KR102206147B1 - High durability plated body - Google Patents
High durability plated body Download PDFInfo
- Publication number
- KR102206147B1 KR102206147B1 KR1020187018973A KR20187018973A KR102206147B1 KR 102206147 B1 KR102206147 B1 KR 102206147B1 KR 1020187018973 A KR1020187018973 A KR 1020187018973A KR 20187018973 A KR20187018973 A KR 20187018973A KR 102206147 B1 KR102206147 B1 KR 102206147B1
- Authority
- KR
- South Korea
- Prior art keywords
- plated
- highly durable
- electrolyte
- aluminum
- plated body
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/02—Anodisation
- C25D11/024—Anodisation under pulsed or modulated current or potential
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B73/00—Building or assembling vessels or marine structures, e.g. hulls or offshore platforms
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/12—Aluminium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/34—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/32—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
- C23C28/322—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/34—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
- C23C28/345—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/02—Anodisation
- C25D11/04—Anodisation of aluminium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/02—Anodisation
- C25D11/04—Anodisation of aluminium or alloys based thereon
- C25D11/06—Anodisation of aluminium or alloys based thereon characterised by the electrolytes used
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/02—Anodisation
- C25D11/04—Anodisation of aluminium or alloys based thereon
- C25D11/18—After-treatment, e.g. pore-sealing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B2221/00—Methods and means for joining members or elements
- B63B2221/02—Methods and means for joining members or elements by welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B71/00—Designing vessels; Predicting their performance
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B73/00—Building or assembling vessels or marine structures, e.g. hulls or offshore platforms
- B63B73/40—Building or assembling vessels or marine structures, e.g. hulls or offshore platforms characterised by joining methods
- B63B73/43—Welding, e.g. laser welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63C—LAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
- B63C5/00—Equipment usable both on slipways and in dry docks
- B63C5/02—Stagings; Scaffolding; Shores or struts
- B63C2005/025—Stagings, or scaffolding, i.e. constructions providing temporary working platforms on slipways, in building or repair docks, or inside hulls
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63C—LAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
- B63C5/00—Equipment usable both on slipways and in dry docks
- B63C5/02—Stagings; Scaffolding; Shores or struts
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T70/00—Maritime or waterways transport
- Y02T70/10—Measures concerning design or construction of watercraft hulls
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Electrochemistry (AREA)
- Inorganic Chemistry (AREA)
- Ocean & Marine Engineering (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Combustion & Propulsion (AREA)
- Architecture (AREA)
- Structural Engineering (AREA)
Abstract
본 발명은 이상에서와 같은 고내구성 피도금체는, 고내구성 피도금체는, 양극산화처리를 통해 STS 316L 동등 이상의 경도, 내마모성, 내식성 및 내화학성을 갖고, STS 316L 재질을 대체하기 위한 양극산화처리 기술의 지표를 제공하고, 이를 기반으로 선박, 조선 뿐만 아니라 산업 전반에 접목하여 사용할 수 있으며, STS 316L 재질을 대체하여 사용 가능하되 일반 용접봉으로도 용접 작업이 가능하며 해체 후에도 후속 도장 작업이 요구되지 않는 장점을 갖는다. 또한, 고가의 STS 316L을 대체할 수 있어 생산성 및 원가절감이 가능한 장점을 갖는 고내구성 피도금체에 관한 것이다.
본 개시의 실시예에 따른 고내구성 피도금체는 고내구성 피도금체에 있어서, 소지철 또는 알루미늄에 도금을 실시하여 도금체를 생성하고, 상기 도금체에 양극산화처리하여 피도금체의 경도, 내마모성, 내식성 및 내화학성을 증가시킨다.In the present invention, the highly durable body to be plated as described above, the highly durable body to be plated, has hardness, abrasion resistance, corrosion resistance and chemical resistance equal to or higher than STS 316L through anodization treatment, and anodization to replace STS 316L material It provides an indicator of treatment technology, and based on this, it can be used not only in ships, shipbuilding, but also in the entire industry.It can be used as a substitute for STS 316L material, but welding work is possible with a general welding rod, and subsequent painting work is required even after dismantling. It has the advantage of not being. In addition, it relates to a highly durable plated body having an advantage of enabling productivity and cost reduction by replacing expensive STS 316L.
In the highly durable body to be plated according to an embodiment of the present disclosure, in the highly durable body to be plated, a plated body is formed by plating a base iron or aluminum, and anodizing treatment on the plating body to obtain the hardness of the body to be plated, Increases wear resistance, corrosion resistance and chemical resistance.
Description
본 명세서에 개시된 내용은 고내구성 피도금체에 관한 것으로, 특히, 양극산화처리를 통해 피도금체의 경도, 내마모성, 내식성 및 내화학성이 증가되도록 하고, 이 피도금체를 이용해 석유화학제품운반선의 화물창 구역이나 모든 선박의 밸러스트 탱크 구역 내 고소 작업을 위한 족장 시공이나 이에 유사한 형태로 산업 전반에 걸쳐 사용되는 고가의 STS 316L을 대체함으로써 원가 경쟁력을 확보하고, 일반 용접봉으로도 용접 작업이 가능하면서 해체 후에도 도장 작업 등의 후속 처리가 요구되지 않는 고내구성 피도금체에 관한 것이다.The content disclosed in this specification relates to a highly durable body to be plated, and in particular, to increase the hardness, abrasion resistance, corrosion resistance, and chemical resistance of the body to be plated through anodization treatment, and use this body to be used for petrochemical product carriers. Construction of chiefs for high place work in the cargo hold area or ballast tank area of all ships, or by replacing the expensive STS 316L used throughout the industry in a similar form, securing cost competitiveness and dismantling while welding work is possible with ordinary welding rods. It relates to a highly durable plated body that does not require subsequent treatment such as painting work even afterwards.
본 명세서에서 달리 표시되지 않는 한, 이 섹션에 설명되는 내용들은 이 출원의 청구항들에 대한 종래 기술이 아니며, 이 섹션에 포함된다고 하여 종래 기술이라고 인정되는 것은 아니다.Unless otherwise indicated herein, the content described in this section is not prior art to the claims of this application, and inclusion in this section is not admitted to be prior art.
일반적으로 석유화학제품운반선(product carrier)을 포함한 일부 대형 선박은 다수의 대형 블럭을 제작한 후 이들을 조립하여 화물창을 제조하게 되며, 화물창 상부가 상측으로 갈수록 중앙측으로 내향 경사지는 역경사부를 구비한 형상을 가진다.In general, some large ships, including petrochemical product carriers, manufacture a number of large blocks and assemble them to manufacture a cargo hold.The shape has a reverse slope that inclines toward the center as the upper part of the cargo hold goes upward. Have.
이러한, 화물창 제조의 마지막 공정으로 화물창 내의 화물의 보호 및 선체의 방식(防蝕)을 위한 특수도장을 실시하게 하는데, 고도의 위치에 형성된 상기 역경사부에서는 도장을 위한 작업자의 이동 및 작업이 원활하도록 다층의 족장을 설치하게 된다.As the final process of manufacturing the cargo hold, special coating is performed for the protection of the cargo in the cargo hold and the anticorrosion of the hull. In the reverse slope formed at an elevated position, the multi-layered part is used to facilitate movement and work of workers for painting. You will install the chieftain.
이때, 용접 등의 작업을 수행함에 있어서 족장의 설치 및 분해 과정에서 상당한 노력과 시간이 소요되며 특히, 용접되는 부재가 용접 작업 후 미철거 되기 때문에 화물에 대한 비부식성 재질인 STS 316L을 적용하게 된다. 그러나, 재료 비용이 상대적으로 고가이고, 작업구간에 족장 설치를 위한 용접시 STS 316L 전용 용접봉을 사용하는 특수 용접 과정이 요구되어 비용 증가 문제가 대두된다. 또한, 족장 해체 후에도 족장피스 부위에 후속 도장 작업이 필요하므로 작업비용 및 작업시간에 따른 효율이 저하되는 문제점을 내재하고 있다.At this time, considerable effort and time are required in the process of installing and disassembling the chief in performing work such as welding. In particular, STS 316L, which is a non-corrosive material for cargo, is applied because the members to be welded are not removed after welding work. . However, the material cost is relatively high, and a special welding process using a welding rod exclusively for STS 316L is required when welding for the installation of the chief in the work section, resulting in a problem of cost increase. In addition, even after dismantling the chief, a subsequent painting work is required on the part of the chief piece, so there is a problem in that the efficiency according to the working cost and working time is lowered.
상기와 같은 문제점을 해결하기 위한 선행기술로는 대한민국 등록특허공보 제10-1516203호 '선박 화물창용 시스템 족장'이 있다. 상기 선행기술은 하부 족장판과, 상기 하부 족장판을 지지하는 다수의 하부 족장파이프를 구비하는 하부 족장모듈; 상부 족장판과, 상기 상부 족장판을 지지하고 상기 하부 족장파이프와 조립되는 다수의 상부 족장파이프를 구비하는 상부 족장모듈 및 상기 하부 족장모듈이 설치되는 모듈 설치면에 배치되며, 상기 모듈 설치면에 대한 상기 하부 족장모듈의 조립 위치를 가이드하는 조립위치 가이드용 지그를 포함하며, 상기 조립위치 가이드용 지그는 규칙적인 이격간격을 두고 상기 모듈 설치면에 고정되며, 상기 하부 족장모듈의 하부 족장파이프와 연결되는 다수의 파이프 연결 가이드봉을 구비하며, 상기 지그 바디의 내부에는 무게 감소를 위한 관통부가 더 형성되며, 상기 관통부의 주변에는 상기 지그 바디의 절개를 위한 다수의 절개용 노치가 더 형성되는 기술을 개시하는 특징이 있다.As a prior art for solving the above problems, there is Korean Patent Publication No. 10-1516203,'Ship cargo hold system chief'. The prior art includes a lower chieftain module including a lower chieftain plate and a plurality of lower chieftain pipes supporting the lower chieftain plate; Arranged on the module installation surface on which the upper chieftain plate and the upper chieftain module and the lower chieftain module are installed, and have a plurality of upper chieftain pipes that support the upper chieftain plate and are assembled with the lower chieftain pipe. And an assembly position guide jig for guiding the assembly position of the lower chieftain module, and the assembly position guide jig is fixed to the module installation surface at regular intervals, and the lower chieftain pipe of the lower chieftain module A technology in which a plurality of pipe connection guide rods to be connected, and a through part for weight reduction is further formed in the inside of the jig body, and a plurality of cut-out notches for cutting the jig body are further formed around the through part There is a feature to disclose.
다른 선행기술에는 대한민국 공개특허공보 제 10-2015-0021830호 '선박 건조용 족장 구조물 및 이의 가설방법'가 있다. 상기 선행기술은 선박블록을 형성하는 벽체들의 길이 방향을 따라 소정간격 이격되도록 상기 벽체들에 형성되는 복수개의 결합홀들; 서로 이웃하는 벽체들을 관통하여 연결할 수 있도록 상기 서로 이웃하는 벽체들에 형성된 결합 홀들에 분리 결합 가능하게 삽입 결합되는 지지부재 및 상기 벽체들과 인접하도록 상기 지지부재에 분리 결합 가능하게 고정되는 족장판으로 구성되는 기술을 개시하는 특징이 있다. 또한, 선박블록을 형성하는 서로 이웃하는 벽체들을 관통하여 연결시킬 수 있도록 상기 벽체들에 형성된 결합 홀들에 복수개의 지지부재를 관통시켜 결합시키는 단계; 상기 선박블록을 형성하는 벽체들과 인접하도록 상기 지지부재의 상부에 족장판을 탑재하는 단계; 및 상기 지지부재의 상부에 탑재된 족장판을 상기 지지부재에 복수개의 고정부재를 사용하여 분리 결합 가능하게 고정시키는 단계로 구성된 기술을 개시하는 특징이 있다.Another prior art is the Republic of Korea Patent Publication No. 10-2015-0021830'Ship building chief structure and its construction method'. The prior art includes a plurality of coupling holes formed in the walls to be spaced apart at predetermined intervals along the longitudinal direction of the walls forming the ship block; A support member that is detachably inserted and coupled to the coupling holes formed in the neighboring walls so that neighboring walls can be connected through, and a chieftain plate that is detachably coupled to the support member so as to be adjacent to the walls. There is a feature that discloses the technology being constructed. In addition, the steps of penetrating and coupling a plurality of support members to the coupling holes formed in the walls so that adjacent walls forming the ship block can be connected through; Mounting a chieftain plate on the upper part of the support member so as to be adjacent to the walls forming the ship block; And a step of fixing the chieftain plate mounted on the upper part of the support member to the support member so as to be detachably coupled using a plurality of fixing members.
또 다른 선행기술에는 대한민국 공개특허공보 제10-2013-0042194호 'PC선박에 대한 특수 도장방법'가 있다. 상기 유사 선행기술은 PC 선박의 카고 오일 탱크 블록을 선행의장단계에서 시공하되, 각 블록에 대한 도장작업은 실시하지 않는 제1단계; 카고 오일 탱크 블록을 도크로 이송하는 제2단계; 카고 오일 탱크 블록을 도크 내에서 탑재하여 조립하는 제3단계; 조립된 블록에 대한 블라스팅 및 도장작업을 실시하는 제4단계:를 포함하고 상기 제4단계는 조립된 블록의 조인트(joint)와 표면에 대한 도장품질 차이가 발생하지 않도록 한번에 일괄적으로 도장작업을 실시하는 것을 특징으로 하는 기술을 개시하는 특징이 있다.Another prior art is Korean Patent Application Publication No. 10-2013-0042194'Special coating method for PC ships'. The similar prior art is the first step of constructing the cargo oil tank block of the PC ship in the preceding design step, but not performing the painting work on each block; A second step of transferring the cargo oil tank block to the dock; A third step of mounting and assembling the cargo oil tank block in the dock; The fourth step of performing blasting and painting work on the assembled block includes, and the fourth step includes painting work at once so that there is no difference in painting quality between the joints and the surface of the assembled block. There is a feature to disclose a technique characterized by implementing.
그러나, 전술된 종래의 선행기술은 석유화학제품운반선의 화물창 구역 및 모든 선박의 밸러스트 탱크 구역 내 고소 작업을 위한 족장 시공 시 고가 재질인 STS 316L을 대체하여 원가 경쟁력을 확보하고 일반 용접봉으로도 용접 작업이 가능하며 족장 해체 후에도 후속 도장 작업이 요구되지 않도록 하는 실질적인 문제에 대해서는 고려되지 않은 아쉬움이 있다.However, the above-described prior art secures cost competitiveness by replacing STS 316L, which is an expensive material, when constructing a chief for high place work in the cargo hold area of petrochemical product carriers and ballast tank areas of all ships, and welding work with general welding rods. It is possible to do this, and there is a regret that the practical problem of not requiring subsequent painting work even after the dismantling of the chieftain has not been considered.
한편, 내식성을 확보하기 위하여 일반적인 스틸에 알루미늄의 도금방식을 사용하는데, 상기와 같은 도금방식은 STS 316L의 동등 이상의 강성 및 내식성, 내화학성, 내마모성의 확보가 어렵기 때문에 상기와 같이 족장 설치시를 위한 재료로 사용되는 STS 316L을 대처하여 사용하기에는 현실적으로 불가능하다.On the other hand, in order to secure corrosion resistance, a plating method of aluminum is used for general steel.In the above plating method, it is difficult to secure the same or higher rigidity, corrosion resistance, chemical resistance, and abrasion resistance of STS 316L. It is practically impossible to cope with STS 316L, which is used as a material for, and use it.
양극산화처리를 통해 STS 316L 동등 이상의 경도, 내마모성, 내식성 및 내화학성을 갖는 고내구성 피도금체를 제공하고자 한다.Through anodizing treatment, we intend to provide a highly durable plated body with hardness, abrasion resistance, corrosion resistance and chemical resistance equal to or higher than STS 316L.
STS 316L 재질을 대체하기 위한 양극산화처리 기술의 지표를 제공하고, 이를 기반으로 선박, 조선 뿐만 아니라 산업 전반에 접목하여 사용할 수 있는 고내구성 피도금체를 제공하고자 한다.We provide an index of anodizing technology to replace STS 316L material, and based on this, we intend to provide a highly durable plated body that can be used not only in ships, ships, but also in the entire industry.
STS 316L 재질을 대체하여 사용 가능하되 일반 용접봉으로도 용접 작업이 가능하며 해체 후에도 후속 도장 작업이 요구되지 않는 고내구성 피도금체를 제공하고자 한다.It can be used as a substitute for STS 316L material, but welding work is possible with a general welding rod, and it is intended to provide a highly durable plated body that does not require subsequent painting work even after disassembly.
고가의 STS 316L을 대체할 수 있어 생산성 및 원가절감이 가능한 고내구성 피도금체를 제공하고자 한다.As it can replace expensive STS 316L, we want to provide a highly durable plated body that can reduce productivity and cost.
실시예에 의한 고내구성 피도금체는, 고내구성 피도금체에 있어서, 소지철 또는 알루미늄에 도금을 실시하여 도금체를 생성하고, 상기 도금체에 양극산화처리하여 피도금체의 경도, 내마모성, 내식성 및 내화학성을 증가시킨다.In the highly durable body to be plated according to the embodiment, in the highly durable body to be plated, a plated body is formed by plating the base iron or aluminum, and the plating body is anodized to obtain the hardness, abrasion resistance of the body to be plated, Increases corrosion resistance and chemical resistance.
실시예에 의하면, 상기 피도금체에 상기 양극산화처리를 위하여 플라즈마전해산화 처리 기법이 적용된다.According to an embodiment, a plasma electrolytic oxidation treatment technique is applied to the object to be plated for the anodization treatment.
실시예에 의하면, 상기 피도금체의 표면경도를 증가시키기 위한 확산 열처리 온도는 450 내지 1200℃이다.According to an embodiment, the diffusion heat treatment temperature for increasing the surface hardness of the object to be plated is 450 to 1200°C.
실시예에 의하면, 상기 피도금체는 선박 내외부의 고소 작업을 위한 족장 시공을 위하여 철구조물에 용접으로 접합된다.According to an embodiment, the plated body is welded to a steel structure for construction of a chief for high place work inside and outside the ship.
실시예에 의하면, 상기 플라즈마전해산화 처리를 위한 전해액은 Sodium Aluminate(SA)1~30 g/L, 0.5~30 g/L이되, 상기 는 이온이 첨가되도록 하고, 상기 의 소스(source)는 , , , 및 그 수화물 형태로 단독 또는 혼합물로 이루어진다.According to an embodiment, the electrolyte for the plasma electrolytic oxidation treatment is Sodium Aluminate (SA) 1 to 30 g/L, 0.5~30 g/L, but above Is Allow ions to be added, and the The source of is , , , And in the form of a hydrate thereof, alone or as a mixture.
실시예에 의하면, 상기 전해액은 착색제를 더 포함하되, 상기 착색제는 Sodium Molybdate 또는 Sodium Tungstate 및 이들의 혼합물이며 0.01 ~ 20 g/L로 이루어진다.According to an embodiment, the electrolyte solution further includes a colorant, and the colorant is Sodium Molybdate or Sodium Tungstate, and a mixture thereof, and is composed of 0.01 to 20 g/L.
실시예에 의하면, 상기 플라즈마전해산화 처리를 위한 처리장치의 조절변수는 전압, 전류, 소프트스타트(soft start), 런타임(run time), 주파수(frequency), 듀티사이클(duty cycle)이다.According to an embodiment, the control parameters of the processing apparatus for the plasma electrolytic oxidation treatment are voltage, current, soft start, run time, frequency, and duty cycle.
실시예에 의하면, 상기 플라즈마전해산화 처리는 알루미늄(Al), 알루미늄 도금, 스틸(steel), 스틸과 알루미늄의 결합품에 대해 가능하다.According to an embodiment, the plasma electrolytic oxidation treatment is possible for aluminum (Al), aluminum plating, steel, and a combination of steel and aluminum.
실시예에 의하면, 상기 스틸과 상기 알루미늄의 야금학적 결합품은 산화되어 패시베이션층을 형성하고, 상기 패시베이션층은 이되, 상기 x는 0 또는 자연수이다.According to an embodiment, the metallurgical combination of the steel and the aluminum is oxidized to form a passivation layer, and the passivation layer is However, the x is 0 or a natural number.
이상에서와 같은 고내구성 피도금체는, 양극산화처리를 통해 STS 316L 동등 이상의 경도, 내마모성, 내식성 및 내화학성을 갖는 장점을 갖는다.The highly durable object to be plated as described above has the advantage of having hardness, abrasion resistance, corrosion resistance, and chemical resistance equal to or higher than STS 316L through anodizing treatment.
STS 316L 재질을 대체하기 위한 양극산화처리 기술의 지표를 제공하고, 이를 기반으로 선박, 조선 뿐만 아니라 산업 전반에 접목하여 사용할 수 있는 장점을 갖는다.It provides an index of anodizing technology to replace STS 316L material, and has the advantage that it can be used not only in ships, ships, but also in the entire industry.
STS 316L 재질을 대체하여 사용 가능하되 일반 용접봉으로도 용접 작업이 가능하며 해체 후에도 후속 도장 작업이 요구되지 않는 장점을 갖는다.It can be used in place of STS 316L material, but welding work is possible with a general welding rod, and it has the advantage that no subsequent painting work is required even after disassembly.
고가의 STS 316L을 대체할 수 있어 생산성 및 원가절감이 가능한 장점을 갖는다.As it can replace expensive STS 316L, it has the advantage of reducing productivity and cost.
도 1 내지 도 3은 본 개시에 따른 전해액을 설명하기 위한 도면.
도 4 내지 13은 본 개시에 따른 고내구성 피도금체를 실현하기 위한 실험장
치를 보여주기 위한 도면.
도 14는 PEO 실험을 위한 실험설정을 보여주기 위한 도면.
도 15는 표준 환원전위를 보여주는 도면.
도 16은 PEO 공정에서의 DUTY 값을 설명하기 위한 도면.
도 17은 전해액을 만들기 위한 구성을 보여주기 위한 도면.
도 18은 본 개시의 처리장치를 통해 전해액의 전기적 특성을 모니터링 하기
위한 표를 보여주는 도면.
도 19는 처리장치의 조절변수에 따른 상관값을 보여주기 위한 도면.
도 20은 SA+1P 전해액 농도에 따른 전기적 특성을 보여주는 도면.
도 21은 전기변수 중 주파수에 따른 특성을 보여주기 위한 도면.
도 22는 전해액 조성의 민감도를 보여주는 도면.
도 23은 전해액 조성의 최적값을 찾기 위한 실험을 보여주는 도면.
도 24는 PEO 처리중 듀티를 변경한 값을 기록하며 전압의 편차를 보여주기
위한 도면.
도 25 는 듀티와 전압의 상관관계를 보여주는 그래프.
도 26은 1P 3.5g/L 최적치에서 SA량에 따른 특성을 보여주는 도면.
도 27은 도 26의 실험결과에 따른 최적의 전해액 조성을 보여주는 표.
도 28은 전해액 조건 및 전기변수를 적용하여 시편의 단면경도의 결과를 나
타내는 표.
도 29는 주파수와 경도의 상관관계를 보여주는 그래프.
도 30은 시험편의 전기조건에 따른 최고 경도 등의 결과를 보여주는 표.
1 to 3 are views for explaining an electrolyte solution according to the present disclosure.
4 to 13 are experimental sites for realizing a highly durable plated body according to the present disclosure
Drawing to show the teeth.
14 is a diagram showing an experimental setup for a PEO experiment.
15 is a diagram showing the standard reduction potential.
16 is a diagram for describing a DUTY value in a PEO process.
17 is a view for showing a configuration for making an electrolyte.
18 is to monitor the electrical properties of the electrolyte through the treatment apparatus of the present disclosure
A drawing showing a table for.
19 is a diagram showing a correlation value according to an adjustment variable of a processing device.
20 is a view showing electrical characteristics according to the concentration of SA+1P electrolyte.
21 is a diagram showing characteristics according to frequency among electrical variables.
22 is a diagram showing the sensitivity of an electrolyte composition.
23 is a diagram showing an experiment for finding an optimum value of an electrolyte composition.
24 shows the voltage deviation while recording the value of the duty change during PEO processing
For drawings.
25 is a graph showing a correlation between duty and voltage.
26 is a diagram showing characteristics according to the amount of SA at the optimum value of 1P 3.5g/L.
27 is a table showing an optimal electrolyte composition according to the experimental results of FIG. 26;
28 shows the results of the cross-sectional hardness of the specimen by applying the electrolyte conditions and electrical parameters.
The ticket to show.
29 is a graph showing the correlation between frequency and hardness.
30 is a table showing the results such as the highest hardness according to the electrical conditions of the test piece.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시 예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시 예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시 예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 도면부호는 동일 구성 요소를 지칭한다.Advantages and features of the present invention, and a method of achieving them will become apparent with reference to the embodiments described below in detail together with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but may be implemented in a variety of different forms, only the present embodiments are intended to complete the disclosure of the present invention, and the general knowledge in the art It is provided to completely inform the scope of the invention to those who have it, and the invention is only defined by the scope of the claims. The same reference numerals refer to the same elements throughout the specification.
본 발명의 실시 예들을 설명함에 있어서 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 그리고 후술되는 용어들은 본 발명의 실시 예에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.In describing embodiments of the present invention, if it is determined that a detailed description of a known function or configuration may unnecessarily obscure the subject matter of the present invention, a detailed description thereof will be omitted. In addition, terms to be described later are terms defined in consideration of functions in an embodiment of the present invention, which may vary according to the intention or custom of users or operators. Therefore, the definition should be made based on the contents throughout this specification.
본 개시의 실시예에 따른 고내구성 피도금체는 고내구성 피도금체에 있어서, 소지철 또는 알루미늄에 도금을 실시하여 도금체를 생성하고, 도금체에 양극산화처리하여 피도금체의 경도, 내마모성, 내식성 및 내화학성을 증가시키도록 한다.In the highly durable body to be plated according to an embodiment of the present disclosure, in the highly durable body to be plated, a plated body is formed by plating the base iron or aluminum, and the plating body is anodized to provide hardness and wear resistance of the body to be plated. , To increase corrosion resistance and chemical resistance.
이를 위해 본 개시는 피도금체에 양극산화처리를 위하여 플라즈마전해산화 처리 기법이 적용된다.To this end, in the present disclosure, a plasma electrolytic oxidation treatment technique is applied for anodizing treatment on a plated body.
본 개시의 상기 플라즈마전해산화 처리를 위한 전해액은,The electrolyte solution for the plasma electrolytic oxidation treatment of the present disclosure,
Sodium Aluminate(SA)1~30 g/L, 0.5~30 g/L이되,Sodium Aluminate(SA)1~30 g/L, 0.5~30 g/L,
상기 는 이온이 첨가되도록 하고,remind Is Allow ions to be added,
상기 의 소스(source)는 , , , 및 그 수화물 형태로 단독 또는 혼합물로 이루어질 수 있다.remind The source of is , , , And in the form of the hydrate may be formed alone or in a mixture.
이러한, 본 개시는 상기 전해액에 착색제를 더 포함할 수 있다.Such, the present disclosure may further include a colorant in the electrolyte.
이때, 본 개시의 상기 착색제는 Sodium Molybdate 또는 Sodium Tungstate 및 이들의 혼합물이며 0.01 ~ 20 g/L로 이루어지는 것이 바람직하나 이에 국한되는 것은 아니다.At this time, the colorant of the present disclosure is Sodium Molybdate or Sodium Tungstate, and a mixture thereof, and is preferably made of 0.01 to 20 g/L, but is not limited thereto.
이러한, 본 개시는 상기 플라즈마전해산화 처리를 위한 처리장치의 조절변수는 전압, 전류, 소프트스타트(soft start), 런타임(run time), 주파수(frequency), 듀티사이클(duty cycle)을 포함하나, 이에 제한되는 것은 아니다.In this disclosure, the control parameters of the processing apparatus for the plasma electrolytic oxidation treatment include voltage, current, soft start, run time, frequency, and duty cycle, It is not limited thereto.
특히, 본 개시는 상기 플라즈마전해산화 처리는 알루미늄(Al), 알루미늄 도금, 스틸(steel), 스틸과 알루미늄의 결합품에 대해 가능한데, 상기 스틸과 상기 알루미늄의 야금학적 결합품은 산화되어 패시베이션층을 형성하고,In particular, in the present disclosure, the plasma electrolytic oxidation treatment is possible for aluminum (Al), aluminum plating, steel, and a combination of steel and aluminum, and the metallurgical combination of steel and aluminum is oxidized to form a passivation layer. and,
상기 패시베이션층은 이되, 상기 x는 0 또는 자연수인 것임에 의해 실현가능하며, 이에 국한되는 것은 아니다.The passivation layer However, it is possible to realize that x is 0 or a natural number, but is not limited thereto.
이러한, 본 개시의 상기 피도금체의 표면경도를 증가시키기 위한 확산 열처리 온도는 450 내지 1200℃의 범위 내에서 이루어지며, 이에 의해 상기 피도금체는 선박 내외부의 고소 작업을 위한 족장 시공을 위하여 철구조물에 용접으로 접합되는 것이 가능하며, 상기된 바를 토대로 STS 316L의 대체가 가능하고, 이에 의해 STS 316L이 사용되는 산업 분야의 전반에 걸쳐 상기된 바의 기술적 사상에 의해 접목 및 응용이 가능해 진다.The diffusion heat treatment temperature for increasing the surface hardness of the plated body of the present disclosure is made within the range of 450 to 1200°C, whereby the plated body is made of iron for the construction of the chief for high place work inside and outside the ship. It is possible to be welded to the structure, and based on the above, it is possible to replace
상기된 바와 같은 본 개시의 플라즈마전해산화 처리를 위한 전해액과 처리장치를 설명하기로 한다.An electrolyte solution and a processing apparatus for the plasma electrolytic oxidation treatment according to the present disclosure as described above will be described.
먼저, 본 개시의 플라즈마전해산화 처리를 위한 전해액은 다음과 같이 고려될 수 있다.First, the electrolyte solution for plasma electrolytic oxidation treatment of the present disclosure may be considered as follows.
1. 전해액 요구 사항1. Electrolyte requirements
- 전기전도도가 좋을 것-Good electrical conductivity
- 알루미늄 소재를 침식하지 않을 것-No erosion of aluminum material
- 양극에서 산소 활성도가 좋을 것-Good oxygen activity at the positive electrode
- 잔재 중금속 이온 및 용출금속 이온의 제거 가능할 것-Remnant heavy metal ions and eluted metal ions must be removed
- 전해액 젖음성이 좋을 것-Good electrolyte wettability
- Open system - 대기 중 이산화탄소와 반응성 고려(액오염)-Open system-Consideration of reactivity with carbon dioxide in the atmosphere (liquid pollution)
- 관리가 쉬우며, 경제적일 것-Easy to manage and economical
2. 전해액 폐화(소진) 모델2. Electrolyte depletion (exhaustion) model
- 전기분해에 의해 가스 생성-Gas generation by electrolysis
()( )
- 양극 과열부 열분해-Pyrolysis of the anode overheated part
비이온계 계면활성제 Ethylene Oxide/Propylene Oxide 부과형Nonionic surfactant Ethylene Oxide/Propylene Oxide imposed type
- 전해액 온도상승에 의한 증발-Evaporation by temperature increase of electrolyte
- -
- Open system - 대기중 CO2와 반응하여 생성물 형성-Open system-Reaction with CO2 in the atmosphere to form a product
_ _
- 야금학적 반응에 의해 소진-Exhausted by metallurgical reaction
- -
- 용출금속 및 중금속 이온 응집 소진-Eluted metal and heavy metal ion aggregation exhaustion
3. 전해액 폐화 진행 예상3. Estimated electrolyte depletion
- 수분증발, 소진으로 pH 상승-Moisture evaporation and exhaustion increase pH
- 소진으로 액비중 감소- Reduction of liquid specific gravity due to exhaustion
- 계면활성제 소진으로 표면장력 증가-Increased surface tension due to exhaustion of surfactant
4. 전해액 관리 one point4. One point of electrolyte management
- 전해액부족: 물보충-Insufficient electrolyte: replenish water
- pH 측정: LiOH 보충-pH measurement: LiOH supplementation
- 비중감소: 보충-Weight reduction: supplement
- 표면장력증가: 계면활성제 보충-Increased surface tension: supplemented with surfactant
- 여과필터 막힘: 필터교체-Filter filter clogged: Replace filter
- : 용존산소측정- : Dissolved oxygen measurement
- : 제품의 표면 거칠기 및 표면관찰- : Surface roughness and surface observation of products
상기된 바와 같은 전해액의 구성은 도 1에 도시된 바와 같고, 이때 전해액 구성 혼합비는 도 2에 도시된 바와 같다.The configuration of the electrolyte solution as described above is as shown in FIG. 1, and in this case, the mixture ratio of the electrolyte solution is as shown in FIG. 2.
다만, Sodium silicate, Potassium silicate, , 등 구성 변화 및 첨가시 영향으로 전해액은 달라질 수 있으므로 이에 한정되는 것은 아니다. 상기된 바에 따른 전해액 약품 소요는 도 3과 같다.However, Sodium silicate, Potassium silicate, , Since the electrolyte may be changed due to changes in the composition and effects of addition, it is not limited thereto. The electrolyte chemical requirement according to the above is shown in FIG. 3.
상기된 바와 같은 전해액의 관리 방안은 다음과 같다.The electrolyte management method as described above is as follows.
1. 전해조 Flushing procedure1. Electrolyzer Flushing procedure
가. 여과조에 물공급end. Water supply to the filtration tank
나. 여과조에 물공급이 충분히( 필터 위로 수두형성) 된 후I. After sufficient water supply to the filtration tank (a head formed above the filter)
다. 입구 측 Air vent 체크All. Air vent check on the inlet side
라. 냉각기의 순환 펌프 가동la. Run the cooler's circulation pump
마. 계속 여과조에 over flow 되지 않게 물 공급hemp. Water supply to prevent overflow in the filtration tank
바. 전해조(내) over flow 되면 여과조 물공급 속도 줄임bar. If the electrolyzer (inside) is overflowed, the rate of water supply to the filtration tank is reduced
사. 전해조(외)에 2/3 수두가 차면 여과조 물공급 중단four. Stop water supply to the filtration tank when 2/3 of the head is full
아. 1시간 이상 계속 순환 시키며 flushing 시킴.Ah. Circulate continuously for more than 1 hour and flush.
자. Flushing 완료 후 물 폐기(하수도)character. Disposal of water after completion of flushing (sewerage)
2. 약품투입 procedure2. Drug injection procedure
가. 저장조(300liter)에 계면활성제(75g), LiOH(600g) 투입end. Addition of surfactant (75g) and LiOH (600g) to storage tank (300liter)
나. 계면활성제가 충분히 용해 및 LiOH가 완전 이온상태(수화반응 완료)시까지 교반기 작동시키며, 수온 체크I. Operate the stirrer until the surfactant is sufficiently dissolved and LiOH is completely ionic (hydration reaction complete), and the water temperature is checked.
다. 수온상승이 멈추면 상온으로 냉각 시까지 안정화All. Stabilizes until cooling to room temperature when the water temperature stops rising
라. Li-Silicate(12Kg)를 투입 후 충분히 교반la. Stir sufficiently after adding Li-Silicate (12Kg)
마. pH 측정 및 비중계, 점도계를 이용하여 pH측정, 비중, 점도 기록hemp. pH measurement and pH measurement, specific gravity, and viscosity recording using a hydrometer and viscometer
바. pH 12.8 미달시 5g 단위로 LiOH 추가 pH 조절bar. If the pH is less than 12.8, add LiOH in 5g increments.
사. 냉각 출구 v/v OFFfour. Cooling outlet v/v OFF
아. 완료 전해액 Aircon 배수펌프를 이용하여 전해조(내)로 이송Ah. Completed electrolyte transferred to the electrolyzer (inside) using the Aircon drain pump
자. 전해조(외)에 충분히 전해액이 차면character. If the electrolyzer (others) is sufficiently filled with electrolyte,
차. 전해조-여과조 v/v ON, 여과조 냉각기 v/v ON, 냉각출구 v/v ONcar. Electrolyzer-filtration tank v/v ON, filtration tank cooler v/v ON, cooling outlet v/v ON
카. 냉각기 순환펌프 작동K. Cooler circulation pump operation
타. 저장조의 전해액 이송완료Get on. Completed transfer of electrolyte in storage tank
파. 냉각기 가동하여 냉각 실시(20도) 순환.wave. Cool down by running the cooler (20 degrees) circulation.
3. 사용 중 전해액 관리 Procedure3. Procedure for managing electrolyte during use
작업 시작 전 및 사용 후 보관 전해액 재사용시Storage before starting and after use When reusing electrolyte
A. 여과조 전단 밸브 OFFA. Filter tank front valve OFF
B. 순환 펌프 ONB. Circulation pump ON
C. 여과조 전해액 이송완료C. Completed transfer of electrolyte in the filtration tank
D. 순환펌프 OFFD. Circulation pump OFF
E. 순환펌프 후단 밸브 OFFE. Circulation pump rear valve OFF
F. 용액량 측정:전해조(내)(외) 수두 일치 ? 필요 시 물보충F. Solution amount measurement: Electrolyzer (inside) (outside) head match? Replenish water if necessary
G. 순환펌프 후단 밸브 ONG. Circulation pump rear valve ON
H. 여과조 전단 밸브 ONH. Filter tank front valve ON
I. 펌프순환I. Pump circulation
J. 액비중 액점도 측정: 미달시 Li-Silicate 500g 단위 보충J. Measurement of liquid viscosity in liquid specific gravity: If insufficient, supplement 500g of Li-Silicate
K. pH측정 12.8 미달시 LiOH 5g 단위보충K. If pH measurement is less than 12.8, supplement
L. 순환 펌프 가동 중 여과조 필터 물빠짐 관찰: 필요 시 작동 중지 후 교체L. Observation of filtration tank filter drainage while the circulation pump is running: If necessary, stop and replace
4. 전해액 배출(폐액교체 및 전해액 교체) Procedure4. Electrolyte discharge (waste liquid replacement and electrolyte replacement) Procedure
A. 냉각기 전단의 10A 배출 v/v 아래에 Tray를 설치한다.A. Install a tray under the 10A discharge v/v in the front of the cooler.
B. Aircon 배수펌프를 1~2기를 Tray내부에 설치한다.B. Install 1~2 Aircon drainage pumps inside the tray.
C. 배수펌프 토출 측 튜브를 여분의 저장조(300liter)에 연결한다.C. Connect the discharge side tube of the drainage pump to an extra storage tank (300liter).
D. 냉각기 출구 v/v OFF(여과조 overflow 방지)D. Cooler outlet v/v OFF (filter tank overflow prevention)
E. 전해조-여과조 v/v 및 여과조-냉각기 v/v ONE. Electrolyzer-filtration tank v/v and filtration tank-cooler v/v ON
F. 10A 배출 v/v를 조금씩 열어 Tray에 전해액을 채운다.
G. Aircon 배수펌프를 가동한다.G. Operate the Aircon drain pump.
H. 10A v/v를 미세 조정하여 transfer 작업을 진행한다.H. Perform the transfer by finely adjusting 10A v/v.
I. 전해조(외) 및 여과조의 transfer 작업 완료 후I. After completion of transfer work of electrolyzer (other) and filtration tank
J. 여과조-냉각기 v/v를 OFF 및 냉각기 출구 v/v ON 작업 계속 진행J. Filter tank-cooler v/v OFF and cooler outlet v/v ON.
K. 전해액 전량 transfer 완료 후K. After transfer of all electrolyte
L. 별도의 (세척액)용기에 배수펌프 토출 측 튜브를 연결L. Connect the drain pump discharge tube to a separate (washing liquid) container
M. 전해조(외) 및 여과조 세척은 D~I 및 전해조(내) 세척은 J~K 작업 반복M. Repeat operation D~I for cleaning the electrolyzer (outside) and filtration tank and J~K for cleaning the electrolyzer (inside)
N. 세척 작업완료를 위해 M의 작업을 수회 반복한다.N. Repeat the operation of M several times to complete the cleaning operation.
O. 새로운 필터로 교체한다.O. Replace with a new filter.
5. 전해액 관리 필요 장비5. Equipment required for electrolyte management
A. 액비중계A. Liquid specific gravity relay
B. 온도계B. Thermometer
C. pH 측정기C. pH meter
D. 점도계D. Viscometer
E. 적외선온도계(통전부 온도측정)E. Infrared thermometer (measures the temperature of the energized part)
F. 표면전자현미경, 용존산소측정기( 추후 인산, 과산화수소 첨가시 필요)F. Surface electron microscope, dissolved oxygen analyzer (required when adding phosphoric acid or hydrogen peroxide later)
전술된 바와 같은 본 개시의 전해액을 이용하여 플라즈마전해산화 처리를 실현하기 위한 처리장치 즉, PEO장치는 도 4 내지 도 13의 도면으로 대체하기로 한다. 이때, 본 개시의 도면에는 처리장치의 장비 구성도, 전해조 유닛 구성 개념도, 전해조 구성, 전해조 그레이팅 구성, 전해조 정반 구성, 여과조 구성, 전해조실 구성, 양극지그, 열처리로 등이 도시되어 있으며, 각각에 따른 제원(명칭, 사양, 도면부호, 재질, 규격, 특징)도 함께 자세히 도시되어 있어 도면으로 충분히 이해할 수 있는 정도이므로 별도의 기재로서 설명하지 않는다.The treatment apparatus for realizing the plasma electrolytic oxidation treatment using the electrolytic solution of the present disclosure as described above, that is, the PEO apparatus will be replaced with the drawings of FIGS. 4 to 13. At this time, in the drawings of the present disclosure, the equipment configuration diagram of the treatment apparatus, the electrolytic cell unit configuration conceptual diagram, the electrolytic cell configuration, the electrolytic cell grating configuration, the electrolytic cell plate configuration, the filtration tank configuration, the electrolytic cell chamber configuration, the anode jig, the heat treatment furnace, etc. The specifications (names, specifications, reference numerals, materials, standards, features) are also shown in detail, so that they can be sufficiently understood from the drawings, so they are not described as separate descriptions.
이하, 전술된 바를 토대로 본 개시의 PEO 실험은 다음과 같다.Hereinafter, based on the foregoing, the PEO experiment of the present disclosure is as follows.
실험변수는 다음과 같다.The experimental variables are as follows.
A. 전류밀도(A/dm2) . 5 A/dm2, 10 A/dm2, 15 A/dm2A. Current density (A/dm2). 5 A/dm2, 10 A/dm2, 15 A/dm2
B. Frequency (Hz) . 100Hz, 200Hz, 300HzB. Frequency (Hz). 100Hz, 200Hz, 300Hz
C. Duty (%) . 40%, 60%, 80%C. Duty (%). 40%, 60%, 80%
D. 통전시간(Min) . 30min, 60min, 90minD. Power-on time (Min). 30min, 60min, 90min
이때, 실험설정은 도 14에 도시된 바와 같고, 실험평가는 1~3, ……, 79~81 total 27set을 평가하여 최적의 PEO변수를 설정 후, 족장피스에 실행하여 각 물성치를 추가 평가한다.At this time, the experiment setting is as shown in Fig. 14, and the experimental evaluation is 1 to 3, ... … After setting the optimal PEO variable by evaluating a total of 27 sets of 79~81, it is executed on the chief piece and additionally evaluates each material property.
이러한, 본 개시에 의거 그 실행 결과를 정리하면 다음과 같다.These results are summarized as follows according to the present disclosure.
1. 플라즈마 전해산화를 여러 조건에서 실험결과 LiOH + Li-silicate base 전해액은 기존 여러 참고 문헌에서 나타난 NaOH + Na-silicate 또는 KOH + Na-silicate base 전해액과는 비교 가능한 data가 없어 상대적 평가는 불가능 하지만, 도 15의 표준 환원전위를 참조하면 Potassium(K) 보다 우수한 특성을 보이나 성능대비 가격적 측면에서 평가할 가치가 있다고 사료 된다. 그리고 LiOH, KOH, NaOH 알카리 전해액에서의 기능은 전기전달 역할에 국한되며, 환원전위가 클수록 전해액에 작은 저항이 걸려 전해액 온도 상승을 작게 한다. 그리고 처리물 표면에서 silicate의 역할은 이온을 받아드려 표면에서 산화 즉, 가 부동태 코팅되어 표면 전압을 상승케 하여 플라즈마 양극산화를 가능하게 한다. 전해액에 공급은,1. As a result of plasma electrolytic oxidation under various conditions, the LiOH + Li-silicate base electrolyte has no data comparable to that of NaOH + Na-silicate or KOH + Na-silicate base electrolytes found in various references, so relative evaluation is impossible. , Referring to the standard reduction potential of FIG. 15, it shows superior properties than Potassium (K), but it is considered that it is worth evaluating in terms of price versus performance. In addition, the function of LiOH, KOH, NaOH alkaline electrolyte is limited to the role of electric transmission, and the higher the reduction potential, the smaller resistance is applied to the electrolyte, reducing the temperature rise of the electrolyte. And the role of silicate on the treated surface It receives ions and is oxidized on the surface, that is, Is passively coated to increase the surface voltage to enable plasma anodization. Supply to the electrolyte,
1.1 극미세 실리카(nano~수십㎛)와 음이온계 계면활성제(+소포제)를 이용하여 전해액에 분산시켜 실리카 표면에 음전하를 부여1.1 Ultrafine silica (nano ~ several tens of μm) and anionic surfactant (+ antifoam) are used to disperse in electrolyte to give negative charge to the silica surface
1.2 콜로이달 실리카를 투입1.2 Colloidal silica added
1.3 Meta-silicate를 투입1.3 Add Meta-silicate
1.4 물유리: (Na, K, Li)-silicate 투입1.4 Water glass: (Na, K, Li)-silicate input
등의 방법이 있으며, 경제성 측면과 그 효용성 관계에 의해 달라질 수 있으므로 상기에 국한되는 것은 아니다.There are methods such as, etc., and it is not limited to the above as it may vary depending on the economic aspect and the relationship of its utility.
실리콘계면활성제 투입의 효과는 계면의 에너지를 낮추어 PEO 처리시 유리하다. 최초시험 시 계면활성제 없이 한 시편과 투입 후 같은 조건에서 결과는 상대적 표면상태가 아주 좋았다.The effect of introducing a silicone surfactant is advantageous in PEO treatment by lowering the energy of the interface. In the initial test, the relative surface condition was very good under the same conditions after adding one specimen without surfactant.
2. 플라즈마 전해산화 공정에서 전원공급장치에서 조절이 가능한 변수는 전압, 전류, Soft start, Run time, Frequency, duty가 있으며, 공정에 미치는 영향을 아래에 정리한다.2. Variables that can be adjusted in the power supply in the plasma electrolytic oxidation process include voltage, current, soft start, run time, frequency, and duty, and the effects on the process are summarized below.
2.1 전압: 전원공급장치에서 가장 중요한 성능 지표로 특히 low duty 조건에서는 spark방전 전압이 high duty 조건보다 높게 형성 되므로 플라즈마 전해 전압도 더 높게 형성됨. 공정에서는 장치의 한계인 최고전압인 700V로 고정임.2.1 Voltage: This is the most important performance indicator for power supply devices. In particular, in low duty conditions, the spark discharge voltage is higher than that in the high duty condition, so the plasma electrolysis voltage is also higher. In the process, the maximum voltage, which is the limit of the device, is fixed at 700V.
2.2 전류: 전류밀도 4.4, 8.8, 13.2, 17.6, 22, 26.4 A/d㎡조건으로 시행한 결과 높을수록 유리하나 티타늄 전극과열로 인하여 그 한계는 있다. 당 실험에서는 전극접점 1개당 전극과열 없이 20A로 제한됨. 타타늄 지그의 설계가 중요함2.2 Current: Current densities: 4.4, 8.8, 13.2, 17.6, 22, 26.4 A/dm2 The higher the value is, the more advantageous it is, but there is a limit due to overheating of the titanium electrode. In this experiment, it is limited to 20A per electrode contact without overheating. The design of the titanium jig is important
2.3 Soft Start: 급전방지로 전원공급장치보호 기능이며, 전류밀도 5 A/d㎡당 30초면 충분함2.3 Soft Start: Power supply protection function by preventing power supply, and 30 seconds per 5 A/dm2 of current density is sufficient
2.4 Run Time: 전류밀도에 반비례하는 관계가 있으나, 전류밀도가 낮을수록 spark 발생까지 많은 시간이 소요되어 실제 plasma 방전시간이나, plasma 강도와 관계하여 그 시간을 설정해야 함. 당 알루미늄도금의 경우 Hot-dip aluminized 공정상 제품의 상단, 모서리부분의 도금두께가 가장 얇은 쪽의 소지가 들어나는 한계는 4.4 A/d㎡ 50% duty 조건에서 20분임. 더 이상 진행은 소지철이 노출된 부분과 전해액의 silicate와 동시에 산화반응을 일으킴. 즉 Plasma의 고열로 인하여 노출부위는 , 등의 복합적 반응을 일으키며, 표면의 경우는 층을 으로 변화시킴.2.4 Run Time: There is a relationship inversely proportional to the current density, but the lower the current density, the more time it takes for spark to occur, so the actual plasma discharge time or the time must be set in relation to the plasma strength. In the case of this aluminum plating, the limit for the thinnest plating thickness at the top and corner of the product due to the hot-dip aluminized process is 20 minutes at 4.4 A/
2.5 Frequency: PEO 품질에서 가장 영향을 덜한 factor이며, 코팅 두께나 코팅 물성에는 영향이 덜하며, 단지 표면조도에 영향을 미친다. 100, 200, 1000Hz로 실험도중 관찰한 plasma 처리상태로 견주어서 고주파로 갈수록 plasma 지속시간이 짧고 동시 플라즈마 발생빈도 역시 넓어져 조밀하게 처리된 결과 표면조도에 영향을 끼치나 micro 표면의 사항으로 macro적 관찰로는 어렵다. 추후 표면조도나 표면상태를 조절하면 nano-micro 복합표면형성 + 소수성코팅 = 초소수성표면(Superhydrophobic Surface)구현도 가능하리라 사료 된다. (10A 1000Hz)고주파의 경우 작업 중 엄청난 소음이 관찰 작업환경상 고려나 주위의 전자제품(특히 전자시계) 등에 고주파 장애도 충분히 감안 되어야 한다.2.5 Frequency: It is the least influential factor in PEO quality, less affects the coating thickness or coating properties, only affects the surface roughness. Compared to the plasma treatment conditions observed during the experiment at 100, 200, and 1000Hz, the plasma duration becomes shorter as the frequency increases and the frequency of simultaneous plasma generation also increases, and as a result of the dense treatment, the surface roughness is affected. It is difficult to observe. If the surface roughness or surface condition is adjusted later, it is believed that nano-micro composite surface formation + hydrophobic coating = superhydrophobic surface can be realized. In the case of high frequency (10A 1000Hz), tremendous noise is observed during work. Consideration of the work environment or high frequency disturbances in surrounding electronic products (especially electronic watches) should be sufficiently considered.
2.6 Duty: PEO공정에서 가장 많이 영향을 주는 Factor이다. 10, 20, 50% duty로 실험한 결과 low duty에서 품질 상태가 가장 좋았으며, spark 발생시간도 가장 짧았다. 하지만, 도 16에 도시된 그래프가 설명하듯 spark 발생전압을 올려 10% duty의 경우 전원공급장치의 사양 700V에 단시간에 도달하여 constant voltage mode에서 constant current mode로 변환되어 전류값이 10A -> 6A로 하강되어 전류밀도의 한계를 약 5 A/d㎡로 제한된다. 전원공급장치에 따르는 최적의 duty는 10~20%로 판단이 되며 최적값을 찾는 추가적 실험이 진행되어야 하며, 추후 Production에 적용할 경우 최소 1000V 사양의 전원공급장치가 추천된다.2.6 Duty: This is the factor that most affects the PEO process. As a result of testing at 10, 20, and 50% duty, the quality was the best at low duty and the spark generation time was also the shortest. However, as illustrated in the graph shown in FIG. 16, in the case of 10% duty by raising the spark generation voltage, the power supply specification reaches 700V for a short time, and the constant voltage mode is converted to a constant current mode, so that the current value becomes 10A -> 6A As it is lowered, the limit of current density is limited to about 5 A/dm2. The optimum duty according to the power supply is judged to be 10~20%, and additional experiments to find the optimum value must be carried out, and a power supply of at least 1000V specification is recommended for future production applications.
3. Hot Dip Aluminized steel(HAD steel) PEO의 경우 전술한 봐와 같이 도금두께의 편차로 인하여 PEO진행 중 박막도금부위에서부터 소지철이 올라와 모서리의 경우 , 의 복합적 반응 및 표면의 경우 으로 반응이 지속되나 표면의 mill scale이 완벽하게 제거되지 않은 부분에서 그 정도가 심했다. 따라서 현재의 공법의 HAD steel의 PEO의 경우 도금 전 전처리 과정에서 모서리 chamfering 및 소둔처리나 Shot Blasting 처리를 실시하여 표면의 mill scale 제거 및 모서리 부위의 round 형상을 유지시키는 것이 필요하며, 도금 후 공정간 제품의 이동시 도금표면의 mechanical damage를 없애는 노력에도 불구하고 상하부의 도금두께 단차를 없애는 것은 공정상 불가능하다. 도금두께가 얇은쪽을 기준으로 PEO 공정변수를 맞춘다 하여도 품질안정화를 위한 공정관리상 불가능하다 사료된다.3. In the case of hot dip aluminized steel (HAD steel) PEO, as shown above, in the case of the corners due to the base iron rising from the thin film plating area during the PEO process due to the deviation of the plating thickness. , Of complex reactions and surface In some cases, the reaction continued, but the degree was severe in the part where the mill scale of the surface was not completely removed. Therefore, in the case of PEO of HAD steel of the current method, it is necessary to remove the mill scale of the surface and maintain the round shape of the corner by performing edge chamfering and annealing treatment or shot blasting treatment in the pre-treatment process before plating. Despite efforts to eliminate mechanical damage on the plating surface during product movement, it is impossible to eliminate the difference in plating thickness of the upper and lower parts in the process. Even if the PEO process parameters are adjusted based on the thinner plating thickness, it is considered impossible due to the process management for quality stabilization.
4. HAD + 합금화 열처리(Diffusion treatment, 750℃ 1Hr 및 880℃ 5Hr) PEO를 그 대안으로 시도하였다. 기존의 aluminum PEO나 HAD steel PEO와는 전혀 다른 초기의 전해산화를 통한 합금성분에서 철(Fe)을 산화제거()로 용해제거 공정을 위한 전압강하와 전압상승 후 spark 발생 이라는 PEO공정 변수가 발생하였으며, 700V, 15A(13.2A/d㎡), 50% duty의 경우 개시전압(186V)→최저전압(164V, 12분)→전압회복(186V, 21분)→spark 발생전압(470V, 25분)→PEO 진행→CC mode 전환(700V, 14A, 36분)→PEO진행→PEO코팅터짐(전압강하)→PEO진행 반복의 형식으로 PEO공정이 구성되었다. 코팅 터짐 부위는 mill scale 표면과 경계에서 주로 이루어 졌다. 그리고 저 duty(10%)에서는 전압상승 후 spark 발생 이라는 PEO공정 변수가 발생하지 않았으며, 전해산세만 계속 진행되었다.4. HAD + Diffusion treatment (750°C 1Hr and 880°C 5Hr) PEO was tried as an alternative. Iron (Fe) is oxidized and removed from alloy components through initial electrolytic oxidation, which is completely different from existing aluminum PEO or HAD steel PEO. ), a PEO process variable such as voltage drop for the dissolution and removal process and spark generation after voltage rise occurred, and in the case of 700V, 15A (13.2A/dm2), 50% duty, starting voltage (186V) → lowest voltage (164V, 12 minutes) → voltage recovery (186V, 21 minutes) → spark generation voltage (470V, 25 minutes) → PEO progress → CC mode change (700V, 14A, 36 minutes) → PEO progress → PEO coating burst (voltage drop) → PEO The PEO process was constructed in the form of progress iteration. The rupture of the coating was mainly made at the mill scale surface and boundary. And at low duty (10%), the PEO process variable, such as spark generation after voltage increase, did not occur, and only electrolytic pickling continued.
따라서,therefore,
4.1 Mill scale이 완전히 제거된 시편 도금4.1 Plating of specimen with mill scale completely removed
4.2 Diffusion treatment4.2 Diffusion treatment
4.3 고duty에서 개시전압→전압강하→전압회복 공정4.3 Starting voltage → voltage drop → voltage recovery process at high duty
4.4 저duty에서 PEO처리를 진행하여 그 결과를 고찰할 필요성이 있다.4.4 It is necessary to proceed with PEO treatment at low duty and consider the results.
상기의 결과를 따라 새로운 기술(고내식성 Non-skid 표면처리)의 개발도 가능하리라 사료된다.It is believed that it is possible to develop a new technology (non-skid surface treatment with high corrosion resistance) according to the above results.
5. 대체 전해액의 개발의 필요성이 있으며, 그 핵심은 silicate → aluminum으로 대체한다면 소지노출 및 박막부위를 Silica가 아닌 Alumina로 되어 해결 가능성이 있다 사료되며, AlOH로 Silicate를 대용하였으며, 소지금속이 공히 non-aluminum이었으며, 그 이유는 소지 aluminum에 의 source가 충분하여 추가의 Aluminum source가 필요 없다. 하지만 HAD steel PEO의 경우 추가의 Aluminum source의 필요성이 대두되었다. 수산화알루미늄의 경우 강알칼리용액(pH 11이상)에서 로 잘 용해되며, 표준환원전위도5. There is a need to develop an alternative electrolyte, and the core of which is to replace silicate → aluminum, and it is considered that there is a possibility of solving the substrate exposure and thin film area as Alumina rather than Silica. Silicate was substituted with AlOH, and the base metal It was non-aluminum, and the reason is that As the source of is sufficient, there is no need for an additional aluminum source. However, in the case of HAD steel PEO, the need for an additional aluminum source emerged. Aluminum hydroxide In the case of strong alkali solution (
1) One)
2) 2)
양극표면에 더 효율이 좋게 의 source가 되어 줄 수가 있다.More efficient on the anode surface It can be a source of.
따라서 전해액 개발에 있어 상기 4. 및 5. 에서 제기된 문제에 대한 해결책이 될 것으로 사료된다.Therefore, it is considered to be a solution to the problems raised in the above 4. and 5. in electrolyte development.
한편, 도 17은 전해액을 만들기 위한 구성을 보여주기 위한 도면으로서 도 17에 도시된 표의 구성을 토대로 전해액을 만들어 플라즈마 양극산화 전해액 개발에 따른 그 실행 결과를 정리하면 다음과 같다.On the other hand, FIG. 17 is a diagram showing a configuration for making an electrolyte solution, and the results of the execution of the plasma anodic oxidation electrolyte development are summarized as follows by creating an electrolyte solution based on the configuration of the table shown in FIG. 17.
Hot Dip Aluminized steel(HAD steel) PEO의 경우 관련 문헌의 전해액(KOH or NaOH, LiOH + 규산소다)에서는 도금두께의 편차로 인하여 PEO진행 중 박막도금부위에서부터 소지철이 올라와 모서리의 경우 , 의 복합적 반응 및 표면의 경우 으로 반응이 지속되어 좌측의 사진처럼 도금 두께가 얇은 쪽부터 로 추정되는 scale이 누적되어 제품적 관점에서 아무리 성능이 좋아도 부가가치가 없어진다. 그리고 공정간 제품의 이동시 도금표면의 mechanical damage를 없애는 노력에도 불구하고 상하부의 도금두께 단차를 없애는 것은 공정상 불가능하다. 도금두께가 얇은쪽을 기준으로 PEO 공정변수를 맞춘다 하여도 품질안정화를 위한 공정관리상 불가능하다 사료된다. 따라서 상기의 공정변수 및 human factor를 극복 가능한 신규의 전해액이 절실히 필요하게 되었다. 규산염이온이 아닌 알루미늄산염, 붕산염, 수산염, 인산염, 질산염, 크롬산염 등으로 대치가 가능한지 실험을 무수히 실행한 결과 KOH or NaOH, LiOH 등 전기전도도를 좋게하는 물질로 Sodium Aluminate로 규산염을 대신하여 1인산, 또는 2인산으로부터 (인산이온)을 적용하여 알루미늄뿐 아니라 알루미늄 도금시편 그리고 도금이 되지 않은 bare steel에도 PEO가 가능한 전해액 개발을 완료하였다.In the case of hot dip aluminized steel (HAD steel) PEO, in the case of a corner due to the variation in plating thickness in the electrolyte solution (KOH or NaOH, LiOH + sodium silicate) in the related literature , In the case of complex reactions and surfaces The reaction continues, starting with the thinner plating as shown in the picture on the left. As the estimated scale is accumulated, the added value disappears no matter how good the performance is from a product point of view. And, despite efforts to eliminate mechanical damage on the plating surface when moving products between processes, it is impossible to eliminate the difference in plating thickness on the upper and lower parts of the process. Even if the PEO process parameters are adjusted based on the thinner plating thickness, it is considered impossible due to the process management for quality stabilization. Therefore, there is an urgent need for a new electrolyte solution capable of overcoming the above process parameters and human factors. Sodium Aluminate is a material that improves electrical conductivity such as KOH, NaOH, LiOH, etc. as a result of numerous experiments to see if it can be replaced with aluminum acid salt, borate, oxalate, phosphate, nitrate, chromate, etc. instead of silicate ion. Monophosphate in place of silicate , Or diphosphate From (Phosphate ion) was applied to complete the development of an electrolytic solution capable of PEO for not only aluminum, but also aluminum-plated specimens and unplated bare steel.
Sodium Aluminate(SA) +전해액 개발과정 및 결과 SA: 10g/L + 1P: 1.5g/L의 전해액에서 그 가능성을 발견함.Sodium Aluminate(SA) + Electrolyte development process and results SA: 10g/L + 1P: We found the possibility in an electrolyte of 1.5g/L.
5A, 1800sec, 700Hz, duty 10% 조건에서, Spark 개시전압 550V, 최고 607V를 기록하였으며,At 5A, 1800sec, 700Hz,
5A, 2700sec, 700Hz, duty 10% 조건에서, 최고 620V,5A, 2700sec, 700Hz, 10% duty condition, up to 620V,
5A, 3600sec, 700Hz, duty 10% 조건에서, 최고 633V,5A, 3600sec, 700Hz, 10% duty condition, up to 633V,
10A, 900sec, 700Hz, duty 10% 조건에서, Spark 개시전압: 580V, 최고 700V로 장비 한계로 인하여 정전압 mode로 변환되었다.Under conditions of 10A, 900sec, 700Hz,
10A, 1800sec, 700Hz, duty 10% 조건에서, Spark 개시전압: 580V, 최고 700V로 장비 한계로 인하여 정전압 mode로 변환되었다.Under conditions of 10A, 1800sec, 700Hz,
상기 조건에서 기존의 KOH+silicate 전해액 대비 개시전압(약 440V)이 높았으며, 가장 낮은 개시전압을 기록한 Sodium carbonate + silicate의 개시전압(약 380V)보다 약 200V를 기록하여 전해액의 전기효율상(전기요금+냉각비용) 이를 극복하기 위한 노력이 필요해 졌다.Under the above conditions, the starting voltage (about 440V) was higher than that of the conventional KOH+silicate electrolyte, and about 200V was recorded than the starting voltage (about 380V) of sodium carbonate + silicate, which recorded the lowest starting voltage. Charge + cooling cost) Efforts have been made to overcome this.
2. 상기의 문제를 극복을 위해 과산화수소를 첨가하여 양극산화를 촉진하여 silica scale문제 극복연구2. Hydrogen peroxide to overcome the above problems A study on overcoming the silica scale problem by promoting anodic oxidation by adding
KOH: 3g/L + K-silicate: 30g/L + 35% : 100cc/L의 전해액 조성으로 시험결과 분해에 의한 냉각기 내부의 배관에서 산소기포가 발생하여 배관을 폐쇄시키는 문제가 발생하였다.KOH: 3g/L + K-silicate: 30g/L + 35% : Test result with 100cc/L electrolyte composition Oxygen bubbles are generated in the piping inside the cooler due to decomposition, causing a problem of closing the piping.
그리고 의 공급원으로서 안전성이 좋은 sodium percabonate를 이용연구And Sodium percabonate with good safety as a source of Research using
sodium percabonate: 20g/L + K-silicate를 적용하여 개시전압을 380V로 낮추었으나 에 PEO 촉진 현상은 느낄 수가 없었다. 그리고 의 분해 안전성은 많이 개선이 되었으나 다음날 냉각기를 가동 후 냉각기 내부 배관에서 분해 산소가 배관을 폐쇄하여 첨가 시도는 부정적으로 마무리 되었다.Sodium percabonate: 20g/L + K-silicate was applied to lower the starting voltage to 380V. I could not feel the PEO promotion phenomenon. And The decomposition safety of the refrigerator was improved a lot, but after the chiller was operated the next day, decomposition oxygen in the pipe inside the chiller closed the pipe The addition attempt ended negatively.
3. 알루미늄 도금시편을 870°C 1시간 확산열처리+노냉 시편을 KOH: 10g/L + Li-silicate: 20g/L 전해액을 이용하여 20A, 60% duty, 700Hz, 1200sec에서 PEO를 실시하여 433V spark 개시전압과 약 580V의 최고 전압으로 알루미늄확산시편에 실리카를 코팅하여 이를 다시 760°C로 가열된 노에 넣어 10분간 열처리(firing)후 공냉하여 고경도의 실리카코팅을 부분적으로 얻을수 있었다.3. Diffusion heat treatment of aluminum plated specimen at 870°C for 1 hour + KOH: 10g/L + Li-silicate: 20g/L electrolyte using electrolytic solution at 20A, 60% duty, 700Hz, 1200sec, 433V spark The silica was coated on the aluminum diffusion specimen at the starting voltage and the highest voltage of about 580V, put it in a furnace heated to 760°C and heat-treated for 10 minutes, and then air-cooled to obtain a high hardness silica coating.
4. 앞서 언급된 PEO 실험변수와 상기 1~3의 개발 경험을 종합하여 Sodium Aluminate(SA) +가장 적합한 후보군으로 올리고 이를 최적화 하는 방향으로 개발 진행을 결정하였다.4. Sodium Aluminate (SA) + by synthesizing the previously mentioned PEO experimental variables and the development experiences of 1 to 3 above. The development progress was decided in the direction of raising it as the most suitable candidate group and optimizing it.
5. SA: 10g/L + 1P: 1.5g/L 전해액의 전기적 특성을 monitoring하기 위해서 아래 표와 같이 PEO를 실시 하였다.5. SA: 10g/L + 1P: 1.5g/L To monitor the electrical properties of the electrolyte, PEO was performed as shown in the table below.
수온 20°C, 주파수 700Hz, D: duty cycle(%), C: Current(A), RT: Run Time(sec), SV: Spark voltage(V), ST: Spark Time(sec), MV: Maximum Voltage(V)
한편, 도 18 내지 19를 참조하면, 도 18에는 상기 data 기록시 spark관측 후 계기판 판독까지 시간지연에 의한 오차(전압변동이 급격히 변하는 구간)가 있을 수 있다. 전체적인 상관관계를 정리하면 도 19와 같다.On the other hand, referring to FIGS. 18 to 19, in FIG. 18, there may be an error (a section in which voltage fluctuations rapidly changes) due to a time delay from observing sparks to reading the instrument panel when recording the data. The overall correlation is shown in Fig. 19.
6. SA + 1P 전해액 농도에 따른 전기특성을 조사함6. Investigate the electrical characteristics according to the SA + 1P electrolyte concentration
Duty 10% 700Hz, C:5A, RT:1800sec, 수온 30°C
도 20을 참조하면, 전해액 조성에 따라 전기적 특성이 변하며, SV이 낮으면서, ST는 빠르고, MV는 낮은 전해액의 최적화가 필요함.Referring to FIG. 20, electrical characteristics vary according to the composition of the electrolyte, and the SV is low, ST is fast, and MV is low.
7. 전기변수 중 주파수에 따른 특성을 조사함.7. Investigate the characteristics according to frequency among electrical variables.
전해액: SA 10g/L + 1P 1.5g/L, C: 10A, D: 60%, 수온: 30°CElectrolyte:
도 21을 참조하면, 1000Hz를 제외하면, 주파수가 높을수록 SV는 낮아짐, ST도 낮아짐, MV는 무관한 특성을 보임.Referring to FIG. 21, except for 1000Hz, as the frequency increases, SV decreases, ST decreases, and MV shows irrelevant characteristics.
8. 전해액 조성의 민감도를 조사하기 위해 아래와 같은 실험을 실시함.8. To investigate the sensitivity of the composition of the electrolyte, the following experiment was conducted.
도 22를 참조하면, 상기의 결과는 SA+1P의 황금조성이 존재함, 면밀한 실험이 요구됨.Referring to FIG. 22, the above result is that the golden composition of SA+1P exists, and a close experiment is required.
9. 무도금 steel에 대해 PEO를 실험함.9. PEO was tested on unplated steel.
전해조에 무도금 steel 시편과 Aluminum 도금시편을 동시 투입하여,Simultaneously insert a non-plated steel specimen and an aluminum plated specimen into the electrolyzer,
700Hz, 피스당 10A total 20A, 1800sec, 60% duty, 15°C 수온 조건에서700Hz, 10A per piece, total 20A, 1800sec, 60% duty, at 15°C water temperature
Steel 시편은 SV: 380V ST: 100sec; Aluminum 도금시편은 SV: 432V, ST: 135sec 및 최종전압 551V에서 PEO가 실시됨.Steel specimen SV: 380V ST: 100sec; For aluminum plated specimens, PEO is performed at SV: 432V, ST: 135sec and final voltage 551V.
즉, Aluminum, Aluminum도금(야금학적 결함), Steel 단독 혹은 Steel + Aluminum 조립품도 동시에 PEO 처리가 가능한 중요점을 발견함.In other words, we found an important point that PEO treatment is possible for Aluminum, Aluminum plating (metallurgical defect), Steel alone or Steel + Aluminum assembly at the same time.
10. Borax +, , 조합 전해액에 대해 실험을 실시 하였으나, 특징할 사항이 없었다.10. Borax + , , Experiments were conducted on the combination electrolyte, but there were no features to be characterized.
11. 실물 족장피스 4개를(용접부 10mm 도금보류 2개, 전체도금 2개) 용접성 사전검증을 위해 PEO를 실시하였다.11. PEO was conducted for the pre-verification of weldability for 4 real chief pieces (2 10mm plating holders for the welded part, 2 total plating).
전해액 SA 10g/L + 1P 1.5g/L, 30A 1800sec, 100Hz, 60%duty 조건에서
SV 430V, ST 144sec, MV 623V이 되었으며, 용접부 도금보류 제품은 일반 mild steel 용접과 같은 condition이었으나, 전체도금제품은 용접출발시 ARC가 alumina를 용해시킨 후 안정적인 용접이 가능하였다.
12. 전해액 조성의 최적값을 찾기 위해서 실험을 실시하였다12. An experiment was conducted to find the optimum value of the electrolyte composition.
도 23을 참조하면, 1P의 적정량은 3.5g/L 로 표준편차내의 ST와 최고전압을 기록하였다.Referring to FIG. 23, the appropriate amount of 1P was 3.5 g/L, and the ST and the highest voltage within the standard deviation were recorded.
13. Duty 별 등가 전압13. Equivalent voltage by duty
Duty값이 올라 갈수록 따라 전압강하가 이루어지며As the duty value increases, the voltage drop occurs.
PEO 처리중 duty를 변경한 값을 아래에 기록하며, 편차는 약 3% 이내로 예측되며 도 24에 도시된 바와 같다.The value of the duty change during PEO processing is recorded below, and the deviation is predicted to be within about 3%, as shown in FIG. 24.
내지 도 25를 참조하면, 상기의 값에서 전력요금 측면에서의 고려 사항은To FIG. 25, considerations in terms of power rates in the above values are
전력요금 = 시간* 전류 * 평균전압 임을 감안하면 저 duty일수록 유리해 보이나 고전압일수록 전해액 과열이 심해져서 냉각에 필요한 에너지를 감안하면 20~40% 영역에서 가장 에너지 효율이 나올 것으로 예상된다.Considering that the power rate = time * current * average voltage, the lower the duty, the more advantageous, but the higher the voltage, the more the electrolyte will overheat, so considering the energy required for cooling, the energy efficiency is expected to be the most in the 20-40% range.
14. 12항의 1P 3.5g/L 최적치에서 SA량에 따른 특성을 실험하였다.14. The characteristics according to the amount of SA were tested at the optimum value of 1P 3.5g/L in
도 26을 참조하면, 상기의 실험 결과에 따라 최적의 전해액 조성은 도 27에 도시된 바로 추정이 된다.Referring to FIG. 26, the optimum electrolyte composition is estimated as shown in FIG. 27 according to the above experimental results.
15. 상기 추정 전해액 확인15. Check the estimated electrolyte solution
아래와 같은 전해액 조건 및 전기변수를 적용하여 시편을 제작하여 단면경도를 의뢰한 결과As a result of requesting cross-sectional hardness by producing a specimen by applying the following electrolyte conditions and electrical parameters
SM: Sodium Molybdate Na2MoO4ㆍ2H2OSM: Sodium Molybdate Na2MoO4·2H2O
즉, 도 28과 같다.That is, as shown in FIG. 28.
결과를 다음과 같이 추론한다.The result is inferred as follows.
A. 저전류(5A) 단시간(30분)에서는 Duty가 높을수록 경도가 높다A. In low current (5A) short time (30 minutes), the higher the duty, the higher the hardness
B. 저전류(5A) 장시간(60분)에서는 30% 이상의 Duty에서 고경도를 얻는다.B. Low current (5A) For a long time (60 minutes), high hardness is obtained at a duty of 30% or more.
C. 중전류(10A) 단시간(30분)에서는 30% 이상의 Duty에서 고경도를 얻는다.C. Medium current (10A) In a short time (30 minutes), high hardness is obtained at a duty of 30% or more.
D. 중전류(10A) 장시간(60분)에서는 단시간 대비 경도 상승은 없었다.D. In the medium current (10A) for a long time (60 minutes), there was no increase in hardness compared to the short time.
E. 고전류(15A) 단시간(30분)에서는 낮은 Duty 30%에서 최대값을 얻는다.E. High current (15A) In a short time (30 minutes), the maximum value is obtained at a
F. 저농도(SA 10g/L + 1P 1.5g/L)대비 고농도(SA 20g/L + 1P 3.0g/L)에서 경도 상승효과가 좋다.F. The effect of increasing hardness is good at high concentration (
G. 주파수에 기인하는 효과는G. The effect due to frequency is
도 29에 그래프에서 보는 바와 같이 370Hz에서 최대값을 얻을 수 있다.As shown in the graph in FIG. 29, the maximum value can be obtained at 370 Hz.
H. 최고경도는 15A 30분 이내 처리에서 존재한다.H. The highest hardness exists in 15A treatment within 30 minutes.
16. 상기 결론에 대해 보강 작업을 실시하여 그 결과를 추론하면,16. Reinforcing the above conclusion and inferring the result,
도 30에 도시된 바와 같이,As shown in Figure 30,
A. SA 15g/L + 1P 3.5g/L + SM 5g/L(착색제) 최적화된 전해액이 확인된다.
B. 최적화 주파수는 370Hz로 확인된다.B. The optimization frequency is confirmed as 370Hz.
C. 본 처리후, 2/3전류에서 1/2시간동안 tempering 처리를 하면 경도 상승 효과가 있다.C. After this treatment, tempering treatment at 2/3 current for 1/2 hour will increase the hardness.
D. 최고경도를 보인 0217-1 시편의 PEO 처리 전기 특성을 보면,D. Looking at the electrical characteristics of the PEO treatment of the 0217-1 specimen showing the highest hardness,
Soft start 60초를 적용한 경우 약 40초(10A)에서 370V에서 spark 발생되며, 50초(12.5A) 410V에서 본 PEO가 진행되는 것을 관찰 하였으며, 15A 1200sec 최고전압 582V 및 tempering 10A 600sec의 최고 전압은 574V를 나타내었다.When soft start 60 seconds is applied, spark is generated at 370V in about 40 seconds (10A), and we observed that the PEO progresses at 410V in 50 seconds (12.5A), and the maximum voltage of 15A 1200sec, maximum voltage 582V and tempering 10A 600sec is 574V.
개시된 내용은 예시에 불과하며, 특허청구범위에서 청구하는 청구의 요지를 벗어나지 않고 당해 기술분야에서 통상의 지식을 가진 자에 의하여 다양하게 변경 실시될 수 있으므로, 개시된 내용의 보호범위는 상술한 특정의 실시예에 한정되지 않는다.The disclosed contents are only examples, and various changes can be made by those of ordinary skill in the art without departing from the gist of the claims claimed in the claims, so the scope of protection of the disclosed contents is It is not limited to the examples.
본 발명은 이상에서와 같은 고내구성 피도금체는, 고내구성 피도금체는, 양극산화처리를 통해 STS 316L 동등 이상의 경도, 내마모성, 내식성 및 내화학성을 갖고, STS 316L 재질을 대체하기 위한 양극산화처리 기술의 지표를 제공하고, 이를 기반으로 선박, 조선 뿐만 아니라 산업 전반에 접목하여 사용할 수 있으며, STS 316L 재질을 대체하여 사용 가능하되 일반 용접봉으로도 용접 작업이 가능하며 해체 후에도 후속 도장 작업이 요구되지 않는 장점을 갖는다. 또한, 고가의 STS 316L을 대체할 수 있어 생산성 및 원가절감이 가능한 장점을 갖는 고내구성 피도금체에 관한 것이다.In the present invention, the highly durable body to be plated as described above, the highly durable body to be plated, has hardness, abrasion resistance, corrosion resistance and chemical resistance equal to or higher than
본 개시의 실시예에 따른 고내구성 피도금체는 고내구성 피도금체에 있어서, 소지철 또는 알루미늄에 도금을 실시하여 도금체를 생성하고, 상기 도금체에 양극산화처리하여 피도금체의 경도, 내마모성, 내식성 및 내화학성을 증가시킨다.In the highly durable body to be plated according to an embodiment of the present disclosure, in the highly durable body to be plated, a plated body is formed by plating a base iron or aluminum, and anodizing treatment on the plating body to obtain the hardness of the body to be plated, Increases wear resistance, corrosion resistance and chemical resistance.
Claims (9)
소지철 또는 알루미늄에 도금을 실시하여 도금체를 생성하고, 상기 도금체에 양극 산화처리하며,
상기 피도금체에 상기 양극산화처리를 위하여 플라즈마전해산화 처리 기법이 적용되며,
상기 플라즈마전해산화 처리의 전해액은
총 중량 302.675kg 중에서, 리튬-실리케이트(Li-Silicate) 12kg; 리튬-하이드로옥사이드(Li-hydroxide) 0.6kg; 설팍턴트(sulfactant) 0.075kg; 물 290kg으로 구성되고,
상기 플라즈마 전해 산화 처리를 위한 처리장치의 조절변수는 전류밀도 5-15 A/m2 ; 주파수 100Hz - 300Hz; 듀티 40-80%; 통전시간 30분-90분;인 것을 특징으로 하는 고내구성 피도금체.
In the highly durable plated body,
Plating is performed on base iron or aluminum to create a plated body, and anodizing the plated body,
A plasma electrolytic oxidation treatment technique is applied to the object to be plated for the anodization treatment,
The electrolyte of the plasma electrolytic oxidation treatment is
Of the total weight of 302.675 kg, lithium-silicate (Li-Silicate) 12 kg; 0.6 kg of lithium-hydroxide; 0.075 kg of sulfactant; It consists of 290 kg of water,
The control parameter of the treatment apparatus for the plasma electrolytic oxidation treatment is a current density of 5-15 A/m 2 ; Frequency 100Hz-300Hz; Duty 40-80%; Highly durable plated body, characterized in that the energization time is 30 minutes-90 minutes.
상기 피도금체의 표면경도를 증가시키기 위한 확산 열처리 온도는 450 내지 1200℃인 것을 특징으로 하는 고내구성 피도금체.The method according to claim 1,
The high durability plated body, characterized in that the diffusion heat treatment temperature for increasing the surface hardness of the plated body is 450 to 1200 ℃.
상기 피도금체는 선박 내외부의 고소 작업을 위한 족장 시공을 위하여 철구조물에 용접으로 접합되는 것을 특징으로 하는 고내구성 피도금체.
The method according to claim 1,
The plated body is a highly durable plated body, characterized in that the plated body is welded to a steel structure for construction of a chief for work inside and outside the ship.
상기 전해액은 착색제를 더 포함하되,
상기 착색제는 Sodium Molybdate 또는 Sodium Tungstate 및 이들의 혼합물이며 0.01 ~ 20 g/L로 이루어지는 것을 특징으로 하는 고내구성 피도금체.
The method according to claim 1,
The electrolyte solution further comprises a colorant,
The colorant is Sodium Molybdate or Sodium Tungstate, and a mixture thereof, and a highly durable body to be plated, characterized in that consisting of 0.01 to 20 g/L.
상기 플라즈마 전해 산화 처리는 알루미늄(Al), 알루미늄 도금, 스틸(steel), 스틸과 알루미늄의 결합품에 대해 가능한 것을 특징으로 하는 고내구성 피도금체.The method according to claim 1,
The plasma electrolytic oxidation treatment is possible for aluminum (Al), aluminum plating, steel, and a combination of steel and aluminum.
상기 스틸과 상기 알루미늄의 야금학적 결합품은 산화되어 패시베이션층을 형성하고,
상기 패시베이션층은 이되, 상기 x는 0 또는 자연수인 것을 특징으로 하는 고내구성 피도금체.The method of claim 8,
The metallurgical combination of the steel and the aluminum is oxidized to form a passivation layer,
The passivation layer However, the highly durable plated body, characterized in that the x is 0 or a natural number.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160035070 | 2016-03-24 | ||
KR20160035070 | 2016-03-24 | ||
PCT/KR2017/003235 WO2017164714A1 (en) | 2016-03-24 | 2017-03-24 | Highly durable body to be plated |
KR1020170037996 | 2017-03-24 | ||
KR1020170037996A KR20170113260A (en) | 2016-03-24 | 2017-03-24 | Plating products with high durability |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20180087414A KR20180087414A (en) | 2018-08-01 |
KR102206147B1 true KR102206147B1 (en) | 2021-01-22 |
Family
ID=60141916
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020170037996A KR20170113260A (en) | 2016-03-24 | 2017-03-24 | Plating products with high durability |
KR1020187018973A KR102206147B1 (en) | 2016-03-24 | 2017-03-24 | High durability plated body |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020170037996A KR20170113260A (en) | 2016-03-24 | 2017-03-24 | Plating products with high durability |
Country Status (1)
Country | Link |
---|---|
KR (2) | KR20170113260A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170113260A (en) * | 2016-03-24 | 2017-10-12 | 덕산산업주식회사 | Plating products with high durability |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100730776B1 (en) | 2006-02-08 | 2007-06-21 | 한국과학기술연구원 | Method for producing ceramic coating on the surface of aluminium alloys using microplasma |
KR101214400B1 (en) * | 2012-04-26 | 2012-12-21 | 배재대학교 산학협력단 | Plasma electrolytic oxidation coating method for aluminum metal and aluminum metal-oxide |
JP2013166978A (en) * | 2012-02-14 | 2013-08-29 | Nisshin Steel Co Ltd | Surface treated steel sheet having good insulation property and method for producing the same |
KR101476235B1 (en) * | 2012-12-11 | 2014-12-24 | 한국기계연구원 | Method for surface treatment of magnesium material using plasma electrolytic oxidation, anodic films formed on magnesium thereby and solution for surface treatment of magnesium material used for plasma electrolytic oxidation |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101591239B1 (en) * | 2014-03-04 | 2016-02-03 | (주)뉴젠텍 | Method for Processing Remote Plasma Source Block Having Surfaces Coated by Anodizing and Remote Plasma Source Block |
KR20170113260A (en) * | 2016-03-24 | 2017-10-12 | 덕산산업주식회사 | Plating products with high durability |
-
2017
- 2017-03-24 KR KR1020170037996A patent/KR20170113260A/en active Search and Examination
- 2017-03-24 KR KR1020187018973A patent/KR102206147B1/en active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100730776B1 (en) | 2006-02-08 | 2007-06-21 | 한국과학기술연구원 | Method for producing ceramic coating on the surface of aluminium alloys using microplasma |
JP2013166978A (en) * | 2012-02-14 | 2013-08-29 | Nisshin Steel Co Ltd | Surface treated steel sheet having good insulation property and method for producing the same |
KR101214400B1 (en) * | 2012-04-26 | 2012-12-21 | 배재대학교 산학협력단 | Plasma electrolytic oxidation coating method for aluminum metal and aluminum metal-oxide |
KR101476235B1 (en) * | 2012-12-11 | 2014-12-24 | 한국기계연구원 | Method for surface treatment of magnesium material using plasma electrolytic oxidation, anodic films formed on magnesium thereby and solution for surface treatment of magnesium material used for plasma electrolytic oxidation |
Also Published As
Publication number | Publication date |
---|---|
KR20170113260A (en) | 2017-10-12 |
KR20180087414A (en) | 2018-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015152952A1 (en) | Method and composition for metal finishing | |
CA3043486C (en) | Method for electroplating an uncoated steel strip with a plating layer | |
KR20170107494A (en) | Ecological methods and related devices for continuous chrome plating of bars | |
MX2015002852A (en) | Method and blasting means for producing a satinized finish on an aluminium substrate. | |
KR102206147B1 (en) | High durability plated body | |
US8404097B2 (en) | Process for plating a metal object with a wear-resistant coating and method of coating | |
CN105887152A (en) | Aluminum alloy anodic oxidation process | |
CN104233427A (en) | Method for improving residual stress of aluminum alloy welding joint through micro-arc oxidation | |
WO2018134970A1 (en) | Method for coloring treatment of aluminium or aluminum alloy | |
JP2014173128A (en) | Method for restoring an aluminum-based member, restoration treatment liquid, aluminum-based material, and method for manufacturing the same | |
US20050170201A1 (en) | Cobalt-phosphorous-boron coating and process for plating | |
CN101392370A (en) | Method for producing oxygen separator | |
Jennings Taylor et al. | Breaking the Chemical Paradigm in Electrochemical Engineering: Case Studies and Lessons Learned from Plating to Polishing | |
Alvarez | Hard anodic films for aluminium alloys | |
Hernandez-Selva et al. | Manufacturing technology for implementing geological disposal: Electroforming of copper canisters | |
KR101213976B1 (en) | The method for fabricating corrosion-resistance ceramics film on the Mg-alloys substrate and materials comprising corrosion-resistance ceramics film prepared therefrom | |
CN105887058B (en) | A kind of piston rod end face whether the detection of chromium plating and the rust-proofing method of piston rod end face | |
Sierka | Industrial zinc plating processes | |
CA2362244A1 (en) | Method of treating an electroplating bath | |
Tang | Pulse reversal plating of nickel alloys | |
Hilty | High-Strength Electroformed Nanostructured Aluminum for Lightweight Automotive Applications | |
Patton | Greener hard chromium plating | |
RU2703087C1 (en) | Method of producing protective anticorrosion coatings on aluminum alloys with welded seams | |
JP7492206B1 (en) | Stainless steel components for semiconductor manufacturing equipment and their manufacturing method | |
WO2022145170A1 (en) | Method and system for electroplating article with metal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |