KR102197241B1 - Composition for antioxidant and lipid differentiation inhibitory activity by ampk phosphorylation from fraction of ceramium kondoi - Google Patents

Composition for antioxidant and lipid differentiation inhibitory activity by ampk phosphorylation from fraction of ceramium kondoi Download PDF

Info

Publication number
KR102197241B1
KR102197241B1 KR1020190177925A KR20190177925A KR102197241B1 KR 102197241 B1 KR102197241 B1 KR 102197241B1 KR 1020190177925 A KR1020190177925 A KR 1020190177925A KR 20190177925 A KR20190177925 A KR 20190177925A KR 102197241 B1 KR102197241 B1 KR 102197241B1
Authority
KR
South Korea
Prior art keywords
fraction
extract
silkworm
prepare
antioxidant
Prior art date
Application number
KR1020190177925A
Other languages
Korean (ko)
Inventor
이자복
Original Assignee
(주)엘파운더
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)엘파운더 filed Critical (주)엘파운더
Application granted granted Critical
Publication of KR102197241B1 publication Critical patent/KR102197241B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/02Algae
    • A61K36/04Rhodophycota or rhodophyta (red algae), e.g. Porphyra
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/96Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution
    • A61K8/97Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution from algae, fungi, lichens or plants; from derivatives thereof
    • A61K8/9706Algae
    • A61K8/9717Rhodophycota or Rhodophyta [red algae], e.g. Porphyra
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/06Preparations for care of the skin for countering cellulitis
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health
    • A23V2200/332Promoters of weight control and weight loss
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2250/00Food ingredients
    • A23V2250/20Natural extracts
    • A23V2250/202Algae extracts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/52Stabilizers
    • A61K2800/522Antioxidants; Radical scavengers

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Mycology (AREA)
  • Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Botany (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Diabetes (AREA)
  • Nutrition Science (AREA)
  • Obesity (AREA)
  • Hematology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Birds (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Dermatology (AREA)
  • Child & Adolescent Psychology (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Medical Informatics (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)

Abstract

The present invention relates to a composition for antioxidant and lipid differentiation inhibitory activity using ethanol extracts and fractions of Ceramium kondoi. By ingesting the Ceramium kondoi fractions, it is possible to obtain an effect of alleviating obesity through antioxidant and lipid differentiation inhibitory activity.

Description

비단풀 분획물의 항산화 및 AMPK 인산화를 통한 지방분화 억제활성용 조성물{COMPOSITION FOR ANTIOXIDANT AND LIPID DIFFERENTIATION INHIBITORY ACTIVITY BY AMPK PHOSPHORYLATION FROM FRACTION OF CERAMIUM KONDOI}Composition for inhibiting fat differentiation through antioxidant and AMPK phosphorylation of silkworm fraction {COMPOSITION FOR ANTIOXIDANT AND LIPID DIFFERENTIATION INHIBITORY ACTIVITY BY AMPK PHOSPHORYLATION FROM FRACTION OF CERAMIUM KONDOI}

본 발명은 비단풀에 관한 것으로서, 보다 구체적으로는 비단풀 에탄올 추출물 또는 분획물을 이용한 항산화 및 지방분화 억제활성용 조성물에 관한 것이다.The present invention relates to silkworm, and more specifically, to a composition for antioxidant and lipodifferentiation inhibitory activity using a silkworm ethanol extract or fraction.

비만은 과도한 영양섭취 및 에너지 소비의 불균형으로 발생되며, 지방세포의 크기와 지방세포수를 증가시켜 정상 체형의 변형을 일으킨다. 비만이 발생되면 근육, 골격계 질환 및 후천적 체형변형을 일으키고 미용 뿐 아니라 건강상에도 치명적인 영향을 미친다. 항비만에 대한 연구는 식품의약품안전처에서 고지한 3T3-L1 지방세포를 이용하여 지방세포 분화단계에서 지방측정과 관련된 전사인자의 발현 정도를 확인한다. 따라서 지방전구세포(preadipocyte)로부터 지방세포(adipocyte) 분화를 억제하는 성분을 이용한 예방의학적 차원에서 연구가 진행되고 있고, 지방세포 축적의 주요 인자로는 peroxisome proliferator-activated receptors (PPARs), adipocyte protein 2 (aP2), AMP-activated protein kinase (AMPK), mitogen-activated protein kinase (MAPK), AMP-activated protein kinase α (AMPKα), acetyl-CoA carboxylase (ACC) 및 CCAAT-enhancer-binding proteins (C/EBPs) 등이 있다.Obesity is caused by an imbalance of excessive nutritional intake and energy consumption, and causes the normal body shape to be transformed by increasing the size of fat cells and the number of fat cells. When obesity occurs, it causes muscle and skeletal disorders and acquired body transformation, and has a fatal effect on health as well as beauty. Studies on anti-obesity use 3T3-L1 adipocytes notified by the Ministry of Food and Drug Safety to confirm the level of expression of transcription factors related to fat measurement in adipocyte differentiation stage. Therefore, research is being conducted in the aspect of preventive medicine using components that inhibit the differentiation of adipocytes from predipocytes, and major factors in adipocyte accumulation are peroxisome proliferator-activated receptors (PPARs), adipocyte protein 2 (aP2), AMP-activated protein kinase (AMPK), mitogen-activated protein kinase (MAPK), AMP-activated protein kinase α (AMPKα), acetyl-CoA carboxylase (ACC) and CCAAT-enhancer-binding proteins (C/EBPs) ), etc.

최근 산화와 지방세포 분화의 관련성에 대한 연구가 발표되면서, 항산화 성분을 기반으로 지방세포를 감소시키고자 다양한 연구가 진행되고 있다. 산화는 사람이 생명을 유지하는데 필요한 산소를 이용하여 에너지 대사를 하는 과정에서 활성산소(O2, H2O2,·OH 등)가 발생하면서 생리학적 또는 병리학적 문제를 야기시킨다. 인체는 이러한 문제를 superoxide dismutase와 catalase 등의 효소적 방어기작을 갖는 항산화 물질을 이용하여 활성산소를 제거하지만 한계가 있기 때문에 항산화 효과가 뛰어난 다양한 소재를 개발하는 연구가 이루어지고 있다. 과거 tert-butylhydroxyanisol (BHA), tert-butylhydroquinone (BHQ) 및 tert-butylhydroxytoluene (BHT)와 같은 합성 항산화제는 효과가 우수하고 경제적임에도 안전성의 문제로 사용이 제한되어 이를 대체할 수 있는 항산화제 개발이 요구되고 있다. 이에 우리나라를 포함하는 동양권에서는 질병치료 또는 예방을 목적으로 식물(약초)을 이용한 천연물 재료에 대한 연구가 진행되었고, 특히 식물 중 함유되어 있는 폴리페놀 화합물은 항산화 뿐 아니라 항염증, 항종양, 항균활성 및 항당뇨 등 다양한 생리활성이 보고되고 있다.As studies on the relationship between oxidation and adipocyte differentiation have recently been published, various studies are being conducted to reduce adipocytes based on antioxidant components. Oxidation causes physiological or pathological problems as active oxygen (O 2 , H 2 O 2, ·OH, etc.) is generated in the process of energy metabolism using oxygen necessary for human life. The human body removes free radicals by using antioxidants that have enzymatic defense mechanisms such as superoxide dismutase and catalase, but there is a limit, so studies are being made to develop various materials with excellent antioxidant effects. The past tert -butylhydroxyanisol (BHA), tert- butylhydroquinone synthetic antioxidants are antioxidants developed that are excellent in the effect is limited to use as a matter of economic safety being able to replace them, such as (BHQ) and tert -butylhydroxytoluene (BHT) Is required. Therefore, studies on natural materials using plants (herbs) for the purpose of disease treatment or prevention have been conducted in the Eastern region, including Korea. In particular, polyphenol compounds contained in plants have anti-inflammatory, anti-tumor, and antibacterial activities as well as antioxidant activity. And various physiological activities such as anti-diabetes have been reported.

비단풀(Ceramium kondoi)은 일년생 초본으로 밭 또는 길가에 흔하게 자라고 전 세계적으로 1,600종이 분포하며, 우리나라에는 11종의 비단풀이 분포하고 있다. 땅바닥에 비단처럼 덮으며 자란다는 의미로 비단풀이라고 하며 다른 이름으로는 점박이풀, 땅빈대, 내모초, 지금초, 선도초, 지금, 지연, 장판초 등 여러 이름으로 불려진다. 비단풀의 맛은 맵고 쓰며 해독, 청열이습, 습진, 화상, 모유부족, 혈액순환 등 효능이 있고 주로 약용 또는 줄기에서 나오는 유액을 이용하여 베인 상처를 치료하는 민간요법으로 이용된다. 비단풀은 항암, 항균, 항염, 지혈, 항산화 및 지방산조성에 대한 연구보고가 있고, 성분연구로는 flavonoids, tannins, terpenoids 등의 보고가 있다. Ceramium kondoi is an annual herb. It grows commonly in fields or roadsides, and 1,600 species are distributed worldwide, and 11 species of silkworm are distributed in Korea. It is called silk grass, meaning that it grows by covering it like silk on the ground, and other names are called by various names such as spotted grass, bedbug, naemocho, nowcho, sundocho, now, yeonji, and jangpancho. The taste of silkworm is spicy and bitter, and has effects such as detoxification, blue fever, eczema, burns, lack of breast milk, and blood circulation, and is mainly used as a folk remedy to treat cuts using medicinal or stem milk. There are reports of anticancer, antibacterial, anti-inflammatory, hemostasis, antioxidant and fatty acid composition of silkworm, and flavonoids, tannins, and terpenoids are reported as component studies.

본 발명은 비단풀의 이용에 따른 효능을 찾기 위한 연구로 비단풀의 항산화 관련 연구는 다수 확인되나, 항비만 관련 연구가 미흡한 실정이기에 지방전구 세포의 분화를 억제하는 매커니즘을 확인하고자 하였다.The present invention is a study to find the efficacy of the use of silkworm, and a number of studies related to antioxidants of silkworm have been confirmed, but since antiobesity-related studies are insufficient, a mechanism for inhibiting differentiation of adipocytes was attempted.

상기한 배경기술로서 설명된 사항들은 본 발명의 배경에 대한 이해증진을 위한 것일 뿐, 이 기술분야에서 통상의 지식을 가진 자에게 이미 알려진 종래기술에 해당함을 인정하는 것으로 받아들여져서는 안 될 것이다.The matters described as the above-described background art are only for enhancing understanding of the background of the present invention, and should not be taken as acknowledging that they correspond to the prior art already known to those of ordinary skill in the art.

특허문헌 1 : KR 10-1793822 B1 (2017.10.30)Patent Document 1: KR 10-1793822 B1 (2017.10.30) 특허문헌 2 : KR 10-2011-0120813 A (2011.11.04)Patent Document 2: KR 10-2011-0120813 A (2011.11.04)

본 발명은 비단풀의 섭취로 지방세포의 분화를 억제하여 비만개선에 도움을 주고자 하는 것이다.The present invention is intended to help improve obesity by inhibiting the differentiation of adipocytes by ingestion of silkworm.

본 발명의 주된 목적은 비단풀(Ceramium kondoi) 추출물 또는 분획물을 함유하여 항비만 효능을 나타내는 식품 조성물을 제공하는 데 있다.The main object of the present invention is to provide a food composition showing antiobesity efficacy by containing a silkworm ( Ceramium kondoi ) extract or fraction.

본 발명의 또 다른 목적은 비단풀(Ceramium kondoi) 추출물 또는 분획물을 함유하여 체중감소 효능을 나타내는 조성물을 제공하는 데 있다.Another object of the present invention is to provide a composition containing a silkworm ( Ceramium kondoi ) extract or fraction to show weight loss effect.

본 발명의 또 다른 목적은 비단풀(Ceramium kondoi) 추출물 또는 분획물을 함유하여 AMPK 인산화를 통한 지방분화 억제활성을 나타내는 조성물을 제공하는 데 있다.Another object of the present invention is to provide a composition that contains an extract or fraction of Ceramium kondoi and exhibits lipodifferentiation inhibitory activity through AMPK phosphorylation.

본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 더욱 명확하게 된다.Other objects and advantages of the present invention will become more apparent by the following detailed description, claims and drawings.

상기 목적을 달성하기 위하여, 본 발명은 비단풀(Ceramium kondoi)의 추출물 또는 분획물을 유효성분으로 포함하는 항비만용 식품 조성물 또는 체중 감소용 조성물을 제공한다.In order to achieve the above object, the present invention provides a food composition for anti-obesity or a composition for weight loss comprising an extract or fraction of silkworm ( Ceramium kondoi ) as an active ingredient.

본 발명에서 상기 비단풀(Ceramium kondoi)의 추출물 또는 분획물은 지방세포의 분화를 억제하는 것을 특징으로 한다.In the present invention, the extract or fraction of the silkworm ( Ceramium kondoi ) is characterized in that it inhibits the differentiation of adipocytes.

본 발명에서 용어 "추출물"은 생약을 적절한 침출액으로 짜내고 침출액을 증발시켜 농축한 제제를 의미하는 것으로, 추출처리에 의해 얻어지는 추출액, 추출액의 희석액 또는 농축액, 추출액을 건조하여 얻어지는 건조물, 이들의 조정제물 또는 정제물일 수 있다.In the present invention, the term "extract" refers to a preparation obtained by squeezing a herbal medicine into an appropriate leachate and evaporating the leachate. The extract obtained by extraction treatment, the diluted or concentrated solution of the extract, the dried product obtained by drying the extract, and the preparation thereof Or it may be a purified product.

본 발명에서 비단풀을 분쇄하여 에탄올에 추출하며 여과지에 여과 후 감압농축 및 동결 건조를 수행한다.In the present invention, the silk grass is pulverized, extracted with ethanol, filtered with filter paper, concentrated under reduced pressure, and freeze-dried.

상기 건조추출분말을 증류수에 섞어 동량의 n-hexane 으로 분획하여 감압 농축 및 동결건조를 수행한다. 동일한 방법으로 chloroform, ethyl acetate, n-butanol로 분획하여 감압 농축 및 동결건조를 수행한다. 끝으로 남은 water층을 감압농축을 수행한다.The dried extract powder is mixed with distilled water and fractionated with an equal amount of n- hexane, and concentrated under reduced pressure and freeze-dried. In the same way, fractionation was performed with chloroform, ethyl acetate, and n- butanol, and concentrated under reduced pressure and freeze-dried. Finally, the remaining water layer is concentrated under reduced pressure.

본 발명에서 비단풀의 항산화는 에틸아세테이트 층에서 추출물보다 DPPH 라디칼소거능 (3.4 ± 0.1ug/mL RC50)과 환원력(13.2 ± 0.3 RPC)이 높게 나타났으며, 이는 총 페놀(278.15±1.14 mg/g) 및 플라보노이드(188.22±2.31 mg/g)의 함량과 상관관계를 갖는 것을 확인하였다(p< 0.001). 또한, 항산화 효과가 높았던 에틸아세테이트 층은 Lx2 및 3T3-L1 세포에서 10 ug/mL 이하 처리시 독성이 없음을 확인하였다. 3T3-L1세포의 지방적 분화 및 triglyceride의 생성 또한 추출물보다 통계적으로 유의하게 감소됨을 확인하였고(p<0.05, p<0.001), 지방전구세포의 지방분화 기작에서 p-AMPK 단백질 증가시켜 지방분화를 억제하는 것을 확인하였다.In the present invention, the antioxidant of silkworm was higher in DPPH radical scavenging activity (3.4 ± 0.1ug/mL RC 50 ) and reducing power (13.2 ± 0.3 RPC) than the extract in ethyl acetate layer, which is total phenol (278.15±1.14 mg/g). ) And flavonoids (188.22±2.31 mg/g) were found to have a correlation ( p <0.001). In addition, it was confirmed that the ethyl acetate layer, which had a high antioxidant effect, was not toxic when treated with less than 10 ug/mL in Lx2 and 3T3-L1 cells. It was confirmed that the adipogenic differentiation and triglyceride production of 3T3-L1 cells were also statistically significantly decreased compared to the extract ( p <0.05, p <0.001), and p-AMPK protein was increased in the adipocyte differentiation mechanism to inhibit adipocyte differentiation. I confirmed that.

본 발명에서 용어 "비만"은 과다한 체지방을 가진 상태를 이르는 말로, 체지방이 체중의 25%(남자), 30%(여자) 이상인 상태를 의미한다.In the present invention, the term "obesity" refers to a state with excess body fat, and refers to a state in which body fat is 25% (male), 30% (female) or more of body weight.

본 발명에서 용어 "항비만"은 비만인 상태를 치료, 예방 또는 개선시키는 것을 의미한다.In the present invention, the term "anti-obesity" means to treat, prevent or ameliorate an obese state.

또한, 본 발명의 추출물 또는 분획물은 신체 각 부위의 비만, 복부비만 또는 내장지방 축적의 예방, 개선 또는 치료를 위하여도 사용될 수 있으며, 바람직하게는 내장지방 축적의 예방, 개선 또는 치료를 위해 사용될 수 있다. 상기 복부비만 또는 내장지방 축적은 장시간 의자에 앉아있는 생활을 하거나, 운동부족, 술(알코올) 섭취, 스트레스 등으로부터 유발된 것을 포함하나 이에 제한되지 않는다.In addition, the extract or fraction of the present invention may be used for the prevention, improvement or treatment of obesity, abdominal obesity or visceral fat accumulation in each part of the body, and preferably may be used for the prevention, improvement or treatment of visceral fat accumulation. have. The abdominal obesity or the accumulation of visceral fat includes, but is not limited to, those caused by a long time sitting in a chair, lack of exercise, alcohol (alcohol) intake, stress, and the like.

본 발명의 일 양태에 따르면, 본 발명은 상기 비단풀 추출물 또는 분획물을 포함하는 식품, 건강기능식품 또는 약학 조성물을 제공한다.According to an aspect of the present invention, the present invention provides a food, health functional food or pharmaceutical composition comprising the extract or fraction of the silkworm.

본 발명에 있어서, 본 발명의 추출물 또는 분획물의 배합비율은, 그 종류 및 배합되는 다른 성분의 종류나 양, 형태 등에 따라서 적당하게 선택할 수 있는데, 통상, 의약 또는 식품 전량에 대해, 본 발명의 비단풀 분획물을 0.001 내지 20 중량%, 바람직하게는 0.01 내지 10 중량%를 포함할 수 있다.In the present invention, the blending ratio of the extract or fraction of the present invention can be appropriately selected according to the kind and the kind, amount, form, etc. of the other ingredients to be blended. Usually, the silkworm of the present invention for the total amount of medicine or food Fractions may contain 0.001 to 20% by weight, preferably 0.01 to 10% by weight.

본 발명에 의해 제조된 추출물 또는 분획물은 일반적인 식품을 제조하는 경우 일정량을 혼합하여 사용할 수 있다. 특히, 일반적인 식품은 과자류, 쿠키류, 빵류, 면류, 떡류, 건빵, 밀가루 반죽 자체 등에 혼합할 수 있으며, 이에 한정되는 것은 아니며 공지된 식품 제조시 적당한 배합형태, 양 등을 선택할 수 있다.The extract or fraction prepared by the present invention may be used by mixing a certain amount when preparing a general food. In particular, general foods may be mixed with confectionery, cookies, breads, noodles, rice cakes, biscuits, flour dough itself, and the like, but is not limited thereto, and a suitable blending form, amount, etc. can be selected when manufacturing known foods.

본 발명의 조성물이 식품 또는 건강기능식품 조성물로 제조되는 경우, 유효성분으로서 본 발명에 따른 비단풀 추출물 또는 분획물뿐만 아니라, 식품 제조 시에 통상적으로 첨가되는 성분을 포함하며, 예를 들어, 단백질, 탄수화물, 지방, 영양소, 조미제 및 향미제를 포함한다. 상술한 탄수화물의 예는 단당류, 예를 들어, 포도당, 과당 등; 이당류, 예를 들어 말토스, 수크로스, 올리고당 등; 및 다당류, 예를 들어 덱스트린, 사이클로덱스트린 등과 같은 통상적인 당 및 자일리톨, 소르비톨, 에리트리톨 등의 당알콜이다. 향미제로서 천연 향미제 [타우마틴, 스테비아 추출물 (예를 들어 레바우디오시드 A, 글리시르히진 등)] 및 합성 향미제(사카린, 아스파르탐 등)를 사용할 수 있다. 예컨대, 본 발명의 식품 조성물이 드링크제로 제조되는 경우에는 본 발명에 따른 비단풀 추출물 또는 분획물 이외에 구연산, 액상과당, 설탕, 포도당, 초산, 사과산, 과즙, 두충 추출액, 대추 추출액, 감초 추출액 등을 추가로 포함시킬 수 있다.When the composition of the present invention is prepared as a food or health functional food composition, it includes, as an active ingredient, the silkworm extract or fraction according to the present invention, as well as ingredients commonly added during food production, for example, protein, carbohydrate , Fats, nutrients, seasonings and flavoring agents. Examples of the above-described carbohydrates include monosaccharides such as glucose and fructose; Disaccharides such as maltose, sucrose, oligosaccharides, and the like; And polysaccharides, for example, common sugars such as dextrin and cyclodextrin, and sugar alcohols such as xylitol, sorbitol, and erythritol. As flavoring agents, natural flavoring agents [taumatin, stevia extract (eg, rebaudioside A, glycyrrhizin, etc.)] and synthetic flavoring agents (saccharin, aspartame, etc.) can be used. For example, when the food composition of the present invention is prepared as a drink, citric acid, liquid fructose, sugar, glucose, acetic acid, malic acid, fruit juice, cephalic extract, jujube extract, licorice extract, etc., in addition to the silkworm extract or fraction according to the present invention, are additionally added. Can be included.

본 발명의 조성물이 약학 조성물로 제조되는 경우, 통상적인 방법에 따라 약학 제형으로 제조될 수 있다. 제형의 제조에 있어서, 활성 성분을 담체와 함께 혼합 또는 희석하거나, 용기 형태의 담체 내에 봉입시키는 것이 바람직하다. 담체가 희석제로 사용되는 경우에는 활성 성분에 대한 담체, 부형제 또는 매질(medium)로 작용하는 고형, 반고형 또는 액상의 물질일 수 있다. 따라서, 제형은 정제, 환제, 분제, 새세이, 엘릭시르, 현탁제, 유제, 용액제, 시럽제, 에어로졸, 연질 또는 경질 젤라틴 캡슐제, 멸균 주사제, 멸균 분제 등의 형태일 수 있다. 본 발명의 조성물은 포유동물에 투여된 후 활성 성분의 신속, 지속 또는 지연된 방출을 제공할 수 있도록 당업계에 잘 알려진 방법을 사용하여 제형화될 수 있다.When the composition of the present invention is prepared as a pharmaceutical composition, it may be prepared in a pharmaceutical formulation according to a conventional method. In the preparation of the formulation, it is preferable to mix or dilute the active ingredient with a carrier or encapsulate it in a carrier in the form of a container. When the carrier is used as a diluent, it may be a solid, semi-solid or liquid substance that acts as a carrier, excipient, or medium for the active ingredient. Accordingly, the formulation may be in the form of tablets, pills, powders, sachets, elixirs, suspensions, emulsions, solutions, syrups, aerosols, soft or hard gelatin capsules, sterile injections, sterile powders, and the like. The compositions of the present invention may be formulated using methods well known in the art to provide rapid, sustained or delayed release of the active ingredient after administration to a mammal.

여기서, 본 발명의 약학 조성물은 경구, 경피, 피하, 정맥, 복강, 근육, 국소도포, 첩포 및 이온토포레시스(iontophoresis)를 포함한 여러 경로를 통해 투여될 수 있고, 이 중에서 국소 적용 및 경구투여가 바람직하다. 본 발명의 활성 성분의 실제 투여량은 치료할 질환, 투여 경로, 환자의 연령, 성별 및 체중, 및 질환의 중증도 등의 여러 관련 인자에 비추어 결정되어야 하는 것으로, 상기 투여량은 어떠한 방법으로도 본 발명의 범위를 한정하는 것은 아니다.Here, the pharmaceutical composition of the present invention may be administered through various routes including oral, transdermal, subcutaneous, intravenous, intraperitoneal, muscle, topical application, patch, and iontophoresis, among which topical application and oral administration Is preferred. The actual dosage of the active ingredient of the present invention should be determined in light of various related factors such as the disease to be treated, the route of administration, the age, sex and weight of the patient, and the severity of the disease, and the dosage should be determined by any method. It does not limit the scope of.

본 발명에 따른 비단풀 분획물을 섭취함으로써 항산화 및 지방세포의 분화를 억제하여 비만개선 효과를 얻을 수 있다. 본 발명은 비단풀 분획물을 이용한 화장품, 식품, 건강기능식품 또는 약학 조성물로 다양하게 활용할 수 있다.By ingesting the silkworm fraction according to the present invention, it is possible to obtain an effect of improving obesity by inhibiting the differentiation of antioxidant and adipocytes. The present invention can be used in various ways as a cosmetic, food, health functional food or pharmaceutical composition using the silkworm fraction.

도 1은 본 발명에 따른 비단풀(Ceramium kondoi) 에탄올 추출물 및 분획물의 환원력을 분석한 그래프이다.(Results are expressed as mean ± SD of three independent experiments. AE: Ceramium kondoi ethanol extract, H: n -hexane fraction, C: chloroform fraction, E: ethyl acetate fraction, B: butanol fraction, W: water fraction. AT: α-tocopherol, AC: ascorbic acid)
도 2는 본 발명에 따른 비단풀(Ceramium kondoi) 에탄올 추출물 및 분획물의 지방적세포의 분화능을 3T3-L1 세포주를 이용하여 분석한 그래프이다.
(A) 3T3-L1 세포에서 지방적의 Oil-red O 염색 (B) Oil-red O 염색도 (C) 3T3-L1 세포에서의 트리글리세리드 함량
(AE: ceramium kondoi ethanol extract, H: n -hexane fraction, C: chloroform fraction, E: ethyl acetate fraction, B: butanol fraction, W: water fraction. MDI: adipogenic inducer)
도 3은 본 발명에 따른 비단풀(Ceramium kondoi) 에틸아세테이트 분획물의AMPK 신호조절에 의한 지방적 분화 생성 억제능을 분석한 그래프이다. (A) 3T3-L1 세포에서 지방 생성 관련 단백질 활성을 나타내는 웨스턴 블롯 분석 (B) compound C로 처리 된 3T3-L1 세포에서 지방 생성 관련 단백질 활성을 나타내는 웨스턴 블롯 분석
1 is a graph analyzing the reducing power of ethanol extracts and fractions of Ceramium kondoi according to the present invention. (Results are expressed as mean ± SD of three independent experiments. AE: Ceramium kondoi ethanol extract, H: n -hexane fraction , C: chloroform fraction, E: ethyl acetate fraction, B: butanol fraction, W: water fraction.AT: α-tocopherol, AC: ascorbic acid)
2 is a graph analyzing the differentiation capacity of adipocytes of the ethanol extract and fractions of silkworm ( Ceramium kondoi ) according to the present invention using the 3T3-L1 cell line.
(A) Fatty Oil-red O staining in 3T3-L1 cells (B) Oil-red O staining degree (C) Triglyceride content in 3T3-L1 cells
(AE: ceramium kondoi ethanol extract, H: n -hexane fraction, C: chloroform fraction, E: ethyl acetate fraction, B: butanol fraction, W: water fraction.MDI: adipogenic inducer)
3 is a graph analyzing the ability to inhibit the production of adipogenic differentiation by regulating the AMPK signal of the silkworm ( Ceramium kondoi ) ethyl acetate fraction according to the present invention. (A) Western blot analysis showing adipogenesis-related protein activity in 3T3-L1 cells (B) Western blot analysis showing adipogenesis-related protein activity in 3T3-L1 cells treated with compound C

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail through examples. These examples are only for describing the present invention in more detail, and it will be apparent to those of ordinary skill in the art that the scope of the present invention is not limited by these examples according to the gist of the present invention. .

1. 실험재료1. Experimental materials

비단풀은 노내골농장(강원도 홍천군 화촌면)에서 구입하여 지상부를 본 연구의 시료로 사용하였다. 건조된 비단풀을 분쇄하여 686.9 g을 48시간 80% 에탄올 1L에 추출하였다. 추출물은 여과지(Advantech, circles 300 mm, Japan)에 여과 후 45℃에서 감압 농축 및 동결건조하였다. 건조 추출분말(118.3 g)을 3차 2L의 증류수에 섞어 동량의 n-hexane 으로 분획하여 감압 농축 및 동결건조하였고 8.4 g의 분획물을 얻었다. 동일한 방법으로 chloroform을 분획하여 43.8 g의 분획물을 얻었고, ethyl acetate을 분획하여 23.5 g의 분획물을 얻었고, n-butanol을 분획하여 20.1 g의 분획물을 얻었다. 끝으로 남은 water층을 감압농축하여 10.5 g을 얻었다. 실험에는 감압농축 및 동결건조하여 실험에 이용하였다.Silk grass was purchased at Nonaegol Farm (Hwachon-myeon, Hongcheon-gun, Gangwon-do) and the above-ground part was used as a sample for this study. The dried silk grass was pulverized, and 686.9 g was extracted in 1 L of 80% ethanol for 48 hours. The extract was filtered through filter paper (Advantech, circles 300 mm, Japan), then concentrated under reduced pressure at 45°C and freeze-dried. The dry extract powder (118.3 g) was mixed with 2 L of distilled water for a third period, fractionated with the same amount of n- hexane, concentrated under reduced pressure, and freeze-dried to obtain 8.4 g of a fraction. In the same manner, chloroform was fractionated to obtain a fraction of 43.8 g, ethyl acetate was fractionated to obtain a fraction of 23.5 g, and n- butanol was fractionated to obtain a fraction of 20.1 g. Finally, the remaining water layer was concentrated under reduced pressure to obtain 10.5 g. In the experiment, it was concentrated under reduced pressure and freeze-dried and used in the experiment.

2. DPPH 라디칼 소거능2. DPPH radical scavenging activity

1,1-diphenyl-2-picrylhydrazyl (DPPH, Sigma-Aldrich, St. Louis, MO, USA)라디칼 소거능은 비단풀 추출물 및 분획물을 농도별로 ethanol (99.9%, pure grade, Duksan Pharmaceutical Co. Ltd., KyongKido, Korea)에 희석한 시료 100 uL와 60 mM DPPH용액 100 uL를 96 well plate에 분주하여 실온에서 30분간 반응시킨 후 Wallac Victor2 plate reader를 이용하여 540nm에서 항산화를 측정하였다. DPPH라디칼 소거능은 측정농도의 50% 억제농도(RC50) 값으로 계산하였다.1,1-diphenyl-2-picrylhydrazyl (DPPH, Sigma-Aldrich, St. Louis, MO, USA) The radical scavenging activity of the extracts and fractions of silkworm in ethanol (99.9%, pure grade, Duksan Pharmaceutical Co. Ltd., KyongKido) , Korea) and 100 uL of a 60 mM DPPH solution were dispensed into a 96 well plate and reacted at room temperature for 30 minutes, and then antioxidant was measured at 540 nm using a Wallac Victor2 plate reader. DPPH radical scavenging ability was calculated as a 50% inhibitory concentration (RC 50 ) value of the measured concentration.

3. 환원력 실험3. Reduction power experiment

환원력 측정법은 비단풀 추출물 및 분획물을 농도별로 0.01, 0.1 및 1 mg/mL 의 농도 100 uL에 0.2M sodium phosphate buffer (pH 6.6, Sigma-Aldrich, St. Louis, MO, USA) 100 uL 및 1% potassium ferricyanide (Sigma-Aldrich, St. Louis, MO, USA) 100 uL를 각각 첨가하여 50 ℃ heat block에 20분간 반응시킨 후 10% trichloroacetic acid (Sigma-Aldrich, St. Louis, MO, USA) 를 100 uL 첨가 하였다. 이 후 0.1% ferric chloride를 20 uL 첨가 후 37℃에서 20분간 반응시킨 다음 13,000rpm에서 10분 동안 원심분리 하였다. 이후 상층액 100 uL를 Wallac Victor2 plate reader의 700nm에서 환원력을 측정하였다. 대조군으로 α-tocopherol (Sigma-Aldrich, St. Louis, MO, USA) 및 ascorbic acid (Sigma-Aldrich, St. Louis, MO, USA)를 이용하였다.The method for measuring reducing power is a 0.2M sodium phosphate buffer (pH 6.6, Sigma-Aldrich, St. Louis, MO, USA) 100 uL and 1% potassium in 100 uL concentrations of 0.01, 0.1 and 1 mg/mL of silkworm extract and fractions. 100 uL of ferricyanide (Sigma-Aldrich, St. Louis, MO, USA) was added and reacted in a heat block at 50°C for 20 minutes, followed by 100 uL of 10% trichloroacetic acid (Sigma-Aldrich, St. Louis, MO, USA). Added. Thereafter, 20 uL of 0.1% ferric chloride was added, reacted at 37°C for 20 minutes, and then centrifuged at 13,000 rpm for 10 minutes. Then, 100 uL of the supernatant was measured for reducing power at 700 nm of the Wallac Victor2 plate reader. As a control, α-tocopherol (Sigma-Aldrich, St. Louis, MO, USA) and ascorbic acid (Sigma-Aldrich, St. Louis, MO, USA) were used.

4. 총 페놀함량 함량4. Total phenol content

총 페놀함량은 추출물 및 분획물 1 mg/mL 농도 100 μL에 2 N Folin-Ciocalteu phenol reagent (Sigma-Aldrich Co., St. Louis, MO, USA) 50 μL를 넣은 다음 3분간 교반하였다. 이 후 20% Na2CO3 (Sigma-Aldrich, St. Louis, MO, USA)를 300 μL 첨가하여 37℃ heat block에서 30분 동안 반응시켰다. 최종 시료에 1 mL의 증류수를 첨가하여 Wallac Victor2 plate reader의 765 nm에서 흡광도를 측정하였다. 총 폴리페놀 정량분석은 gallic acid (Sigma-Aldrich, St. Louis, MO, USA)를 표준물질로 이용하여 산출하였다.For the total phenol content, 50 μL of 2 N Folin-Ciocalteu phenol reagent (Sigma-Aldrich Co., St. Louis, MO, USA) was added to 100 μL of 1 mg/mL concentration of the extract and fraction, followed by stirring for 3 minutes. Thereafter, 300 μL of 20% Na 2 CO 3 (Sigma-Aldrich, St. Louis, MO, USA) was added and reacted in a heat block at 37° C. for 30 minutes. 1 mL of distilled water was added to the final sample, and the absorbance was measured at 765 nm of the Wallac Victor2 plate reader. Quantitative analysis of total polyphenol was calculated using gallic acid (Sigma-Aldrich, St. Louis, MO, USA) as a standard material.

5. 총 플라보노이드 함량5. Total flavonoid content

총 플라보노이드 함량은 비단풀 추출물 및 분획물 1 mg/mL 농도 100 μL에 80% ethanol을 900 uL 첨가한 뒤 30초간 교반하였다. 이 용액 500 uL를 덜어 10% aluminum nitrate (Sigma-Aldrich, St. Louis, MO, USA) 100 uL, 1 M potassium acetate (Sigma-Aldrich, St. Louis, MO, USA) 100 uL, 80% ethanol 4.3 mL 씩 섞어 37℃ heat block에서 40분간 반응시켰다. 흡광도의 변화는 Wallac Victor2 plate reader를 이용하여 415 nm에서 측정하였으며, 총 플라보노이드의 정량을 위하여 quercetin (Sigma-Aldrich, St. Louis, MO, USA)을 이용하여 작성한 표준 곡선으로부터 총 플라보노이드 함량을 산출하였다.For the total flavonoid content, 900 uL of 80% ethanol was added to 100 μL of 1 mg/mL concentration of the silkworm extract and fractions, followed by stirring for 30 seconds. Take 500 uL of this solution and 10% aluminum nitrate (Sigma-Aldrich, St. Louis, MO, USA) 100 uL, 1 M potassium acetate (Sigma-Aldrich, St. Louis, MO, USA) 100 uL, 80% ethanol 4.3 Each mL was mixed and reacted for 40 minutes in a 37℃ heat block. The change in absorbance was measured at 415 nm using a Wallac Victor2 plate reader, and the total flavonoid content was calculated from a standard curve prepared using quercetin (Sigma-Aldrich, St. Louis, MO, USA) for quantification of total flavonoids. .

6. 세포배양 6. Cell culture

3T3-L1 (Korea Cell Line Bank, Seoul, Korea) 세포주는 10% bovine calf serum (Gibco-BRL, Grand Island, NY, USA), 1% P/S가 첨가된 DMEM (Gibco-BRL, Grand Island, NY, USA)배지에 2×105 cells/mL 세포수로 100 mm culture dish (SPL, Pocheon, Korea)에 분주한 후 37℃ CO2 배양기에서 배양하였다. Lx2 (ATCC, manassas, VA, USA) 세포주는 10% fetal bovine serum (Gibco-BRL, Grand Island, NY, USA), 1% P/S가 첨가된 DMEM 배지에서 3×105 cells/mL 세포수로 분주한 후 37℃ CO2 배양기에서 배양하였다.3T3-L1 (Korea Cell Line Bank, Seoul, Korea) cell line 10% bovine calf serum (Gibco-BRL, Grand Island, NY, USA), DMEM with 1% P/S (Gibco-BRL, Grand Island, NY, USA) 2×10 5 cells/mL cells were dispensed into 100 mm culture dishes (SPL, Pocheon, Korea) and cultured in a 37° C. CO 2 incubator. Lx2 (ATCC, manassas, VA, USA) cell line 3×10 5 cells/mL in DMEM medium supplemented with 10% fetal bovine serum (Gibco-BRL, Grand Island, NY, USA) and 1% P/S After dispensing with, it was cultured in a 37° C. CO 2 incubator.

7. Cyto-X 분석7. Cyto-X analysis

3T3-L1 및 Lx2 세포주를 이용하여 세포의 독성테스트Cyto-X (LPS solution, Daejeon, Pocheon, Korea)시약을 이용하였다. 세포를 96 well plate (SPL, Pocheon, Korea)에 1×104 세포수로 12시간 배양한 뒤 비단풀 추출물 및 분획물을 1, 10 및 100 μg/mL로 처리하였다. 배양 24시간 후 각 well에 1/10 농도로 Cyto-X 시약을 첨가한 후 호일로 감싸 4시간 배양기에 처리하였다. Wallac Victor2 plate reader (Perkin Elmer Corp., Nerwalk, CT)를 이용하여 450 nm 흡광도에서 측정하여 수치화 하였다.Cyto-X (LPS solution, Daejeon, Pocheon, Korea) reagent was used to test cell toxicity using 3T3-L1 and Lx2 cell lines. The cells were cultured in a 96 well plate (SPL, Pocheon, Korea) for 12 hours at 1×10 4 cells, and then the extracts and fractions of silkworm were treated at 1, 10 and 100 μg/mL. After 24 hours of incubation, Cyto-X reagent was added to each well at a concentration of 1/10, and then wrapped with foil and treated in an incubator for 4 hours. It was measured and quantified at 450 nm absorbance using a Wallac Victor2 plate reader (Perkin Elmer Corp., Nerwalk, CT).

8. 3T3-L1 지방적세포 분화 8. 3T3-L1 adipocyte differentiation

3T3-L1 세포주를 6-well plate (SPL, Pocheon, Korea)에 4×105 cells/mL세포수로 12 well plate (SPL, Pocheon, Korea)에 분주한 뒤 confluent 상태가 될 때까지 10% bovine calf serum, 1% P/S가 첨가된 DMEM 배지, 37℃ CO2 배양기에서 배양한다. 세포가 confluent 한 상태(Day0, 분화시작 시점)에서 10% fetal bovine serum, 1% P/S가 첨가된 DMEM 배지에 adipogenic inducer (5 μg/mL insulin, 1 μM dexamethasone, 0.5 mM IBMX (MDI))가 포함된 배지로 교환하여 3주간 배양하였다. 배지는 각 4일 배양 후 반복하여 교체해 주고 지방세포로 분화를 유도하였다. Day 0에 비단풀 추출물 및 분획물을 10 μg/mL로 처리하고 Day 10까지 추가 배양하여 Oil-red-O로 염색하였다. 지방적은 현미경을 통해 확인하였고, 염색된 세포를 isopropanol로 염색을 용출하여 Wallac Victor2 plate reader를 이용하여 520nm에서 지방적을 확인하였다.Dispense the 3T3-L1 cell line into a 6-well plate (SPL, Pocheon, Korea) at 4×10 5 cells/mL cell count into a 12 well plate (SPL, Pocheon, Korea) and then 10% bovine until confluent. Incubate in DMEM medium supplemented with calf serum, 1% P/S, and 37°C CO 2 incubator. Adipogenic inducer (5 μg/mL insulin, 1 μM dexamethasone, 0.5 mM IBMX (MDI)) in DMEM medium supplemented with 10% fetal bovine serum and 1% P/S when cells are confluent (Day 0, start of differentiation) It was exchanged for a medium containing and cultured for 3 weeks. The medium was repeatedly replaced after 4 days of culture, and differentiation into adipocytes was induced. On Day 0, silkworm extract and fractions were treated with 10 μg/mL, cultured until Day 10, and stained with Oil-red-O. The fat mass was confirmed through a microscope, and the stained cells were stained with isopropanol, and the fat mass was confirmed at 520 nm using a Wallac Victor2 plate reader.

9. 세포 내 중성지방(triglyceride) 함량 측정9. Measurement of triglyceride content in cells

세포 내 중성지방 함량은 Triglyceride Quantification Colorimetric Kit(BioVision, Milpitas, CA, USA)을 이용하여 측정하였다. Day0에 비단풀 추출물 및 분획물을 10 μg/mL로 처리하고 3주간 추가 배양하여 분화유도 실험 후 세포를 5% NP-40으로 균질화시켜 80~100℃에서 천천히 가열시킨 후 실온에서 냉각하였다. 2분간 원심 분리하여 얻어진 상층액 및 TG standard를 96 well plate 에 분주한 후 TG assay buffer를 정해진 용량대로 분주하였다. 각 well에 lipase 2 μL씩 분주하여 섞은 후 20분간 실온에 방치하였고, TG reaction mix를 각 well에 50 μL씩 분주하였다. 60분 후 Wallac Victor2 plate reader를 이용하여 570nm에서 optical density를 측정하였다.The triglyceride content in cells was measured using the Triglyceride Quantification Colorimetric Kit (BioVision, Milpitas, CA, USA). On Day 0, silkworm extract and fractions were treated with 10 μg/mL and cultured for 3 weeks to induce differentiation. After the differentiation induction experiment, the cells were homogenized with 5% NP-40, heated slowly at 80-100° C., and cooled at room temperature. The supernatant and TG standard obtained by centrifugation for 2 minutes were dispensed into a 96 well plate, and then the TG assay buffer was dispensed at a predetermined volume. 2 μL of lipase was dispensed into each well, mixed, and left at room temperature for 20 minutes, and 50 μL of TG reaction mix was dispensed into each well. After 60 minutes, the optical density was measured at 570 nm using a Wallac Victor2 plate reader.

10. 총 단백질 발현분석10. Total protein expression analysis

3T3-L1 세포주를 60 mm 세포배양 접시(3개)에 5×105 세포수로 12시간 배양한 뒤 10 μg/mL 비단풀 추출물 및 분획물을 12시간 처리하여 세포를 수집하였다. Bio-Rad protein assay (Bio-Rad, Richmond, CA)를 이용하여 정량 후 20 μg의 단백질을 SDS-PAGE로 확인하였다. Gel transfer된 단백질을 PBS-T에 희석한 5% skim milk에 1시간 동안 blocking한 뒤 1차 항체를 각각 1:1000의 농도로 12시간 냉장실에 처리하였다. 3회 PBS-T로 세척한 뒤 2차 항체를 각각 1:5000의 농도로 실온에서 처리 후 다시 3회 PBS-T로 세척하였다. Amersham ECL Western blotting detection reagent (GE Healthcare, Milwaukee, Wisconsin, USA)를 이용하여 X-ray film 발색으로 측정하였다. 실험은 ACC, phosphor-AMPK, AMPKα1/2, C/EBPα 및 PPARγ (Santa Cruz, CA) 항체를 이용하였다.The 3T3-L1 cell line was cultured in 60 mm cell culture dishes (3 pieces) at 5×10 5 cells for 12 hours, and then 10 μg/mL silkworm extract and fractions were treated for 12 hours to collect cells. After quantification using Bio-Rad protein assay (Bio-Rad, Richmond, CA), 20 μg of protein was confirmed by SDS-PAGE. Gel-transferred proteins were blocked in 5% skim milk diluted in PBS-T for 1 hour, and then the primary antibodies were treated in a refrigerator for 12 hours at a concentration of 1:1000, respectively. After washing with PBS-T three times, the secondary antibody was treated at room temperature at a concentration of 1:5000, and then washed with PBS-T three times. It was measured by X-ray film color development using Amersham ECL Western blotting detection reagent (GE Healthcare, Milwaukee, Wisconsin, USA). In the experiment, ACC, phosphor-AMPK, AMPKα1/2, C/EBPα and PPARγ (Santa Cruz, CA) antibodies were used.

11. 통계분석방법11. Statistical analysis method

모든 생리활성 실험은 3반복 실험을 통해 수치화 하였으며, 통계분석은 one-way ANOVA로 신뢰구간 p<0.05으로 검정을 실시하였다. 통계프로그램은 Graph Pad Prism 5 software (Graph Pad Software, Inc., La Jolla, CA, USA)를 이용하였다.All physiological activity experiments were quantified through 3 replicate experiments, and statistical analysis was performed with a one-way ANOVA with a confidence interval p <0.05. The statistical program was used with Graph Pad Prism 5 software (Graph Pad Software, Inc., La Jolla, CA, USA).

[실험예 1] 총 폴리페놀 및 플라보노이드 함량[Experimental Example 1] Total polyphenol and flavonoid content

표 1에 나타낸 바와 같이, 비단풀 추출물 및 분획물의 총 폴리페놀 함량은 클로로포름 층에서 295.12±0.58 mg/g으로 가장 높게 관찰되었으며, 에틸아세테이트 층 278.15±1.14 mg/g, 핵산 층 251.14±2.14 mg/g, 추출물 243.21±0.51 mg/g, 부탄올 층 221.54±1.33 mg/g, 물 층 15.25±0.14 mg/g 순으로 관찰되었다.As shown in Table 1, the total polyphenol content of the silkworm extract and fractions was observed highest in the chloroform layer at 295.12±0.58 mg/g, the ethyl acetate layer 278.15±1.14 mg/g, and the nucleic acid layer 251.14±2.14 mg/g , Extract 243.21±0.51 mg/g, butanol layer 221.54±1.33 mg/g, and water layer 15.25±0.14 mg/g in that order.

비단풀 추출용매에 따른 추출물의 항산화 활성 중 에탄올추출물의 폴리페놀 함량은 261.27 mg/g으로 매우 유사하게 보고된 바 있으며(Kwon et al., 2016), 본 실험에서는 80%의 에탄올 추출물을 이용하였기 때문에 20 mg/g 내외의 차이가 발생한 것으로 사료된다. 이와 같이, 추출 용매에 따른 항산화 차이는 천연물을 이용한 추출 실험에서 이미 알려져 있고, 용매에 따른 물질의 추출 함량이 다른 이유이다(Kim et al., 2010).The polyphenol content of ethanol extract among the antioxidant activities of the extract according to the extract of silkworm extract was reported very similarly as 261.27 mg/g (Kwon et al. , 2016), because 80% ethanol extract was used in this experiment . It is believed that a difference of around 20 mg/g occurred. As such, the difference in antioxidants depending on the extraction solvent is already known in extraction experiments using natural products, and is the reason for the different extraction content of substances according to the solvent (Kim et al. , 2010).

폴리페놀은 식물의 꽃, 줄기, 열매 및 씨앗 등에 많이 함유되어 있으며, 항산화 및 항염 효과 등 다양한 기능성을 갖고 있다. 특히, 플라보노이드의 한 종류인 quercetin을 표준물질로 정량한 결과 총 페놀함량과 유사하게 클로로포름 층에서 201.51±1.43 mg/g으로 가장 높게 관찰되었으며, 에틸아세테이트 층 188.22±2.31 mg/g, 핵산 층 77.65±1.08 mg/g, 추출물 75.02±1.08 mg/g, 부탄올 층 30.87±0.22 mg/g, 물 층 6.20±0.27 mg/g 순으로 상관관계를 갖는다(표 1, p< 0.001).Polyphenols are contained in many plants, such as flowers, stems, fruits, and seeds, and have various functions such as antioxidant and anti-inflammatory effects. Particularly, as a result of quantifying quercetin, a kind of flavonoid as a standard, the highest observed in the chloroform layer was 201.51±1.43 mg/g, similar to the total phenol content, and the ethyl acetate layer was 188.22±2.31 mg/g, and the nucleic acid layer 77.65± The correlation was 1.08 mg/g, extract 75.02±1.08 mg/g, butanol layer 30.87±0.22 mg/g, water layer 6.20±0.27 mg/g in order (Table 1, p <0.001).

Figure 112019135504372-pat00001
Figure 112019135504372-pat00001

Values represent the mean ± SD of three independent expreiments.Values represent the mean ± SD of three independent expreiments.

TP: 총 폴리페놀 함량, F: 플라보노이드 함량TP: total polyphenol content, F: flavonoid content

AE: ceramium kondoi ethanol extract, H: n-hexane fraction, C: chloroform fraction, E: ethyl acetate fraction, B: butanol fraction, W: water fractionAE: ceramium kondoi ethanol extract, H: n -hexane fraction, C: chloroform fraction, E: ethyl acetate fraction, B: butanol fraction, W: water fraction

페놀성 물질은 식물의 2차 대사산물로 수산기를 가지는 방향족 화합물의 총칭이다. 페놀성 물질은 페놀, 페닐프로파노이즈, 벤조산 유도체, 플라보이드, 탄닌, 리그난 등 다양한 구조와 분자량을 갖는다(An et al., 2006). 페놀성 화합물은 세포벽 다당류 및 리그닌 등과 ester 결합되어 있거나 중합체 형태로 존재하며, 다양한 항산화 능력이 알려져 있다. 특히, 플라보노이드는 산화방지제 및 킬레이트 성질을 갖는 2차 식물 페놀계 물질로 활성산소종(ROS)의 세포내 단백질, 핵산 및 지질을 산화 문제를 자유 라디칼 억제매개체로서 반응한다. 식품에서 플라보노이드는 주로 3-O-glycosides 및 polymers로 존재한다. 식이요법에서의 식물에 함유된 플라보노이드와 같은 항산화제의 중요성과 산화를 통해 문제되는 다양한 질환의 예방에 대한 최근 관심이 늘어나고 있다. 일반적으로 glycosidic unit은 포도당이지만 glucorhamnose, galactose, arabinose, rhamnose의 형태가 있으며, 이 같은 β-linkage 물질들은 췌장의 효소에 의해 분해되지 않기 때문에 장내 미생물에 의해 분해 되어 소장에서 흡수되는 것으로 추정된다(Heim et al., 2002). 플라보노이드의 항산화 성질은 수산기, O-methylation, 2-3 이중결합, 4-oxo 기능, carbohydrate 성질 및 중합도에 따라 나타난다. 우리는 비단풀의 추출물 및 분획물이 갖는 항산화 효과를 측정하고자 하였다.Phenolic substances are the secondary metabolites of plants and are a generic term for aromatic compounds having a hydroxyl group. Phenolic substances have various structures and molecular weights such as phenol, phenylpropanose, benzoic acid derivatives, flavoids, tannins, and lignans (An et al. , 2006). Phenolic compounds are ester-linked with cell wall polysaccharides and lignin, or exist in the form of polymers, and various antioxidant properties are known. In particular, flavonoids are secondary plant phenolic substances having antioxidant and chelating properties, and react as free radical inhibitory mediators of intracellular proteins, nucleic acids and lipids of reactive oxygen species (ROS). Flavonoids in food are mainly present as 3-O-glycosides and polymers. The importance of antioxidants such as flavonoids contained in plants in the diet and prevention of various diseases that are problematic through oxidation are increasing in recent years. In general, the glycosidic unit is glucose, but there are forms of glucorhamnose, galactose, arabinose, and rhamnose.Because these β-linkage substances are not degraded by the enzymes of the pancreas, it is estimated that they are degraded by intestinal microbes and absorbed in the intestine (Heim et al. , 2002). The antioxidant properties of flavonoids depend on hydroxyl group, O-methylation, 2-3 double bonds, 4-oxo function, carbohydrate properties and degree of polymerization. We tried to measure the antioxidant effect of extracts and fractions of silkworm.

[실험예 2] 비단풀의 항산화능[Experimental Example 2] Antioxidant Activity of Silkworm

DPPH 라디칼소거능은 항산화 성질 중 수산기에 의해 안정화된다. DPPH는 자연적으로 발생하는 라디칼이 아니며, 생물학적 시스템에서 산화적 손상을 일으키는 반응성이 높고 비교적 안정하다. DPPH 라디칼 소거능은 방법이 간단하고 비용이 적게 드는 장점이 있어 천연물 또는 항산화제 분석에 주로 사용되는 방법이다.DPPH radical scavenging activity is stabilized by hydroxyl groups among antioxidant properties. DPPH is not a naturally occurring radical and is highly reactive and relatively stable causing oxidative damage in biological systems. DPPH radical scavenging ability is a method mainly used for the analysis of natural products or antioxidants because of its simple method and low cost.

표 2에 나타낸 바와 같이, 비단풀 추출물 및 분획물의 DPPH라디칼 RC50값은 비단풀 핵산 층 11.2 ± 0.3ug/mL, 클로로포름 층 10.3 ± 0.3ug/mL, 물 층 6.5 ± 0.1ug/mL, 부탄올 층 4.6 ± 0.2ug/mL, 추출물 5.3 ± 0.3ug/mL, 에틸아세테이트 층 3.4 ± 0.1ug/mL 순으로 관찰되었다. 에틸아세테이트 층은 α-Tocopherol과 유사한 RC50값이 확인되었다. 비단풀의 추출용매 중 DPPH 라디칼소거능은 에탄올, 메탄올 및 물 추출물 중 에탄올 추출물에서 가장 높게 확인되었다.As shown in Table 2, the DPPH radical RC 50 value of the silkworm extract and fractions was 11.2 ± 0.3ug/mL of silkworm nucleic acid layer, 10.3 ± 0.3ug/mL of chloroform layer, 6.5 ± 0.1ug/mL of water layer, 4.6 ± of butanol layer. It was observed in the order of 0.2ug/mL, extract 5.3±0.3ug/mL, ethyl acetate layer 3.4±0.1ug/mL. The ethyl acetate layer was found to have an RC 50 value similar to that of α-Tocopherol. DPPH radical scavenging activity among the extraction solvents of silkworm was found to be highest in ethanol extracts among ethanol, methanol and water extracts.

Figure 112019135504372-pat00002
Figure 112019135504372-pat00002

Values represent the mean ± SD of three independent experiments. RC50: reaction concentration of 50% value. TP: total phenols content, F: flavonoids content, AE: ceramium kondoi ethanol extract, H: n-hexane fraction, C: chloroform fraction, E: ethyl acetate fraction, B: butanol fraction, W: water fraction. Values represent the mean ± SD of three independent experiments. RC 50 : reaction concentration of 50% value. TP: total phenols content, F: flavonoids content, AE: ceramium kondoi ethanol extract, H: n -hexane fraction, C: chloroform fraction, E: ethyl acetate fraction, B: butanol fraction, W: water fraction.

도 1에 도시한 바와 같이, 환원력은 시료 내의 항산화 성분에 의해 철 이온이 Fe3+가 Fe2+로 환원되는 정도를 측정한 항산화 방법으로 시료 1mg/mL의 농도에서 에틸아세테이트 층 13.2 ± 0.3 RPC (reducing power control value), 부탄올 층 12.1 ± 0.4 RPC, 추출물 11.4 ± 0.1 RPC, 물 층 10.4 ± 0.3 RPC 값으로 관찰되었다. 이에 반하여 핵산 및 클로로포름 층은 매우 낮은 RPC 값을 갖는 것을 확인하였다. As shown in Figure 1, the reducing power is an antioxidant method that measures the degree to which iron ions are reduced to Fe 2+ from Fe 3+ by the antioxidant component in the sample.Ethyl acetate layer 13.2 ± 0.3 RPC at a concentration of 1 mg/mL of the sample. (reducing power control value), 12.1 ± 0.4 RPC of the butanol layer, 11.4 ± 0.1 RPC of the extract, and 10.4 ± 0.3 RPC of the water layer were observed. In contrast, it was confirmed that the nucleic acid and chloroform layers had very low RPC values.

환원력은 항산화 활성과 밀접한 관련이 있는 항산화능 측정법이며 항산화 활성은 환원력에 의한 free radical 소거능으로 나타내어진다. 항산화 환원제는 수소를 제공하여 free radical chain reaction을 중단 시킴으로써 환원력을 제공하며 식물 추출물에서 나타나는 환원력은 항산화 활성과 밀접한 관계를 나타낸다. 항산화 활성은 에틸아세테이트 층에서 DPPH 라디칼소거능 및 환원력에서 모두 높은 활성을 보이는 것을 통해 항산화 물질이 다수 포함되어 있는 것으로 사료된다. The reducing power is a measure of antioxidant activity that is closely related to the antioxidant activity, and the antioxidant activity is expressed by the free radical scavenging ability by the reducing power. Antioxidant reducing agents provide reducing power by providing hydrogen to stop the free radical chain reaction, and the reducing power found in plant extracts has a close relationship with antioxidant activity. The antioxidant activity is thought to contain a large number of antioxidants through the fact that the ethyl acetate layer exhibits high activity in both DPPH radical scavenging and reducing power.

[실험예 3] 비단풀의 세포독성 및 처리농도 설정[Experimental Example 3] Cytotoxicity and treatment concentration setting of silkworm

비단풀 추출물 및 분획물의 세포독성을 확인하기 위해 3T3-L1 (mouse adipocyte cell line) 및 Lx2 (human hepatic stellate cell line) 세포를 이용하여 세포 생존율을 측정하였다.Cell viability was measured using 3T3-L1 (mouse adipocyte cell line) and Lx2 (human hepatic stellate cell line) cells to confirm the cytotoxicity of the extracts and fractions.

Lx2 세포주는 사람의 간 성상 세포로 체내 유입된 음식 또는 약물의 독성을 조절하는 간세포 중 하나이다. 비단풀의 세포독성은 Lx2 세포주에서 1 ug/mL의 농도로 처리시 모든 추출물 및 분획물에서 독성을 확인할 수 없었다. 동일한 조건하에 3T3-L1 세포에서도 10 ug/mL 이하에서 독성을 보이지 않았고, 3T3-L1의 분화실험 상 장시간 비만세포의 분화를 유도해야 하기 때문에 지방세포 분화실험 전 4일(96시간) 독성 테스트를 진행하였을 때 10 ug/mL의 농도에서 세포의 독성을 보이지 않는 것을 알 수 있었다(data not shown). 위 결과를 바탕으로 비단풀 추출물 및 분획물의 증식 억제에 큰 영향을 미치지 않으며, 추출물 및 분획물 5 ~ 10 ug/mL의 농도까지를 실험 조건으로 설정하여 항비만 효능을 확인하였다.The Lx2 cell line is one of the hepatocytes that regulate the toxicity of food or drugs introduced into the body as human hepatic stellate cells. Cytotoxicity of silkworm was not confirmed in all extracts and fractions when treated at a concentration of 1 ug/mL in the Lx2 cell line. Under the same conditions, 3T3-L1 cells did not show toxicity at less than 10 ug/mL, and 3T3-L1 differentiation experiments had to induce the differentiation of mast cells for a long time, so a toxicity test was conducted 4 days (96 hours) before adipocyte differentiation experiment. When proceeding, it was found that no cell toxicity was observed at a concentration of 10 ug/mL (data not shown). Based on the above results, the anti-obesity efficacy was confirmed by setting the concentration of the extracts and fractions up to 5 to 10 ug/mL as the experimental conditions, and did not significantly affect the inhibition of the proliferation of the extract and fractions.

[실험예 4] Lipid droplet (지방적) 생성에 미치는 영향[Experimental Example 4] Effect on Lipid droplet (local) generation

지방적은 소포체의 이중막 상이에 triglyceride와 cholesterol ester가 축적되어 층을 이루면서 만들어지며 지방적이 소포체에서 떨어져 나오게 되면서 생성된다. 지방적 생성의 자극은 MAPK, APMKα 및 ACC로 알려져 있으며, 자극에 의해 생성된 지방세포는 C/EBPß와 C/EBPδ에 의해 분화과정에서 C/EBPα 및 PPARγ와 같은 중요한 adipogenic transcription factors에 의해 조절되는 것으로 보고되고 있다. 지방적의 형성은 비만을 유발하고 염증, 동맥경화, 제2형 당뇨병과 같은 대사성 질환의 발병에 관여하며, 암과 같은 질환을 유발한다(Jo et al., 2015). 따라서 3T3-L1 세포주를 이용하여 비단풀 추출물 및 분획물이 지방적세포의 분화능에 어떠한 영향을 미치는지 확인하기 위해 Oil red O 염색을 이용하여 관찰하였다.Fatty is produced by accumulating triglyceride and cholesterol ester on the double membrane of the endoplasmic reticulum and forming a layer, and is produced when the fat is separated from the endoplasmic reticulum. Stimulation of adipogenesis is known as MAPK, APMKα and ACC, and adipocytes generated by stimulation are regulated by important adipogenic transcription factors such as C/EBPα and PPARγ in the differentiation process by C/EBPß and C/EBPδ. Is being reported. Fatty formation induces obesity, is involved in the development of metabolic diseases such as inflammation, arteriosclerosis, and type 2 diabetes, and causes diseases such as cancer (Jo et al. , 2015). Therefore, using the 3T3-L1 cell line was observed using Oil red O staining to determine how the extracts and fractions of silkworm affect the differentiation ability of adipocytes.

도 2에 도시한 바와 같이, 미처리 대조군은 분화 유도 시 세포질 내 큰 지방적 형성을 확인할 수 있다. 그러나 핵산, 클로로포름 및 에틸아세테이트 층에서는 지방적 형성이 현저하게 억제되는 것으로 나타났다. Oil red O 염색을 isopropanol로 용출하여 염색도를 측정한 결과 전체추출물에서 통계적으로 유의한 차를 보였고(p<0.05), 핵산, 클로로포름, 에틸아세테이트, 부탄올 및 물 층에서 통계적으로 유의한 차이를 보였다(p<0.001). 강한 지방세포 억제 효과를 보인 층은 핵산, 클로로포름 및 에틸아세테이트 층이였고, 부탄올 및 물 층은 추출물 다음으로 지방세포분화 억제 효과를 나타난 것을 알 수 있었다. As shown in Fig. 2, the untreated control group can confirm the formation of large adipocytes in the cytoplasm when inducing differentiation. However, it was found that lipid formation was remarkably suppressed in the nucleic acid, chloroform and ethyl acetate layer. Oil red O staining was eluted with isopropanol and the staining degree was measured. As a result, there was a statistically significant difference in the whole extract ( p <0.05), and there were statistically significant differences in the nucleic acid, chloroform, ethyl acetate, butanol and water layers. ( p <0.001). The layers showing the strong adipocyte inhibitory effect were the nucleic acid, chloroform and ethyl acetate layers, and the butanol and water layers showed the adipocyte differentiation inhibitory effect after the extract.

비단풀에 존재하는 성분에 관한 연구로는 tannin류, phenol류 물질 및 flavonoid류, terpenoid류 등에 관한 연구가 보고되어 있다(Chung & Kim, 1985; Tanaka et al., 1990; Lee et al., 1991; Fang et al., 1993; Tanaka & Matsunaga, 1999; An et al., 2007). Terpenoid류는 약용식물에 함유된 천연단일물질로 3T3-L1과 HepG2 세포에서 PPARγ를 조절하는 것으로 알려져 있으며(Takahashi et al., 2002), flavonoids 및 tannins 성분도 3T3-L1 세포에서 C/EBPα와 PPARγ를 조절하여 지방적 형성을 억제하는 것으로 알려져 있다(Hsu & Yen, 2007). 이미 다양한 약용식물에서 천연단일물질은 지방의 분화를 억제하고 다양한 질병을 조절하는 것이 보고되고 있다(Yadav et al., 2019).As studies on the components present in silkworm, studies on tannins, phenols, flavonoids, and terpenoids have been reported (Chung & Kim, 1985; Tanaka et al. , 1990; Lee et al. , 1991; Fang et al. , 1993; Tanaka & Matsunaga, 1999; An et al. , 2007). Terpenoids are natural single substances contained in medicinal plants and are known to regulate PPARγ in 3T3-L1 and HepG2 cells (Takahashi et al. , 2002), and flavonoids and tannins components also inhibit C/EBPα and PPARγ in 3T3-L1 cells. It is known to inhibit the formation of fat by regulating (Hsu & Yen, 2007). It has already been reported that natural single substances in various medicinal plants inhibit the differentiation of fat and control various diseases (Yadav et al. , 2019).

[실험예 5] 비단풀 분획물의 triglyceride 생성 억제[Experimental Example 5] Inhibition of triglyceride production of silkworm fraction

중성지방인 triglyceride는 포도당과 함께 세포의 중요한 에너지원으로 사용되지만 과도한 음식물 섭취로 인한 여분의 triglyceride는 지방세포에 저장되어 비만 및 다양한 질환의 원인이 되기도 한다(Goldberg, 2012). 따라서 triglyceride의 지방세포의 함유량을 측정하기 위해 isopropanol로 용출된 지방에서 triglyceride의 함량을 측정하였다. 비단풀 추출물, 핵산 및 부탄올층에서는 oil red O 염색결과와 같이 triglyceride의 함량이 미처리 대조군 비교하였을 때 전체추출물, 핵산 및 부탄올 층에서도 통계적으로 유의한 차이를 보였으며(p<0.05), 물 층이 전체추출물, 핵산 및 부탄올 층 보다 강한 억제를 보였고(p<0.01), 클로로포름 및 에틸아세테이트 층에서 가장 강한 억제를 보였다(p<0.001). 반면, 에틸아세테이트 층에서 triglyceride의 함량이 미분화군 비교 시 통계적인 차이를 보이지 않았다. 비단풀은 isoquercitrin을 단일물질로 포함하고 있으며, isoquercitrin은 3T3-L1의 triglyceride level을 30uM 농도에서 감소시키는 기전이 확인된 바 있다(Hassan et al., 2014; Zhang et al., 2018). 본 실험에 이용된 분획물에서 triglyceride level은 감소시킨 것은 분획물에 포함된 isoquercitrin의 의존적인 것으로 보여진다. 이상의 결과를 살펴보면 비단풀 에틸아세테이트 층의 지방적 형성억제와 연관된 triglyceride 생성억제효과는 항산화 효과가 가장 높은 분획층이였으며, 항산화 물질이 지방전구세포의 분화를 효과적으로 억제하고 중성지방의 축적을 조절하는 것으로 생각된다.Triglyceride, a triglyceride, is used as an important energy source for cells along with glucose, but excess triglyceride due to excessive food intake is stored in fat cells, causing obesity and various diseases (Goldberg, 2012). Therefore, to measure the content of triglyceride in adipocytes, the content of triglyceride in fat eluted with isopropanol was measured. In the silkworm extract, nucleic acid, and butanol layers, as shown in the oil red O staining results, when the content of triglyceride was compared to the untreated control, statistically significant differences were also observed in the whole extract, nucleic acid and butanol layers ( p <0.05). The extract, nucleic acid, and butanol layers showed stronger inhibition ( p <0.01), and the chloroform and ethyl acetate layers showed the strongest inhibition ( p <0.001). On the other hand, the content of triglyceride in the ethyl acetate layer showed no statistical difference when compared to the undifferentiated group. Silkworm contains isoquercitrin as a single substance, and isoquercitrin has a mechanism of reducing the triglyceride level of 3T3-L1 at a concentration of 30 uM (Hassan et al. , 2014; Zhang et al. , 2018). The decrease in the triglyceride level in the fraction used in this experiment appears to be dependent on the isoquercitrin contained in the fraction. Looking at the above results, the inhibitory effect of triglyceride production, which is related to the inhibition of fat formation of the silkworm ethyl acetate layer, was the fractional layer with the highest antioxidant effect, and it is thought that antioxidants effectively inhibit the differentiation of adipocytes and regulate the accumulation of triglycerides. do.

[실험예 6] 비단풀 분획물의 AMPK 신호조절에 의해 지방적 분화 생성 억제[Experimental Example 6] Inhibition of adipogenic differentiation by regulation of AMPK signal of silkworm fraction

비단풀 에틸아세테이트 층에 의한 adipogenesis 억제과정에서 AMPK 및 p-AMPK의 하위단계에서 작용하는 ACC의 발현 변화를 살펴보고 AMPK의 활성을 억제하였을 경우 비단풀 에틸아세테이트 층에 의하여 유발되는 변화에 어떠한 변화를 보이는지 확인하였다. In the process of inhibiting adipogenesis by the silkworm ethylacetate layer, we looked at the changes in the expression of ACC acting in the lower stages of AMPK and p-AMPK, and if we inhibited the activity of AMPK, we checked what changes were observed in the changes caused by the silkworm ethylacetate layer. I did.

도 3에 도시한 바와 같이, AMPK와 ACC의 발현 변화는 분화가 유도될 시 AMPK의 인산화 및 ACC의 증가를 확인하였고, 비단풀 에틸아세테이트 층에 의해 AMPK의 인산화가 증가되는 것을 확인하였다. 이는 비단풀 에틸아세테이트 층에 의한 adipogenesis 억제에서 AMPK의 활성화가 관여한다는 것을 예상할 수 있었다.As shown in FIG. 3, the change in the expression of AMPK and ACC confirmed the increase in phosphorylation of AMPK and ACC when differentiation was induced, and it was confirmed that phosphorylation of AMPK was increased by a layer of silkworm ethyl acetate. This could be expected to be involved in the activation of AMPK in the inhibition of adipogenesis by the silkworm ethylacetate layer.

또한, 비단풀 에틸아세테이트 층을 농도 의존적으로 처리 후 AMPK의 발현이 동일하게 증가되었고, 에틸아세테이트 층에 존재하는 다양한 페놀성 화합물에 의한 영향으로 사료된다. 반면 AMPK 억제제인 compound C를 처리 후 비단풀 에틸아세테이트 층을 처리하면 pAMPK의 발현이 다시 억제되었고, 비단풀 에틸아세테이트 층 처리시 억제되었던 PPARγ, C/EBPα 및 C/EBP

Figure 112019135504372-pat00003
의 발현이 다시 증가되는 것을 알 수 있었다. In addition, the expression of AMPK was equally increased after the concentration-dependent treatment of the ethyl acetate layer, which is believed to be due to the effect of various phenolic compounds present in the ethyl acetate layer. On the other hand, when the AMPK inhibitor compound C was treated and then treated with a layer of silkworm ethyl acetate, the expression of pAMPK was suppressed again, and PPARγ, C/EBPα and C/EBP, which were inhibited during treatment with the silkworm ethylacetate layer.
Figure 112019135504372-pat00003
It was found that the expression of was increased again.

천연성분인 resveratrol (3,5,4'- trihydroxystilbene)은 포도를 비롯한 여러 식물에 존재하는 폴리페놀 성분으로 3T3-L1 세포에서 p-AMPKα의 발현을 증가시키고, PPARγ, C / EBPα 및 SREBP-1c의 mRNA 및 단백질 발현을 감소시켜 지방 형성을 억제하는 것을 확인했다(Chen et al., 2011). 또한, 연잎에서 추출한 pronuciferine과 nuciferine은 aporphine alkaloids의 형태로 AMPK의 인산화를 조절하여 지방 생성에 대한 조절 효과를 확인한 바 있다(Novo et al., 2015). AMPKα siRNA 전처리는 3T3-L1 세포의 지방 형성 및 PPARγ, C/EBPα 및 SREBP-1c 단백질 발현을 증가시키는 것으로 확인되었으며, AMPK의 인산화를 증가시킴으로써 지방 세포의 지방 생성과 분화를 감소 시킨다는 다양한 연구 결과를 확인할 수 있었다(Wu et al., 2013; Wang et al., 2014; Tan et al., 2017).Resveratrol (3,5,4'-trihydroxystilbene), a natural component, is a polyphenol component present in grapes and other plants. It increases the expression of p-AMPKα in 3T3-L1 cells, and PPARγ, C / EBPα and SREBP-1c It was confirmed that adipose formation was suppressed by reducing the mRNA and protein expression of (Chen et al. , 2011). In addition, pronuciferine and nuciferine extracted from lotus leaves have been confirmed to have a regulatory effect on fat production by controlling phosphorylation of AMPK in the form of aporphine alkaloids (Novo et al. , 2015). AMPKα siRNA pretreatment was found to increase adipogenesis and expression of PPARγ, C/EBPα and SREBP-1c proteins in 3T3-L1 cells, and various studies show that by increasing phosphorylation of AMPK, it reduces adipogenesis and differentiation of adipocytes. (Wu et al. , 2013; Wang et al. , 2014; Tan et al. , 2017).

AMPK는 ATP, ADP 및 AMP의 농도를 감지하여 세포 에너지 상태를 확인하는 복합체로서 미토콘드리아 ATP 생산을 억제하거나 ATP 소비를 촉진시키는 대사성 스트레스에 의해 활성화된다(Hardie et al., 2012). AMPK는 지방적세포의 지방산 생성을 막고, 중성지방의 축적을 조절하며, ACC를 조절하여 지방산의 산화를 촉진하여 지방적 생성과 관련된 유전자의 발현을 조절한다. 또한, AMPK를 통한 PPARγ와 C/EBPα를 조절하고 지방분화에 주요한 영향을 주는 타겟이다(Choi et al., 2011)AMPK is a complex that detects the concentration of ATP, ADP, and AMP to confirm the cellular energy state, and is activated by metabolic stress that inhibits mitochondrial ATP production or promotes ATP consumption (Hardie et al. , 2012). AMPK prevents fatty acid production in adipocytes, regulates the accumulation of triglycerides, and regulates ACC to promote fatty acid oxidation, thereby regulating the expression of genes related to adipogenesis. In addition, it is a target that regulates PPARγ and C/EBPα through AMPK and has a major influence on fat differentiation (Choi et al. , 2011).

이상으로 본 발명의 특정한 부분을 상세히 기술하였는바, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현 예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.As described above, specific parts of the present invention have been described in detail, and for those of ordinary skill in the art to which the present invention pertains, these specific technologies are only preferred embodiments, and the scope of the present invention is not limited thereto. It is obvious. Accordingly, it will be said that the substantial scope of the present invention is defined by the appended claims and their equivalents.

Claims (3)

건조된 비단풀을 분쇄하여 686.9 g을 48시간 80% 에탄올 1L에 추출하고,
상기 추출물을 여과지(Advantech, circles 300 mm, Japan)에 여과 후 45℃에서 감압 농축 및 동결건조한 다음,
상기 건조 추출분말(118.3 g)을 3차 2L의 증류수에 섞어 동량의 n-hexane 으로 분획하여 감압 농축 및 동결건조하여 8.4 g의 분획물을 제조하고, 동일한 방법으로 chloroform을 분획하여 43.8 g의 분획물을 제조하고, ethyl acetate을 분획하여 23.5 g의 분획물을 제조하고, n-butanol을 분획하여 20.1 g의 분획물을 제조하고, 남은 water층을 감압농축하여 10.5 g을 제조하는 것을 특징으로 하는,
비단풀(Ceramium kondoi)의 추출물 또는 분획물을 유효성분으로 포함하는 항비만용 식품 조성물.
The dried silk grass was pulverized and 686.9 g was extracted in 1 L of 80% ethanol for 48 hours,
The extract was filtered through filter paper (Advantech, circles 300 mm, Japan), concentrated under reduced pressure at 45°C, and freeze-dried,
The dry extract powder (118.3 g) was mixed with 3 liter of distilled water, fractionated with an equal amount of n- hexane, concentrated under reduced pressure, and freeze-dried to prepare a fraction of 8.4 g, and the chloroform fraction was fractionated in the same manner to obtain 43.8 g And fractionating ethyl acetate to prepare a fraction of 23.5 g, fractionating n- butanol to prepare a fraction of 20.1 g, and concentrating the remaining water layer under reduced pressure to prepare 10.5 g,
Anti-obesity food composition comprising an extract or fraction of silkworm ( Ceranium kondoi ) as an active ingredient.
제 1항에 있어서,
상기 비단풀(Ceramium kondoi)의 추출물 또는 분획물은 지방세포의 분화를 억제하는 것을 특징으로 하는 항비만용 식품 조성물.
The method of claim 1,
Anti-obesity food composition, characterized in that the extract or fraction of the silkworm ( Ceramium kondoi ) inhibits the differentiation of adipocytes.
건조된 비단풀을 분쇄하여 686.9 g을 48시간 80% 에탄올 1L에 추출하고,
상기 추출물을 여과지(Advantech, circles 300 mm, Japan)에 여과 후 45℃에서 감압 농축 및 동결건조한 다음,
상기 건조 추출분말(118.3 g)을 3차 2L의 증류수에 섞어 동량의 n-hexane 으로 분획하여 감압 농축 및 동결건조하여 8.4 g의 분획물을 제조하고, 동일한 방법으로 chloroform을 분획하여 43.8 g의 분획물을 제조하고, ethyl acetate을 분획하여 23.5 g의 분획물을 제조하고, n-butanol을 분획하여 20.1 g의 분획물을 제조하고, 남은 water층을 감압농축하여 10.5 g을 제조하는 것을 특징으로 하는,
비단풀(Ceramium kondoi)의 추출물 또는 분획물을 유효성분으로 포함하는 체중 감소용 조성물.
The dried silk grass was pulverized and 686.9 g was extracted in 1 L of 80% ethanol for 48 hours,
The extract was filtered through filter paper (Advantech, circles 300 mm, Japan), concentrated under reduced pressure at 45°C, and freeze-dried,
The dry extract powder (118.3 g) was mixed with 3 liter of distilled water, fractionated with an equal amount of n- hexane, concentrated under reduced pressure, and freeze-dried to prepare a fraction of 8.4 g, and chloroform was fractionated in the same manner to obtain a fraction of 43.8 g. And fractionating ethyl acetate to prepare a fraction of 23.5 g, fractionating n- butanol to prepare a fraction of 20.1 g, and concentrating the remaining water layer under reduced pressure to prepare 10.5 g,
A composition for weight loss comprising an extract or fraction of silkworm ( Ceramium kondoi ) as an active ingredient.
KR1020190177925A 2019-09-20 2019-12-30 Composition for antioxidant and lipid differentiation inhibitory activity by ampk phosphorylation from fraction of ceramium kondoi KR102197241B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20190115766 2019-09-20
KR1020190115766 2019-09-20

Publications (1)

Publication Number Publication Date
KR102197241B1 true KR102197241B1 (en) 2020-12-31

Family

ID=74087622

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190177925A KR102197241B1 (en) 2019-09-20 2019-12-30 Composition for antioxidant and lipid differentiation inhibitory activity by ampk phosphorylation from fraction of ceramium kondoi

Country Status (1)

Country Link
KR (1) KR102197241B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110120813A (en) 2010-04-29 2011-11-04 주식회사 코스메카코리아 Cosmetic composition comprising euphorbia supina for improving skin wrinkle
KR101594979B1 (en) * 2015-08-19 2016-02-17 원광대학교 산학협력단 Compositions for treating or preventing obesity containing extract or fractions of Euphorbia supina Raf.
KR101793822B1 (en) 2016-03-17 2017-11-06 김태권 Composition of toothpaste containing extract of euphorbia supina

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110120813A (en) 2010-04-29 2011-11-04 주식회사 코스메카코리아 Cosmetic composition comprising euphorbia supina for improving skin wrinkle
KR101594979B1 (en) * 2015-08-19 2016-02-17 원광대학교 산학협력단 Compositions for treating or preventing obesity containing extract or fractions of Euphorbia supina Raf.
KR101793822B1 (en) 2016-03-17 2017-11-06 김태권 Composition of toothpaste containing extract of euphorbia supina

Similar Documents

Publication Publication Date Title
Chandrasekara et al. Herbal beverages: Bioactive compounds and their role in disease risk reduction-A review
Lis et al. Pro-health activity of dandelion (Taraxacum officinale L.) and its food products–history and present
Wang et al. Bioactive compounds, health benefits and functional food products of sea buckthorn: A review
Johnson et al. Aspalathin from rooibos (Aspalathus linearis): a bioactive C-glucosyl dihydrochalcone with potential to target the metabolic syndrome
Chang et al. Mulberry leaf polyphenol extract improves obesity by inducing adipocyte apoptosis and inhibiting preadipocyte differentiation and hepatic lipogenesis
De Morais et al. Consumption of yerba mate (Ilex paraguariensis) improves serum lipid parameters in healthy dyslipidemic subjects and provides an additional LDL-cholesterol reduction in individuals on statin therapy
Li et al. Plant-based foods and their bioactive compounds on fatty liver disease: Effects, mechanisms, and clinical application
Nimrouzi et al. Oil and extract of safflower seed improve fructose induced metabolic syndrome through modulating the homeostasis of trace elements, TNF-α and fatty acids metabolism
US20060172012A1 (en) Anti-inflammatory supplement compositions and regimens to reduce cardiovascular disease risks
Yang et al. Proposed mechanisms of the effects of proanthocyanidins on glucose homeostasis
Wang et al. Lonicera caerulea berry extract attenuates lipopolysaccharide induced inflammation in BRL-3A cells: Oxidative stress, energy metabolism, hepatic function
Senevirathne et al. Ceylon cinnamon: a versatile ingredient for futuristic diabetes management
Srinivasa et al. Fenugreek (Trigonella foenum-graecum L.) seed: promising source of nutraceutical
Lee et al. Anti-obesity effect of Cydonia oblonga Miller extract in high-fat diet-induced obese C57BL/6 mice
Zhao et al. Polygonati Rhizoma with the homology of medicine and food: A review of ethnopharmacology, botany, phytochemistry, pharmacology and applications
El Seedy et al. Ziziphus spina‐christi (L.) fortified with Camellia sinensis mediates apoptosis, Notch‐1 signaling, and mitigates obesity‐induced non‐alcoholic fatty liver
Upadhyay et al. Guava enriched functional foods: therapeutic potentials and technological challenges
Usai et al. Natural products for the treatment and management of diabetes mellitus in Zimbabwe-a review
Moreira et al. Cinnamon: an aromatic condiment applicable to chronic kidney disease
KR101830048B1 (en) Food composition for improvement obesity or improvement hyperlipidemic with the extract of Terminalia chebula fruit and Phyllanthus emblica
Hosny et al. Edible seeds with potential anti-obesity impact: a review
Shen et al. Natural constituents from food sources: potential therapeutic agents against muscle wasting
KR20170023910A (en) Pharmaceutical Compositions for Prevention or Treatment of nonalcoholic fatty liver disease Comprising Quercetin-3-O-glucoside
El-Tantawy Nutrition in the management of type 2 diabetes mellitus
KR101888871B1 (en) Composition for preventing and treating of obesity or metabolic disease comprising extract from leaf of Plantago asiatica

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant