KR100730776B1 - Method for producing ceramic coating on the surface of aluminium alloys using microplasma - Google Patents

Method for producing ceramic coating on the surface of aluminium alloys using microplasma Download PDF

Info

Publication number
KR100730776B1
KR100730776B1 KR1020060012244A KR20060012244A KR100730776B1 KR 100730776 B1 KR100730776 B1 KR 100730776B1 KR 1020060012244 A KR1020060012244 A KR 1020060012244A KR 20060012244 A KR20060012244 A KR 20060012244A KR 100730776 B1 KR100730776 B1 KR 100730776B1
Authority
KR
South Korea
Prior art keywords
component
microplasma
coating layer
solution
ammonium hydroxide
Prior art date
Application number
KR1020060012244A
Other languages
Korean (ko)
Inventor
오영주
홍경태
옥명렬
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR1020060012244A priority Critical patent/KR100730776B1/en
Application granted granted Critical
Publication of KR100730776B1 publication Critical patent/KR100730776B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/024Anodisation under pulsed or modulated current or potential
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/06Anodisation of aluminium or alloys based thereon characterised by the electrolytes used

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

A microplasma technology for forming a coating layer without containing an alkali metal, and a microplasma technology for removing a porous external coating layer or minimizing thickness of the porous external coating layer are provided. A method for forming a protection film on an aluminium alloy using microplasma process comprises applying an alternating current of an alternating component and a cathode component into an aqueous alkali solution of 30 to 50 deg.C at 60 Hz to form a ceramic coating layer on the aluminum surface using microplasma formed on an aluminum surface, wherein the aqueous alkali solution is 0.0136 to 0.136 M of a quarternary organic aqueous ammonium solution, and comprises a principal component of tetraethyl ammonium hydroxide, (C2H5)4NOH, as a quarternary organic aqueous ammonium-based solution, or a principal component of tetrabutyl ammonium hydroxide, [CH3(CH2)3]NOH, as the quarternary organic aqueous ammonium-based solution.

Description

마이크로 플라즈마법을 이용한 알루미늄 합금의 보호막 형성 방법{METHOD FOR PRODUCING CERAMIC COATING ON THE SURFACE OF ALUMINIUM ALLOYS USING MICROPLASMA} TECHNICAL FOR PRODUCING CERAMIC COATING ON THE SURFACE OF ALUMINIUM ALLOYS USING MICROPLASMA}

본 발명은 알루미늄 및 알루미늄 합금 표면의 내마모, 내열, 내식 및 절연 특성을 향상시키기 위한 마이크로 플라즈마 전해 공정에 관계된 것으로, 특히 알루미늄 합금에 두터운 세라믹 코팅층을 형성하는 방법에 관한 것이다. 본 발명은 특히 부식, 고온, 마모 등의 가혹한 조건에 노출되는 금속 표면에 적용될 수 있다.The present invention relates to a microplasma electrolytic process for improving the wear, heat, corrosion and insulation properties of aluminum and aluminum alloy surfaces, and more particularly to a method of forming a thick ceramic coating layer on an aluminum alloy. The invention is particularly applicable to metal surfaces that are exposed to harsh conditions such as corrosion, high temperatures, wear and the like.

알루미늄 및 그 합금은 밀도가 낮고 철 이외의 다른 합금들에 비해 비교적 저가이기 때문에 기계 및 그 부품을 제조하는 데에 있어서 매우 유용한 소재이다. 그러나, 알루미늄과 그 합금들은 상대적으로 마모 및 마멸에 약한 면이 있다. 또한, 보호 피막이 없을 시에는 화학적 분의기하에서 비교적 부식이 잘 일어나며 심한 경우에는 수분과 반응하기도 한다. 이를 해결하기 위하여 많은 보호 피막 형성기술들이 개발되었다. 그 중의 한 종류로 금속에 교류 및 교류를 변형시킨 전류를 인가하여 금속과 전해액 사이에 마이크로 플라즈마 방전을 유도하고, 이에 의한 전기화학적 반응에 의존하는 마이크로 플라즈마 전해 코팅 기술을 들 수 있다.Aluminum and its alloys are very useful materials for manufacturing machines and their parts because of their low density and relatively low cost compared to other alloys than iron. However, aluminum and its alloys are relatively weak to wear and wear. In addition, in the absence of a protective coating, it is relatively well corroded under the chemical composition, and in severe cases, may react with moisture. Many protective film forming techniques have been developed to solve this problem. One such type is a microplasma electrolytic coating technique which applies a current in which alternating current and alternating current are applied to the metal to induce a microplasma discharge between the metal and the electrolyte, and thereby relies on an electrochemical reaction.

기존에는 마이크로 플라즈마 코팅법을 이용하여 우수한 성질의 세라믹 코팅층을 형성할 수 있었으나, 결정적인 문제점으로 첫째, 코팅층 내의 알칼리 금속의 농도가 높다는 단점이 있는데, 이는 전해액이 알칼리 금속 수산화물과 같은 염들을 함유하고 있기 때문이며, 두 번째로 고밀도의 기능성 코팅층과 동시에 다공성의 성긴 외부층이 성장한다는 단점이 있다. Conventionally, it was possible to form a ceramic coating layer having excellent properties using a microplasma coating method, but a critical problem is that, firstly, there is a disadvantage that the concentration of alkali metal in the coating layer is high. This is because there is a second disadvantage in that a porous, coarse outer layer grows at the same time as the high-density functional coating layer.

한편, 현재 반도체 제조공정 중에 사용되는 건식식각 챔버의 내벽 혹은 챔버내 장치들은 주로 양극산화법(Anodizing)에 의해 코팅을 하고 있으나 기존의 양극산화법에 의해 형성된 코팅층의 가지고 있는 기계적 물성치의 한계 때문에 자주 재코팅하여야 하는 문제가 있다. 따라서 건식식각챔버의 내벽 혹은 챔버내 장치들의 표면에 마이크로 플라즈마 기술을 적용하고자 하였으나, 기존의 마이크로 플라즈마 기술에 의한 세라믹 코팅층은 기본적으로 알칼리금속이 포함된 전해질용액 내에서 형성되었기 때문에 코팅층내부에 Na 및 K 등의 알칼리금속성분이 수 원자% 존재하고 있다가 반도체 식각챔버가 진공상태가 될 때 Na 및 K 성분이 코팅층외부로 나와 반도체를 오염시킬 수 있으므로 기존의 마이크로 플라즈마 기술을 적용하기 어렵다. 또한 마이크로 플라즈마 기술에 의해 형성된 코팅층에서 전체 코팅층 두께의 30-40%를 차지하고 있는 다공질 코팅층을 제거한 후 사용하여야 하는데 챔버 내부의 형상이 복잡한 경우에는 이 또한 용이하지 않다.On the other hand, the inner wall of the dry etching chamber used in the semiconductor manufacturing process or the devices inside the chamber are mainly coated by anodizing, but are frequently recoated due to the limitation of mechanical properties of the coating layer formed by the conventional anodizing. There is a problem that must be done. Therefore, although the microplasma technique was applied to the inner wall of the dry etching chamber or the surface of the devices in the chamber, the ceramic coating layer by the conventional microplasma technique was basically formed in the electrolyte solution containing the alkali metal. It is difficult to apply the conventional microplasma technology because the Na and K components may come out of the coating layer and contaminate the semiconductor when an alkali metal component such as K exists in several atomic percent and the semiconductor etching chamber is in a vacuum state. In addition, the coating layer formed by the microplasma technique should be used after removing the porous coating layer, which occupies 30-40% of the total thickness of the coating layer.

따라서 본 발명을 통하여 해결하고자 하는 기술적 문제 들은 알칼리 금속이 함유되지 않은 코팅층 형성을 위한 마이크로 플라즈마 기술 및 다공성 외부 코팅층 을 없애거나 두께를 최소화하는 마이크로 플라즈마 기술을 제공하는 것이다.Accordingly, the technical problems to be solved through the present invention are to provide a micro plasma technology for forming a coating layer containing no alkali metal and a micro plasma technology for removing the porous outer coating layer or minimizing its thickness.

상기 목적은 60Hz의 교류 및 음극전류를 이용하여 30-50℃의 알칼리 전해액 내의 금속 표면에 마이크로 플라즈마를 형성시킴으로써 달성할 수 있다. This object can be achieved by forming a microplasma on a metal surface in an alkaline electrolyte at 30-50 ° C. using an alternating current and a cathode current of 60 Hz.

구체적으로 본 발명은 30-50℃의 알칼리 수용액 내에서 교류성분과 음극성분의 교차전류를 60Hz로 인가하여 알루미늄 표면에 형성되는 마이크로 플라즈마를 이용하여 상기 알루미늄 표면에 세라믹 코팅층을 형성하는 것을 특징으로 하는 마이크로 플라즈마법을 이용한 알루미늄 합금의 보호막 형성 방법을 제공한다.Specifically, the present invention is characterized by forming a ceramic coating layer on the aluminum surface by using a microplasma formed on the aluminum surface by applying a cross current of the alternating current component and the cathode component at 60 Hz in an aqueous alkali solution at 30-50 ° C. Provided is a method of forming a protective film of an aluminum alloy using a microplasma method.

상기 알칼리 수용액은 0.0136-0.136M의 4원계 유기 암모늄 수용액으로서 주성분은 4원계 유기 암모늄계 수용액으로서 4-에틸 수산화 암모늄(tetraethyl ammonium hydroxide, (C2H5)4NOH) 또는 4원계 유기 암모늄계 수용액으로서 4-부틸 수산화 암모늄(tetrabutil ammonium hydroxide, [CH3(CH2)3]NOH)을 사용한다. 상기 알칼리 수용액은 이동 성분으로서 분산된 분말이나 젤을 포함하며, 분말로는 0.0167-0.167M의 5마이크론 크기의 이산화규소(SiO2) 분말을 사용하고, 젤로는 0.003-0.006의 물유리(sodium silicate, Na2O·3SiO2)를 포함할 수 있으며, 경우에 따라 0.0004M의 25 질량% 수산화암모늄 수용액을 버퍼 성분으로 포함할 수 있다. The alkali aqueous solution is a 0.0136-0.136M quaternary organic ammonium aqueous solution, and the main component is a 4-membered organic ammonium aqueous solution, 4-ethyl ammonium hydroxide ((C 2 H 5 ) 4 NOH) or a quaternary organic ammonium aqueous solution. 4-butyl ammonium hydroxide ([CH 3 (CH 2 ) 3 ] NOH) is used. The aqueous alkali solution includes a powder or gel dispersed as a mobile component, and a powder of 5 micron silicon dioxide (SiO 2 ) of 0.0167-0.167M is used as a powder, and a gel of water silicate of 0.003-0.006 is used as a gel. Na 2 O · 3SiO 2 ), and in some cases, 0.0004 M of 25 mass% aqueous ammonium hydroxide solution may be included as a buffer component.

본 발명에 있어서, 교류 전류(AC) 성분 대 음극 전류(CC, Cathodic Current)성분의 전류비율(IAC/ICC)은 1.3 - 2.5의 범위이고, 시간비율(τACCC)을 3 - 4의 범위로 유지하는 것이 바람직하다. In the present invention, the current ratio (I AC / I CC ) of the alternating current (AC) component to the cathodic current (CC) component is in the range of 1.3 to 2.5, and the time ratio τ AC / τ CC is 3. It is desirable to keep it in the range of -4.

본 발명에서 알칼리 전해액은 알칼리염에 분산된 입자나 젤을 첨가하여 제조한다. 테트라에틸 수산화 암모늄이 주성분으로 사용되었고, 20wt%의 테트라부틸 수산화 암모늄 용액 0.0156-0.156M이 첨가되었다. 이 용액의 pH는 8.5-13.5의 적정 범위를 갖는다. 만일 pH가 8.5보다 작거나 13.5보다 높게 되면 알루미늄 합금 표면은 에칭이 되게 된다. In the present invention, the alkaline electrolyte is prepared by adding particles or gel dispersed in an alkali salt. Tetraethyl ammonium hydroxide was used as the main component, and 0.0156-0.156M of 20 wt% tetrabutyl ammonium hydroxide solution was added. The pH of this solution has an appropriate range of 8.5-13.5. If the pH is less than 8.5 or higher than 13.5, the aluminum alloy surface is etched.

0.0167-0.167M의 양으로 첨가되는 5마이크론 크기의 이산화규소 분산 입자는 알칼리 분위기에서 수화되어 알루미늄 합금 표면에 부동태막의 형성을 더욱 촉진하게 된다. 이산화규소 함량이 0.0167M 미만이면 부동태막의 형성이 촉진되지 않으며, 0.167M 이상이면 다공성 외부층의 비율이 높아진다. The 5 micron-sized silicon dioxide dispersed particles added in an amount of 0.0167-0.167M are hydrated in an alkaline atmosphere to further promote the formation of a passivation film on the aluminum alloy surface. If the silicon dioxide content is less than 0.0167M, the formation of the passivation film is not promoted. If the silicon dioxide content is more than 0.167M, the proportion of the porous outer layer is increased.

동일한 부동태 형성 효과는 물유리(Liquid glass, sodium silicate) 0.003-0.006M을 첨가하면 얻을 수 있는데, 이는 특히 표면의 에칭 속도가 빠른 실리콘 함유 알루미늄 합금의 경우에 특히 중요한 역할을 한다. 만일 물유리의 첨가량이 0.003M 이하이면 부동태 층이 형성되지 않으며, 0.006M 이상이면 나트륨이 코팅 층에 잔류하게 된다. The same passivation effect can be obtained by adding 0.003-0.006M of liquid glass (sodium silicate), which is particularly important for silicon-containing aluminum alloys with high surface etch rates. If the addition amount of water glass is 0.003M or less, no passivation layer is formed, and if it is more than 0.006M, sodium remains in the coating layer.

0.0004M의 25 wt% 수산화나트륨을 버퍼링 성분로 첨가하면 일정 pH를 유지하는데 도움이 되고, 코팅층의 균일성을 향상시키게 된다.Adding 0.0004M of 25 wt% sodium hydroxide as the buffering component helps to maintain a constant pH and improves the uniformity of the coating layer.

균일한 코팅층을 얻기 위해서 사용하는 인가전류 모드는 60Hz의 교류(AC, Alternating Current)성분과 음극 전류(CC, Cathodic Current)성분의 전류비율 (IAC/ICC)을 1.3-2.5로 유지하며, 시간비율(τACCC)을 3-4로 각각 유지한다.The applied current mode used to obtain a uniform coating layer maintains a current ratio (I AC / I CC ) of alternating current (AC) component and cathodic current (CC) component of 60 Hz at 1.3-2.5, The time ratios τ AC / τ CC are maintained at 3-4, respectively.

실시예Example

마이크로 플라즈마 공정을 위하여 1리터의 용적을 갖는 스테인레스강 재질의 반응조를 사용하였다. 반응조는 상대전극의 역할을 동시에 수행한다. 용액의 효과적인 냉각 및 순환을 위해 반응조 바닥에 버블러(Bubbler)를 설치한다. 반응조에는 또한 냉각장치를 설치하여 반응조 내부를 30℃의 온도로 유지한다. 알루미늄 2024 합금 소재을 용액에 담그고 양극 전극으로 사용한다. A reactor made of stainless steel having a volume of 1 liter was used for the microplasma process. The reactor simultaneously serves as a counter electrode. A bubbler is installed at the bottom of the reactor for effective cooling and circulation of the solution. The reactor is further equipped with a cooling device to maintain the inside of the reactor at a temperature of 30 ° C. Aluminum 2024 alloy material is immersed in the solution and used as the anode electrode.

마이크로 플라즈마 공정은 60Hz의 교류성분 및 음극성분전류를 교차인가하여 수행하며 30분간 지속된다. 이때 교류성분 및 음극성분전류의 인가시간비율(τACCC)은 3이었다. 공정이 끝나면, 전원을 끄고, 시편을 전극으로부터 제거한 다음 증류수로 세척하고 따뜻한 공기로 건조시키고 두께를 측정한다. 본 조건하에서 생성된 세라믹코팅층은 기능성 코팅층으로만 이루어졌거나, 기능성 코팅층 이외에 다공성의 외부 코팅층이 형성되었더라도 수 마이크론으로 매우 얇았다. 또한 전해질 용액중에 Na이 포함된 물유리(Liquid glass)가 존재하더라도 0.006M 이하에서는 코팅층 내부의 Na의 성분은 0.18원자% 이하로 매우 작음을 알 수 있었다.The microplasma process is performed by cross-applying an alternating current component and a cathode component current of 60 Hz and lasts for 30 minutes. At this time, the application time ratio (τ AC / τ CC ) of the AC component and the cathode component current was 3. At the end of the process, turn off the power, remove the specimen from the electrode, wash with distilled water, dry with warm air and measure the thickness. The ceramic coating layer produced under these conditions consisted of only a functional coating layer, or very thin, even if a porous outer coating layer was formed in addition to the functional coating layer. In addition, even though the Na-containing liquid glass (Liquid glass) in the electrolyte solution, it was found that the Na component inside the coating layer is very small at 0.18 atomic% or less at 0.006M or less.

표 1은 본 발명의 다양한 실시예에 따라 여러 알루미늄 합금과 다른 양극전류밀도 그리고 다양한 화학조성을 갖는 전해질 용액을 사용하여 마이크로 플라즈마 공정의 변수를 변화시킨 것이다. Table 1 changes the parameters of the microplasma process using electrolyte solutions having various aluminum alloys, different anode current densities, and various chemical compositions, according to various embodiments of the present invention.

[표 1]TABLE 1

번호number 알루미늄 합금소재Aluminum alloy material 전해질성분 (M)Electrolyte Component (M) 전류인가조건Current application condition 두께 (㎛)Thickness (㎛) 코팅층 구조Coating layer structure K 농도 (원자%)K concentration (atomic%) 1One A2024A2024 (Et)4NOH (0.0136) SiO2 ( - ) Liquid glass ( - ) NH4OH ( - )(Et) 4 NOH (0.0136) SiO 2 (-) Liquid glass (-) NH 4 OH (-) J(AC)=12 (A/dm2) T=30℃ t =30min IAC/ICC=2.5 J (AC) = 12 (A / dm 2 ) T = 30 ℃ t = 30min I AC / I CC = 2.5 3030 기능성 코팅층Functional coating layer -- 22 A2024A2024 (Et)4NOH (0.034) SiO2 (0.0167) Liquid glass (0.006) NH4OH (0.0004)(Et) 4 NOH (0.034) SiO 2 (0.0167) Liquid glass (0.006) NH 4 OH (0.0004) J(AC)=33 (A/dm2) T=50℃ t =20min IAC/ICC=1.45J (AC) = 33 (A / dm 2 ) T = 50 ° C t = 20min I AC / I CC = 1.45 7070 기능성 코팅층 + 다공성 코팅층Functional coating layer + porous coating layer 0.11 이하0.11 or less 33 A2024A2024 (Et)4NOH (0.1360) SiO2 (0.167) Liquid glass (0.006) NH4OH ( - )(Et) 4 NOH (0.1360) SiO 2 (0.167) Liquid glass (0.006) NH 4 OH (-) J(AC)=33 (A/dm2) T=45℃ t =55min IAC/ICC=1.45J (AC) = 33 (A / dm 2 ) T = 45 ℃ t = 55min I AC / I CC = 1.45 205205 기능성 코팅층 + 다공성 코팅층Functional coating layer + porous coating layer 0.18 이하0.18 or less 44 A2024A2024 (Bu)4NOH (0.1020) SiO2 (0.167) Liquid glass (0.003) NH4OH ( - )(Bu) 4 NOH (0.1020) SiO 2 (0.167) Liquid glass (0.003) NH 4 OH (-) J(AC)=12 (A/dm2) T=40℃ t =55min IAC/ICC=1.33J (AC) = 12 (A / dm 2 ) T = 40 ℃ t = 55min I AC / IC C = 1.33 7070 기능성 코팅층 + 다공성 코팅층Functional coating layer + porous coating layer 0.03 이하0.03 or less 5)5) A7075A7075 (Et)4NOH (0.034) SiO2 (0.025) Liquid glass (0.006) NH4OH (0.0004)(Et) 4 NOH (0.034) SiO 2 (0.025) Liquid glass (0.006) NH 4 OH (0.0004) J(AC)=19 (A/dm2) T=50℃ t =50min IAC/ICC=1.45J (AC) = 19 (A / dm 2 ) T = 50 ℃ t = 50min I AC / I CC = 1.45 9595 기능성 코팅층 + 다공성 코팅층Functional coating layer + porous coating layer 0.05 이하0.05 or less

본 발명에 따르면, 마이크로 플라즈마 기술을 사용하여 코팅층 내부에 Na 혹은 K 등의 알칼리 금속이 존재하지 않고, 다공질층도 거의 존재하지 않는 세라믹코팅층을 알루미늄합금의 표면에 형성시킬 수 있다. 이 기술을 통하여 얻을 수 있는 세라믹 코팅층은 반도체 식각챔버의 내부면 혹은 챔버내에 장입되는 장치 등의 표면에 적용할 수 있으며, 기타 다양한 응용이 가능할 것으로 기대된다.According to the present invention, it is possible to form a ceramic coating layer on the surface of an aluminum alloy in which alkali metals such as Na or K are not present in the coating layer and almost no porous layer is present in the coating layer using the microplasma technique. The ceramic coating layer obtained through this technique can be applied to the inner surface of the semiconductor etching chamber or the surface of the device embedded in the chamber, and various other applications are expected.

Claims (5)

30-50℃의 알칼리 수용액 내에서 교류성분과 음극성분의 교차전류를 60Hz로 인가하여 알루미늄 표면에 형성되는 마이크로 플라즈마를 이용하여 상기 알루미늄 표면에 세라믹 코팅층을 형성하며,A ceramic coating layer is formed on the aluminum surface by using a microplasma formed on the aluminum surface by applying a cross current of an alternating current component and a cathode component at 60 Hz in an alkali aqueous solution at 30-50 ° C., 상기 알칼리 수용액은 0.0136-0.136M의 4원계 유기 암모늄 수용액으로서 주성분은 4원계 유기 암모늄계 수용액으로서 4-에틸 수산화 암모늄(tetraethyl ammonium hydroxide, (C2H5)4NOH) 또는 4원계 유기 암모늄계 수용액으로서 4-부틸 수산화 암모늄(tetrabutil ammonium hydroxide, [CH3(CH2)3]NOH)인 것을 특징으로 하는 마이크로 플라즈마법을 이용한 알루미늄 합금의 보호막 형성 방법.The alkali aqueous solution is a 0.0136-0.136M quaternary organic ammonium aqueous solution, and the main component is a 4-membered organic ammonium aqueous solution, 4-ethyl ammonium hydroxide ((C 2 H 5 ) 4 NOH) or a quaternary organic ammonium aqueous solution. And 4-butyl ammonium hydroxide (tetrabutil ammonium hydroxide, [CH 3 (CH 2 ) 3 ] NOH). 삭제delete 제1항에 있어서, 상기 알칼리 수용액은 이동 성분으로서 분산된 분말이나 젤을 포함하며, 분말로는 0.0167-0.167M의 5마이크론 크기의 이산화규소(SiO2) 분말을 사용하고, 젤로는 0.003-0.006의 물유리(sodium silicate, Na2O·3SiO2)를 포함하는 것을 특징으로 하는 마이크로 플라즈마법을 이용한 알루미늄 합금의 보호막 형성 방법.The method of claim 1, wherein the aqueous alkali solution comprises a powder or a gel dispersed as a mobile component, the powder is used as a 5 micron silicon dioxide (SiO 2 ) powder of 0.0167-0.167M, the gel is 0.003-0.006 The water film (sodium silicate, Na 2 O · 3 SiO 2 ) of the protective film forming method of the aluminum alloy using a microplasma method characterized in that it comprises. 제1항에 있어서, 상기 알칼리 수용액은 0.0004M의 25 질량% 수산화암모늄 수용액을 버퍼 성분으로 포함하는 것을 특징으로 하는 마이크로 플라즈마법을 이용한 알루미늄 합금의 보호막 형성 방법.The method of claim 1, wherein the aqueous alkali solution comprises 0.0004M of 25% by mass aqueous ammonium hydroxide solution as a buffer component. 제1항에 있어서, 교류 전류(AC) 성분 대 음극 전류(CC, Cathodic Current)성분의 전류비율(IAC/ICC)은 1.3 - 2.5의 범위이고, 시간비율(τACCC)을 3 - 4의 범위로 유지하는 것을 특징으로 하는 마이크로 플라즈마법을 이용한 알루미늄 합금의 보호막 형성 방법.The method according to claim 1, wherein the current ratio (I AC / I CC ) of the alternating current (AC) component to the cathodic current (CC) component is in the range of 1.3 to 2.5, and the time ratio τ AC / τ CC is The protective film formation method of the aluminum alloy using the microplasma method characterized by maintaining in the range of 3-4.
KR1020060012244A 2006-02-08 2006-02-08 Method for producing ceramic coating on the surface of aluminium alloys using microplasma KR100730776B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060012244A KR100730776B1 (en) 2006-02-08 2006-02-08 Method for producing ceramic coating on the surface of aluminium alloys using microplasma

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060012244A KR100730776B1 (en) 2006-02-08 2006-02-08 Method for producing ceramic coating on the surface of aluminium alloys using microplasma

Publications (1)

Publication Number Publication Date
KR100730776B1 true KR100730776B1 (en) 2007-06-21

Family

ID=38372995

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060012244A KR100730776B1 (en) 2006-02-08 2006-02-08 Method for producing ceramic coating on the surface of aluminium alloys using microplasma

Country Status (1)

Country Link
KR (1) KR100730776B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101214400B1 (en) 2012-04-26 2012-12-21 배재대학교 산학협력단 Plasma electrolytic oxidation coating method for aluminum metal and aluminum metal-oxide
CN106714984A (en) * 2014-09-23 2017-05-24 通用线缆技术公司 Electrodeposition mediums for formation of protective coatings electrochemically deposited on metal substrates
WO2017164714A1 (en) * 2016-03-24 2017-09-28 덕산산업(주) Highly durable body to be plated
KR20180087414A (en) * 2016-03-24 2018-08-01 덕산산업주식회사 High durability plated body

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6365028B1 (en) 1997-12-17 2002-04-02 Isle Coat Limited Method for producing hard protection coatings on articles made of aluminum alloys

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6365028B1 (en) 1997-12-17 2002-04-02 Isle Coat Limited Method for producing hard protection coatings on articles made of aluminum alloys

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101214400B1 (en) 2012-04-26 2012-12-21 배재대학교 산학협력단 Plasma electrolytic oxidation coating method for aluminum metal and aluminum metal-oxide
CN106714984A (en) * 2014-09-23 2017-05-24 通用线缆技术公司 Electrodeposition mediums for formation of protective coatings electrochemically deposited on metal substrates
EP3197612A4 (en) * 2014-09-23 2018-05-23 General Cable Technologies Corporation Electrodeposition mediums for formation of protective coatings electrochemically deposited on metal substrates
US10246791B2 (en) 2014-09-23 2019-04-02 General Cable Technologies Corporation Electrodeposition mediums for formation of protective coatings electrochemically deposited on metal substrates
WO2017164714A1 (en) * 2016-03-24 2017-09-28 덕산산업(주) Highly durable body to be plated
KR20180087414A (en) * 2016-03-24 2018-08-01 덕산산업주식회사 High durability plated body
KR102206147B1 (en) 2016-03-24 2021-01-22 덕산산업(주) High durability plated body

Similar Documents

Publication Publication Date Title
JP4796464B2 (en) Aluminum alloy member with excellent corrosion resistance
KR101297489B1 (en) Metal oxide film, laminate, metal member and process for producing the same
Cui et al. The corrosion behaviors of multilayer diamond-like carbon coatings: influence of deposition periods and corrosive medium
KR20030010509A (en) Al alloy member having excellent corrosion resistance
US5192610A (en) Corrosion-resistant protective coating on aluminum substrate and method of forming same
KR100730776B1 (en) Method for producing ceramic coating on the surface of aluminium alloys using microplasma
Chou et al. Organic-inorganic sol-gel coating for corrosion protection of stainless steel
EP0243473A4 (en) Method of coating articles of magnesium and an electrolytic bath therefor.
US5225069A (en) Process for the production of oxide ceramic surface films on silicon-containing light metal cast alloys
EP0460701B1 (en) A method of forming a corrosion-resistant protective coating on aluminum substrate
Antonijevic et al. The influence of pH on electrochemical behavior of copper in presence of chloride ions
RU2543580C1 (en) Method of obtaining protective coatings on magnesium alloys
CN114737237A (en) Preparation method of coating material
US9005765B2 (en) Method for forming anodic oxide film, and aluminum alloy member using the same
US20180374706A1 (en) Corrosion resistant coating for semiconductor process equipment
KR100489640B1 (en) Electrolyte solution for anodizing and corrosion-resisting coating method of magnesium alloy using the same
KR101617677B1 (en) Composite steel sheet including metallic thin film and ceramic coated layer having excellent corrosion resistance at high temperature and preparation method thereof
Makarychev et al. Vapor-phase deposition of polymer siloxane coatings on the surface of copper and low-carbon steel
JP5452034B2 (en) Surface treatment member for semiconductor manufacturing apparatus and method for manufacturing the same
CN107460517A (en) A kind of preparation method of high corrosion-resistant cast aluminium Micro-Arc Oxidized Ceramic Coating
Zakaria et al. Corrosion Protection of Aluminum Metal Using MCM-41 Films Supported by Silver Nanoparticles and Distyrylpyrazine Photopolymer
KR20190068893A (en) Anodized Al or Al alloy member having good decay resistance and insulation property and the method for manufacturing the member
CN110184637A (en) Improve the ceramic layer and preparation method of Venturi tube inner wall antifriction corrosion resistance
CN113061880B (en) Organic framework loaded pretreatment passivator and preparation method and application thereof
US20220090282A1 (en) Manufacturing method of aluminum nitride

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Publication of correction
FPAY Annual fee payment

Payment date: 20130531

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140528

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150529

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160601

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20170601

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20180409

Year of fee payment: 12