KR102187132B1 - Lipase from Croceibacter atlanticus - Google Patents

Lipase from Croceibacter atlanticus Download PDF

Info

Publication number
KR102187132B1
KR102187132B1 KR1020200090444A KR20200090444A KR102187132B1 KR 102187132 B1 KR102187132 B1 KR 102187132B1 KR 1020200090444 A KR1020200090444 A KR 1020200090444A KR 20200090444 A KR20200090444 A KR 20200090444A KR 102187132 B1 KR102187132 B1 KR 102187132B1
Authority
KR
South Korea
Prior art keywords
lipca
enzyme
lipase
activity
clea
Prior art date
Application number
KR1020200090444A
Other languages
Korean (ko)
Other versions
KR20200090709A (en
Inventor
임정한
박채경
윤의중
김형권
김일찬
한세종
Original Assignee
한국해양과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국해양과학기술원 filed Critical 한국해양과학기술원
Priority to KR1020200090444A priority Critical patent/KR102187132B1/en
Publication of KR20200090709A publication Critical patent/KR20200090709A/en
Application granted granted Critical
Publication of KR102187132B1 publication Critical patent/KR102187132B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/18Carboxylic ester hydrolases (3.1.1)
    • C12N9/20Triglyceride splitting, e.g. by means of lipase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/02Enzymes or microbial cells immobilised on or in an organic carrier
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 크로세이박터 아틀란티쿠스(Croceibacter atlanticus) 유래 지질분해효소(lipase)에 관한 것으로, 더욱 자세하게는 Croceibacter atlanticus 유래 지질분해효소(LipCA), 상기 지질분해효소를 발현하는 재조합 미생물 및 이를 이용하여 지질분해효소를 제조하는 방법에 관한 것이다. 본 발명에서는 크로세이박터 아틀란티쿠스(Croceibacter atlanticus) 유래 지질분해효소(LipCA)의 온도 및 pH 특성, 기질 특이성을 확인하였으며, 상기 지질분해효소를 가교결합시킨 고정화된 지질분해효소는 온도, pH 및 유기용매에 대한 안정성이 상당히 증가되고 원심분리로 쉽게 회수되면서 활성을 유지하였으므로, 산업적으로 유용하다.The present invention is Croceibacter atlanticus ( Croceibacter atlanticus )-derived lipolytic enzyme (lipase), more specifically Croceibacter The atlanticus derived lipolytic enzymes (LipCA), using the recombinant microorganism that expresses a lipid-decomposing enzyme, and it relates to a process for producing a lipolytic enzyme. In the present invention, the temperature and pH characteristics and substrate specificity of the lipolytic enzyme (LipCA) derived from Croceibacter atlanticus were confirmed, and the immobilized lipolytic enzyme cross-linked with the lipolytic enzyme was temperature, pH and It is useful industrially because the stability to organic solvents is significantly increased and the activity is maintained while being easily recovered by centrifugation.

Description

크로세이박터 아틀란티쿠스 유래 지질분해효소{Lipase from Croceibacter atlanticus}Lipase from Croceibacter atlanticus {Lipase from Croceibacter atlanticus}

본 발명은 크로세이박터 아틀란티쿠스(Croceibacter atlanticus) 유래 지질분해효소(lipase)에 관한 것으로, 더욱 자세하게는 Croceibacter atlanticus 유래 지질분해효소(LipCA), 상기 지질분해효소를 발현하는 재조합 미생물 및 이를 이용하여 지질분해효소를 제조하는 방법에 관한 것이다.The present invention is Croceibacter atlanticus ( Croceibacter atlanticus )-derived lipolytic enzyme (lipase), more specifically Croceibacter The atlanticus derived lipolytic enzymes (LipCA), using the recombinant microorganism that expresses a lipid-decomposing enzyme, and it relates to a process for producing a lipolytic enzyme.

남극해는 태평양, 대서양, 인도양의 최남부를 차지하며 표층의 수온이 빙점에 가까운 남극 대륙을 둘러싸고 있는 해역이다. 지구상에서 가장 추운 미지의 장소이며 그만큼 새로 개발할 수 있는 생물자원이 풍부한 곳이다. 극지의 생물자원은 극지의 환경에서 생존할 수 있는 생물학적 특성을 가지고 있기 때문에 산업적 활용가능성이 매우 높을 것으로 추정된다.The Antarctic Ocean occupies the southernmost part of the Pacific, Atlantic, and Indian Oceans, and the surface water temperature surrounds Antarctica near the freezing point. It is the coldest unknown place on the planet, and it is rich in biological resources that can be developed. Since polar biological resources have biological characteristics that can survive in polar environments, it is estimated that industrial applicability is very high.

지질분해효소(리파아제, lipase; triacylglycerol acylhydrolase, EC 3.1.1.3)는 지방가수분해 효소이며 트리글리세리드의 에스테르 결합을 가수분해하여 글리세롤과 지방산을 생성하는 효소이다. 반응조건에 따라서 에스테르 합성 반응, 트랜스에스테르화 반응도 촉매하는 산업용 효소이다. 한편, 극지 미생물이 생산하는 리파아제들은 다양한 온도 및 pH 특성, 기질특이성, 입체특이성을 갖고 있는 것으로 밝혀져 식품, 제지, 바이오디젤, 세제, 화장품 산업의 효소촉매로 연구되고 있다(Sharma R, Chisti Y, Banerjee UC. 2001. Production, purification, characterization, and applications of lipase. Biotechnol. Adv. 19: 627-662.).Lipolytic enzyme (lipase; triacylglycerol acylhydrolase, EC 3.1.1.3) is a lipohydrolyzing enzyme and an enzyme that hydrolyzes the ester bond of triglycerides to produce glycerol and fatty acids. It is an industrial enzyme that catalyzes ester synthesis reactions and transesterification reactions depending on reaction conditions. Meanwhile, lipases produced by polar microorganisms have been found to have various temperature and pH characteristics, substrate specificity, and stereospecificity, and are thus being studied as enzyme catalysts in the food, paper, biodiesel, detergent, and cosmetics industries (Sharma R, Chisti Y, Banerjee UC. 2001. Production, purification, characterization, and applications of lipase.Biotechnol. Adv. 19: 627-662.).

지구상 특수환경에서 발굴한 리파아제를 산업용 촉매로 활용하기 위해서는 유전공학기법으로 재조합 효소를 생산해야 한다. 발굴한 리파아제 유전자 ORF(open reading frame)를 특수 프로모터를 지닌 발현벡터에 넣어 미생물을 형질전환하고, 배지조성, 배양온도, 배양시간, 유도물질 농도, 유도배양시간 등을 조절하여 활성 형태로 대량 생산하면 적은 비용으로 재조합 리파아제 효소를 만들 수 있다. 또한, 안정성을 향상시키고 반복 사용할 수 있도록 효소를 고정화해야 한다. 효소의 고정화 방법으로 흡착(adsorption), 포괄법(Entrapment), 가교결합(Cross-linking) 방법이 일반적으로 사용되고 있다(Datta S, Christena LR, Rajaram YRS. 2013. Enzyme immobilization: an overview on techniques and support materials. 3 Biotech. 3: 1-9.). Cross-linked enzyme aggregate(CLEA) 방법은 가교결합법의 일종으로 가교제를 사용하여 효소 내의 Lysine 잔기를 공유결합 시킴으로써 안정성을 증대시키는 방법이다. 또한 고가의 비드(bead)를 사용하지 않고 쉽고 저렴하게 고정화하는 방법이기 때문에 많이 연구되고 있다(Roger A. Sheldon. 2011. Cross-linked enzyme aggregates as industrial biocatalysts. Org . Process Res. Dev . 15: 213-223.).In order to utilize the lipase discovered in a special environment on the planet as an industrial catalyst, recombinant enzymes must be produced using genetic engineering techniques. Transform microorganisms by putting the discovered lipase gene ORF (open reading frame) into an expression vector with a special promoter, and mass production in an active form by controlling the composition of the medium, culture temperature, culture time, inducer concentration, and induction culture time. This makes it possible to make recombinant lipase enzymes at low cost. In addition, the enzyme must be immobilized to improve stability and to be used repeatedly. Adsorption, entrapment, and cross-linking methods are commonly used as enzyme immobilization methods (Datta S, Christena LR, Rajaram YRS. 2013. Enzyme immobilization: an overview on techniques and support) materials. 3 Biotech. 3: 1-9.). The cross-linked enzyme aggregate (CLEA) method is a type of cross-linking method that uses a cross-linking agent to covalently bond Lysine residues in the enzyme to increase stability. In addition, because it is an easy and inexpensive immobilization method without using expensive beads, it has been studied a lot (Roger A. Sheldon. 2011. Cross-linked enzyme aggregates as industrial biocatalysts. Org . Process Res. Dev . 15: 213 -223.).

현재까지 많은 미생물 리파아제 효소에 대한 X선 결정구조가 밝혀져서 보고되었다. 대부분의 경우, 효소 구조의 중심에 parallel β-sheet를 지닌 α/β hydrolase fold를 갖고 있다(Lenfant N, Hotelier T, Velluet E, Bourne Y, Marchot P, Chatonnet A. 2013. ESTHER, the database of the α/β-hydrolase fold superfamily of proteins: tools to explore diversity of functions. Nucleic Acids Res. 41: 423-429). 활성부위에 Ser-His-Asp의 catalytic triad를 가지며, 이중에서 Ser은 Gly-X-Ser-X-Gly 보존서열 속에 들어있다(Arpigny JL, Jaeger KE. 1999. Bacterial lipolytic enzymes: classification and properties. Biochem. J. 343: 177-183.). 또한, 활성부위 포켓이 amphipathic α-helix로 구성된 lid로 덮여 있는데 이 구조가 리파아제 특이적인 'Interfacial activation' 기작과 밀접하게 관련되어 있다. 에스테라아제 효소의 경우, 리파아제와 대부분 유사한 구조를 갖고 있지만, 활성부위에 lid 구조를 갖고 있지 않다.So far, the X-ray crystal structure of many microbial lipase enzymes has been revealed and reported. In most cases, it has an α/β hydrolase fold with a parallel β-sheet at the center of the enzyme structure (Lenfant N, Hotelier T, Velluet E, Bourne Y, Marchot P, Chatonnet A. 2013. ESTHER, the database of the α/β-hydrolase fold superfamily of proteins: tools to explore diversity of functions.Nucleic Acids Res. 41: 423-429). Have a catalytic triad of Asp-His-Ser in the active site, which contains in a double Ser is in a Gly-X-Ser-X- Gly sequence conservation (Arpigny JL, Jaeger KE 1999. Bacterial lipolytic enzymes:.. Classification and properties Biochem J. 343: 177-183.). In addition, the active site pocket is covered with a lid composed of amphipathic α-helix, which is closely related to the lipase-specific'interfacial activation' mechanism. In the case of esterase enzymes, it has a structure similar to that of lipase, but does not have a lid structure at the active site.

이에, 본 발명자들은 다양한 산업적 용도로 이용 가능한 지질분해효소를 제조하고자 예의 노력한 결과, 남극 로스해(Ross sea)에서 분리한 Croceibacter atlanticus(Stock No. 40-F12) 균주로부터 리파아제 유전자(lipCA)를 찾고 Escherichia coli에서 대량 생산하였으며, C. atlanticus 유래 리파아제(LipCA)의 특성을 규명하고 고정화함으로써 산업적으로 이용할 수 있는 가능성을 확인하고, 본 발명을 완성하였다.Accordingly, the present inventors have made diligent efforts to produce lipolytic enzymes that can be used for various industrial purposes. As a result, the lipase gene ( lipCA ) was found and found from the Croceibacter atlanticus (Stock No. 40-F12) strain isolated from the Antarctic Ross Sea. Mass produced by Escherichia coli , C. atlanticus By characterizing and immobilizing the derived lipase (LipCA), the possibility of industrial use was confirmed, and the present invention was completed.

본 배경기술 부분에 기재된 상기 정보는 오직 본 발명의 배경에 대한 이해를 향상시키기 위한 것이며, 이에 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자에게 있어 이미 알려진 선행기술을 형성하는 정보를 포함하지 않을 수 있다.The information described in the background section is only for improving an understanding of the background of the present invention, and thus does not include information forming the prior art known to those of ordinary skill in the art to which the present invention belongs. May not.

본 발명의 목적은 서열번호 1의 아미노산 서열로 표시되는 크로세이박터 아틀란티쿠스(Croceibacter atlanticus) 유래의 지질분해효소를 제공하는 데 있다.An object of the present invention is to provide a lipolytic enzyme derived from Croceibacter atlanticus represented by the amino acid sequence of SEQ ID NO: 1.

본 발명의 다른 목적은 상기 지질분해효소를 코딩하는 유전자, 상기 유전자를 포함하는 재조합 벡터 및 상기 유전자 또는 재조합 벡터가 숙주세포에 도입되어 있는 재조합 미생물을 제공하는 데 있다.Another object of the present invention is to provide a gene encoding the lipolytic enzyme, a recombinant vector containing the gene, and a recombinant microorganism in which the gene or recombinant vector has been introduced into a host cell.

본 발명의 또 다른 목적은 상기 재조합 미생물을 이용하여 지질분해효소를 제조하는 방법을 제공하는 데 있다.Another object of the present invention is to provide a method for preparing a lipolytic enzyme using the recombinant microorganism.

상기 목적을 달성하기 위하여, 본 발명은 서열번호 1의 아미노산 서열로 표시되는 지질분해효소(lipase)를 제공한다.In order to achieve the above object, the present invention provides a lipolytic enzyme (lipase) represented by the amino acid sequence of SEQ ID NO: 1.

본 발명은 또한, 상기 지질분해효소를 코딩하는 유전자, 상기 유전자를 포함하는 재조합 벡터 및 상기 유전자 또는 재조합 벡터가 숙주세포에 도입되어 있는 재조합 미생물을 제공한다.The present invention also provides a gene encoding the lipolytic enzyme, a recombinant vector containing the gene, and a recombinant microorganism in which the gene or recombinant vector has been introduced into a host cell.

본 발명은 또한, 상기 재조합 미생물을 배양하여 서열번호 1의 아미노산 서열로 표시되는 지질분해효소를 발현시키는 단계; 및 상기 발현된 지질분해효소를 회수하는 단계를 포함하는 지질분해효소의 제조방법을 제공한다.The present invention also includes the steps of culturing the recombinant microorganism to express a lipolytic enzyme represented by the amino acid sequence of SEQ ID NO: 1; And it provides a method for producing a lipolytic enzyme comprising the step of recovering the expressed lipolytic enzyme.

본 발명에서는 크로세이박터 아틀란티쿠스(Croceibacter atlanticus) 유래 지질분해효소(LipCA)의 온도 및 pH 특성, 기질 특이성을 확인하였으며, 상기 지질분해효소를 가교결합시킨 고정화된 지질분해효소는 온도, pH 및 유기용매에 대한 안정성이 상당히 증가되고 원심분리로 쉽게 회수되면서 활성을 유지하였으므로, 산업적으로 유용하다.In the present invention, Croceibacter atlanticus ( Croceibacter atlanticus ) The temperature and pH characteristics and substrate specificity of the lipolytic enzyme (LipCA) derived from the lipolytic enzyme were confirmed, and the immobilized lipolytic enzyme cross-linked with the lipolytic enzyme significantly increased the stability to temperature, pH and organic solvents, and centrifuged It is easily recovered and retained its activity, so it is industrially useful.

도 1은 lipCA 유전자의 shotgun 클로닝 및 sub 클로닝을 나타낸 것이다.
도 2는 Croceibacter atlanticus LipCA의 염기 서열 및 아미노산 서열을 나타낸 것으로, catalytic 잔기는 밑줄로 표시되었다.
도 3은 DNAStar megalign 프로그램을 이용하여 나타낸 Croceibacter atlanticus LipCA 및 기타 관련 단백질의 계통 발생 위치를 보여주는 계통수이다.
도 4는 16S rRNA 서열 정렬(alignment)을 나타낸 것으로, 도 4a는 분리된 균주(Stock No. 40-F12) 및 Croecibacter atlanticus HTCC2559 strain, 도 4b는 분리된 균주 및 Alcanivorax sp. DG881의 16S rRNA 정렬이다.
도 5는 LipCA의 상동성 모델을 나타낸 것으로, 도 5A는 LipCA의 3차원 구조, 도 5B는 LipCA의 활성 부위, 도 5C는 LipCA의 lid 구조를 나타낸 것이다.
도 6은 LipCA의 발현 및 정제를 나타낸 것이다(Lane 1: protein size marker, Lane 2: 빈 벡터를 포함하는 E. coli 세포의 세포 추출물(cell-free extract), Lane 3: LipCA를 발현하는 E. coli 세포의 불용성 분획, Lane 4: LipCA를 발현하는 E. coli 세포의 세포 추출물(cell-free extract), Lane 5: 30% ammonium sulfate 침전법에 의해 정제된 LipCA, Lane 6: ammonium sulfate 침전 후, 겔 여과 크로마토그래피에 의해 정제된 LipCA).
도 7은 LipCA 및 LipCACLEA의 활성 및 안정성에 대한 온도 및 pH의 영향을 나타낸 그래프이다. 도 7A는 활성에 대한 온도의 영향, 도 7B는 활성에 대한 pH의 영향, 도 7C는 안정성에 대한 온도의 영향, 도 7D는 안정성에 대한 pH의 영향을 나타낸 것이다. Open circle은 LipCA, closed circle은 LipCACLEA이다.
도 8은 LipCA 및 LipCACLEA의 기질 특이성을 나타낸 그래프로, 도 8A는 pNP ester assay, 도 8B는 pH stat assay 결과이다. Open bar는 LipCA, closed bar는 LipCACLEA이다.
도 9는 LipCA 및 LipCACLEA의 안정성에 대한 유기용매의 영향을 나타낸 그래프이다. 도 9A는 상온에서 1시간 동안 10% 유기용매에 배양된 효소의 잔존 활성 측정 결과이며, 도 9B는 상온에서 1시간 동안 30% 유기용매에 배양된 효소의 잔존 활성 측정 결과이다. Log P 값은 각각 DMSO -1.3, Methanol -0.76, Acetonitrile -0.34, Ethanol -0.24, Acetone -0.23, 1,2-Dimethoxyethane -0.2, Isopropanol -0.05, Propionitrile 0.17, 2-Butanone 0.29, Pyridine 0.65, Ethyl Acetate 0.73, 1-Butanol 0.839이며, Open bar는 LipCA, closed bar는 LipCACLEA이다.
도 10은 LipCACLEA의 재사용성을 나타낸 것으로, 리파아제 활성은 원심분리에 의해 회수 후 반복적으로 측정되었다.
1 shows shotgun cloning and sub cloning of the lipCA gene.
Figure 2 is Croceibacter atlanticus The base sequence and amino acid sequence of LipCA are shown, and catalytic residues are underlined.
Figure 3 is a phylogenetic tree showing the phylogenetic location of Croceibacter atlanticus LipCA and other related proteins shown using the DNAStar megalign program.
Figure 4 shows the 16S rRNA sequence alignment (alignment), Figure 4a is an isolated strain (Stock No. 40-F12) and Croecibacter atlanticus HTCC2559 strain, FIG. 4B is an isolated strain and Alcanivorax sp. This is the 16S rRNA alignment of DG881.
5 shows a homology model of LipCA, FIG. 5A shows a three-dimensional structure of LipCA, FIG. 5B shows an active site of LipCA, and FIG. 5C shows a lid structure of LipCA.
6 shows the expression and purification of LipCA (Lane 1: protein size marker, Lane 2: cell-free extract of E. coli cells containing an empty vector, Lane 3: E. coli Insoluble fraction of cells, Lane 4: E. coli expressing LipCA Cell-free extract, Lane 5: LipCA purified by 30% ammonium sulfate precipitation method, Lane 6: LipCA purified by gel filtration chromatography after precipitation of ammonium sulfate).
7 is a graph showing the effect of temperature and pH on the activity and stability of LipCA and LipCA CLEA . 7A shows the effect of temperature on activity, FIG. 7B shows the effect of pH on activity, FIG. 7C shows the effect of temperature on stability, and FIG. 7D shows the effect of pH on stability. The open circle is LipCA, and the closed circle is LipCA CLEA .
Figure 8 is a graph showing the substrate specificity of LipCA and LipCA CLEA , Figure 8A is a p NP ester assay, Figure 8B is a pH stat assay results. Open bar is LipCA, closed bar is LipCA CLEA .
9 is a graph showing the effect of an organic solvent on the stability of LipCA and LipCA CLEA . 9A is a result of measuring the residual activity of an enzyme incubated in 10% organic solvent for 1 hour at room temperature, and FIG. 9B is a result of measuring the residual activity of an enzyme cultured in 30% organic solvent for 1 hour at room temperature. Log P values are DMSO -1.3, Methanol -0.76, Acetonitrile -0.34, Ethanol -0.24, Acetone -0.23, 1,2-Dimethoxyethane -0.2, Isopropanol -0.05, Propionitrile 0.17, 2-Butanone 0.29, Pyridine 0.65, Ethyl Acetate. 0.73, 1-Butanol 0.839, open bar is LipCA, closed bar is LipCA CLEA .
10 shows the reusability of LipCA CLEA , and the lipase activity was repeatedly measured after recovery by centrifugation.

다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로 본 명세서에서 사용된 명명법은 본 기술분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.Unless otherwise defined, all technical and scientific terms used in this specification have the same meaning as commonly understood by an expert skilled in the art to which the present invention belongs. In general, the nomenclature used in this specification is well known and commonly used in the art.

남극해에는 다양한 산업 분야에 적용 가능한 신규 생체촉매를 생산하는 많은 미생물이 존재한다. 본 발명자들은 로스해(Ross Sea)에서 분리된 많은 호냉성(psychrophilic) 박테리아 균주를 스크리닝하여 tributyrin을 함유한 플레이트에서 높은 지방분해 활성을 나타내는 Croceibacter atlanticus 균주(Stock No. 40-F12)를 발견했다. 본 발명에서는, shotgun 클로닝 방법으로 해당 lipase 유전자(lipCA)를 분리하고 LipCA 효소를 Escherichia coli 세포에서 발현시켰다. LipCA의 최적 온도와 pH, 기질 특이성, 유기용매 안정성을 포함하는 효소 특성을 규명하였으며, LipCA를 cross-linked enzyme aggregate(CLEA) 방법에 의해 고정화하고, 자유 LipCA와 효소 특성을 비교하였다. 고정화 후, 온도, pH 및 유기용매에 대한 안정성은 상당히 증가되었지만, 기질 특이성은 변하지 않았다. LipCACLEA는 원심분리로 쉽게 회수되었으며, 4회 회수 후 약 40%의 활성을 보였다.There are many microorganisms in the Antarctic Ocean that produce novel biocatalysts applicable to various industrial fields. The present inventors screened many psychrophilic bacterial strains isolated from the Ross Sea, and Croceibacter exhibiting high lipolytic activity in plates containing tributyrin. atlanticus A strain (Stock No. 40-F12) was found. In the present invention, the lipase gene ( lipCA ) was isolated by a shotgun cloning method, and the LipCA enzyme was Escherichia coli cells. The enzyme properties including optimal temperature and pH of LipCA, substrate specificity, and organic solvent stability were identified. LipCA was immobilized by cross-linked enzyme aggregate (CLEA) method, and the enzyme properties were compared with free LipCA. After immobilization, the stability to temperature, pH and organic solvents was significantly increased, but the substrate specificity did not change. LipCA CLEA was easily recovered by centrifugation and showed about 40% activity after 4 times recovery.

따라서, 본 발명은 일 관점에서, 서열번호 1의 아미노산 서열로 표시되는 지질분해효소(lipase)에 관한 것이다.Accordingly, the present invention relates to a lipolytic enzyme (lipase) represented by the amino acid sequence of SEQ ID NO: 1 in one aspect.

본 발명에 있어서, 서열번호 1의 아미노산 서열은 다음과 같다:In the present invention, the amino acid sequence of SEQ ID NO: 1 is as follows:

MNPAVFERATVRALMTLPGPVLARFAAGLETHSRSHLDARLRFLLALSSAKPTLDSGTVEQARRTYREMIALLDVAPIRLPVVVDHQVTVDDGSQILVRRYRPANAPRVAPAILFFHGGGFTVGGVEEYDRLCRYIADRTNAVVLSVDYRLAPEHPAPTGMDDSFAAWRWLLDNTAQLGLDPQRLAVMGDSAGGCMSAVVSQQAKLAGLPLPALQVLIYPTTDGALAHPSVQTLGQGFGLDLALLHWFRDHFIQDQALIEDYRISPLRNPDLAGQPPAIVITATDPLRDEGLEYAEKLRAAGSTVTSLDYPELVHGFISMGGVIPAARKALNDICDATAQRL (서열번호 1).MNPAVFERATVRALMTLPGPVLARFAAGLETHSRSHLDARLRFLLALSSAKPTLDSGTVEQARRTYREMIALLDVAPIRLPVVVDHQVTVDDGSQILVRRYRPANAPRVAPAILFFHGGGFTVGGVEEYDRLCRYIADRTNAVVLSVDYRLAPEHPAPTGMDDSFAAWRWLLDNTAQLGLDPQRLAVMGDSAGGCMSAVVSQQAKLAGLPLPALQVLIYPTTDGALAHPSVQTLGQGFGLDLALLHWFRDHFIQDQALIEDYRISPLRNPDLAGQPPAIVITATDPLRDEGLEYAEKLRAAGSTVTSLDYPELVHGFISMGGVIPAARKALNDICDATAQRL (SEQ ID NO: 1).

본 발명에 있어서, 상기 지질분해효소는 크로세이박터 아틀란티쿠스(Croceibacter atlanticus) 유래인 것을 특징으로 할 수 있다.In the present invention, the lipolytic enzyme may be characterized in that it is derived from Croceibacter atlanticus .

본 발명의 일 실시예에서, Croceibacter atlanticus(Stock No. 40-F12) 유래 지질분해효소(LipCA) 유전자를 찾기 위해, shotgun cloning 및 sub cloning을 진행한 후, DNAStar 프로그램을 통해 1.3 kb 전체 염기 서열 중에서 하나의 ORF를 찾아내었는데, 1,029bp 크기의 염기 서열로 구성되어 있고 342개의 아미노산 서열을 코딩하였으며, 리파아제/에스터라제의 signature sequence인 Gly-Asp-Ser-Ala-Gly motif를 가지고 있는 것을 확인하였다. 또한, 상동성 모델(homology model)에 따르면, 활성부위에 Ser191-His315-Asp285의 catalytic triad를 가지고 있으며, 활성부위 포켓이 amphipathic α-helix lid(Leu242-Phe252)에 덮여있는 전형적인 리파아제 효소임을 확인하였다.In one embodiment of the present invention, Croceibacter To find the lipolytic enzyme (LipCA) gene derived from atlanticus (Stock No. 40-F12), shotgun cloning and sub cloning were performed, and then one ORF was found out of the entire 1.3 kb nucleotide sequence through the DNAStar program. 1,029 It was confirmed that it was composed of a bp-sized nucleotide sequence, encoded a sequence of 342 amino acids, and had a Gly-Asp-Ser-Ala-Gly motif, a signature sequence of lipase/esterase. In addition, according to the homology model, the active site has a catalytic triad of Ser 191 -His 315 -Asp 285 , and the active site pocket is covered with an amphipathic α-helix lid (Leu 242 -Phe 252 ). It was confirmed that it is a lipase enzyme.

본 발명은 다른 관점에서, 상기 서열번호 1의 아미노산 서열로 표시되는 지질분해효소를 코딩하는 유전자에 관한 것이다.In another aspect, the present invention relates to a gene encoding a lipolytic enzyme represented by the amino acid sequence of SEQ ID NO: 1.

본 발명에 있어서, 상기 유전자는 서열번호 2의 염기 서열로 표시되는 것을 특징으로 할 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the gene may be characterized in that it is represented by the nucleotide sequence of SEQ ID NO: 2, but is not limited thereto.

본 발명에 있어서, 서열번호 2의 염기 서열은 다음과 같다:In the present invention, the nucleotide sequence of SEQ ID NO: 2 is as follows:

ATGAATCCTGCTGTTTTTGAGCGGGCGACTGTACGCGCCCTGATGACGTTACCCGGCCCGGTGCTGGCGCGTTTTGCTGCCGGACTGGAAACCCACAGTCGTTCGCATCTGGATGCGCGGTTGCGTTTTCTGTTGGCACTCAGCAGCGCCAAGCCAACGCTGGATTCAGGCACGGTGGAGCAGGCCCGGCGAACCTACCGGGAGATGATCGCGCTGCTGGATGTGGCGCCGATTCGTCTCCCCGTGGTGGTGGATCACCAGGTCACGGTGGACGACGGCAGCCAGATTCTGGTGCGTCGTTACCGCCCGGCCAATGCGCCGCGAGTGGCTCCCGCCATTCTGTTTTTTCACGGTGGCGGTTTTACTGTGGGCGGCGTGGAAGAGTACGACCGGCTGTGCCGCTATATTGCTGATCGCACCAATGCGGTGGTGCTCAGTGTGGATTACCGGTTGGCCCCGGAGCACCCTGCGCCCACCGGCATGGATGATTCGTTTGCCGCCTGGCGCTGGTTGCTGGATAACACCGCTCAACTGGGCCTGGATCCGCAGCGGTTAGCGGTGATGGGCGATAGTGCGGGCGGTTGCATGAGTGCGGTGGTGTCACAACAGGCCAAGCTGGCAGGCCTGCCGCTGCCGGCGTTGCAGGTGTTGATCTACCCCACCACGGACGGTGCCCTGGCCCACCCTTCCGTGCAGACGCTGGGGCAGGGTTTCGGGCTGGATCTGGCCTTGCTGCACTGGTTCCGTGACCATTTTATTCAGGACCAGGCACTGATCGAAGACTATCGCATCTCCCCCCTGCGCAACCCGGATCTGGCCGGTCAGCCCCCGGCAATTGTGATTACCGCGACGGATCCGTTGCGGGATGAAGGCCTGGAGTACGCCGAAAAACTGCGTGCGGCGGGGAGCACCGTGACCTCACTGGATTACCCGGAACTGGTGCATGGATTTATTTCCATGGGCGGGGTGATTCCGGCAGCCCGCAAGGCGTTGAATGACATCTGTGATGCCACCGCTCAGCGGTTGTAG (서열번호 2).ATGAATCCTGCTGTTTTTGAGCGGGCGACTGTACGCGCCCTGATGACGTTACCCGGCCCGGTGCTGGCGCGTTTTGCTGCCGGACTGGAAACCCACAGTCGTTCGCATCTGGATGCGCGGTTGCGTTTTCTGTTGGCACTCAGCAGCGCCAAGCCAACGCTGGATTCAGGCACGGTGGAGCAGGCCCGGCGAACCTACCGGGAGATGATCGCGCTGCTGGATGTGGCGCCGATTCGTCTCCCCGTGGTGGTGGATCACCAGGTCACGGTGGACGACGGCAGCCAGATTCTGGTGCGTCGTTACCGCCCGGCCAATGCGCCGCGAGTGGCTCCCGCCATTCTGTTTTTTCACGGTGGCGGTTTTACTGTGGGCGGCGTGGAAGAGTACGACCGGCTGTGCCGCTATATTGCTGATCGCACCAATGCGGTGGTGCTCAGTGTGGATTACCGGTTGGCCCCGGAGCACCCTGCGCCCACCGGCATGGATGATTCGTTTGCCGCCTGGCGCTGGTTGCTGGATAACACCGCTCAACTGGGCCTGGATCCGCAGCGGTTAGCGGTGATGGGCGATAGTGCGGGCGGTTGCATGAGTGCGGTGGTGTCACAACAGGCCAAGCTGGCAGGCCTGCCGCTGCCGGCGTTGCAGGTGTTGATCTACCCCACCACGGACGGTGCCCTGGCCCACCCTTCCGTGCAGACGCTGGGGCAGGGTTTCGGGCTGGATCTGGCCTTGCTGCACTGGTTCCGTGACCATTTTATTCAGGACCAGGCACTGATCGAAGACTATCGCATCTCCCCCCTGCGCAACCCGGATCTGGCCGGTCAGCCCCCGGCAATTGTGATTACCGCGACGGATCCGTTGCGGGATGAAGGCCTGGAGTACGCCGAAAAACTGCGTGCGGCGGGGAGCACCGTGACCTCACTGGATTACCCGGAACTGGTGCATGGATTTATTTCCATGGGCGGGGTGATTCCGGCAGCCCGCAAGGCGTTGAATGACA TCTGTGATGCCACCGCTCAGCGGTTGTAG (SEQ ID NO: 2).

본 발명의 일 실시예에서, 높은 지방분해 활성을 나타내는 Croceibacter atlanticus 균주(Stock No. 40-F12)로부터 shotgun 클로닝 방법으로 lipase 유전자(lipCA)를 분리하고, LipCA 효소를 Escherichia coli 세포에서 발현시켰다(KCTC 13603BP).In one embodiment of the present invention, the lipase gene ( lipCA ) was isolated from the Croceibacter atlanticus strain (Stock No. 40-F12) showing high lipolytic activity by a shotgun cloning method, and the LipCA enzyme was Escherichia coli cells were expressed (KCTC 13603BP).

본 발명은 또 다른 관점에서, 상기 서열번호 1의 아미노산 서열로 표시되는 지질분해효소를 코딩하는 유전자를 포함하는 재조합 벡터에 관한 것이다.In another aspect, the present invention relates to a recombinant vector comprising a gene encoding a lipolytic enzyme represented by the amino acid sequence of SEQ ID NO: 1.

본 발명은 또 다른 관점에서, 상기 서열번호 1의 아미노산 서열로 표시되는 지질분해효소를 코딩하는 유전자 또는 상기 유전자를 포함하는 재조합 벡터가 숙주세포에 도입되어 있는 재조합 미생물에 관한 것이다.In another aspect, the present invention relates to a recombinant microorganism in which a gene encoding a lipolytic enzyme represented by the amino acid sequence of SEQ ID NO: 1 or a recombinant vector including the gene is introduced into a host cell.

본 발명에 있어서, 상기 숙주세포는 대장균인 것이 바람직하며, 더욱 바람직하게는 E. coli BL21(DE3)인 것이며, 가장 바람직하게는 KCTC 13603BP 균주인 것이나, 이에 한정되는 것은 아니다.In the present invention, the host cell is preferably E. coli , more preferably E. coli BL21 (DE3), and most preferably KCTC 13603BP strain, but is not limited thereto.

본 발명의 KCTC 13603BP 균주는 2018년 7월 27일에 기탁되었다.The KCTC 13603BP strain of the present invention was deposited on July 27, 2018.

본 발명에 있어서, "벡터"는 적합한 숙주 내에서 DNA를 발현시킬 수 있는 적합한 조절 서열에 작동가능하게 연결된 DNA 서열을 함유하는 DNA 제조물을 의미한다. 벡터는 플라스미드, 파지 입자 또는 간단하게 잠재적 게놈 삽입물일 수 있다. 적당한 숙주로 형질전환 되면, 벡터는 숙주 게놈과 무관하게 복제하고 기능할 수 있거나, 또는 일부 경우에 게놈 그 자체에 통합될 수 있다. 플라스미드가 현재 벡터의 가장 통상적으로 사용되는 형태이므로, "플라스미드" 및 “벡터”는 때로 상호 교환적으로 사용된다. 본 발명의 목적상, 플라스미드 벡터를 이용하는 게 바람직하다. 이러한 목적에 사용될 수 있는 전형적인 플라스미드 벡터는 (a) 숙주세포당 수백 개의 플라스미드 벡터를 포함하도록 복제가 효율적으로 이루어지도록 하는 복제 개시점, (b) 플라스미드 벡터로 형질전환된 숙주세포가 선발될 수 있도록 하는 항생제 내성 유전자 및 (c) 외래 DNA 절편이 삽입될 수 있는 제한효소 절단부위를 포함하는 구조를 지니고 있다. 적절한 제한효소 절단부위가 존재하지 않을지라도, 통상의 방법에 따른 합성 올리고뉴클레오타이드 어댑터 또는 링커를 사용하면 벡터와 외래 DNA를 용이하게 라이게이션할 수 있다.In the present invention, "vector" refers to a DNA preparation containing a DNA sequence operably linked to a suitable regulatory sequence capable of expressing DNA in a suitable host. Vectors can be plasmids, phage particles or simply potential genomic inserts. Once transformed into a suitable host, the vector can replicate and function independently of the host genome, or in some cases can be integrated into the genome itself. Since plasmids are currently the most commonly used form of vectors, “plasmid” and “vector” are sometimes used interchangeably. For the purposes of the present invention, it is preferred to use a plasmid vector. Typical plasmid vectors that can be used for this purpose include (a) an initiation point for efficient replication to contain hundreds of plasmid vectors per host cell, and (b) a host cell transformed with a plasmid vector to be selected. It has a structure including an antibiotic resistance gene and (c) a restriction enzyme cleavage site into which a foreign DNA fragment can be inserted. Even if an appropriate restriction enzyme cleavage site does not exist, the vector and foreign DNA can be easily ligated by using a synthetic oligonucleotide adapter or linker according to a conventional method.

라이게이션 후에, 벡터는 적절한 숙주세포로 형질전환되어야 한다. 본 발명에 있어서, 선호되는 숙주세포는 원핵세포이다. 적합한 원핵 숙주세포는 E. coli XL-1Blue(Stratagene), E. coli DH5α , E. coli JM101, E. coli K12, E. coli W3110, E.coli X1776, E. coli BL21 등을 포함한다. 그러나 FMB101 , NM522, NM538NM539와 같은 E. coli 균주 및 다른 원핵생물의 종(speices) 및 속(genera) 등이 또한 사용될 수 있다. 상기 E. coli에 덧붙여, 아그로박테리움 A4와 같은 아그로박테리움(Agrobacterium) 속 균주, 바실루스 섭틸리스(Bacillus subtilis)와 같은 바실리(bacilli), 살모넬라 타이피뮤리움(Salmonella typhimurium) 또는 세라티아 마르게센스(Serratia marcescens)와 같은 또 다른 장내세균 및 다양한 슈도모나스(Pseudomonas) 속 균주가 숙주세포로서 이용될 수 있다.After ligation, the vector must be transformed into an appropriate host cell. In the present invention, the preferred host cell is a prokaryotic cell. Suitable prokaryotic host cells are E. coli XL-1Blue (Stratagene), E. coli DH5α , E. coli JM101, E. coli K12, E. coli W3110, E. coli X1776, E. coli BL21 , and the like. However , strains of E. coli such as FMB101 , NM522, NM538 and NM539 and other prokaryotic species and genera may also be used. In addition to the above E. coli , strains of the genus Agrobacterium such as Agrobacterium A4, bacilli such as Bacillus subtilis, Salmonella typhimurium or Serratia margesense (Serratia marcescens), and various strains of the genus Pseudomonas can be used as host cells.

원핵세포의 형질전환은 Sambrook et al., supra의 1.82 섹션에 기술된 칼슘 클로라이드 방법을 사용해서 용이하게 달성될 수 있다. 선택적으로, 전기천공법(electroporation)(Neumann et al., EMBO J., 1:841, 1982) 또한 이러한 세포들의 형질전환에 사용될 수 있다.Transformation of prokaryotic cells can be readily accomplished using the calcium chloride method described in section 1.82 of Sambrook et al., supra. Alternatively, electroporation (Neumann et al., EMBO J. , 1:841, 1982) can also be used for transformation of these cells.

본 발명에 따른 유전자의 과발현을 위하여 사용되는 벡터는 당업계에 공지된 발현벡터가 사용될 수 있다.As the vector used for overexpression of the gene according to the present invention, an expression vector known in the art may be used.

당업계에 주지된 바와 같이, 숙주세포에서 형질감염 유전자의 발현수준을 높이기 위해서는, 해당 유전자가 선택된 발현 숙주 내에서 기능을 발휘하는 전사 및 해독 발현 조절 서열에 작동 가능하도록 연결되어야만 한다. 바람직하게는 발현 조절서열 및 해당 유전자는 세균 선택 마커 및 복제 개시점을 같이 포함하고 있는 하나의 재조합 벡터 내에 포함되게 된다.As is well known in the art, in order to increase the expression level of a transfected gene in a host cell, the gene must be operably linked to a transcriptional and translational expression control sequence that exerts a function in the selected expression host. Preferably, the expression control sequence and the corresponding gene are included in a single recombinant vector that includes a bacterial selection marker and a replication start point.

상술한 재조합 벡터에 의해 형질전환된 숙주세포는 본 발명의 또 다른 측면을 구성한다. 본 명세서에 사용된 용어 "형질전환"은 DNA를 숙주로 도입하여 DNA가 염색체 외 인자로서 또는 염색체 통합완성에 의해 복제가능하게 되는 것을 의미한다.The host cell transformed by the above-described recombinant vector constitutes another aspect of the present invention. As used herein, the term "transformation" means that DNA is introduced into a host so that the DNA becomes replicable as an extrachromosomal factor or by chromosomal integrity completion.

물론 모든 벡터가 본 발명의 DNA 서열을 발현하는데 모두 동등하게 기능을 발휘하지는 않는다는 것을 이해하여야만 한다. 마찬가지로 모든 숙주가 동일한 발현 시스템에 대해 동일하게 기능을 발휘하지는 않는다. 그러나, 당업자라면 과도한 실험적 부담 없이 본 발명의 범위를 벗어나지 않는 채로 여러 벡터, 발현 조절 서열 및 숙주 중에서 적절한 선택을 할 수 있다. 예를 들어, 벡터를 선택함에 있어서는 숙주를 고려하여야 하는데, 이는 벡터가 그 안에서 복제되어야만 하기 때문이다. 벡터의 복제 수, 복제 수를 조절할 수 있는 능력 및 당해 벡터에 의해 코딩되는 다른 단백질, 예를 들어 항생제 마커의 발현도 또한 고려되어야만 한다.Of course, it should be understood that not all vectors perform equally well in expressing the DNA sequence of the present invention. Likewise, not all hosts function equally for the same expression system. However, those skilled in the art can make an appropriate selection among various vectors, expression control sequences and hosts without departing from the scope of the present invention without undue experimental burden. For example, when selecting a vector, the host must be considered, since the vector must be replicated in it. The number of copies of the vector, the ability to control the number of copies, and the expression of other proteins encoded by the vector, such as antibiotic markers, should also be considered.

본 발명은 또 다른 관점에서, 상기 재조합 미생물을 배양하여 서열번호 1의 아미노산 서열로 표시되는 지질분해효소를 발현시키는 단계; 및 상기 발현된 지질분해효소를 회수하는 단계를 포함하는 지질분해효소의 제조방법에 관한 것이다.In another aspect of the present invention, the step of culturing the recombinant microorganism to express a lipolytic enzyme represented by the amino acid sequence of SEQ ID NO: 1; And it relates to a method for producing a lipolytic enzyme comprising the step of recovering the expressed lipolytic enzyme.

본 발명에 있어서, 상기 발현된 지질분해효소의 회수는 반응 결과물(cell-free extract)로부터 분리함으로써 이루어지는데, 예시적으로 분자량 및/또는 친화성 차이를 이용하는 정제방법, 즉, 겔 여과 크로마토그래피법, 멤브레인 분리법, 컬럼 크로마토그래피법, 고속액체크로마토그래피법 및 이온 교환 크로마토그래피법 등을 이용하여 정제하여 수득할 수 있다. 더욱 바람직하게는 ammonium sulfate로 침전시킨 후 겔 여과 크로마토그래피를 통해서 활성 지질분해효소를 정제할 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the expression of the lipolytic enzyme is recovered by separating it from a cell-free extract, exemplarily, a purification method using a difference in molecular weight and/or affinity, that is, a gel filtration chromatography method. , Membrane separation method, column chromatography method, high performance liquid chromatography method, ion exchange chromatography method, etc. More preferably, the active lipolytic enzyme may be purified through gel filtration chromatography after precipitation with ammonium sulfate, but the present invention is not limited thereto.

본 발명은 또 다른 관점에서, 상기 서열번호 1의 아미노산 서열로 표시되는 지질분해효소를 글루타르알데하이드(glutaraldehyde)와 혼합하여 가교결합시킨 고정화된 지질분해효소에 관한 것이다.In another aspect, the present invention relates to an immobilized lipolytic enzyme obtained by mixing and crosslinking the lipolytic enzyme represented by the amino acid sequence of SEQ ID NO: 1 with glutaraldehyde.

효소의 안정성을 향상시키고 반복 사용할 수 있도록 고정화할 수 있다. Cross-linked enzyme aggregate(CLEA) 방법은 가교결합법의 일종으로 가교제를 사용하여 효소 내의 Lysine 잔기를 공유결합 시킴으로써 안정성을 증대시키는 방법이다.Enzyme stability can be improved and immobilized for repeated use. The cross-linked enzyme aggregate (CLEA) method is a type of cross-linking method that uses a cross-linking agent to covalently bond Lysine residues in the enzyme to increase stability.

본 발명에 있어서, 상기 CLEA 방법으로 고정화된 지질분해효소는 그 자체가 지질분해 활성을 지닌 가교형 효소 집합체를 의미한다. 본 발명의 일 실시예에서, 고정 후 지질분해효소의 기질 특이성은 변하지 않으나, 열 안정성, pH 안정성 및 유기용매 안정성이 증가하였다. 또한, 원심분리로 쉽게 회수되었으며, 4회 재사용 후 활성이 약 40%까지 유지되었다.In the present invention, the lipolytic enzyme immobilized by the CLEA method refers to a crosslinked enzyme assembly that itself has lipolytic activity. In one embodiment of the present invention, the substrate specificity of the lipolytic enzyme does not change after fixation, but thermal stability, pH stability, and organic solvent stability are increased. In addition, it was easily recovered by centrifugation, and the activity was maintained up to about 40% after being reused 4 times.

본 발명의 일 실시예에서, 세포 추출액에서 지질분해효소(LipCA)를 선택적으로 침전시킨 후, 가교제로 glutaraldehyde(25% 수용액)를 첨가하여 교반시켜 원심분리(14,000Хg, 10 min)하여 가교형 효소 집합체(cross-linked enzyme aggregates)인 LipCACLEA를 제조하였다.In one embodiment of the present invention, after selectively precipitating lipolytic enzyme (LipCA) from the cell extract, glutaraldehyde (25% aqueous solution) was added as a crosslinking agent, stirred, and centrifuged (14,000 Хg, 10 min) to obtain a crosslinked enzyme. LipCA CLEA , which is cross-linked enzyme aggregates, was prepared.

본 발명에 있어서, 상기 지질분해효소는 40℃의 온도, pH 8.5 및 탄소수 C8의 기질에서 최고 활성을 나타내는 것이 바람직하나, 이에 한정되는 것은 아니다. 또한, 10~40℃의 온도, pH 6.0~8.0 및 친수성 유기용매, 더욱 구체적으로는 DMSO와 1,2-dimethoxyethane에서 안정성이 높은 것을 특징으로 할 수 있다.In the present invention, the lipolytic enzyme preferably exhibits the highest activity at a temperature of 40° C., a pH of 8.5, and a substrate having C8 carbon atoms, but is not limited thereto. In addition, it may be characterized by high stability at a temperature of 10 to 40° C., pH 6.0 to 8.0, and a hydrophilic organic solvent, more specifically, DMSO and 1,2-dimethoxyethane.

본 발명에 있어서, 상기 고정화된 지질분해효소는 40℃의 온도, pH 9.0 및 탄소수 C8의 기질에서 최고 활성을 나타내는 것이 바람직하나, 이에 한정되는 것은 아니다. 또한, 10~50℃의 온도, pH 6.0~9.0 및 친수성 유기용매, 더욱 구체적으로는 DMSO와 1,2-dimethoxyethane에서 안정성이 높은 것을 특징으로 할 수 있다.In the present invention, the immobilized lipolytic enzyme preferably exhibits the highest activity in a substrate having a temperature of 40° C., pH 9.0, and C8, but is not limited thereto. In addition, it may be characterized by high stability at a temperature of 10 to 50° C., pH 6.0 to 9.0, and a hydrophilic organic solvent, more specifically, DMSO and 1,2-dimethoxyethane.

본 발명은 C. atlanticus 지질분해효소의 발현, 특성 분석, Cross-linked Enzyme Aggregated 고정화를 바탕으로 산업적으로 활용 가능성을 제시한 최초의 보고이다.The present invention is the first report to show the possibility of industrial application based on the expression, characterization, and cross-linked enzyme Aggregated immobilization of C. atlanticus lipolytic enzyme.

지질분해효소는 세제 혹은 토양과 폐수 정화 등에 첨가제로 다양하게 사용될 수 있기 때문에 특히 주목을 받고 있다. 본 발명에 따른LipCA 및 LipCACLEA의 물리·화학적 특성 규명, 발현 균주, 최적 온도 및 pH 등을 바탕으로 LipCA의 산업적 응용을 위해서는 우선 대량생산 기술 개발이 요구되며, 이를 통해 다양한 분야로의 적용이 가능하다.Lipolytic enzymes are attracting particular attention because they can be used in various ways as additives for detergents or soil and wastewater purification. Based on the physical and chemical characterization of LipCA and LipCA CLEA according to the present invention, the expression strain, optimum temperature and pH, etc., first mass production technology development is required for industrial application of LipCA, through which application to various fields is possible. Do.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail through examples. These examples are for illustrative purposes only, and it will be apparent to those of ordinary skill in the art that the scope of the present invention is not construed as being limited by these examples.

실시예 1: 실험 재료Example 1: Experimental material

p-Nitrophenyl acetate(C2), p-nitrophenyl butyrate(C4), p-nitrophenyl caprylate(C8), p-nitrophenyl caprate(C10), p-nitrophenyl laurate(C12), tributyrin(TBN), tricaprylin(TCN), 올리브유(olive oil), glutaraldehyde(25% H2O), amipicillin, isopropanol, 1,2-dimethoxyethane, acetonitrile, 1-butanol, 2-butanone, propionitrile은 Sigma Aldrich Co. (USA)에서 구입하였으며, p-nitrophenyl caproate(C6)는 Tokyo Chemical Industry Co. (Japan)에서 구입하였다. Dimethylsulfoxide(DMSO), acetone, pyridine, ethyl acetate는 Junsei Co. (Japan)에서 구입하였으며, methanol, ethanol은 Merck Chemical Co. (Germany)에서 구입하였다. β-D-thiogalactopyranoside(IPTG)는 Duchefa Biochemie B.V. Co. (Netherlands)에서 구입하였으며, Marine 배지는 Becton, Dickinson and Co. (USA)에서 구입하였다. p -Nitrophenyl acetate (C 2 ), p -nitrophenyl butyrate (C 4 ), p -nitrophenyl caprylate (C 8 ), p -nitrophenyl caprate (C 10 ), p -nitrophenyl laurate (C 12 ), tributyrin (TBN), tricaprylin (TCN), olive oil, glutaraldehyde (25% H 2 O), amipicillin, isopropanol, 1,2-dimethoxyethane, acetonitrile, 1-butanol, 2-butanone, and propionitrile are Sigma Aldrich Co. (USA), p- nitrophenyl caproate (C 6 ) was purchased from Tokyo Chemical Industry Co. Purchased from (Japan). Dimethylsulfoxide(DMSO), acetone, pyridine and ethyl acetate were obtained from Junsei Co. (Japan), methanol and ethanol were purchased from Merck Chemical Co. (Germany). β-D-thiogalactopyranoside (IPTG) was obtained from Duchefa Biochemie BV Co. (Netherlands), and Marine badges were purchased from Becton, Dickinson and Co. (USA).

실시예 2: 지방분해 효소 생성 균주 분리Example 2: Lipolytic enzyme-producing strain isolation

남극 로스해(Ross sea)에서 분리한 균 중에서 지방분해 활성을 가지고 있는 균을 선별하기 위해 TBN/Marine agar 배지를 이용한 지방분해 균주 스크리닝을 진행하였다. TBN/Marine agar 배지의 제조법은 다음과 같다. TBN과 gum arabic 용액(200mM NaCl, 10mM CaCl2, 10% gum arabic)을 1:9 부피 비율로 섞어 멸균한다. 이것을 Waring blender에 넣고 고속으로 2분간 유화시켜 10% TBN emulsion을 만든 후, 이것과 Marine agar 배지를 다시 1:9 부피 비율로 혼합해서 TBN/Marine agar 배지를 만든다. 분리균을 15℃에서 96시간 동안 배양한 후, 가장 뚜렷한 투명환을 생성하는 균주를 선별하였다.Lipolytic strain screening was performed using TBN/Marine agar medium to select bacteria having lipolytic activity among bacteria isolated from the Antarctic Ross Sea. The preparation method of TBN/Marine agar medium is as follows. TBN and gum arabic solution (200mM NaCl, 10mM CaCl 2 , 10% gum arabic) are mixed in a 1:9 volume ratio and sterilized. Put this in a waring blender and emulsify at high speed for 2 minutes to make a 10% TBN emulsion, and then mix this and marine agar medium in a 1:9 volume ratio to make TBN/Marine agar medium. After culturing the isolates at 15° C. for 96 hours, the strains that produced the most pronounced transparent rings were selected.

추출한 42개의 분리균 중 24개의 균이 TBN/Marine agar 배지에서 투명환을 형성했으며, 이중에서 가장 큰 활성을 보이는 분리균인 Croceibacter atlanticus(Stock No. 40-F12, 75°44'S, 176°57'E, depth 320m)에서 리파아제 효소 유전자를 찾는 실험을 진행하였다.Of the 42 isolates extracted, 24 formed a clear ring in the TBN/Marine agar medium, of which Croceibacter atlanticus (Stock No. 40-F12, 75°44'S, 176°57', the isolate showing the greatest activity) E, depth 320m) was conducted to find the lipase enzyme gene.

실시예 3: 지방분해 효소 유전자 클로닝과 서열분석Example 3: Lipolytic enzyme gene cloning and sequencing

지방분해 활성이 가장 큰 Croceibacter atlanticus 균으로부터 리파아제 유전자를 분리하기 위해서 다음과 같이 shotgun cloning을 수행하였다(도 1).The largest lipolytic activity Croceibacter atlanticus In order to isolate the lipase gene from the bacteria, shotgun cloning was performed as follows (Fig. 1).

C. atlanticus 균으로부터 genomic DNA을 추출한 후, HindⅢ를 처리하여 DNA library를 만들었다. DNA library를 pUC19 vector에 연결시켜 E. coli XL1-Blue에 형질전환 시킨 후, ampicillin(100μg/ml)을 포함한 TBN/Luria Bertani(LB) agar 배지에 도말하고 37℃에서 배양하였다. 투명환을 생성하는 colony를 선별하여 plasmid(pUC19-lip1)를 추출한 후, sub cloning을 진행하였다. pUC19-lip1 plasmid를 HindⅢ와 EcoRI으로 처리하여 1.3kb 크기의 DNA 조각을 얻었다. 이것을 pUC19 vector와 연결하여 E. coli XL1-Blue에 형질전환함으로써 재조합 plasmid(pUC19-lip2)를 제조하고 삽입된 DNA의 염기 서열을 분석하였다. 리파아제 유전자(lipCA)의 염기 및 아미노산 서열 분석과 데이터베이스 검색은 각각 DNAStar 프로그램과 National Center for Biotechnology Information(NCBI)의 BLAST 프로그램을 이용하였다. C. atlanticus After genomic DNA was extracted from the bacteria, Hin dIII was treated to create a DNA library. DNA library was ligated to pUC19 vector, transformed into E. coli XL1-Blue, plated on TBN/Luria Bertani (LB) agar medium containing ampicillin (100 μg/ml) and cultured at 37°C. After selecting the colony generating the transparent ring, extracting the plasmid (pUC19- lip1 ), sub-cloning was performed. The pUC19- lip1 plasmid was treated with Hin dIII and Eco RI to obtain a 1.3kb- sized DNA fragment. This was ligated with pUC19 vector and transformed into E. coli XL1-Blue to prepare a recombinant plasmid (pUC19- lip2 ), and the nucleotide sequence of the inserted DNA was analyzed. The DNAStar program and the BLAST program of the National Center for Biotechnology Information (NCBI) were used to analyze the base and amino acid sequence of the lipase gene ( lipCA ) and to search the database, respectively.

HindⅢ 제한효소를 사용하여 shotgun cloning을 진행한 결과, 약 10kb 크기의 insert DNA를 가지고 있는 재조합 플라스미드(pUC19-lip1)를 얻었다. 이후, EcoRI으로 10kb DNA를 자른 결과 약 1.3kb와 9kb 크기의 유전자 조각을 얻었고 이것들을 각각 pUC19에 연결하여 두 개의 재조합 plasmid를 만들었다. 재조합 plasmid를 E. coli XL1-Blue에 형질전환 시켜 TBN/LB agar배지에서 screening한 결과 1.3kb 크기의 DNA를 가지고 있는 E. coli에서 투명환이 형성되었다. Sub cloning으로 찾아낸 리파아제 유전자는 pUC19 vector에 연결되어 있으므로 M13-20F/M13-47R primer를 사용하여 서열분석을 수행하였다. As a result of performing shotgun cloning using Hin dIII restriction enzyme, a recombinant plasmid (pUC19- lip1 ) having an insert DNA of about 10 kb was obtained. Afterwards, 10kb DNA was cut with Eco RI to obtain gene fragments of about 1.3kb and 9kb, and these were ligated to pUC19 to create two recombinant plasmids. Recombinant plasmid was transformed into E. coli XL1-Blue and screened in TBN/LB agar medium. As a result, a transparent ring was formed in E. coli containing 1.3 kb of DNA. Since the lipase gene found by sub cloning was linked to the pUC19 vector, sequence analysis was performed using M13-20F/M13-47R primer.

M13-20F primer: 5'-GTA AAA CGA CGG CCA G-3' (서열번호 3)M13-20F primer: 5'-GTA AAA CGA CGG CCA G-3' (SEQ ID NO: 3)

M13-47R primer: 5'-CGC CAG GGT TTT CCC AGT CAC GAC-3' (서열번호 4)M13-47R primer: 5'-CGC CAG GGT TTT CCC AGT CAC GAC-3' (SEQ ID NO: 4)

DNAStar 프로그램을 통해 1.3kb 전체 염기 서열 중에서 하나의 ORF를 찾아내었는데, 이것은 1,029bp 크기의 염기 서열로 구성되어 있고 342개의 아미노산 서열을 코딩하였다. 아미노산 서열로부터 계산된 단백질의 분자량은 37,099Da이며, 리파아제/에스터라제의 signature sequence인 Gly-Asp-Ser-Ala-Gly motif를 가지고 있는 것으로 밝혀졌다(도 2).Through the DNAStar program, one ORF was found out of the 1.3 kb total nucleotide sequence, which is composed of a nucleotide sequence of 1,029 bp and codes for 342 amino acid sequences. The molecular weight of the protein calculated from the amino acid sequence was 37,099 Da, and was found to have a Gly-Asp-Ser-Ala-Gly motif, a signature sequence of lipase/esterase (FIG. 2).

C. atlanticus 균에서 분리한 리파아제 유전자를 lipCA라고 명명하였다. lipCA를 NCBI의 BLAST 프로그램으로 검색한 결과, Alcanivorax sp. DG881의 putative alpha/beta hydrolase(Sequence ID, WP_007151635)와 100% 상동성을 보였다(도 3). Alcanivorax sp. DG881균은 남극해에서 분리한 균인데 C. atlanticus 균과는 전혀 다른 phylum에 속하는 균이다(Cho JC, Giovannoni SJ. 2003. Croceibacter atlanticus gen.nov., sp. Nov., A Novel Marine Bacterium in the Family Flavobacteriaceae. Syst. Appl . Microbiol . 26: 76-83.; 13. Lai Q, Wang J, Gu L, Zheng T, Shao Z. 2013. Alcanivorax marinus sp. Nov., isolated from deep-sea water. Int. J. Syst. Evol. Microbiol. 63: 4428-4432.). C. atlanticus The lipase gene isolated from the fungus was named lipCA . As a result of searching lipCA with NCBI's BLAST program, Alcanivorax sp. It showed 100% homology with the putative alpha/beta hydrolase (Sequence ID, WP_007151635) of DG881 (Fig. 3). Alcanivorax sp. DG881 is a fungus isolated from the Antarctic Sea, C. atlanticus It is a fungus belonging to the phylum that is completely different from the fungus family (Cho JC, Giovannoni SJ. 2003. Croceibacter atlanticus gen.nov., sp. Nov., A Novel Marine Bacterium in the Family Flavobacteriaceae . Syst. Appl . Microbiol . 26: 76- 83.; 13. Lai Q, Wang J, Gu L, Zheng T, Shao Z. 2013. Alcanivorax marinus sp. Nov., isolated from deep-sea water. Int. J. Syst. Evol. Microbiol. 63: 4428-4432.).

실시예 4: 분리균주의 16s rRNA 동정Example 4: 16s rRNA identification of isolate

Croceibacter atlanticus(Stock No. 40-F12)의 genomic DNA을 514F, 1542R primer를 이용하여 16s rRNA 분석을 진행하였다. Croceibacter Genomic DNA of atlanticus (Stock No. 40-F12) was analyzed for 16s rRNA using 514F and 1542R primers.

514F: 5'-CGT GCC AGC AGC CGC GGT-3'(서열번호 5)514F: 5'-CGT GCC AGC AGC CGC GGT-3' (SEQ ID NO: 5)

1542R: 5'-AGA AAG GAG GTG ATC CAC CC-3'(서열번호 6)1542R: 5'-AGA AAG GAG GTG ATC CAC CC-3' (SEQ ID NO: 6)

16s rRNA의 부분 염기 서열 분석과 데이터베이스 검색은 DNAStar 프로그램과 National Center for Biotechnology Information (NCBI)의 BLAST 프로그램을 이용하였다.The DNAStar program and the BLAST program of the National Center for Biotechnology Information (NCBI) were used for partial nucleotide sequence analysis and database search of 16s rRNA.

16s rRNA 분석을 진행한 결과, C. atlanticus HTCC2559 와 99.9%의 상동성을 보였으며(도 4a), Alcanivorax sp. DG881와는 79.2%의 낮은 상동성을 보였다(도 4b). 그럼에도 불구하고 C. atlanticus 균과 Alcanivorax 균이 동일한 리파아제 효소 유전자를 가지고 있다는 사실은 매우 흥미로운 일이며 남극의 동일 환경에서 사는 균들간에 gene transfer가 진행됐을 가능성을 보여준다. 아직까지 C. atlanticus 균으로부터 리파아제가 보고되지 않았고, Alcanivorax putative hydrolase에 대한 연구가 전혀 진행되지 않았기 때문에 본 발명자들은 LipCA 효소를 대량 생산하고 특성규명 연구를 진행하였다.As a result of performing 16s rRNA analysis, it showed 99.9% homology with C. atlanticus HTCC2559 (Fig. 4a), and Alcanivorax sp. It showed a low 79.2% homology with DG881 (Fig. 4b). Nevertheless, the fact that C. atlanticus and Alcanivorax have the same lipase enzyme gene is very interesting and suggests the possibility that gene transfer may have occurred between bacteria living in the same environment in Antarctica. So far, no lipase has been reported from C. atlanticus bacteria, and Alcanivorax Since research on putative hydrolase has not been conducted at all, the present inventors Enzymes were mass-produced and characterization studies were conducted.

실시예 5: LipCA 상동성 모델링(Homology modeling)Example 5: LipCA homology modeling

TBN agar 배지에서 screening을 진행하였기 때문에 lipCA가 lipase 유전자인지 esterase 유전자인지 확인할 필요가 있다. Lipase와 esterase의 구조적 차이점은 amphipathic α-helix lid 유무이다. LipCA의 아미노산 서열을 SWISS-MODEL(https://swissmodel.expasy.org)에 입력하여 상동성 모델링을 진행하였다. LipCA의 상동성 모델은 Spain Arreo lake metagenome에서 유래한 alpha/beta hydrolase enzyme(PDB ID 5JD4)을 기준으로 수행하였고(Martinez-Martinez M, et al., 2013. Biochemical diversity of carboxyl esterases and lipases from lake Arreo (Spain): a metagenomic approach. Appl . Environ. Microbiol . 79: 3553-3562.), PyMOL 프로그램을 통해 단백질 3차 구조를 만들었다.Since screening was performed in TBN agar medium, it is necessary to confirm whether lipCA is a lipase gene or an esterase gene. The structural difference between lipase and esterase is the presence or absence of amphipathic α-helix lid. The amino acid sequence of LipCA was entered into SWISS-MODEL (https://swissmodel.expasy.org) to perform homology modeling. LipCA homology model was performed based on alpha/beta hydrolase enzyme (PDB ID 5JD4) derived from the Spain Arreo lake metagenome (Martinez-Martinez M, et al., 2013. Biochemical diversity of carboxyl esterases and lipases from lake Arreo. (Spain):... a metagenomic approach Appl Environ Microbiol 79:.. 3553-3562), made the protein three-dimensional structure through the program PyMOL.

LipCA와 38.24% 동일성을 갖고 있는 Spain Arreo lake hydrolase를 주형으로 모델링을 수행한 결과, LipCA는 중심에 8개의 strand로 구성된 parallel β-sheet를 지닌 α/β hydrolase 구조를 갖는 것으로 밝혀졌다. 활성부위에 Ser191-His315-Asp285의 catalytic triad를 가지고 있으며, 활성부위 포켓이 amphipathic α-helix lid(Leu242-Phe252)에 덮여있는 전형적인 리파아제 효소임을 확인하였다(도 5)(Arpigny JL, Jaeger KE. 1999. Bacterial lipolytic enzymes: classification and properties. Biochem . J. 343: 177-183.; Kartal F, et al., 2011. Improved esterification activity of Candida rugosa lipase in organic solvent by immobilization as cross-linked enzyme aggregates (CLEAs). J. Mol . Catal . B: Enzym. 71: 85-89.).As a result of modeling the Spain Arreo lake hydrolase, which has 38.24% identity with LipCA, as a template, it was found that LipCA has an α/β hydrolase structure with a parallel β-sheet composed of 8 strands at the center. It has a catalytic triad of Ser 191 -His 315 -Asp 285 in the active site, and it was confirmed that the active site pocket is a typical lipase enzyme covered by amphipathic α-helix lid (Leu 242 -Phe 252 ) (Fig. 5) (Arpigny JL , Jaeger KE 1999. Bacterial lipolytic enzymes: . classification and properties Biochem J. 343:... 177-183 .; Kartal F, et al, 2011. Improved esterification activity of Candida rugosa lipase in organic solvent by immobilization as cross-linked enzyme aggregates (CLEAs). J. Mol . Catal . B: Enzym. 71: 85-89.).

실시예 6: 리파아제 유전자(Example 6: Lipase gene ( lipCAlipCA ) 발현) Expression

재조합 plasmid(pUC19-lip2)에 삽입된 lipCA 유전자를 lipCA-F/lipCA-R 프라이머를 사용한 PCR반응을 통해 증폭하였다.The lipCA gene inserted into the recombinant plasmid (pUC19- lip2 ) was amplified through a PCR reaction using lipCA- F/ lipCA- R primers.

lipCA-F: 5'-GAT CAT ATG AAT CCT GCT GTT TTT-3'(서열번호 7) lipCA- F: 5'-GAT CAT ATG AAT CCT GCT GTT TTT-3' (SEQ ID NO: 7)

lipCA-R: 5'-GAT AAG CTT TTA CAA CCG CTG AGC-3'(서열번호 8) lipCA- R: 5'-GAT AAG CTT TTA CAA CCG CTG AGC-3' (SEQ ID NO: 8)

증폭한 DNA를 pGEM-T vector에 연결시켜 재조합 플라스미드(pGEM-T-lipCA)로 만들고 E. coli XL1-Blue에 형질전환시켰다. E. coli에서 분리한 재조합 plasmid를 NdeI과 HindⅢ로 처리하여 lipCA 유전자를 얻었다. 이것을 pET-22 vector에 연결하여 재조합 plasmid(pET-22-lipCA)를 만들고 E. coli BL21(DE3)에 형질전환시켰다. 형질전환된 E. coli 균을 ampicillin(100 ㎍/ml)이 포함된 LB에 접종시켜 37℃에서 흡광도(600 nm)가 0.5가 될 때까지 배양시켰다. IPTG(0.1 mM)을 첨가하여 추가로 20℃에서 20시간 배양시켰다. 배양 후에 원심분리(3,500Хg, 10 min)로 균을 모으고 증류수로 세척시킨 후에 다시 증류수로 재부유시켰다. 초음파 분쇄법으로 균을 파쇄시킨 후 원심분리(14,000Хg, 10 min)하여 세포 추출물(cell-free extract)을 얻고, 리파아제 정제와 CLEA 제조를 수행하였다.The amplified DNA was ligated to a pGEM-T vector to make a recombinant plasmid (pGEM-T- lipCA ) and transformed into E. coli XL1-Blue. Recombinant plasmid isolated from E. coli was treated with Nde I and Hin dIII to obtain lipCA gene. This was ligated to pET-22 vector to create a recombinant plasmid (pET-22- lipCA ) and transformed into E. coli BL21 (DE3). The transformed E. coli bacteria were inoculated into LB containing ampicillin (100 μg/ml) and cultured at 37° C. until absorbance (600 nm) reached 0.5. IPTG (0.1 mM) was added and further incubated at 20°C for 20 hours. After incubation, the bacteria were collected by centrifugation (3,500 Хg, 10 min), washed with distilled water, and then resuspended with distilled water. After crushing the bacteria by ultrasonic grinding, centrifugation (14,000 Хg, 10 min) was performed to obtain a cell-free extract, and lipase purification and CLEA preparation were performed.

실시예 7: LipCA의 분리 및 정제Example 7: Isolation and purification of LipCA

lipCA 유전자를 pET-22에 클로닝하여 E. coli BL21(DE3)에 형질전환하였다. E. coli 배양액에 IPTG를 첨가하여 20℃에서 20시간 배양한 결과, LipCA가 대량으로 생산되었으며, SDS-PAGE 분석을 통해서 LipCA가 수용성 단백질 형태로 세포 추출액의 상층액에 존재함을 확인하였다(도 6). The lipCA gene was cloned into pET-22 and transformed into E. coli BL21 (DE3). IPTG was added to the E. coli culture solution and cultured for 20 hours at 20°C. As a result, LipCA was produced in large quantities, and it was confirmed that LipCA was present in the supernatant of the cell extract in the form of a water-soluble protein through SDS-PAGE analysis (Fig. 6).

세포 추출액에 ammonium sulfate를 30% 포화되도록 첨가하여 salting-out을 수행한 결과, 대부분의 LipCA 단백질이 침전되었다. 소량의 용액으로 단백질을 현탁한 후, 겔 여과 크로마토그래피를 통해 탈염과 효소분리를 동시에 진행하였다(Saxena RK, Sheoran A, Giri B, Davidson WS. 2003. Purification strategies for microbial lipase. J. Microbiol . Methods. 52: 1-18.). 일반적으로 대부분의 단백질이 ammonium sulfate 30-70% 포화용액에서 침전되는데 반해서(Li M, Yang LR, Xu G, Wu JP. 2013. Screening, purification and characterization of a novel cold-active and organic solvent-tolerant lipase from Stenotrophomonas maltophilia CGMCC 4254. Bioresour . Technol . 148: 114-120.; Wang Q, Hou Y, Ding Y, Yan P. 2012. Purification and biochemical characterization of a cold-active lipase from Antarctic sea ice bacteria Pseudoalteromonas sp. NJ 70. Mol. Biol . Rep. 39: 9233-9238.), LipCA가 ammonium sulfate 0-30% 포화용액에서 침전된 것은 매우 특이한 결과이다. 이는 LipCA 효소 표면에 소수성 아미노산 잔기가 많이 분포하기 때문일 것으로 추정하였다. 분리된 LipCA는 SDS-PAGE 상에서 약 37kDa 크기를 나타냈으며(도 6), 329 U/mg의 활성을 가지고 있다(표 1).As a result of salting-out by adding ammonium sulfate to 30% saturation to the cell extract, most of the LipCA protein precipitated. After the protein was suspended in a small amount of solution, desalting and enzyme separation were simultaneously performed through gel filtration chromatography (Saxena RK, Sheoran A, Giri B, Davidson WS. 2003. Purification strategies for microbial lipase. J. Microbiol . Methods. 52: 1-18). In general, most proteins are precipitated in a 30-70% saturated solution of ammonium sulfate (Li M, Yang LR, Xu G, Wu JP. 2013. Screening, purification and characterization of a novel cold-active and organic solvent-tolerant lipase) from Stenotrophomonas maltophilia CGMCC 4254. Bioresour . Technol . 148: 114-120.; Wang Q, Hou Y, Ding Y, Yan P. 2012. Purification and biochemical characterization of a cold-active lipase from Antarctic sea ice bacteria Pseudoalteromonas sp. NJ 70. Mol. Biol . Rep. 39: 9233-9238.) The precipitation of LipCA in a saturated solution of 0-30% ammonium sulfate is a very peculiar result. This was presumed to be due to the large distribution of hydrophobic amino acid residues on the surface of the LipCA enzyme. The isolated LipCA showed a size of about 37 kDa on SDS-PAGE (Fig. 6), and has an activity of 329 U/mg (Table 1).

LipCA의 정제LipCA tablets Purification
step
Purification
step
Total
activity
(U)
Total
activity
(U)
Total
protein
(mg)
Total
protein
(mg)
Specific
activity
(U/mg)
Specific
activity
(U/mg)
Yield
(%)
Yield
(%)
Purification
fold
Purification
fold
Cell-free extractCell-free extract 23702370 51.051.0 46.546.5 100100 1One (NH4)2SO4 PPT(NH 4 ) 2 SO 4 PPT 16401640 8.008.00 205205 6969 4.44.4 GPCGPC 14201420 4.324.32 329329 6060 7.07.0

SDS-PAGE 결과를 통해 LipCA가 분리되었음을 확인하였으며, 분리된 LipCA를 이용해서 효소특성 연구를 수행하였다.It was confirmed through the SDS-PAGE result that LipCA was separated, and enzyme characterization studies were performed using the separated LipCA.

LipCA의 정제를 위해, 세포 추출액에 ammonium sulfate를 30% 포화되도록 넣고 1시간 동안 단백질을 침전시켰다. 원심분리(14,000Хg, 4 min)하여 상층액을 버리고 침전된 단백질에 완충용액 PBS(Phosphate Buffer Solution, NaCl 137mM, KCl 2.7mM, Na2HPO4 10mM, KH2PO4 1.8mM)를 넣고 재부유 시켰다. SuperoseTM 12 10/300 GL gel filtration column(GE healthcare, Buckinghamshire, UK)을 장착한 FPLC에서 겔 여과 크로마토그래피를 통해 단백질의 탈염과 정제를 진행하였으며 이때 용출용액으로 20mM Tris-HCl(pH 8.5)를 사용하였다.For the purification of LipCA, ammonium sulfate was added to the cell extract to be saturated with 30%, and the protein was precipitated for 1 hour. Discard the supernatant by centrifugation (14,000 Хg, 4 min), add a buffer solution PBS (Phosphate Buffer Solution, NaCl 137mM, KCl 2.7mM, Na 2 HPO 4 10mM, KH 2 PO 4 1.8mM) to the precipitated protein and resuspend Made it. Desalting and purification of the protein was performed through gel filtration chromatography in FPLC equipped with Superose TM 12 10/300 GL gel filtration column (GE healthcare, Buckinghamshire, UK).At this time, 20 mM Tris-HCl (pH 8.5) was used as an elution solution. Used.

실시예 8: LipCAExample 8: LipCA CLEACLEA 의 제조Manufacture of

세포 추출액에 ammonium sulfate를 30% 포화되도록 넣고 1시간 동안 LipCA를 선택적으로 침전시켰다. 침전시킨 후에 가교제인 glutaraldehyde(25% 수용액)를 각각 25, 50, 75, 100mM 농도로 첨가하고 10℃에서 24시간 동안 교반시켰다(Kartal F, et al., 2011. Improved esterification activity of Candida rugosa lipase in organic solvent by immobilization as cross-linked enzyme aggregates (CLEAs). J. Mol . Catal . B: Enzym . 71: 85-89.; Rehman S, et al., 2016. Cross-linked enzyme aggregates (CLEAs) of Pencilluim notatum lipase enzyme with improved activity, stability and reusability characteristics. Int . J. Biol . Macromol . 91: 1161-1169.). 원심분리(14,000Хg, 10 min)를 통해 제조된 LipCACLEA를 50mM potassium phosphate(pH 8.0)로 2회 세척하고 500μl의 동일한 완충용액으로 현탁하여 10℃에서 보관하였다.Ammonium sulfate was added to the cell extract to be saturated with 30%, and LipCA was selectively precipitated for 1 hour. After precipitation, glutaraldehyde (25% aqueous solution), a crosslinking agent, was added at concentrations of 25, 50, 75, and 100mM, respectively, and stirred at 10°C for 24 hours (Kartal F, et al., 2011. Improved esterification activity of Candida. rugosa lipase in organic solvent by immobilization as cross-linked enzyme aggregates (CLEAs). J. Mol . Catal . B: Enzym . 71: 85-89.; Rehman S, et al., 2016. Cross-linked enzyme aggregates (CLEAs) of Pencilluim notatum lipase enzyme with improved activity, stability and reusability characteristics. Int . J. Biol . Macromol . 91: 1161-1169.). LipCA CLEA prepared through centrifugation (14,000 Хg, 10 min) was washed twice with 50 mM potassium phosphate (pH 8.0), suspended in 500 μl of the same buffer, and stored at 10°C.

생성된 4가지 농도의 LipCACLEA의 activity retention은 세포 추출액의 효소활성을 100%로 기준 잡았을 때, 각각 108%, 73%, 37%, 24%로 측정되었다(표 2).The activity retention of the resulting four concentrations of LipCA CLEA was measured as 108%, 73%, 37%, and 24%, respectively, when the enzyme activity of the cell extract was set as 100% (Table 2).

제조된 LipCACLEA의 activity retentionActivity retention of manufactured LipCA CLEA Lipase preparationLipase preparation Total activity(U)Total activity(U) Activity retention(%)Activity retention(%) Cell free extractCell free extract 128128 100100 LipCACLEA prepared with GAa Conc. ofLipCA CLEA prepared with GA a Conc. of 0mM0mM 83.683.6 65.565.5 25mM25mM 138138 108108 50mM50mM 92.992.9 72.872.8 75mM75mM 46.646.6 36.536.5 100mM100mM 30.130.1 23.623.6

aGA는 Glutaraldehyde를 의미한다. a GA stands for Glutaraldehyde.

Glutaraldehyde의 농도가 높아질수록 활성이 줄어드는 이유는 다음과 같이 설명할 수 있다. LipCA 단백질은 전체 아미노산 조성의 10%를 lysine과 arginine으로 구성하고 있다. Glutaraldehyde는 가교제로서 lysine 및 arginine 잔기들 사이를 schiff base 형태의 공유결합으로 연결하기 때문에 침전된 LipCA 단백질 사이를 결합시킬 수 있다(Gauthier MA, et al., 2011. Arginine-specific protein modification using α-oxo-aldehyde functional polymers prepared by atom transfer radical polymerization. Polym . Chem. 2: 1490-1498.; Farris S, et al., 2010. Alternative reaction mechanism for the cross-linking of gelatin with glutaraldehyde. J. Agric . Food Chem . 58: 998-1003.). 하지만, Glutaraldehyde의 농도가 높아질수록 단백질 분자 내부 및 분자간 공유결합이 점점 많아지게 되면서 LipCA 단백질 분자에서 lysine 및 arginine가 원래 형성하고 있던 이온결합이 깨지게 된다. 즉, 효소의 활성부위 유연성이 떨어지는 현상과 함께 구조 변성이 동시에 진행되는 것으로 추정된다(Migneault I, Dartiguenave C, Bertrand MJ, Waldron KC. 2004. Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. Biotechniques . 37: 790-802.). 따라서 본 발명에서는 활성이 가장 높은 25mM 농도의 glutaraldehyde로 만든 LipCACLEA를 사용하여 특성 연구를 수행하였다.The reason why the activity decreases as the concentration of glutaraldehyde increases can be explained as follows. LipCA protein consists of lysine and arginine in 10% of the total amino acid composition. Glutaraldehyde, as a crosslinking agent, connects lysine and arginine residues by covalent bonds in the form of schiff bases, and thus can bind to precipitated LipCA proteins (Gauthier MA, et al., 2011. Arginine-specific protein modification using α-oxoxo) Chem -aldehyde functional polymers prepared by atom transfer radical polymerization Polym 2:...... 1490-1498 .; Farris S, et al, 2010. Alternative reaction mechanism for the cross-linking of gelatin with glutaraldehyde J. Agric Food Chem 58: 998-1003). However, as the concentration of glutaraldehyde increases, covalent bonds within and between protein molecules increase, and ionic bonds originally formed by lysine and arginine in the LipCA protein molecule are broken. That is, it is estimated that structural denaturation proceeds simultaneously with the phenomenon that the flexibility of the active site of the enzyme decreases (Migneault I, Dartiguenave C, Bertrand MJ, Waldron KC. 2004. Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to .. enzyme crosslinking Biotechniques 37: 790-802 ).. Therefore, in the present invention, a characteristic study was performed using LipCA CLEA made of glutaraldehyde having the highest activity of 25mM.

실시예 9: LipCA, LipCAExample 9: LipCA, LipCA CLEACLEA 의 지질분해 활성에 대한 온도 및 pH의 영향Of temperature and pH on the lipolytic activity of

리파아제 활성은 다음과 같은 기준 조건에서 측정하였다. 0.1mM p-nitrophenyl caprylate(pNPC)를 기질로 사용하였으며 50mM Tris-HCl(pH 8.5) 완충용액에 기질과 효소액을 넣고 37℃에서 3분 동안 반응시켜 흡광도(405 nm)를 측정하였다. 효소활성 1 unit은 1분 동안 1μmol의 p-nitrophenol을 생성하는 효소의 양으로 정의하였다(Iftikhar T, et al., 2011. Purification and characterization of extracellular lipase. Pak. J. Bot.43: 1541-1545.; Pιrez D, et al., 2011. A novel halophilic lipase, LipBL, showing high efficiency in the production of eicosapentaenoic acid (EPA). PLoS ONE. https://doi.org/10.1371/journal.pone.0023325.).Lipase activity was measured under the following reference conditions. 0.1mM p- nitrophenyl caprylate ( p NPC) was used as a substrate, and the substrate and enzyme solution were added to a 50mM Tris-HCl (pH 8.5) buffer solution and reacted at 37° C. for 3 minutes to measure absorbance (405 nm). Enzyme activity 1 unit was defined as the amount of enzyme that produces 1 μmol of p- nitrophenol in 1 minute (Iftikhar T, et al., 2011. Purification and characterization of extracellular lipase. Pak. J. Bot. 43: 1541-1545 .;... Pιrez D, et al, 2011. A novel halophilic lipase, LipBL, showing high efficiency in the production of eicosapentaenoic acid (EPA) PLoS ONE https://doi.org/10.1371/journal.pone.0023325. ).

LipCA와 LipCACLEA의 최적 온도를 확인하기 위해, 10℃에서 80℃사이의 온도에서 효소반응을 진행하였다. 효소활성 측정은 pNPC assay로 진행하였으며, 완충용액으로는 50mM potassium phosphate(pH 8.0)를 사용하였다.In order to confirm the optimum temperature of LipCA and LipCA CLEA , the enzyme reaction was carried out at a temperature between 10 ℃ and 80 ℃. Enzyme activity was measured by p NPC assay, and 50mM potassium phosphate (pH 8.0) was used as a buffer solution.

최적 pH도 pNPC assay를 통해 진행하였으며, 반응 온도는 37℃에서 진행하였다. pH 7.0에서 pH 10.0까지 측정하였으며, 사용된 완충용액은 다음과 같다: 50mM potassium phosphate(pH 7.0-8.0), 50mM Tris-HCl(pH 8.5-9.0), 50mM sodium bicarbonate(pH 9.5-10.0).The optimum pH was also carried out through the p NPC assay, and the reaction temperature was carried out at 37°C. The pH values were measured from 7.0 to 10.0, and the buffer solutions used were as follows: 50mM potassium phosphate (pH 7.0-8.0), 50mM Tris-HCl (pH 8.5-9.0), and 50mM sodium bicarbonate (pH 9.5-10.0).

LipCA와 LipCACLEA의 온도와 pH에 대한 특성을 pNPC 기질에 대한 분해 활성을 측정함으로써 확인하였다. LipCA와 LipCACLEA의 최적 온도는 모두 40℃이며(도 7A), LipCA의 최적 pH는 pH 8.5, LipCACLEA의 최적 pH는 pH 9.0인 것으로 밝혀졌다(도 7B). 효소의 고정화로 인하여 최적 pH가 증가한 것으로 미루어 보아 효소의 활성부위가 일부 변형되었음을 알 수 있다.The temperature and pH characteristics of LipCA and LipCA CLEA were confirmed by measuring the degradation activity of p NPC substrate. It was found that the optimum temperature of both LipCA and LipCA CLEA was 40°C (FIG. 7A), the optimum pH of LipCA was 8.5, and the optimum pH of LipCA CLEA was 9.0 (FIG. 7B). From the fact that the optimum pH increased due to the immobilization of the enzyme, it can be seen that the active site of the enzyme was partially modified.

실시예 10: LipCA, LipCAExample 10: LipCA, LipCA CLEACLEA 의 안정성에 대한 온도 및 pH의 영향Of temperature and pH on the stability of

LipCA와 LipCACLEA의 온도, pH에 대한 안정성 실험을 수행함으로써 고정화로 인한 효소의 안정성 증가를 확인할 수 있었다.It was confirmed that the stability of the enzyme due to the immobilization was increased by performing stability tests for the temperature and pH of LipCA and LipCA CLEA .

LipCA와 LipCACLEA의 온도에 대한 안정성을 확인하기 위해 10℃에서 80℃까지 10℃ 간격으로 1시간 동안 방치한 후 pNPC assay를 수행하였다. LipCA와 LipCACLEA 모두 50mM potassium phosphate(pH 8.0)을 완충용액으로 사용하였다. 효소의 잔존 활성은 기준 조건의 pNPC assay를 통하여 측정하였으며, 기준조건은 LipCA와 LipCACLEA를 각각 50mM Tris-HCl(pH 8.5, pH 9.0)의 완충용액에서 효소와 0.1mM pNPC을 섞고 37℃에서 3분 동안 반응시킨 후, 생성되는 p-nitrophenol의 양을 흡광도(405 nm)로 측정하는 것이다.In order to check the stability of LipCA and LipCA CLEA against temperature, it was allowed to stand from 10℃ to 80℃ for 1 hour at 10℃ intervals, and then the p NPC assay was performed. For both LipCA and LipCA CLEA, 50mM potassium phosphate (pH 8.0) was used as a buffer solution. The residual activity of the enzyme was measured through the p NPC assay under the reference condition, and the reference condition was that LipCA and LipCA CLEA were mixed with the enzyme and 0.1 mM p NPC in a buffer solution of 50 mM Tris-HCl (pH 8.5, pH 9.0), respectively. After reacting at for 3 minutes, the amount of p- nitrophenol produced is measured by absorbance (405 nm).

리파아제의 pH 안정성을 확인하기 위해 효소를 pH 1.0-12.0 조건에서 1시간 동안 방치한 후, 잔존활성을 측정하였다. 사용된 pH에 따른 완충용액은 다음과 같다: 50mM KCl-HCl(pH 1.0-2.0), 50mM glycine-HCl(pH 3.0), 50mM acetate-sodium acetate(pH 4.0-5.0), 50mM potassium phosphate(pH 6.0-8.0), 50mM Tris-HCl(pH 9.0), 50mM sodium-bicarbonate(pH 10.0), 50mM NaHCO3-NaOH(pH 11.0), 50mM KCl-NaOH(pH 12.0). 효소의 잔존 활성을 측정하기 위해 pNPC assay를 사용하였으며 37℃에서 3분 동안 LipCA는 50mM Tris-HCl(pH 8.5)의 완충용액, LipCACLEA는 50mM Tris-HCl(pH 9.0)의 완충용액에서 반응시킨 후 잔존 활성을 측정하였다.In order to confirm the pH stability of the lipase, the enzyme was allowed to stand for 1 hour under the condition of pH 1.0-12.0, and then the residual activity was measured. Buffer solutions depending on the pH used are as follows: 50mM KCl-HCl (pH 1.0-2.0), 50mM glycine-HCl (pH 3.0), 50mM acetate-sodium acetate (pH 4.0-5.0), 50mM potassium phosphate (pH 6.0) -8.0), 50mM Tris-HCl (pH 9.0), 50mM sodium-bicarbonate (pH 10.0), 50mM NaHCO 3 -NaOH (pH 11.0), 50mM KCl-NaOH (pH 12.0). To measure the residual activity of the enzyme, p NPC assay was used. For 3 minutes at 37°C, LipCA reacted in a buffer solution of 50mM Tris-HCl (pH 8.5) and LipCA CLEA in a buffer solution of 50mM Tris-HCl (pH 9.0). After making, the residual activity was measured.

먼저 열 안정성의 경우, LipCACLEA가 LipCA보다 20℃ 이상 높은 온도에서 더 안정하였다(도 7C). 또한 pH 안정성에 대해서도 LipCACLEA가 LipCA보다 pH 안정성 범위가 넓어졌다(도 7D). Glutaraldehyde에 의해 진행된 LipCA 단백질의 lysine 및 arginine 잔기간의 공유결합을 통해 효소가 견고한 구조를 이루게 되었음을 알 수 있다(Saxena RK, et al., 2003. Purification strategies for microbial lipase. J. Microbiol . Methods. 52: 1-18.; Li M, et al., 2013. Screening, purification and characterization of a novel cold-active and organic solvent-tolerant lipase from Stenotrophomonas maltophilia CGMCC 4254. Bioresour . Technol. 148: 114-120.).First, in the case of thermal stability, LipCA CLEA was more stable at a temperature of 20°C or higher than that of LipCA (FIG. 7C). In addition, for pH stability, LipCA CLEA has a wider pH stability range than LipCA (Fig. 7D). It can be seen that the enzyme formed a robust structure through covalent bonds between the lysine and arginine residues of LipCA protein carried out by glutaraldehyde (Saxena RK, et al., 2003. Purification strategies for microbial lipase. J. Microbiol . Methods. 52 : 1-18.; Li M, et al., 2013. Screening, purification and characterization of a novel cold-active and organic solvent-tolerant lipase from Stenotrophomonas maltophilia CGMCC 4254. Bioresour . Technol . 148: 114-120.).

실시예 11: LipCA, LipCAExample 11: LipCA, LipCA CLEACLEA 의 기질에 대한 특이성Specificity for the temperament of

기질특이성을 조사하기 위하여 pNP ester assay와 pH stat assay로 다양한 기질에 대한 분해능력을 측정하였다. pNP ester assay는 기준조건에서 탄소수가 다른 다음과 같은 기질을 사용하였다: p-nitrophenyl acetate, butyrate, caproate, caprylate, caprate, laurate.In order to investigate the specificity of the substrate, the degradation capacity of various substrates was measured by p NP ester assay and pH stat assay. The p NP ester assay used the following substrates with different carbon numbers under reference conditions: p -nitrophenyl acetate, butyrate, caproate, caprylate, caprate, and laurate.

pH stat assay는 triglycerides에 대한 기질 특이성을 확인하기 위한 방법으로 사용되었으며 기질로 1%의 TBN, TCN, 그리고 올리브유를 사용하였다. pH stat assay의 반응조건은 37℃에서 3분이며, 효소반응이 진행되기 전 1%의 기질과 10% gum arabic이 유화된 emulsion에 10mM NaOH 용액을 첨가하여 pH를 8.0으로 맞춘다. 효소반응이 진행되면서 triglycerides는 fatty acid와 glycerol로 분해되어 NaOH 용액이 첨가된다. 첨가된 NaOH 양으로 효소활성을 측정하며 1 unit은 1분 동안 1μmol 의 fatty acid를 생성하는 효소의 양으로 정의하였다. pH stat assay는 718 Titrino pH titrator(Metrohm, Switzerland)로 측정하였다(Kim HK, Park SY, Lee JK, Oh TK. 1998. Gene cloning and characterization of thermal stable lipase from Bacillus stearothermophilus L1. Biosci . Biotechnol . Biochem . 62: 66-71.).The pH stat assay was used as a method to determine the substrate specificity for triglycerides, and 1% TBN, TCN, and olive oil were used as substrates. The reaction condition of the pH stat assay is 3 minutes at 37℃, and before the enzymatic reaction proceeds, a 10mM NaOH solution is added to the emulsion in which 1% of the substrate and 10% gum arabic are emulsified to adjust the pH to 8.0. As the enzyme reaction proceeds, triglycerides are decomposed into fatty acid and glycerol, and NaOH solution is added. Enzyme activity was measured by the amount of NaOH added, and 1 unit was defined as the amount of enzyme that produced 1 μmol of fatty acid in 1 minute. The pH stat assay was measured with a 718 Titrino pH titrator (Metrohm, Switzerland) (Kim HK, Park SY, Lee JK, Oh TK. 1998. Gene cloning and characterization of thermal stable lipase from Bacillus stearothermophilus) L1. Biosci . Biotechnol . Biochem . 62: 66-71.).

다양한 탄소 길이를 지닌 pNP 기질을 대상으로 pNP-ester assay로 측정한 결과, 탄소수가 8개인 p-nitrophenyl caprylate를 기질로 사용하였을 때 상대 활성이 가장 높았다(도 8A). pH stat assay의 경우, 탄소수가 4개인 butyric acid로 구성된 TBN을 기질로 사용하였을 때 가장 높은 활성을 보였다. 그러나 탄소수가 18개인 oleic acid를 지닌 올리브유를 기질로 사용하였을 때에도 높은 상대 활성을 보였다(도 8B). 이것은 LipCA가 짧은 탄소사슬뿐만 아니라 긴 탄소사슬도 자를 수 있는 리파아제 효소임을 의미하며, glutaraldehyde를 이용한 고정화 과정이 효소의 활성부위에 영향을 미치지 않음을 의미한다.As a result of measuring p NP-ester assay for p NP substrates having various carbon lengths, the relative activity was highest when p -nitrophenyl caprylate having 8 carbon atoms was used as a substrate (FIG. 8A). In the case of the pH stat assay, the highest activity was shown when TBN composed of butyric acid with 4 carbon atoms was used as a substrate. However, even when olive oil with oleic acid having 18 carbon atoms was used as a substrate, high relative activity was shown (FIG. 8B). This means that LipCA is a lipase enzyme capable of cutting not only short carbon chains but also long carbon chains, and it means that the immobilization process using glutaraldehyde does not affect the active site of the enzyme.

실시예 12: LipCA, LipCAExample 12: LipCA, LipCA CLEACLEA 의 안정성에 대한 유기용매의 영향Of organic solvents on the stability of

유기용매에 대한 안정성을 실험하기 위해 유기용매에 1시간 동안 효소를 방치한 후, 기준조건 하의 pNPC assay를 통해 잔존 활성을 측정하였다. 사용된 유기용매는 다음과 같다: DMSO, methanol, acetonitrile, ethanol, acetone, 1,2-dimethoxyethane, isopropanol, propionitrile, 2-butanone, pyridine, ethyl acetate, 1-butanol.In order to test the stability of the organic solvent, the enzyme was left in the organic solvent for 1 hour, and then the residual activity was measured through the p NPC assay under the reference condition. The organic solvents used were as follows: DMSO, methanol, acetonitrile, ethanol, acetone, 1,2-dimethoxyethane, isopropanol, propionitrile, 2-butanone, pyridine, ethyl acetate, 1-butanol.

LipCA는 10% 유기용매에서의 안정성 실험을 진행하였다. 실험에서 사용한 12종류의 유기용매 중, 친수성 유기용매에서 높은 안정성이 드러났으며(도 9A), 그 결과를 바탕으로 30% 친수성 유기용매에서 안정성 실험을 진행하였다. LipCACLEA는 30% 친수성 유기용매에서만 안정성 실험을 진행하였다. 그 결과 LipCA와 LipCACLEA 모두 DMSO와 1,2-dimethoxyethane에서 상대적 활성이 높았다(도 9B). 30% 1,2-dimethoxyethane에서 상대적 활성이 높은 이유는 1,2-dimethoxyethane이 단백질 침전제로 작용하였기 때문이다(Lopez-Serrano P, et al., 2002. Cross-linked enzyme aggregates with enhanced activity: application to lipases. Biotechnol . Lett . 24: 1379-1383.). 30% ammonium sulfate로 침전시켜 1차로 분리한 LipCA의 전체 효소활성이 겔 여과 크로마토그래피를 이용한 2차 분리한 LipCA의 전체 효소활성보다 크다. 이는 LipCA는 응집되어 있을 때가 수용성 상태였을 때보다 활성이 더 높다는 것을 시사한다. 30% 친수성 유기용매에 대해서 LipCACLEA도 LipCA와 비슷한 그래프 양상을 보였지만 상대적 활성이 DMSO와 1,2-dimethoxyethane에서 더 높다. 이는 고정화로 인하여 유기용매에 대한 안정성이 증가하였다는 것을 의미한다(도 9B).LipCA was tested for stability in 10% organic solvent. Among the 12 types of organic solvents used in the experiment, high stability was revealed in a hydrophilic organic solvent (FIG. 9A), and a stability test was conducted in 30% hydrophilic organic solvent based on the results. LipCA CLEA was tested for stability only in 30% hydrophilic organic solvent. As a result, both LipCA and LipCA CLEA had high relative activities in DMSO and 1,2-dimethoxyethane (FIG. 9B). The reason for the relatively high activity in 30% 1,2-dimethoxyethane is that 1,2-dimethoxyethane acted as a protein precipitating agent (Lopez-Serrano P, et al., 2002. Cross-linked enzyme aggregates with enhanced activity: application to ... lipases Biotechnol Lett 24: . 1379-1383). The total enzymatic activity of LipCA, which was first isolated by precipitating with 30% ammonium sulfate, was greater than that of LipCA, which was separated second by gel filtration chromatography. This suggests that LipCA is more active when aggregated than when it was water-soluble. For 30% hydrophilic organic solvent, LipCA CLEA also showed similar graph pattern to LipCA, but the relative activity was higher in DMSO and 1,2-dimethoxyethane. This means that the stability to the organic solvent increased due to the immobilization (FIG. 9B).

실시예 13: LipCAExample 13: LipCA CLEACLEA 의 회수Recovery of

LipCACLEA의 회수율을 측정하기 위한 회수 방법으로 원심분리(19,000Хg, 10 min)를 이용하였다. 총 다섯 번의 원심분리를 진행하였으며 원심분리 후의 상층액과 50mM potassium phosphate(pH 8.0)로 재부유한 하층액의 잔존활성을 기준조건에서 pNPC assay를 통해 측정하였다.Centrifugation (19,000Хg, 10 min) was used as a recovery method for measuring the recovery rate of LipCA CLEA . A total of five centrifugation was performed, and the residual activity of the supernatant after centrifugation and the lower layer resuspended with 50mM potassium phosphate (pH 8.0) was measured by p NPC assay under the reference conditions.

CLEA 방법으로 고정화한 LipCA 효소의 가장 큰 장점은 저렴한 제조 비용과 손쉬운 회수에 있다. 즉, 원심분리를 이용해서 CLEA 효소를 빠르고 효과적으로 회수할 수 있다. 본 발명에서 사용된 LipCACLEA는 glutaraldehyde를 첨가하고 48시간이 지난 LipCACLEA를 사용하였다. 총 다섯 번의 원심분리를 수행하였으며, 4번의 회수 후에 40% 이상의 활성을 유지하였다(도 10).The biggest advantage of LipCA enzyme immobilized by CLEA method is low manufacturing cost and easy recovery. That is, the CLEA enzyme can be quickly and effectively recovered using centrifugation. The LipCA CLEA used in the present invention was added to glutaraldehyde using the last 48 hours, LipCA CLEA. A total of five centrifugation was performed, and 40% or more of the activity was maintained after four times of recovery (FIG. 10).

LipCACLEA를 여러 번 사용하면 활성이 점차적으로 감소하는 것은 CLEA로부터 효소가 떨어지면서 생기는 결과이고, LipCA 효소의 Lys 함량이 적고 cross-linker로 사용한 glutaraldehyde의 분자길이가 짧기 때문이라고 추정된다. 기존 문헌(Valdes EC, Soto LW, Arcaya GA. 2011. Influence of the pH of glutaraldehyde and the use of dextran aldehyde on the preparaton of cross-linked enzyme aggregates (CLEAs) of lipase from Burkholderia cepacia. Electronic J. Biotechnol. 14: doi: 10.2225/vol14-issue3-fulltext-1.)에 따르면, BSA 첨가, pH 조절, dextran aldehyde 사용 등을 통해서 효소가 떨어지는 것을 방지할 수 있다고 밝혀졌기 때문에, LipCA의 경우에도 고정화의 최적화 연구를 통해 효소활성을 안정화시킬 수 있을 것으로 기대한다.The gradual decrease in activity after multiple uses of LipCA CLEA is a result of the enzyme dropping from CLEA, and it is presumed that the Lys content of LipCA enzyme is low and the molecular length of glutaraldehyde used as a cross-linker is short. Existing literature (Valdes EC, Soto LW, Arcaya GA. 2011. Influence of the pH of glutaraldehyde and the use of dextran aldehyde on the preparaton of cross-linked enzyme aggregates (CLEAs) of lipase from Burkholderia. cepacia . Electronic J. Biotechnol . 14: doi: 10.2225/vol14-issue3-fulltext-1.), it was found that the enzyme could be prevented from dropping by adding BSA, adjusting the pH, and using dextran aldehyde. It is expected that the enzyme activity can be stabilized.

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.As described above, specific parts of the present invention have been described in detail, and it will be apparent to those of ordinary skill in the art that this specific description is only a preferred embodiment, and the scope of the present invention is not limited thereby. will be. Accordingly, it will be said that the substantial scope of the present invention is defined by the appended claims and their equivalents.

한국생명공학연구원 생물자원센터Korea Research Institute of Bioscience and Biotechnology Biological Resource Center KCTC13603BPKCTC13603BP 2018072720180727

<110> Korea Institute of Ocean Science and Technology <120> Lipase from Croceibacter atlanticus <130> P20-B181 <160> 8 <170> KoPatentIn 3.0 <210> 1 <211> 342 <212> PRT <213> Artificial Sequence <220> <223> Croceibacter atlanticus LipCA <400> 1 Met Asn Pro Ala Val Phe Glu Arg Ala Thr Val Arg Ala Leu Met Thr 1 5 10 15 Leu Pro Gly Pro Val Leu Ala Arg Phe Ala Ala Gly Leu Glu Thr His 20 25 30 Ser Arg Ser His Leu Asp Ala Arg Leu Arg Phe Leu Leu Ala Leu Ser 35 40 45 Ser Ala Lys Pro Thr Leu Asp Ser Gly Thr Val Glu Gln Ala Arg Arg 50 55 60 Thr Tyr Arg Glu Met Ile Ala Leu Leu Asp Val Ala Pro Ile Arg Leu 65 70 75 80 Pro Val Val Val Asp His Gln Val Thr Val Asp Asp Gly Ser Gln Ile 85 90 95 Leu Val Arg Arg Tyr Arg Pro Ala Asn Ala Pro Arg Val Ala Pro Ala 100 105 110 Ile Leu Phe Phe His Gly Gly Gly Phe Thr Val Gly Gly Val Glu Glu 115 120 125 Tyr Asp Arg Leu Cys Arg Tyr Ile Ala Asp Arg Thr Asn Ala Val Val 130 135 140 Leu Ser Val Asp Tyr Arg Leu Ala Pro Glu His Pro Ala Pro Thr Gly 145 150 155 160 Met Asp Asp Ser Phe Ala Ala Trp Arg Trp Leu Leu Asp Asn Thr Ala 165 170 175 Gln Leu Gly Leu Asp Pro Gln Arg Leu Ala Val Met Gly Asp Ser Ala 180 185 190 Gly Gly Cys Met Ser Ala Val Val Ser Gln Gln Ala Lys Leu Ala Gly 195 200 205 Leu Pro Leu Pro Ala Leu Gln Val Leu Ile Tyr Pro Thr Thr Asp Gly 210 215 220 Ala Leu Ala His Pro Ser Val Gln Thr Leu Gly Gln Gly Phe Gly Leu 225 230 235 240 Asp Leu Ala Leu Leu His Trp Phe Arg Asp His Phe Ile Gln Asp Gln 245 250 255 Ala Leu Ile Glu Asp Tyr Arg Ile Ser Pro Leu Arg Asn Pro Asp Leu 260 265 270 Ala Gly Gln Pro Pro Ala Ile Val Ile Thr Ala Thr Asp Pro Leu Arg 275 280 285 Asp Glu Gly Leu Glu Tyr Ala Glu Lys Leu Arg Ala Ala Gly Ser Thr 290 295 300 Val Thr Ser Leu Asp Tyr Pro Glu Leu Val His Gly Phe Ile Ser Met 305 310 315 320 Gly Gly Val Ile Pro Ala Ala Arg Lys Ala Leu Asn Asp Ile Cys Asp 325 330 335 Ala Thr Ala Gln Arg Leu 340 <210> 2 <211> 1029 <212> DNA <213> Artificial Sequence <220> <223> Croceibacter atlanticus LipCA <400> 2 atgaatcctg ctgtttttga gcgggcgact gtacgcgccc tgatgacgtt acccggcccg 60 gtgctggcgc gttttgctgc cggactggaa acccacagtc gttcgcatct ggatgcgcgg 120 ttgcgttttc tgttggcact cagcagcgcc aagccaacgc tggattcagg cacggtggag 180 caggcccggc gaacctaccg ggagatgatc gcgctgctgg atgtggcgcc gattcgtctc 240 cccgtggtgg tggatcacca ggtcacggtg gacgacggca gccagattct ggtgcgtcgt 300 taccgcccgg ccaatgcgcc gcgagtggct cccgccattc tgttttttca cggtggcggt 360 tttactgtgg gcggcgtgga agagtacgac cggctgtgcc gctatattgc tgatcgcacc 420 aatgcggtgg tgctcagtgt ggattaccgg ttggccccgg agcaccctgc gcccaccggc 480 atggatgatt cgtttgccgc ctggcgctgg ttgctggata acaccgctca actgggcctg 540 gatccgcagc ggttagcggt gatgggcgat agtgcgggcg gttgcatgag tgcggtggtg 600 tcacaacagg ccaagctggc aggcctgccg ctgccggcgt tgcaggtgtt gatctacccc 660 accacggacg gtgccctggc ccacccttcc gtgcagacgc tggggcaggg tttcgggctg 720 gatctggcct tgctgcactg gttccgtgac cattttattc aggaccaggc actgatcgaa 780 gactatcgca tctcccccct gcgcaacccg gatctggccg gtcagccccc ggcaattgtg 840 attaccgcga cggatccgtt gcgggatgaa ggcctggagt acgccgaaaa actgcgtgcg 900 gcggggagca ccgtgacctc actggattac ccggaactgg tgcatggatt tatttccatg 960 ggcggggtga ttccggcagc ccgcaaggcg ttgaatgaca tctgtgatgc caccgctcag 1020 cggttgtag 1029 <210> 3 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> M13-20F primer <400> 3 gtaaaacgac ggccag 16 <210> 4 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> M13-47R primer <400> 4 cgccagggtt ttcccagtca cgac 24 <210> 5 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> 514F primer <400> 5 cgtgccagca gccgcggt 18 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 1542R primer <400> 6 agaaaggagg tgatccaccc 20 <210> 7 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> lipCA-F primer <400> 7 gatcatatga atcctgctgt tttt 24 <210> 8 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> lipCA-R primer <400> 8 gataagcttt tacaaccgct gagc 24 <110> Korea Institute of Ocean Science and Technology <120> Lipase from Croceibacter atlanticus <130> P20-B181 <160> 8 <170> KoPatentIn 3.0 <210> 1 <211> 342 <212> PRT <213> Artificial Sequence <220> <223> Croceibacter atlanticus LipCA <400> 1 Met Asn Pro Ala Val Phe Glu Arg Ala Thr Val Arg Ala Leu Met Thr 1 5 10 15 Leu Pro Gly Pro Val Leu Ala Arg Phe Ala Ala Gly Leu Glu Thr His 20 25 30 Ser Arg Ser His Leu Asp Ala Arg Leu Arg Phe Leu Leu Ala Leu Ser 35 40 45 Ser Ala Lys Pro Thr Leu Asp Ser Gly Thr Val Glu Gln Ala Arg Arg 50 55 60 Thr Tyr Arg Glu Met Ile Ala Leu Leu Asp Val Ala Pro Ile Arg Leu 65 70 75 80 Pro Val Val Val Asp His Gln Val Thr Val Asp Asp Gly Ser Gln Ile 85 90 95 Leu Val Arg Arg Tyr Arg Pro Ala Asn Ala Pro Arg Val Ala Pro Ala 100 105 110 Ile Leu Phe Phe His Gly Gly Gly Phe Thr Val Gly Gly Val Glu Glu 115 120 125 Tyr Asp Arg Leu Cys Arg Tyr Ile Ala Asp Arg Thr Asn Ala Val Val 130 135 140 Leu Ser Val Asp Tyr Arg Leu Ala Pro Glu His Pro Ala Pro Thr Gly 145 150 155 160 Met Asp Asp Ser Phe Ala Ala Trp Arg Trp Leu Leu Asp Asn Thr Ala 165 170 175 Gln Leu Gly Leu Asp Pro Gln Arg Leu Ala Val Met Gly Asp Ser Ala 180 185 190 Gly Gly Cys Met Ser Ala Val Val Ser Gln Gln Ala Lys Leu Ala Gly 195 200 205 Leu Pro Leu Pro Ala Leu Gln Val Leu Ile Tyr Pro Thr Thr Asp Gly 210 215 220 Ala Leu Ala His Pro Ser Val Gln Thr Leu Gly Gln Gly Phe Gly Leu 225 230 235 240 Asp Leu Ala Leu Leu His Trp Phe Arg Asp His Phe Ile Gln Asp Gln 245 250 255 Ala Leu Ile Glu Asp Tyr Arg Ile Ser Pro Leu Arg Asn Pro Asp Leu 260 265 270 Ala Gly Gln Pro Pro Ala Ile Val Ile Thr Ala Thr Asp Pro Leu Arg 275 280 285 Asp Glu Gly Leu Glu Tyr Ala Glu Lys Leu Arg Ala Ala Gly Ser Thr 290 295 300 Val Thr Ser Leu Asp Tyr Pro Glu Leu Val His Gly Phe Ile Ser Met 305 310 315 320 Gly Gly Val Ile Pro Ala Ala Arg Lys Ala Leu Asn Asp Ile Cys Asp 325 330 335 Ala Thr Ala Gln Arg Leu 340 <210> 2 <211> 1029 <212> DNA <213> Artificial Sequence <220> <223> Croceibacter atlanticus LipCA <400> 2 atgaatcctg ctgtttttga gcgggcgact gtacgcgccc tgatgacgtt acccggcccg 60 gtgctggcgc gttttgctgc cggactggaa acccacagtc gttcgcatct ggatgcgcgg 120 ttgcgttttc tgttggcact cagcagcgcc aagccaacgc tggattcagg cacggtggag 180 caggcccggc gaacctaccg ggagatgatc gcgctgctgg atgtggcgcc gattcgtctc 240 cccgtggtgg tggatcacca ggtcacggtg gacgacggca gccagattct ggtgcgtcgt 300 taccgcccgg ccaatgcgcc gcgagtggct cccgccattc tgttttttca cggtggcggt 360 tttactgtgg gcggcgtgga agagtacgac cggctgtgcc gctatattgc tgatcgcacc 420 aatgcggtgg tgctcagtgt ggattaccgg ttggccccgg agcaccctgc gcccaccggc 480 atggatgatt cgtttgccgc ctggcgctgg ttgctggata acaccgctca actgggcctg 540 gatccgcagc ggttagcggt gatgggcgat agtgcgggcg gttgcatgag tgcggtggtg 600 tcacaacagg ccaagctggc aggcctgccg ctgccggcgt tgcaggtgtt gatctacccc 660 accacggacg gtgccctggc ccacccttcc gtgcagacgc tggggcaggg tttcgggctg 720 gatctggcct tgctgcactg gttccgtgac cattttattc aggaccaggc actgatcgaa 780 gactatcgca tctcccccct gcgcaacccg gatctggccg gtcagccccc ggcaattgtg 840 attaccgcga cggatccgtt gcgggatgaa ggcctggagt acgccgaaaa actgcgtgcg 900 gcggggagca ccgtgacctc actggattac ccggaactgg tgcatggatt tatttccatg 960 ggcggggtga ttccggcagc ccgcaaggcg ttgaatgaca tctgtgatgc caccgctcag 1020 cggttgtag 1029 <210> 3 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> M13-20F primer <400> 3 gtaaaacgac ggccag 16 <210> 4 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> M13-47R primer <400> 4 cgccagggtt ttcccagtca cgac 24 <210> 5 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> 514F primer <400> 5 cgtgccagca gccgcggt 18 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 1542R primer <400> 6 agaaaggagg tgatccaccc 20 <210> 7 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> lipCA-F primer <400> 7 gatcatatga atcctgctgt tttt 24 <210> 8 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> lipCA-R primer <400> 8 gataagcttt tacaaccgct gagc 24

Claims (3)

서열번호 2의 염기서열로 표시되는 유전자 또는 상기 유전자를 포함하는 재조합 벡터가 도입된 대장균을 배양하여 서열번호 1의 아미노산 서열로 표시되는 지질분해효소를 발현시키는 단계; 및 30% 포화 황산암모늄(ammonium sulfate) 용액을 첨가하여 상기 발현된 지질분해효소를 침전시켜 회수하는 단계를 포함하는 지질분해효소(lipase)의 제조방법.
Culturing the gene represented by the nucleotide sequence of SEQ ID NO: 2 or E. coli into which the recombinant vector containing the gene is introduced to express the lipolytic enzyme represented by the amino acid sequence of SEQ ID NO: 1; And adding a 30% saturated ammonium sulfate solution to precipitate and recover the expressed lipolytic enzyme.
제1항에 있어서, 상기 지질분해효소는 크로세이박터 아틀란티쿠스(Croceibacter atlanticus) 유래 지질분해효소인 것을 특징으로 하는 지질분해효소(lipase)의 제조방법.
The method of claim 1, wherein the lipolytic enzyme is a lipolytic enzyme derived from Croceibacter atlanticus .
삭제delete
KR1020200090444A 2020-07-21 2020-07-21 Lipase from Croceibacter atlanticus KR102187132B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200090444A KR102187132B1 (en) 2020-07-21 2020-07-21 Lipase from Croceibacter atlanticus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200090444A KR102187132B1 (en) 2020-07-21 2020-07-21 Lipase from Croceibacter atlanticus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020180119954A Division KR20200040101A (en) 2018-10-08 2018-10-08 Lipase from Croceibacter atlanticus

Publications (2)

Publication Number Publication Date
KR20200090709A KR20200090709A (en) 2020-07-29
KR102187132B1 true KR102187132B1 (en) 2020-12-04

Family

ID=71893699

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200090444A KR102187132B1 (en) 2020-07-21 2020-07-21 Lipase from Croceibacter atlanticus

Country Status (1)

Country Link
KR (1) KR102187132B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011003063A2 (en) * 2009-07-02 2011-01-06 Dr. Reddy's Laboratories Ltd. Enzymes and methods for resolving amino vinyl cyclopropane carboxylic acid derivatives

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011003063A2 (en) * 2009-07-02 2011-01-06 Dr. Reddy's Laboratories Ltd. Enzymes and methods for resolving amino vinyl cyclopropane carboxylic acid derivatives

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NCBI Reference Sequence: WP_007151635.1 (2017. 8.13.).*

Also Published As

Publication number Publication date
KR20200090709A (en) 2020-07-29

Similar Documents

Publication Publication Date Title
Ribitsch et al. Hydrolysis of polyethyleneterephthalate by p‐nitrobenzylesterase from Bacillus subtilis
Ewis et al. Molecular cloning and characterization of two thermostable carboxyl esterases from Geobacillus stearothermophilus
WO2017143945A1 (en) Cephalosporin c acylase mutant
KR100986161B1 (en) Novel gene encoding esterase derived from tidal flat metagenome and preparation method thereof
Li et al. Purification and characterization of an extracellular esterase from a moderately halophilic bacterium, Halobacillus sp. strain LY5
WO2012036241A1 (en) Novel extracellularly secreted nuclease
CN113106082B (en) Animal waste metagenome-derived alanine racemase and preparation and application thereof
WO2018165881A1 (en) Cephalosporin c acylase mutants and applications thereof
KR102187132B1 (en) Lipase from Croceibacter atlanticus
CN111041016B (en) Salt-tolerant trehalose hexaphosphate hydrolase as well as preparation method and application thereof
KR20200040101A (en) Lipase from Croceibacter atlanticus
Takeda et al. Cloning and expression of the gene encoding thermostable poly (3-hydroxybutyrate) depolymerase
JP5735772B2 (en) Ergothionase and method for quantification of ergothioneine
RU2447151C1 (en) ALKALINE PHOSPHATASE CmAP SYNTHESIS-DETERMINING 40Ph PLASMID, E. coli rosetta(DE3)/40Ph STRAIN - PRODUCER OF CHIMERIC PROTEIN, CONTAINING AMINO ACID SEQUENCE OF RECOMBINANT ALKALINE PHOSPHATASE CmAP, AND PRODUCTION METHOD THEREOF
KR101444252B1 (en) Thermostable esterase RLES1 and usage of its recombinant protein
Kim et al. Characterization of an alkaline family I. 4 lipase from Bacillus sp. W130-35 isolated from a tidal mud flat with broad substrate specificity
CN111057691B (en) Novel GDSL family lipid hydrolase EII-3 and encoding gene and application thereof
KR102097720B1 (en) Lipase from Marinobacter lipolyticus
KR101209700B1 (en) Novel genes encoding low temperature-adapted esterases
KR101596435B1 (en) Lipase of Bacillus pumilus from the Antarctic
KR101383546B1 (en) Esterases KTL4 Isolated from Deep Sea Sediment
KR0180570B1 (en) Novel plasmid pkle and mass production method of lipase by using the same
KR101945851B1 (en) Organic solvent-resistant novel EstHT1 gene encoding esterase and method for producing highly active esterase using the same
EP4389884A1 (en) Efficient production of enantiopure d-3-hydroxybutyrate
KR101288420B1 (en) Novel esterase L28 from Upo swamp metagenome and its usage

Legal Events

Date Code Title Description
A107 Divisional application of patent
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant