KR102182034B1 - 유전체 필름들의 라디칼-기반 증착을 위한 장치 - Google Patents
유전체 필름들의 라디칼-기반 증착을 위한 장치 Download PDFInfo
- Publication number
- KR102182034B1 KR102182034B1 KR1020177002449A KR20177002449A KR102182034B1 KR 102182034 B1 KR102182034 B1 KR 102182034B1 KR 1020177002449 A KR1020177002449 A KR 1020177002449A KR 20177002449 A KR20177002449 A KR 20177002449A KR 102182034 B1 KR102182034 B1 KR 102182034B1
- Authority
- KR
- South Korea
- Prior art keywords
- dual
- channel showerhead
- annular channels
- radical
- channels
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45563—Gas nozzles
- C23C16/45565—Shower nozzles
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45563—Gas nozzles
- C23C16/45574—Nozzles for more than one gas
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/458—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
- C23C16/4582—Rigid and flat substrates, e.g. plates or discs
- C23C16/4583—Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
- C23C16/4584—Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally the substrate being rotated
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/458—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
- C23C16/4582—Rigid and flat substrates, e.g. plates or discs
- C23C16/4583—Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
- C23C16/4586—Elements in the interior of the support, e.g. electrodes, heating or cooling devices
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/48—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
- C23C16/482—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using incoherent light, UV to IR, e.g. lamps
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/505—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
- C23C16/509—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
- C23C16/5096—Flat-bed apparatus
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/517—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using a combination of discharges covered by two or more of groups C23C16/503 - C23C16/515
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32357—Generation remote from the workpiece, e.g. down-stream
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32422—Arrangement for selecting ions or species in the plasma
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/3244—Gas supply means
- H01J37/32449—Gas control, e.g. control of the gas flow
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Analytical Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Chemical Vapour Deposition (AREA)
- Inorganic Chemistry (AREA)
- Drying Of Semiconductors (AREA)
Abstract
본원에서 개시되는 실시예들은 일반적으로, 유전체 필름들의 라디칼-기반 증착을 위한 장치를 포함한다. 장치는, 프로세싱 챔버, 프로세싱 챔버에 커플링된 라디칼 소스, 프로세싱 챔버에 배치된 기판 지지부, 및 라디칼 소스와 기판 지지부 사이에 배치된 이중-채널 샤워헤드를 포함한다. 이중-채널 샤워헤드는 복수의 튜브들 및 복수의 튜브들을 둘러싸는 내부 용적을 포함한다. 복수의 튜브들 및 내부 용적은 이중-채널 샤워헤드에 내장된(embedded) 하나 또는 그 초과의 환형 채널들에 의해 둘러싸인다. 이중-채널 샤워헤드는, 하나 또는 그 초과의 채널들에 연결된 제 1 유입구, 및 내부 용적에 연결된 제 2 유입구를 더 포함한다. 프로세싱 챔버는 PECVD 챔버일 수 있고, 장치는 주기적 프로세스(라디칼 기반 CVD와 PECVD를 교번함)를 수행할 수 있다.
Description
[0001] 본원에서 개시되는 실시예들은 일반적으로, 유전체 필름들을 형성하기 위한 장치에 관한 것으로, 더 구체적으로, 라디칼-기반(radical-based) 증착을 사용하여 유전체 필름들을 형성하기 위한 장치에 관한 것이다.
[0002] 무-수소(hydrogen-free) 실리콘-함유 유전체 필름들과 같은 무-수소 유전체 필름들의 형성은, 차세대 전자 기기 디바이스들을 개발하는 데 중요한 과제이다. 플라즈마 강화 화학 기상 증착(PECVD) 증착은 유전체 필름들을 형성하기 위해 일반적으로 사용된다. 그러나, 비결정질 실리콘-함유 유전체 필름들을 증착시키기 위한 현재의 PECVD 기술들은, 약 15원자 퍼센트 또는 그 초과의 수소와 같은 높은 수소 함량을 함유하는 필름들을 초래한다. 높은 수소 함량은 주로 실리콘-수소 결합들의 형태로 존재하며, 이는 유전체 필름들에 결함들을 생성한다. 또한, 높은 수소 함량은 낮은 에칭 선택성(selectivity), 낮은 열적 및 기계적 성능 및 특성들, 및 높은 수축률(shrinkage)을 갖는 필름들을 초래한다. 부가적으로, 플라즈마 기반 프로세스는, 대전된(charged) 입자 충돌(bombardment) 및 고 에너지 UV 조사(irradiation)로 인해 필름들을 손상시키는 경향이 있다. 따라서, 무-수소 유전체 필름들과 같은 유전체 필름들을 형성하기 위한 장치가 필요하다.
[0003] 본원에서 개시되는 실시예들은 일반적으로, 유전체 필름들의 라디칼-기반 증착을 위한 장치를 포함한다. 장치는, 프로세싱 챔버, 프로세싱 챔버에 커플링된 라디칼 소스, 프로세싱 챔버에 배치된 기판 지지부, 및 라디칼 소스와 기판 지지부 사이에 배치된 이중-채널 샤워헤드를 포함한다. 이중-채널 샤워헤드는 복수의 튜브들 및 복수의 튜브들을 둘러싸는 내부 용적을 포함한다. 복수의 튜브들 및 내부 용적은 이중-채널 샤워헤드에 내장된(embedded) 하나 또는 그 초과의 채널들에 의해 둘러싸인다. 이중-채널 샤워헤드는, 하나 또는 그 초과의 채널들에 연결된 제 1 유입구, 및 내부 용적에 연결된 제 2 유입구를 더 포함한다. 제 2 유입구는, 가스들/라디칼들을, 하나 또는 그 초과의 채널들을 통과하지 않고 내부 용적으로 지향시킨다. 이중-채널 샤워헤드의 온도는 제어될 수 있다. 부가적으로, 프로세싱 챔버는 PECVD를 수행할 수 있으며, 기판 지지부는 회전 가능하고 기판 지지부 상에 배치된 기판을 가열할 수 있다. 프로세싱 챔버는 PECVD 챔버일 수 있고, 장치는 주기적(cyclic) 프로세스(라디칼 기반 화학 기상 증착(CVD)과 PECVD를 교번함)를 수행할 수 있다.
