KR102182671B1 - 빅데이터 기반 드론의 안전 비행 경로 생성 시스템 및 방법 - Google Patents

빅데이터 기반 드론의 안전 비행 경로 생성 시스템 및 방법 Download PDF

Info

Publication number
KR102182671B1
KR102182671B1 KR1020180163053A KR20180163053A KR102182671B1 KR 102182671 B1 KR102182671 B1 KR 102182671B1 KR 1020180163053 A KR1020180163053 A KR 1020180163053A KR 20180163053 A KR20180163053 A KR 20180163053A KR 102182671 B1 KR102182671 B1 KR 102182671B1
Authority
KR
South Korea
Prior art keywords
drone
flight path
information
area
big data
Prior art date
Application number
KR1020180163053A
Other languages
English (en)
Other versions
KR20200080379A (ko
Inventor
김용덕
류민지
Original Assignee
주식회사 무지개연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 무지개연구소 filed Critical 주식회사 무지개연구소
Priority to KR1020180163053A priority Critical patent/KR102182671B1/ko
Publication of KR20200080379A publication Critical patent/KR20200080379A/ko
Application granted granted Critical
Publication of KR102182671B1 publication Critical patent/KR102182671B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0246Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
    • B64C2201/146
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/20Remote controls

Abstract

본 발명의 일 실시예에 따른 빅데이터 기반 드론의 안전 비행 경로 생성 시스템은 지상 제어 시스템, 드론 IoT 서버, 및 AI 빅데이터 서버를 포함하고, 상기 AI 빅데이터 서버는 공간정보 빅데이터를 저장하는 데이터베이스와 연동하여 안전 비행 경로의 생성을 위한 기준 정보를 관리하는 데이터베이스 관리부; 상기 지상 제어 시스템에 입력된 목적지 정보 및 상기 드론 IoT 서버를 통해 상기 지상 제어 시스템으로부터 전달받은 원격 제어 명령에 따라 비행하는 스마트 드론에 의해 수집된 드론 비행 정보를 상기 드론 IoT 서버를 통해 수신하는 실시간 정보 수집부; 및 상기 기준 정보, 상기 목적지 정보 및 상기 드론 비행 정보에 기초하여 적어도 하나의 안전 비행 경로를 생성하고, 상기 생성된 안전 비행 경로를 상기 드론 IoT 서버를 통해 상기 지상 제어 시스템에 제공하는 안전 비행 경로 생성부를 포함한다.

Description

빅데이터 기반 드론의 안전 비행 경로 생성 시스템 및 방법{SAFETY FLIGHT PATH CREATION SYSTEM AND METHOD FOR BIG DATA BASED DRONE}
본 발명의 실시예들은 빅데이터 기반 드론의 안전 비행 경로 생성 시스템 및 방법에 관한 것이다.
드론은 상공에서 자유롭게 움직일 수 있어 목적지까지 빠르게 도달할 수 있기 때문에 택배 배송이나 정찰, 추적 등에 활용 가능성이 높아 관련 연구들이 활발하게 이루어지고 있다. 연구들은 임무를 수행하기 위해 필요한 비행 경로 생성과 계획 비행 또는 자율 비행 기술을 갖추어 상용화를 목적으로 테스트하는 단계에 도달했다. 그러나 비행 중 통신이 두절되거나 비행 경로 상에서 장애물과 충돌하여 추락하는 바람에 테스트가 실패하는 경우가 종종 발생한다.
일반적으로 드론의 비행 알고리즘은 GPS 정보를 활용하여 경유 지점을 생성해 경유 지점들을 따라가도록 한다. 따라서 지정된 경로 상에 통신 불능 지역이 존재할 경우 통신 두절이 발생할 수 있다. 또 비행 중 유지 고도를 미리 지정하기 때문에 고층 시설물이나 다른 드론과 같은 장애물이 경로 상에 존재할 경우 충돌할 수 있다. 이러한 상황들이 발생할 경우 드론이 높은 고도에서 추락하여 심각한 안전사고를 발생시킬 수 있다.
즉 현재 대부분의 드론 비행 경로 생성 방식은 안전을 보장하지 못하기 때문에 목적지까지의 안전한 비행 경로를 생성하는 것이 무엇보다도 중요하다. 안전한 비행 경로를 생성하기 위해서는 건물 위치 정보, 비행금지 구역, 통신 불능 지역 등 드론이 실제로 운용되는 환경과 관련된 많은 축적 정보들이 요구된다.
관련 선행기술로는 대한민국 공개특허공제 제10-2017-0014817호(발명의 명칭: 드론 관제 방법 및 이를 수행하기 위한 장치 및 시스템과 드론 관제 서버, 공개일자: 2017.02.08)가 있다.
본 발명의 일 실시예는 비행금지 구역 및 건물 위치 등의 빅데이터를 바탕으로 목적지까지의 최적 경로를 생성함으로써 드론의 안전 비행 경로를 제공할 수 있는 빅데이터 기반 드론의 안전 비행 경로 생성 시스템 및 방법을 제공한다.
본 발명의 일 실시예는 드론으로부터 지속적으로 실시간 정보들을 수집하고 정보의 업데이터를 주기적으로 수행하여 최신 정보가 반영된 안전 비행 경로를 갱신하여 비행 중인 드론에 적용할 수 있는 빅데이터 기반 드론의 안전 비행 경로 생성 시스템 및 방법을 제공한다.
본 발명이 해결하고자 하는 과제는 이상에서 언급한 과제(들)로 제한되지 않으며, 언급되지 않은 또 다른 과제(들)은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 실시예에 따른 빅데이터 기반 드론의 안전 비행 경로 생성 시스템은 지상 제어 시스템, 드론 IoT 서버, 및 AI 빅데이터 서버를 포함하고, 상기 AI 빅데이터 서버는 공간정보 빅데이터를 저장하는 데이터베이스와 연동하여 안전 비행 경로의 생성을 위한 기준 정보를 관리하는 데이터베이스 관리부; 상기 지상 제어 시스템에 입력된 목적지 정보 및 상기 드론 IoT 서버를 통해 상기 지상 제어 시스템으로부터 전달받은 원격 제어 명령에 따라 비행하는 스마트 드론에 의해 수집된 드론 비행 정보를 상기 드론 IoT 서버를 통해 수신하는 실시간 정보 수집부; 및 상기 기준 정보, 상기 목적지 정보 및 상기 드론 비행 정보에 기초하여 적어도 하나의 안전 비행 경로를 생성하고, 상기 생성된 안전 비행 경로를 상기 드론 IoT 서버를 통해 상기 지상 제어 시스템에 제공하는 안전 비행 경로 생성부를 포함한다.
상기 실시간 정보 수집부는 상기 드론 비행 정보 및 카메라 영상을 포함한 실시간 정보를 상기 스마트 드론으로부터 상기 드론 IoT 서버를 통해 실시간으로 수신하고, 상기 데이터베이스 관리부는 상기 실시간 정보에 기초하여 상기 기준 정보에 변동 사항이 있는지를 판단하고, 상기 판단 결과 변동 사항이 있는 경우 상기 데이터베이스와 연동하여 상기 기준 정보 및 상기 기준 정보와 관련된 공간정보 빅데이터를 업데이트할 수 있다.
상기 안전 비행 경로 생성부는 상기 업데이트된 기준 정보에 기초하여 새로운 안전 비행 경로를 생성하고, 상기 생성된 새로운 안전 비행 경로를 상기 드론 IoT 서버를 통해 상기 지상 제어 시스템에 제공하여, 상기 새로운 안전 비행 경로를 포함하는 원격 제어 명령에 따라 상기 스마트 드론의 비행 경로를 실시간으로 갱신할 수 있다.
상기 지상 제어 시스템은 상기 AI 빅데이터 서버로부터 상기 드론 IoT 서버를 통해 수신된 상기 안전 비행 경로를 포함하여 원격 제어 명령을 생성하고, 상기 생성된 원격 제어 명령을 상기 드론 IoT 서버를 통해 임무 대기 중이거나 비행 중인 상기 스마트 드론에 전달하여 상기 스마트 드론을 원격지에서 제어할 수 있다.
상기 기준 정보는 비행금지 구역, 공항 관제권, 통신 불능 지역, 인구 밀집 지역, 제한 고도, 건물 위치 정보, 드론 위치 정보 중 적어도 하나를 포함할 수 있다.
상기 기준 정보는 변동성이 기준보다 낮을 경우에는 주기적으로 변동 사항 확인 후 업데이트 되어 상기 안전 비행 경로의 생성에 활용되고, 상기 변동성이 기준보다 높을 경우에는 지속적으로 최신 정보로 업데이트 되어 상기 최신 정보가 적용된 안전 비행 경로의 생성에 활용될 수 있다.
상기 인구 밀집 지역의 경우 변동성이 보통(기준) 수준이고, 상기 비행금지 구역, 상기 공항 관제권, 상기 통신 불능 지역, 상기 제한 고도, 상기 건물 위치 정보의 경우 변동성이 기준보다 낮은 수준이며, 상기 드론 위치 정보의 경우 변동성이 기준보다 높은 수준일 수 있다.
본 발명의 일 실시예에 따른 빅데이터 기반 드론의 안전 비행 경로 생성 방법은 상기 AI 빅데이터 서버의 데이터베이스 관리부가 공간정보 빅데이터를 저장하는 데이터베이스와 연동하여 안전 비행 경로의 생성을 위한 기준 정보를 관리하는 단계; 상기 AI 빅데이터 서버의 실시간 정보 수집부가 상기 지상 제어 시스템에 입력된 목적지 정보 및 상기 드론 IoT 서버를 통해 상기 지상 제어 시스템으로부터 전달받은 원격 제어 명령에 따라 비행하는 스마트 드론에 의해 수집된 드론 비행 정보를 상기 드론 IoT 서버를 통해 수신하는 단계; 상기 AI 빅데이터 서버의 안전 비행 경로 생성부가 상기 기준 정보, 상기 목적지 정보 및 상기 드론 비행 정보에 기초하여 적어도 하나의 안전 비행 경로를 생성하는 단계; 및 상기 안전 비행 경로 생성부가 상기 생성된 안전 비행 경로를 상기 드론 IoT 서버를 통해 상기 지상 제어 시스템에 제공하는 단계를 포함한다.
본 발명의 일 실시예에 따른 빅데이터 기반 드론의 안전 비행 경로 생성 방법은 상기 실시간 정보 수집부가 상기 드론 비행 정보 및 카메라 영상을 포함한 실시간 정보를 상기 스마트 드론으로부터 상기 드론 IoT 서버를 통해 실시간으로 수신하는 단계; 상기 데이터베이스 관리부가 상기 실시간 정보에 기초하여 상기 기준 정보에 변동 사항이 있는지를 판단하는 단계; 및 상기 판단 결과 변동 사항이 있는 경우, 상기 데이터베이스 관리부가 상기 데이터베이스와 연동하여 상기 기준 정보 및 상기 기준 정보와 관련된 공간정보 빅데이터를 업데이트하는 단계를 더 포함할 수 있다.
본 발명의 일 실시예에 따른 빅데이터 기반 드론의 안전 비행 경로 생성 방법은 상기 안전 비행 경로 생성부가 상기 업데이트된 기준 정보에 기초하여 새로운 안전 비행 경로를 생성하는 단계; 및 상기 안전 비행 경로 생성부가 상기 생성된 새로운 안전 비행 경로를 상기 드론 IoT 서버를 통해 상기 지상 제어 시스템에 제공하여, 상기 새로운 안전 비행 경로를 포함하는 원격 제어 명령에 따라 상기 스마트 드론의 비행 경로를 실시간으로 갱신하는 단계를 더 포함할 수 있다.
기타 실시예들의 구체적인 사항들은 상세한 설명 및 첨부 도면들에 포함되어 있다.
본 발명의 일 실시예에 따르면, 비행금지 구역 및 건물 위치 등의 빅데이터를 바탕으로 목적지까지의 최적 경로를 생성함으로써 드론의 안전 비행 경로를 제공할 수 있다.
본 발명의 일 실시예에 따르면, 드론으로부터 지속적으로 실시간 정보들을 수집하고 정보의 업데이터를 주기적으로 수행하여 최신 정보가 반영된 안전 비행 경로를 갱신하여 비행 중인 드론에 적용할 수 있다.
도 1은 본 발명의 일 실시예에 따른 빅데이터 기반 드론의 안전 비행 경로 생성 시스템을 설명하기 위해 도시한 시스템 구성도이다.
도 2는 도 1의 AI 빅데이터 서버의 상세 구성을 도시한 블록도이다.
도 3은 본 발명의 일 실시예에 따라 안전 비행 경로를 생성하는 방법을 나타낸 것이다.
도 4는 빅데이터를 기반으로 한 안전 비행 경로의 생성과 정보 업데이트로 새롭게 갱신되는 경로를 나타낸 도면이다.
도 5는 본 발명의 일 실시예에 따른 빅데이터 기반 드론의 안전 비행 경로 생성 방법을 설명하기 위해 도시한 흐름도이다.
도 6은 본 발명의 다른 실시예에 따른 빅데이터 기반 드론의 안전 비행 경로 생성 방법을 설명하기 위해 도시한 흐름도이다.
본 발명의 이점 및/또는 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성요소를 지칭한다.
또한, 이하 실시되는 본 발명의 바람직한 실시예는 본 발명을 이루는 기술적 구성요소를 효율적으로 설명하기 위해 각각의 시스템 기능구성에 기 구비되어 있거나, 또는 본 발명이 속하는 기술분야에서 통상적으로 구비되는 시스템 기능 구성은 가능한 생략하고, 본 발명을 위해 추가적으로 구비되어야 하는 기능 구성을 위주로 설명한다. 만약 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면, 하기에 도시하지 않고 생략된 기능 구성 중에서 종래에 기 사용되고 있는 구성요소의 기능을 용이하게 이해할 수 있을 것이며, 또한 상기와 같이 생략된 구성 요소와 본 발명을 위해 추가된 구성 요소 사이의 관계도 명백하게 이해할 수 있을 것이다.
또한, 이하의 설명에 있어서, 신호 또는 정보의 "전송", "통신", "송신", "수신" 기타 이와 유사한 의미의 용어는 일 구성요소에서 다른 구성요소로 신호 또는 정보가 직접 전달되는 것뿐만이 아니라 다른 구성요소를 거쳐 전달되는 것도 포함한다. 특히 신호 또는 정보를 일 구성요소로 "전송" 또는 "송신"한다는 것은 그 신호 또는 정보의 최종 목적지를 지시하는 것이고 직접적인 목적지를 의미하는 것이 아니다. 이는 신호 또는 정보의 "수신"에 있어서도 동일하다.
이하에서는 첨부된 도면을 참조하여 본 발명의 실시예들을 상세히 설명하기로 한다.
도 1은 본 발명의 일 실시예에 따른 빅데이터 기반 드론의 안전 비행 경로 생성 시스템을 설명하기 위해 도시한 시스템 구성도이고, 도 2는 도 1의 AI 빅데이터 서버의 상세 구성을 도시한 블록도이다.
도 1을 참조하면, 본 발명의 일 실시예에 따른 빅데이터 기반 드론의 안전 비행 경로 생성 시스템(100)은 스마트 드론(110), 지상 제어 시스템(120), 드론 IoT 서버(130), AI 빅데이터 서버(140) 및 데이터베이스(150)를 포함하여 구성될 수 있다.
상기 스마트 드론(110)은 상기 드론 IoT 서버(130)와 통신하여, 상기 지상 제어 시스템(120)으로부터 상기 스마트 드론(110)의 비행 제어를 위한 원격 제어 명령을 간접적으로 수신하고, 상기 원격 제어 명령에 따른 안전 비행 경로를 비행할 수 있다. 여기서, 상기 안전 비행 경로는 비행 금지구역, 건물 위치 등의 빅데이터를 바탕으로 목적지까지의 최적 비행 경로를 의미한다.
상기 스마트 드론(110)은 상기 드론 IoT 서버(130)와 다양한 무선 통신 방법, 예컨대, 라디오 주파수를 이용한 통신, 블루투스(BluetoothTM), WLAN(Wireless LAN), RFID(Radio Frequency Identification), 적외선 통신(Infrared Data Association; IrDA), UWB(Ultra Wideband), ZigBee, NFC(Near Field Communication), Wi-Fi(WirelessFidelity), Wi-Fi Direct, Wireless USB(Wireless Universal Serial Bus) 기술 중 적어도 하나를 이용할 수 있다.
하지만, 상기와 같은 기존의 무선 통신 방법은 근거리 무선 통신 방법이므로 상기 스마트 드론(110)이 단거리 임무를 수행하는 데에는 문제가 없지만 장거리 임무를 수행하기에는 적합하지 않다는 문제가 있다.
이에, 본 발명의 일 실시예에서는 상기 스마트 드론(110)은 장거리 임무를 수행하기에 적합한 무선 통신 방법인 LTE(Long Term Evolution) 이동통신망 기반의 쌍방향 통신을 통해 상기 드론 IoT 서버(130)와 데이터를 주고 받을 수 있다. 이를 통해, 상기 스마트 드론(110)은 상황 분석 및 사물 인식(AI), 비행 상황정보(Telemetry) 실시간 공유, 빅데이터 기반 안전 비행 경로 생성에 따른 자율 비행 등을 수행할 수 있게 된다.
사용자(관제 근무자)는 지상 제어 시스템(GCS: Ground Control System, 120)를 통해서 스마트 드론(110)에 비행 관련 원격 제어 명령 등을 전달하고 스마트 드론(110)으로부터 카메라 영상 또는 경로 카메라 영상 등을 받을 수 있다.
상기 스마트 드론(110)은 초기 관찰 또는 임수 수행을 위해 임무 현장에 출동하여 비행 경로 주변 환경 및 임무 현장에 관한 영상을 카메라로 촬영하거나 센서 등을 통해 임무 관련 정보를 수집할 수 있다. 다시 말해, 상기 스마트 드론(110)은 임무 수행이 요구되는 현장 또는 사고가 발생한 현장에 현장 근무자가 도착하기 전에 그 현장에 먼저 출동하여 임무와 관련된 영상을 촬영하거나 임무 수행에 필요한 정보(임무 관련 정보)를 수집할 수 있다.
이때, 상기 스마트 드론(110)은 상기 임무 현장에 출동하는 시점으로부터 도착 및 회귀할 때까지의 전 과정에서 비행 경로 주변 환경 및 임무 현장에 관한 영상을 촬영하거나 상기 임무 관련 정보를 수집할 수 있다. 상기 스마트 드론(110)은 상기 임무 현장에 관한 촬영 영상 및 상기 임무 관련 정보를, 상기 드론 IoT 서버(130)를 통해 상기 지상 제어 시스템(120)에 실시간으로 전송할 수 있다.
예를 들면, 상기 스마트 드론(110)이 수행해야 하는 임무가 화재 진압 또는 화재 감시인 경우, 상기 스마트 드론(110)은 그 현장에 현장 근무자인 소방관이 도착하기 전에 먼저 화재 발생 현장에 출동하여 화재 현장 또는 화재 현장 주변의 실시간 영상을 촬영하고, 그 촬영 영상을 상기 드론 IoT 서버(130)를 통해 상기 지상 제어 시스템(120)에 실시간으로 전송할 수 있다. 또한, 상기 스마트 드론(110)은 각종 센서를 통해 비행 경로 주변 환경 또는 임무 현장의 온도, 습도, 풍속, 풍향과 같은 날씨 정보 등을 포함하는 임무 관련 정보를 수집하여 상기 드론 IoT 서버(130)를 통해 상기 지상 제어 시스템(120)에 실시간으로 전송할 수 있다.
이를 위해, 상기 스마트 드론(110)은 상기 지상 제어 시스템(120)으로부터 상기 현장에 관한 위치 정보(목적지 정보) 및 비행 경로 정보를 포함하는 원격 제어 명령을 상기 드론 IoT 서버(130)를 통해 수신하고, 상기 수신된 원격 제어 명령에 따라 해당 비행 경로로 비행 제어를 수행함으로써 상기 현장에 도달할 수 있다.
구체적으로, 상기 스마트 드론(110)은 상기 드론 IoT 서버(130)와 LTE 이동통신망 기반의 무선 통신을 통해 상기 원격 제어 명령을 수신하고, 상기 수신된 원격 제어 명령에 따라 상기 스마트 드론(110)의 비행을 자율 비행 모드로 제어할 수 있다. 여기서, 상기 원격 제어 명령에 포함된 상기 비행 경로 정보는 후술하는 AI 빅데이터 서버(140)에 의해 생성된 안전 비행 경로를 포함할 수 있으며, 상기 안전 비행 경로가 여러 개일 경우에는 여러 개의 안전 비행 경로 중 사용자가 상기 지상 제어 시스템(120)의 입력 조작을 통해 선택한 비행 경로를 가리킬 수 있다.
상기 스마트 드론(110)은 상기 드론 IoT 서버(130)를 통해 상기 지상 제어 시스템(120)으로부터 상기 원격 제어 명령을 수신하는 경우, 상기 스마트 드론(110)의 현재 위치를 기준으로 일정 거리 이내에 위치하는 적어도 하나의 타 드론과 통신을 수행하여 상기 원격 제어 명령을 공유할 수 있다. 이로써, 상기 스마트 드론(110)은 상기 원격 제어 명령에 따라 적어도 하나의 타 드론과 군집 비행을 할 수 있다. 이때, 각 드론 간의 통신은 LTE 이동통신 방식으로 이루어질 수 있으며, 각 드론 간의 거리(간격)은 각 드론의 시야각이 서로 겹치도록 설정될 수 있다.
또한, 상기 스마트 드론(110)은 비행 경로, 비행 고도, 타 드론과의 위치 정보 등 비행하는 과정에서 획득한 드론 비행 정보를 상기 드론 IoT 서버(130)를 통해 상기 AI 빅데이터 서버(140)에 실시간으로 전송할 수 있다.
참고로, 이하의 실시예들에서 지속적으로 언급되는 용어인 실시간 정보는 상기 스마트 드론(110)에 의해 수집되어 상기 드론 IoT 서버(130)를 통해 상기 AI 빅데이터 서버(140) 또는 상기 지상 제어 시스템(120)에 실시간으로 전송되는 정보인 카메라 영상, 임무 관련 정보 및 드론 비행 정보 등을 포함하는 개념으로 이해될 수 있다.
상기 지상 제어 시스템(120)은 사용자(관제 근무자)의 수동 조작에 따라 목적지 또는 비행 경로 등에 관한 정보를 입력받을 수 있다. 상기 지상 제어 시스템(120)은 상기 목적지에 관한 정보 및 상기 스마트 드론(110)의 현재 위치에 관한 정보를 상기 AI 빅데이터 서버(140)에 전송할 수 있다. 여기서, 상기 스마트 드론(110)의 현재 위치에 관한 정보는 초기에는 미리 정해진 위치 정보를 가리킬 수 있으나, 그 이후에는 상기 드론 IoT 서버(130)를 통해 상기 스마트 드론(110)으로부터 실시간으로 전달되는 드론 비행 정보에 포함된 현재 위치 정보를 가리킬 수 있다.
상기 지상 제어 시스템(120)은 상기 AI 빅데이터 서버(140)로부터 상기 드론 IoT 서버(130)를 통해 수신된 상기 안전 비행 경로를 포함하여 원격 제어 명령을 생성하고, 상기 생성된 원격 제어 명령을 상기 드론 IoT 서버(130)를 통해 임무 대기 중이거나 비행 중인 상기 스마트 드론(110)에 전달하여 상기 스마트 드론(110)을 원격지에서 제어할 수 있다.
상기 드론 IoT 서버(130)는 상기 스마트 드론(110) 및 상기 지상 제어 시스템(120) 간의 통신 연결을 위한 중계 서버로서 동작할 수 있다. 즉, 상기 드론 IoT 서버(130)는 상기 지상 제어 시스템(120)으로부터 상기 원격 제어 명령을 수신하여 상기 스마트 드론(110)에 전달하고, 상기 스마트 드론(110)으로부터 카메라 영상을 수신하여 상기 지상 제어 시스템(120)에 전달할 수 있다. 또한, 상기 드론 IoT 서버(130)는 상기 스마트 드론(110)으로부터 카메라 영상 및 드론 비행 정보 등을 포함하는 실시간 정보를 수신하여 상기 AI 빅데이터 서버(140)에 전달할 수 있다.
이를 위해, 상기 드론 IoT 서버(130)는 상기 스마트 드론(110)과 LTE 이동통신망 기반의 쌍방향 통신을 수행할 수 있다. 다시 말해, 상기 드론 IoT 서버(130)는 상기 스마트 드론(110)과 LTE 이동통신망 기반의 쌍방향 통신을 통해, 상기 지상 제어 시스템(120)으로부터 상기 원격 제어 명령을 수신하여 상기 스마트 드론(110)에 전달하고, 상기 스마트 드론(110)으로부터 수집된 실시간 정보를 상기 AI 빅데이터 서버(140)에 전달할 수 있다.
상기 AI 빅데이터 서버(140)는 안전 비행 경로 생성을 위한 기준 정보들을 관리할 수 있다. 그리고 상기 AI 빅데이터 서버(140)는 상기 드론 IoT 서버(130)로부터 상기 스마트 드론(110)이 수집한 실시간 정보들을 전달받아 변동사항이 있는 정보는 업데이트할 수 있다. 상기 AI 빅데이터 서버(140)는 이렇게 최신 정보로 관리되는 정보들로부터 안전 비행 경로를 생성해 상기 지상 제어 시스템(120)으로 전달할 수 있다.
상기 지상 제어 시스템(120)은 원격지에서 상기 드론 IoT 서버(130)로 원격 제어 명령을 보내 상기 스마트 드론(110)을 제어하는 시스템으로, 임무 대기 중이거나 비행 중인 드론에 안전 비행 경로가 포함된 원격 제어 명령을 보내 상기 스마트 드론(110)이 임무를 수행하도록 할 수 있다. 만약 정보의 업데이트로 변동 사항이 생겨 새로운 안전 비행 경로가 생성될 경우, 경로 정보를 실시간으로 전달하여 상기 스마트 드론(110)의 비행경로를 갱신시킨다.
상기 스마트 드론(110)은 상기 드론 IoT 서버(130)로부터 전달받은 안전 비행 경로를 따라 비행하며, 비행 중에 수집 가능한 안전 비행 경로의 생성을 위한 기준 정보들을 지속적으로 수집하여 상기 드론 IoT 서버(130)로 전달할 수 있다.
상기 AI 빅데이터 서버(140)는 공간정보 빅데이터를 활용하여 군사지역이나 인구밀집구역, 비행금지구역 등을 회피(Avoid)하거나 고층 빌딩에서 고도를 상승(Up)시켜 최적의 안전 비행 경로를 생성할 수 있다. 다시 말해, 상기 AI 빅데이터 서버(140)는 상기 공간정보 빅데이터를 활용한 능동적인 자율 비행 기술을 제공하기 위한 최적의 안전 비행 경로를 생성할 수 있다. 이로써, 본 발명의 일 실시예에 따르면 임무에 따른 최적의 안전 비행 경로를 능동적으로 생성하는 비행 기술을 제공할 수 있으며, 생성된 최적의 안전 비행 경로 상에 존재하는 건물의 위치, 높이 등에 대한 정보(건물 위치 정보)를 이용한 이상적인 고도 비행 기술을 제공할 수 있다.
이를 위해, 상기 AI 빅데이터 서버(140)는 상기 공간정보 빅데이터에 기반한 공간 정보의 수치화를 통해 상기 스마트 드론(110)의 현재 위치인 출발지로부터 목적지까지의 비행 경로를 분석하여, 상기 비행 경로에 비행 불가 지역 또는 LTE 열화 지역 등이 포함되어 있는지 여부를 판단할 수 있다.
구체적으로, 상기 AI 빅데이터 서버(140)는 상기 분석 대상의 비행 경로를 포함하는 지도를 격자 모양의 복수 영역으로 분할하고, 상기 복수 영역의 각각에 고유 번호를 부여하여 해당 영역의 실제 좌표 값과 매칭한 후, 상기 공간정보 빅데이터를 이용한 비행 경로의 좌표 분석을 통해 상기 비행 불가 지역으로 판단된 영역의 고유 번호를 출력하여, 해당 고유 번호의 영역을 상기 비행 불가 지역으로 판단할 수 있다. 여기서, 비행 불가 지역이라 함은 이전의 원격 제어 명령에 포함된 비행 경로에 예상하지 못한 인구밀집지역(예를 들면, 집회 지역 등)이 있거나, 예상하지 못한 건물들이 있는 지역 등을 포함하는 개념이다.
상기와 같은 AI 빅데이터 서버(140)는 도 2에 도시된 바와 같이 데이터베이스 관리부(210), 실시간 정보 수집부(220), 안전 비행 경로 생성부(230), 및 제어부(240)를 포함하여 구성될 수 있다.
상기 데이터베이스 관리부(210)는 공간정보 빅데이터를 저장하는 데이터베이스(150)와 연동하여 안전 비행 경로의 생성을 위한 기준 정보를 관리할 수 있다. 드론이 비행 중 돌발 사고로 인해 추락이 발생하더라도 피해를 최소화할 수 있도록 안전 비행 경로를 생성하려면 상기 기준 정보가 필요하다. 상기 기준 정보는 아래의 표 1과 같이 비행금지 구역, 공항 관제권, 통신 불능 지역, 인구 밀집 지역, 제한 고도, 건물 위치 정보, 드론 위치 정보 등을 포함할 수 있다.
[표 1]
Figure 112018126472027-pat00001
표 1을 참조하면, 상기 기준 정보 중 인구 밀집 지역의 경우 변동성이 보통(기준) 수준이고, 상기 기준 정보 중 비행금지 구역, 상기 공항 관제권, 상기 통신 불능 지역, 상기 제한 고도, 상기 건물 위치 정보의 경우 변동성이 기준보다 낮은 수준이며, 상기 기준 정보 중 드론 위치 정보의 경우 변동성이 기준보다 높은 수준일 수 있다. 상기 기준 정보는 변동성이 기준보다 낮을 경우에는 주기적으로 변동 사항 확인 후 업데이트 되어 상기 안전 비행 경로의 생성에 활용되고, 상기 변동성이 기준보다 높을 경우에는 지속적으로 최신 정보로 업데이트 되어 상기 최신 정보가 적용된 안전 비행 경로의 생성에 활용될 수 있다.
일반적으로 국경선이나 군부대 근처, 이착륙하는 항공기와 충돌 위험이 있는 공항 관제권은 비행금지 구역으로 지정되어 있다. 비행금지 구역은 드론이 반드시 피해가야 하는 장소이기 때문에 반드시 필요한 기준이다. 또한, 통신이 불가능하거나 신호가 다른 지역보다 약한 통신 불능 지역과 주거 지역이나 행사 지역 등 인구 밀집 지역은 드론의 추락 사고로 인한 피해가 발생할 수 있는 장소들로 안전한 경로 생성을 위해 필요한 기준이다.
또한, 항공기 비행항로가 설치된 공역에서는 항공기와 충돌 위험이 있기 때문에 대부분의 지역에 제한 고도가 있기 때문에 이를 준수하여 비행해야 한다. 추가적으로 드론이 비행하는 고도만큼 높은 건물들의 위치 정보와 근처에서 비행 중인 드론들의 위치 정보는 파악하고 있으면 예상하지 못한 충돌을 피하기 위해 활용 가능한 기준이다. 반드시 준수해야 하는 기준을 제외한 기준은 활용 가능성에 따라 추가할 수 있다.
상기 실시간 정보 수집부(220)는 상기 지상 제어 시스템(120)에 입력된 목적지 정보 및 상기 드론 IoT 서버(130)를 통해 상기 지상 제어 시스템(120)으로부터 전달받은 원격 제어 명령에 따라 비행하는 스마트 드론(110)에 의해 수집된 드론 비행 정보를 상기 드론 IoT 서버(130)를 통해 수신할 수 있다.
상기 실시간 정보 수집부(220)는 상기 드론 비행 정보 및 카메라 영상 등을 포함한 실시간 정보를 상기 스마트 드론(110)으로부터 상기 드론 IoT 서버(130)를 통해 실시간으로 수신할 수 있다. 이에 따라, 상기 데이터베이스 관리부(210)는 상기 실시간 정보에 기초하여 상기 기준 정보에 변동 사항이 있는지를 판단하고, 상기 판단 결과 변동 사항이 있는 경우 상기 데이터베이스(150)와 연동하여 상기 기준 정보 및 상기 기준 정보와 관련된 공간정보 빅데이터를 업데이트할 수 있다.
상기 안전 비행 경로 생성부(230)는 상기 기준 정보, 상기 목적지 정보 및 상기 드론 비행 정보에 기초하여 적어도 하나의 안전 비행 경로를 생성하고, 상기 생성된 안전 비행 경로를 상기 드론 IoT 서버(130)를 통해 상기 지상 제어 시스템(120)에 제공할 수 있다.
상기 안전 비행 경로 생성부(230)는 상기 업데이트된 기준 정보에 기초하여 새로운 안전 비행 경로를 생성하고, 상기 생성된 새로운 안전 비행 경로를 상기 드론 IoT 서버(130)를 통해 상기 지상 제어 시스템(120)에 제공하여, 상기 새로운 안전 비행 경로를 포함하는 원격 제어 명령에 따라 상기 스마트 드론(110)의 비행 경로를 실시간으로 갱신할 수 있다.
상기 안전 비행 경로의 생성과 관련하여 표 2를 참조하여 구체적으로 설명하면 다음과 같다. 드론의 경로는 일반적으로 GPS 정보를 이용해 경로를 구성하는 경유 지점들을 생성하는 방식으로 만들어진다. 표 2는 경로를 구성하는 경유 지점 정보들을 나타낸다.
[표 2]
Figure 112018126472027-pat00002
드론은 출발지부터 경유 지점들을 순차적으로 비행하여 목적지에 도달한다. 따라서 표 2에 기재된 바와 같이 각 지점들에 대한 순서 정보를 알아야 하며, 이동해야 하는 지점의 좌표 정보인 위도와 경도, 지점까지 이동하면서 유지할 비행 고도 정보와 각 지점별 거리가 비행 경로를 구성하는 경유 지점의 구성 정보들이다.
비행 경로 생성 알고리즘은 다양하게 존재하지만, 본 발명에서는 빅데이터가 적용된 공간 정보로부터 간단하게 생성 가능한 경로 생성 방법을 제안한다.
참고로, 상기 공간정보는 일반적으로 지상, 지하, 수상, 수중 등 공간상에 존재하는 자연적 또는 인공적인 객체에 대한 위치정보 및 이와 관련된 공간적 인지 및 의사결정에 필요한 정보이다. 본 발명에서는 지상에 존재하는 자연적 또는 인공적인 객체에 대한 위치정보 및 이와 관련된 공간적 인지 및 의사결정에 필요한 정보를 공간정보로서 이용할 수 있다.
상기 제어부(240)는 AI 빅데이터 서버(140), 즉 상기 데이터베이스 관리부(210), 상기 실시간 정보 수집부(220), 상기 안전 비행 경로 생성부(230) 등을 전반적으로 제어할 수 있다.
다시 도 1을 참조하면, 상기 데이터베이스(150)는 상기 스마트 드론(110)의 자율 비행 제어와 관련한 공간정보 빅데이터를 저장할 수 있다. 즉, 상기 데이터베이스(150)는 드론의 위치 정보(위도, 경도, 높이 등)를 저장하는 드론 위치 정보 DB, 건물의 위치 정보(위도, 경도, 높이 등)를 저장하는 건물 위치 정보 DB, 군사 지역 등의 비행 금지 구역에 관한 정보를 저장하는 비행 금지 구역 DB, 도심 지역과 같은 인구 밀집 지역에 관한 정보를 저장하는 인구 밀집 지역 DB, LTE 열화 지역에 관한 정보를 저장하는 통신 불능 지역 DB 등을 포함할 수 있다.
도 3은 본 발명의 일 실시예에 따라 안전 비행 경로를 생성하는 방법을 나타낸 것이다.
도 3을 참조하면, 안전 비행 경로의 생성을 위한 기준 정보들은 모두 영역을 나타낼 수 있는 GPS 정보로 주어진다. 그리고 GPS 정보 오차 및 영역 경계에서의 비행을 피하기 위해 모든 영역의 경계는 일정 간격의 안전 거리를 갖는다. 비행 경로는 기본적으로 일정 거리마다 경유지를 생성하며 목적지 방향으로의 직선 형태로 생성한다. 만약 경유지를 생성하려는 위치가 생성 불가능한 영역에 속하면 가까운 경계 방향으로 영역을 벗어나는 위치로 변경한다. 생성 불가능 영역이 건물 또는 다른 드론일 경우 충돌 위험이 없도록 비행 고도만 변경한다. 이러한 과정을 반복하여 드론의 안전 비행 경로를 생성한다.
도 4는 빅데이터를 기반으로 한 안전 비행 경로의 생성과 정보 업데이트로 새롭게 갱신되는 경로를 나타낸 도면이다.
도 1 및 도 4를 참조하면, 상기 안전 비행 경로 생성 시스템(100)의 AI 빅데이터 서버(140)에서는 상기 스마트 드론(110)으로부터 수집된 최신 정보를 지속적으로 업데이트 한다. 그리고 정보 변동사항이 발생해 기존 안전 경로를 사용할 수 없을 경우 새로운 안전 경로를 생성하여 갱신하기 때문에 드론들이 비행을 지속할 수 있다.
상기 AI 빅데이터 서버(140)는 안전 비행 경로의 생성을 위한 기준 정보를 따라 생성한 기존 경로를 비행하는 드론으로부터 경로 상의 인파 정보를 수집하다가 인파가 모인 새로운 인구 밀집 지역이 발생할 경우 즉시 정보를 업데이트한다. 그리고 업데이트 된 정보를 바탕으로 새로운 안전 비행 경로를 생성하여 적용시킨다. 갱신된 정보는 비행 대기 중이던 드론뿐만 아니라 비행 중인 드론에도 적용되어 드론이 새로 발생한 구역을 피해 목적지까지 도달하게 된다.
이와 같이 본 발명에서는 빅데이터를 활용하여 드론의 안전 비행 경로를 생성하는 시스템의 구조를 제안하였다. 제안한 안전 비행 경로 생성 시스템은 항공안전법 상 비행이 금지된 장소와 사고 위험성을 피하기 위한 추가 정보들로 정의한 안전 비행 경로 생성 기준 정보를 통해 안전 비행 경로를 생성한다. 안전 비행 경로 생성 기준 정보들은 상기 AI 빅데이터 서버(140)로부터 관리되며 비행 중인 드론들로부터 지속적으로 새로운 정보들을 전달받아 업데이트되기 때문에 변동사항이 발생하면 즉시 새로운 경로를 생성하여 드론들에 적용할 수 있다.
이상에서 설명된 장치는 하드웨어 구성 요소, 소프트웨어 구성 요소, 및/또는 하드웨어 구성 요소 및 소프트웨어 구성 요소의 조합으로 구현될 수 있다. 예를 들어, 실시예들에서 설명된 장치 및 구성 요소는, 예를 들어, 프로세서, 컨트롤러, ALU(arithmetic logic unit), 디지털 신호 프로세서(digital signal processor), 마이크로컴퓨터, FPA(field programmable array), PLU(programmable logic unit), 마이크로프로세서, 또는 명령(instruction)을 실행하고 응답할 수 있는 다른 어떠한 장치와 같이, 하나 이상의 범용 컴퓨터 또는 특수 목적 컴퓨터를 이용하여 구현될 수 있다. 처리 장치는 운영 체제(OS) 및 상기 운영 체제 상에서 수행되는 하나 이상의 소프트웨어 애플리케이션을 수행할 수 있다. 또한, 처리 장치는 소프트웨어의 실행에 응답하여, 데이터를 접근, 저장, 조작, 처리 및 생성할 수도 있다. 이해의 편의를 위하여, 처리 장치는 하나가 사용되는 것으로 설명된 경우도 있지만, 해당 기술분야에서 통상의 지식을 가진 자는, 처리 장치가 복수 개의 처리 요소(processing element) 및/또는 복수 유형의 처리 요소를 포함할 수 있음을 알 수 있다. 예를 들어, 처리 장치는 복수 개의 프로세서 또는 하나의 프로세서 및 하나의 컨트롤러를 포함할 수 있다. 또한, 병렬 프로세서(parallel processor)와 같은, 다른 처리 구성(processing configuration)도 가능하다.
소프트웨어는 컴퓨터 프로그램(computer program), 코드(code), 명령(instruction), 또는 이들 중 하나 이상의 조합을 포함할 수 있으며, 원하는 대로 동작하도록 처리 장치를 구성하거나 독립적으로 또는 결합적으로(collectively) 처리 장치를 명령할 수 있다. 소프트웨어 및/또는 데이터는, 처리 장치에 의하여 해석되거나 처리 장치에 명령 또는 데이터를 제공하기 위하여, 어떤 유형의 기계, 구성요소(component), 물리적 장치, 가상 장치(virtual equipment), 컴퓨터 저장 매체 또는 장치, 또는 전송되는 신호 파(signal wave)에 영구적으로, 또는 일시적으로 구체화(embody)될 수 있다. 소프트웨어는 네트워크로 연결된 컴퓨터 시스템 상에 분산되어서, 분산된 방법으로 저장되거나 실행될 수도 있다. 소프트웨어 및 데이터는 하나 이상의 컴퓨터 판독 가능 기록 매체에 저장될 수 있다.
도 5는 본 발명의 일 실시예에 따른 빅데이터 기반 드론의 안전 비행 경로 생성 방법을 설명하기 위해 도시한 흐름도이다.
여기서 설명하는 빅데이터 기반 드론의 안전 비행 경로 생성 방법은 본 발명의 하나의 실시예에 불과하며, 그 이외에 필요에 따라 다양한 단계들이 부가될 수 있고, 하기의 단계들도 순서를 변경하여 실시될 수 있으므로, 본 발명이 하기에 설명하는 각 단계 및 그 순서에 한정되는 것은 아니다. 이는 이하의 다른 실시예에서도 마찬가지로 적용될 수 있다.
도 1, 도 2 및 도 5를 참조하면, 단계(510)에서 상기 AI 빅데이터 서버(140)의 데이터베이스 관리부(210)는 공간정보 빅데이터를 저장하는 데이터베이스(150)와 연동하여 안전 비행 경로의 생성을 위한 기준 정보를 관리할 수 있다.
다음으로, 단계(520)에서 상기 AI 빅데이터 서버(140)의 실시간 정보 수집부(220)는 상기 지상 제어 시스템(120)에 입력된 목적지 정보 및 상기 드론 IoT 서버(130)를 통해 상기 지상 제어 시스템(120)으로부터 전달받은 원격 제어 명령에 따라 비행하는 스마트 드론(110)에 의해 수집된 드론 비행 정보를 상기 드론 IoT 서버(130)를 통해 수신할 수 있다.
다음으로, 단계(530)에서 상기 AI 빅데이터 서버(140)의 안전 비행 경로 생성부(230)는 상기 기준 정보, 상기 목적지 정보 및 상기 드론 비행 정보에 기초하여 적어도 하나의 안전 비행 경로를 생성할 수 있다.
다음으로, 단계(540)에서 상기 안전 비행 경로 생성부(230)는 상기 생성된 안전 비행 경로를 상기 드론 IoT 서버(130)를 통해 상기 지상 제어 시스템(120)에 제공할 수 있다.
도 6은 본 발명의 다른 실시예에 따른 빅데이터 기반 드론의 안전 비행 경로 생성 방법을 설명하기 위해 도시한 흐름도이다.
도 1, 도 2 및 도 6을 참조하면, 단계(610)에서 상기 AI 빅데이터 서버(140)의 데이터베이스 관리부(210)는 공간정보 빅데이터를 저장하는 데이터베이스(150)와 연동하여 안전 비행 경로의 생성을 위한 기준 정보를 관리할 수 있다.
다음으로, 단계(620)에서 상기 AI 빅데이터 서버(140)의 실시간 정보 수집부(220)는 상기 지상 제어 시스템(120)에 입력된 목적지 정보 및 상기 드론 IoT 서버(130)를 통해 상기 지상 제어 시스템(120)으로부터 전달받은 원격 제어 명령에 따라 비행하는 스마트 드론(110)에 의해 수집된 드론 비행 정보를 상기 드론 IoT 서버(130)를 통해 수신할 수 있다.
다음으로, 단계(630)에서 상기 AI 빅데이터 서버(140)의 안전 비행 경로 생성부(230)는 상기 기준 정보, 상기 목적지 정보 및 상기 드론 비행 정보에 기초하여 적어도 하나의 안전 비행 경로를 생성할 수 있다.
다음으로, 단계(640)에서 상기 안전 비행 경로 생성부(230)는 상기 생성된 안전 비행 경로를 상기 드론 IoT 서버(130)를 통해 상기 지상 제어 시스템(120)에 제공할 수 있다.
다음으로, 단계(650)에서 상기 실시간 정보 수집부(220)는 상기 드론 비행 정보 및 카메라 영상을 포함한 실시간 정보를 상기 스마트 드론(110)으로부터 상기 드론 IoT 서버(130)를 통해 실시간으로 수신할 수 있다.
다음으로, 단계(660)에서 상기 데이터베이스 관리부(210)는 상기 실시간 정보에 기초하여 상기 기준 정보에 변동 사항이 있는지를 판단할 수 있다.
상기 판단 결과 변동 사항이 있는 경우(660의 "예" 방향), 단계(670)에서 상기 데이터베이스 관리부(210)는 상기 데이터베이스(150)와 연동하여 상기 기준 정보 및 상기 기준 정보와 관련된 공간정보 빅데이터를 업데이트할 수 있다. 반면, 상기 판단 결과 변동 사항이 없는 경우(660의 "아니오" 방향), 단계(650)으로 리턴(return)할 수 있다.
다음으로, 단계(680)에서 상기 안전 비행 경로 생성부(230)는 상기 업데이트된 기준 정보에 기초하여 새로운 안전 비행 경로를 생성할 수 있다.
다음으로, 단계(690)에서 상기 안전 비행 경로 생성부(230)는 상기 생성된 새로운 안전 비행 경로를 상기 드론 IoT 서버(130)를 통해 상기 지상 제어 시스템(120)에 제공하여, 상기 새로운 안전 비행 경로를 포함하는 원격 제어 명령에 따라 상기 스마트 드론(110)의 비행 경로를 실시간으로 갱신할 수 있다.
실시예에 따른 방법은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 매체에 기록되는 프로그램 명령은 실시예를 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다. 컴퓨터 판독 가능 기록 매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(magnetic media), CDROM, DVD와 같은 광기록 매체(optical media), 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다. 상기된 하드웨어 장치는 실시예의 동작을 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.
이상과 같이 실시예들이 비록 한정된 실시예와 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기의 기재로부터 다양한 수정 및 변형이 가능하다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 시스템, 구조, 장치, 회로 등의 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다.
그러므로, 다른 구현들, 다른 실시예들 및 청구범위와 균등한 것들도 후술하는 청구범위의 범위에 속한다.
110: 스마트 드론
120: 지상 제어 시스템
130: 드론 IoT 서버
140: AI 빅데이터 서버
150: 데이터베이스
210: 데이터베이스 관리부
220: 실시간 정보 수집부
230: 안전 비행 경로 생성부
240: 제어부

Claims (10)

  1. 지상 제어 시스템, 드론 IoT 서버, 및 AI 빅데이터 서버를 포함하고,
    상기 AI 빅데이터 서버는
    공간정보 빅데이터를 저장하는 데이터베이스와 연동하여 안전 비행 경로의 생성을 위한 기준 정보를 관리하는 데이터베이스 관리부;
    상기 지상 제어 시스템에 입력된 목적지 정보 및 상기 드론 IoT 서버를 통해 상기 지상 제어 시스템으로부터 전달받은 원격 제어 명령에 따라 비행하는 스마트 드론에 의해 수집된 드론 비행 정보를 상기 드론 IoT 서버를 통해 수신하는 실시간 정보 수집부; 및
    상기 기준 정보, 상기 목적지 정보 및 상기 드론 비행 정보에 기초하여 적어도 하나의 안전 비행 경로를 생성하고, 상기 생성된 안전 비행 경로를 상기 드론 IoT 서버를 통해 상기 지상 제어 시스템에 제공하는 안전 비행 경로 생성부
    를 포함하고,
    상기 실시간 정보 수집부는 상기 드론 비행 정보 및 카메라 영상을 포함한 상기 실시간 정보를 상기 스마트 드론으로부터 상기 드론 IoT 서버를 통해 실시간으로 수신하고,
    상기 데이터베이스 관리부는 상기 실시간 정보에 기초하여 상기 기준 정보에 변동 사항이 있는지를 판단하고, 상기 판단 결과 변동 사항이 있는 경우 상기 데이터베이스와 연동하여 상기 기준 정보 및 상기 기준 정보와 관련된 공간정보 빅데이터를 업데이트하며,
    상기 드론 IoT 서버는 상기 스마트 드론과 LTE 이동통신망 기반의 쌍방향 통신을 통해 상기 지상 제어 시스템으로부터 상기 원격 제어 명령을 수신하여 상기 스마트 드론에 전달하고, 상기 스마트 드론으로부터 수집된 실시간 정보를 상기 AI 빅데이터 서버에 전달하며,
    상기 AI 빅데이터 서버는 상기 스마트 드론의 현재 위치인 출발지로부터 목적지까지의 비행 경로를 포함하는 지도를 격자 모양의 복수 영역으로 분할하고, 상기 복수 영역의 각각에 고유 번호를 부여하여 해당 영역의 실제 좌표 값과 매칭한 후, 상기 공간정보 빅데이터를 이용한 비행 경로의 좌표 분석을 통해 비행 불가 지역 또는 LTE 열화 지역으로 판단된 영역의 고유 번호를 출력하여, 해당 고유 번호의 영역을 상기 비행 불가 지역 또는 상기 LTE 열화 지역으로 판단하고, 상기 비행 경로에 상기 비행 불가 지역 또는 상기 LTE 열화 지역이 포함되어 있는 것으로 판단된 경우, 상기 비행 불가 지역 또는 상기 LTE 열화 지역을 우회할 수 있는 비행 가능 지역을 상기 비행 경로에 포함시켜 상기 안전 비행 경로를 업데이트하되, 상기 비행 경로는 기본적으로 일정 거리마다 경유지를 생성하며 목적지 방향으로의 직선 형태로 생성되는데 이때 경유지를 생성하려는 위치가 생성 불가능한 영역에 속하는 경우, 상기 생성 불가능한 영역을 벗어날 수 있도록 가까운 경계 방향으로 상기 경유지를 생성하려는 위치를 변경하며, 다만 상기 생성 불가능한 영역이 건물 또는 다른 드론일 경우 충돌 위험이 없도록 비행 고도만 변경하는 과정을 반복하여 상기 안전 비행 경로를 생성하며,
    상기 기준 정보는 비행금지 구역, 공항 관제권, 통신 불능 지역, 인구 밀집 지역, 제한 고도, 건물 위치 정보, 드론 위치 정보 중 적어도 하나를 포함하며, 상기 기준 정보의 변동성이 기준보다 낮을 경우에는 주기적으로 변동 사항 확인 후 업데이트 되어 상기 안전 비행 경로의 생성에 활용되고, 상기 기준 정보의 변동성이 기준보다 높을 경우에는 지속적으로 최신 정보로 업데이트 되어 상기 최신 정보가 적용된 안전 비행 경로의 생성에 활용되며, 상기 인구 밀집 지역의 경우 상기 기준 정보의 변동성이 보통(기준) 수준이고, 상기 비행금지 구역, 상기 공항 관제권, 상기 통신 불능 지역, 상기 제한 고도, 상기 건물 위치 정보의 경우 상기 기준 정보의 변동성이 기준보다 낮은 수준이며, 상기 드론 위치 정보의 경우 상기 기준 정보의 변동성이 기준보다 높은 수준인 것을 특징으로 하는 빅데이터 기반 드론의 안전 비행 경로 생성 시스템.
  2. 삭제
  3. 제1항에 있어서,
    상기 안전 비행 경로 생성부는
    상기 업데이트된 기준 정보에 기초하여 새로운 안전 비행 경로를 생성하고, 상기 생성된 새로운 안전 비행 경로를 상기 드론 IoT 서버를 통해 상기 지상 제어 시스템에 제공하여, 상기 새로운 안전 비행 경로를 포함하는 원격 제어 명령에 따라 상기 스마트 드론의 비행 경로를 실시간으로 갱신하는 것을 특징으로 하는 빅데이터 기반 드론의 안전 비행 경로 생성 시스템.
  4. 제1항에 있어서,
    상기 지상 제어 시스템은
    상기 AI 빅데이터 서버로부터 상기 드론 IoT 서버를 통해 수신된 상기 안전 비행 경로를 포함하여 원격 제어 명령을 생성하고, 상기 생성된 원격 제어 명령을 상기 드론 IoT 서버를 통해 임무 대기 중이거나 비행 중인 상기 스마트 드론에 전달하여 상기 스마트 드론을 원격지에서 제어하는 것을 특징으로 하는 빅데이터 기반 드론의 안전 비행 경로 생성 시스템.
  5. 삭제
  6. 삭제
  7. 삭제
  8. 지상 제어 시스템, 드론 IoT 서버, 및 AI 빅데이터 서버를 포함하는 빅데이터 기반 드론의 안전 비행 경로 생성 시스템을 이용한 안전 비행 경로 생성 방법에 있어서,
    상기 AI 빅데이터 서버의 데이터베이스 관리부가 공간정보 빅데이터를 저장하는 데이터베이스와 연동하여 안전 비행 경로의 생성을 위한 기준 정보를 관리하는 단계;
    상기 AI 빅데이터 서버의 실시간 정보 수집부가 상기 지상 제어 시스템에 입력된 목적지 정보 및 상기 드론 IoT 서버를 통해 상기 지상 제어 시스템으로부터 전달받은 원격 제어 명령에 따라 비행하는 스마트 드론에 의해 수집된 드론 비행 정보를 상기 드론 IoT 서버를 통해 수신하는 단계;
    상기 AI 빅데이터 서버의 안전 비행 경로 생성부가 상기 기준 정보, 상기 목적지 정보 및 상기 드론 비행 정보에 기초하여 적어도 하나의 안전 비행 경로를 생성하는 단계; 및
    상기 안전 비행 경로 생성부가 상기 생성된 안전 비행 경로를 상기 드론 IoT 서버를 통해 상기 지상 제어 시스템에 제공하는 단계
    를 포함하고,
    상기 실시간 정보 수집부가 상기 드론 비행 정보 및 카메라 영상을 포함한 실시간 정보를 상기 스마트 드론으로부터 상기 드론 IoT 서버를 통해 실시간으로 수신하는 단계;
    상기 데이터베이스 관리부가 상기 실시간 정보에 기초하여 상기 기준 정보에 변동 사항이 있는지를 판단하는 단계; 및
    상기 판단 결과 변동 사항이 있는 경우, 상기 데이터베이스 관리부가 상기 데이터베이스와 연동하여 상기 기준 정보 및 상기 기준 정보와 관련된 공간정보 빅데이터를 업데이트하는 단계
    를 더 포함하며,
    상기 드론 IoT 서버는 상기 스마트 드론과 LTE 이동통신망 기반의 쌍방향 통신을 통해 상기 지상 제어 시스템으로부터 상기 원격 제어 명령을 수신하여 상기 스마트 드론에 전달하고, 상기 스마트 드론으로부터 수집된 상기 실시간 정보를 상기 AI 빅데이터 서버에 전달하며,
    상기 AI 빅데이터 서버는 상기 스마트 드론의 현재 위치인 출발지로부터 목적지까지의 비행 경로를 포함하는 지도를 격자 모양의 복수 영역으로 분할하고, 상기 복수 영역의 각각에 고유 번호를 부여하여 해당 영역의 실제 좌표 값과 매칭한 후, 상기 공간정보 빅데이터를 이용한 비행 경로의 좌표 분석을 통해 비행 불가 지역 또는 LTE 열화 지역으로 판단된 영역의 고유 번호를 출력하여, 해당 고유 번호의 영역을 상기 비행 불가 지역 또는 LTE 열화 지역으로 판단하고, 상기 비행 경로에 상기 비행 불가 지역 또는 LTE 열화 지역이 포함되어 있는 것으로 판단된 경우, 상기 비행 불가 지역을 우회할 수 있는 비행 가능 지역 또는 LTE 열화 지역을 상기 비행 경로에 포함시켜 상기 안전 비행 경로를 업데이트하되, 상기 비행 경로는 기본적으로 일정 거리마다 경유지를 생성하며 목적지 방향으로의 직선 형태로 생성되는데 이때 경유지를 생성하려는 위치가 생성 불가능한 영역에 속하는 경우, 상기 생성 불가능한 영역을 벗어날 수 있도록 가까운 경계 방향으로 상기 경유지를 생성하려는 위치를 변경하며, 다만 상기 생성 불가능한 영역이 건물 또는 다른 드론일 경우 충돌 위험이 없도록 비행 고도만 변경하는 과정을 반복하여 상기 안전 비행 경로를 생성하며,
    상기 기준 정보는 비행금지 구역, 공항 관제권, 통신 불능 지역, 인구 밀집 지역, 제한 고도, 건물 위치 정보, 드론 위치 정보 중 적어도 하나를 포함하며, 상기 기준 정보의 변동성이 기준보다 낮을 경우에는 주기적으로 변동 사항 확인 후 업데이트 되어 상기 안전 비행 경로의 생성에 활용되고, 상기 기준 정보의 변동성이 기준보다 높을 경우에는 지속적으로 최신 정보로 업데이트 되어 상기 최신 정보가 적용된 안전 비행 경로의 생성에 활용되며, 상기 인구 밀집 지역의 경우 상기 기준 정보의 변동성이 보통(기준) 수준이고, 상기 비행금지 구역, 상기 공항 관제권, 상기 통신 불능 지역, 상기 제한 고도, 상기 건물 위치 정보의 경우 상기 기준 정보의 변동성이 기준보다 낮은 수준이며, 상기 드론 위치 정보의 경우 상기 기준 정보의 변동성이 기준보다 높은 수준인 것을 특징으로 하는 빅데이터 기반 드론의 안전 비행 경로 생성 방법.
  9. 삭제
  10. 제8항에 있어서,
    상기 안전 비행 경로 생성부가 상기 업데이트된 기준 정보에 기초하여 새로운 안전 비행 경로를 생성하는 단계; 및
    상기 안전 비행 경로 생성부가 상기 생성된 새로운 안전 비행 경로를 상기 드론 IoT 서버를 통해 상기 지상 제어 시스템에 제공하여, 상기 새로운 안전 비행 경로를 포함하는 원격 제어 명령에 따라 상기 스마트 드론의 비행 경로를 실시간으로 갱신하는 단계
    를 더 포함하는 것을 특징으로 하는 빅데이터 기반 드론의 안전 비행 경로 생성 방법.
KR1020180163053A 2018-12-17 2018-12-17 빅데이터 기반 드론의 안전 비행 경로 생성 시스템 및 방법 KR102182671B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180163053A KR102182671B1 (ko) 2018-12-17 2018-12-17 빅데이터 기반 드론의 안전 비행 경로 생성 시스템 및 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180163053A KR102182671B1 (ko) 2018-12-17 2018-12-17 빅데이터 기반 드론의 안전 비행 경로 생성 시스템 및 방법

Publications (2)

Publication Number Publication Date
KR20200080379A KR20200080379A (ko) 2020-07-07
KR102182671B1 true KR102182671B1 (ko) 2020-11-24

Family

ID=71603167

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180163053A KR102182671B1 (ko) 2018-12-17 2018-12-17 빅데이터 기반 드론의 안전 비행 경로 생성 시스템 및 방법

Country Status (1)

Country Link
KR (1) KR102182671B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230143679A (ko) 2022-04-06 2023-10-13 우다인 교통 약자 보조 기능을 구비한 드론

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102568688B1 (ko) * 2022-07-13 2023-08-21 한국전자기술연구원 무인비행장치 기반 이미지 획득/전처리/전송 시스템 및 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017046270A (ja) * 2015-08-28 2017-03-02 株式会社Ihi 中継サーバ、中継方法、および中継プログラム
KR101877900B1 (ko) * 2017-07-05 2018-07-12 주식회사 에프엠웍스 배터리 소모량 예측을 통한 3차원 비행경로 생성 시스템 및 방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180039821A (ko) * 2016-10-11 2018-04-19 삼성전자주식회사 모니터링 시스템 제어 방법 및 이를 지원하는 전자 장치
KR20180117967A (ko) * 2017-04-20 2018-10-30 아주대학교산학협력단 드론 비행 금지 구역 회피 경로 제공 방법 및 장치

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017046270A (ja) * 2015-08-28 2017-03-02 株式会社Ihi 中継サーバ、中継方法、および中継プログラム
KR101877900B1 (ko) * 2017-07-05 2018-07-12 주식회사 에프엠웍스 배터리 소모량 예측을 통한 3차원 비행경로 생성 시스템 및 방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230143679A (ko) 2022-04-06 2023-10-13 우다인 교통 약자 보조 기능을 구비한 드론

Also Published As

Publication number Publication date
KR20200080379A (ko) 2020-07-07

Similar Documents

Publication Publication Date Title
CN111656424B (zh) 基于大数据的自动飞行无人机系统及其自动飞行方法
US11230377B2 (en) Unmanned aerial vehicle platform
US11897607B2 (en) Unmanned aerial vehicle beyond visual line of sight control
US9933780B2 (en) Systems and methods for remote distributed control of unmanned aircraft
US20210263537A1 (en) Uav systems, including autonomous uav operational containment systems, and associated systems, devices, and methods
US10312994B2 (en) Drone network switchover between wireless networks
US8626361B2 (en) System and methods for unmanned aerial vehicle navigation
US10789853B2 (en) Drone collision avoidance via air traffic control over wireless networks
US10720066B2 (en) Flying lane management with lateral separations between drones
US20160140851A1 (en) Systems and methods for drone navigation
CN107408350A (zh) 用于控制自动飞行器飞行路径的系统和方法
US10074284B1 (en) Emergency shutdown and landing for unmanned aerial vehicles with air traffic control systems
US20230289445A1 (en) Tamper-resistant geo-fence system for drones
WO2017139282A1 (en) Unmanned aerial vehicle privacy controls
US20210264799A1 (en) Uavs, including multi-processor uavs with secured parameters, and associated systems, devices, and methods
KR102182671B1 (ko) 빅데이터 기반 드론의 안전 비행 경로 생성 시스템 및 방법
US20220392353A1 (en) Unmanned aerial vehicle privacy controls
JP6705066B1 (ja) 無人航空機運航管理装置、離着陸施設管理装置、無人航空機運航管理方法、及び無人航空機システム
CN113950063A (zh) 无线通信网络组网方法、装置、计算机设备和存储介质
KR20220075682A (ko) 자율주행 ai 드론 장치 및 그 자율주행방법
Temme et al. Traffic and mission management in the ResponDrone project
JP2022129533A (ja) 運航空域管理装置、無人飛行体運航管理装置、無人飛行体遠隔操縦装置、及び、無人飛行体
JP7319244B2 (ja) 制御装置、プログラム、システム、及び方法
KR102219954B1 (ko) 드론 통합관제서버 및 이를 포함하는 통합관제시스템
Brandt Humans as Automation Failsafe: HAT Assistant

Legal Events

Date Code Title Description
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant