KR102205004B1 - Precursor compounds for the production of photoactive layers of thin film solar cells and their preparation method - Google Patents

Precursor compounds for the production of photoactive layers of thin film solar cells and their preparation method Download PDF

Info

Publication number
KR102205004B1
KR102205004B1 KR1020190023940A KR20190023940A KR102205004B1 KR 102205004 B1 KR102205004 B1 KR 102205004B1 KR 1020190023940 A KR1020190023940 A KR 1020190023940A KR 20190023940 A KR20190023940 A KR 20190023940A KR 102205004 B1 KR102205004 B1 KR 102205004B1
Authority
KR
South Korea
Prior art keywords
thin film
formula
solar cell
photoactive layer
film solar
Prior art date
Application number
KR1020190023940A
Other languages
Korean (ko)
Other versions
KR20200105164A (en
Inventor
정덕영
이현종
차지현
Original Assignee
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성균관대학교산학협력단 filed Critical 성균관대학교산학협력단
Priority to KR1020190023940A priority Critical patent/KR102205004B1/en
Priority to US16/804,141 priority patent/US11130770B2/en
Publication of KR20200105164A publication Critical patent/KR20200105164A/en
Application granted granted Critical
Publication of KR102205004B1 publication Critical patent/KR102205004B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic System
    • C07F1/005Compounds containing elements of Groups 1 or 11 of the Periodic System without C-Metal linkages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02568Chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03923Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIBIIICVI compound materials, e.g. CIS, CIGS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/055Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means where light is absorbed and re-emitted at a different wavelength by the optical element directly associated or integrated with the PV cell, e.g. by using luminescent material, fluorescent concentrators or up-conversion arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

태양전지의 광활성층으로 쓰일 수 있는 CIS, CGS 또는 CIGS 박막의 전구체로 활용할 수 있는 박막 태양전지 광활성층 제조용 전구체 화합물 및 이의 제조 방법 에 관한 것으로, 하기 화학식 1로 표시되는, 박막 태양전지 광활성층 제조용 전구체 화합물:을 포함한다.
[화학식 1]

Figure 112019021272086-pat00007

상기 화학식 1에서,
X는 인듐(In) 또는 갈륨(Ga)이고,
Y는 염소(Cl) 또는 아이오딘(I)이며,
R1, R2, R3 및 R4는 서로 동일하거나 상이하고, 메틸기, 프로필기 또는 탄소 원자수 2 내지 10인 알킬기이다.Regarding a precursor compound for manufacturing a photoactive layer of a thin film solar cell that can be used as a precursor of a CIS, CGS or CIGS thin film that can be used as a photoactive layer of a solar cell, and a method for manufacturing the same, represented by the following formula (1), for manufacturing a thin film solar cell photoactive layer Precursor compound: includes.
[Formula 1]
Figure 112019021272086-pat00007

In Formula 1,
X is indium (In) or gallium (Ga),
Y is chlorine (Cl) or iodine (I),
R 1 , R 2 , R 3 and R 4 are the same as or different from each other, and are a methyl group, a propyl group, or an alkyl group having 2 to 10 carbon atoms.

Description

박막 태양전지 광활성층 제조용 전구체 화합물 및 이의 제조 방법{Precursor compounds for the production of photoactive layers of thin film solar cells and their preparation method}Precursor compounds for the production of photoactive layers of thin film solar cells and their preparation method}

본 발명은 박막 태양전지 광활성층 제조용 전구체 화합물에 관한 것으로, 보다 구체적으로는 태양전지의 광활성층으로 쓰일 수 있는 CIS, CGS 또는 CIGS 박막의 전구체로 활용할 수 있는 박막 태양전지 광활성층 제조용 전구체 화합물 및 이의 제조 방법에 관한 것이다.The present invention relates to a precursor compound for producing a photoactive layer of a thin film solar cell, and more specifically, a precursor compound for producing a photoactive layer of a thin film solar cell that can be used as a precursor of a CIS, CGS or CIGS thin film that can be used as a photoactive layer of a solar cell, and its It relates to a manufacturing method.

CIGS 박막형 태양전지는 칼코파이라이트(Chalcopyrite)라고 불리는 무기계 결정인 CuInGaS(Se)2를 박막 형태의 광활성층으로 가지는 태양전지로, 안정성이 뛰어나고, 박막의 나노 구조 소재의 배열 및 크기를 다르게 해서 밴드 갭의 크기를 조절할 수 있어 효율이 높다.CIGS thin-film solar cell is a solar cell having CuInGaS(Se) 2 , an inorganic crystal called Chalkcopyrite, as a thin-film photoactive layer. It has excellent stability, and is a band by varying the arrangement and size of the nanostructured material of the thin film. Efficiency is high because the size of the gap can be adjusted.

이러한 CIGS 박막형 태양전지의 효율은 꾸준히 갱신되고 있고, 그 주기도 점점 빨라지고 있으며, 2017년도에는 기준 에너지 변환 효율 22.3%를 달성하였다.The efficiency of these CIGS thin-film solar cells is steadily being updated and the cycle is getting faster, and in 2017, the standard energy conversion efficiency of 22.3% was achieved.

CIGS 박막은 고진공에서 합성되어 고효율의 태양전지로 제조될 수 있으나, 공정 비용이 많이 소요되어 경제적이지 못한 문제점이 존재한다.CIGS thin films can be synthesized in high vacuum and manufactured into highly efficient solar cells, but there is a problem that is not economical due to high process costs.

한편, dithiocarbamate(dtc)는 아민의 질소 자리에 카본다이설파이드(carbon disulfide)가 결합되어 있는 황화 유기물로, 카본다이설파이드(carbon disulfide)는 유독성 및 인화성이 강하지만, 황화 유기물의 경우에는 이러한 문제점들이 사라져 황 공급원으로 유용하게 사용되고 있다.On the other hand, dithiocarbamate (dtc) is a sulfided organic substance in which carbon disulfide is bonded to the nitrogen site of an amine, and carbon disulfide is highly toxic and flammable, but these problems arise in the case of sulfided organic substances. It disappears and is useful as a source of sulfur.

특히, dithiocarbamate(dtc)는 금속과 수용액상에서 결합하여 쉽게 착화합물을 형성하는 특성이 있으며, 이에 금속-dtc 착화합물을 포함하는 용액을 이용하여 광활성층을 제작하는 방법이 연구되고 있으나, 용액이 불안정한 단점이 여전히 존재한다.In particular, dithiocarbamate (dtc) has a property of easily forming a complex compound by bonding with a metal in an aqueous solution. Therefore, a method of preparing a photoactive layer using a solution containing a metal-dtc complex is being studied, but the solution is unstable. Still exists.

본 발명의 일 목적은 구리(Cu) 및 황(S)과, 인듐(In) 또는 갈륨(Ga)을 포함하여 태양전지의 광활성층으로 쓰일 수 있는 CIS, CGS 또는 CIGS 박막의 전구체로 활용할 수 있는 박막 태양전지 광활성층 제조용 전구체 화합물을 제공하는 것이다.One object of the present invention is that it can be used as a precursor of a CIS, CGS or CIGS thin film that can be used as a photoactive layer of a solar cell, including copper (Cu) and sulfur (S), and indium (In) or gallium (Ga). It is to provide a precursor compound for manufacturing a photoactive layer of a thin film solar cell.

본 발명의 다른 목적은 박막 태양전지 광활성층 제조용 전구체 화합물 제조 방법을 제공하는 것이다.Another object of the present invention is to provide a method for preparing a precursor compound for manufacturing a photoactive layer of a thin film solar cell.

본 발명의 일 목적을 위한 박막 태양전지 광활성층 제조용 전구체 화합물은, 하기 화학식 1로 표시된다.A precursor compound for preparing a thin film solar cell photoactive layer for one object of the present invention is represented by the following formula (1).

[화학식 1][Formula 1]

Figure 112019021272086-pat00001
Figure 112019021272086-pat00001

상기 화학식 1에서,In Formula 1,

X는 인듐(In) 또는 갈륨(Ga)이고,X is indium (In) or gallium (Ga),

Y는 염소(Cl) 또는 아이오딘(I)이며,Y is chlorine (Cl) or iodine (I),

R1, R2, R3 및 R4는 서로 동일하거나 상이하고, 메틸기, 프로필기 또는 탄소 원자수 2 내지 10인 알킬기이다.R 1 , R 2 , R 3 and R 4 are the same as or different from each other, and are a methyl group, a propyl group, or an alkyl group having 2 to 10 carbon atoms.

또한, 상기 전구체 화합물은 하기 화학식 2 내지 4로부터 선택되는 것이 바람직하다.In addition, the precursor compound is preferably selected from the following formulas 2 to 4.

[화학식 2][Formula 2]

[CuC10H20N2S4][InI4][CuC 10 H 20 N 2 S 4 ][InI 4 ]

[화학식 3][Formula 3]

[CuC10H20N2S4][InCl4][CuC 10 H 20 N 2 S 4 ][InCl 4 ]

[화학식 4][Formula 4]

[CuC10H20N2S4][GaCl4][CuC 10 H 20 N 2 S 4 ][GaCl 4 ]

본 발명의 다른 목적을 위한 박막 태양전지 광활성층 제조용 전구체 화합물 제조 방법은, 구리전구체 및 황화 유기물을 수용액상에서 반응시켜 구리 착화합물을 형성하는 단계; 하기 화학식 5로 표시되는 금속 할로겐화물을 유기용매에 녹여 반응 용액을 제조하는 단계; 및 상기 구리 착화합물과 반응 용액을 혼합하는 단계;를 포함한다.A method for preparing a precursor compound for preparing a photoactive layer of a thin film solar cell for another object of the present invention comprises: forming a copper complex compound by reacting a copper precursor and a sulfide organic material in an aqueous solution; Preparing a reaction solution by dissolving a metal halide represented by the following Chemical Formula 5 in an organic solvent; And mixing the copper complex compound and the reaction solution.

[화학식 5][Formula 5]

Figure 112019021272086-pat00002
Figure 112019021272086-pat00002

상기 화학식 5에서,In Chemical Formula 5,

X는 인듐(In) 또는 갈륨(Ga)이고,X is indium (In) or gallium (Ga),

Y는 염소(Cl) 또는 아이오딘(I)이다.Y is chlorine (Cl) or iodine (I).

일 실시예에서, 상기 구리 전구체는 염화구리(CuCl2)인 것이 바람직하다.In one embodiment, the copper precursor is preferably copper chloride (CuCl 2 ).

또한, 상기 황화 유기물은 하기 화학식 6 또는 화학식 7으로 표시되는 리간드를 포함하는 것이 바람직하고, 다이에틸다이싸이오카바메이트(C5H10NS2)인 것이 더욱 바람직하다.In addition, the sulfided organic material preferably includes a ligand represented by the following Formula 6 or Formula 7, and more preferably diethyldithiocarbamate (C 5 H 10 NS 2 ).

[화학식 6][Formula 6]

[CuC4H12N2S4][CuC4H12N 2 S 4 ]

[화학식 7][Formula 7]

[CuC12H28N2S4][CuC 12 H28N 2 S 4 ]

그리고, 상기 구리착화합물을 형성하는 단계에서 구리전구체 및 다이에틸다이싸이오카바메이트(C5H10NS2)는 1:2의 몰비율로 반응할 수 있다.And, in the step of forming the copper complex compound, the copper precursor and diethyl dithiocarbamate (C 5 H 10 NS 2 ) may react in a molar ratio of 1:2.

한편, 상기 금속 할로겐화물은 InI3, InCl3 및 GaCl3 중에서 선택된 어느 하나를 포함할 수 있다.Meanwhile, the metal halide may include any one selected from InI 3 , InCl 3 and GaCl 3 .

또한, 상기 유기용매는 벤젠, 아세톤 및 메틸렌클로라이드로 이루어진 군에서 선택된 어느 하나 이상을 포함할 수 있다.In addition, the organic solvent may include any one or more selected from the group consisting of benzene, acetone, and methylene chloride.

상기 혼합하는 단계에서 금속 할로겐화물 및 구리착화합물은 1:1의 몰비율로 반응할 수 있다.In the mixing step, the metal halide and the copper complex compound may react at a molar ratio of 1:1.

그리고, 상기 혼합하는 단계는 15 내지 25℃에서 10시간 이상 24시간 이하로 수행되는 것이 바람직하다.In addition, the mixing step is preferably carried out for 10 hours or more and 24 hours or less at 15 to 25 ℃.

또한, 혼합하는 단계 후에, 제조된 전구체 화합물을 유기용매에 용해시키는 단계를 더 포함할 수 있고, 이때 유기용매는 메틸렌클로라이드를 포함하는 것이 바람직하다.In addition, after the step of mixing, a step of dissolving the prepared precursor compound in an organic solvent may be further included, wherein the organic solvent is preferably methylene chloride.

본 발명은 구리(Cu) 및 황(S)과, 인듐(In) 또는 갈륨(Ga)을 포함하기에, 태양전지의 광활성층으로 쓰일 수 있는 CIS 박막 또는 CGS 박막의 전구체로 활용할 수 있고, 혹은 인듐(In)을 포함하고 있는 전구체 및 갈륨(Ga)을 포함하고 있는 전구체를 1:1의 비율로 혼합하여 CIGS 박막을 구현할 수 있어, 저비용으로 고효율의 태양전지를 제조할 수 있는 효과를 갖는다.Since the present invention contains copper (Cu) and sulfur (S), indium (In) or gallium (Ga), it can be used as a precursor of a CIS thin film or a CGS thin film that can be used as a photoactive layer of a solar cell, or A CIGS thin film can be implemented by mixing a precursor containing indium (In) and a precursor containing gallium (Ga) at a ratio of 1:1, thereby having an effect of manufacturing a high-efficiency solar cell at low cost.

또한, 본 발명은 황화 유기물 및 할로겐 원소를 사용하여 이종 금속 착물을 실온에서 간단히 합성할 수 있고, 이를 휘발성이 강한 메틸렌클로라이드에 녹인 용액으로 박막 태양전지의 광활성층을 제조함으로써, 상온에서도 코팅이 가능하여 진공 증착 설비에 소요되는 비용이 절감될 뿐만 아니라, 대면적 생산이 용이해지는 효과를 갖는다.In addition, in the present invention, a heterometallic complex can be simply synthesized at room temperature using sulfided organic substances and halogen elements, and coating is possible at room temperature by preparing a photoactive layer of a thin film solar cell with a solution dissolved in methylene chloride, which is highly volatile. Thus, not only the cost required for the vacuum deposition facility is reduced, but also large-area production is facilitated.

아울러, 본 발명은 분자 자체를 전구체로 쓰기 때문에, 상대적으로 합성하기 어려운 나노 입자를 생략할 수 있어 편리한 장점이 있다.In addition, since the present invention uses the molecule itself as a precursor, relatively difficult to synthesize nanoparticles can be omitted, thereby providing a convenient advantage.

도 1은 본 발명의 실시예에 따라 구리를 ddtc에 결합시킨 구리-ddtc 착화합물의 분자구조를 도시한 단면도이다.
도 2는 본 발명의 실시예에 따른 구리-ddtc·인듐-테트라아이오다이드 단일 전구체 분자구조를 도시한 단면도이다.
도 3은 본 발명의 다른 실시예에 따른 구리-ddtc·인듐-테트라클로라이드 단일 전구체 분자구조를 도시한 단면도이다.
도 4는 본 발명의 또 다른 실시예에 따른 구리-ddtc·갈륨-테트라클로라이드 단일 전구체 분자구조를 도시한 단면도이다.
도 5는 본 발명의 실시예에 따른 구리-ddtc·인듐-테트라아이오다이드 단일 전구체의 시차열 중량분석 결과를 나타낸 그래프이다.
1 is a cross-sectional view showing a molecular structure of a copper-ddtc complex in which copper is bonded to ddtc according to an embodiment of the present invention.
2 is a cross-sectional view showing the molecular structure of a single precursor of copper-ddtc·indium-tetraiodide according to an embodiment of the present invention.
3 is a cross-sectional view showing the molecular structure of a single precursor of copper-ddtc·indium-tetrachloride according to another embodiment of the present invention.
4 is a cross-sectional view showing the molecular structure of a single precursor of copper-ddtc·gallium-tetrachloride according to another embodiment of the present invention.
5 is a graph showing the results of differential thermal gravimetric analysis of a single precursor of copper-ddtc·indium-tetraiodide according to an embodiment of the present invention.

이하, 본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로서 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.Hereinafter, terms used in the present application are used only to describe specific embodiments and are not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In the present application, terms such as "comprise" or "have" are intended to designate the existence of features, steps, actions, components, parts, or a combination thereof described in the specification, but one or more other features or steps It is to be understood that it does not preclude the possibility of addition or presence of, operations, components, parts, or combinations thereof.

다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless otherwise defined, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art to which the present invention belongs. Terms as defined in a commonly used dictionary should be interpreted as having a meaning consistent with the meaning in the context of the related technology, and should not be interpreted as an ideal or excessively formal meaning unless explicitly defined in this application. Does not.

본 발명에 따른 박막 태양전지 광활성층 제조용 전구체 화합물은 하기 화학식 1로 표시된다.The precursor compound for preparing a photoactive layer of a thin film solar cell according to the present invention is represented by the following Chemical Formula 1.

[화학식 1][Formula 1]

Figure 112019021272086-pat00003
Figure 112019021272086-pat00003

상기 화학식 1에서,In Formula 1,

X는 인듐(In) 또는 갈륨(Ga)이고,X is indium (In) or gallium (Ga),

Y는 염소(Cl) 또는 아이오딘(I)이며,Y is chlorine (Cl) or iodine (I),

R1, R2, R3 및 R4는 서로 동일하거나 상이하고, 메틸기, 프로필기 또는 탄소 원자수 2 내지 10인 알킬기이다.R 1 , R 2 , R 3 and R 4 are the same as or different from each other, and are a methyl group, a propyl group, or an alkyl group having 2 to 10 carbon atoms.

또한, 본 발명에 따른 박막 태양전지 광활성층 제조용 전구체 화합물은 하기 화학식 2 내지 화학식 4로부터 선택될 수 있다.In addition, the precursor compound for preparing a thin film solar cell photoactive layer according to the present invention may be selected from the following Chemical Formulas 2 to 4.

[화학식 2][Formula 2]

[CuC10H20N2S4][InI4][CuC 10 H 20 N 2 S 4 ][InI 4 ]

[화학식 3][Formula 3]

[CuC10H20N2S4][InCl4][CuC 10 H 20 N 2 S 4 ][InCl 4 ]

[화학식 4][Formula 4]

[CuC10H20N2S4][GaCl4][CuC 10 H 20 N 2 S 4 ][GaCl 4 ]

한편, 본 발명의 박막 태양전지 광활성층 제조용 전구체 화합물 제조 방법은, 구리전구체 및 황화 유기물을 수용액상에서 반응시켜 구리 착화합물을 형성하는 단계; 하기 화학식 5로 표시되는 금속 할로겐화물을 유기용매에 녹여 반응 용액을 제조하는 단계; 및 구리 착화합물과 반응 용액을 혼합하는 단계;를 포함한다.On the other hand, the method for preparing a precursor compound for manufacturing a thin film solar cell photoactive layer of the present invention comprises: forming a copper complex compound by reacting a copper precursor and a sulfide organic material in an aqueous solution; Preparing a reaction solution by dissolving a metal halide represented by the following Chemical Formula 5 in an organic solvent; And mixing the copper complex compound and the reaction solution.

[화학식 5][Formula 5]

Figure 112019021272086-pat00004
Figure 112019021272086-pat00004

상기 화학식 5에서,In Chemical Formula 5,

X는 인듐(In) 또는 갈륨(Ga)이고,X is indium (In) or gallium (Ga),

Y는 염소(Cl) 또는 아이오딘(I)이다.Y is chlorine (Cl) or iodine (I).

먼저, 구리전구체 및 황화 유기물을 수용액상에서 반응시켜 구리 착화합물을 형성하는 단계가 진행된다. 여기서, 구리 전구체는 염화구리(CuCl2)인 것이 바람직하며, 황화 유기물은 하기 화학식 6 또는 화학식 7으로 표시되는 리간드를 포함할 수 있다.First, a step of forming a copper complex compound by reacting a copper precursor and an organic sulfide in an aqueous solution is performed. Here, the copper precursor is preferably copper chloride (CuCl 2 ), and the sulfided organic material may include a ligand represented by the following Formula 6 or Formula 7.

[화학식 6][Formula 6]

[CuC4H12N2S4][CuC4H12N 2 S 4 ]

[화학식 7][Formula 7]

[CuC12H28N2S4][CuC 12 H28N 2 S 4 ]

상세하게는, 상기 황화 유기물은 금속과 수용액상에서 결합하여 쉽게 착물을 형성하는 다이에틸다이싸이오카바메이트(C5H10NS2)인 것이 바람직하다.Specifically, the sulfided organic material is preferably diethyldithiocarbamate (C 5 H 10 NS 2 ) that easily forms a complex by bonding with a metal in an aqueous solution.

또한, 구리착화합물을 합성하는 단계에서, 구리전구체 및 다이에틸다이싸이오카바메이트(C5H10NS2)는 1:2의 몰비율로 반응하여, 하기 화학식 8로 나타나는 구리-ddtc 착화합물이 용이하게 합성될 수 있다.In addition, in the step of synthesizing the copper complex compound, the copper precursor and diethyldithiocarbamate (C 5 H 10 NS 2 ) react at a molar ratio of 1:2, so that the copper-ddtc complex represented by the following Formula 8 is easy. Can be synthesized.

[화학식 8][Formula 8]

CuC10H20N2S4 CuC 10 H 20 N 2 S 4

구체적으로, 도 1을 참조하면, 상기 구리-ddtc 착화합물의 구리는 다양한 산화수를 가질 수 있으며, 황이 배위된 구리 착화학물의 경우, 다양한 산화수를 더 안정한 형태로 취할 수 있게 된다.Specifically, referring to FIG. 1, the copper of the copper-ddtc complex may have various oxidation numbers, and in the case of a sulfur-coordinated copper complex chemical, various oxidation numbers may be taken in a more stable form.

즉, 상기 구리착화합물은 다양한 산화수를 보장함으로써 다른 이종 금속 착화합물의 합성 가능성을 내포하고 있으며, 구리 원소를 전구체로 공기중에서 안정하게 함유할 수 있게 됨으로써, 구리 전구체 또는 이종금속 물질 재료로서의 기능을 수행할 수 있다.That is, the copper complex compound has the possibility of synthesizing other dissimilar metal complexes by ensuring various oxidation numbers, and by being able to stably contain a copper element as a precursor in the air, it can function as a copper precursor or a dissimilar metal material material. I can.

다음으로, 상기 화학식 5로 표시되는 금속 할로겐화물을 유기용매에 녹여 반응 용액을 제조하는 단계가 수행된다.Next, a step of preparing a reaction solution by dissolving the metal halide represented by Chemical Formula 5 in an organic solvent is performed.

여기서, 상기 금속 할로겐화물은 InI3, InCl3 및 GaCl3 중에서 선택된 어느 하나를 포함할 수 있다.Here, the metal halide may include any one selected from InI 3 , InCl 3 and GaCl 3 .

또한, 상기 유기용매는 벤젠, 아세톤 및 메틸렌클로라이드로 이루어진 군에서 선택된 어느 하나 이상을 포함하는 것이 바람직하다.In addition, it is preferable that the organic solvent contains at least one selected from the group consisting of benzene, acetone, and methylene chloride.

구체적으로는, InI3의 경우, 유기용매로 벤젠을 사용하고, InCl3인 경우, 아세톤 및 메틸렌클로라이드를 혼합한 유기용매를 사용하고, GaCl3인 경우에는 유기용매로 메틸렌클로라이드를 사용하는 것이 더욱 바람직하다.Specifically, in the case of InI 3 , benzene is used as the organic solvent, in the case of InCl 3 , an organic solvent mixed with acetone and methylene chloride is used, and in the case of GaCl 3 , methylene chloride is used as the organic solvent. desirable.

이후, 상기 구리 착화합물과 반응 용액을 혼합하는 단계가 진행된다.Thereafter, the step of mixing the copper complex compound and the reaction solution proceeds.

상기 혼합하는 단계는 15 내지 25℃에서, 바람직하게는 상온에서 약 10 시간 이상 24시간 이하로 수행되며, 상기 금속 할로겐화물 및 구리 착화합물은 1:1의 몰비율로 반응하게 된다.The mixing step is performed at 15 to 25°C, preferably at room temperature for about 10 hours or more and 24 hours or less, and the metal halide and the copper complex compound react in a molar ratio of 1:1.

위와 같이, 구리 착화합물과 반응 용액을 상온에서 10시간 이상 혼합하면 구리가 산화되면서, 상기 화학식 2, 화학식 3, 화학식 4으로 나타나는 박막 태양전지 광활성층 제조용 전구체 화합물을 각각 파우더 형태로 제조할 수 있다.As described above, when the copper complex compound and the reaction solution are mixed at room temperature for 10 hours or more, copper is oxidized, and the precursor compounds for preparing a thin film solar cell photoactive layer represented by Chemical Formulas 2, 3, and 4 can be prepared in powder form, respectively.

또한, 상기 혼합하는 단계 후에, 제조된 전구체 화합물을 유기용매에 용해시키는 단계가 추가로 진행될 수 있다. 이때, 상기 유기용매는 메틸렌클로라이드인 것이 바람직한데, 이는 본 발명에 따른 전구체 화합물이 메틸렌클로라이드에 높은 용해성을 가질 뿐만 아니라, 휘발성이 강하여 전구체 화합물을 포함하는 용액을 상온에서도 코팅하여 태양전지의 박막을 제조할 수 있기 때문이다.In addition, after the mixing step, a step of dissolving the prepared precursor compound in an organic solvent may be further performed. At this time, it is preferable that the organic solvent is methylene chloride, which not only has high solubility in methylene chloride, but also has high volatility, so that a solution containing the precursor compound is coated at room temperature to form a thin film of a solar cell. Because it can be manufactured.

일 실시예로, 본 발명의 박막 태양전지 광활성층 제조용 전구체 화합물은, 도 2에 도시된 바와 같이 구리-ddtc 착화합물의 구리가 3가로 산화하면서 분자성 양이온으로 존재하게 되고, 인듐-아이오딘 4배위 착화합물이 음이온으로 존재하면서, 전체적으로 염 형태의 이종금속 착화합물로 안정하게 형성될 수 있다.In one embodiment, the precursor compound for manufacturing a photoactive layer of a thin film solar cell of the present invention, as shown in FIG. 2, exists as a molecular cation while oxidizing copper of a copper-ddtc complex compound to trivalent, and indium-iodine 4 coordination While the complex compound exists as an anion, it can be stably formed as a heterometallic complex in the form of a salt as a whole.

상기 전구체 화합물은 CIGS 박막의 구성 원소인 구리(Cu), 인듐(In) 및 황(S)을 제공하는 전구체로서의 역할을 할 수 있다.The precursor compound may serve as a precursor providing copper (Cu), indium (In), and sulfur (S), which are constituent elements of the CIGS thin film.

또한, 상기 전구체 화합물의 탄소-질소 결합은 열처리 시에 쉽게 끊어지면서, 환원제로서의 역할을 수행하는 아민 그룹을 형성할 수 있다.In addition, the carbon-nitrogen bond of the precursor compound is easily broken during heat treatment, and an amine group serving as a reducing agent may be formed.

그리고, 상기 전구체 화합물의 인듐(In)에 결합된 아이오딘(I)은 인듐(In) 캐리어로서의 역할을 수행하고, 열처리 시 쉽게 끊어지면서 깨끗하게 날아가게 된다.In addition, iodine (I) bound to indium (In) of the precursor compound plays a role as an indium (In) carrier, and is easily cut off during heat treatment and flying cleanly.

다른 실시예로, 본 발명의 박막 태양전지 광활성층 제조용 전구체 화합물은, 도 3에 도시된 바와 같이 구리-ddtc 착화합물의 구리가 3가로 산화하면서 분자성 양이온으로 존재하게 되고, 인듐-염소 4배위 착화합물이 음이온으로 존재하면서, 전체적으로 염 형태의 이종금속 착화합물로 안정하게 형성될 수 있다.In another embodiment, the precursor compound for manufacturing a photoactive layer of a thin film solar cell of the present invention, as shown in FIG. 3, exists as a molecular cation while oxidizing copper of a copper-ddtc complex compound to trivalent, and an indium-chlorine quadratic complex compound While being present as this anion, it can be stably formed as a heterometallic complex in the form of a salt as a whole.

상기 전구체 화합물은 CIGS 박막의 구성 원소인 구리(Cu), 인듐(In) 및 황(S)을 제공하는 전구체로서의 역할을 할 수 있다.The precursor compound may serve as a precursor providing copper (Cu), indium (In), and sulfur (S), which are constituent elements of the CIGS thin film.

또한, 상기 전구체 화합물의 탄소-질소 결합은 열처리 시에 쉽게 끊어지면서, 환원제로서의 역할을 수행하는 아민 그룹을 형성할 수 있다.In addition, the carbon-nitrogen bond of the precursor compound is easily broken during heat treatment, and an amine group serving as a reducing agent may be formed.

그리고, 상기 전구체 화합물의 인듐(In)에 결합된 염소(Cl)는 인듐(In) 캐리어로서의 역할을 수행하고, 열처리 시 쉽게 끊어지면서 깨끗하게 날아가게 된다.In addition, chlorine (Cl) bound to indium (In) of the precursor compound plays a role as an indium (In) carrier, and is easily cut off during heat treatment and blown away cleanly.

또 다른 실시예로, 본 발명에 따른 박막 태양전지 광활성층 제조용 전구체 화합물은, 도 4에 도시된 바와 같이 구리-ddtc 착화합물의 구리가 3가로 산화하면서 분자성 양이온으로 존재하게 되고, 갈륨-염소 4배위 착화합물이 음이온으로 존재하면서, 전체적으로 염 형태의 이종금속 착화합물로 안정하게 형성될 수 있다.In another embodiment, the precursor compound for manufacturing a photoactive layer of a thin film solar cell according to the present invention, as shown in FIG. 4, exists as a molecular cation while oxidizing copper of a copper-ddtc complex to trivalent, and gallium-chlorine 4 While the coordination complex compound exists as an anion, it can be stably formed as a heterometallic complex in the form of a salt as a whole.

상기 전구체 화합물은 CIGS 박막의 구성 원소인 구리(Cu), 갈륨(Ga) 및 황(S)을 제공하는 전구체로서의 역할을 할 수 있다.The precursor compound may serve as a precursor for providing copper (Cu), gallium (Ga), and sulfur (S), which are constituent elements of the CIGS thin film.

또한, 상기 전구체 화합물의 탄소-질소 결합은 열처리 시에 쉽게 끊어지면서, 환원제로서의 역할을 수행하는 아민 그룹을 형성할 수 있다.In addition, the carbon-nitrogen bond of the precursor compound is easily broken during heat treatment, and an amine group serving as a reducing agent may be formed.

그리고, 상기 전구체 화합물의 갈륨(Ga)에 결합된 염소(Cl)는 갈륨(Ga) 캐리어로서의 역할을 수행하고, 열처리 시 쉽게 끊어지면서 깨끗하게 날아가게 된다.In addition, chlorine (Cl) bound to gallium (Ga) of the precursor compound plays a role as a gallium (Ga) carrier, and is easily cut off during heat treatment and is blown away cleanly.

상기 실시예에 따른 전구체 화합물은 유기용매, 바람직하게는 메틸렌클로라이드에 높은 용해도를 가지므로, 전구체 화합물을 사용하여 태양전지의 광활성층을 제조하기에 용이하다.Since the precursor compound according to the above embodiment has a high solubility in an organic solvent, preferably methylene chloride, it is easy to prepare a photoactive layer of a solar cell using the precursor compound.

또한, 본 발명은 구리(Cu) 및 황(S)과, 인듐(In) 또는 갈륨(Ga)을 포함하기에, 태양전지의 광활성층으로 쓰일 수 있는 CIS 박막 또는 CGS 박막의 전구체로 활용할 수 있고, 혹은 인듐(In)을 포함하고 있는 전구체 및 갈륨(Ga)을 포함하고 있는 전구체를 1:1의 비율로 혼합하여 CIGS 박막을 구현할 수 있어, 저비용으로 고효율의 태양전지를 제조할 수 있는 효과를 갖는다.In addition, since the present invention includes copper (Cu) and sulfur (S), indium (In) or gallium (Ga), it can be used as a precursor of a CIS thin film or a CGS thin film that can be used as a photoactive layer of a solar cell. , Or a CIGS thin film can be implemented by mixing a precursor containing indium (In) and a precursor containing gallium (Ga) at a ratio of 1:1, resulting in the effect of manufacturing a high-efficiency solar cell at low cost. Have.

한편, 본 발명의 또 다른 실시 형태로 태양전지 제조 방법을 들 수 있다.On the other hand, a solar cell manufacturing method may be mentioned as another embodiment of the present invention.

먼저, 기판 상에 제1 전극을 형성하는 단계가 진행된다.First, a step of forming a first electrode on a substrate is performed.

이후, 제1 전극 상에 제1 전하 수송층을 형성하는 단계가 진행된다.Thereafter, a step of forming a first charge transport layer on the first electrode is performed.

다음으로, 제1 전하 수송층 상에 광활성층을 형성하는 단계가 진행된다.Next, a step of forming a photoactive layer on the first charge transport layer proceeds.

이후, 상기 광활성층 상에 제2 전하 수송층을 형성하는 단계가 진행된다.Thereafter, a step of forming a second charge transport layer on the photoactive layer is performed.

마지막으로, 상기 제2 전하 수송층 상에 제2 전극을 형성하는 단계를 진행하여, 태양전지를 제조할 수 있다.Finally, a solar cell may be manufactured by performing the step of forming a second electrode on the second charge transport layer.

이때, 상기 광활성층은 하기 화학식 2 내지 4로부터 선택된 어느 하나의 전구체 화합물을 사용하여 제조된 CIS 박막 또는 CGS 박막을 포함할 수 있다.In this case, the photoactive layer may include a CIS thin film or a CGS thin film prepared using any one precursor compound selected from Formulas 2 to 4 below.

을 포함할 수 있다.It may include.

[화학식 2][Formula 2]

[CuC10H20N2S4][InI4][CuC 10 H 20 N 2 S 4 ][InI 4 ]

[화학식 3][Formula 3]

[CuC10H20N2S4][InCl4][CuC 10 H 20 N 2 S 4 ][InCl 4 ]

[화학식 4][Formula 4]

[CuC10H20N2S4][GaCl4][CuC 10 H 20 N 2 S 4 ][GaCl 4 ]

다른 예로, 상기 광활성층은 하기 화학식 2 또는 3으로부터 선택된 어느 하나와, 하기 화학식 4로 표시되는 전구체 화합물을 혼합하여 제조된 CIGS 박막을 포함할 수 있다.As another example, the photoactive layer may include a CIGS thin film prepared by mixing any one selected from Formula 2 or 3 and a precursor compound represented by Formula 4 below.

[화학식 2][Formula 2]

[CuC10H20N2S4][InI4][CuC 10 H 20 N 2 S 4 ][InI 4 ]

[화학식 3][Formula 3]

[CuC10H20N2S4][InCl4][CuC 10 H 20 N 2 S 4 ][InCl 4 ]

[화학식 4][Formula 4]

[CuC10H20N2S4][GaCl4][CuC 10 H 20 N 2 S 4 ][GaCl 4 ]

또한, 상기 광활성층은 기판 상에 전구체 화합물을 유기용매에 용해시킨 용액을 0.1㎖의 부피로 드랍 캐스팅한 후, 15 내지 25℃, 바람직하게는 상온의 온도에서 건조시켜 형성될 수 있다.In addition, the photoactive layer may be formed by drop-casting a solution obtained by dissolving a precursor compound in an organic solvent on a substrate in a volume of 0.1 ml and then drying it at a temperature of 15 to 25°C, preferably room temperature.

이하에서는, 구체적인 실시예들을 통해서 본 발명의 박막 태양전지 광활성층 제조용 전구체 화합물 및 이의 제조 방법, 태양전지 제조 방법에 대해서 보다 상세하게 설명하기로 한다.Hereinafter, a precursor compound for manufacturing a photoactive layer of a thin film solar cell of the present invention, a method for manufacturing the same, and a method for manufacturing a solar cell will be described in more detail through specific examples.

실시예 1: 박막 태양전지 광활성층 제조용 전구체 화합물 제조Example 1: Preparation of a precursor compound for manufacturing a photoactive layer of a thin film solar cell

(1) Cu(Ⅲ)-ddtc(CuCl10H20NS4) 착화합물 합성(1) Synthesis of Cu(Ⅲ)-ddtc(CuCl 10 H 20 NS 4 ) complex compound

염화구리(CuCl2) 0.01mmol 및 다이에틸다이싸이오카바메이트(metal diethyl dithiocarbamate, ddtc) 0.02mmol을 수용액상에서 반응시켜 Cu(Ⅲ)-ddtc(CuCl10H20NS4) 착화합물을 얻었다.Copper chloride (CuCl 2 ) 0.01 mmol and diethyl diethyl dithiocarbamate (ddtc) 0.02 mmol were reacted in an aqueous solution to obtain a Cu(III)-ddtc(CuCl 10 H 20 NS 4 ) complex.

(2) Cu(Ⅲ)-ddtc·In(Ⅲ)I4 전구체 물질 합성(2) Synthesis of Cu(Ⅲ)-ddtc·In(Ⅲ)I 4 precursor material

InI3 0.01mmol을 준비된 벤젠 용매에 녹인 반응 용액을 제조한 후, 상기와 같이 준비된 Cu(Ⅲ)-ddtc(CuCl10H20NS4) 착화합물 0.01mmol과 반응 용액을 상온에서 약 10 시간 동안 교반시켜 본 발명의 전구체 화합물인 Cu(Ⅲ)-ddtc·In(Ⅲ)I4를 파우더 형태로 얻었다.After preparing a reaction solution in which 0.01 mmol of InI 3 was dissolved in the prepared benzene solvent, 0.01 mmol of the Cu(III)-ddtc(CuCl 10 H 20 NS 4 ) complex prepared as described above and the reaction solution were stirred at room temperature for about 10 hours. The precursor compound of the present invention, Cu(III)-ddtc·In(III)I 4 , was obtained in powder form.

실시예 2: 박막 태양전지 광활성층 제조용 전구체 화합물 제조Example 2: Preparation of a precursor compound for manufacturing a photoactive layer of a thin film solar cell

InCl3를 이용한 것을 제외하고는 실시예 1과 실질적으로 동일한 방법을 통해서 본 발명의 전구체 화합물인 Cu(Ⅲ)-ddtc·In(Ⅲ)Cl4를 파우더 형태로 얻었다.A precursor compound of the present invention, Cu(III)-ddtc·In(III)Cl 4 , was obtained in powder form through substantially the same method as in Example 1, except that InCl 3 was used.

실시예 3: 박막 태양전지 광활성층 제조용 전구체 화합물 제조Example 3: Preparation of a precursor compound for manufacturing a photoactive layer of a thin film solar cell

GaCl3를 이용한 것을 제외하고는 실시예 1과 실질적으로 동일한 방법을 통해서 본 발명의 전구체 화합물인 Cu(Ⅲ)-ddtc·Ga(Ⅲ)Cl4를 파우더 형태로 얻었다.A precursor compound of the present invention, Cu(III)-ddtc·Ga(III)Cl 4 , was obtained in powder form through substantially the same method as in Example 1, except that GaCl 3 was used.

실시예 4: 태양전지 제조Example 4: Solar cell manufacturing

실시예 1 내지 3에서 제조된 전구체 화합물 파우더를 각각 메틸렌클로라이드 10㎖에 용해시킨 용액을 제조하였다.A solution was prepared by dissolving the precursor compound powder prepared in Examples 1 to 3 in 10 ml of methylene chloride, respectively.

다음으로, 제1 전극을 형성하고, 제1 전극 상에 제1 전하 수송층을 형성한 ITO 기판을 준비한 후, 실시예 1 내지 3이 용해된 용액을 제1 전하 수송층 상에 각각 0.1㎖의 부피로 드랍 캐스팅한 후, 상온에서 방치하여 광활성층을 형성하였다.Next, after forming a first electrode and preparing an ITO substrate having a first charge transport layer on the first electrode, the solutions in which Examples 1 to 3 are dissolved are added in a volume of 0.1 ml each on the first charge transport layer. After drop casting, it was allowed to stand at room temperature to form a photoactive layer.

이후, 광활성층 상에 제2 전하 수송층을 형성하고, 제2 전하 수송층 상에 제2 전극을 형성하여 태양전지를 제조하였다.Thereafter, a second charge transport layer was formed on the photoactive layer, and a second electrode was formed on the second charge transport layer to manufacture a solar cell.

실험예 1: 화학적 구조Experimental Example 1: Chemical structure

단결정 X선 회절 분석기와, 퓨리에 변환 적외선 분광기(Fourier transform infrared, FTIR, secondary Nicoleti Z10 module(상품명), Thermo Fisher Scientific사(회사명, 미국))를 이용한 분광법으로 실시예 1의 Cu(Ⅲ)-ddtc(CuCl10H20NS4) 착화합물(도 1 참조)과, 실시예 1 내지 실시예 3에 따라 얻어진 Cu(Ⅲ)-ddtc·In(Ⅲ)I4, Cu(Ⅲ)-ddtc·In(Ⅲ)Cl4 및 Cu(Ⅲ)-ddtc·Ga(Ⅲ)Cl4의 화학적 구조를 확인하였다.(도 2 내지 도 4 참조)Cu(III) of Example 1 by spectroscopy using a single crystal X-ray diffraction analyzer and a Fourier transform infrared spectrometer (Fourier transform infrared, FTIR, secondary Nicoleti Z10 module (brand name), Thermo Fisher Scientific company (company name, USA))- ddtc (CuCl 10 H 20 NS 4 ) complex compound (see Fig. 1) and Cu(III)-ddtc·In(III)I 4 , Cu(III)-ddtc·In( The chemical structures of Ⅲ)Cl 4 and Cu(III)-ddtc·Ga(III)Cl 4 were confirmed (see FIGS. 2 to 4).

실험예 2: 녹는점 및 분해점 측정Experimental Example 2: Melting point and decomposition point measurement

열중량 분석기(TGA)를 사용하여 상기 실시예 1에 따라 제조된 Cu(Ⅲ)-ddtc·In(Ⅲ)I4의 녹는점 및 분해점을 측정한 결과를 도 5에 나타내었다.Fig. 5 shows the results of measuring the melting point and decomposition point of Cu(III)-ddtc·In(III)I 4 prepared according to Example 1 using a thermogravimetric analyzer (TGA).

도 5를 참조하면, 실시예 1에 따라 제조된 Cu(Ⅲ)-ddtcㅇIn(Ⅲ)I4의 녹는점은 약 227℃로 나타났으며, 분해점은 약 166℃인 것을 확인할 수 있었다.Referring to FIG. 5, the melting point of Cu(III)-ddtcㅇIn(III)I 4 prepared according to Example 1 was found to be about 227°C, and the decomposition point was found to be about 166°C.

상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술분야의 숙련된 당업자는 하기의 특허 청구 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although the above has been described with reference to the preferred embodiments of the present invention, those skilled in the art will be able to variously modify and change the present invention without departing from the spirit and scope of the present invention described in the following claims. You will understand that you can.

Claims (13)

하기 화학식 1로 표시되는, 박막 태양전지 광활성층 제조용 전구체 화합물:
[화학식 1]
Figure 112019021272086-pat00005

상기 화학식 1에서,
X는 인듐(In) 또는 갈륨(Ga)이고,
Y는 염소(Cl) 또는 아이오딘(I)이며,
R1, R2, R3 및 R4는 서로 동일하거나 상이하고, 메틸기, 프로필기 또는 탄소 원자수 2 내지 10인 알킬기이다.
A precursor compound for preparing a thin film solar cell photoactive layer represented by the following Formula 1:
[Formula 1]
Figure 112019021272086-pat00005

In Formula 1,
X is indium (In) or gallium (Ga),
Y is chlorine (Cl) or iodine (I),
R 1 , R 2 , R 3 and R 4 are the same as or different from each other, and are a methyl group, a propyl group, or an alkyl group having 2 to 10 carbon atoms.
제1항에 있어서,
상기 전구체 화합물은 하기 화학식 2 내지 4로부터 선택되는 것을 특징으로 하는, 박막 태양전지 광활성층 제조용 전구체 화합물.
[화학식 2]
[CuC10H20N2S4][InI4]
[화학식 3]
[CuC10H20N2S4][InCl4]
[화학식 4]
[CuC10H20N2S4][GaCl4]
The method of claim 1,
The precursor compound is characterized in that selected from the following Chemical Formulas 2 to 4, a precursor compound for producing a photoactive layer of a thin film solar cell.
[Formula 2]
[CuC 10 H 20 N 2 S 4 ][InI 4 ]
[Formula 3]
[CuC 10 H 20 N 2 S 4 ][InCl 4 ]
[Formula 4]
[CuC 10 H 20 N 2 S 4 ][GaCl 4 ]
하기 화학식 6 또는 화학식 7으로 표시되는 리간드를 포함하는 황화 유기물, 및 구리전구체를 수용액상에서 반응시켜 구리 착화합물을 형성하는 단계;
하기 화학식 5로 표시되는 금속 할로겐화물을 유기용매에 녹여 반응 용액을 제조하는 단계; 및
상기 구리 착화합물과 반응 용액을 혼합하는 단계;를 포함하는, 박막 태양전지 광활성층 제조용 전구체 화합물 제조 방법.
[화학식 5]
Figure 112020100700880-pat00006

상기 화학식 5에서,
X는 인듐(In) 또는 갈륨(Ga)이고,
Y는 염소(Cl) 또는 아이오딘(I)이다.
[화학식 6]
[CuC4H12N2S4]
[화학식 7]
[CuC12H28N2S4]
Forming a copper complex compound by reacting a sulfurized organic material including a ligand represented by the following Formula 6 or Formula 7 and a copper precursor in an aqueous solution;
Preparing a reaction solution by dissolving a metal halide represented by the following Chemical Formula 5 in an organic solvent; And
Mixing the copper complex compound and the reaction solution; containing, a method for producing a precursor compound for manufacturing a thin film solar cell photoactive layer.
[Formula 5]
Figure 112020100700880-pat00006

In Chemical Formula 5,
X is indium (In) or gallium (Ga),
Y is chlorine (Cl) or iodine (I).
[Formula 6]
[CuC 4 H 12 N 2 S 4 ]
[Formula 7]
[CuC 12 H 28 N 2 S 4 ]
구리전구체 및 다이에틸다이싸이오카바메이트(C5H10NS2)를 수용액상에서 반응시켜 구리 착화합물을 형성하는 단계;
하기 화학식 5로 표시되는 금속 할로겐화물을 유기용매에 녹여 반응 용액을 제조하는 단계; 및
상기 구리 착화합물과 반응 용액을 혼합하는 단계;를 포함하는, 박막 태양전지 광활성층 제조용 전구체 화합물 제조 방법.
[화학식 5]
Figure 112020100700880-pat00013

상기 화학식 5에서,
X는 인듐(In) 또는 갈륨(Ga)이고,
Y는 염소(Cl) 또는 아이오딘(I)이다.
Reacting a copper precursor and diethyl dithiocarbamate (C 5 H 10 NS 2 ) in an aqueous solution to form a copper complex compound;
Preparing a reaction solution by dissolving a metal halide represented by the following Chemical Formula 5 in an organic solvent; And
Mixing the copper complex compound and the reaction solution; containing, a method for producing a precursor compound for manufacturing a thin film solar cell photoactive layer.
[Formula 5]
Figure 112020100700880-pat00013

In Chemical Formula 5,
X is indium (In) or gallium (Ga),
Y is chlorine (Cl) or iodine (I).
제3항 또는 제4항에 있어서,
상기 구리 전구체는 염화구리(CuCl2)를 포함하는 것을 특징으로 하는, 박막 태양전지 광활성층 제조용 전구체 화합물 제조 방법.
The method according to claim 3 or 4,
The copper precursor is characterized in that it comprises copper chloride (CuCl 2 ), a method for producing a precursor compound for manufacturing a photoactive layer of a thin film solar cell.
삭제delete 제4항에 있어서,
상기 구리착화합물을 형성하는 단계에서, 구리전구체 및 다이에틸다이싸이오카바메이트(C5H10NS2)는 1:2의 몰비율로 반응하는 것을 특징으로 하는, 박막 태양전지 광활성층 제조용 전구체 화합물 제조 방법.
The method of claim 4,
In the step of forming the copper complex compound, the copper precursor and diethyl dithiocarbamate (C 5 H 10 NS 2 ) are reacted at a molar ratio of 1:2, a precursor compound for producing a photoactive layer of a thin film solar cell Manufacturing method.
제3항 또는 제4항에 있어서,
상기 금속 할로겐화물은 InI3, InCl3 및 GaCl3 중에서 선택된 어느 하나를 포함하는 것을 특징으로 하는, 박막 태양전지 광활성층 제조용 전구체 화합물 제조 방법.
The method according to claim 3 or 4,
The metal halide is InI 3 , InCl 3 And characterized in that it comprises any one selected from GaCl 3 , a method for producing a precursor compound for manufacturing a photoactive layer of a thin film solar cell.
제3항 또는 제4항에 있어서,
상기 유기용매는 벤젠, 아세톤 및 메틸렌클로라이드로 이루어진 군에서 선택된 어느 하나 이상을 포함하는 것을 특징으로 하는, 박막 태양전지 광활성층 제조용 전구체 화합물 제조 방법.
The method according to claim 3 or 4,
The organic solvent is characterized in that it comprises any one or more selected from the group consisting of benzene, acetone, and methylene chloride, a method for producing a precursor compound for manufacturing a thin film solar cell photoactive layer.
제3항 또는 제4항에 있어서,
상기 혼합하는 단계에서, 상기 금속 할로겐화물 및 구리착화합물은 1:1의 몰비율로 반응하는 것을 특징으로 하는, 박막 태양전지 광활성층 제조용 전구체 화합물 제조 방법.
The method according to claim 3 or 4,
In the mixing step, the metal halide and the copper complex compound is characterized in that reacting at a molar ratio of 1:1, a method for preparing a precursor compound for manufacturing a photoactive layer of a thin film solar cell.
제3항 또는 제4항에 있어서,
상기 혼합하는 단계는, 15 내지 25℃에서 10시간 이상 24시간 이하로 수행되는 것을 특징으로 하는, 박막 태양전지 광활성층 제조용 전구체 화합물 제조 방법.
The method according to claim 3 or 4,
The mixing step, characterized in that carried out for 10 hours or more and 24 hours or less at 15 to 25 ℃, a method for producing a precursor compound for manufacturing a thin film solar cell photoactive layer.
제3항 또는 제4항에 있어서,
상기 혼합하는 단계 후에, 제조된 전구체 화합물을 유기용매에 용해시키는 단계;를 더 포함하는 것을 특징으로 하는, 박막 태양전지 광활성층 제조용 전구체 화합물 제조 방법.
The method according to claim 3 or 4,
After the mixing step, dissolving the prepared precursor compound in an organic solvent; characterized in that it further comprises, a method for producing a precursor compound for manufacturing a thin film solar cell photoactive layer.
제12항에 있어서,
상기 유기용매는 메틸렌클로라이드를 포함하는 것을 특징으로 하는, 박막 태양전지 광활성층 제조용 전구체 화합물 제조 방법.
The method of claim 12,
The organic solvent is characterized in that it contains methylene chloride, a method for producing a precursor compound for producing a photoactive layer of a thin film solar cell.
KR1020190023940A 2019-02-28 2019-02-28 Precursor compounds for the production of photoactive layers of thin film solar cells and their preparation method KR102205004B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020190023940A KR102205004B1 (en) 2019-02-28 2019-02-28 Precursor compounds for the production of photoactive layers of thin film solar cells and their preparation method
US16/804,141 US11130770B2 (en) 2019-02-28 2020-02-28 Precursor compound for producing photoactive layer of thin film solar cell and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190023940A KR102205004B1 (en) 2019-02-28 2019-02-28 Precursor compounds for the production of photoactive layers of thin film solar cells and their preparation method

Publications (2)

Publication Number Publication Date
KR20200105164A KR20200105164A (en) 2020-09-07
KR102205004B1 true KR102205004B1 (en) 2021-01-18

Family

ID=72236025

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190023940A KR102205004B1 (en) 2019-02-28 2019-02-28 Precursor compounds for the production of photoactive layers of thin film solar cells and their preparation method

Country Status (2)

Country Link
US (1) US11130770B2 (en)
KR (1) KR102205004B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011103462A (en) 2009-11-11 2011-05-26 Internatl Business Mach Corp <Ibm> Forming photovoltaic device
KR101173417B1 (en) * 2011-06-13 2012-08-10 엘지이노텍 주식회사 Solar cell and mentod of fabricating the same
JP2016533038A (en) 2013-09-13 2016-10-20 ナノコ テクノロジーズ リミテッド Inorganic salt nanoparticle inks for thin film photovoltaic devices and related methods
KR101798549B1 (en) 2016-09-23 2017-11-17 재단법인대구경북과학기술원 Manufacturing method of organic-inorganic hybrid perovskite photo active layer, photo active layer manufactured thereby and solar cell comprising the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011103462A (en) 2009-11-11 2011-05-26 Internatl Business Mach Corp <Ibm> Forming photovoltaic device
KR101173417B1 (en) * 2011-06-13 2012-08-10 엘지이노텍 주식회사 Solar cell and mentod of fabricating the same
JP2016533038A (en) 2013-09-13 2016-10-20 ナノコ テクノロジーズ リミテッド Inorganic salt nanoparticle inks for thin film photovoltaic devices and related methods
KR101798549B1 (en) 2016-09-23 2017-11-17 재단법인대구경북과학기술원 Manufacturing method of organic-inorganic hybrid perovskite photo active layer, photo active layer manufactured thereby and solar cell comprising the same

Also Published As

Publication number Publication date
US11130770B2 (en) 2021-09-28
KR20200105164A (en) 2020-09-07
US20200277311A1 (en) 2020-09-03

Similar Documents

Publication Publication Date Title
Yang et al. Molecular solution approach to synthesize electronic quality Cu2ZnSnS4 thin films
US8628696B2 (en) Molecular precursors for optoelectronics
Afzaal et al. The synthesis, X-ray structures and CVD studies of some group 11 complexes of iminobis (diisopropylphosphine selenides) and their use in the deposition of I/III/VI photovoltaic materials
Khan et al. Synthesis of chalcopyrite-type and thiospinel minerals/materials by low temperature melts of xanthates
US8288535B2 (en) Synthesis method of polymer complex crystal
Shang et al. Low‐temperature chemical vapor deposition of indium sulfide thin films using a novel single‐source indium thiocarboxylate compound as precursor
Wang et al. Synthesizing crystalline chalcogenidoarsenates in thiol–amine solvent mixtures
Nguyen-Tran et al. Synthesis of organo tin halide perovskites via simple aqueous acidic solution-based method
Karmakar et al. Accessing photoresponsive copper selenide nanomaterials and thin films through tetranuclear Cu (I) pyridylselenolate cluster
Finger et al. Halide‐Free Synthesis of Hydrochalcogenide Ionic Liquids of the Type [Cation][HE](E= S, Se, Te)
US8414862B2 (en) Preparation of CZTS and its analogs in ionic liquids
Ahmet et al. Oxidative addition to SnII guanidinate complexes: precursors to tin (II) chalcogenide nanocrystals
Saeed et al. Symmetrical and unsymmetrical nickel (II) complexes of N-(dialkylcarbamothioyl)-nitro substituted benzamide as single-source precursors for deposition of nickel sulfide nanostructured thin films by AACVD
KR102205004B1 (en) Precursor compounds for the production of photoactive layers of thin film solar cells and their preparation method
JP6155264B2 (en) Method for producing coating solution for forming light absorption layer
Brahma et al. Zinc acetylacetonate hydrate adducted with nitrogen donor ligands: Synthesis, spectroscopic characterization, and thermal analysis
Guschlbauer et al. Homoleptic Group 13 Trimethylsilylchalcogenolato Metalates [M (ESiMe3) 4]−(M= Ga, In; E= S, Se): Metastable Precursors for Low-Temperature Syntheses of Chalcogenide-Based Materials
Mlowe et al. Morphological influence of deposition routes on lead sulfide thin films
TW201629162A (en) Homogeneous coating solution and production method thereof, light-absorbing layer of solar cell and production method thereof, and solar cell and production method thereof
Park et al. Indium complexes with aminothiolate ligands as single precursors for indium chalcogenides
Akram et al. Single-source route to chalcopyrite-type CuFeS2 and CuFeSe2 nanocrystals and their structural and optical studies
Macreadie et al. Cadmium tris (dithiocarbamate) ionic liquids as single source, solvent-free cadmium sulfide precursors
Hawila et al. A chiral 3D silver (i)–benzenedithiolate coordination polymer exhibiting photoemission and non-linear optical response
KR101119490B1 (en) Carbazate metal complexes and manufacturing method of metal chalcogenide nanoparticles using the same
Onche Soft processing for the introduction of metal dopants to metal sulfide semiconductor thin films and nanoparticles

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant