, 상기 냉각홀과 연통되는 적어도 한 개 이상의 가이드 유로가 구비되는 플랜지부;를 포함하는 트랜지션 피스가 제공된다.

Description

트랜지션 피스과 이를 포함하는 연소기 및 가스 터빈{TRANSITION PIECE AND COMBUSTOR AND GAS TURBINE THAT COMPRISING THE SAME}
본 발명은 가스 터빈의 트랜지션 피스에 관한 것으로서, 플랜지부에 가이드 유로가 구비된 트랜지션 피스에 관한 것이다.
터빈이란 증기, 가스와 같은 압축성 유체의 흐름을 이용하여 충동력 또는 반동력으로 회전력을 얻는 기계장치로, 증기를 이용하는 증기터빈 및 고온의 연소가스를 이용하는 가스터빈 등이 있다.
이 중, 가스터빈은 크게 압축기와 연소기와 터빈으로 구성된다. 상기 압축기는 공기를 도입하는 공기 도입구가 구비되고, 압축기 케이싱 내에 다수개의 압축기 베인과, 압축기 블레이드가 교대로 배치되어 있다.
연소기는 상기 압축기에서 압축된 압축 공기에 대하여 연료를 공급하고 버너로 점화함으로써 고온고압의 연소 가스가 생성된다.
터빈은 터빈 케이싱 내에 복수의 터빈 베인과, 터빈 블레이드가 교대로 배치되어 있다. 또한, 압축기와 연소기와 터빈 및 배기실의 중심부를 관통하도록 로터가 배치되어 있다.
상기 로터는 양단부가 베어링에 의해 회전 가능하게 지지된다. 그리고, 상기 로터에 복수의 디스크가 고정되어, 각각의 블레이드가 연결되는 동시에, 배기실측의 단부에 발전기 등의 구동축이 연결된다.
이러한 가스터빈은 4행정 기관의 피스톤과 같은 왕복운동 기구가 없기 때문에 피스톤-실린더와 같은 상호 마찰부분이 없어 윤활유의 소비가 극히 적으며 왕복운동기계의 특징인 진폭이 대폭 감소되고, 고속운동이 가능한 장점이 있다.
가스터빈의 작동에 대해서 간략하게 설명하면, 압축기에서 압축된 공기가 연료와 혼합되어 연소됨으로써 고온의 연소 가스가 만들어지고, 이렇게 만들어진 연소 가스는 터빈측으로 분사된다. 분사된 연소 가스가 상기 터빈 베인 및 터빈 블레이드를 통과하면서 회전력을 생성시키고, 이에 상기 로터가 회전하게 된다.
고온의 가스에 노출되는 트랜지션 피스는 재료의 안정성을 위해 냉각이 필요하다. 트랜지션 피스의 냉각을 위해 일반적으로 압축기에서 형성된 압축공기가 유동 슬리브를 통하여 버너측으로 유동되는 과정에서 냉각공기가 트랜지션 피스의 표면을 따라 유동되면서 트랜지션 피스가 냉각되었다.
터빈부근의 트랜지션 피스 역시 고온의 가스에 노출되나, 터빈부근의 트랜지션 피스는 냉각공기가 버너측으로 유동됨에 따라 냉각되기 어려울 수 있고 이를 고려하여 터빈부근의 트랜지션 피스에 냉각홀이 형성된다.
종래에는 트랜지션 피스의 표면에 플랜지부가 용접 등을 통해 안착되고 드릴링 등의 과정으로 플랜지부의 일면에서 트랜지션 피스의 내면까지 연결되는 냉각홀이 가공되었고, 냉각공기가 상기 냉각홀을 통해 유동되어 터빈부근의 트랜지션 피스를 냉각시킬 수 있었다.
본 발명은 종래와 다른 형태의 냉각유로를 제공하여 보다 수월하게 가공할 수 있는 트랜지션 피스를 제공하고자 한다.
또한 본 발명은 고온의 가스로 인해 가열된 몸체부 및 플랜지부를 보다 효율적으로 냉각시킬 수 있는 트랜지션 피스를 제공하고자 한다.
상기와 같은 기술적 과제를 달성하기 위한 본 발명에 따른 트랜지션 피스의 실시예들은 고온의 가스가 유입되어 터빈으로 유동되는 내부공간이 구비되고 적어도 한 개 이상의 냉각홀이 구비되는 몸체부;와 상기 몸체부가 터빈측에 고정되기 위해 상기 몸체부와 결합되고, 상기 냉각홀과 연통되는 적어도 한 개 이상의 가이드 유로가 구비되는 플랜지부;를 포함할 수 있다.
본 발명의 실시예들은 종래와 다른 형태의 냉각홀을 제공하여 보다 수월하게 가공할 수 있는 트랜지션 피스을 제공할 수 있다.
또한, 본 발명은 고온의 가스로 인해 가열된 몸체부 및 플랜지부를 보다 효율적으로 냉각시킬 수 있는 트랜지션 피스를 제공할 수 있다.
또한, 본 발명의 실시예들은 플랜지부가 몸체부에 안착되어 용접되는 과정에서 개방된 형태의 가이드 유로를 통해 사용자가 냉각홀의 위치를 쉽게 관찰하면서 가이드 유로와 냉각홀이 연결되도록 플랜지부의 위치를 조정할 수 있다.
도 1은 본 발명에 따르는 가스 터빈의 전체적인 구조를 도시한 사시도이다.
도 2는 본 발명에 따르는 가스 터빈의 연소기를 도시한 측단면도이다.
도 3a는 본 발명의 제1 실시예에서 상기 도 2의 A부분에 대응되는 부분을 확대하여 도시한 측단면도이다.
도 3b는 상기 도 3a에서 도시한 플랜지부의 일부를 도시한 정면도이다.
도 4는 본 발명의 제2 실시예에서 상기 도 2의 A부분에 대응되는 부분을 확대하여 도시한 측단면도이다.
도 5는 본 발명의 제3 실시예에서 상기 도 2의 A부분에 대응되는 부분을 확대하여 도시한 측단면도이다.
이하 첨부된 도면들을 참조하여 본 발명의 바람직한 실시형태에 대하여 상세히 설명한다.
본 발명의 실시형태를 설명함에 있어서 당업자라면 자명하게 이해할 수 있는 공지의 구성에 대한 설명은 본 발명의 요지를 흐리지 않도록 생략될 것이다. 또한 각 도면의 구성요소들에 참조부호를 부가함에 있어서 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 부여할 것이며, 도면을 참조할 때에는 도면에 도시된 선들의 두께나 구성요소의 크기 등이 설명의 명료성과 편의상 과장되게 도시되어 있을 수 있음을 고려하여야 한다.
그리고, 본 발명의 실시예의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 개재되면서 간접적으로 "연결", "결합" 또는 "접속"될 수도 있다고도 이해되어야 할 것이다.
가스 터빈의 열역학적 사이클은 이상적으로는 브레이튼 사이클(Brayton cycle)을 따른다. 브레이튼 사이클은 등엔트로피 압축(단열 압축), 정압 급열, 등엔트로피 팽창(단열 팽창), 정압 방열로 이어지는 4가지 과정으로 구성된다. 즉, 대기의 공기를 흡입하여 고압으로 압축한 후 정압 환경에서 연료를 연소하여 열에너지를 방출하고, 이 고온의 연소가스를 팽창시켜 운동에너지로 변환시킨 후에 잔여 에너지를 담은 배기가스를 대기 중으로 방출한다. 즉, 압축, 가열, 팽창, 방열의 4 과정으로 사이클이 이루어진다.
위와 같은 브레이튼 사이클을 실현하는 가스 터빈은 압축기와 연소기, 터빈을 포함한다. 도 1은 가스 터빈(1000)의 전체적인 구성을 개략적으로 도시한 도면이다. 이하의 설명은 도 1을 참조하겠지만, 본 발명의 설명은 도 1에 예시적으로 도시된 가스 터빈(1000)과 동등한 구성을 가진 터빈 기관에 대해서도 폭넓게 적용될 수 있다.
가스 터빈(1000)의 압축기(1100)는 공기를 흡입하여 압축하는 역할을 하는 부분이며, 연소기(1200)에 연소용 공기를 공급하는 한편 가스 터빈(1000)에서 냉각이 필요한 고온 영역에 냉각용 공기를 공급하는 것이 주된 역할이다. 흡입된 공기는 압축기(1100)에서 단열압축 과정을 거치게 되므로, 압축기(1100)를 통과하는 공기의 압력과 온도는 올라가게 된다.
가스 터빈(1000)에 포함되는 압축기(1100)는 보통 원심 압축기(centrifugal compressors)나 축류 압축기(axial compressor)로 설계되는데, 소형 가스 터빈에서는 원심 압축기가 적용되는 반면, 도 1에 도시된 것과 같은 대형 가스 터빈(1000)은 대량의 공기를 압축해야 하기 때문에 다단 축류 압축기(1100)가 적용되는 것이 일반적이다.
압축기(1100)는 터빈(1300)에서 출력되는 동력의 일부를 사용하여 구동된다. 이를 위해, 도 1에 도시된 것과 같이, 압축기(1100)의 회전축과 터빈(1300)의 회전축은 직결된다. 대형 가스 터빈(1000)의 경우, 터빈(1300)에서 생산되는 출력의 거의 절반 정도가 압축기(1100)를 구동시키는데 소모된다. 따라서, 압축기(1100)의 효율을 향상시키는 것은 가스 터빈(1000)의 전체 효율을 향상시키는데 직접적이고도 지대한 영향을 미치게 된다.
그리고, 연소기(1200)는 압축기(1100)의 출구로부터 공급되는 압축 공기를 연료와 혼합하여 등압 연소시켜 높은 에너지의 연소가스를 만들어 낸다. 도 2는 가스 터빈(1000)에 구비되는 연소기(1200)의 일례를 보여준다. 연소기(1200)는 압축기(1100)의 하류에 배치되며, 환형을 이루는 연소기 케이싱(1210)을 따라 복수 개의 버너(1220)가 배치된다. 각 버너(1220)에는 수 개의 연소 노즐(1230)이 구비되며, 이 연소 노즐(1230)에서 분사되는 연료가 공기와 적절한 비율로 혼합되어 연소에 적합한 상태를 이루게 된다.
가스 터빈(1000)에는 가스 연료와 액체 연료, 또는 이들이 조합된 복합 연료가 사용될 수 있다. 법적 규제 대상이 되는 일산화탄소와 질소산화물 등의 배출가스 양을 저감하기 위한 연소 환경을 만드는 것이 중요한데, 연소 제어가 상대적으로 어렵기는 하지만 연소온도를 낮추고 균일한 연소를 만들어 배출가스를 줄일 수 있다는 장점이 있어 근래에는 예혼합 연소가 많이 적용된다. 예혼합 연소의 경우에는 압축공기가 연소 노즐(1230)에서 분사되는 연료와 혼합된 후 연소실(1240) 안으로 들어간다. 예혼합 가스의 최초 점화는 점화기를 이용하여 이루어지며, 이후 연소가 안정되면 연료와 공기를 공급하는 것으로 연소는 유지된다.
연소기(1200)는 가스 터빈(1000)에서 가장 고온 환경을 이루기 때문에 적절한 냉각이 필요하다. 도 2를 참조하면, 버너(1220)와 터빈(1300) 사이를 연결하여 고온의 연소가스가 유동하는 덕트 조립체, 즉 라이너(1250)와 트랜지션 피스(1260), 유동 슬리브(1270)로 이루어진 덕트 조립체의 외면을 따라 압축공기가 흘러서 연소 노즐(1230) 쪽으로 공급되며, 이 과정에서 고온의 연소가스에 의해 가열된 덕트 조립체가 적절히 냉각된다.
덕트 조립체는 탄성 지지수단(1280)을 매개로 연결된 라이너(1250)와 트랜지션 피스(1260)의 바깥을 유동 슬리브(1270)가 감싸는 이중 구조로 이루어져 있으며, 압축공기는 유동 슬리브(1270) 안쪽의 환형 공간 안으로 침투하여 라이너(1250)와 트랜지션 피스(1260)를 냉각시킨다.
여기서, 라이너(1250)와 트랜지션 피스(1260)의 각 일단은 연소기(1200)와 터빈(1300) 측에 각각 고정되기 때문에, 탄성 지지수단(1280)은 열팽창에 의한 길이 및 직경 신장을 수용할 수 있는 구조로 라이너(1250)와 트랜지션 피스(1260)를 지지할 수 있어야 한다.
연소기(1200)에서 생산된 고온, 고압의 연소가스는 덕트 조립체를 통해 터빈(1300)에 공급된다. 터빈(1300)에서는 연소가스가 단열 팽창하면서 터빈(1300)의 회전축에 방사상으로 배치된 다수의 블레이드에 충돌, 반동력을 줌으로써 연소가스의 열에너지가 회전축이 회전하는 기계적인 에너지로 변환된다. 터빈(1300)에서 얻은 기계적 에너지의 일부는 압축기에서 공기를 압축하는데 필요한 에너지로 공급되며, 나머지는 발전기를 구동하여 전력을 생산하는 등의 유효 에너지로 활용된다.
이와 같이, 가스 터빈(1000)은 주요 구성부품이 왕복운동을 하지 않기 때문에 피스톤-실린더와 같은 상호 마찰부분이 없어 윤활유의 소비가 극히 적으며, 왕복운동 기계의 특징인 진폭이 대폭 감소되고, 고속운동이 가능한 장점이 있다.
그리고, 브레이튼 사이클에서의 열효율은 공기를 압축하는 압축비가 높을수록, 그리고 등엔트로피 팽창 과정으로 유입되는 연소가스의 온도(터빈 입구 온도)가 높을수록 올라가기 때문에 가스 터빈(1000)도 압축비와 터빈 입구에서의 온도를 올리는 방향으로 발전하고 있다.
이하에서는 첨부된 도면을 참조하여 본 발명에 따른 트랜지션 피스(1260)의 실시예들에 대해서 상세하게 설명한다.
참고적으로 후술할 몸체부는 일반적으로 트랜지션 피스라고 불리나, 본원에서는 상기 트랜지션 피스에 대해 몸체부로 지칭하여 이하 상술한다. 발명의 기술적 사상은 플랜지부의 가이드 유로와 냉각홀이 연결됨을 기초로 하고 상기 기술적 사상을 트랜지션 피스라 지칭하므로, 몸체부라는 별도의 명칭을 부여하였음을 밝힌다.
도 3a는 본 발명에 따른 트랜지션 피스의 제1 실시예(2260)에서 일부분에 대해 확대하여 도시한 측단면도로서, 상기 실시예는 일방향으로 연장되는 몸체부(1270)에 적어도 한 개 이상의 냉각홀(1272)을 포함한다.
상기 냉각홀(1272)은 몸체부(1270) 표면에서 유동되는 냉각공기가 터빈(1300)부근에 위치하는 트랜지션 피스(2260)의 끝단으로 유동되어 트랜지션 피스(2260)의 끝단을 냉각시킨다.
상기 냉각홀(1272)은 본원에 첨부된 도 3a에서 도시하는 바와 같이 냉각홀(1262)과 몸체부(1270)의 표면이 수직을 이루도록 형성될 수 있다. 냉각홀의 형상은 반드시 이에 한정되지 않으므로 트랜지션 피스(1260)의 내부로 유입되는 냉각공기가 터빈측으로 보다 많은 양이 유동되도록 냉각홀의 형상은 도 3a에 도시되는 냉각홀(1262) 대비 터빈측으로 경사질 수 있다.
또는 트랜지션 피스(1260)의 내부로 유입되는 냉각공기가 보다 트랜지션 피스(1260)를 냉각시키도록 냉각홀 입구단의 지름보다 냉각홀 출구단의 지름이 클 수 있다. 대략 사다리꼴 형상의 냉각홀을 관통하는 냉각공기의 유속이 트랜지션 피스(1260)의 내부로 유입 시 낮아져 트랜지션 피스(1260)의 내부로 유입된 냉각공기가 보다 몸체부(1270)의 내면과 밀착되어 유동될 수 있어 트랜지션 피스(1260)를 보다 냉각시킬 수 있다.
냉각홀(1272)은 냉각공기가 접하기 어려운 터빈부근에 위치하는 트랜지션 피스(1260)의 끝단을 냉각하기 위한 구성이다. 따라서 도 3a에서 도시하는 바와 같이 트랜지션 피스(2260)의 끝단에 구비되는 플랜지부(2280)의 하측에 냉각홀(1272)이 형성된다.
본 발명에 포함되는 플랜지부(1280)는 트랜지션 피스(1260)와 터빈(1300)을 체결시키는 구성으로서 상기 체결을 위해 일반적으로 플랜지부(1280)는 몸체부(1270)의 끝단에 용접 등의 방식을 통해 결합될 수 있고, 몸체부의 냉각홀과 연통되는 가이드 유로를 포함할 수 있다.
상기 플랜지부(1280)가 몸체부(1270)와 체결되는 방식이나 위치는 한정되는 것은 아니고, 본원에서 상술하는 실시예에서는 고리형태를 갖는 플랜지부(2280)는 몸체부(1270)의 외주면에 안착되고 상기 플랜지부(2280)의 내주면이 상기 몸체부(1270)의 외주면과 용접되어 상기 플랜지부(2280)가 고정된다. 따라서 플랜지부(2280)의 내주면과 몸체부(1270)의 외주면이 용접되어 형성된 접합면은 몸체부(1270)의 내부에서 유동되는 고온의 가스와 직접 접촉되지 않아 열변형이 방지될 수 있다. 아울러 상기 실시예(2260)에서 상기 접합면는 도 3a에서 도시하는 플랜지부(2280)와 몸체부(1270)가 접하는 경계면에 위치한다.
구체적으로 터빈측으로 유동되는 고온의 가스는 도 3a 기준으로 몸체부(1270)의 하부에서 유동된다. 본 발명의 플랜지부가 몸체부에 접합되는 위치는 특별히 정해진 것은 아니나, 플랜지부가 몸체부의 우측끝단(도 3a 기준)에 접합된다면 접합면은 몸체부의 하부(도 3a 기준)에서 유동되는 고온의 가스와 직접 접촉되어 열변형이 발생될 수 있다.
본 발명의 실시예(2260)에서 플랜지부(2280)는 접합면과 고온의 가스와의 접촉을 고려하여 몸체부(1270)의 외주면에 안착되어 용접될 수 있다. 도 3a 기준으로 플랜지부와 몸체부의 접합면은 몸체부에 의해 몸체부의 내부와 차단되어 몸체부 내부에서 유동되는 고온의 가스와 접촉되지 않는다. 따라서 상기 실시예(2260)는 플랜지부와 몸체부의 접합면이 열변형되지 않아 몸체부와 플랜지부의 분리 및 파손을 방지할 수 있다.
상기 플랜지부(2280)는 본원에 첨부된 도 3a에서 도시하는 바와 같이 냉각홀(1272)의 상측에 구비되고, 냉각홀(1272)측으로 냉각공기가 원활하게 유동되도록 하기 위해 상기 플랜지부(2280)는 적어도 한 개 이상의 가이드 유로(2282)를 포함할 수 있다. 몸체부(1270)의 표면을 따라 유동되는 냉각공기는 가이드 유로(2282)를 거쳐 냉각홀(1272)로 유동된다.
상기 가이드 유로(2282)는 본원에 첨부된 도 3a에서 도시하는 바와 같이 플랜지부(2280)의 일측이 파여져 형성된 개방된 홈과 유사한 것으로서 가이드 유로(2282)로 인해 플랜지부(2280)는 대략 'ㄱ'자 형상을 나타낸다. 가이드 유로(2282)는 플랜지부(2280)의 일부분이 파단되어 개방된 구성으로, 드릴링을 통해 구멍이나 통로를 형성하는 가공과정보다 쉽게 가공할 수 있는 이점이 있다. 이는 플랜지부에 대한 드릴링이 플랜지부의 두께로 인해 어려웠고, 또한 고리 형태인 종래 플랜지부에 대한 드릴링 방향이 몸체부측으로 사선인 점으로 인해 드릴링이 어려웠기 때문이다. 즉 드릴링 작업이 어려운 두꺼운 플랜지부에 대해 선반이나 밀링 등의 가공과정을 통해 플랜지부의 일부분을 파단하므로 플랜지부에 대한 드릴링 작업과정대비 플랜지부 가공과정이 용이한 이점이 존재한다.
또한 본 발명은 플랜지부(2280)의 일부분이 파단되어 형성된 가이드 유로(2282)는 개방된 곳으로 도 3b에서 도시하는 바와 같이 사용자는 플랜지부(2280)에 대해 정면에서 바라보았을 때 플랜지부(2280)의 내부 일정부분을 볼 수 있어 플랜지부(2280)가 몸체부(1270)에 안착되었을 때 가이드 유로(2282)와 몸체부(1270)에 형성된 냉각홀(1272)이 연결되도록 쉽게 플랜지부(2280)의 위치를 조정하여 설치할 수 있다.
따라서 본 발명은 냉각홀(1272)을 구비하는 트랜지션 피스(1260)을 쉽게 제조할 수 있고, 개방된 가이드 유로(1282)를 통해 몸체부(1270)에 형성된 냉각홀(1272)과 가이드 유로(1282)가 연결되는 과정을 사용자가 바라보면서 수월하게 플랜지부(1280)의 위치조정이 가능할 수 있다.
뿐만 아니라 가이드 유로(1282)는 개방되어 몸체부(1270)의 외주면과 가이드 유로 내 유동되는 냉각공기가 접촉될 수 있다. 즉 가이드 유로 내 유동되는 냉각공기가 냉각홀(1272)로 유동되는 과정에서 몸체부(1270)의 외주면과 지속적으로 접촉되어 몸체부(1270)에 대한 냉각효과가 상승될 수 있다.
가이드 유로(1282)는 플랜지부(1280)에 형성된 구성으로 트랜지션 피스(1260)의 끝단을 냉각하기 위해 형성된 냉각홀(1272)측으로 냉각공기가 유동될 수 있도록 안내하고, 도 3a에서 도시하는 바와 같이 냉각홀(1272)이 플랜지부(2280)에 의해 가려지거나 막혀지지 않도록 가이드 유로(2282)가 플랜지부(2280)에 형성될 수 있다.
도 3b는 상기 플랜지부(2280)의 일부를 확대하여 도시한 정면도로서, 플랜지부(2280)의 하측에 이격되어 형성된 가이드 유로(2282)들을 도시한다. 이격되어 형성된 복수 개의 가이드 유로(2280)들이 몸체부(12700에 형성된 복수 개의 냉각홀(1272)들과 접하도록 플랜지부(2280)는 몸체부(1270)의 표면에 안착될 수 있다.
상기 플랜지부(2280)에 형성된 가이드 유로(2282)들간의 간격들이 동일하지 않을 수 있고, 가이드 유로(2282)를 통해 냉각공기가 유입되는 냉각홀(1272) 역시 간격들이 동일하지 않을 수 있다. 구체적으로 이웃한 가이드 유로(2282) 간의 간격과 다른 이웃한 가이드 유로(2282) 간의 간격이 달라 플랜지부(2280)의 구조가 대칭이 되지 않을 수 있다. 또한 이웃한 냉각홀(1272) 간의 간격과 다른 이웃한 냉각홀(1272) 간의 간격이 달라 몸체부(1270)의 구조가 대칭되지 않도록 형성될 수 있다. 가이드 유로(2282)를 통해 냉각홀(1272)로 유동되는 냉각공기로 인해 트랜지션 피스(2260)에 발생되는 진동을 상쇄하기 위함이다.
냉각홀(1272)의 위치에 따라 냉각공기와 트랜지션 피스(1260)의 충돌로 인해 생길 수 있는 진동수가 다를 수 있다. 냉각홀(1272)의 위치별로 상이하게 생길 수 있는 진동수는 냉각홀(1272)간의 간격들을 모두 동일하게 형성되지 않도록 설계함으로써 트랜지션 피스(1260)와 냉각공기와의 충돌로 인해 생기는 진동이 상쇄될 수 있다.
따라서 냉각홀(1272)은 이웃한 냉각홀(1272)의 간격들 중 적어도 하나의 간격이 나머지 간격들과 다르게 형성될 수 있고, 냉각홀(1272)과 연결되는 가이드 유로(2282)도 이웃한 가이드 유로(2282)의 간격들 중 적어도 하나의 간격은 나머지 간격과 다르게 형성될 수 있다.
또한 냉각홀(1272)은 이웃한 냉각홀(1272)의 간격들이 모두 다르게 형성될 수 있고, 냉각홀(1272)과 연결되는 가이드 유로(2282)도 이웃한 가이드 유로(2282)의 간격들이 모두 다르게 형성될 수 있다.
상기 가이드 유로(2282)의 길이(D1)는 도 3a에서 도시하는 바와 같이 적어도 상기 냉각홀(1272)의 폭(D2)보다 클 수 있다. 가이드 유로(2282)를 통해 유동되는 냉각공기가 냉각홀(1272)로 원활하게 유동되기 위함이다. 적어도 냉각홀(1272)의 폭보다 가이드 유로(2282)의 길이가 크기 때문에 플랜지부(2280)에 의해 냉각홀(1272)이 가려지는 냉각홀(1272)로의 냉각공기의 유동이 방해되지는 않는다.
도 4는 본 발명에 따른 트랜지션 피스의 제2 실시예(3260)를 도시한 측단면도로서, 상기 실시예는 경사진 일면을 적어도 한 개 이상 포함하는 가이드 유로(3282)가 형성되어 구조적으로 제1 실시예 대비 많은 양의 냉각공기가 냉각홀(1272)로 유동되도록 가이드 할 수 있다.
도 4에서 도시하는 바와 같이 상기 가이드 유로(3282)는 시계방향으로 약 90도 회전한 평행사변형과 유사한 형상을 나타낸다. 도 4에서 가이드 유로(3282)의 좌측이 가이드 유로(3282)의 유입구에 해당하고, 도 4에서 가이드 유로(3282)의 하측이 가이드 유로(3282)의 유출구에 해당한다.
상기 가이드 유로(3282)는 플랜지부(3280)의 일부분이 파단되되 냉각공기가 유입되는 가이드 유로(2382)의 유입구의 단면적이 냉각홀(1272)과 접하는 가이드 유로(2382)의 유출구의 단면적보다 크게 형성되어 보다 많은 양의 냉각공기가 냉각홀(1272)로 유동될 수 있다.
가이드 유로(3282)의 유입구의 단면적이 가이드 유로(3282)의 유출구의 단면적보다 큰 상기 실시예는 전술한 바와 같이 이웃한 냉각홀(1272)의 간격들 중 적어도 하나의 간격은 나머지 간격들과 다르게 형성되어 트랜지션 피스(3260)에 발생될 수 있는 진동을 상쇄시킬 수 있다. 또한 이웃한 냉각홀(1272)의 간격들 모두 다르게 형성되어 냉각공기 유동과정 중 발생될 수 있는 트랜지션 피스(3260)의 진동을 상쇄시킬 수 있다. 가이드 유로(3282) 역시 전술한 바와 마찬가지로 자세한 내용은 생략한다.
또한 냉각공기가 상기 냉각홀(1272)로 유동될 때 상기 플랜지부(3280)는 상기 가이드 유로(3282)의 길이가 적어도 냉각홀(1272)의 폭보다 크게 형성되어 냉각공기의 흐름을 원활하게 할 수 있다.
도 5는 본 발명에 따른 트랜지션 피스의 제3 실시예(4260)를 도시한 측단면도로서, 냉각공기가 가이드 유로(4282)의 내면과 가능한한 접촉되도록 가이드 유로(42820의 단면이 둥근형태로 처리된다.
제1 내지 2 실시예에서는 도 3a 및 도 4에서 도시하는 바와 같이 가이드 유로(2282, 3282)가 플랜지부(2280, 3280)측으로 오목하게 들어간 형태를 갖으나, 제3 실시예(4260)의 가이드 유로(4282)는 플랜지부(4280)의 바깥으로 볼록하게 돌출된 형태를 갖는다.
제1 내지 2 실시예와 같이 가이드 유로 내 냉각공기의 유동과정에서 플랜지부측으로 오목하게 들어간 가이드 유로(2282, 3282)의 형상으로 인해 공동(cavity)이 가이드 유로의 오목한 부분에서 형성될 수 있다. 이에 반해 제3 실시예에서는 도 5에서 도시하듯이 냉각홀(1272)에 대향하는 가이드 유로(4282)의 내면이 볼록하게 형성되어 가이드 유로 내 냉각공기 유동과정에서 공동(cavity)이 형성되기 어려워진다. 따라서 공동(cavity)형성이 방지되어 냉각공기가 제1 내지 2 실시예의 가이드 유로(2282, 3282)보다 플랜지부(4280)와 접촉되어 플랜지부(4280)에 대한 냉각효과를 향상시킬 수 있다.
상기 제3 실시예는 전술한 바와 같이 이웃한 냉각홀(1272)의 간격들 중 적어도 하나의 간격은 나머지 간격들과 다르게 형성될 수 있고, 또는 이웃한 냉각홀(1272)의 간격들 모두 다르게 형성되어 냉각공기와 트랜지션 피스(4260)의 충돌로 인해 발생되는 진동수를 상쇄시킬 수 있다.
또한 상기 가이드 유로(4282)의 길이가 적어도 상기 냉각홀(1272)의 폭보다 크게 형성될수 있어, 냉각공기는 플랜지부(4280)의 방해없이 원활하게 가이드 유로(4282)에서 냉각홀(1272)로 유동될 수 있다.
본 발명에 따르는 실시예들에서 적어도 가이드 유로의 입구형태는 다각형일 수 있다. 본원에 첨부된 도 3b에서 도시하는 가이드 유로(2282)의 입구형태는 사각형으로 가이드 유로가 형성된다. 가이드 유로의 입구형태는 다각형일 수 있어, 사각형 외에 삼각형이나 오각형 등의 형태일 수도 있다. 또한 가이드 유로의 입구형태는 다각형에 한정되지 아니하고, 적어도 곡선부를 포함하는 형태일 수도 있다. 따라서 가이드 유로의 입구형태는 도 3b에서 도시하듯이 하부는 평평하나 양측부와 상부는 하나의 곡선으로 형성되어, 가이드 유로의 입구형태는 대략 반원의 형태일 수 있다.
가이드 유로의 입구형태를 조절하여 가이드 유로에서 유동되는 냉각공기와 플랜지부의 내면과 접촉하는 면적을 증가시켜 냉각공기에 의해 플랜지부 냉각효과를 상승시킬 수 있다.
복수 개의 가이드 유로에서 적어도 몸체부의 상단에 위치하는 가이드 유로의 체적은 다른 가이드 유로들의 체적에 비해 클 수 있다. 일반적으로 터빈부근의 몸체부에서 상부(본원에 첨부된 도 2 기준)는 다른 영역에 비해 온도가 높다. 이는 도 2에서 도시하는 바와 같이 몸체부의 상부에서 만곡된 부분으로 인해 몸체부 내에서 유동되는 고온의 가스가 터빈부근의 몸체부 상부에서 정체되기 때문이다.
따라서 터빈부근 몸체부의 상부와 접하는 가이드 유로의 체적은 적어도 다른 가이드 유로의 체적보다 크게 형성되고, 가이드 유로와 접하는 몸체부의 면적이 증가되어 터빈부근 몸체부의 상부에 대한 냉각효과가 증가될 수 있다.
또한 터빈부근 몸체부의 하부는 상대적으로 터빈부근 몸체부의 상부보다 온도가 낮을 수 있어, 터빈부근 몸체부의 하부와 접하는 가이드 유로의 체적은 적어도 다른 가이드 유로의 체적보다 작게 형성될 수 있다. 터빈부근 몸체부의 상부나 하부는 본원에 첨부된 도 2에서 도시하는 바를 기준으로 최상부와 최하부를 의미한다.
가이드 유로의 체적에 대한 변화 뿐만 아니라 가이드 유로들의 간격을 조절하여 냉각효과를 향상시킬 수도 있다. 전술한 바와 같이 터빈부근 몸체부의 상부가 상대적으로 터빈부근 몸체부의 다른부분보다 온도가 높아 터빈부근 몸체부의 상부에 인접한 가이드 유로들의 간격이 다른 가이드 유로들의 간격보다 좁도록 가이드 유로가 형성될 수 있다. 만약 터빈부근 몸체부의 상부와 접하는 가이드 유로가 한 개라면, 상기 가이드 유로와 이웃하는 가이드 유로와의 간격이 가장 좁을 수 있다.
또한 상대적으로 터빈부근 몸체부의 하부는 상부보다 온도가 낮을 수 있어, 터빈부근 몸체부의 하부에 인접한 가이드 유로들의 간격이 다른 가이드 유로들의 간격들보다 클 수 있다.
따라서 상대적으로 온도가 높은 터빈부근 몸체부의 상부는 가이드 유로가 밀집되고, 냉각공기와 접하는 면적이 증가되어 냉각효과가 상승될 수 있다.
본 발명에 따르는 트랜지션 피스(4260)는 연소기(1200)에 포함될 수 있다. 상기 연소기(1200)는 연료가 혼합된 연료혼합공기를 공급하는 버너(1220)와 상기 연료혼합공기가 점화되어 고온의 가스가 형성되는 라이너(1250)와 상기 고온의 가스를 터빈(1300)측으로 안내하는 트랜지션 피스(1260)를 포함할 수 있고, 상기 트랜지션 피스(1260)는 본 발명에 따르는 트랜지션 피스이다.
또한, 상기 연소기(1200)는 가스 터빈(1000)에 포함될 수 있다. 상기 가스 터빈(1000)은 압축공기를 형성하여 공급하는 압축기(1100)와 연료혼합공기가 연소되어 고온의 가스가 형성되는 연소기(1100)와 공급받은 상기 고온의 가스의 열에너지 및 팽창에너지를 회전에너지를 거쳐 전기에너지로 변환하는 터빈(1300)을 포함할 수 있다.
이상, 본 발명의 일 실시 예에 대하여 설명하였으나, 해당 기술 분야에서 통상의 지식을 가진 자라면 특허청구범위에 기재된 본 발명의 사상으로부터 벗어나지 않는 범위 내에서, 구성 요소의 부가, 변경, 삭제 또는 추가 등에 의해 본 발명을 다양하게 수정 및 변경시킬 수 있을 것이며, 이 또한 본 발명의 권리범위 내에 포함된다고 할 것이다.
1260, 2260, 3260, 4260 : 트랜지션 피스
1270 : 몸체부
1272 : 냉각홀
1280, 2280, 3280, 4280 : 플랜지부
1282, 2282, 3282, 4282 : 가이드 유로

Claims (21)

  1. 가스 터빈의 터빈과 체결되는 트랜지션 피스에 관한 것으로서
    상기 트랜지션 피스는 고온의 가스가 유입되어 상기 터빈으로 유동되는 내부공간이 구비되고 적어도 한 개 이상의 냉각홀이 구비되는 몸체부;와 상기 몸체부가 터빈측에 고정되기 위해 상기 몸체부와 결합되고, 상기 냉각홀과 연통되는 적어도 한 개 이상의 가이드 유로가 구비되는 플랜지부;를 포함하고,
    상기 플랜지부는 상기 몸체부의 외주면에 안착되고,
    상기 가이드 유로는 상기 플랜지부의 일부가 파단되어 개방되고,
    상기 냉각홀에 대향하는 상기 가이드 유로의 내면이 볼록하게 형성된 트랜지션 피스.
  2. 삭제
  3. 삭제
  4. 가스 터빈의 터빈과 체결되는 트랜지션 피스에 관한 것으로서
    상기 트랜지션 피스는 고온의 가스가 유입되어 상기 터빈으로 유동되는 내부공간이 구비되고 복수개의 냉각홀이 구비되는 몸체부;와 상기 몸체부가 터빈측에 고정되기 위해 상기 몸체부와 결합되고, 상기 냉각홀과 연통되는 복수개의 가이드 유로가 구비되는 플랜지부;를 포함하고,
    상기 냉각홀은 상기 몸체부의 원주방향을 따라 이격되어 복수개가 구비되고,
    상기 복수개의 냉각홀들의 이웃간격들 중 적어도 하나의 간격은 나머지 간격들과 다르게 형성되고, 이에 따라 상기 몸체부의 구조는 대칭이 되지 않으며,
    상기 복수개의 냉각홀들로 유입되는 냉각공기가 트랜지션 피스와 충돌할 때 발생되는 진동수들은 일치하지 않아 진동이 상쇄되는 것을 특징으로 하는 트랜지션 피스.
  5. 제4항에 있어서,
    상기 냉각홀들의 이웃간격들이 모두 다르게 형성되는 트랜지션 피스.
  6. 제1항에 있어서,
    상기 가이드 유로의 길이(D1)가 적어도 상기 냉각홀의 폭(D2)보다 크게 형성되는 트랜지션 피스.
  7. 가스 터빈의 터빈과 체결되는 트랜지션 피스에 관한 것으로서
    상기 트랜지션 피스는 고온의 가스가 유입되어 상기 터빈으로 유동되는 내부공간이 구비되고 복수개의 냉각홀이 구비되는 몸체부;와 상기 몸체부가 터빈측에 고정되기 위해 상기 몸체부와 결합되고, 상기 냉각홀과 연통되는 복수개의 가이드 유로가 구비되는 플랜지부;를 포함하고,
    냉각공기가 유입되는 상기 가이드 유로의 유입구의 단면적이 냉각공기가 유출되는 상기 가이드 유로의 유출구의 단면적보다 크게 형성되고,
    상기 가이드 유로는 상기 플랜지부의 원주방향을 따라 복수개가 이격되어 구비되고,
    상기 복수개의 가이드 유로들의 이웃간격들 중 적어도 하나의 간격은 나머지 간격들과 다르게 형성되고, 이에 따라 상기 플랜지부의 구조는 대칭이 되지 않으며,
    상기 복수개의 가이드유로들에서 상기 복수개의 냉각홀들로 유입되는 냉각공기가 트랜지션 피스와 충돌할 때 발생되는 진동수들은 일치하지 않아 진동이 상쇄되는 것을 특징으로 하는 트랜지션 피스.
  8. 제7항에 있어서,
    상기 냉각홀은 상기 몸체부의 원주방향을 따라 이격되어 구비되고,
    상기 냉각홀들의 이웃간격들 중 적어도 하나의 간격은 나머지 간격들과 다르게 형성되는 트랜지션 피스.
  9. 제7항에 있어서,
    상기 냉각홀들의 이웃간격들이 모두 다르게 형성되는 트랜지션 피스.
  10. 제7항에 있어서,
    상기 가이드 유로의 길이(D1)가 적어도 상기 냉각홀의 폭(D2)보다 크게 형성되는 트랜지션 피스.
  11. 삭제
  12. 제1항에 있어서,
    상기 냉각홀은 상기 몸체부의 원주방향을 따라 이격되어 구비되고,
    상기 냉각홀들의 이웃간격들 중 적어도 하나의 간격은 나머지 간격들과 다르게 형성되는 트랜지션 피스.
  13. 제12항에 있어서,
    상기 냉각홀들의 이웃간격들이 모두 다르게 형성되는 트랜지션 피스.
  14. 삭제
  15. 삭제
  16. 삭제
  17. 삭제
  18. 삭제
  19. 제1항에 있어서,
    상기 플랜지부의 내주면과 상기 몸체부의 외주면이 용접되어 형성된 접합면을 포함하는 트랜지션 피스.
  20. 가스 터빈의 연소기에 관한 것으로서,
    연료가 혼합된 연료혼합공기를 공급하는 버너;와 상기 연료혼합공기가 점화되어 고온의 가스가 형성되는 라이너;와 상기 고온의 가스를 터빈측으로 안내하는 제1항, 제4항 또는 제7항 중 어느 한 항의 트랜지션 피스;를 포함하는 연소기.
  21. 가스 터빈에 관한 것으로서,
    압축공기를 형성하여 공급하는 압축기;와 상기 압축공기로부터 형성된 연료혼합공기가 연소되어 고온의 가스가 생성되는 제20항의 연소기;와 상기 고온의 가스의 열에너지 및 팽창에너지를 회전에너지를 거쳐 전기에너지로 변환하는 터빈;을 포함하는 가스 터빈.

KR1020190063314A 2019-05-29 2019-05-29 트랜지션 피스과 이를 포함하는 연소기 및 가스 터빈 KR102223117B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190063314A KR102223117B1 (ko) 2019-05-29 2019-05-29 트랜지션 피스과 이를 포함하는 연소기 및 가스 터빈

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190063314A KR102223117B1 (ko) 2019-05-29 2019-05-29 트랜지션 피스과 이를 포함하는 연소기 및 가스 터빈

Publications (2)

Publication Number Publication Date
KR20200137262A KR20200137262A (ko) 2020-12-09
KR102223117B1 true KR102223117B1 (ko) 2021-03-05

Family

ID=73786701

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190063314A KR102223117B1 (ko) 2019-05-29 2019-05-29 트랜지션 피스과 이를 포함하는 연소기 및 가스 터빈

Country Status (1)

Country Link
KR (1) KR102223117B1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116293790B (zh) * 2023-03-06 2024-08-16 哈尔滨工程大学 一种隔热屏与火焰筒一体化结构及方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003065071A (ja) * 2001-08-27 2003-03-05 Mitsubishi Heavy Ind Ltd ガスタービン燃焼器
JP6105051B2 (ja) * 2012-04-26 2017-03-29 サフラン・エアクラフト・エンジンズ タービンエンジンファン用の複合材料から閉じたボックス構造プラットフォームを作るために3次元製織によって単一体として織られる繊維ブランク

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003065071A (ja) * 2001-08-27 2003-03-05 Mitsubishi Heavy Ind Ltd ガスタービン燃焼器
JP6105051B2 (ja) * 2012-04-26 2017-03-29 サフラン・エアクラフト・エンジンズ タービンエンジンファン用の複合材料から閉じたボックス構造プラットフォームを作るために3次元製織によって単一体として織られる繊維ブランク

Also Published As

Publication number Publication date
KR20200137262A (ko) 2020-12-09

Similar Documents

Publication Publication Date Title
KR102065582B1 (ko) 가스 터빈 연료 공급 장치, 이를 구비한 연료 노즐 및 가스 터빈
CN111058901B (zh) 涡轮静叶、涡轮动叶及包含其的燃气涡轮机
KR102153066B1 (ko) 윙렛에 냉각홀을 가진 터빈 블레이드 및 이를 포함하는 가스 터빈
US11143043B2 (en) Turbine vane, ring segment, and gas turbine including the same
KR102135442B1 (ko) 링 세그먼트 및 이를 포함하는 가스 터빈
KR102162053B1 (ko) 노즐 어셈블리 및 이를 포함하는 가스터빈
KR102223117B1 (ko) 트랜지션 피스과 이를 포함하는 연소기 및 가스 터빈
KR102138015B1 (ko) 버너와 이를 포함하는 연소기 및 가스 터빈
US10947862B2 (en) Blade ring segment for turbine section, turbine section having the same, and gas turbine having the turbine section
KR101965505B1 (ko) 터빈 블레이드 링 세그멘트 및 이를 포함하는 터빈 및 가스터빈
US20220146098A1 (en) Combustor and gas turbine including the same
KR102187958B1 (ko) 블레이드 및 이를 구비하는 압축기 및 가스터빈, 블레이드 성형 보수 방법
KR102356488B1 (ko) 터빈 베인 및 이를 포함하는 가스 터빈
KR102261099B1 (ko) 블레이드 결합구조 및 이를 포함하는 터빈장치
EP3456922B1 (en) Turbine blade with cooling structure, turbine including same turbine blade, and gas turbine including same turbine
KR102025147B1 (ko) 버킷의 쓰로틀 플레이트 결합구조와 이를 포함하는 회전체 및 가스터빈
KR101958110B1 (ko) 터빈 스테이터, 터빈 및 이를 포함하는 가스터빈
KR101955116B1 (ko) 터빈 베인, 터빈 및 이를 포함하는 가스터빈
KR102088048B1 (ko) 연소기 및 이를 포함하는 가스 터빈
KR102248037B1 (ko) 마그네틱 댐퍼를 구비하는 터빈 블레이드
KR102219297B1 (ko) 블레이드 및 이를 구비하는 압축기 및 가스터빈, 블레이드 성형 보수 방법
KR102131155B1 (ko) 허니콤 실 링을 구비한 연소기
KR101918410B1 (ko) 터빈 스테이터, 터빈 및 이를 포함하는 가스터빈
KR20180002013A (ko) 트랜지션 피스 조립체 및 이를 포함하는 연소기, 가스터빈
KR101984397B1 (ko) 로터, 터빈 및 이를 포함하는 가스터빈

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right