KR102205956B1 - Method for manufacturing glass substrate-metallic substrate assembly for fabricating flexible elements - Google Patents

Method for manufacturing glass substrate-metallic substrate assembly for fabricating flexible elements Download PDF

Info

Publication number
KR102205956B1
KR102205956B1 KR1020180089838A KR20180089838A KR102205956B1 KR 102205956 B1 KR102205956 B1 KR 102205956B1 KR 1020180089838 A KR1020180089838 A KR 1020180089838A KR 20180089838 A KR20180089838 A KR 20180089838A KR 102205956 B1 KR102205956 B1 KR 102205956B1
Authority
KR
South Korea
Prior art keywords
glass substrate
metal substrate
layer
silicon
manufacturing
Prior art date
Application number
KR1020180089838A
Other languages
Korean (ko)
Other versions
KR20200014548A (en
Inventor
김경보
Original Assignee
인하공업전문대학산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인하공업전문대학산학협력단 filed Critical 인하공업전문대학산학협력단
Priority to KR1020180089838A priority Critical patent/KR102205956B1/en
Publication of KR20200014548A publication Critical patent/KR20200014548A/en
Application granted granted Critical
Publication of KR102205956B1 publication Critical patent/KR102205956B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/185Joining of semiconductor bodies for junction formation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01026Iron [Fe]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01028Nickel [Ni]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electroluminescent Light Sources (AREA)
  • Laminated Bodies (AREA)

Abstract

본 발명은 (a) 유리기판 상에 실리콘(Si)층을 형성하는 단계; (b) 상기 실리콘층 표면을 산화시켜 산화 실리콘(SiO2)층을 형성하는 단계; (c) 상기 산화실리콘층과 금속기판의 일면을 접촉시키는 단계; 및 (d) 상기 산화실리콘층을 용융 및 냉각시켜 유리기판과 금속기판을 접합하는 단계를 포함하는 유리기판-금속기판 접합체의 제조방법에 대한 것이다.The present invention comprises the steps of (a) forming a silicon (Si) layer on a glass substrate; (b) oxidizing the surface of the silicon layer to form a silicon oxide (SiO 2 ) layer; (c) contacting the silicon oxide layer with one surface of the metal substrate; And (d) melting and cooling the silicon oxide layer to bond the glass substrate and the metal substrate to a method of manufacturing a glass substrate-metal substrate assembly.

Description

유연성 소자 제조용 유리기판-금속기판 접합체의 제조방법{METHOD FOR MANUFACTURING GLASS SUBSTRATE-METALLIC SUBSTRATE ASSEMBLY FOR FABRICATING FLEXIBLE ELEMENTS}Manufacturing method of glass substrate-metal substrate assembly for manufacturing flexible elements {METHOD FOR MANUFACTURING GLASS SUBSTRATE-METALLIC SUBSTRATE ASSEMBLY FOR FABRICATING FLEXIBLE ELEMENTS}

본 발명은 유연성 소자의 제조에 사용될 수 있는 유리기판-금속기판 접합체의 제조방법에 대한 것이다.The present invention relates to a method of manufacturing a glass substrate-metal substrate assembly that can be used for manufacturing a flexible device.

AMOLED 디스플레이를 포함하는 전자소자(OLED 조명, 박막태양전지 등)를 제작하기 위해서는 현재까지 0.5~1mm 두께의 유리기판을 사용해 왔다. In order to manufacture electronic devices (OLED lighting, thin film solar cells, etc.) including AMOLED displays, glass substrates with a thickness of 0.5 to 1 mm have been used so far.

그러나, 최근 제품의 경량화 및 소형화가 중요시 되고 있는 디스플레이 분야 등에서 유리기판은 무겁고 유연성이 없고 연속공정이 어렵다는 한계가 있기 때문에 유리기판을 대체하여 가볍고 유연하며 연속공정이 가능한 장점을 갖는 플라스틱 기판을 핸드폰, 노트북, PDA 등에 적용하기 위한 연구가 활발히 진행되고 있다.However, in the display field, where light weight and miniaturization of products are recently considered important, glass substrates are heavy, inflexible, and have limitations in that continuous processing is difficult. Research for application to notebook computers and PDAs is being actively conducted.

특히, 폴리이미드(PI) 수지는 합성이 용이하고 박막형 필름을 만들 수 있으며 경화를 위한 가교기가 필요 없는 장점을 가지고 있어, 최근에 전자 제품의 경량 및 정밀화 현상으로 LCD, PDP, OLED, 태양전지, 및 전자종이 등의 반도체 소재 및 가볍고 유연한 성질을 지니는 플렉시블 디스플레이 기판(flexible plastic display board)에 사용하려는 많은 연구가 진행되고 있다.In particular, polyimide (PI) resins are easy to synthesize, can make thin films, and do not require a crosslinker for curing. As a result of the recent light weight and precision phenomenon of electronic products, LCD, PDP, OLED, solar cells, And semiconductor materials such as electronic paper and flexible plastic display boards having light and flexible properties are being studied.

일례로, 전자업계에서는 두께가 30~100㎛ 정도의 수준으로 얇은 폴리이미드 플라스틱 필름을 유리기판에 코팅하여 전자소자를 제작한 후 레이저를 이용하여 유리기판으로부터 폴리이미드를 탈착하여 유연한 전자소자를 제작하고 있다.For example, in the electronics industry, an electronic device is manufactured by coating a thin polyimide plastic film with a thickness of about 30 to 100 μm on a glass substrate, and then the polyimide is detached from the glass substrate using a laser to produce a flexible electronic device. Are doing.

그러나, 폴리이미드는 폴리머 소재가 갖고 있는 낮은 열적 특성, 낮은 강도, 높은 수분 투습도 등에 대한 획기적인 개선이 필요하고, 이를 위해 폴리머 소재보다 우수한 물성(우수한 방열성 및 투습 방지 성능 등)을 갖는 금속 소재를 이용한 유연한 전자소자 개발이 필요하다.However, polyimide needs a breakthrough improvement in the low thermal properties, low strength, and high moisture permeability of polymer materials.To this end, a metal material having superior properties (excellent heat dissipation and moisture permeability prevention performance, etc.) is used. It is necessary to develop flexible electronic devices.

국제공개특허 WO 2010/065542(공개일:2010.06.10.)International Publication Patent WO 2010/065542 (Publication date: 2010.06.10.) 한국공개특허 제10-2005-0052830호(등록일:2005.06.07.)Korean Patent Publication No. 10-2005-0052830 (Registration date: 2005.06.07.) 한국공개특허 제10-2016-0067409호 (공개일:2016.06.14.)Korean Patent Publication No. 10-2016-0067409 (Publication date: 2016.06.14.)

본 발명이 해결하고자 하는 기술적 과제는 유연성 소자용 금속기판을 제조하기 위한 유리기판-금속기판 접합체의 제조방법을 제공하는 것이다.The technical problem to be solved by the present invention is to provide a method of manufacturing a glass substrate-metal substrate assembly for manufacturing a metal substrate for a flexible device.

상기 기술적 과제를 달성하기 위해, 본 발명은 (a) 유리기판 상에 실리콘(Si)층을 형성하는 단계; (b) 상기 실리콘층 표면을 산화시켜 이산화실리콘(SiO2)층을 형성하는 단계; (c) 상기 이산화실리콘층과 금속기판의 일면을 접촉시키는 단계; 및 (d) 상기 이산화실리콘층을 용융 및 냉각시켜 유리기판과 금속기판을 접합하는 단계;를 포함하는 유리기판-금속기판 접합체의 제조방법을 제안한다.In order to achieve the above technical problem, the present invention comprises the steps of (a) forming a silicon (Si) layer on a glass substrate; (b) oxidizing the surface of the silicon layer to form a silicon dioxide (SiO 2 ) layer; (c) contacting the silicon dioxide layer with one surface of the metal substrate; And (d) bonding the glass substrate to the metal substrate by melting and cooling the silicon dioxide layer.

또한, 상기 단계 (a)에서 물리적 기상 증착(Physical Vapor Deposition, PVD) 또는 화학적 기상 증착(Chemical Vapor deposition, CVD)에 의해 실리콘(Si)층을 형성하는 것을 특징으로 하는 유리기판-금속기판 접합체의 제조방법을 제안한다.Further, in step (a), a silicon (Si) layer is formed by physical vapor deposition (PVD) or chemical vapor deposition (CVD). Suggest a manufacturing method.

또한, 상기 단계 (b)에서 상기 실리콘층 표면을 대기중에 노출시켜 이산화실리콘(SiO2)으로 이루어진 자연산화막을 형성하는 것을 특징으로 하는 유리기판-금속기판 접합체의 제조방법을 제안한다.In addition, in step (b), the surface of the silicon layer is exposed to the atmosphere to form a natural oxide film made of silicon dioxide (SiO 2 ). A method of manufacturing a glass substrate-metal substrate assembly is proposed.

또한, 상기 금속기판은 철(Fe), 니켈(Ni), 구리(Cu), 알루미늄(Al) 및 티타늄(Ti)으로 이루어지는 군으로부터 선택되는 1종의 금속 또는 그 합금으로 이루어진 포일(foil)인 것을 특징으로 하는 유리기판-금속기판 접합체의 제조방법을 제안한다.In addition, the metal substrate is a foil made of one metal selected from the group consisting of iron (Fe), nickel (Ni), copper (Cu), aluminum (Al), and titanium (Ti) or an alloy thereof. It proposes a method of manufacturing a glass substrate-metal substrate assembly, characterized in that.

또한, 상기 금속기판은 스테인리스 스틸(stainless steel) 또는 Ni-Fe계 합금으로 이루어진 포일(foil)인 것을 특징으로 하는 유리기판-금속기판 접합체의 제조방법을 제안한다.In addition, a method for manufacturing a glass substrate-metal substrate assembly is proposed, wherein the metal substrate is a foil made of stainless steel or a Ni-Fe alloy.

그리고, 본 발명은 발명의 다른 측면에서 상기 접합 방법에 따라 금속기판과 유리기판을 접합한 후, (e) 상기 금속기판 상에 소자 형성하고 상기 유리기판을 박리하는 단계를 추가로 실시하는 금속기판 포함 유연성 소자의 제조방법을 제안한다.And, in another aspect of the present invention, after bonding the metal substrate and the glass substrate according to the bonding method, (e) a metal substrate further performing the step of forming an element on the metal substrate and peeling the glass substrate. It proposes a method of manufacturing a flexible device containing.

또한, 상기 단계 (e)에서 레이저 조사 또는 기계적 응력 인가에 의해 유리기판을 박리하는 것을 특징으로 하는 금속기판 포함 유연성 소자의 제조방법을 제안한다.In addition, a method of manufacturing a flexible device including a metal substrate, characterized in that the glass substrate is peeled off by laser irradiation or mechanical stress application in step (e) is proposed.

그리고, 본 발명은 발명의 또 다른 측면에서 금속기판 포함 유연성 소자의 제조방법에 의해 제조된 유연성 디스플레이 소자를 제안한다.In addition, the present invention proposes a flexible display device manufactured by a method of manufacturing a flexible device including a metal substrate in another aspect of the present invention.

그리고, 본 발명은 발명의 또 다른 측면에서 금속기판 포함 유연성 소자의 제조방법에 의해 제조된 유연성 광전소자를 제안한다.Further, the present invention proposes a flexible photoelectric device manufactured by a method of manufacturing a flexible device including a metal substrate in another aspect of the present invention.

본 발명에 따른 유리기판-금속기판 접합체의 제조방법에 의하면, 금속기판과 유리기판과의 접합 특성 개선을 위해, 이산화실리콘(SiO2)이 아닌 실리콘(Si) 만을 먼저 증착한 후 대기 중에 노출시켜 실리콘 표면에 이산화실리콘 자연산화막을 형성시킴으로써, 종래 기술에서와 같이 유리 파우더를 사용하지 않을 뿐만 아니라 금속기판과 유리기판의 접합을 위해 유리기판 상에 이산화실리콘을 직접 형성시키는 방법에 비해 훨씬 더 용이하고 간단한 공정 및 장비를 통해 유연성 소자 제조용 유리기판-금속기판 접합체를 제조할 수 있다.According to the manufacturing method of the glass substrate-metal substrate assembly according to the present invention, in order to improve the bonding characteristics between the metal substrate and the glass substrate, only silicon (Si), not silicon dioxide (SiO 2 ), is first deposited and then exposed to the atmosphere. By forming a silicon dioxide natural oxide film on the silicon surface, it is much easier than the method of directly forming silicon dioxide on a glass substrate for bonding a metal substrate and a glass substrate as well as not using glass powder as in the prior art. A glass substrate-metal substrate assembly for manufacturing a flexible device can be manufactured through a simple process and equipment.

도 1은 본 발명에 따른 유리기판-금속기판 접합체의 제조방법의 각 단계를 보여주는 공정 흐름도이다.
도 2(a) 내지 도 2(e)는 본 발명에 따른 유리기판-금속기판 접합체의 제조방법의 각 단계를 보여주는 도면이다.
도 3(a) 및 도 3(b)는 본 발명에 따른 금속기판 포함 유연성 소자의 제조방법에 있어서, 금속기판과 유리기판을 접합한 후 추가로 수행하는 단계를 보여주는 도면이다.
1 is a process flow diagram showing each step of a method of manufacturing a glass substrate-metal substrate assembly according to the present invention.
2(a) to 2(e) are views showing each step of a method of manufacturing a glass substrate-metal substrate assembly according to the present invention.
3(a) and 3(b) are diagrams showing additional steps after bonding a metal substrate and a glass substrate in a method of manufacturing a flexible device including a metal substrate according to the present invention.

본 발명을 설명함에 있어서 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다.In describing the present invention, if it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the subject matter of the present invention, a detailed description thereof will be omitted.

본 발명의 개념에 따른 실시예는 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있으므로 특정 실시예들을 도면에 예시하고 본 명세서 또는 출원에 상세하게 설명하고자 한다. 그러나 이는 본 발명의 개념에 따른 실시 예를 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.Since the embodiments according to the concept of the present invention can apply various changes and have various forms, specific embodiments will be illustrated in the drawings and described in detail in the present specification or application. However, this is not intended to limit the embodiments according to the concept of the present invention to a specific form of disclosure, and it should be understood that all changes, equivalents, and substitutes included in the spirit and scope of the present invention are included.

본 명세서에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 설시된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terms used in the present specification are only used to describe specific embodiments, and are not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In the present specification, terms such as "comprise" or "have" are intended to designate the presence of a set feature, number, step, action, component, part, or combination thereof, but one or more other features or numbers It is to be understood that the possibility of addition or presence of, steps, actions, components, parts, or combinations thereof is not preliminarily excluded.

이하, 본 발명을 상세히 설명하도록 한다.Hereinafter, the present invention will be described in detail.

도 1은 본 발명에 따른 유리기판-금속기판 접합체의 제조방법의 각 단계를 보여주는 공정 흐름도이다.1 is a process flow diagram showing each step of a method of manufacturing a glass substrate-metal substrate assembly according to the present invention.

도 1에 도시한 바와 같이, 본 발명에 따른 유리기판-금속기판 접합체의 제조방법은, (a) 유리기판 상에 실리콘(Si)층을 형성하는 단계; (b) 상기 실리콘층 표면을 산화시켜 산화 실리콘(SiO2)층을 형성하는 단계; (c) 상기 산화실리콘층과 금속기판의 일면을 접촉시키는 단계; 및 (d) 상기 산화실리콘층을 용융 및 냉각시켜 유리기판과 금속기판을 접합하는 단계를 포함하는 것을 특징으로 한다.As shown in FIG. 1, a method of manufacturing a glass substrate-metal substrate assembly according to the present invention includes the steps of: (a) forming a silicon (Si) layer on a glass substrate; (b) oxidizing the surface of the silicon layer to form a silicon oxide (SiO 2 ) layer; (c) contacting the silicon oxide layer with one surface of the metal substrate; And (d) bonding the glass substrate and the metal substrate by melting and cooling the silicon oxide layer.

본 발명에 따른 유리기판-금속기판 접합체의 제조방법의 각 단계를 보여주는 도 2(a) 내지 도 2(e)를 참조해 각 단계를 상세히 설명한다.Each step will be described in detail with reference to FIGS. 2(a) to 2(e) showing each step of the method for manufacturing a glass substrate-metal substrate assembly according to the present invention.

먼저, 상기 단계 (a)에서는 도 2(a)에 도시한 바와 캐리어 기판으로서 유리기판(11)을 준비한 후, 도 2(b)에 도시한 바와 같이 상기 유리기판 상에 실리콘(Si)층을 형성한다.First, in the step (a), after preparing a glass substrate 11 as a carrier substrate as shown in FIG. 2(a), a silicon (Si) layer is formed on the glass substrate as shown in FIG. 2(b). To form.

이때, 상기 실리콘층을 형성하는 방법은 특별히 제한되지 않으며, 예를 들면, 스퍼터링(Sputtering), 전자빔증착(E-beam evaporation), 열증착(Thermal evaporation), 분자빔증착(Molecular Beam Epitaxy), 수소기상증착(Hydride Vapor Phase Epitaxy) 등의 물리적 기상 증착(Physical Vapor Deposition, PVD)에 의하거나, 유기금속기상증착(MOCVD), 플라즈마 화학기상증착(PECVD), 대기압 화학기상증착(APCVD), 저압화학기상증착(LPCVD), 초고진공 화학기상증착(Ultra High Vacuum Chemical Vapor Deposition) 등의 화학적 기상 증착(Chemical Vapor deposition, CVD)에 의해 유리기판 상에 실리콘층을 형성할 수 있다.In this case, the method of forming the silicon layer is not particularly limited, and for example, sputtering, electron beam evaporation, thermal evaporation, molecular beam evaporation, hydrogen Physical Vapor Deposition (PVD) such as Hydride Vapor Phase Epitaxy, or organometallic vapor deposition (MOCVD), plasma chemical vapor deposition (PECVD), atmospheric pressure chemical vapor deposition (APCVD), low pressure chemistry A silicon layer may be formed on a glass substrate by chemical vapor deposition (CVD) such as vapor deposition (LPCVD) and ultra high vacuum chemical vapor deposition.

다음으로, 도 2(c)에 도시한 바와 같이 단계 (b)에서는 상기 실리콘층 표면을 산화시켜 실리콘층 표면의 일부를 이산화실리콘(SiO2)층으로 형성하는 단계이다.Next, as shown in FIG. 2(c), in step (b), the surface of the silicon layer is oxidized to form part of the surface of the silicon layer into a silicon dioxide (SiO 2 ) layer.

본 단계에서는 건조 산소나 수증기 등의 산화성 분위기 하에서 고온(800℃ 이상)으로 실리콘층을 가열해 이산화실리콘층을 형성할 수도 있으나, 공정의 간소화 및 경제성의 측면에서 실리콘층 표면을 대기중에 노출시켜 이산화실리콘 자연산화 피막을 형성시키는 것이 보다 바람직하다.In this step, a silicon dioxide layer may be formed by heating the silicon layer at a high temperature (800℃ or higher) in an oxidizing atmosphere such as dry oxygen or water vapor, but in terms of process simplification and economy, the silicon layer surface is exposed to the atmosphere. It is more preferable to form a silicon natural oxide film.

상기 단계 (a) 및 (b)에서와 같이 유리기판 상에 먼저 실리콘층을 형성시킨 후 상기 실리콘층 표면을 산화시켜 이산화실리콘층을 형성시키면, 열CVD (thermal chemical vapor depositon), LPCVD(low pressure CVD), PECVD (plasma-enhanced CVD) 등과 같은 방법에 의해 유리기판 상에 곧바로 이산화실리콘층을 형성시키는 방법에 비해서 보다 간단한 공정 및 장비를 통해, 유리기판과 금속기판 간의 접합력을 부여하는 이산화실리콘층을 형성할 수 있다.As in steps (a) and (b), when a silicon layer is first formed on a glass substrate and then the surface of the silicon layer is oxidized to form a silicon dioxide layer, thermal chemical vapor depositon (CVD) or low pressure A silicon dioxide layer that imparts bonding strength between a glass substrate and a metal substrate through simpler processes and equipment than a method of directly forming a silicon dioxide layer on a glass substrate by methods such as CVD) and PECVD (plasma-enhanced CVD). Can be formed.

다음으로, 단계 (c)에서는 도 2(d)에 도시한 바와 같이 상기 이산화실리콘층(13) 표면과 금속기판(14)의 일면을 접촉시켜 유리기판(11) 상에 금속기판(14)을 정렬시킨다.Next, in step (c), as shown in FIG. 2(d), the surface of the silicon dioxide layer 13 and one surface of the metal substrate 14 are brought into contact to form the metal substrate 14 on the glass substrate 11. Align.

여기서, 상기 금속기판은 철(Fe), 니켈(Ni), 구리(Cu), 알루미늄(Al) 및 티타늄(Ti)으로 이루어지는 군으로부터 선택되는 1종의 금속 또는 그 합금으로 이루어진 금속포일(foil)일 수 있으며, 보다 바람직하게는 스테인리스 스틸(stainless steel) 또는 Ni-Fe계 합금으로 이루어진 금속포일(foil)일 수 있다.Here, the metal substrate is a metal foil made of one metal selected from the group consisting of iron (Fe), nickel (Ni), copper (Cu), aluminum (Al), and titanium (Ti), or an alloy thereof. It may be, more preferably stainless steel (stainless steel) or may be a metal foil (foil) made of a Ni-Fe-based alloy.

이어서, 도 2(e)에 도시한 바와 같이 단계 (d)에서 이산화실리콘층(13)을 용융시켜 금속기판(14)과 유리기판(11)의 계면에서 Si 및 O의 상호 확산 등에 의한 반응을 유도해 금속기판과 유리기판 사이에 우수한 접합 특성을 갖는 계면 접합층을 형성시키고 냉각 과정을 거쳐 최종적으로 금속기판-유리기판 접합체(1)를 얻게 된다.Subsequently, as shown in FIG. 2(e), the silicon dioxide layer 13 is melted in step (d) to react by mutual diffusion of Si and O at the interface between the metal substrate 14 and the glass substrate 11, etc. By induction, an interfacial bonding layer having excellent bonding properties is formed between the metal substrate and the glass substrate, and through a cooling process, a metal substrate-glass substrate bonded body 1 is finally obtained.

전술한 본 발명에 따른 유리기판-금속기판 접합체의 제조방법에 의하면, 금속기판과 유리기판과의 접합 특성 개선을 위해, 이산화실리콘(SiO2)이 아닌 실리콘(Si) 만을 먼저 증착한 후 대기 중에 노출시켜 실리콘 표면에 이산화실리콘 자연산화막을 형성시킴으로써, 종래 기술에서와 같이 유리 파우더를 사용하지 않을 뿐만 아니라 금속기판과 유리기판의 접합을 위해 유리기판 상에 이산화실리콘을 직접 형성시키는 방법에 비해 훨씬 더 용이하고 간단한 공정 및 장비를 통해 유연성 소자 제조용 유리기판-금속기판 접합체를 제조할 수 있다.According to the manufacturing method of the glass substrate-metal substrate assembly according to the present invention described above, in order to improve the bonding property between the metal substrate and the glass substrate, only silicon (Si) rather than silicon dioxide (SiO 2 ) is first deposited and then in the atmosphere. By exposing to form a silicon dioxide natural oxide film on the silicon surface, it is much more than a method of directly forming silicon dioxide on a glass substrate for bonding a metal substrate and a glass substrate as well as not using glass powder as in the prior art. A glass substrate-metal substrate assembly for manufacturing a flexible device can be manufactured through an easy and simple process and equipment.

상기 본 발명에 따른 유리기판-금속기판 접합체의 제조방법에 의해 제조된 금속기판-유리기판 접합체(1)는 광전소자, 디스플레이 소자 등 각종 소자의 제조 공정에 제공된다.The metal substrate-glass substrate assembly 1 manufactured by the method for manufacturing a glass substrate-metal substrate assembly according to the present invention is provided in a manufacturing process of various devices such as photoelectric devices and display devices.

일례로, 도 3(a) 및 도 3(b)에 도시한 것처럼, 금속기판-유리기판 접합체의 금속기판 상에 광전소자, 디스플레이 소자 등 각종 소자(15)를 형성하는 공정을 수행하고 상기 유리기판(11)을 박리하는 단계 (e)를 추가로 실시해 금속기판(14)을 포함하는 유연성 소자(2)를 제조할 수 있다.For example, as shown in FIGS. 3(a) and 3(b), a process of forming various elements 15 such as photoelectric devices and display devices on a metal substrate of a metal substrate-glass substrate assembly is performed, and the glass The step (e) of peeling the substrate 11 may be additionally performed to manufacture the flexible device 2 including the metal substrate 14.

상기 단계 (e)에서 유리기판의 박리 공정은 금속기판과 유리기판의 접합부에 레이저 조사하거나 기계적 응력을 인가해 이루어질 수 있다.The peeling process of the glass substrate in step (e) may be performed by irradiating a laser or applying a mechanical stress to the junction between the metal substrate and the glass substrate.

레이저 조사를 통한 유리기판 박리의 경우에는, 유리기판 뒷면 또는 금속기판-유리기판 접합체의 측면에서 XeCl 엑시머 레이저(excimer laser) 등을 조사해 유리기판과 금속기판 간의 결합력을 약화시켜 쉽게 분리할 수 있다.In the case of peeling a glass substrate through laser irradiation, it can be easily separated by irradiating an XeCl excimer laser or the like from the back side of the glass substrate or the side of the metal substrate-glass substrate assembly to weaken the bonding force between the glass substrate and the metal substrate.

1: 금속기판-유리기판 접합체
2: 금속기판 포함 유연성 소자
11: 유리기판
12: 실리콘(Si)층
13: 이산화실리콘(SiO2)층
14: 금속기판
15: 소자
1: metal substrate-glass substrate assembly
2: Flexible device including metal substrate
11: Glass substrate
12: silicon (Si) layer
13: Silicon dioxide (SiO 2 ) layer
14: metal substrate
15: element

Claims (9)

(a) 유리기판 상에 실리콘(Si)층을 형성하는 단계;
(b) 상기 실리콘층 표면을 산화시켜 이산화실리콘(SiO2)층을 형성하는 단계;
(c) 상기 이산화실리콘층과 금속기판의 일면을 접촉시키는 단계; 및
(d) 상기 이산화실리콘층을 용융 및 냉각시켜 유리기판과 금속기판을 접합하는 단계;를 포함하는 유리기판-금속기판 접합체의 제조방법.
(a) forming a silicon (Si) layer on a glass substrate;
(b) oxidizing the surface of the silicon layer to form a silicon dioxide (SiO 2 ) layer;
(c) contacting the silicon dioxide layer with one surface of the metal substrate; And
(d) bonding the glass substrate and the metal substrate by melting and cooling the silicon dioxide layer; a method of manufacturing a glass substrate-metal substrate assembly comprising.
제1항에 있어서,
상기 단계 (a)에서 물리적 기상 증착(Physical Vapor Deposition, PVD) 또는 화학적 기상 증착(Chemical Vapor deposition, CVD)에 의해 실리콘(Si)층을 형성하는 것을 특징으로 하는 유리기판-금속기판 접합체의 제조방법.
The method of claim 1,
Method of manufacturing a glass substrate-metal substrate assembly, characterized in that the silicon (Si) layer is formed by physical vapor deposition (PVD) or chemical vapor deposition (CVD) in step (a) .
제1항에 있어서,
상기 단계 (b)에서 상기 실리콘층 표면을 대기중에 노출시켜 이산화실리콘(SiO2)으로 이루어진 자연산화막을 형성하는 것을 특징으로 하는 유리기판-금속기판 접합체의 제조방법.
The method of claim 1,
In the step (b), the surface of the silicon layer is exposed to the atmosphere to form a natural oxide film made of silicon dioxide (SiO 2 ).
제1항에 있어서,
상기 금속기판은 철(Fe), 니켈(Ni), 구리(Cu), 알루미늄(Al) 및 티타늄(Ti)으로 이루어지는 군으로부터 선택되는 1종의 금속 또는 그 합금으로 이루어진 포일(foil)인 것을 특징으로 하는 유리기판-금속기판 접합체의 제조방법.
The method of claim 1,
The metal substrate is a foil made of one metal selected from the group consisting of iron (Fe), nickel (Ni), copper (Cu), aluminum (Al), and titanium (Ti) or an alloy thereof. Method for producing a glass substrate-metal substrate assembly.
제4항에 있어서,
상기 금속기판은 스테인리스 스틸(stainless steel) 또는 Ni-Fe계 합금으로 이루어진 포일(foil)인 것을 특징으로 하는 유리기판-금속기판 접합체의 제조방법.
The method of claim 4,
The method of manufacturing a glass substrate-metal substrate assembly, characterized in that the metal substrate is a foil made of stainless steel or Ni-Fe alloy.
제1항에 있어서, (e) 상기 금속기판 상에 소자를 형성한 후, 상기 유리기판을 박리하는 단계를 더 포함하는, 유리기판-금속기판 접합체의 제조방법.The method of claim 1, further comprising: (e) peeling the glass substrate after forming the device on the metal substrate. 제6항에 있어서,
상기 단계 (e)에서 레이저 조사 또는 기계적 응력 인가에 의해 유리기판을 박리하는 것을 특징으로 하는 유리기판-금속기판 접합체의 제조방법.
The method of claim 6,
The method of manufacturing a glass substrate-metal substrate assembly, characterized in that the glass substrate is peeled off by laser irradiation or mechanical stress application in step (e).
삭제delete 삭제delete
KR1020180089838A 2018-08-01 2018-08-01 Method for manufacturing glass substrate-metallic substrate assembly for fabricating flexible elements KR102205956B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180089838A KR102205956B1 (en) 2018-08-01 2018-08-01 Method for manufacturing glass substrate-metallic substrate assembly for fabricating flexible elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180089838A KR102205956B1 (en) 2018-08-01 2018-08-01 Method for manufacturing glass substrate-metallic substrate assembly for fabricating flexible elements

Publications (2)

Publication Number Publication Date
KR20200014548A KR20200014548A (en) 2020-02-11
KR102205956B1 true KR102205956B1 (en) 2021-01-21

Family

ID=69568995

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180089838A KR102205956B1 (en) 2018-08-01 2018-08-01 Method for manufacturing glass substrate-metallic substrate assembly for fabricating flexible elements

Country Status (1)

Country Link
KR (1) KR102205956B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230046835A (en) 2021-09-30 2023-04-06 인하공업전문대학산학협력단 Method for manufacturing flexible device including metal substrate manufactured by electroforming

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4650521B2 (en) 2008-06-05 2011-03-16 ソニー株式会社 Electrode, method for forming the same, and semiconductor device
JP2012212924A (en) 2003-02-18 2012-11-01 Corning Inc Glass-based soi structure
WO2016125787A1 (en) 2015-02-06 2016-08-11 旭硝子株式会社 Glass substrate, laminated substrate, and production method for glass substrate

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980054434A (en) * 1996-12-27 1998-09-25 박원훈 Direct bonding between substrates
KR100691507B1 (en) 2003-12-01 2007-03-09 삼성전자주식회사 Method of laminating the plastic plate and method of manufacturing the flexible plate using the same
SG171917A1 (en) 2008-12-02 2011-07-28 Univ Arizona Method of preparing a flexible substrate assembly and flexible substrate assembly therefrom
TWI421809B (en) * 2009-04-17 2014-01-01 Ind Tech Res Inst Method for isolating a flexible substrate from a carrier and method for fabricating an electric device
KR101120045B1 (en) * 2010-02-26 2012-03-22 주식회사 테라세미콘 Method for manufacturing poly crystalline silicon layer
KR101144840B1 (en) * 2010-06-08 2012-05-14 삼성코닝정밀소재 주식회사 Method for producing bonded substrates
KR101757519B1 (en) 2014-12-04 2017-07-12 주식회사 엘지화학 Polyimide film for flexible susbtrate of photoelectronic device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012212924A (en) 2003-02-18 2012-11-01 Corning Inc Glass-based soi structure
JP4650521B2 (en) 2008-06-05 2011-03-16 ソニー株式会社 Electrode, method for forming the same, and semiconductor device
WO2016125787A1 (en) 2015-02-06 2016-08-11 旭硝子株式会社 Glass substrate, laminated substrate, and production method for glass substrate

Also Published As

Publication number Publication date
KR20200014548A (en) 2020-02-11

Similar Documents

Publication Publication Date Title
US10833106B2 (en) Flexible array substrate, manufacturing method thereof, and display panel
KR101161301B1 (en) Fabrication method of flexible substrate having buried metal electrode using plasma, and the flexible substrate thereby
US20220223806A1 (en) Method for producing a display having a carrier substrate, a carrier substrate produced according to said method, and a cover glass intended for a flexible display
TW200532846A (en) Diffusion barrier layer and method for manufacturing a diffusion barrier layer
TW201003860A (en) Electronic device and method of manufacturing the same
US8395257B2 (en) Electronic module and method for producing an electric functional layer on a substrate by blowing powder particles of an electrically conductive material
WO2003063214A8 (en) Process for preparation of separable semiconductor assemblies, particularly to form substrates for electronics, optoelectronics and optics
US20160226023A1 (en) Interposer layer for enhancing adhesive attraction of poly(p-xylylene) film to substrate
CN102130026A (en) Wafer-level low-temperature packaging method based on gold-tin alloy bonding
KR102205956B1 (en) Method for manufacturing glass substrate-metallic substrate assembly for fabricating flexible elements
Kong et al. Transparent Omni‐Directional Stretchable Circuit Lines Made by a Junction‐Free Grid of Expandable Au Lines
JP5164465B2 (en) Resin substrate
US20110123930A1 (en) Ceramic substrate preparation process
JP4548828B2 (en) Method for manufacturing metal-coated substrate
US8912450B2 (en) Method for attaching a metal surface to a carrier, a method for attaching a chip to a chip carrier, a chip-packaging module and a packaging module
KR20100021521A (en) Resin substrate
Ko et al. Ultrathin, Flexible, and Transparent Oxide Thin‐Film Transistors by Delamination and Transfer Methods for Deformable Displays
Huang et al. Novel copper metallization schemes on ultra-thin, bare glass interposers with through-vias
US8808857B1 (en) Carbon nanotube array interface material and methods
KR102170895B1 (en) flexible substrate assembly with stretchable electrodes and fabrication method of it
US10763232B1 (en) Electrical joint structure
Dwarakanath et al. Infusing inorganics into the subsurface of polymer redistribution layer dielectrics for improved adhesion to metals interconnects
JP5164464B2 (en) Resin substrate
KR102660721B1 (en) Method of forming a metal thin film on a glass substrate
Lee Atomic layer deposition/molecular layer deposition for packaging and interconnect of N/MEMS

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right