[0004] 일 실시예에서, 장치가 개시된다. 장치는 이중-채널 샤워헤드를 포함한다. 이중-채널 샤워헤드는 제 1 표면 및 제 1 표면에 대향하고(opposite) 내부 용적을 제공하기 위해 제 1 표면으로부터 이격된 제 2 표면을 포함한다. 이중-채널 샤워헤드의 하나 또는 그 초과의 환형 채널들이 내부 용적을 둘러싼다. 이중-채널 샤워헤드는, 하나 또는 그 초과의 환형 채널들에 연결된 제 1 유입구, 환형 채널들을 바이패싱하는(bypassing) 제 2 유입구(제 2 유입구는 내부 용적에 연결됨), 및 제 1 표면으로부터 내부 용적을 통해 제 2 표면으로 연장되는 복수의 튜브들을 더 포함한다.
[0005] 일 실시예에서, 장치가 개시된다. 장치는 라디칼 소스 및 라디칼 소스에 커플링된 프로세싱 챔버를 포함한다. 프로세싱 챔버는 기판 지지부 및 이중-채널 샤워헤드를 포함한다. 이중-채널 샤워헤드는 제 1 표면, 제 1 표면에 대향하고 내부 용적을 제공하기 위해 제 1 표면으로부터 이격된 제 2 표면을 포함한다. 이중-채널 샤워헤드의 하나 또는 그 초과의 환형 채널들이 내부 용적을 둘러싼다. 이중-채널 샤워헤드는, 하나 또는 그 초과의 환형 채널들에 연결된 제 1 유입구, 환형 채널들을 바이패싱하는(bypassing) 제 2 유입구(제 2 유입구는 내부 용적에 연결됨), 및 제 1 표면으로부터 내부 용적을 통해 제 2 표면으로 연장되는 복수의 튜브들을 더 포함한다.
[0006] 본 개시물의 상기 열거된 특징들이 상세히 이해될 수 있는 방식으로, 앞서 간략히 요약된, 본 개시물의 보다 구체적인 설명이 실시예들을 참조로 하여 이루어질 수 있는데, 이러한 실시예들의 일부는 첨부된 도면들에 예시되어 있다. 그러나, 첨부된 도면들은 본 개시물의 단지 전형적인 실시예들을 도시하는 것이므로 본 개시물의 범위를 제한하는 것으로 간주되지 않아야 한다는 것이 주목되어야 하는데, 이는 본 개시물이, 다른 균등하게 유효한 실시예들을 허용할 수 있기 때문이다.
[0007] 도 1은, 본원에서 설명되는 일 실시예에 따른, 유전체 필름들의 라디칼-기반 증착을 위한 장치의 단면도이다.
[0008] 도 2a-2c는, 본원에서 설명되는 실시예들에 따른 이중-채널 샤워헤드를 예시한다.
[0009] 이해를 용이하게 하기 위하여, 가능하면, 도면들에 공통되는 동일한 엘리먼트들을 나타내기 위해, 동일한 참조번호들이 사용되었다. 일 실시예에 개시되는 엘리먼트들이, 구체적인 언급 없이 다른 실시예들에서 유익하게 사용될 수 있다는 점이 고려된다.
[0007] 도 1은, 본원에서 설명되는 일 실시예에 따른, 유전체 필름들의 라디칼-기반 증착을 위한 장치의 단면도이다.
[0008] 도 2a-2c는, 본원에서 설명되는 실시예들에 따른 이중-채널 샤워헤드를 예시한다.
[0009] 이해를 용이하게 하기 위하여, 가능하면, 도면들에 공통되는 동일한 엘리먼트들을 나타내기 위해, 동일한 참조번호들이 사용되었다. 일 실시예에 개시되는 엘리먼트들이, 구체적인 언급 없이 다른 실시예들에서 유익하게 사용될 수 있다는 점이 고려된다.
[0010] 본원에서 개시되는 실시예들은 일반적으로, 유전체 필름들의 라디칼-기반 증착을 위한 장치를 포함한다. 장치는, 프로세싱 챔버, 프로세싱 챔버에 커플링된 라디칼 소스, 프로세싱 챔버에 배치된 기판 지지부, 및 라디칼 소스와 기판 지지부 사이에 배치된 이중-채널 샤워헤드를 포함한다. 이중-채널 샤워헤드는 복수의 튜브들 및 복수의 튜브들을 둘러싸는 내부 용적을 포함한다. 복수의 튜브들 및 내부 용적은 이중-채널 샤워헤드에 내장된(embedded) 하나 또는 그 초과의 채널들에 의해 둘러싸인다. 이중-채널 샤워헤드는, 하나 또는 그 초과의 채널들에 연결된 제 1 유입구, 및 내부 용적에 연결된 제 2 유입구를 더 포함한다. 제 2 유입구는, 가스들/라디칼들을, 하나 또는 그 초과의 채널들을 통과하지 않고 내부 용적으로 지향시키도록 구성된다.
[0011] 도 1은, 본원에서 설명되는 일 실시예에 따른, 유전체 필름들의 라디칼-기반 증착을 위한 장치(100)의 단면도이다. 일 실시예에서, 장치(100)는 프로세싱 챔버(102) 및 프로세싱 챔버(102)에 커플링된 라디칼 소스(104)를 포함한다. 라디칼 소스(104)는 라디칼들을 생성할 수 있는 임의의 적합한 소스일 수 있다. 라디칼 기반 CVD는 잘 제어된 성장 조건들, 낮은 열 예산, 무(free) 결함, 및 고품질 필름들의 장점들을 갖는다. 라디칼 소스(104)는, 원격 플라즈마 소스, 예컨대, 무선 주파수(RF) 또는 초고 무선 주파수(VHRF) 용량 결합 플라즈마(CCP) 소스, 유도 결합 플라즈마(ICP) 소스, 마이크로파 유도(MW) 플라즈마 소스, DC 글로 방전(glow discharge) 소스, 전자 싸이클로트론 공명(ECR) 챔버, 또는 고밀도 플라즈마(HDP) 챔버를 포함할 수 있다. 대안적으로, 라디칼 소스(104)는 열선 화학 기상 증착(HW-CVD) 챔버의 필라멘트 또는 자외선(UV) 소스일 수 있다. 라디칼 소스(104)는 하나 또는 그 초과의 가스 유입구들(106)을 포함할 수 있고, 라디칼 소스(104)는 라디칼 도관(108)에 의해 프로세싱 챔버(102)에 커플링될 수 있다. 라디칼-형성 가스들일 수 있는 하나 또는 그 초과의 프로세스 가스들은, 하나 또는 그 초과의 가스 유입구들(106)을 통해 라디칼 소스(104)에 들어갈 수 있다. 하나 또는 그 초과의 프로세스 가스들은 수소 함유 가스, 예컨대, 수소, H2O, 또는 암모니아를 포함할 수 있다. 라디칼 소스(104)에서 생성되는 라디칼들, 예컨대, 수소 라디칼들은 라디칼 도관(108)을 통해 프로세싱 챔버(102) 내로 이동한다.
[0012] 라디칼 도관(108)은, 또한 라디칼 공동(110), 정상부 플레이트(114), 덮개 림(rim)(116), 및 이중-채널 샤워헤드(118)를 포함하는 덮개 조립체(112)의 파트(part)이다. 라디칼 도관(108)은, 라디칼들에 대해 실질적으로 비반응성인 재료를 포함할 수 있다. 예컨대, 라디칼 도관(108)은 AlN, SiO2, Y2O3, MgO, 아노다이징된 Al2O3, 사파이어, 세라믹들(Al2O3, 사파이어, AlN, Y2O3, MgO, 또는 플라스틱들 중 하나 또는 그 초과를 함유함)을 포함할 수 있다. 적합한 SiO2 재료의 대표적인 예는 석영이다. 대안적으로 또는 부가적으로, 라디칼 도관(108)은, 동작 시에 라디칼들과 접촉하는 표면 상에 코팅을 가질 수 있다. 코팅은 또한, AlN, SiO2, Y2O3, MgO, 아노다이징된 Al2O3, 사파이어, 세라믹들(Al2O3, 사파이어, AlN, Y2O3, MgO, 또는 플라스틱들 중 하나 또는 그 초과를 함유함)을 포함할 수 있다. 코팅이 사용된다면, 코팅의 두께는 약 1㎛ 내지 약 1mm일 수 있다. 코팅은 스프레이 코팅 프로세스를 사용하여 적용될 수 있다. 라디칼 도관(108)은 라디칼 도관 지지 부재(120) 내에 배치되어 그에 의해 지지될 수 있다. 라디칼 도관 지지 부재(120)는, 덮개 림(116) 상에 놓이는 플레이트(114) 상에 배치될 수 있다.
[0013] 라디칼 공동(110)은 라디칼 도관(108) 아래에 포지셔닝되고 라디칼 도관(108)에 커플링되며, 라디칼 소스(104)에서 생성되는 라디칼들은 라디칼 도관(108)을 통해 라디칼 공동(110)으로 이동한다. 라디칼 공동(110)은 정상부 플레이트(114), 덮개 림(116), 및 이중-채널 샤워헤드(118)에 의해 정의된다. 선택적으로, 라디칼 공동(110)은 라이너(liner; 122)를 포함할 수 있다. 라이너(122)는, 덮개 림(116) 및 정상부 플레이트(114)의, 라디칼 공동(110) 내에 있는 표면들을 덮을 수 있다. 라이너(122)는, 라디칼들에 대해 실질적으로 비반응성인 재료를 포함할 수 있다. 예컨대, 라이너(122)는 AlN, SiO2, Y2O3, MgO, 아노다이징된 Al2O3, 사파이어, 세라믹들(Al2O3, 사파이어, AlN, Y2O3, MgO, 또는 플라스틱들 중 하나 또는 그 초과를 함유함)을 포함할 수 있다. 대안적으로 또는 부가적으로, 라디칼들과 접촉하는, 라디칼 공동(110)의 표면들은 라디칼들에 대해 실질적으로 비반응성인 재료로 구성될 수 있거나, 그러한 재료로 코팅될 수 있다. 예컨대, 표면들은 AlN, SiO2, Y2O3, MgO, 아노다이징된 Al2O3, 사파이어, 세라믹들(Al2O3, 사파이어, AlN, Y2O3, MgO, 또는 플라스틱들 중 하나 또는 그 초과를 함유함)로 구성될 수 있거나, 이들로 코팅될 수 있다. 코팅이 사용된다면, 코팅의 두께는 약 1㎛ 내지 약 1mm일 수 있다. 생성되는 라디칼들을 소모하지 않음으로써, 프로세싱 챔버(102)에 배치된 기판으로의 라디칼 플럭스(flux)가 증가된다.
[0014] 라디칼 분배 플레이트(123)는 라디칼 공동(110) 내에서 정상부 플레이트(114)와 이중-채널 샤워헤드(118) 사이에 배치될 수 있다. 라디칼 분배 플레이트(123)는 라이너(122)와 동일한 재료로 만들어질 수 있다. 라디칼 분배 플레이트(123)는 라디칼 유동 프로파일을 제어하는 데에 사용될 수 있다. 라디칼 분배 면에서, 라디칼 공동(110)에서의 라디칼 분배 플레이트(123)의 위치, 즉, 라디칼 분배 플레이트(123)와 정상부 플레이트(114) 사이의 거리, 및 라디칼 분배 플레이트(123)와 이중-채널 샤워헤드(118) 사이의 거리가 중요할 수 있다. 그런 다음에, 라디칼들은 프로세싱 영역(128) 내로 들어가기 위해, 이중-채널 샤워헤드(118)에 배치된 복수의 튜브들(124)을 통과한다. 이중-채널 샤워헤드(118)는, 복수의 튜브들(124)보다 직경이 더 작은 복수의 개구부들(126)을 더 포함한다. 복수의 개구부들(126)은, 복수의 튜브들(124)과 유체적으로 연통(in fluid communication)하지 않는 내부 용적(도시되지 않음)에 연결된다. 적어도 2개의 가스/라디칼 소스들(119, 121)이 이중-채널 샤워헤드(118)에 커플링될 수 있다. 이중-채널 샤워헤드(118)는 가열될 수 있거나 냉각될 수 있다. 일 실시예에서, 이중-채널 샤워헤드(118)는 섭씨 약 100도 내지 섭씨 약 250도의 온도로 가열된다. 다른 실시예에서, 이중-채널 샤워헤드(118)는 섭씨 약 25도 내지 섭씨 약 75도의 온도로 냉각된다. 이중-채널 샤워헤드(118)는 도 2에서 상세하게 설명된다.
[0015] 프로세싱 챔버(102)는 덮개 조립체(112), 챔버 본체(130), 및 지지 조립체(132)를 포함할 수 있다. 지지 조립체(132)는 챔버 본체(130) 내에 적어도 부분적으로 배치될 수 있다. 챔버 본체(130)는 프로세싱 챔버(102)의 내부에 대한 액세스(access)를 제공하기 위해, 슬릿 밸브 개구부(135)를 포함할 수 있다. 챔버 본체(130)는 챔버 본체(130)의 내부 표면들을 덮는 라이너(134)를 포함할 수 있다. 라이너(134)는, 라이너 내에 형성된, 진공 시스템(140)과 유체적으로 연통하는 펌핑 채널(138) 및 하나 또는 그 초과의 개구들(136)을 포함할 수 있다. 개구들(136)은, 프로세싱 챔버(102) 내의 가스들에 대한 출구를 제공하는, 가스들에 대한 펌핑 채널(138) 내로의 유동 경로를 제공한다. 대안적으로, 개구들 및 펌핑 채널은 챔버 본체(130)의 바닥부에 배치될 수 있고, 가스들은 챔버 본체(130)의 바닥부로부터 프로세싱 챔버(102) 밖으로 펌핑될 수 있다.
[0016] 진공 시스템(140)은 진공 포트(142), 밸브(144), 및 진공 펌프(146)를 포함할 수 있다. 진공 펌프(146)는 진공 포트(142)를 통해 펌핑 채널(138)과 유체적으로 연통한다. 개구들(136)은 펌핑 채널(138)이 챔버 본체(130) 내의 프로세싱 영역(128)과 유체적으로 연통하는 것을 허용한다. 프로세싱 영역(128)은 이중-채널 샤워헤드(118)의 하부 표면(148) 및 지지 조립체(132)의 상부 표면(150)에 의해 정의되고, 프로세싱 영역(128)은 라이너(134)에 의해 둘러싸인다.
[0017] 지지 조립체(132)는, 챔버 본체(130) 내에서의 프로세싱을 위해 기판(도시되지 않음)을 지지하기 위한 지지 부재(152)를 포함할 수 있다. 기판은, 예컨대, 300mm와 같은 임의의 표준 웨이퍼 크기일 수 있다. 대안적으로, 기판은, 450mm 또는 그보다 더 큰 것과 같이, 300mm보다 더 클 수 있다. 지지 부재(152)는 동작 온도에 따라 AlN 또는 알루미늄을 포함할 수 있다. 지지 부재(152)는 기판을 척킹(chuck)하도록 구성될 수 있고, 지지 부재(152)는 정전 척 또는 진공 척일 수 있다.
[0018] 지지 부재(152)는, 챔버 본체(130)의 바닥부 표면에 형성된 중앙에-로케이팅된 개구부(158)를 통해서 연장되는 샤프트(156)를 통하여 리프트 메커니즘(154)에 커플링될 수 있다. 리프트 메커니즘(154)은, 샤프트(156) 주위로부터 진공 누설을 방지하는 벨로우즈(bellows; 160)에 의해 챔버 본체(130)에 유연하게(flexibly) 밀봉될 수 있다. 리프트 메커니즘(154)은, 챔버 본체(130) 내에서 프로세스 포지션과 하부의 이송 포지션 사이에서 지지 부재(152)가 수직으로 이동되는 것을 허용한다. 이송 포지션은 슬릿 밸브(135)의 개구부의 살짝 아래에 있다. 동작 동안, 기판 표면에서의 라디칼 플럭스를 최대화하기 위해, 기판과 이중-채널 샤워헤드(118) 사이의 간격이 최소화될 수 있다. 리프트 메커니즘(154)은 샤프트(156)를 회전시킬 수 있으며, 이는 결과적으로 지지 부재(152)를 회전시키고, 지지 부재(152) 상에 배치된 기판으로 하여금 동작 동안 회전되도록 한다. 기판의 회전은 증착 균일성을 개선하는 것을 돕는다.
[0019] 하나 또는 그 초과의 가열 엘리먼트들(162) 및 냉각 채널(164)이 지지 부재(152)에 내장될 수 있다. 가열 엘리먼트들(162) 및 냉각 채널(164)은 동작 동안 기판의 온도를 제어하는 데에 사용될 수 있다. 가열 엘리먼트들(162)은 임의의 적합한 가열 엘리먼트들, 예컨대, 하나 또는 그 초과의 저항성 가열 엘리먼트들일 수 있다. 가열 엘리먼트들(162)은 하나 또는 그 초과의 전력 소스들(도시되지 않음)에 연결될 수 있다. 가열 엘리먼트들(162)은 다중-구역 가열 또는 냉각에 대한 독립적인 가열 및/또는 냉각 제어를 갖기 위해 개별적으로 제어될 수 있다. 다중-구역 가열 및 냉각에 대한 독립적인 제어를 갖는 능력을 이용하여, 기판 온도 프로파일은, 임의의 주어진 프로세스 조건들에서 증진될 수 있다. 냉각제는 기판을 냉각시키기 위해 채널(164)을 통해 유동할 수 있다. 지지 부재(152)는, 기판의 후면으로 냉각 가스를 유동시키기 위해 상부 표면(150)으로 연장되는 가스 통로들을 더 포함할 수 있다.
[0020] RF 소스는 이중-채널 샤워헤드(118) 또는 지지 부재(152)에 커플링될 수 있다. RF 소스는 저주파수, 고주파수, 또는 초고주파수일 수 있다. 일 실시예에서, 도 1에 도시된 바와 같이, 이중-채널 샤워헤드(118)는 RF 소스에 커플링되고, 지지 부재(152)는 접지된다(grounded). 다른 실시예에서, 이중-채널 샤워헤드(118)는 접지되고 지지 부재(152)는 RF 소스에 커플링된다. 양쪽 실시예에서, 동작 동안 이중-채널 샤워헤드(118)와 지지 부재(152) 사이의 프로세싱 영역(128)에서 용량 결합 플라즈마가 형성될 수 있다. 라디칼 소스가 원격 플라즈마 소스인 경우, 프로세싱 영역(128)에서 형성된 용량 결합 플라즈마는 라디칼 소스에서 형성된 플라즈마에 부가된다. 지지 부재(152)는 이온 충돌을 증가시키기 위해 DC 소스로 바이어싱될 수 있다. 따라서, 프로세싱 챔버(102)는 PECVD 챔버일 수 있고, 장치(100)는 주기적 프로세스(라디칼 기반 CVD와 PECVD를 교번함)를 수행할 수 있다.
[0021] 도 2a는, 본원에서 설명되는 실시예들에 따른 이중-채널 샤워헤드(118)의 단면도이다. 이중-채널 샤워헤드(118)는, 라디칼 공동(110)을 향하는 제 1 표면(202), 제 1 표면(202)에 대향하는 제 2 표면(204), 및 제 1 표면(202)과 제 2 표면(204)을 연결하는 제 3 표면을 가질 수 있다. 재 2 표면(204)은 지지 조립체(132)를 향할 수 있다. 제 1 표면(202)은 내부 용적(206)을 제공하기 위해 제 2 표면(204)으로부터 이격될 수 있다. 제 1 및 제 2 표면들(202, 204)은, 라디칼들에 대해 실질적으로 비반응성인 재료로 구성될 수 있거나, 그러한 재료로 코팅될 수 있다. 예컨대, 표면들(202, 204)은 AlN, SiO2, Y2O3, MgO, 아노다이징된 Al2O3, 사파이어, 세라믹들(Al2O3, 사파이어, AlN, Y2O3, MgO, 또는 플라스틱들 중 하나 또는 그 초과를 함유함)로 구성될 수 있거나, 이들로 코팅될 수 있다. 코팅이 사용된다면, 코팅의 두께는 약 1㎛ 내지 약 1mm일 수 있다. 복수의 튜브들(124)이 이중-채널 샤워헤드(118)에 형성될 수 있다. 튜브들(124)은 제 1 표면(202)으로부터 제 2 표면(204)으로 연장될 수 있고, 라디칼 소스(104)로부터 생성된 라디칼들은 튜브들(124)을 통과하여, 지지 조립체(132) 상에 배치된 기판에 도달할 수 있다. 내부 용적(206)은 복수의 튜브들(124)을 둘러쌀 수 있고, 하나 또는 그 초과의 환형 채널들(208, 210)은 내부 용적(206) 및 복수의 튜브들(124)을 둘러쌀 수 있다.
[0022] 내부 용적(206)은 하나 또는 그 초과의 환형 채널들(208, 210)과 유체적으로 연통할 수 있다. 복수의 개구부들(126)은 내부 용적(206)으로부터 제 2 표면(204)으로 연장될 수 있다. 하나 또는 그 초과의 환형 채널들(208, 210)은, 가스 소스(121)에 커플링되는 유입구(212)에 연결될 수 있다. 가스 소스(121)는 전구체 가스, 예컨대, 실리콘 함유 가스를 이중-채널 샤워헤드(118)에 제공할 수 있고, 전구체 가스는 하나 또는 그 초과의 환형 채널들(208, 210)을 통해 내부 용적(206)으로, 그리고 복수의 개구부들(126)을 통해 프로세싱 영역(128)으로 유동할 수 있다. 실리콘 함유 전구체 가스의 예들은, 유기실리콘(organosilicon), 테트라알킬 오르토실리케이트(tetraalkyl orthosilicate) 가스들, 및 디실록산(disiloxane)을 포함한다. 유기실리콘 가스들은, 적어도 하나의 탄소-실리콘 결합을 갖는 유기 화합물들의 가스들을 포함한다. 테트라알킬 오르토실리케이트 가스들은, SiO4 4- 이온에 부착된 4개의 알킬기들로 이루어진 가스들을 포함한다. 더 구체적으로, 하나 또는 그 초과의 전구체 가스들은, (디메틸실릴)(트리메틸실릴)메탄((dimethylsilyl)(trimethylsilyl)methane)((Me)3SiCH2SiH(Me)2), 헥사메틸디실란(hexamethyldisilane)((Me)3SiSi(Me)3), 트리메틸실란(trimethylsilane)((Me)3SiH), 테트라메틸실란(tetramethylsilane)((Me)4Si), 테트라에톡시실란(tetraethoxysilane)((EtO)4Si), 테트라메톡시실란(tetramethoxysilane)((MeO)4Si), 테트라키스-(트리메틸실릴)실란(tetrakis-(trimethylsilyl)silane)((Me3Si)4Si), (디메틸아미노)디메틸실란((dimethylamino)dimethylsilane)((Me2N)SiHMe2), 디메틸디에톡시실란(dimethyldiethoxysilane)((EtO)2Si(Me)2), 디메틸디메톡시실란(dimethyldimethoxysilane)((MeO)2Si(Me)2), 메틸트리메톡시실란(methyltrimethoxysilane)((MeO)3Si(Me)), 디메톡시테트라메틸-디실록산(dimethoxytetramethyl-disiloxane)(((Me)2Si(OMe))2O), 트리스(디메틸아미노)실란(tris(dimethylamino)silane)((Me2N)3SiH), 비스(디메틸아미노)메틸실란(bis(dimethylamino)methylsilane)((Me2N)2CH3SiH), 디실록산(disiloxane)((SiH3)2O), 및 이들의 조합들일 수 있다.
[0023] 복수의 튜브들(124)의 개구부들은 내부 용적(206)과 유체적으로 연통하지 않기 때문에, 복수의 튜브들(124)을 통과하는 라디칼들은 이중-채널 샤워헤드(118)의 전구체 가스와 혼합되지 않는다. 샤워헤드(118)는 서로 유체적으로 연통하지 않는 2개의 채널들을 포함하기 때문에, 샤워헤드(118)는 이중-채널 샤워헤드(118)이다. 복수의 튜브들(124) 각각은 약 0.10인치 내지 약 0.35인치의 내부 직경을 갖는다. 복수의 개구부들(126) 각각은 약 0.01인치 내지 약 0.04인치의 직경을 갖는다.
[0024] 하나 또는 그 초과의 환형 채널들(208, 210)은, 환형 채널들(208, 210)보다 훨씬 더 작은 단면을 갖는 하나 또는 그 초과의 연결 채널들(216)에 의해 연결될 수 있다. 이러한 구성은, 전구체 가스가 내부 용적(206)으로 그리고 개구부들(126) 밖으로 균등하게 분배되는 것을 돕는다. 그러나, 라디칼들이 유입구(212)에 들어가는 경우, 라디칼들은 큰 환형 채널(208)로부터 더 작은 연결 채널들(216)로 유동할 때 재결합할 수 있다. 라디칼 소스(104)에서 형성된 라디칼들과 구별되는 라디칼들에 경로를 제공하기 위해, 제 2 유입구(214)가 이중-채널 샤워헤드(118)에 형성되고, 제 2 유입구(214)는 내부 용적(206)에 연결되어, 하나 또는 그 초과의 환형 채널들(208, 210)을 바이패싱한다. 제 2 유입구(214)는 제 1 유입구(212)와 구별될 수 있고, 하나 또는 그 초과의 환형 채널들(208, 210)을 통과하지 않고 라디칼들을 라디칼 소스(119)로부터 내부 용적(206)으로 지향시키도록 구성될 수 있다. 제 1 유입구(212)는 제 3 표면에 형성되고, 하나 또는 그 초과의 환형 채널들(208, 210)에 연결된다. 일 실시예에서, 불소 라디칼들이 라디칼 소스(119)에서 생성되고 제 2 유입구(214)를 통해 내부 용적(206) 내로 도입된다. 그런 다음에 불소 라디칼들은 복수의 개구부들(126)을 통해 프로세싱 영역(128)으로 지향된다. 불소 라디칼들은 프로세싱 챔버(102)의 내부 표면들을 세정하는 데에 사용될 수 있다. 불소 라디칼들은, 라디칼 소스(104)의 수명을 개선하기 위해, 라디칼 소스(104)로부터 전달되지 않을 수 있다.
[0025] 도 2b는, 본원에서 설명되는 실시예들에 따른 이중-채널 샤워헤드(118)의 평면도이다. 이중-채널 샤워헤드(118)는 제 1 표면(202), 및 제 1 표면(202)으로부터 제 2 표면(204)으로 연장되는 복수의 튜브들(124)을 포함한다. 하나 또는 그 초과의 환형 채널들(208, 210) 및 내부 용적(206)은 모두 이중-채널 샤워헤드(118)에 내장되고, 따라서, 이중-채널 샤워헤드(118)의 평면도에는 도시되지 않는다.
[0026] 도 2c는, 본원에서 설명되는 실시예들에 따른 이중-채널 샤워헤드(118)의 저면도이다. 이중-채널 샤워헤드(118)는 제 2 표면(204), 제 1 표면(202)으로부터 제 2 표면(204)으로 연장되는 복수의 튜브들(124), 및 복수의 개구부들(126)을 포함한다. 하나 또는 그 초과의 환형 채널들(208, 210) 및 내부 용적(206)은 모두 이중-채널 샤워헤드(118)에 내장되고, 따라서, 이중-채널 샤워헤드(118)의 저면도에는 도시되지 않는다. 복수의 개구부들(126) 및 복수의 튜브들(124)의 어레인지먼트는 기판에 걸친 가스/라디칼 분배의 균일성을 증진시킬 수 있고, 프로세스 조건들에 기초하여 변할 수 있다.
[0027] 요약하면, 라디칼 기반 증착을 사용하여 유전체 필름들을 형성하기 위한 장치가 개시된다. 장치는 라디칼 소스에 커플링된 프로세싱 챔버를 포함할 수 있다. 프로세싱 챔버는, 복수의 튜브들, 튜브들을 둘러싸는 내부 용적, 및 튜브들 및 내부 용적을 둘러싸는 하나 또는 그 초과의 채널들을 갖는 이중-채널 샤워헤드를 포함할 수 있다. 이중-채널 샤워헤드는, 하나 또는 그 초과의 채널들에 연결된 제 1 유입구, 및 내부 용적에 연결된 제 2 유입구를 포함할 수 있다. 제 2 유입구는, 라디칼들을, 하나 또는 그 초과의 채널들을 통과하지 않고 내부 용적으로 지향시키도록 구성된다. 이러한 구성에서, 제 2 유입구로부터 들어오는 라디칼들은 하나 또는 그 초과의 채널들에서 재결합되지 않는다.
[0028] 전술한 내용은 실시예들에 관한 것이지만, 다른 그리고 추가적인 실시예들은, 그 기본 범위로부터 벗어나지 않고 안출될 수 있으며, 그 범위는 이하의 청구항들에 의해 결정된다.
Claims (20)
- 이중-채널 샤워헤드(dual-channel showerhead)를 포함하는 장치로서, 상기 이중-채널 샤워헤드는,
제 1 표면;
상기 제 1 표면에 반대되고(opposite), 내부 용적을 제공하기 위해 상기 제 1 표면으로부터 이격된 제 2 표면 - 상기 이중-채널 샤워헤드의 하나 또는 그 초과의 환형 채널들은 상기 내부 용적을 둘러쌈 -;
상기 제 1 표면과 상기 제 2 표면을 연결하는 제 3 표면;
상기 하나 또는 그 초과의 환형 채널들에 연결되고 상기 제 3 표면에 형성된 제 1 유입구;
상기 하나 또는 그 초과의 환형 채널들을 관통하지 않는 채 상기 내부 용적에 라디칼들을 지향시키도록 위치된 제 2 유입구 ― 상기 제 2 유입구는 상기 제 3 표면에 형성되고, 상기 제 1 유입구는 상기 하나 또는 그 초과의 환형 채널들의 상류에 있는 위치로 가스를 제공하도록 위치되고, 상기 제 2 유입구는 상기 하나 또는 그 초과의 환형 채널들의 하류에 있는 위치로 라디칼들을 제공하도록 위치됨 ― ; 및
상기 제 1 표면으로부터 상기 내부 용적을 통해 상기 제 2 표면으로 연장되는 복수의 튜브들을 포함하는,
이중-채널 샤워헤드를 포함하는 장치. - 제 1 항에 있어서,
상기 제 1 표면 및 상기 제 2 표면은, AlN, SiO2, Y2O3, MgO, 아노다이징된(anodized) Al2O3, 사파이어, 플라스틱들, 또는 Al2O3, 사파이어, AlN, Y2O3, 및 MgO 중 하나 또는 그 초과를 함유하는 세라믹들로 코팅되는,
이중-채널 샤워헤드를 포함하는 장치. - 제 1 항에 있어서,
상기 하나 또는 그 초과의 환형 채널들은 2개의 환형 채널들이고, 상기 2개의 환형 채널들은 하나 또는 그 초과의 연결 채널들에 의해 연결되는,
이중-채널 샤워헤드를 포함하는 장치. - 제 3 항에 있어서,
상기 하나 또는 그 초과의 연결 채널들 각각의 단면적은 상기 2개의 환형 채널들 각각의 단면적보다 더 작은,
이중-채널 샤워헤드를 포함하는 장치. - 제 1 항에 있어서,
상기 복수의 튜브들 각각은 0.10인치 내지 0.35인치의 내부 직경을 갖는,
이중-채널 샤워헤드를 포함하는 장치. - 제 5 항에 있어서,
상기 내부 용적으로부터 상기 제 2 표면으로 연장되는 복수의 개구부들을 더 포함하는,
이중-채널 샤워헤드를 포함하는 장치. - 제 6 항에 있어서,
상기 복수의 개구부들 각각은 0.01인치 내지 0.04인치의 직경을 갖는,
이중-채널 샤워헤드를 포함하는 장치. - 장치로서,
라디칼 소스(radical source); 및
상기 라디칼 소스에 커플링된 프로세싱 챔버를 포함하고,
상기 프로세싱 챔버는,
기판 지지부; 및
상기 라디칼 소스와 상기 기판 지지부 사이에 배치된 이중-채널 샤워헤드를 포함하며, 상기 이중-채널 샤워헤드는,
상기 라디칼 소스를 향하는(facing) 제 1 표면;
상기 기판 지지부를 향하고, 내부 용적을 제공하기 위해 상기 제 1 표면으로부터 이격된 제 2 표면 - 상기 이중-채널 샤워헤드의 하나 또는 그 초과의 환형 채널들은 상기 내부 용적을 둘러쌈 -;
상기 제 1 표면과 상기 제 2 표면을 연결하는 제 3 표면;
상기 하나 또는 그 초과의 환형 채널들에 연결되고 상기 제 3 표면에 형성된 제 1 유입구;
상기 하나 또는 그 초과의 환형 채널들을 관통하지 않는 채 상기 내부 용적에 라디칼들을 지향시키도록 위치된 제 2 유입구 ― 상기 제 2 유입구는 상기 제 3 표면에 형성되고, 상기 제 1 유입구는 상기 하나 또는 그 초과의 환형 채널들의 상류에 있는 위치로 가스를 제공하도록 위치되고, 상기 제 2 유입구는 상기 하나 또는 그 초과의 환형 채널들의 하류에 있는 위치로 라디칼들을 제공하도록 위치됨 ― ; 및
상기 제 1 표면으로부터 상기 내부 용적을 통해 상기 제 2 표면으로 연장되는 복수의 튜브들을 포함하는,
장치. - 제 8 항에 있어서,
상기 제 1 표면 및 상기 제 2 표면은, AlN, SiO2, Y2O3, MgO, 아노다이징된(anodized) Al2O3, 사파이어, 플라스틱들, 또는 Al2O3, 사파이어, AlN, Y2O3, 및 MgO 중 하나 또는 그 초과를 함유하는 세라믹들로 코팅되는,
장치. - 제 8 항에 있어서,
상기 하나 또는 그 초과의 환형 채널들은 2개의 환형 채널들이고, 상기 2개의 환형 채널들은 하나 또는 그 초과의 연결 채널들에 의해 연결되는,
장치. - 제 10 항에 있어서,
상기 하나 또는 그 초과의 연결 채널들 각각의 단면적은 상기 2개의 환형 채널들 각각의 단면적보다 더 작은,
장치. - 제 8 항에 있어서,
상기 복수의 튜브들 각각은 0.10인치 내지 0.35인치의 내부 직경을 갖는,
장치. - 제 12 항에 있어서,
상기 내부 용적으로부터 상기 제 2 표면으로 연장되는 복수의 개구부들을 더 포함하는,
장치. - 제 13 항에 있어서,
상기 복수의 개구부들 각각은 0.01인치 내지 0.04인치의 직경을 갖는,
장치. - 제 8 항에 있어서,
상기 이중-채널 샤워헤드는 RF 소스에 연결되고, 상기 기판 지지부는 접지되는(grounded),
장치. - 제 8 항에 있어서,
상기 이중-채널 샤워헤드는 접지되고, 상기 기판 지지부는 RF 소스에 연결되는,
장치. - 제 8 항에 있어서,
상기 기판 지지부는 하나 또는 그 초과의 가열 엘리먼트들 및 냉각 채널을 포함하는,
장치. - 제 8 항에 있어서,
상기 기판 지지부는 DC 소스에 연결되는,
장치. - 제 8 항에 있어서,
상기 기판 지지부는 회전 가능한,
장치. - 제 8 항에 있어서,
상기 프로세싱 챔버는 PECVD 챔버이고, 상기 장치는 주기적(cyclic) 프로세스를 수행할 수 있고, 상기 주기적 프로세스는 교번하는 라디칼 기반 CVD 및 PECVD를 포함하는,
장치.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462017950P | 2014-06-27 | 2014-06-27 | |
US62/017,950 | 2014-06-27 | ||
US14/468,665 US9840777B2 (en) | 2014-06-27 | 2014-08-26 | Apparatus for radical-based deposition of dielectric films |
US14/468,665 | 2014-08-26 | ||
PCT/US2015/031543 WO2015199843A1 (en) | 2014-06-27 | 2015-05-19 | Apparatus for radical-based deposition of dielectric films |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20170027799A KR20170027799A (ko) | 2017-03-10 |
KR102182034B1 true KR102182034B1 (ko) | 2020-11-23 |
Family
ID=54929891
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020177002449A KR102182034B1 (ko) | 2014-06-27 | 2015-05-19 | 유전체 필름들의 라디칼-기반 증착을 위한 장치 |
Country Status (4)
Country | Link |
---|---|
US (2) | US9840777B2 (ko) |
KR (1) | KR102182034B1 (ko) |
CN (2) | CN107675143B (ko) |
WO (1) | WO2015199843A1 (ko) |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9132436B2 (en) * | 2012-09-21 | 2015-09-15 | Applied Materials, Inc. | Chemical control features in wafer process equipment |
US20160138161A1 (en) * | 2014-11-19 | 2016-05-19 | Applied Materials, Inc. | Radical assisted cure of dielectric films |
TWI677929B (zh) * | 2015-05-01 | 2019-11-21 | 美商應用材料股份有限公司 | 用於形成膜堆疊的雙通道噴頭 |
US9741593B2 (en) | 2015-08-06 | 2017-08-22 | Applied Materials, Inc. | Thermal management systems and methods for wafer processing systems |
US10504700B2 (en) | 2015-08-27 | 2019-12-10 | Applied Materials, Inc. | Plasma etching systems and methods with secondary plasma injection |
US10204795B2 (en) * | 2016-02-04 | 2019-02-12 | Applied Materials, Inc. | Flow distribution plate for surface fluorine reduction |
US10504754B2 (en) * | 2016-05-19 | 2019-12-10 | Applied Materials, Inc. | Systems and methods for improved semiconductor etching and component protection |
US9865484B1 (en) | 2016-06-29 | 2018-01-09 | Applied Materials, Inc. | Selective etch using material modification and RF pulsing |
US9972695B2 (en) * | 2016-08-04 | 2018-05-15 | International Business Machines Corporation | Binary metal oxide based interlayer for high mobility channels |
WO2018031997A1 (en) * | 2016-08-12 | 2018-02-15 | Wisconsin Alumni Research Foundation | Methods and systems for transmission and detection of free radicals |
JP6764771B2 (ja) * | 2016-11-28 | 2020-10-07 | 東京エレクトロン株式会社 | 基板処理装置及び遮熱板 |
CN110050333B (zh) * | 2016-12-08 | 2023-06-09 | 应用材料公司 | 时间性原子层沉积处理腔室 |
US20180230597A1 (en) * | 2017-02-14 | 2018-08-16 | Applied Materials, Inc. | Method and apparatus of remote plasmas flowable cvd chamber |
US11276559B2 (en) | 2017-05-17 | 2022-03-15 | Applied Materials, Inc. | Semiconductor processing chamber for multiple precursor flow |
US11276590B2 (en) | 2017-05-17 | 2022-03-15 | Applied Materials, Inc. | Multi-zone semiconductor substrate supports |
US11306395B2 (en) * | 2017-06-28 | 2022-04-19 | Asm Ip Holding B.V. | Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus |
US20190051495A1 (en) * | 2017-08-10 | 2019-02-14 | Qiwei Liang | Microwave Reactor For Deposition or Treatment of Carbon Compounds |
US11328909B2 (en) | 2017-12-22 | 2022-05-10 | Applied Materials, Inc. | Chamber conditioning and removal processes |
US10943768B2 (en) * | 2018-04-20 | 2021-03-09 | Applied Materials, Inc. | Modular high-frequency source with integrated gas distribution |
US11437242B2 (en) | 2018-11-27 | 2022-09-06 | Applied Materials, Inc. | Selective removal of silicon-containing materials |
KR20210061846A (ko) * | 2019-11-20 | 2021-05-28 | 삼성전자주식회사 | 기판 처리 장치 및 이를 이용한 반도체 소자의 제조 방법 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09167755A (ja) * | 1995-12-15 | 1997-06-24 | Nec Corp | プラズマ酸化膜処理装置 |
JP2004335564A (ja) * | 2003-05-01 | 2004-11-25 | Japan Pionics Co Ltd | 気化器 |
KR101309334B1 (ko) * | 2004-08-02 | 2013-09-16 | 비코 인스트루먼츠 인코포레이티드 | 화학적 기상 증착 반응기용 멀티 가스 분배 인젝터 |
US8475625B2 (en) * | 2006-05-03 | 2013-07-02 | Applied Materials, Inc. | Apparatus for etching high aspect ratio features |
US8440049B2 (en) * | 2006-05-03 | 2013-05-14 | Applied Materials, Inc. | Apparatus for etching high aspect ratio features |
US20090095222A1 (en) * | 2007-10-16 | 2009-04-16 | Alexander Tam | Multi-gas spiral channel showerhead |
JP5192214B2 (ja) * | 2007-11-02 | 2013-05-08 | 東京エレクトロン株式会社 | ガス供給装置、基板処理装置および基板処理方法 |
US20090162261A1 (en) * | 2007-12-19 | 2009-06-25 | Kallol Baera | Plasma reactor gas distribution plate having a vertically stacked path splitting manifold |
CN105088191B (zh) | 2009-07-15 | 2018-07-13 | 应用材料公司 | Cvd 腔室的流体控制特征结构 |
KR20120090996A (ko) | 2009-08-27 | 2012-08-17 | 어플라이드 머티어리얼스, 인코포레이티드 | 인-시튜 챔버 세정 후 프로세스 챔버의 제염 방법 |
WO2011097178A2 (en) | 2010-02-02 | 2011-08-11 | Applied Materials, Inc. | Methods for nitridation and oxidation |
KR20110109216A (ko) * | 2010-03-30 | 2011-10-06 | (주)울텍 | 유도 결합형 플라즈마 소스형 샤워 헤드를 가지는 화학기상 증착 장치 |
US8551248B2 (en) * | 2010-04-19 | 2013-10-08 | Texas Instruments Incorporated | Showerhead for CVD depositions |
WO2011159690A2 (en) | 2010-06-15 | 2011-12-22 | Applied Materials, Inc. | Multiple precursor showerhead with by-pass ports |
CN102108547B (zh) * | 2010-12-31 | 2012-06-13 | 东莞市中镓半导体科技有限公司 | 一种多片大尺寸氢化物气相外延方法和装置 |
US20140027060A1 (en) * | 2012-07-27 | 2014-01-30 | Applied Matericals, Inc | Gas distribution apparatus for substrate processing systems |
US8889566B2 (en) | 2012-09-11 | 2014-11-18 | Applied Materials, Inc. | Low cost flowable dielectric films |
US20140099794A1 (en) * | 2012-09-21 | 2014-04-10 | Applied Materials, Inc. | Radical chemistry modulation and control using multiple flow pathways |
US9416450B2 (en) | 2012-10-24 | 2016-08-16 | Applied Materials, Inc. | Showerhead designs of a hot wire chemical vapor deposition (HWCVD) chamber |
-
2014
- 2014-08-26 US US14/468,665 patent/US9840777B2/en active Active
-
2015
- 2015-05-19 WO PCT/US2015/031543 patent/WO2015199843A1/en active Application Filing
- 2015-05-19 KR KR1020177002449A patent/KR102182034B1/ko active IP Right Grant
- 2015-05-19 CN CN201710941749.XA patent/CN107675143B/zh active Active
- 2015-05-19 CN CN201580034916.1A patent/CN106688078B/zh active Active
-
2017
- 2017-11-27 US US15/822,551 patent/US10480074B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN106688078B (zh) | 2020-02-28 |
US9840777B2 (en) | 2017-12-12 |
CN107675143A (zh) | 2018-02-09 |
CN106688078A (zh) | 2017-05-17 |
WO2015199843A1 (en) | 2015-12-30 |
US20180080125A1 (en) | 2018-03-22 |
CN107675143B (zh) | 2020-03-13 |
KR20170027799A (ko) | 2017-03-10 |
US10480074B2 (en) | 2019-11-19 |
US20150376788A1 (en) | 2015-12-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102182034B1 (ko) | 유전체 필름들의 라디칼-기반 증착을 위한 장치 | |
CN105659366B (zh) | 使用远程等离子体cvd技术的低温氮化硅膜 | |
US10276353B2 (en) | Dual-channel showerhead for formation of film stacks | |
US20190214228A1 (en) | Radical assisted cure of dielectric films | |
US20150167160A1 (en) | Enabling radical-based deposition of dielectric films | |
US9896326B2 (en) | FCVD line bending resolution by deposition modulation | |
KR20130093102A (ko) | 프로세스 챔버에서 가스의 유동을 제어하기 위한 장치 | |
CN117198935A (zh) | 具有气体分布及单独泵送的批量固化腔室 | |
US20160017487A1 (en) | Integrated pre-clean and deposition of low-damage layers | |
US20160017495A1 (en) | Plasma-enhanced and radical-based cvd of porous carbon-doped oxide films assisted by radical curing | |
KR102493945B1 (ko) | Teos 유동의 독립적 제어를 통한 증착 반경방향 및 에지 프로파일 튜닝가능성 | |
TWI774308B (zh) | 用於高頻處理的蓋堆疊 | |
KR20130078814A (ko) | 플라즈마 소스 및 이를 포함하는 기판처리장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
A302 | Request for accelerated examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |