KR102193224B1 - Conductive powder mixture of different kind of shape for electromagnetic wave shielding and Method for manufacturing the same and Paint composition having the same - Google Patents

Conductive powder mixture of different kind of shape for electromagnetic wave shielding and Method for manufacturing the same and Paint composition having the same Download PDF

Info

Publication number
KR102193224B1
KR102193224B1 KR1020190085838A KR20190085838A KR102193224B1 KR 102193224 B1 KR102193224 B1 KR 102193224B1 KR 1020190085838 A KR1020190085838 A KR 1020190085838A KR 20190085838 A KR20190085838 A KR 20190085838A KR 102193224 B1 KR102193224 B1 KR 102193224B1
Authority
KR
South Korea
Prior art keywords
silver
copper powder
type
flake
dendrite
Prior art date
Application number
KR1020190085838A
Other languages
Korean (ko)
Inventor
이종섭
Original Assignee
주식회사 엠엠에스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엠엠에스 filed Critical 주식회사 엠엠에스
Priority to KR1020190085838A priority Critical patent/KR102193224B1/en
Application granted granted Critical
Publication of KR102193224B1 publication Critical patent/KR102193224B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F1/0055
    • B22F1/0081
    • B22F1/025
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0553Complex form nanoparticles, e.g. prism, pyramid, octahedron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/068Flake-like particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/03Powdery paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • B22F2001/0037
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/10Copper

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Paints Or Removers (AREA)

Abstract

The present invention relates to a heterogeneous conductive powder mixture for shielding electromagnetic waves, a method of preparing the same, and a paint composition comprising the same. The conductive powder mixture is prepared by mixing dendritic silver plating copper powder including dendritic copper powder and a silver-plating layer laminated on the surface of the dendritic copper powder with flake silver plating copper powder including flake copper powder and a silver-plating layer laminated on the surface of the flake copper powder. The heterogeneous conductive powder mixture for shielding electromagnetic waves according to the present invention is configured by mixing dendritic copper powder and flake copper powder that have microstructures with different shapes, and thus has a low porosity rate and has a lot of contact points between the copper powder, thereby providing excellent electromagnetic wave shielding effect when dispersed in a polymer resin as a conductive filler. In addition, the method of preparing a mixture according to the present invention is configured in a way that the dendritic copper powder and the flake copper powder are repeatedly mixed during a preparation process to minimize pores, and thus, the mixture exhibits reduction in electrical resistance and excellent electromagnetic wave shielding effect. Moreover, a paint composition according to the present invention has a dense film and small electrical resistance, thereby providing excellent electrical conductivity and electromagnetic wave shielding effect.

Description

전자파 차폐용 이종 전도성분말 혼합체 및 혼합체 제조방법과 상기 혼합체를 포함한 도료조성물{Conductive powder mixture of different kind of shape for electromagnetic wave shielding and Method for manufacturing the same and Paint composition having the same}TECHNICAL FIELD [Conductive powder mixture of different kind of shape for electromagnetic wave shielding and Method for manufacturing the same and paint composition having the same]

본 발명은 전자파 차폐용 필러로 사용될 수 있는 전도성분말에 관한 것으로서, 보다 상세하게는 덴드라이트형 구리분말과 플레이크형 구리분말을 기본 소재로 갖는 전자파 차폐용 이종 전도성분말 혼합체 및 혼합체 제조방법과 상기 혼합체를 포함한 도료조성물에 관한 것이다.The present invention relates to a conductive powder that can be used as a filler for electromagnetic wave shielding, and more particularly, a method for manufacturing a mixture and a mixture of heterogeneous conductive powder for electromagnetic wave shielding having a dendrite-type copper powder and a flake-type copper powder as a basic material, and the mixture It relates to a paint composition including.

4차 산업과 더불어 5G 통신 서비스의 본격적 시작은, 최첨단 스마트 시스템의 일반화를 알리는 신호라고 봐도 과언이 아닐 만큼, 전자기기의 성능은 끊임없이 향상되고 있다. 예를 들어, 최근 출시되는 개인용 스마트폰은, 가상현실(VR)이나 증강현실(AR)을 구현함은 물론 대량의 정보를 매우 빠른 속도로 주고받을 수 있을 정도의 성능을 갖는다.The full-scale start of 5G communication services along with the 4th industry is not an exaggeration to say that it is a signal of the generalization of cutting-edge smart systems, and the performance of electronic devices is constantly improving. For example, recently released personal smartphones not only implement virtual reality (VR) or augmented reality (AR), but also have the capability to exchange large amounts of information at a very high speed.

이러한 최첨단 전자기기의 보급이 점차 확대되면서, 이슈가 되고 있는 것은, 무엇보다, 전자기기의 내부에서 발생하는 불필요 전자파에 의한 오작동 문제와 전자기기 외부로 누설되는 전자파의 효과적인 차단과 관련된 기술이다. As the spread of such state-of-the-art electronic devices gradually expands, what is becoming an issue is, first of all, a problem of malfunction due to unnecessary electromagnetic waves occurring inside the electronic devices and technologies related to effective blocking of electromagnetic waves leaking out of the electronic devices.

전자기기에서 발생하는 전자파를 차단하고 더불어 열을 배출하기 위한 여러 가지 기술 중 하나는 전도성 페이스트이다. 전도성 페이스트는, 절연성 고분자수지에 전도성필러를 분산시킨 것으로서, 보통, 얇은 시트의 형태로 구현되며 전자부품 표면에 도포된 상태로 전자파를 차단하고 열을 방출하는 역할을 한다. 이러한 전도성 페이스트의 성능은, 내부에 분산되는 전도성필러의 함량이나 전기적 물리적 특성과, 페이스트 자체의 두께에 따라 달라질 수 있다.One of several technologies for blocking electromagnetic waves generated from electronic devices and discharging heat is a conductive paste. The conductive paste is a conductive filler dispersed in an insulating polymer resin, and is usually implemented in the form of a thin sheet and serves to block electromagnetic waves and emit heat while applied to the surface of an electronic component. The performance of the conductive paste may vary depending on the content or electrical and physical properties of the conductive filler dispersed therein, and the thickness of the paste itself.

상기한 전도성필러로서, 종래에는 금이나 은 또는 니켈이나 구리 분말을 사용하였다. 즉, 상기 금속분말을 고분자수지에 분산시켜 전도성 페이스트로 제작한 것이다. 은(銀)은, 낮은 전기저항과 양호한 전자파 차폐 성능을 가지며 주로 플레이크 형태로 적용된다. 또한, 구리는 산화의 문제가 있지만 최근에는 산화방지 처리를 통하여 신뢰성이 향상된 제품이 출시되면서 사용량이 늘고 있다.As the conductive filler, gold or silver or nickel or copper powder has been conventionally used. That is, the metal powder is dispersed in a polymer resin to form a conductive paste. Silver has low electrical resistance and good electromagnetic wave shielding performance, and is mainly applied in the form of flakes. In addition, copper has a problem of oxidation, but recently, as products with improved reliability through antioxidant treatment have been released, the amount of use has increased.

하지만, 상기 금속분말은 단독으로 사용될 경우 자체의 비중에 따른 문제점을 갖는다. 말하자면, 비중이 크기 때문에 고분자수지 내에서 쉽게 침강되어 층이 분리 되므로 작업성을 떨어뜨리고 코팅막의 균일성을 저하시키는 것이다. However, when the metal powder is used alone, it has a problem due to its specific gravity. In other words, because of its high specific gravity, it is easily settled in the polymer resin and the layers are separated, thereby reducing workability and lowering the uniformity of the coating film.

또한, 금속분말이 적용된 전도성 페이스트는 내부 조직이 치밀하지 않고 불균일하며 많은 미세 공극을 갖는다. 그 결과 전기저항이 증가하고 전자파 차폐율이 현저히 떨어지게 된다. 이러한 문제를 해결하기 위하여 금속분말의 함량을 늘리거나 코팅두께를 증가시키기도 하지만 개선 효과는 미미하다.In addition, the conductive paste to which the metal powder is applied has a non-dense, non-uniform internal structure, and has many micropores. As a result, the electrical resistance increases and the electromagnetic wave shielding rate decreases significantly. In order to solve this problem, the content of the metal powder is increased or the coating thickness is increased, but the improvement effect is insignificant.

한편, 국내 등록특허공보 제10-0695564호는 실리콘 페이스트 조성물 및 전자파 차폐 가스켓을 개시하고 있다. 개시된 페이스트 조성물은, 겉보기밀도 1g/cc 이하, 탭밀도 1.5g/cc 이하, 은함량 8~22%, 평균입경 15~50㎛인 전도성 금속입자를 35~70 중량% 적용한 구성을 갖는다.Meanwhile, Korean Patent Publication No. 10-0695564 discloses a silicone paste composition and an electromagnetic wave shielding gasket. The disclosed paste composition has a configuration in which 35 to 70% by weight of conductive metal particles having an apparent density of 1 g/cc or less, a tap density of 1.5 g/cc or less, a silver content of 8 to 22%, and an average particle diameter of 15 to 50 μm are applied.

그런데, 상기한 밀도 및 사이즈 스펙을 가지는 전도성 금속입자로서는, 균일한 분산성을 갖는 전도성 페이스트의 제조가 어렵고, 입체의 형상을 갖는 디스펜싱 제품의 경우 입자간 공극의 충진 효율이 크지 못하여 전자파 차폐효율도 좋지 않다는 문제를 갖는다. 또한 상기한 은도금만으로는 분말의 산화를 제대로 막을 수 없어, 시간이 지날수록 전기전도특성과 전자파차폐효율이 급격히 저하할 수밖에 없다.However, for the conductive metal particles having the above density and size specifications, it is difficult to manufacture a conductive paste having uniform dispersibility, and in the case of a dispensing product having a three-dimensional shape, the filling efficiency of the voids between particles is not large, so the electromagnetic wave shielding efficiency It also has a problem that it is not good. In addition, the silver plating alone cannot properly prevent the oxidation of the powder, and as time passes, the electrical conduction characteristics and the electromagnetic wave shielding efficiency are inevitably deteriorated.

국내 등록특허공보 제10-0695564호 (실리콘 페이스트 조성물 및 전자파 차폐 가스켓)Domestic Patent Publication No. 10-0695564 (Silicone paste composition and electromagnetic wave shielding gasket)

본 발명은 상기 문제점을 해소하고자 창출한 것으로서, 공극율이 낮고 전기전도성이 양호하여, 전도성 필러로서 고분자 수지에 분산될 경우, 우수한 전자파 차폐효과를 제공할 수 있는 전자파 차폐용 이종 전도성 분말 혼합체 및 혼합체 제조방법과 상기 혼합체를 포함한 도료조성물을 제공함에 목적이 있다.The present invention has been created to solve the above problems, and has low porosity and good electrical conductivity, and when dispersed in a polymer resin as a conductive filler, it is possible to provide an excellent electromagnetic wave shielding effect. It is an object of the present invention to provide a method and a paint composition including the mixture.

상기 목적을 달성하기 위한 과제의 해결수단으로서의 본 발명의 전자파 차폐용 이종 전도성분말 혼합체는, 덴드라이트형 구리분말과, 상기 덴드라이트형 구리분말의 표면에 적층된 은도금층으로 이루어진 덴드라이트형 은도금 구리분말과; 플레이크형 구리분말과, 상기 플레이크형 구리분말의 표면에 적층된 은도금층으로 이루어진 플레이크형 은도금 구리분말을 혼합하여 구성한 것으로서, 고분자 수지 내에 분산되어 전도성을 부여하고, 상기 덴드라이트형 은도금 구리분말과 플레이크형 은도금 구리분말의 은도금층에는, 은도금층을 보호하여 산화를 방지하는 보호층이 더 적층되며, 상기 보호층은; 스테아르산소듐염(Sodium stearate), 스테아르산칼슘염(Calcium stearate), 스테아르산마그네슘염(Magnesium stearate), 스테아르산칼륨염(Potassium stearate) 중 어느 하나의 적층체이다.
또한, 상기 덴드라이트형 은도금 구리분말과 플레이크형 은도금 구리분말의 혼합비는, 덴드라이트형 은도금 구리분말과 플레이크형 은도금 구리분말 혼합체 100 중량부 당, 덴드라이트형 은도금 구리분말은 70 내지 90중량부, 플레이크형 은도금 구리분말은 10 내지 30중량부이다.
또한, 상기 덴드라이트형 은도금 구리분말의 평균입도는 60 내지 80㎛이고, 표면적은 2000 내지 2900cm2/g이며, 은도금층을 이루는 은은, 덴드라이트형 구리분말 100 중량부 당 5 내지 15중량부이다.
아울러, 상기 플레이크형 은도금 구리분말의 평균입도는 55 내지 75㎛이고, 표면적은 2500 내지 3000cm2/g이며, 은도금층을 이루는 은은, 플레이크형 구리분말 100 중량부 당 5 내지 15 중량부이다.
또한, 상기 목적을 달성하기 위한 과제의 해결수단으로서의 본 발명의 전자파 차폐용 이종 전도성분말 혼합체 제조방법은, 덴드라이트형 구리분말과 플레이크형 구리분말을 각각 계량하는 계량단계와; 상기 계량단계를 통해 계량된 덴드라이트형 구리분말과 플레이크형 구리분말을, 탈지조에 초순수 및 탈지제와 함께 투입 및 교반하여 탈지시키는 탈지단계와; 상기 탈지단계가 완료된 혼합분말을 초순수에 수세하는 수세단계와; 상기 수세단계를 마친 혼합분말을, 은도금조에 넣고, 질산은(AgNO3) 기반의 은전구체를 이용해, 덴드라이트형 구리분말 및 플레이크형 구리분말 표면에 은도금층을 형성하되, 치환도금층과 환원도금층을 순차 적층하는 과정으로서, 상기 은도금조에, 초순수와, 초순수 1리터 기준, 질산은(AgNO3) 8 내지 10wt%/L, 환원제 12 내지 16wt%/L, 착화제 5 내지 8wt%/L, 분산제 0.2 내지 0.7wt%/L를 투입한 상태로, 전체 은함량의 30%를 소모해 치환도금을 먼저 진행하여 상기 구리분말의 표면에 은치환도금층을 형성한 후, 나머지 70%의 은전구체를 이용해, 상기 은치환도금층 위에 은을 환원 석출시켜 은치환도금층을 커버하는 은환원도금층을 형성하는 은도금단계와; 상기 은도금단계의 완료 후, 상기 은도금층에 보호층을 적층하는 표면처리단계와; 상기 표면처리단계가 완료된 분말혼합체를 수세 후 건조시키는 건조단계를 포함한다.
또한, 상기 표면처리단계는; 상기 은도금층에, 스테아르산소듐염, 스테아르산칼슘염, 스테아르산마그네슘염, 스테아르산칼륨염 중 어느 하나를 포함하는 표면처리제를 코팅하는 과정이다.
아울러, 상기 목적을 달성하기 위한 과제의 해결수단으로서의 본 발명의 도료조성물은, 덴드라이트형 구리분말과, 상기 덴드라이트형 구리분말의 표면에 적층된 은도금층으로 이루어진 덴드라이트형 은도금 구리분말과; 플레이크형 구리분말과, 상기 플레이크형 구리분말의 표면에 적층된 은도금층으로 이루어진 플레이크형 은도금 구리분말을 혼합하여 구성되며, 고분자 수지 내에 분산되어 전도성을 부여하고, 상기 덴드라이트형 은도금 구리분말과 플레이크형 은도금 구리분말의 은도금층에는, 은도금층을 보호하여 산화를 방지하는 보호층이 더 적층되며, 상기 보호층은; 스테아르산소듐염(Sodium stearate), 스테아르산칼슘염(Calcium stearate), 스테아르산마그네슘염(Magnesium stearate), 스테아르산칼륨염(Potassium stearate) 중 어느 하나의 적층체인 전자파 차폐용 이종 전도성분말 혼합체와; 상기 전자파 차폐용 이종 전도성분말 혼합체와 혼합된 상태로 전도성분말 혼합체 상호간의 접촉을 유지시키고, 외부 기재에 대한 부착성을 제공하는 고분자 수지를 포함한다.
The dissimilar conductive powder mixture for electromagnetic wave shielding of the present invention as a solution to the above object is a dendrite type silver plated copper comprising a dendrite type copper powder and a silver plated layer laminated on the surface of the dendrite type copper powder. Powder; A flake-type copper powder and a flake-type silver-plated copper powder consisting of a silver-plated layer laminated on the surface of the flake-type copper powder are mixed and dispersed in a polymer resin to provide conductivity, and the dendrite-type silver-plated copper powder and flakes On the silver-plated layer of the silver-plated copper powder, a protective layer is further laminated to protect the silver-plated layer to prevent oxidation, and the protective layer includes; It is a laminate of any one of sodium stearate, calcium stearate, magnesium stearate, and potassium stearate.
In addition, the mixing ratio of the dendrite-type silver-plated copper powder and flake-type silver-plated copper powder per 100 parts by weight of the dendrite-type silver-plated copper powder and flake-type silver-plated copper powder mixture, the dendrite-type silver-plated copper powder is 70 to 90 parts by weight, Flaky silver-plated copper powder is 10 to 30 parts by weight.
In addition, the average particle size of the dendrite-type silver-plated copper powder is 60 to 80 µm, the surface area is 2000 to 2900 cm 2 /g, and the silver forming the silver-plated layer is 5 to 15 parts by weight per 100 parts by weight of the dendrite-type copper powder. .
In addition, the average particle size of the flake-type silver-plated copper powder is 55 to 75 μm, the surface area is 2500 to 3000 cm 2 /g, and the silver constituting the silver plating layer is 5 to 15 parts by weight per 100 parts by weight of the flake-type copper powder.
In addition, the method for producing a mixture of different conductive powders for shielding electromagnetic waves of the present invention as a means of solving the problems for achieving the above object includes a weighing step of weighing dendrite-type copper powder and flake-type copper powder, respectively; A degreasing step of adding and stirring the dendrite-type copper powder and flake-type copper powder weighed through the weighing step together with ultrapure water and a degreasing agent into a degreasing tank and stirring them; A washing step of washing the mixed powder having the degreasing step completed with ultrapure water; The mixed powder after the washing step is put into a silver plating bath, and a silver plating layer is formed on the surface of the dendrite-type copper powder and flake-type copper powder using a silver nitrate (AgNO 3 )-based silver precursor, but the substitution plating layer and the reduction plating layer are sequentially As a process of lamination, in the silver plating bath, ultrapure water, based on 1 liter of ultrapure water, silver nitrate (AgNO 3 ) 8 to 10 wt%/L, reducing agent 12 to 16 wt%/L, complexing agent 5 to 8 wt%/L, dispersant 0.2 to 0.7 In the state in which wt%/L was added, 30% of the total silver content was consumed to proceed with substitution plating to form a silver-substituted plating layer on the surface of the copper powder, and then the remaining 70% of the silver precursor was used. A silver plating step of reducing and depositing silver on the substitution plating layer to form a silver reduction plating layer covering the silver substitution plating layer; A surface treatment step of laminating a protective layer on the silver plating layer after completion of the silver plating step; And a drying step of drying the powder mixture having the surface treatment step completed after washing with water.
In addition, the surface treatment step; This is a process of coating a surface treatment agent containing any one of sodium stearate salt, calcium stearate salt, magnesium stearate salt, and potassium stearate salt on the silver plating layer.
In addition, the paint composition of the present invention as a means of solving the problems for achieving the above object includes: a dendrite-type silver-plated copper powder comprising a dendrite-type copper powder and a silver-plated layer laminated on the surface of the dendrite-type copper powder; It is composed by mixing flake-type copper powder and flake-type silver-plated copper powder consisting of a silver-plated layer laminated on the surface of the flake-type copper powder, and is dispersed in a polymer resin to impart conductivity, and the dendrite-type silver-plated copper powder and flakes On the silver-plated layer of the silver-plated copper powder, a protective layer is further laminated to protect the silver-plated layer to prevent oxidation, and the protective layer includes; Dissimilar conductive powder mixture for electromagnetic wave shielding, which is a stack of any one of sodium stearate, calcium stearate, magnesium stearate, and potassium stearate; It includes a polymer resin that maintains contact between the conductive powder mixtures in a mixed state with the electromagnetic wave shielding heterogeneous conductive powder mixture and provides adhesion to external substrates.

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

상기와 같이 이루어지는 본 발명의 전자파 차폐용 이종 전도성분말 혼합체는, 상이한 형상의 미세 조직을 갖는 덴드라이트형 구리분말과 플레이크형 구리분말로 혼합 구성되어 공극율이 낮고 구리분말간의 컨텍포인트가 매우 많아, 전도성 필러로서 고분자 수지에 분산될 경우 우수한 전자파 차폐효과를 제공할 수 있다.The heterogeneous conductive powder mixture for electromagnetic wave shielding of the present invention made as described above is composed of a mixture of dendrite-type copper powder and flake-type copper powder having different shapes of microstructure, so that the porosity is low and the contact points between the copper powders are very large, When dispersed in a polymer resin as a filler, an excellent electromagnetic wave shielding effect can be provided.

또한 본 발명의 혼합체 제조방법은, 덴드라이트형 구리분말과 플레이크형 구리분말을 제조 과정 중 반복적으로 혼합하므로 분산성을 극대와 함으로써, 공극을 최소화시켜 전기저항의 감소 및 우수한 전자파 차페효과를 나타나게 한다.In addition, the method for preparing the mixture of the present invention maximizes dispersibility because dendrite-type copper powder and flake-type copper powder are repeatedly mixed during the manufacturing process, thereby minimizing voids, reducing electrical resistance and exhibiting excellent electromagnetic shielding effects. .

아울러, 본 발명의 도료조성물은, 도막이 치밀하고 전기저항이 낮아 우수한 전기전도성 및 전자파 차폐효과를 제공한다.In addition, the coating composition of the present invention provides excellent electrical conductivity and electromagnetic wave shielding effect because the coating film is dense and electrical resistance is low.

도 1은 본 발명의 일 실시예에 따른 전자파 차폐용 이종 전도성 분말 혼합체의 제조방법을 설명하기 위한 블록도이다.
도 2는 도 1에 도시한 제조방법을 도식적으로 나타내 보인 도면이다.
도 3은 본 발명의 일 실시예에 따른 혼합체 제조방법으로 제조된 혼합체가 포함된 도료조성물을 간단히 도시한 도면이다.
도 4는 도 3의 A-A선 단면도이다.
1 is a block diagram illustrating a method of manufacturing a mixture of heterogeneous conductive powders for shielding electromagnetic waves according to an embodiment of the present invention.
2 is a diagram schematically showing the manufacturing method shown in FIG. 1.
3 is a view briefly showing a paint composition containing a mixture prepared by a method for producing a mixture according to an embodiment of the present invention.
4 is a cross-sectional view taken along line AA of FIG. 3.

이하, 본 발명에 따른 하나의 실시예를 첨부된 도면을 참조하여 보다 상세히 설명하기로 한다.Hereinafter, an embodiment according to the present invention will be described in more detail with reference to the accompanying drawings.

기본적으로, 본 발명의 이종 전도성 분말 혼합체는, 덴드라이트형(Dendritic type) 구리분말과, 플레이크형(Flake type) 구리분말을 다수 회 혼합하고, 혼합된 구리 혼합분말의 표면에 은도금층과 보호층을 코팅한 것이다.Basically, in the heterogeneous conductive powder mixture of the present invention, a dendritic type copper powder and a flake type copper powder are mixed multiple times, and a silver plated layer and a protective layer on the surface of the mixed copper mixed powder Is coated.

이러한 분말 혼합체는, 실리콘 등의 고분자 수지 내에 투입 및 분산되어, 고분자 수지에 전기 전도성 및 전자파 차폐능력을 부여한다. 전자파 차폐능력을 갖는 고분자 수지는 도료 조성물로서, 전자파를 발생하는 대상물에 다양한 방식으로 적용된다. 가령 박막도포나 압출 또는 사출 방식으로 적용될 수 있는 것이다.Such a powder mixture is introduced and dispersed in a polymer resin such as silicone to impart electrical conductivity and electromagnetic wave shielding ability to the polymer resin. Polymer resins having electromagnetic wave shielding capabilities are coating compositions and are applied in various ways to objects generating electromagnetic waves. For example, it can be applied by thin film application, extrusion or injection method.

덴드라이트형 구리분말과 플레이크형 구리분말에서의 구리 자체는 동일한 것이며 다만 그 모양이 다르다. 이종(異種) 전도성 분말이라고 칭한 것은 모양이 다름을 의미한다.The copper itself in the dendrite-type copper powder and the flake-type copper powder is the same, but the shape is different. What is called a heterogeneous conductive powder means that the shape is different.

후술하는 바와 같이, 덴드라이트형 구리분말과 플레이크형 구리분말 혼합체는, 엉켜 있는 상태에서 상호 보완적 기능을 하며, 내부에 수많은 컨텍포인트를 가지고, 뛰어난 칙소성(형상유지성)을 유지한다. 따라서 상기 구리분말 혼합체를 이용해 전자파 차폐용 도료조성물을 제조할 경우, 작업성이 뛰어나고 도막의 치밀도가 높으며, 처짐이 없고, 낮은 저항값을 갖는 우수한 전자파 차폐효과를 구현할 수 있다.As described later, the dendrite-type copper powder and the flake-type copper powder mixture perform complementary functions in an entangled state, have numerous contact points inside, and maintain excellent thixotropic (shape retention). Therefore, when the copper powder mixture is used to prepare a coating composition for shielding electromagnetic waves, excellent workability, high density of the coating film, no sagging, and excellent electromagnetic shielding effect having a low resistance value can be realized.

본 발명의 전자파 차폐용 이종 전도성분말 혼합체는, 덴드라이트형 구리분말과, 상기 덴드라이트형 구리분말의 표면에 적층된 은도금층과, 은도금층의 산화를 방지하고 분말의 분산성을 크게 향상시키는 표면처리층으로 이루어진 덴드라이트형 은도금 구리분말과; 플레이크형 구리분말과, 상기 플레이크형 구리분말의 표면에 적층된 은도금층과, 은도금층의 산화를 방지하고 분말의 분산성을 크게 향상시키는 표면처리층으로 이루어진 플레이크형 은도금 구리분말을 혼합하여 구성한 것으로서, 고분자 수지 내에 분산되어 전도성을 부여하는 것이다.The dissimilar conductive powder mixture for shielding electromagnetic waves of the present invention includes a dendrite copper powder, a silver plated layer laminated on the surface of the dendrite copper powder, and a surface that prevents oxidation of the silver plated layer and greatly improves the dispersibility of the powder. A dendrite type silver-plated copper powder comprising a treatment layer; It is composed by mixing flake-type silver-plated copper powder consisting of a flake-type copper powder, a silver-plated layer laminated on the surface of the flake-type copper powder, and a surface treatment layer that prevents oxidation of the silver-plated layer and greatly improves the dispersibility of the powder. , It is dispersed in a polymer resin to provide conductivity.

도 1은 본 발명의 일 실시예에 따른 전자파 차폐용 이종 전도성 분말 혼합체의 제조방법을 설명하기 위한 블록도이고, 도 2는 도 1에 도시한 제조방법을 도식적으로 나타내 보인 도면이다.FIG. 1 is a block diagram illustrating a method of manufacturing a mixture of different conductive powders for shielding electromagnetic waves according to an embodiment of the present invention, and FIG. 2 is a diagram schematically showing the manufacturing method shown in FIG. 1.

도시한 바와 같이, 본 실시예에 따른 전자파 차폐용 이종 전도성 분말 혼합체 제조방법은, 계량단계(101), 혼합단계(103), 탈지단계(105), 수세단계(107), 은도금단계(109), 표면처리단계(111), 수세단계(113), 건조단계(115)를 포함한다.As shown, the method of manufacturing a mixture of heterogeneous conductive powders for electromagnetic wave shielding according to the present embodiment includes a weighing step 101, a mixing step 103, a degreasing step 105, a washing step 107, and a silver plating step 109. , A surface treatment step 111, a washing step 113, and a drying step 115.

먼저, 계량단계(101)는, 덴드라이트형 구리분말(11a)과 플레이크형 구리분말(11b)을 각각 계량하는 과정이다. 구리분말의 계량을 위해 전자저울(21)을 사용할 수 있다.First, the weighing step 101 is a process of weighing the dendrite-type copper powder 11a and the flake-type copper powder 11b, respectively. An electronic balance 21 can be used for weighing copper powder.

이 때 계량되는 덴드라이트형 구리분말(11a)과 플레이크형 구리분말(11b)의 무게비는, 덴드라이트형 구리분말(11a) 70wt% 내지 90wt%, 플레이크형 구리분말(11b) 10wt% 내지 30wt%이다. 가령 덴드라이트형 구리분말(11a)을 75g 사용하는 경우 플레이크형 구리분말은 25g 사용하고, 덴드라이트형 구리분말을 87g 사용할 때 플레이크형 구리분말은 13g 사용하는 것이다.The weight ratio of the dendrite-type copper powder (11a) and the flake-type copper powder (11b) measured at this time is 70wt% to 90wt% of the dendrite copper powder (11a), 10wt% to 30wt% of the flake copper powder (11b) to be. For example, when 75g of dendrite-type copper powder (11a) is used, 25g of flake-type copper powder is used, and when 87g of dendrite-type copper powder is used, 13g of flake-type copper powder is used.

이를 달리 표현하면, 덴드라이트형 구리분말(11a)과 플레이크형 구리분말(11b) 혼합체 100 중량부 당, 덴드라이트형 구리분말(11a)은 70 내지 90중량부, 플레이크형 구리분말(11b)은 10 내지 30중량부의 투입 비율을 갖는 것이다.In other words, per 100 parts by weight of a mixture of dendrite-type copper powder (11a) and flake-type copper powder (11b), 70 to 90 parts by weight of dendrite-type copper powder (11a), and flake-type copper powder (11b) It has an input ratio of 10 to 30 parts by weight.

상기 계량단계(101)를 통해 덴드라이트형 구리분말(11a)과 플레이크형 구리분말(11b)을 계량하였다면, 혼합단계(103)를 통해 두 가지 구리분말(11a)을 혼합시킨다. 혼합단계(103)의 방식은 임의의 방식을 택할 수 있다. 경우에 따라 혼합단계(103)는 생략 가능하다.If the dendrite-type copper powder 11a and the flake-type copper powder 11b are weighed through the weighing step 101, the two copper powders 11a are mixed through the mixing step 103. The method of the mixing step 103 may be any method. In some cases, the mixing step 103 may be omitted.

이어지는 탈지단계(105)는, 덴드라이트형 구리분말(11a)과 플레이크형 구리분말(11b)을, 탈지조(23)에 초순수 및 탈지제와 함께 투입하여 교반기(25)로 교반하는 과정이다. 탈지단계(105)를 통해, 구리분말(11a,11b) 표면에 붙어 있는 각종 오염물질이 초순수에 씻겨 제거된다. 상기 탈지제로서 일반적인 금속 탈지제를 사용할 수 있고, 교반시간도 상황에 따라 조절 가능하다. 교반시간은 가령 10분 이하일 수 있다.The subsequent degreasing step 105 is a process in which dendrite-type copper powder 11a and flake-type copper powder 11b are added to the degreasing tank 23 together with ultrapure water and a degreasing agent, and stirred with a stirrer 25. Through the degreasing step 105, various contaminants adhering to the surface of the copper powders 11a and 11b are washed away with ultrapure water. As the degreasing agent, a general metal degreasing agent may be used, and the stirring time may be adjusted according to the situation. Stirring time may be, for example, 10 minutes or less.

탈지단계(105)는 탈지를 목적으로 하는 것이지만, 덴드라이트형 구리분말(11a)과 플레이크형 구리분말(11b)을 고르게 혼합시킨다는 부수적 효과를 제공한다. 본 실시예에 따른 분말 혼합체의 품질은, 덴드라이트형 구리분말(11a)과 플레이크형 구리분말(11b)의 혼합정도에 따라 달라지므로, 탈지단계(105)는 분말 혼합체의 품질을 향상시키기 위한 단계이기도 하다.The degreasing step 105 is for the purpose of degreasing, but provides a side effect of evenly mixing the dendrite type copper powder 11a and the flake type copper powder 11b. Since the quality of the powder mixture according to the present embodiment varies depending on the mixing degree of the dendrite-type copper powder (11a) and the flake-type copper powder (11b), the degreasing step 105 is a step for improving the quality of the powder mixture. It is also.

탈지단계(105)를 통해, 플레이크형 구리분말(11b)은 덴드라이트형 구리분말(11a)의 사이로 고르게 분산된다.Through the degreasing step 105, the flake-type copper powder 11b is evenly dispersed among the dendrite-type copper powders 11a.

상기 탈지단계(105)가 완료된 후 수세단계(107)를 수행한다. 수세단계(107)는, 혼합 및 탈지가 완료된 구리분말(11a,11b)을 여과판(27)에 올리고 초순수를 가하여 탈지제를 제거하는 과정이다. 수세 방식도 다양하게 변경 가능하다.After the degreasing step 105 is completed, the washing step 107 is performed. The water washing step 107 is a process of removing the degreasing agent by putting the copper powders 11a and 11b, which have been mixed and degreasing, on the filter plate 27 and adding ultrapure water. The washing method can also be changed in various ways.

이어서 은도금단계(109)를 수행한다. 은도금단계(109)는, 덴드라이트형 구리분말(11a)과 플레이크형 구리분말(11b)로 이루어진 혼합분말을 은도금조(31)에 도금액(33)과 함께 넣고, 구리분말 표면에 은도금층을 형성하는 과정이다. 은도금층은 구리의 산화를 방지하고 전기전도 특성을 최대로 끌어올리는 역할을 한다. 또한 도금액(33)에는 물과 은전구체와 환원제와 착화제와 분산제가 포함된다.Subsequently, a silver plating step 109 is performed. In the silver plating step 109, a mixed powder consisting of dendrite-type copper powder (11a) and flake-type copper powder (11b) is put together with a plating solution (33) in a silver plating bath (31), and a silver plating layer is formed on the surface of the copper powder. It is a process. The silver plated layer plays a role in preventing oxidation of copper and maximizing electrical conductivity. In addition, the plating solution 33 contains water, a silver precursor, a reducing agent, a complexing agent, and a dispersing agent.

은도금단계(109)는 질산은 기반의 은전구체를 사용하여 진행된다. 가령, 물 1리터 기준, 질산은(AgNO3) 8 내지 10wt%/L, 환원제 12 내지 16wt%/L, 착화제 5 내지 8wt%/L, 분산제 0.2 내지 0.7wt%/L를 일괄 투입하여 20분 내지 30분간 진행된다. The silver plating step 109 is performed using a silver precursor based on silver nitrate. For example, based on 1 liter of water, silver nitrate (AgNO 3 ) 8 to 10 wt%/L, reducing agent 12 to 16 wt%/L, complexing agent 5 to 8 wt%/L, and dispersing agent 0.2 to 0.7 wt%/L were put together for 20 minutes To 30 minutes.

상기한 첨가 물질은, 구리 표면에서 치환반응을 일으켜 치환도금층을 먼저 형성하고, 치환도금층이 전체 은함량의 30wt%을 소모한 수준의 두께가 되어 구리와의 치환이 더 이상 이루어지지 않게 되면, 나머지 70wt%의 은전구체를 환원작용을 일으켜 은을 환원 석출시킨다.The above-described additive material causes a substitution reaction on the copper surface to form a substitution plating layer first, and when the substitution plating layer becomes a thickness at the level of consuming 30 wt% of the total silver content, when the substitution with copper is no longer made, the remaining 70wt% of the silver precursor causes a reduction action to reduce and precipitate silver.

상기 은도금단계(109)를 통해, 덴드라이트형 구리분말(11a)은 덴드라이트형 은도금 구리분말(13a)이, 플레이크형 구리분말(11b)은 플레이크형 은도금 구리분말(13b)이 된다. 덴드라이트형 은도금 구리분말과, 플레이크형 은도금 구리분말은 [참고사진 1] 및 [참고사진 2]에 나타내었다.Through the silver plating step 109, the dendrite-type copper powder 11a becomes a dendrite-type silver-plated copper powder 13a, and the flake-type copper powder 11b becomes a flake-type silver-plated copper powder 13b. The dendrite type silver plated copper powder and the flake type silver plated copper powder are shown in [Reference Picture 1] and [Reference Picture 2].

은도금단계(109)를 통해 형성된 은도금층(도 4의 14)의 은은, 구리분말 100 중량부 당 5 내지 15 중량부이다. 다시 말하면, 덴드라이트형 구리분말 100 중량부 당 5 내지 15중량부, 플레이크형 구리분말 100 중량부 당 5 내지 15 중량부이다.Silver in the silver plating layer (14 in FIG. 4) formed through the silver plating step 109 is 5 to 15 parts by weight per 100 parts by weight of the copper powder. In other words, it is 5 to 15 parts by weight per 100 parts by weight of the dendrite copper powder, and 5 to 15 parts by weight per 100 parts by weight of the flake-type copper powder.

[참고사진 1] 덴드라이트형 은도금 구리분말][Reference photo 1] Dendritic silver-plated copper powder]

Figure 112019072837012-pat00001
Figure 112019072837012-pat00001

[참고사진 2] 플레이크형 은도금 구리분말][Reference photo 2] Flake type silver-plated copper powder]

Figure 112019072837012-pat00002
Figure 112019072837012-pat00002

덴드라이트형 은도금 구리분말(13a)의 평균입도는 60 내지 80㎛이고, 표면적은 2000 내지 2900cm2/g이며, 겉보기밀도는 1.2 내지 1.5g/cm3이다. 또한 플레이크형 은도금 구리분말(13b)의 평균입도는 55 내지 75㎛이고, 표면적은 2500 내지 3000cm2/g이며, 겉보기밀도는 0.3 내지 0.6g/cm3 이다.The dendritic silver-plated copper powder 13a has an average particle size of 60 to 80 µm, a surface area of 2000 to 2900 cm 2 /g, and an apparent density of 1.2 to 1.5 g/cm 3 . In addition, the flake-type silver-plated copper powder 13b has an average particle size of 55 to 75 μm, a surface area of 2500 to 3000 cm 2 /g, and an apparent density of 0.3 to 0.6 g/cm 3 .

이어지는, 표면처리단계(111)는 은도금조(31) 내에, 덴드라이트형 은도금 구리분말(13a), 플레이크형 은도금 구리분말(13b), 초순수, 표면처리제(35)를 넣고 반응시키는 과정이다. 표면처리제(35)로서, 스테아르산소듐염, 스테아르산칼슘염, 스테아르산마그네슘염 중 선택된 하나를 사용할 수 있다. 표면처리제(35)는 은도금층(14)에 코팅되어 보호층(15)을 이룬다. Subsequently, the surface treatment step 111 is a process of adding and reacting a dendrite type silver plated copper powder 13a, a flake type silver plated copper powder 13b, ultrapure water, and a surface treatment agent 35 into the silver plating bath 31. As the surface treatment agent 35, one selected from sodium stearate salt, calcium stearate salt, and magnesium stearate salt may be used. The surface treatment agent 35 is coated on the silver plating layer 14 to form the protective layer 15.

표면처리단계(111)는, 초순수 1리터 기준, 표면처리제(35)를 0.1 내지 5%wt/L 투입하여 1 분 내지 10분간 반응시킴으로서 이루어진다.The surface treatment step 111 is performed by adding 0.1 to 5% wt/L of the surface treatment agent 35 based on 1 liter of ultrapure water and reacting for 1 to 10 minutes.

상기 표면처리단계(111)를 통해 분말혼합체(16)가 얻어진다. 분말혼합체(16)는, 보호층(15)이 코팅된 덴드라이트형 은도금 구리분말(13a)과 플레이크형 은도금 구리분말(13b)의 혼합물이다.A powder mixture 16 is obtained through the surface treatment step 111. The powder mixture 16 is a mixture of a dendrite silver-plated copper powder 13a coated with a protective layer 15 and a flake silver-plated copper powder 13b.

상기 표면처리단계(111)이 이어서, 수세단계(113)를 통해 분말혼합체(16)의 표면을 씻어낸 후 건조단계(115)를 통해 모든 과정을 마무리 한다.After the surface treatment step 111 is followed by washing the surface of the powder mixture 16 through the washing step 113, all processes are finished through the drying step 115.

건조단계(115)는 분말혼합체(16)를 건조장치(37)에 넣고 수분을 건조시키는 과정이다. 건조단계의 건조방식은 다양하게 적용 가능하다. 가령, 자연건조, 건조풍건조, 가열건조 방식을 적용할 수 있다.The drying step 115 is a process of placing the powder mixture 16 in the drying device 37 and drying the moisture. The drying method of the drying step can be applied in various ways. For example, natural drying, dry air drying, and heat drying methods can be applied.

상기 과정을 통해 제조된 전도성 분말혼합체(16)는, 덴드라이트형 구리분말과, 상기 덴드라이트형 구리분말의 표면에 적층된 은도금층으로 이루어진 덴드라이트형 은도금 구리분말과, 플레이크형 구리분말과, 상기 플레이크형 구리분말의 표면에 적층된 은도금층으로 이루어진 플레이크형 은도금 구리분말을 혼합하여 구성한 것으로서, 고분자수지(17) 내에 분산되어 도료조성물(18)을 이루고 도료조성물에 전도성을 부여한다. The conductive powder mixture 16 prepared through the above process includes a dendrite-type copper powder, a dendrite-type silver-plated copper powder comprising a silver-plated layer laminated on the surface of the dendrite-type copper powder, and a flake-type copper powder, It is composed by mixing flake-type silver-plated copper powder consisting of a silver-plated layer laminated on the surface of the flake-type copper powder, and is dispersed in a polymer resin 17 to form a paint composition 18 and impart conductivity to the paint composition.

또한, 상기 덴드라이트형 은도금 구리분말과 플레이크형 은도금 구리분말의 혼합비는, 덴드라이트형 은도금 구리분말과 플레이크형 은도금 구리분말 혼합체 100 중량부 당, 덴드라이트형 은도금 구리분말은 70 내지 90중량부, 플레이크형 은도금 구리분말은 10 내지 30중량부이고,In addition, the mixing ratio of the dendrite-type silver-plated copper powder and flake-type silver-plated copper powder per 100 parts by weight of the dendrite-type silver-plated copper powder and flake-type silver-plated copper powder mixture, the dendrite-type silver-plated copper powder is 70 to 90 parts by weight, Flakes-type silver-plated copper powder is 10 to 30 parts by weight,

상기 덴드라이트형 은도금 구리분말의 평균입도는 60 내지 80㎛이고, 표면적은 2000 내지 2900cm2/g이며, 은도금층을 이루는 은은, 덴드라이트형 구리분말 100 중량부 당 5 내지 15중량부이다.The dendrite-type silver-plated copper powder has an average particle size of 60 to 80 μm, a surface area of 2000 to 2900 cm2/g, and the silver constituting the silver plating layer is 5 to 15 parts by weight per 100 parts by weight of the dendrite-type copper powder.

아울러, 상기 플레이크형 은도금 구리분말의 평균입도는 55 내지 75㎛이고, 표면적은 2500 내지 3000cm2/g이며, 은도금층을 이루는 은은, 플레이크형 구리분말 100 중량부 당 5 내지 15 중량부이다.In addition, the average particle size of the flake-type silver-plated copper powder is 55 to 75 μm, the surface area is 2500 to 3000 cm2/g, and the silver forming the silver-plated layer is 5 to 15 parts by weight per 100 parts by weight of the flake-type copper powder.

또한, 덴드라이트형 은도금 구리분말과 플레이크형 은도금 구리분말의 은도금층에는, 은도금층을 보호하는 보호층(14)이 더 적층되며, 보호층은, 스테아르산소듐염(Sodium stearate), 스테아르산칼슘염(Calcium stearate), 스테아르산마그네슘염(Magnesium stearate), 스테아르산칼륨염(Potassium stearate) 중 어느 하나로 이루어진다.In addition, on the silver plating layer of the dendrite silver-plated copper powder and the flake silver-plated copper powder, a protective layer 14 to protect the silver plating layer is further laminated, and the protective layer is sodium stearate, calcium stearate. It consists of any one of a salt (Calcium stearate), a magnesium stearate salt (Magnesium stearate), and a potassium stearate salt (Potassium stearate).

도 3은 본 발명의 일 실시예에 따른 혼합체 제조방법으로 제조된 전도성 분말혼합체(16)가 포함된 도료조성물(18)을 개략적으로 도시한 도면이고, 도 4는 도 3의 A-A선 단면도이다.FIG. 3 is a schematic view of a paint composition 18 including a conductive powder mixture 16 manufactured by a method for manufacturing a mixture according to an exemplary embodiment of the present invention, and FIG. 4 is a cross-sectional view taken along line A-A of FIG. 3.

도 3에 도시한 바와 같이, 도료조성물(18)은 페이스트의 물성을 가지며, 가령, 디스펜서(39)를 이용해 기재(41)에 도포할 수 있다. 기재(41)는 전자파 발생 부품이나 전자파 차폐용 케이스 일 수 있다.As shown in FIG. 3, the paint composition 18 has the physical properties of a paste, and can be applied to the substrate 41 using, for example, a dispenser 39. The substrate 41 may be an electromagnetic wave generating component or an electromagnetic wave shielding case.

상기 도료조성물(18)은, 위에 설명한 전도성 분말혼합체(16)를 고분자수지(17)에 혼합한 혼합물이다. 고분자수지(17)와 분말혼합체(16)의 혼합비는 55 내지 80wt% : 20 내지 45wt% 이다. 즉, 도료조성물(18) 100중량부 당, 고분자수지(17)는 20 내지 45 중량부, 분말혼합체(16)는 55 내지 80 중량부이다.The paint composition 18 is a mixture obtained by mixing the conductive powder mixture 16 described above with a polymer resin 17. The mixing ratio of the polymer resin 17 and the powder mixture 16 is 55 to 80 wt%: 20 to 45 wt%. That is, per 100 parts by weight of the paint composition 18, the polymer resin 17 is 20 to 45 parts by weight, and the powder mixture 16 is 55 to 80 parts by weight.

고분자수지(17)는, 전도성 분말혼합체(16)와 혼합된 상태로 전도성분말 혼합체 상호간의 접촉을 유지시키고, 외부 기재(41)에 대한 부착성을 제공한다.The polymer resin 17 maintains contact between the conductive powder mixtures in a mixed state with the conductive powder mixture 16 and provides adhesion to the external substrate 41.

특히 전도성 분말혼합체(16)는 덴드라이트형 구리분말과 플레이크형 구리분말이 엉켜 형성된 것으로서, 덴드라이트형 구리분말의 공극을 플레이크형 구리분말이 커버함으로써 전자파가 새나가는 것을 효과적으로 차단한다.In particular, the conductive powder mixture 16 is formed by entangled dendrite-type copper powder and flake-type copper powder, and effectively blocks the leakage of electromagnetic waves by covering the voids of the dendrite-type copper powder with flake-type copper powder.

또한 위에 언급한 바와 같이, 도료조성물(18)이, 덴드라이트와 플레이크의 복잡한 내부 조직 구조를 가져 자체의 칙소성이 뛰어나므로, 처음 도포된 상태의 도료조성물의 높이(H)는 시간이 지나더라도 그대로 유지될 수 있다. 참고로, 전도성 필러로서 구형상의 구리분말이 적용된 경우, 구리분말 자체의 무게에 의해 높이(H)는 제대로 유지되지 못한다.In addition, as mentioned above, since the paint composition 18 has a complex internal structure of dendrite and flakes and has excellent thixotropic properties, the height (H) of the paint composition in the first applied state is It can be kept as it is. For reference, when spherical copper powder is applied as a conductive filler, the height (H) is not properly maintained by the weight of the copper powder itself.

구현예1) 2가지 형상의 은코팅 구리 분말을 혼합 전 은코팅하여 제조된 도료의 전자파 차폐효율 특성 평가Implementation Example 1) Evaluation of electromagnetic wave shielding efficiency characteristics of a paint prepared by silver coating before mixing two shapes of silver coated copper powder

덴드라이트형 구리분말과 플레이크형 구리분말에 은도금층을 각각 형성한 후 혼합하였고, 혼합물을 실리콘수지에 1시간 동안 분산시킨 다음 PET 필름에 300㎛의 두께로 바코팅 하였다. 이 후, 상온에서 24시간 건조시킨 상태로 물성을 측정 하였다. 전기저항 측정은 멀티미터와 250g의 저항 측정용 지그를 이용하였고, 전자파 차폐율은 직경 133mm의 둥근 시편을 제작하여 주파수 범위 30MHz ~1.5GHz 사이에서 측정하였다. A silver plated layer was formed on the dendrite-type copper powder and the flake-type copper powder, respectively, and then mixed. The mixture was dispersed in a silicone resin for 1 hour, and then bar-coated on a PET film to a thickness of 300 µm. After that, the physical properties were measured while drying at room temperature for 24 hours. Electrical resistance was measured using a multimeter and a jig for measuring a resistance of 250 g, and the electromagnetic shielding rate was measured in a frequency range of 30 MHz to 1.5 GHz by making a round specimen with a diameter of 133 mm.

구현예2) 2가지 형상의 구리분말을 혼합 후 은코팅하여 제조된 도료의 전자파 차폐효율 특성 평가Implementation Example 2) Evaluation of electromagnetic wave shielding efficiency characteristics of a paint prepared by mixing two shapes of copper powder and then coating silver

덴드라이트형 구리분말과 플레이크형 구리분말을 먼저 혼합한 상태로 은코팅을 하였으며, 그 후 혼합물을 실리콘수지에 1시간 동안 분산시킨 다음, PET 필름에 300㎛의 두께로 바코팅 하였다. 이 후, 상온에서 24시간 건조 시킨 상태로 물성을 측정 하였다. 전기저항 측정 방법은 구현예1)과 동일하다.The dendrite-type copper powder and the flake-type copper powder were first mixed and coated with silver. After that, the mixture was dispersed in a silicone resin for 1 hour, and then bar-coated to a thickness of 300㎛ on a PET film. After that, the physical properties were measured in a state of drying at room temperature for 24 hours. The electrical resistance measurement method is the same as in Example 1).

구현예2)는, 본 발명의 상세한 설명을 통해 다룬 혼합체 제조방법에 따라 제조된 것이다.Embodiment 2) is prepared according to the method for producing a mixture covered through the detailed description of the present invention.

비교예1) 위에 설명한 선행기술문헌(국내 등록특허공보 제10-0695564호)의 내용을 재현하였으며, 은코팅 구리분말은 일본의 Mitsui mining사(社)의 제품을 적용하여 사용하였다. 그 이유는 선행기술에 기재되어 있는 밀도의 은코팅구리분말을 최대한 재현하고자 하기 위함이다.Comparative Example 1) The contents of the prior art document (Korean Patent Publication No. 10-0695564) described above were reproduced, and silver-coated copper powder was used by applying a product of Mitsui mining in Japan. The reason is to reproduce as much as possible the silver-coated copper powder of the density described in the prior art.

비교예2) 선행기술문헌의 출원인이 제조한 판매제품을 재현하였다.Comparative Example 2) The sales product manufactured by the applicant of the prior art document was reproduced.

사용 재료Materials used 제조사 및 특성Manufacturer and characteristics 구현예1Implementation Example 1 구현예2Implementation Example 2 비교예1Comparative Example 1 비교예2Comparative Example 2 7%Ag/Cu
Dendritic + flake type
(단독제조 후 혼합)
7%Ag/Cu
Dendritic + flake type
(Mixed after manufacturing alone)
당사
Our company
50%50%
7%Ag/Cu
Dendritic + Flake type
(구리혼합 후 은도금)
7%Ag/Cu
Dendritic + Flake type
(Silver plating after mixing copper)


50%50%
20%Ag/Cu
Dendritic type
평균입경 18μm
20%Ag/Cu
Dendritic type
Average particle diameter 18μm
Mitsui mining
(일본)
Mitsui mining
(Japan)
55%55%
10%Ag/Cu
Dendritic type
평균입경 35μm
10%Ag/Cu
Dendritic type
Average particle diameter 35μm
55%55%
실리콘 수지Silicone resin 신에츠Shin-Etsu 25%25% 25%25% 20%20% 20%20% 용제solvent 대정화금Daejeonghwa Gold 20%20% 20%20% 20%20% 20%20% 경화제Hardener KCCKCC 1.5%1.5% 1.5%1.5% 1.5%1.5% 1.5%1.5% 부착제Adhesive -- 2.5%2.5% 2.5%2.5% 2.5%2.5% 2.5%2.5% 촉매catalyst -- 1%One% 1%One% 1%One% 1%One% 도막두께(㎛)Coating thickness (㎛) 330330 310310 310310 320320 표면저항(m-ohm)Surface resistance (m-ohm) 2121 1010 4040 200200 저장안정성(14일)Storage stability (14 days) 양호Good 양호Good 양호Good 불량Bad 전자파 차폐율Electromagnetic shielding rate 100100 112112 8080 6060

위의 표 1을 통해 알 수 있는 바와 같이, 덴드라이트형 구리분말과 플레이크형 구리분말을 혼합한 구현예1 및 구현예2의 경우 전자파 차폐율이 높게 측정되었다. As can be seen from Table 1 above, in the case of Examples 1 and 2 in which the dendrite-type copper powder and the flake-type copper powder were mixed, the electromagnetic wave shielding rate was measured to be high.

특히, 구리분말을 혼합 후 은코팅하여 제조된 도료(구현예2)의 전자파 차폐율이, 구리분말의 혼합 전 은코팅하여 제조된 도료(구현예1)2의 전자파 차폐율에 비해 높게 측정되었다. 이러한 결과는, 전도성분말 혼합체 제작단계에서, 덴드라이트형 구리분말과 플레이크형 구리분말을 혼합하는 과정이, 혼합단계(103), 탈지단계(105), 표면처리단계(111)을 통해 반복되기 때문이다.In particular, the electromagnetic wave shielding rate of the paint prepared by silver coating after mixing copper powder (Implementation Example 2) was measured higher than that of the paint prepared by silver coating (Implementation Example 1) 2 before mixing the copper powder. . This result is because, in the manufacturing step of the conductive powder mixture, the process of mixing the dendrite-type copper powder and the flake-type copper powder is repeated through the mixing step 103, the degreasing step 105, and the surface treatment step 111. to be.

이상, 본 발명을 구체적인 실시예를 통하여 상세하게 설명하였으나, 본 발명은 상기 실시예에 한정하지 않고, 본 발명의 기술적 사상의 범위 내에서 통상의 지식을 가진 자에 의하여 여러 가지 변형이 가능하다.As described above, the present invention has been described in detail through specific embodiments, but the present invention is not limited to the above embodiments, and various modifications are possible by those of ordinary skill within the scope of the technical idea of the present invention.

11a:덴드라이트형 구리분말 11b:플레이크형 구리분말
13a:덴드라이트형 은도금 구리분말 13b:플레이크형 은도금 구리분말
15:보호층 16:분말혼합체
17;고분자수지 18;도료조성물
21:전자저울 23:탈지조
25:교반기 27:여과판
31:은도금조 33:도금액
35:표면처리제 37:건조장치
39:디스펜서 41:기재
11a: Dendritic copper powder 11b: Flaky copper powder
13a: dendrite silver-plated copper powder 13b: flake silver-plated copper powder
15: protective layer 16: powder mixture
17; polymer resin 18; paint composition
21: electronic scale 23: degreasing tank
25: agitator 27: filter plate
31: silver plating tank 33: plating amount
35: surface treatment agent 37: drying device
39: dispenser 41: description

Claims (10)

덴드라이트형 구리분말과, 상기 덴드라이트형 구리분말의 표면에 적층된 은도금층으로 이루어진 덴드라이트형 은도금 구리분말과;
플레이크형 구리분말과, 상기 플레이크형 구리분말의 표면에 적층된 은도금층으로 이루어진 플레이크형 은도금 구리분말을 혼합하여 구성한 것으로서, 고분자 수지 내에 분산되어 전도성을 부여하고,
상기 덴드라이트형 은도금 구리분말과 플레이크형 은도금 구리분말의 은도금층에는, 은도금층을 보호하여 산화를 방지하는 보호층이 더 적층되며,
상기 보호층은;
스테아르산소듐염(Sodium stearate), 스테아르산칼슘염(Calcium stearate), 스테아르산마그네슘염(Magnesium stearate), 스테아르산칼륨염(Potassium stearate) 중 어느 하나의 적층체인 전자파 차폐용 이종 전도성분말 혼합체.
A dendrite-type silver-plated copper powder comprising a dendrite-type copper powder and a silver-plated layer laminated on the surface of the dendrite-type copper powder;
A flake-type copper powder and a flake-type silver-plated copper powder composed of a silver-plated layer laminated on the surface of the flake-type copper powder are mixed, and are dispersed in a polymer resin to provide conductivity,
On the silver plated layer of the dendrite type silver plated copper powder and flake type silver plated copper powder, a protective layer for protecting the silver plated layer to prevent oxidation is further laminated,
The protective layer is;
Dissimilar conductive powder mixture for electromagnetic wave shielding, which is a laminate of any one of sodium stearate, calcium stearate, magnesium stearate, and potassium stearate.
제1항에 있어서,
상기 덴드라이트형 은도금 구리분말과 플레이크형 은도금 구리분말의 혼합비는,
덴드라이트형 은도금 구리분말과 플레이크형 은도금 구리분말 혼합체 100 중량부 당, 덴드라이트형 은도금 구리분말은 70 내지 90중량부, 플레이크형 은도금 구리분말은 10 내지 30중량부인 전자파 차폐용 이종 전도성분말 혼합체.
The method of claim 1,
The mixing ratio of the dendrite type silver plated copper powder and the flake type silver plated copper powder,
Per 100 parts by weight of a mixture of dendrite-type silver-plated copper powder and flake-type silver-plated copper powder, 70 to 90 parts by weight of dendrite-type silver-plated copper powder, and 10 to 30 parts by weight of flake-type silver-plated copper powder.
제2항에 있어서,
상기 덴드라이트형 은도금 구리분말의 평균입도는 60 내지 80㎛이고, 표면적은 2000 내지 2900cm2/g이며,
은도금층을 이루는 은은, 덴드라이트형 구리분말 100 중량부 당 5 내지 15중량부인 전자파 차폐용 이종 전도성분말 혼합체.
The method of claim 2,
The dendritic silver-plated copper powder has an average particle size of 60 to 80 µm, a surface area of 2000 to 2900 cm 2 /g,
Silver forming the silver plated layer, 5 to 15 parts by weight per 100 parts by weight of the dendrite-type copper powder is a heterogeneous conductive powder mixture for shielding electromagnetic waves.
제2항에 있어서,
상기 플레이크형 은도금 구리분말의 평균입도는 55 내지 75㎛이고, 표면적은 2500 내지 3000cm2/g이며,
은도금층을 이루는 은은, 플레이크형 구리분말 100 중량부 당 5 내지 15 중량부인 전자파 차폐용 이종 전도성분말 혼합체.
The method of claim 2,
The flake-type silver-plated copper powder has an average particle size of 55 to 75 μm, a surface area of 2500 to 3000 cm 2 /g,
Silver forming the silver-plated layer, 5 to 15 parts by weight per 100 parts by weight of flake-type copper powder, heterogeneous conductive powder mixture for electromagnetic wave shielding.
삭제delete 삭제delete 덴드라이트형 구리분말과 플레이크형 구리분말을 각각 계량하는 계량단계와;
상기 계량단계를 통해 계량된 덴드라이트형 구리분말과 플레이크형 구리분말을, 탈지조에 초순수 및 탈지제와 함께 투입 및 교반하여 탈지시키는 탈지단계와;
상기 탈지단계가 완료된 혼합분말을 초순수에 수세하는 수세단계와;
상기 수세단계를 마친 혼합분말을, 은도금조에 넣고, 질산은(AgNO3) 기반의 은전구체를 이용해, 덴드라이트형 구리분말 및 플레이크형 구리분말 표면에 은도금층을 형성하되, 치환도금층과 환원도금층을 순차 적층하는 과정으로서, 상기 은도금조에, 초순수와, 초순수 1리터 기준, 질산은(AgNO3) 8 내지 10wt%/L, 환원제 12 내지 16wt%/L, 착화제 5 내지 8wt%/L, 분산제 0.2 내지 0.7wt%/L를 투입한 상태로, 전체 은함량의 30%를 소모해 치환도금을 먼저 진행하여 상기 구리분말의 표면에 은치환도금층을 형성한 후, 나머지 70%의 은전구체를 이용해, 상기 은치환도금층 위에 은을 환원 석출시켜 은치환도금층을 커버하는 은환원도금층을 형성하는 은도금단계와;
상기 은도금단계의 완료 후, 상기 은도금층에 보호층을 적층하는 표면처리단계와;
상기 표면처리단계가 완료된 분말혼합체를 수세 후 건조시키는 건조단계를 포함하는 전자파 차폐용 이종 전도성분말 혼합체 제조방법.
A weighing step of weighing dendrite-type copper powder and flake-type copper powder, respectively;
A degreasing step of adding and stirring the dendrite-type copper powder and flake-type copper powder weighed through the weighing step together with ultrapure water and a degreasing agent into a degreasing tank and stirring them;
A washing step of washing the mixed powder having the degreasing step completed with ultrapure water;
The mixed powder after the washing step is put into a silver plating bath, and a silver plating layer is formed on the surface of the dendrite-type copper powder and flake-type copper powder using a silver nitrate (AgNO 3 )-based silver precursor, but the substitution plating layer and the reduction plating layer are sequentially As a process of lamination, in the silver plating bath, ultrapure water, based on 1 liter of ultrapure water, silver nitrate (AgNO 3 ) 8 to 10 wt%/L, reducing agent 12 to 16 wt%/L, complexing agent 5 to 8 wt%/L, dispersant 0.2 to 0.7 In the state in which wt%/L was added, 30% of the total silver content was consumed to proceed with substitution plating to form a silver-substituted plating layer on the surface of the copper powder, and then the remaining 70% of the silver precursor was used. A silver plating step of reducing and depositing silver on the substitution plating layer to form a silver reduction plating layer covering the silver substitution plating layer;
A surface treatment step of laminating a protective layer on the silver plating layer after completion of the silver plating step;
A method of manufacturing a heterogeneous conductive powder mixture for shielding electromagnetic waves comprising a drying step of drying the powder mixture having the surface treatment step completed after washing with water.
삭제delete 제7항에 있어서,
상기 표면처리단계는;
상기 은도금층에, 스테아르산소듐염, 스테아르산칼슘염, 스테아르산마그네슘염, 스테아르산칼륨염 중 어느 하나를 포함하는 표면처리제를 코팅하는 과정인 전자파 차폐용 이종 전도성분말 혼합체 제조방법.
The method of claim 7,
The surface treatment step;
A method for producing a mixture of different conductive powders for electromagnetic wave shielding, which is a process of coating a surface treatment agent containing any one of sodium stearate, calcium stearate, magnesium stearate, and potassium stearate on the silver plating layer.
덴드라이트형 구리분말과, 상기 덴드라이트형 구리분말의 표면에 적층된 은도금층으로 이루어진 덴드라이트형 은도금 구리분말과; 플레이크형 구리분말과, 상기 플레이크형 구리분말의 표면에 적층된 은도금층으로 이루어진 플레이크형 은도금 구리분말을 혼합하여 구성되며, 고분자 수지 내에 분산되어 전도성을 부여하고, 상기 덴드라이트형 은도금 구리분말과 플레이크형 은도금 구리분말의 은도금층에는, 은도금층을 보호하여 산화를 방지하는 보호층이 더 적층되며, 상기 보호층은; 스테아르산소듐염(Sodium stearate), 스테아르산칼슘염(Calcium stearate), 스테아르산마그네슘염(Magnesium stearate), 스테아르산칼륨염(Potassium stearate) 중 어느 하나의 적층체인 전자파 차폐용 이종 전도성분말 혼합체와;
상기 전자파 차폐용 이종 전도성분말 혼합체와 혼합된 상태로 전도성분말 혼합체 상호간의 접촉을 유지시키고, 외부 기재에 대한 부착성을 제공하는 고분자 수지를 포함하는 도료조성물.
A dendrite-type silver-plated copper powder comprising a dendrite-type copper powder and a silver-plated layer laminated on the surface of the dendrite-type copper powder; It is composed by mixing flake-type copper powder and flake-type silver-plated copper powder consisting of a silver-plated layer laminated on the surface of the flake-type copper powder, and is dispersed in a polymer resin to impart conductivity, and the dendrite-type silver-plated copper powder and flakes On the silver-plated layer of the silver-plated copper powder, a protective layer is further laminated to protect the silver-plated layer to prevent oxidation, and the protective layer includes; Dissimilar conductive powder mixture for electromagnetic wave shielding, which is a stack of any one of sodium stearate, calcium stearate, magnesium stearate, and potassium stearate;
A coating composition comprising a polymer resin that maintains contact between the conductive powder mixture in a mixed state with the electromagnetic wave shielding heterogeneous conductive powder mixture and provides adhesion to an external substrate.
KR1020190085838A 2019-07-16 2019-07-16 Conductive powder mixture of different kind of shape for electromagnetic wave shielding and Method for manufacturing the same and Paint composition having the same KR102193224B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190085838A KR102193224B1 (en) 2019-07-16 2019-07-16 Conductive powder mixture of different kind of shape for electromagnetic wave shielding and Method for manufacturing the same and Paint composition having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190085838A KR102193224B1 (en) 2019-07-16 2019-07-16 Conductive powder mixture of different kind of shape for electromagnetic wave shielding and Method for manufacturing the same and Paint composition having the same

Publications (1)

Publication Number Publication Date
KR102193224B1 true KR102193224B1 (en) 2020-12-21

Family

ID=74090430

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190085838A KR102193224B1 (en) 2019-07-16 2019-07-16 Conductive powder mixture of different kind of shape for electromagnetic wave shielding and Method for manufacturing the same and Paint composition having the same

Country Status (1)

Country Link
KR (1) KR102193224B1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100695564B1 (en) 2005-12-27 2007-03-16 제일모직 주식회사 Silicone paste composition and emi shield gasket
JP2009230952A (en) * 2008-03-21 2009-10-08 Fukuda Metal Foil & Powder Co Ltd Conductive paste composition, electronic circuit, and electronic parts
JP2011071057A (en) * 2009-09-28 2011-04-07 Kyoto Elex Kk Heating curing type conductive paste composition, electrode using conductive paste composition, and method of forming wiring pattern
JP2016035098A (en) * 2014-07-31 2016-03-17 Dowaエレクトロニクス株式会社 Silver-coated flake type copper powder and production method of the same, and conductive paste using the silver-coated flake type copper powder
JP2016094665A (en) * 2014-11-07 2016-05-26 住友金属鉱山株式会社 Silver coated copper powder and conductive paste using the same, conductive coating and conductive sheet
KR20170000998A (en) * 2015-06-25 2017-01-04 호서대학교 산학협력단 Silver coating method of copper powder and silver-coated powder prepared by the same
KR101918323B1 (en) * 2011-05-18 2018-11-13 도다 고교 가부시끼가이샤 Copper powder, copper paste, method for manufacturing conductive coating film, and conductive coating film
KR20200000791A (en) * 2018-06-25 2020-01-03 호서대학교 산학협력단 Method for preparing silver coating copper particles

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100695564B1 (en) 2005-12-27 2007-03-16 제일모직 주식회사 Silicone paste composition and emi shield gasket
JP2009230952A (en) * 2008-03-21 2009-10-08 Fukuda Metal Foil & Powder Co Ltd Conductive paste composition, electronic circuit, and electronic parts
JP2011071057A (en) * 2009-09-28 2011-04-07 Kyoto Elex Kk Heating curing type conductive paste composition, electrode using conductive paste composition, and method of forming wiring pattern
KR101918323B1 (en) * 2011-05-18 2018-11-13 도다 고교 가부시끼가이샤 Copper powder, copper paste, method for manufacturing conductive coating film, and conductive coating film
JP2016035098A (en) * 2014-07-31 2016-03-17 Dowaエレクトロニクス株式会社 Silver-coated flake type copper powder and production method of the same, and conductive paste using the silver-coated flake type copper powder
JP2016094665A (en) * 2014-11-07 2016-05-26 住友金属鉱山株式会社 Silver coated copper powder and conductive paste using the same, conductive coating and conductive sheet
KR20170000998A (en) * 2015-06-25 2017-01-04 호서대학교 산학협력단 Silver coating method of copper powder and silver-coated powder prepared by the same
KR20200000791A (en) * 2018-06-25 2020-01-03 호서대학교 산학협력단 Method for preparing silver coating copper particles

Similar Documents

Publication Publication Date Title
KR101247431B1 (en) Copper conductor film and manufacturing method thereof, conductive substrate and manufacturing method thereof, copper conductor wiring and manufacturing method thereof, and treatment solution
US9093192B2 (en) Silver-coated spherical resin, method for producing same, anisotropically conductive adhesive containing silver-coated spherical resin, anisotropically conductive film containing silver-coated spherical resin, and conductive spacer containing silver-coated spherical resin
WO2016038914A1 (en) Silver-coated copper powder, and conductive paste, conductive coating material and conductive sheet, each of which uses said silver-coated copper powder
JP5920541B1 (en) Silver coated copper powder and conductive paste, conductive paint, conductive sheet using the same
JP5858201B1 (en) Copper powder and copper paste, conductive paint, conductive sheet using the same
JP5907301B1 (en) Silver-coated copper powder, copper paste using the same, conductive paint, conductive sheet, and method for producing silver-coated copper powder
JP2009117340A (en) Conductive paste and printed circuit board using the same
WO2016031286A1 (en) Silver-coated copper powder, and conductive paste, conductive coating material and conductive sheet each of which uses same
JP2011142052A (en) Copper conductor ink, conductive substrate, and method of manufacturing the same
KR20170131546A (en) Copper powder and copper paste using it, conductive paint, conductive sheet
KR102193224B1 (en) Conductive powder mixture of different kind of shape for electromagnetic wave shielding and Method for manufacturing the same and Paint composition having the same
KR102310824B1 (en) Silver powder
JP2016094665A (en) Silver coated copper powder and conductive paste using the same, conductive coating and conductive sheet
KR102383625B1 (en) Silver-coated conductive particles, conductive paste and conductive film
JP3513636B2 (en) Composite conductive powder, conductive paste, electric circuit and method for producing electric circuit
JP2016139597A (en) Manufacturing method of dendritic silver coated copper powder
JP6332125B2 (en) Silver coated copper powder and conductive paste, conductive paint, conductive sheet using the same
JP2017066443A (en) Ni-COATED COPPER POWDER, AND CONDUCTIVE PASTE, CONDUCTIVE PAINT AND CONDUCTIVE SHEET USING THE SAME
JP2016138301A (en) Manufacturing method of dendritic copper powder, and conductive copper paste, conductive coating and conductive sheet using the same
JP2016060966A (en) Silver coat copper powder and conductive paste using the same, conductive coating and conductive sheet
JP6332058B2 (en) Copper powder, and copper paste, conductive paint, and conductive sheet using the same
WO2017057231A1 (en) Ni-COATED COPPER POWDER, CONDUCTIVE PASTE, CONDUCTIVE PAINT AND CONDUCTIVE SHEET USING SAME, AND METHOD FOR MANUFACTURING Ni-COATED COPPER POWDER
JP2017066463A (en) Ni-COATED COPPER POWDER, AND CONDUCTIVE PASTE, CONDUCTIVE PAINT AND CONDUCTIVE SHEET USING THE SAME, AND METHOD FOR PRODUCING Ni-COATED COPPER POWDER
JP2017071809A (en) Sn-COATED COPPER POWDER AND CONDUCTIVE PASTE USING THE SAME, AND PRODUCTION PROCESS FOR Sn-COATED COPPER POWDER
CN102387661A (en) Circuit board substrate and manufacture method thereof

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant