KR102177925B1 - Method and appratus for electronic nonlinear equalization in intensity-modulation/direct-detection optical communication systems - Google Patents

Method and appratus for electronic nonlinear equalization in intensity-modulation/direct-detection optical communication systems Download PDF

Info

Publication number
KR102177925B1
KR102177925B1 KR1020190164416A KR20190164416A KR102177925B1 KR 102177925 B1 KR102177925 B1 KR 102177925B1 KR 1020190164416 A KR1020190164416 A KR 1020190164416A KR 20190164416 A KR20190164416 A KR 20190164416A KR 102177925 B1 KR102177925 B1 KR 102177925B1
Authority
KR
South Korea
Prior art keywords
nonlinear
electronic
quadratic
maximum sum
coefficients
Prior art date
Application number
KR1020190164416A
Other languages
Korean (ko)
Inventor
김훈
유유쿠이
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to KR1020190164416A priority Critical patent/KR102177925B1/en
Application granted granted Critical
Publication of KR102177925B1 publication Critical patent/KR102177925B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/504Laser transmitters using direct modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • H04B10/697Arrangements for reducing noise and distortion
    • H04B10/6971Arrangements for reducing noise and distortion using equalisation

Abstract

Various embodiments of the present invention relate to a method and apparatus for electronic nonlinear equalization in an intensity-modulation/direct-detection optical communication system, which may be configured to group some of nonlinear terms to reduce the number of quadratic coefficients that must be determined by using a function consisting of a plurality of quadratic nonlinear terms based on a matrix consisting of quadratic-coefficients in compensating for nonlinear distortion of an input signal.

Description

세기 변조/직접 검출 광 통신 시스템에서 전자 비선형 등화를 위한 방법 및 장치{METHOD AND APPRATUS FOR ELECTRONIC NONLINEAR EQUALIZATION IN INTENSITY-MODULATION/DIRECT-DETECTION OPTICAL COMMUNICATION SYSTEMS}Method and apparatus for electronic nonlinear equalization in intensity modulation/direct detection optical communication systems {METHOD AND APPRATUS FOR ELECTRONIC NONLINEAR EQUALIZATION IN INTENSITY-MODULATION/DIRECT-DETECTION OPTICAL COMMUNICATION SYSTEMS}

다양한 실시예들은 세기 변조/직접 검출 광 통신 시스템에서 전자 비선형 등화를 위한 방법 및 장치에 관한 것이다. Various embodiments relate to a method and apparatus for electronic nonlinear equalization in an intensity modulation/direct detection optical communication system.

직접 변조 레이저(direct modulated laser; DML)를 사용하여 구현되는 세기 변조(intensity-modulation; IM)/직접 검출(direct-detection; DD) 시스템은 가장 저렴한 광통신 시스템으로서 저비용의 단거리 전송에 흔히 활용된다. 전계 흡수 변조 레이저(electro-absorption modulated laser; EML) 또는 마하젠더(Mach-Zehnder) 변조기를 사용하는 외부 변조 시스템과 비교하여, DML은 낮은 구현 비용, 높은 출력 전력, 낮은 전력 소비량 및 작은 설치 공간을 특징으로 한다. 그러나 DML 기반 IM/DD 시스템은 레이저의 주파수 처프(chirp)와 광섬유 색분산의 상호작용으로 유발되는 파형 왜곡(waveform distortion)에 의하여 전송 성능이 제한된다. 이러한 파형 왜곡은 DD 수신기의 제곱법 검출(square-law detection)로 인해 본질적으로 비선형이며, 따라서 시스템의 전송 거리 또는 최대 전송 속도를 제한한다. The intensity-modulation (IM)/direct-detection (DD) system implemented using a direct modulated laser (DML) is the most inexpensive optical communication system and is commonly used for low-cost short-range transmission. Compared to an external modulation system using an electro-absorption modulated laser (EML) or Mach-Zehnder modulator, DML offers low implementation cost, high output power, low power consumption and small footprint. It is characterized. However, in the DML-based IM/DD system, the transmission performance is limited by the waveform distortion caused by the interaction between the frequency chirp of the laser and the color dispersion of the fiber. This waveform distortion is inherently non-linear due to the square-law detection of the DD receiver, thus limiting the transmission distance or maximum transmission rate of the system.

볼테라(Volterra) 시리즈 이론은 광범위한 실제 시스템에 대하여 비선형 등화기를 설계하는 대중적이고 일반적인 방법을 제공한다. 이를 활용하여 DML 기반 IM/DD 시스템의 파형 왜곡을 보상하는 방안이 제시되고 있다. 특히 DD 수신기의 제곱법 검출 특성에 따라 2차 이차 볼테라 비선형 등화기(Volterra nonlinear equalizer; VNLE)를 수신기에서 활용할 수 있다. 그러나, 이러한 비선형 등화기를 구현하는 데 매우 높은 복잡성이 있기 때문에, 비용에 민감한 DML 기반 IM/DD 시스템에는 적용하는데 큰 어려움이 있다.The Volterra series theory provides a popular and general way to design nonlinear equalizers for a wide range of real systems. Using this, a method for compensating the waveform distortion of the DML-based IM/DD system is proposed. In particular, a second-order Volterra nonlinear equalizer (VNLE) can be used in the receiver according to the square method detection characteristic of the DD receiver. However, since there is a very high complexity in implementing such a nonlinear equalizer, there is a great difficulty in applying it to a cost-sensitive DML-based IM/DD system.

다양한 실시예들은, 구현 복잡성이 감소되는 전자 비선형 등화 장치를 제공할 수 있다. Various embodiments may provide an electronic nonlinear equalization device with reduced implementation complexity.

다양한 실시예들은, 비선형 왜곡을 보상하기 위한 성능 열화를 최소화하면서, 구현 복잡성을 획기적으로 감소시킬 수 있는 전자 비선형 등화 장치를 제공할 수 있다. Various embodiments may provide an electronic nonlinear equalization device capable of dramatically reducing implementation complexity while minimizing performance degradation for compensating for nonlinear distortion.

다양한 실시예들에 따른 전자 비선형 등화 장치는, 복수 개의 1차 선형 항(term)들과 2차 비선형 항들로 이루어진 함수를 이용할 수 있다. 다양한 실시예들에 따르면, 전자 비선형 등화 장치는, 입력 신호의 비선형 왜곡을 보상하도록 구성된 비선형 등화기, 및 상기 2차 비선형 항들 중 일부를 그룹화 함으로써 볼테라 비선형 등화기에서 결정되어야 하는 항의 계수들, 즉 이차-계수들의 숫자를 감소시키도록 구성된 그룹화 모듈을 포함할 수 있다. 이는 볼테라 비선형 등화기의 계수를 행렬로 표현할 때, 행렬의 대각선 수를 감소시키는 것을 의미할 수 있다. The electronic nonlinear equalization apparatus according to various embodiments may use a function consisting of a plurality of first-order linear terms and second-order nonlinear terms. According to various embodiments, the electronic nonlinear equalizer includes a nonlinear equalizer configured to compensate for nonlinear distortion of an input signal, and coefficients of terms to be determined in a Volterra nonlinear equalizer by grouping some of the second-order nonlinear terms, That is, a grouping module configured to reduce the number of quadratic-coefficients may be included. This may mean reducing the number of diagonal lines of the matrix when the coefficients of the Volterra nonlinear equalizer are expressed as a matrix.

다양한 실시예들에 따른 전자 비선형 등화 장치의 동작 방법은, 이차-계수들을 발생시키는 단계, 및 상기 이차-계수들로 이루어지는 행렬을 기반으로, 복수 개의 2차 비선형 항들로 이루어진 함수를 이용하여, 입력 신호의 비선형 왜곡을 보상하는 단계를 포함하고, 상기 비선형 왜곡을 보상하는 단계는, 상기 비선형 항들 중 일부를 그룹화하여, 상기 결정해야 하는 이차-계수들의 수를 감소시키는 단계, 및 상기 감소된 수의 이차-계수들을 기반으로, 상기 비선형 왜곡을 보상하는 단계를 포함할 수 있다.The method of operating an electronic nonlinear equalization apparatus according to various embodiments includes the steps of generating second-order coefficients, and using a function consisting of a plurality of second-order nonlinear terms based on a matrix consisting of the second-order coefficients, Compensating for nonlinear distortion of the signal, wherein compensating for nonlinear distortion includes grouping some of the nonlinear terms to reduce the number of quadratic-coefficients to be determined, and the reduced number of It may include the step of compensating for the nonlinear distortion based on the second-order coefficients.

다양한 실시예들에 따르면, 전자 비선형 등화 장치에서 이용되는 이차-계수 행렬의 대각선들의 수가 감소될 수 있다. 이로 인해, 전자 비선형 등화 장치가 DML 기반 IM/DD 시스템에 적용됨에 있어서, 구현 복잡성이 크게 감소될 수 있다. 이 때 전자 비선형 등화 장치에 대해, 비선형 왜곡을 보상하기 위한 성능의 희생 거의 없이 구현 복잡성이 대폭 감소될 수 있다.According to various embodiments, the number of diagonal lines of a quadratic-coefficient matrix used in the electronic nonlinear equalization apparatus may be reduced. For this reason, when the electronic nonlinear equalization device is applied to a DML-based IM/DD system, the implementation complexity can be greatly reduced. In this case, for the electronic nonlinear equalization device, implementation complexity can be greatly reduced without sacrificing performance for compensating for nonlinear distortion.

도 1은 일반적인 전자 비선형 등화 장치를 도시하는 도면이다.
도 2는 도 1의 비선형 등화기를 도시하는 도면이다.
도 3은 다양한 실시예들에 따른 광 통신 시스템을 도시하는 도면이다.
도 4는 다양한 실시예들에 따른 송신 장치를 도시하는 도면이다.
도 5는 다양한 실시예들에 따른 수신 장치를 도시하는 도면이다.
도 6은 다양한 실시예들에 따른 전자 비선형 등화 장치를 도시하는 도면이다.
도 7은 도 6의 비선형 등화기를 도시하는 도면이다.
도 8은 도 6의 그룹 깊이 검색 모듈을 설명하기 위한 도면이다.
도 9는 도 6의 그룹 깊이 검색 모듈을 도시하는 도면이다.
도 10은 다양한 실시예들에 따른 전자 비선형 등화 장치의 동작 방법을 도시하는 도면이다.
도 11은 다양한 실시예들에 따른 전자 비선형 등화 장치의 성능을 설명하기 위한 도면이다.
1 is a diagram showing a general electronic nonlinear equalization device.
FIG. 2 is a diagram illustrating the nonlinear equalizer of FIG. 1.
3 is a diagram illustrating an optical communication system according to various embodiments.
4 is a diagram illustrating a transmission device according to various embodiments.
5 is a diagram illustrating a receiving device according to various embodiments.
6 is a diagram illustrating an electronic nonlinear equalization device according to various embodiments.
7 is a diagram illustrating the nonlinear equalizer of FIG. 6.
8 is a diagram illustrating a group depth search module of FIG. 6.
9 is a diagram illustrating a group depth search module of FIG. 6.
10 is a diagram illustrating a method of operating an electronic nonlinear equalization device according to various embodiments.
11 is a diagram for describing performance of an electronic nonlinear equalization device according to various embodiments.

이하, 본 문서의 다양한 실시예들이 첨부된 도면을 참조하여 설명된다. Hereinafter, various embodiments of the present document will be described with reference to the accompanying drawings.

도 1은 일반적인 전자 비선형 등화 장치(100)를 도시하는 도면이다. 도 2는 도 1의 비선형 등화기(110)를 도시하는 도면이다. 일반적으로 비선형 등화 장치는 선형 등화부와 비선형 등화부로 구분된다. 도 1은 그 중 비선형 등화부를 도시한 것으로 입력 신호 x(n)은 선형 등화부의 출력으로 볼 수 있다. 본 발명에서는 잘 알려진 선형 등화부 부분은 생략하고 논의한다. 그럼에도 불구하고 실제 시스템에서는 선형 등화기 이후에 도 1과 같은 비선형 등화기가 위치한 것으로 이해할 수 있다.1 is a diagram illustrating a general electronic nonlinear equalization device 100. FIG. 2 is a diagram illustrating the nonlinear equalizer 110 of FIG. 1. In general, a nonlinear equalization device is divided into a linear equalizer and a nonlinear equalizer. 1 shows a nonlinear equalizer among them, and the input signal x(n) can be viewed as an output of the linear equalizer. In the present invention, a well-known linear equalizer portion is omitted and discussed. Nevertheless, in an actual system, it can be understood that the nonlinear equalizer as shown in FIG. 1 is located after the linear equalizer.

도 1을 참조하면, 전자 비선형 등화 장치(100)는 비선형 등화기(110)와 계수 업데이트 모듈(120)을 포함할 수 있다. 비선형 등화기(110)는 계수 업데이트 모듈(120)로부터 획득된 계수(coefficient)들의 행렬을 기반으로, 비선형 왜곡을 보상할 수 있다. 일 예로서 비선형 등화기(110)는 대각선-가지치기 비선형 등화기(diagonally-pruned VNLE; DP VNLE)로 도 2에 도시된 바와 같이 구현될 수 있다. 이 때 비선형 등화기(110)의 유한 임펄스 응답(finite impulse response; FIR) 모듈(230)이 상삼각(upper triangular) 이차-계수 행렬(quadratic-coefficient matrix)의 주(main) 대각선으로부터 멀리 떨어진 대각선들의 계수들을 0으로 설정함으로써, VNLE의 복잡성을 줄일 수 있다. 또한 DP VNLE의 특별한 예로서 다항식 비선형 등화기(polynomial nonlinear equalizer; PNLE)일 수 있으며, 이 때 이차-계수 행렬은 대각선 행렬일 수 있다. 계수 업데이트 모듈(120)은 훈련 시퀀스(training sequence)(121) 또는 결정 모듈(decision module)(123)을 사용하여, 계수 업데이트 알고리즘을 통해 계수들을 획득할 수 있다.Referring to FIG. 1, the electronic nonlinear equalization apparatus 100 may include a nonlinear equalizer 110 and a coefficient update module 120. The nonlinear equalizer 110 may compensate for nonlinear distortion based on a matrix of coefficients obtained from the coefficient update module 120. As an example, the nonlinear equalizer 110 may be implemented as shown in FIG. 2 as a diagonally-pruned nonlinear equalizer (diagonally-pruned VNLE). At this time, the finite impulse response (FIR) module 230 of the nonlinear equalizer 110 is a diagonal distance away from the main diagonal of the upper triangular quadratic-coefficient matrix. By setting the coefficients of 0 to 0, the complexity of the VNLE can be reduced. In addition, as a special example of the DP VNLE, a polynomial nonlinear equalizer (PNLE) may be used. In this case, the quadratic-coefficient matrix may be a diagonal matrix. The coefficient update module 120 may obtain coefficients through a coefficient update algorithm using a training sequence 121 or a decision module 123.

상술된 바에 따르면, 전자 비선형 등화 장치(100)가 간단한 구조, 즉 감소된 복잡성으로 구현될 수 있다. 이는 예를 들면 도 2에 포함되는 항의 개수를 감소시킴으로써 구현될 수 있다. 즉, W의 개수를 낮춤으로써 구현 복잡도를 줄일 수 있다. 그러나, 낮은 복잡성은 비선형 등화기(110)의 성능을 상당히 희생시킬 수 있다. 예를 들면, 비선형 등화기(110)가 DML 기반 IM/DD 시스템에서 2 차(2nd-order) DP VNLE로 적용될 때, 신호와 신호의 시간 적분 사이의 2 차 비팅 항(beating term)으로 인해, 필요한 대각선들의 수, 즉 W가 작지 않아야 하는 문제가 있다. 여기에서 비팅 항이란 x(n)과 x(n-k)와 같이 서로 다른 시간에 샘플된 신호의 곱으로 표현된 항을 의미한다. 즉, x(n)·x(n-k) 항을 뜻한다. 이로 인해, DML 기반 IM/DD 시스템에서 사용하기 위한 2 차 DP VNLE의 구현 복잡성이 증대될 수 있다. As described above, the electronic nonlinear equalization device 100 can be implemented with a simple structure, that is, reduced complexity. This can be implemented, for example, by reducing the number of terms included in FIG. 2. That is, implementation complexity can be reduced by reducing the number of W. However, the low complexity can significantly sacrifice the performance of the nonlinear equalizer 110. For example, when the nonlinear equalizer 110 is applied as a 2nd-order DP VNLE in a DML-based IM/DD system, due to the 2nd order beating term between the signal and the time integration of the signal, There is a problem that the number of required diagonals, that is, W should not be small. Here, the beating term means a term expressed as the product of signals sampled at different times, such as x(n) and x(n-k). That is, it means the term x(n)·x(n-k). Due to this, the implementation complexity of the secondary DP VNLE for use in the DML-based IM/DD system may increase.

도 3은 다양한 실시예들에 따른 광 통신 시스템(300)을 도시하는 도면이다. 3 is a diagram illustrating an optical communication system 300 according to various embodiments.

도 3을 참조하면, 다양한 실시예들 따른 광 통신 시스템(300)은 직접 변조 레이저(direct modulated laser; DML) 기반 세기 변조(intensity-modulation; IM)/직접 검출(direct-detection; DD) 시스템일 수 있다. 이러한 광 통신 시스템(300)은 복수 개의 전자 장치(310, 320)들, 즉 송신 장치(310)와 수신 장치(320)를 포함할 수 있다. 이 때 송신 장치(310)와 수신 장치(320)는 광 섬유(330)를 통해 통신할 수 있다. 그리고, 송신 장치(310)와 수신 장치(320)는 광 섬유(330)의 광섬유 채널(fiber channel)을 통해 인터페이스를 수행할 수 있다. 여기서, 송신 장치(310)는 DML 기반 송신 장치일 수 있다. 3, an optical communication system 300 according to various embodiments is a direct modulated laser (DML) based intensity-modulation (IM)/direct-detection (DD) system. I can. The optical communication system 300 may include a plurality of electronic devices 310 and 320, that is, a transmission device 310 and a reception device 320. In this case, the transmitting device 310 and the receiving device 320 may communicate through the optical fiber 330. In addition, the transmitting device 310 and the receiving device 320 may perform an interface through an optical fiber channel of the optical fiber 330. Here, the transmission device 310 may be a DML-based transmission device.

도 4는 다양한 실시예들에 따른 송신 장치(310)를 도시하는 도면이다. 4 is a diagram illustrating a transmission device 310 according to various embodiments.

도 4를 참조하면, 다양한 실시예들에 따른 송신 장치(310)는 신호 발생 유닛(410), 전자 비선형 등화 유닛(420), 디지털-아날로그 변환 유닛(430) 및 DML 기반 세기 변조 유닛(440)을 포함할 수 있다. 신호 발생 유닛(410)은 송신을 위한 신호를 생성할 수 있다. 전자 비선형 등화 유닛(420)은 선형 등화기 및 비선형 등화기를 포함할 수 있다. 선형 등화기는 광섬유(330)에서 발생할 것으로 예상되는 왜곡을 미리 선제적으로 보상(pre-compensation)하는 역할을 수행할 수 있다. 비선형 등화기는 신호 발생 유닛(410)으로부터 입력되는 신호에 대해 비선형 왜곡을 보정할 수 있다. 디지털-아날로그 변환 유닛(430)은 전자 비선형 등화 유닛(420)으로부터 입력되는 신호에 대해 디지털-아날로그 변환을 수행할 수 있다. DML 기반 세기 변조 유닛(440)은 디지털-아날로그 변환 유닛(430)으로부터 입력되는 신호에 대해 세기 변조(intensity modulation; IM)를 수행할 수 있다. 이를 통해, 송신 장치(310)가 DML 기반 세기 변조 유닛(440)에서 출력되는 신호를 기반으로, 수신 장치(320)로 신호를 송신할 수 있다. Referring to FIG. 4, a transmission device 310 according to various embodiments includes a signal generating unit 410, an electronic nonlinear equalization unit 420, a digital-analog conversion unit 430, and a DML-based intensity modulation unit 440. It may include. The signal generation unit 410 may generate a signal for transmission. The electronic nonlinear equalization unit 420 may include a linear equalizer and a nonlinear equalizer. The linear equalizer may pre-compensate distortion expected to occur in the optical fiber 330 in advance. The nonlinear equalizer may correct nonlinear distortion for a signal input from the signal generation unit 410. The digital-analog conversion unit 430 may perform digital-analog conversion on a signal input from the electronic nonlinear equalization unit 420. The DML-based intensity modulation unit 440 may perform intensity modulation (IM) on a signal input from the digital-analog conversion unit 430. Through this, the transmission device 310 may transmit a signal to the reception device 320 based on the signal output from the DML-based intensity modulation unit 440.

도 5는 다양한 실시예들에 따른 수신 장치(320)를 도시하는 도면이다. 5 is a diagram illustrating a receiving device 320 according to various embodiments.

도 5를 참조하면, 다양한 실시예들에 따른 수신 장치(320)는 직접 검출 유닛(510), 아날로그-디지털 변환 유닛(520), 전자 비선형 등화 유닛(530) 및 데이터 복구 유닛(540)을 포함할 수 있다. 직접 검출 유닛(510)은 송신 장치(310)로부터 수신되는 신호에 대해 직접 검출(direct detection; DD)을 수행할 수 있다. 아날로그-디지털 변환 유닛(520)은 직접 검출 유닛(510)으로부터 입력되는 신호에 대해 아날로그-디지털 변환을 수행할 수 있다. 전자 비선형 등화 유닛(530)은 선형 등화기 및 비선형 등화기를 포함할 수 있다. 선형 등화기는 광섬유(330)에서 발생할 것으로 예상되는 왜곡을 미리 선제적으로 보상하는 역할을 수행할 수 있다. 비선형 등화기는 아날로그-디지털 변환 유닛(530)으로부터 입력되는 신호에 대해 비선형 왜곡을 보정할 수 있다. 데이터 복구 유닛(540)은 전자 비선형 등화 유닛(530)으로부터 입력되는 신호로부터 데이터를 복구할 수 있다. Referring to FIG. 5, a receiving device 320 according to various embodiments includes a direct detection unit 510, an analog-digital conversion unit 520, an electronic nonlinear equalization unit 530, and a data recovery unit 540. can do. The direct detection unit 510 may perform direct detection (DD) on a signal received from the transmission device 310. The analog-to-digital conversion unit 520 may directly perform analog-to-digital conversion on a signal input from the detection unit 510. The electronic nonlinear equalization unit 530 may include a linear equalizer and a nonlinear equalizer. The linear equalizer may preemptively compensate for distortion expected to occur in the optical fiber 330. The nonlinear equalizer may correct nonlinear distortion for a signal input from the analog-to-digital conversion unit 530. The data recovery unit 540 may recover data from a signal input from the electronic nonlinear equalization unit 530.

도 6은 다양한 실시예들에 따른 전자 비선형 등화 장치(600)를 도시하는 도면이다. 도 7은 도 6의 비선형 등화기(610)를 도시하는 도면이다. 도 8은 도 6의 그룹 깊이 검색 모듈(630)을 설명하기 위한 도면이다. 도 9는 도 6의 그룹 깊이 검색 모듈(630)을 도시하는 도면이다.6 is a diagram illustrating an electronic nonlinear equalization device 600 according to various embodiments. FIG. 7 is a diagram illustrating the nonlinear equalizer 610 of FIG. 6. FIG. 8 is a diagram illustrating the group depth search module 630 of FIG. 6. 9 is a diagram illustrating the group depth search module 630 of FIG. 6.

도 6을 참조하면, 다양한 실시예들에 따른 전자 비선형 등화 장치(600)는 송신 장치(310)의 전자 비선형 등화 유닛(420) 또는 수신 장치(320)의 전자 비선형 등화 유닛(530) 중 적어도 어느 하나에 적용될 수 있다. 전자 비선형 등화 장치(600)는 복수 개의 1차 선형 항들과 2차 비선형 항들로 이루어진 함수를 이용할 수 있다. 전자 비선형 등화 장치(600)는 비선형 등화기(610), 계수 업데이트 모듈(620) 및 그룹 깊이 검색 모듈(630)을 포함할 수 있다. 6, the electronic nonlinear equalization device 600 according to various embodiments includes at least one of the electronic nonlinear equalization unit 420 of the transmission device 310 or the electronic nonlinear equalization unit 530 of the reception device 320. Can be applied to one. The electronic nonlinear equalization device 600 may use a function consisting of a plurality of first-order linear terms and second-order nonlinear terms. The electronic nonlinear equalization apparatus 600 may include a nonlinear equalizer 610, a coefficient update module 620, and a group depth search module 630.

비선형 등화기(610)는 대각선-그룹화 VNLE(diagonally-grouped VNLE; DG VNLE)일 수 있다. 비선형 등화기(610)는 계수 업데이트 모듈(620)로부터의 계수(coefficient)들과 그룹 깊이 검색 모듈(630)로부터의 최적의 그룹 깊이(optimized group-depth), 즉 Q 값을 기반으로, 입력 신호에 대해 비선형 왜곡을 보상할 수 있다. 비선형 등화기(610)는 입력 신호의 비선형 왜곡을 보상하도록 구성되며, 2차 비선형 항들 중 일부를 그룹화함으로써, 볼테라 비선형 등화기에서 결정되어야 하는 항의 계수들, 즉 이차-계수들의 숫자를 감소시킬 수 있다. 이는 볼테라 비선형 등화기의 계수를 일렬로 표현할 때, 행렬의 대각선 수를 감소시키는 것을 의미할 수 있다. 이 때 비선형 등화기(610)가 DML 기반 IM/DD 시스템에서 2 차 DG VNLE로 적용될 때, 하기 [수학식 1]과 같이 비선형 왜곡을 보상할 수 있다. The nonlinear equalizer 610 may be a diagonally-grouped VNLE (DG VNLE). The nonlinear equalizer 610 is based on coefficients from the coefficient update module 620 and the optimized group-depth from the group depth search module 630, that is, the input signal. Nonlinear distortion can be compensated for. The nonlinear equalizer 610 is configured to compensate for nonlinear distortion of the input signal, and by grouping some of the second-order nonlinear terms, the coefficients of the term to be determined in the Volterra nonlinear equalizer, that is, the number of quadratic-coefficients can be reduced. I can. This may mean reducing the number of diagonal lines of the matrix when the coefficients of the Volterra nonlinear equalizer are expressed in a line. In this case, when the nonlinear equalizer 610 is applied as a secondary DG VNLE in a DML-based IM/DD system, it can compensate for nonlinear distortion as shown in [Equation 1] below.

Figure 112019127898661-pat00001
Figure 112019127898661-pat00001

여기서, m, k, w는 시간 인덱스로서 정수값을 가지고, y(n)과 x(n)은 각각 비선형 등화기(610)에 n 번째로 입력되는 신호와 비선형 등화기(610)로부터 n 번째로 출력되는 신호를 나타내고, Lp와 hp는 p(p=1, 2) 차 항의 메모리 길이와 계수를 나타내고, Q는 그룹 깊이(group depth)를 나타낼 수 있다. L2가 채널 길이일 때, 2≤Q≤L2-W+1 이며, W≥1일 수 있다. 상기 [수학식 1]의 가장 간단한 형태는, W=1일 때 획득되며, 하기 [수학식 2]와 같이 우측의 두 번째 항이 사라질 수 있다. Here, m, k, and w have an integer value as a time index, and y(n) and x(n) are the n-th signal input to the nonlinear equalizer 610 and the n-th from the nonlinear equalizer 610, respectively. Denotes a signal output as, L p and h p denote the memory length and coefficient of the order p(p=1, 2), and Q denotes a group depth. When L 2 is the channel length, 2 ≦Q≦L 2 -W+1 may be, and W≧1. The simplest form of [Equation 1] is obtained when W = 1, and the second term on the right may disappear as shown in [Equation 2] below.

Figure 112019127898661-pat00002
Figure 112019127898661-pat00002

여기서, 2≤Q≤L2일 수 있다. Here, 2≤Q≤L2 may be.

기존의 2차 DP VNLE는 Q=1인 DG VNLE의 특수한 경우일 수 있다. 그러나, Q≥2일 때, DG VNLE는 상기 [수학식 1]에서 우측의 세 번째 항에 표시된 대로, 교차-비팅(cross-beating) 항인 x(n-k)·x(n-k-W+1)을 x(n-k)·∑x(n-k-w)로 확장하는 한편, 나머지 교차-비팅 항은 변경되지 않을 수 있다. 새로 추가된 항은 DML 기반 IM/DD 시스템에서 DML의 편차적 처프(adiabatic chirp)와 섬유 분산 사이의 상호 작용으로부터 발생하는 비선형 왜곡을 보상하는 데 사용될 수 있다. The existing secondary DP VNLE may be a special case of DG VNLE with Q=1. However, when Q≥2, DG VNLE uses the cross-beating term x(nk)·x(nk-W+1) as indicated in the third term on the right in [Equation 1]. While expanding to x(nk)·∑x(nkw), the remaining cross-beating terms may remain unchanged. The newly added term can be used to compensate for the nonlinear distortion arising from the interaction between the adiabatic chirp of DML and the fiber dispersion in a DML-based IM/DD system.

다양한 실시예들에 따르면, 일부 비팅 항들, 예컨대 유사한 계수들을 갖는 비팅 항들이 h2에 해당하는 이차-계수(quadratic coefficient)들의 수를 줄이기 위해, 그룹화될 수 있다. 즉 기존의 DP VNLE와 비교하여, DG VNLE는 이차-계수들을 덜 요구하므로, 구현 복잡성이 크게 감소될 수 있다. According to various embodiments, some beating terms, such as beating terms with similar coefficients, may be grouped to reduce the number of quadratic coefficients corresponding to h 2 . That is, compared to the existing DP VNLE, the DG VNLE requires less quadratic-coefficients, so implementation complexity can be greatly reduced.

예를 들면, 비선형 등화기(610)는, 도 7에 도시된 바와 같이 구현될 수 있다. 비선형 등화기(610)는 지연 모듈(710) 및 그룹화 모듈(720) 및 FIR(finite impulse response) 모듈(730)을 포함할 수 있다. 지연 모듈(710)은 입력 신호를 지연시킬 수 있다. 그룹화 모듈(720)은 그룹 깊이, 즉 Q 값을 기반으로, 일부 비팅 항들을 그룹화할 수 있다. FIR 모듈(730)은 상삼각(upper triangular) 이차-계수 행렬(quadratic-coefficient matrix)의 주(main) 대각선으로부터 멀리 떨어진 대각선들의 계수들을 0으로 설정함으로써, VNLE의 복잡성을 줄일 수 있다. 예를 들면, FIR 모듈(730)은 FIR 디지털 필터를 포함할 수 있다. For example, the nonlinear equalizer 610 may be implemented as shown in FIG. 7. The nonlinear equalizer 610 may include a delay module 710 and a grouping module 720 and a finite impulse response (FIR) module 730. The delay module 710 may delay the input signal. The grouping module 720 may group some beating terms based on a group depth, that is, a Q value. The FIR module 730 may reduce the complexity of the VNLE by setting coefficients of diagonal lines far from the main diagonal of the upper triangular quadratic-coefficient matrix to 0. For example, the FIR module 730 may include an FIR digital filter.

계수 업데이트 모듈(620)은 비선형 등화기(610)에 계수들을 제공할 수 있다. 계수들은 적응형 알고리즘(adaptive algorithm)에 의해 업데이트되거나, 채널 응답을 사용하여 평균 제곱 오차(mean square error; MMSE) 솔루션의 분석적 표현에 의해 계산될 수 있다. 이를 위해, 계수 업데이트 모듈(620)은 훈련 시퀀스(training sequence)(621) 또는 결정 모듈(decision module)(623)을 사용하여, 계수들을 획득할 수 있다. 예를 들면, 계수 업데이트 모듈(620)은 최소 평균 제곱(lest mean square; LMS) 또는 순환 최소 자승(recursive least square; RLS)과 같은 계수 업데이트 알고리즘을 통해 계수들을 획득할 수 있다. The coefficient update module 620 may provide coefficients to the nonlinear equalizer 610. The coefficients can be updated by an adaptive algorithm or can be computed by an analytic representation of a mean square error (MMSE) solution using the channel response. To this end, the coefficient update module 620 may obtain coefficients by using a training sequence 621 or a decision module 623. For example, the coefficient update module 620 may obtain coefficients through a coefficient update algorithm such as a least mean square (LMS) or a recursive least square (RLS).

그룹 깊이 검색 모듈(630)은 비선형 등화기(610)에 최적의 그룹 깊이(optimized group-depth), 즉 Q 값을 제공할 수 있다. 최적의 그룹 깊이, 즉 Q 값은 비트 오류 비율(bit-error ratio; BER) 성능을 측정하거나, Q 값을 변화시키면서 이차-계수들의 절대값들에 대한 합계를 측정함으로써 획득될 수 있다. 이 때 그룹 깊이 검색 모듈(630)은 이차-계수들의 절대값들에 대한 최대 합계를 최적의 그룹 깊이, 즉 Q 값으로 식별할 수 있다. The group depth search module 630 may provide the nonlinear equalizer 610 with an optimized group-depth, that is, a Q value. The optimal group depth, or Q value, can be obtained by measuring the bit-error ratio (BER) performance, or by measuring the sum of the absolute values of the quadratic-coefficients while varying the Q value. In this case, the group depth search module 630 may identify the maximum sum of the absolute values of the second-order coefficients as the optimal group depth, that is, the Q value.

예를 들면, 그룹 깊이 검색 모듈(630)은, 도 8에 도시된 바와 같이 최적의 그룹 깊이, 즉 Q 값을 검색하기 위한 훈련 시퀀스(training sequence)를 구성할 수 있다. 그룹 깊이 검색 모듈(630)은 각 훈련 시퀀스 블록(d)을 Qmax-1 번 반복하여, 훈련 시퀀스를 구성할 수 있다. 여기서, Qmax는 최대 그룹 깊이를 나타낼 수 있다. Q를 2에서 Qmax까지 변화시킬 때, 순차적으로 각 훈련 시퀀스 블록(d)에서 계수 업데이트 알고리즘과 해당 합계(이하에서, DQ로 지칭됨)를 사용하여, 해당 이차-계수들이 획득될 수 있다. For example, the group depth search module 630 may configure a training sequence for searching for an optimal group depth, that is, a Q value, as shown in FIG. 8. The group depth search module 630 may configure a training sequence by repeating each training sequence block d Q max −1 times. Here, Q max may represent the maximum group depth. When changing Q from 2 to Q max , corresponding quadratic-coefficients can be obtained sequentially using a coefficient update algorithm and a corresponding sum (hereinafter referred to as D Q ) in each training sequence block (d). .

예를 들면, 그룹 깊이 검색 모듈(630)은, 도 9에 도시된 바와 같이 합산 모듈(910), 비교기(920), Q 값 생성 모듈(930) 및 멀티플렉서(940)를 포함할 수 있다. 합산 모듈(910)은 계수 업데이트 모듈(620)로부터 출력되는 2 차 비선형 계수들을 합산하여, DQ를 획득할 수 있다. 비교기(920)는 DQ와 DQ-1을 비교하여, DQ<DQ-1이면 1을 출력하고, 그렇지 않으면 0을 출력할 수 있다. Q 값 생성 모듈(930)은 Q를 2에서 Qmax까지 변화시킬 수 있다. 멀티플렉서(940)는 비교기(920)의 출력이 1이면, 이전 Q 값을 선택하고 유지할 수 있다. For example, the group depth search module 630 may include an summing module 910, a comparator 920, a Q value generation module 930, and a multiplexer 940 as shown in FIG. 9. The summing module 910 may obtain D Q by summing the second-order nonlinear coefficients output from the coefficient update module 620. The comparator 920 may compare D Q and D Q-1 , and output 1 if D Q <D Q-1 , and output 0 otherwise. The Q value generation module 930 may change Q from 2 to Q max . If the output of the comparator 920 is 1, the multiplexer 940 may select and maintain a previous Q value.

다양한 실시예들에 따르면, DG VNLE는 다양한 유형의 세기 변조 포맷들, 예컨대 M-ary 펄스 진폭 변조(M-ary pulse amplitude modulation; PAM-m), DMT(discrete multi-tone) 등에 적용될 수 있으나, 이에 한정되는 것은 아니다. According to various embodiments, the DG VNLE may be applied to various types of intensity modulation formats, such as M-ary pulse amplitude modulation (PAM-m), discrete multi-tone (DMT), and the like. It is not limited thereto.

도 10은 다양한 실시예들에 따른 전자 비선형 등화 장치(600)의 동작 방법을 도시하는 도면이다.10 is a diagram illustrating a method of operating an electronic nonlinear equalization device 600 according to various embodiments.

도 10을 참조하면, 전자 비선형 등화 장치(600)는 1010 동작에서 이차-계수들을 발생시킬 수 있다. 비선형 등화기(610)는 대각선-그룹화 VNLE(DG VNLE)일 수 있다. 계수 업데이트 모듈(620)은 비선형 등화기(610)에 이차-계수들을 제공할 수 있다. 이차-계수들은 적응 알고리즘에 의해 업데이트되거나, 채널 응답을 사용하여 평균 제곱 오차(MMSE) 솔루션의 분석적 표현에 의해 계산될 수 있다. 이를 위해, 계수 업데이트 모듈(620)은 훈련 시퀀스(621) 또는 결정 모듈(623)을 사용하여, 이차-계수들을 획득할 수 있다. 예를 들면, 계수 업데이트 모듈(620)은 최소 평균 제곱(LMS) 또는 순환 최소 자승(RLS)과 같은 계수 업데이트 알고리즘을 통해 이차-계수들을 획득할 수 있다.Referring to FIG. 10, the electronic nonlinear equalization apparatus 600 may generate second-order coefficients in operation 1010. The nonlinear equalizer 610 may be a diagonal-grouped VNLE (DG VNLE). The coefficient update module 620 may provide quadratic-coefficients to the nonlinear equalizer 610. The quadratic-coefficients can be updated by an adaptive algorithm, or can be calculated by an analytical representation of the mean squared error (MMSE) solution using the channel response. To this end, the coefficient update module 620 may obtain the second-order coefficients by using the training sequence 621 or the determination module 623. For example, the coefficient update module 620 may obtain quadratic-coefficients through a coefficient update algorithm such as a least mean square (LMS) or cyclic least squares (RLS).

전자 비선형 등화 장치(600)는 1020 동작에서 최적의 그룹 깊이를 획득할 수 있다. 그룹 깊이 검색 모듈(630)은 비선형 등화기(610)에 최적의 그룹 깊이, 즉 Q 값을 제공할 수 있다. 최적의 그룹 깊이, 즉 Q 값은 비트 오류 비율(BER) 성능을 측정하거나, Q 값을 변화시키면서 이차-계수들의 절대값들에 대한 합계를 측정함으로써 획득될 수 있다. 이 때 그룹 깊이 검색 모듈(630)은 이차-계수들의 절대값들에 대한 최대 합계를 최적의 그룹 깊이, 즉 Q 값으로 식별할 수 있다.The electronic nonlinear equalization device 600 may obtain an optimal group depth in operation 1020. The group depth search module 630 may provide the nonlinear equalizer 610 with an optimal group depth, that is, a Q value. The optimal group depth, or Q value, can be obtained by measuring the bit error rate (BER) performance, or by measuring the sum of the absolute values of the quadratic-coefficients while varying the Q value. In this case, the group depth search module 630 may identify the maximum sum of the absolute values of the second-order coefficients as the optimal group depth, that is, the Q value.

일 실시예에 따르면, 그룹 깊이 검색 모듈(630)은 현재 식별된 최대 합계를 이전의 최대 합계와 비교하여, 최적의 그룹 깊이를 선택할 수 있다. 예를 들면, 합산 모듈(910)은 계수 업데이트 모듈(620)로부터 출력되는 2 차 비선형 계수들을 합산하여, DQ를 획득할 수 있다. 비교기(920)는 DQ와 DQ-1을 비교하여, DQ<DQ-1이면 1을 출력하고, 그렇지 않으면 0을 출력할 수 있다. Q 값 생성 모듈(930)은 Q를 2에서 Qmax까지 변화시킬 수 있다. 멀티플렉서(940)는 비교기(920)의 출력이 1이면, 이전 Q 값을 선택하고 유지할 수 있다. According to an embodiment, the group depth search module 630 may select an optimal group depth by comparing the currently identified maximum total with the previous maximum total. For example, the summing module 910 may obtain D Q by summing the second-order nonlinear coefficients output from the coefficient update module 620. The comparator 920 may compare D Q and D Q-1 , and output 1 if D Q <D Q-1 , and output 0 otherwise. The Q value generation module 930 may change Q from 2 to Q max . If the output of the comparator 920 is 1, the multiplexer 940 may select and maintain a previous Q value.

전자 비선형 등화 장치(600)는 1030 동작에서 비팅 항들 중 일부를 그룹화할 수 있다. 이 때 비선형 등화기(610)에 대해, 복수 개의 비팅 항들로 이루어진 함수가 정의되어 있을 수 있다. 여기서, 함수는 상기 [수학식 1]과 같이 정의되어 있을 수 있다. 그리고, 비선형 등화기(610)에서, 그룹화 모듈(720)은 그룹 깊이, 즉 Q 값을 기반으로, 일부 비팅 항들을 그룹화할 수 있다. 이를 통해, 이차-계수 행렬에서 대각선들의 수가 감소될 수 있다.The electronic nonlinear equalization device 600 may group some of the beating terms in operation 1030. In this case, for the nonlinear equalizer 610, a function consisting of a plurality of beating terms may be defined. Here, the function may be defined as in [Equation 1]. In addition, in the nonlinear equalizer 610, the grouping module 720 may group some beating terms based on a group depth, that is, a Q value. Through this, the number of diagonal lines in the quadratic-coefficient matrix can be reduced.

전자 비선형 등화 장치(600)는 1040 동작에서 입력 신호의 비선형 왜곡을 보상할 수 있다. 비선형 등화기(610)는 계수 업데이트 모듈(620)로부터의 이차-계수들과 그룹 깊이 검색 모듈(630)로부터의 최적의 그룹 깊이, 즉 Q 값을 기반으로, 입력 신호에 대해 비선형 왜곡을 보상할 수 있다. 이 때 비선형 등화기(610)는 상삼각 이차-계수 행렬의 주 대각선으로부터 멀리 떨어진 대각선들의 계수들을 0으로 설정함으로써, VNLE의 복잡성을 줄일 수 있다.The electronic nonlinear equalization device 600 may compensate for nonlinear distortion of the input signal in operation 1040. The nonlinear equalizer 610 compensates for the nonlinear distortion for the input signal based on the second-order coefficients from the coefficient update module 620 and the optimal group depth from the group depth search module 630, that is, the Q value. I can. In this case, the nonlinear equalizer 610 may reduce the complexity of the VNLE by setting coefficients of diagonal lines far from the main diagonal of the upper triangular quadratic-coefficient matrix to 0.

도 11은 다양한 실시예들에 따른 전자 비선형 등화 장치(600)의 성능을 설명하기 위한 도면이다. 56 Gb/s 4-ary pulse amplitude modulation (PAM-4) 변조 방식으로 변조된 DML 출력 신호를 20 km 단일 모드 광섬유에 전송한 후 측정한 비트 오율 결과이다.11 is a diagram illustrating the performance of the electronic nonlinear equalization apparatus 600 according to various embodiments. 56 Gb/s 4-ary pulse amplitude modulation (PAM-4) This is the result of the bit error rate measured after transmitting the DML output signal modulated with the modulation method to a 20 km single mode fiber.

도 11을 참조하면, 다양한 실시예들에 따른 전자 비선형 등화 장치(600)에서 DG VNLE를 구현하는 데 필요한 이차-계수 행렬의 대각선들의 수가 기존의 DP VNLE를 구현하는 데 필요한 이차-계수 행렬의 대각선들의 수 보다 감소될 수 있다. 이로 인해, DML 기반 IM/DD 시스템에서 사용하기 위한 DG VNLE의 구현 복잡성이 감소될 수 있다. 즉 W=1과 2를 사용하는 DG VNLE은 약 50 %와 약 35 %까지 구현 복잡성이 감소될 수 있다. 이에 따라, 다양한 실시예들에 따른 전자 비선형 등화 장치(600)의 성능이 향상될 수 있다. Referring to FIG. 11, the number of diagonals of a quadratic-coefficient matrix required to implement DG VNLE in the electronic nonlinear equalization apparatus 600 according to various embodiments of the present invention is a diagonal of the quadratic-coefficient matrix required to implement the existing DP VNLE. Can be reduced than the number of them. Due to this, the implementation complexity of DG VNLE for use in a DML-based IM/DD system may be reduced. That is, DG VNLE using W=1 and 2 can reduce implementation complexity by about 50% and about 35%. Accordingly, the performance of the electronic nonlinear equalization apparatus 600 according to various embodiments may be improved.

다양한 실시예들에 따른 전자 비선형 등화 장치(600)는, 복수 개의 2차 비선형 항들로 이루어진 함수를 이용하여, 입력 신호의 비선형 왜곡을 보상하도록 구성된 비선형 등화기(610), 및 비선형 항들 중 일부를 그룹화하여, 결정해야 하는 이차-계수들의 수를 감소시키도록 구성된 그룹화 모듈(720)을 포함할 수 있다.The electronic nonlinear equalization apparatus 600 according to various embodiments includes a nonlinear equalizer 610 configured to compensate for nonlinear distortion of an input signal using a function consisting of a plurality of second-order nonlinear terms, and some of the nonlinear terms. It may include a grouping module 720 configured to group and reduce the number of secondary-coefficients to be determined.

다양한 실시예들에 따르면, 전자 비선형 등화 장치(600)는, 이차-계수들의 절대값들에 대한 최대 합계를 최적의 그룹 깊이로 식별하도록 구성된 그룹 깊이 검색 모듈(630)을 더 포함할 수 있다. According to various embodiments, the electronic nonlinear equalization apparatus 600 may further include a group depth search module 630 configured to identify a maximum sum of absolute values of quadratic-coefficients as an optimal group depth.

다양한 실시예들에 따르면, 그룹화 모듈(720)은, 식별된 그룹 깊이를 기반으로, 비선형 항들 중 일부를 그룹화하도록 구성될 수 있다. According to various embodiments, the grouping module 720 may be configured to group some of the nonlinear terms based on the identified group depth.

다양한 실시예들에 따르면, 비선형 등화기(610)는, 상기 [수학식 1]과 같이 표현되는 함수를 이용하여, 비선형 왜곡을 보상하도록 구성될 수 있다. According to various embodiments, the nonlinear equalizer 610 may be configured to compensate for nonlinear distortion by using a function expressed as in [Equation 1].

다양한 실시예들에 따르면, 비선형 등화기(610)는, 상기 [수학식 2]와 같이 표현되는 함수를 이용하여, 비선형 왜곡을 보상하도록 구성될 수 있다. According to various embodiments, the nonlinear equalizer 610 may be configured to compensate for nonlinear distortion by using a function expressed as in [Equation 2].

다양한 실시예들에 따르면, 전자 비선형 등화 장치(600)는, 송신 장치(310) 또는 수신 장치(320) 중 적어도 어느 하나에 적용될 수 있다. According to various embodiments, the electronic nonlinear equalization device 600 may be applied to at least one of the transmission device 310 and the reception device 320.

다양한 실시예들에 따르면, 송신 장치(310)는, 입력 신호에 대해 직접 변조 레이저(DML) 기반 세기 변조(IM)를 수행하도록 구성되는 DML 기반 세기 변조 유닛(440)을 포함하고, 전자 비선형 등화 장치(600)는, DML 기반 세기 변조 유닛(440)의 전단에 적용될 수 있다. According to various embodiments, the transmission device 310 includes a DML-based intensity modulation unit 440 configured to perform direct modulation laser (DML)-based intensity modulation (IM) on an input signal, and electronic nonlinear equalization The device 600 may be applied to a front end of the DML-based intensity modulation unit 440.

다양한 실시예들에 따르면, 수신 장치(320)는, 송신 장치(310)로부터 수신되는 신호에 대해 직접 검출(DD)을 수행하도록 구성되는 직접 검출 유닛(510)을 포함하고, 전자 비선형 등화 장치(600)는, 직접 검출 유닛(510)의 후단에 적용될 수 있다. According to various embodiments, the reception device 320 includes a direct detection unit 510 configured to perform direct detection (DD) on a signal received from the transmission device 310, and an electronic nonlinear equalization device ( 600 may be applied directly to the rear end of the detection unit 510.

다양한 실시예들에 따르면, 그룹 깊이 검색 모듈(630)은, 복수 개의 블록들로 이루어지는 훈련 시퀀스를 기반으로 동작하며, 각 블록에서 이차-계수들의 절대값들에 대한 최대 합계를 획득하도록 구성될 수 있다. According to various embodiments, the group depth search module 630 operates based on a training sequence consisting of a plurality of blocks, and may be configured to obtain a maximum sum of the absolute values of the second-order coefficients in each block. have.

다양한 실시예들에 따르면, 그룹 깊이 검색 모듈(630)은, 블록들 중 어느 하나에 대한 최대 합계를 획득하도록 구성되는 합산 모듈(910), 블록들 중 어느 하나에 대한 최대 합계와 이전 블록에 대한 최대 합계를 비교하도록 구성되는 비교기(920), 블록들 중 어느 하나에 대한 최대 합계를 기반으로 그룹 깊이를 생성하도록 구성되는 그룹 깊이 생성 모듈(930), 및 비교기(920)의 비교 결과에 따라, 그룹 깊이를 선택하도록 구성되는 멀티플렉서(940)를 포함할 수 있다. According to various embodiments, the group depth search module 630 includes a summing module 910 configured to obtain a maximum sum for any one of the blocks, a maximum sum for any one of the blocks and a previous block. According to the comparison result of the comparator 920 configured to compare the maximum sum, the group depth generation module 930 configured to generate a group depth based on the maximum sum for any one of the blocks, and the comparator 920, It may include a multiplexer 940 configured to select a group depth.

다양한 실시예들에 따르면, 비교기(920)는, 블록들 중 어느 하나에 대한 최대 합계가 이전 블록에 대한 최대 합계 보다 작으면, 1을 출력하고, 그렇지 않으면, 0을 출력하고, 멀티플렉서(940)는, 비교기(920)가 1을 출력하면, 이전의 그룹 깊이를 선택하고 유지하도록 구성될 수 있다. According to various embodiments, the comparator 920 outputs 1 if the maximum sum for any one of the blocks is less than the maximum sum for the previous block, otherwise outputs 0, and the multiplexer 940 When the comparator 920 outputs 1, it may be configured to select and maintain the previous group depth.

다양한 실시예들에 따른 전자 비선형 등화 장치(600)의 동작 방법은, 이차-계수들을 발생시키는 단계, 및 이차-계수들로 이루어지는 행렬을 기반으로, 복수 개의 2차 비선형 항들로 이루어진 함수를 이용하여, 입력 신호의 비선형 왜곡을 보상하는 단계를 포함할 수 있다.The method of operating the electronic nonlinear equalization apparatus 600 according to various embodiments includes the steps of generating second-order coefficients, and using a function consisting of a plurality of second-order nonlinear terms based on a matrix consisting of the second-order coefficients. , Compensating for nonlinear distortion of the input signal.

다양한 실시예들에 따르면, 비선형 왜곡을 보상하는 단계는, 비선형 항들 중 일부를 그룹화하여, 결정해야 하는 이차-계수들의 수를 감소시키는 단계, 및 상기 감소된 수의 이차-계수들을 기반으로, 비선형 왜곡을 보상하는 단계를 포함할 수 있다. According to various embodiments, the step of compensating for nonlinear distortion may include grouping some of the nonlinear terms to reduce the number of quadratic-coefficients to be determined, and based on the reduced number of quadratic-coefficients, nonlinear Compensating for distortion may be included.

다양한 실시예들에 따르면, 전자 비선형 등화 장치(600)의 동작 방법은, 이차-계수들의 절대값들에 대한 최대 합계를 최적의 그룹 깊이로 식별하는 단계를 더 포함할 수 있다.According to various embodiments, the method of operating the electronic nonlinear equalization apparatus 600 may further include identifying a maximum sum of absolute values of the second-order coefficients as an optimal group depth.

다양한 실시예들에 따르면, 대각선들의 수를 감소시키는 단계는, 식별된 그룹 깊이를 기반으로, 비선형 항들 중 일부를 그룹화할 수 있다. According to various embodiments, reducing the number of diagonal lines may group some of the nonlinear terms based on the identified group depth.

다양한 실시예들에 따르면, 비선형 왜곡을 보상하는 단계는, 상기 [수학식 1]과 같이 표현되는 함수를 이용하여, 비선형 왜곡을 보상할 수 있다. According to various embodiments, the step of compensating for the nonlinear distortion may compensate for the nonlinear distortion using a function expressed as in [Equation 1].

다양한 실시예들에 따르면, 비선형 왜곡을 보상하는 단계는, 상기 [수학식 2]와 같이 표현되는 함수를 이용하여, 비선형 왜곡을 보상할 수 있다. According to various embodiments, the step of compensating for nonlinear distortion may compensate for nonlinear distortion by using a function expressed as in [Equation 2].

다양한 실시예들에 따르면, 전자 비선형 등화 장치(600)는, 송신 장치(310) 또는 수신 장치(320) 중 적어도 어느 하나에 적용될 수 있다. According to various embodiments, the electronic nonlinear equalization device 600 may be applied to at least one of the transmission device 310 and the reception device 320.

다양한 실시예들에 따르면, 송신 장치(310)는, 입력 신호에 대해 직접 변조 레이저(DML) 기반 세기 변조(IM)를 수행하도록 구성되는 DML 기반 세기 변조 유닛(440)을 포함하고, 전자 비선형 등화 장치(600)는, DML 기반 세기 변조 유닛(440)의 전단에 적용될 수 있다. According to various embodiments, the transmission device 310 includes a DML-based intensity modulation unit 440 configured to perform direct modulation laser (DML)-based intensity modulation (IM) on an input signal, and electronic nonlinear equalization The device 600 may be applied to a front end of the DML-based intensity modulation unit 440.

다양한 실시예들에 따르면, 수신 장치(320)는, 송신 장치(310)로부터 수신되는 신호에 대해 직접 검출(DD)을 수행하도록 구성되는 직접 검출 유닛(510)을 포함하고, 전자 비선형 등화 장치(600)는, 직접 검출 유닛(510)의 후단에 적용될 수 있다.According to various embodiments, the reception device 320 includes a direct detection unit 510 configured to perform direct detection (DD) on a signal received from the transmission device 310, and an electronic nonlinear equalization device ( 600 may be applied directly to the rear end of the detection unit 510.

다양한 실시예들에 따르면, 최대 합계를 상기 그룹 깊이로 식별하는 단계는, 복수 개의 블록들로 이루어지는 훈련 시퀀스를 기반으로 수행되며, 각 블록에서 이차-계수들의 절대값들에 대한 최대 합계를 획득할 수 있다. According to various embodiments, the step of identifying the maximum sum as the group depth is performed based on a training sequence consisting of a plurality of blocks, and obtains a maximum sum of the absolute values of the quadratic-coefficients in each block. I can.

다양한 실시예들에 따르면, 최대 합계를 상기 그룹 깊이로 식별하는 단계는, 블록들 중 어느 하나에 대한 최대 합계를 획득하는 단계, 블록들 중 어느 하나에 대한 최대 합계와 이전 블록에 대한 최대 합계를 비교하는 단계, 블록들 중 어느 하나에 대한 최대 합계를 기반으로 그룹 깊이를 생성하는 단계, 및 블록들 중 어느 하나에 대한 최대 합계와 이전 블록에 대한 최대 합계에 대한 비교 결과에 따라, 그룹 깊이를 선택하는 단계를 포함할 수 있다. According to various embodiments, identifying a maximum sum by the group depth includes obtaining a maximum sum for any one of the blocks, a maximum sum for any one of the blocks and a maximum sum for the previous block. Comparing, generating a group depth based on the maximum sum for any one of the blocks, and according to the result of comparing the maximum sum for any one of the blocks and the maximum sum for the previous block, determining the group depth. It may include the step of selecting.

다양한 실시예들에 따르면, 비교하는 단계는, 블록들 중 어느 하나에 대한 최대 합계가 이전 블록에 대한 최대 합계 보다 작으면, 1을 출력하고, 그렇지 않으면, 0을 출력하고, 선택하는 단계는, 1의 출력에 대응하여, 이전의 그룹 깊이를 선택하고 유지하는 단계를 포함할 수 있다. According to various embodiments, the comparing step is, if the maximum sum for any one of the blocks is less than the maximum sum for the previous block, outputting 1, otherwise outputting 0, and selecting, In response to the output of 1, it may include the step of selecting and maintaining the previous group depth.

다양한 실시예들에 따르면, 전자 비선형 등화 장치(600)에서 이용되는 이차-계수 행렬의 대각선들의 수가 감소될 수 있다. 이로 인해, 전자 비선형 등화 장치(600)가 DML 기반 IM/DD 시스템에 적용됨에 있어서, 구현 복잡성이 감소될 수 있다. 이 때 전자 비선형 등화 장치(600)에 대해, 비선형 왜곡을 보상하기 위한 성능의 희생 없이, 구현 복잡성이 감소될 수 있다. According to various embodiments, the number of diagonal lines of a quadratic-coefficient matrix used in the electronic nonlinear equalization apparatus 600 may be reduced. For this reason, when the electronic nonlinear equalization device 600 is applied to a DML-based IM/DD system, implementation complexity may be reduced. In this case, for the electronic nonlinear equalization device 600, implementation complexity may be reduced without sacrificing performance for compensating for nonlinear distortion.

본 문서의 다양한 실시예들 및 이에 사용된 용어들은 본 문서에 기재된 기술을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 해당 실시 예의 다양한 변경, 균등물, 및/또는 대체물을 포함하는 것으로 이해되어야 한다. 도면의 설명과 관련하여, 유사한 구성요소에 대해서는 유사한 참조 부호가 사용될 수 있다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함할 수 있다. 본 문서에서, "A 또는 B", "A 및/또는 B 중 적어도 하나", "A, B 또는 C" 또는 "A, B 및/또는 C 중 적어도 하나" 등의 표현은 함께 나열된 항목들의 모든 가능한 조합을 포함할 수 있다. "제 1", "제 2", "첫째" 또는 "둘째" 등의 표현들은 해당 구성요소들을, 순서 또는 중요도에 상관없이 수식할 수 있고, 한 구성요소를 다른 구성요소와 구분하기 위해 사용될 뿐 해당 구성요소들을 한정하지 않는다. 어떤(예: 제 1) 구성요소가 다른(예: 제 2) 구성요소에 "(기능적으로 또는 통신적으로) 연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 상기 어떤 구성요소가 상기 다른 구성요소에 직접적으로 연결되거나, 다른 구성요소(예: 제 3 구성요소)를 통하여 연결될 수 있다.Various embodiments of the present document and terms used therein are not intended to limit the technology described in this document to a specific embodiment, and should be understood to include various modifications, equivalents, and/or substitutes of the corresponding embodiment. In connection with the description of the drawings, similar reference numerals may be used for similar elements. Singular expressions may include plural expressions unless the context clearly indicates otherwise. In this document, expressions such as "A or B", "at least one of A and/or B", "A, B or C" or "at least one of A, B and/or C" are all of the items listed together. It can include possible combinations. Expressions such as "first", "second", "first" or "second" can modify the corresponding elements regardless of their order or importance, and are only used to distinguish one element from another. The components are not limited. When it is mentioned that a certain (eg, first) component is “(functionally or communicatively) connected” or “connected” to another (eg, second) component, the certain component is It may be directly connected to the component, or may be connected through another component (eg, a third component).

본 문서에서 사용된 용어 "모듈"은 하드웨어, 소프트웨어 또는 펌웨어로 구성된 유닛을 포함하며, 예를 들면, 로직, 논리 블록, 부품, 또는 회로 등의 용어와 상호 호환적으로 사용될 수 있다. 모듈은, 일체로 구성된 부품 또는 하나 또는 그 이상의 기능을 수행하는 최소 단위 또는 그 일부가 될 수 있다. 예를 들면, 모듈은 ASIC(application-specific integrated circuit)으로 구성될 수 있다. The term "module" used in this document includes a unit composed of hardware, software, or firmware, and may be used interchangeably with terms such as, for example, logic, logic blocks, parts, or circuits. A module may be an integrally configured component or a minimum unit or a part of one or more functions. For example, the module may be configured as an application-specific integrated circuit (ASIC).

본 문서의 다양한 실시예들은 기기(machine)(예: 송신 장치(310), 수신 장치(320))에 의해 읽을 수 있는 저장 매체(storage medium)에 저장된 하나 이상의 명령어들을 포함하는 소프트웨어로서 구현될 수 있다. 예를 들면, 기기의 프로세서는, 저장 매체로부터 저장된 하나 이상의 명령어들 중 적어도 하나의 명령을 호출하고, 그것을 실행할 수 있다. 이것은 기기가 호출된 적어도 하나의 명령어에 따라 적어도 하나의 기능을 수행하도록 운영되는 것을 가능하게 한다. 하나 이상의 명령어들은 컴파일러에 의해 생성된 코드 또는 인터프리터에 의해 실행될 수 있는 코드를 포함할 수 있다. 기기로 읽을 수 있는 저장매체는, 비일시적(non-transitory) 저장매체의 형태로 제공될 수 있다. 여기서, ‘비일시적’은 저장 매체가 실재(tangible)하는 장치이고, 신호(signal)(예: 전자기파)를 포함하지 않는다는 것을 의미할 뿐이며, 이 용어는 데이터가 저장 매체에 반영구적으로 저장되는 경우와 임시적으로 저장되는 경우를 구분하지 않는다.Various embodiments of the present document may be implemented as software including one or more instructions stored in a storage medium readable by a machine (eg, a transmission device 310, a reception device 320). have. For example, the processor of the device may invoke and execute at least one of the one or more instructions stored from the storage medium. This enables the device to be operated to perform at least one function according to the at least one command invoked. The one or more instructions may include code generated by a compiler or code that can be executed by an interpreter. A storage medium that can be read by a device may be provided in the form of a non-transitory storage medium. Here,'non-transitory' only means that the storage medium is a tangible device and does not contain a signal (e.g., electromagnetic wave), and this term is used when data is semi-permanently stored in the storage medium It does not distinguish between temporary storage cases.

다양한 실시예들에 따르면, 기술한 구성요소들의 각각의 구성요소(예: 모듈 또는 프로그램)는 단수 또는 복수의 개체를 포함할 수 있다. 다양한 실시예들에 따르면, 전술한 해당 구성요소들 중 하나 이상의 구성요소들 또는 동작들이 생략되거나, 또는 하나 이상의 다른 구성요소들 또는 동작들이 추가될 수 있다. 대체적으로 또는 추가적으로, 복수의 구성요소들(예: 모듈 또는 프로그램)은 하나의 구성요소로 통합될 수 있다. 이런 경우, 통합된 구성요소는 복수의 구성요소들 각각의 구성요소의 하나 이상의 기능들을 통합 이전에 복수의 구성요소들 중 해당 구성요소에 의해 수행되는 것과 동일 또는 유사하게 수행할 수 있다. 다양한 실시예들에 따르면, 모듈, 프로그램 또는 다른 구성요소에 의해 수행되는 동작들은 순차적으로, 병렬적으로, 반복적으로, 또는 휴리스틱하게 실행되거나, 동작들 중 하나 이상이 다른 순서로 실행되거나, 생략되거나, 또는 하나 이상의 다른 동작들이 추가될 수 있다. According to various embodiments, each component (eg, a module or program) of the described components may include a singular number or a plurality of entities. According to various embodiments, one or more components or operations among the above-described corresponding components may be omitted, or one or more other components or operations may be added. Alternatively or additionally, a plurality of components (eg, a module or a program) may be integrated into one component. In this case, the integrated component may perform one or more functions of each component of the plurality of components in the same or similar to that performed by the corresponding component among the plurality of components prior to integration. According to various embodiments, operations performed by a module, program, or other component may be sequentially, parallel, repeatedly, or heuristically executed, or one or more of the operations may be executed in a different order, or omitted. , Or one or more other actions may be added.

Claims (20)

전자 비선형 등화 장치에 있어서,
복수 개의 2차 비선형 항들로 이루어진 함수를 이용하여, 입력 신호의 비선형 왜곡을 보상하도록 구성된 비선형 등화기; 및
상기 비선형 항들 중 일부를 그룹화하여, 결정해야 하는 이차-계수(quadratic-coefficient)들의 수를 감소시키도록 구성된 그룹화 모듈을 포함하고,
상기 이차-계수들의 절대값들에 대한 최대 합계를 최적의 그룹 깊이로 식별하도록 구성된 그룹 깊이 검색 모듈을 더 포함하고,
상기 그룹화 모듈은,
상기 식별된 그룹 깊이를 기반으로, 상기 비선형 항들 중 일부를 그룹화하도록 구성된 전자 비선형 등화 장치.
In the electronic nonlinear equalization device,
A nonlinear equalizer configured to compensate for nonlinear distortion of the input signal by using a function consisting of a plurality of second-order nonlinear terms; And
A grouping module configured to reduce the number of quadratic-coefficients to be determined by grouping some of the nonlinear terms,
Further comprising a group depth search module, configured to identify a maximum sum of the absolute values of the second-order coefficients as an optimal group depth,
The grouping module,
An electronic nonlinear equalization device configured to group some of the nonlinear terms based on the identified group depth.
삭제delete 제 1 항에 있어서, 상기 비선형 등화기는,
하기 수학식과 같이 표현되는 함수를 이용하여, 상기 비선형 왜곡을 보상하도록 구성된 전자 비선형 등화 장치.
Figure 112020105478326-pat00003

여기서, 상기 x(n)과 상기 y(n)은 각각 상기 비선형 등화기에 n 번째로 입력되는 신호와 상기 비선형 등화기로부터 n 번째로 출력되는 신호를 나타내고, 상기 Lp와 상기 hp는 p(p=1, 2) 차 항의 메모리 길이와 이차-계수를 나타내고, 상기 W는 상기 이차-계수들로 이루어지는 행렬에서 대각선들의 수를 나타내고, 상기 Q는 그룹 깊이를 나타냄.
The method of claim 1, wherein the nonlinear equalizer comprises:
An electronic nonlinear equalization device configured to compensate for the nonlinear distortion by using a function represented by the following equation.
Figure 112020105478326-pat00003

Here, x(n) and y(n) denote an n-th signal input to the nonlinear equalizer and an n-th signal output from the nonlinear equalizer, respectively, and L p and h p denote p( p=1, 2) denotes the memory length and quadratic-coefficient of the order term, where W denotes the number of diagonal lines in the matrix consisting of the quadratic-coefficients, and Q denotes the group depth.
제 1 항에 있어서, 상기 비선형 등화기는,
하기 수학식과 같이 표현되는 함수를 이용하여, 상기 비선형 왜곡을 보상하도록 구성된 전자 비선형 등화 장치.
Figure 112020105478326-pat00004

여기서, 상기 x(n)과 상기 y(n)은 각각 상기 비선형 등화기에 n 번째로 입력되는 신호와 상기 비선형 등화기로부터 n 번째로 출력되는 신호를 나타내고, 상기 Lp와 상기 hp는 p(p=1, 2) 차 항의 메모리 길이와 이차-계수를 나타내고, 상기 W는 상기 이차-계수들로 이루어지는 행렬에서 대각선들의 수를 나타내고, 상기 Q는 그룹 깊이를 나타냄.
The method of claim 1, wherein the nonlinear equalizer comprises:
An electronic nonlinear equalization device configured to compensate for the nonlinear distortion by using a function represented by the following equation.
Figure 112020105478326-pat00004

Here, x(n) and y(n) denote an n-th signal input to the nonlinear equalizer and an n-th signal output from the nonlinear equalizer, respectively, and L p and h p denote p( p=1, 2) denotes the memory length and quadratic-coefficient of the order term, where W denotes the number of diagonal lines in the matrix consisting of the quadratic-coefficients, and Q denotes the group depth.
제 1 항에 있어서, 상기 전자 비선형 등화 장치는,
송신 장치 또는 수신 장치 중 적어도 어느 하나에 적용되는 전자 비선형 등화 장치.
The method of claim 1, wherein the electron nonlinear equalization device,
An electronic nonlinear equalization device applied to at least one of a transmitting device or a receiving device.
제 5 항에 있어서, 상기 송신 장치는,
입력 신호에 대해 직접 변조 레이저(direct modulated laser; DML) 기반 세기 변조(intensity modulation; IM)를 수행하도록 구성되는 DML 기반 세기 변조 유닛을 포함하고,
상기 전자 비선형 등화 장치는,
상기 DML 기반 세기 변조 유닛의 전단에 적용되는 전자 비선형 등화 장치.
The method of claim 5, wherein the transmission device,
Including a DML-based intensity modulation unit configured to perform direct modulated laser (DML) based intensity modulation (IM) on the input signal,
The electronic nonlinear equalization device,
Electronic nonlinear equalization device applied to the front end of the DML-based intensity modulation unit.
제 5 항에 있어서, 상기 수신 장치는,
상기 송신 장치로부터 수신되는 신호에 대해 직접 검출(direct detection; DD)을 수행하도록 구성되는 직접 검출 유닛을 포함하고,
상기 전자 비선형 등화 장치는,
상기 직접 검출 유닛의 후단에 적용되는 전자 비선형 등화 장치.
The method of claim 5, wherein the receiving device,
And a direct detection unit configured to perform direct detection (DD) on a signal received from the transmitting device,
The electronic nonlinear equalization device,
An electronic nonlinear equalization device applied to the rear end of the direct detection unit.
제 1 항에 있어서, 상기 그룹 깊이 검색 모듈은,
복수 개의 블록들로 이루어지는 훈련 시퀀스를 기반으로 동작하며,
각 블록에서 이차-계수들의 절대값들에 대한 최대 합계를 획득하도록 구성되는 전자 비선형 등화 장치.
The method of claim 1, wherein the group depth search module,
It operates based on a training sequence consisting of a plurality of blocks,
Electronic nonlinear equalization device configured to obtain a maximum sum of the absolute values of the quadratic-coefficients in each block.
제 8 항에 있어서, 상기 그룹 깊이 검색 모듈은,
상기 블록들 중 어느 하나에 대한 최대 합계를 획득하도록 구성되는 합산 모듈;
상기 블록들 중 어느 하나에 대한 최대 합계와 이전 블록에 대한 최대 합계를 비교하도록 구성되는 비교기;
상기 블록들 중 어느 하나에 대한 최대 합계를 기반으로 그룹 깊이를 생성하도록 구성되는 그룹 깊이 생성 모듈; 및
상기 비교기의 비교 결과에 따라, 그룹 깊이를 선택하도록 구성되는 멀티플렉서를 포함하는 전자 비선형 등화 장치.
The method of claim 8, wherein the group depth search module,
A summing module, configured to obtain a maximum sum for any one of the blocks;
A comparator configured to compare a maximum sum for any one of the blocks and a maximum sum for a previous block;
A group depth generation module, configured to generate a group depth based on a maximum sum for any one of the blocks; And
Electronic nonlinear equalization apparatus comprising a multiplexer configured to select a group depth according to a comparison result of the comparator.
제 9 항에 있어서,
상기 비교기는,
상기 블록들 중 어느 하나에 대한 최대 합계가 이전 블록에 대한 최대 합계 보다 작으면, 1을 출력하고, 그렇지 않으면, 0을 출력하고,
상기 멀티플렉서는,
상기 비교기가 1을 출력하면, 이전의 그룹 깊이를 선택하고 유지하도록 구성되는 전자 비선형 등화 장치.
The method of claim 9,
The comparator,
If the maximum sum for any of the blocks is less than the maximum sum for the previous block, output 1, otherwise, output 0,
The multiplexer,
Electronic nonlinear equalization device configured to select and maintain a previous group depth if the comparator outputs 1.
전자 비선형 등화 장치의 동작 방법에 있어서,
이차-계수들을 발생시키는 단계; 및
상기 이차-계수들로 이루어지는 행렬을 기반으로, 복수 개의 2차 비선형 항들로 이루어진 함수를 이용하여, 입력 신호의 비선형 왜곡을 보상하는 단계를 포함하고,
상기 비선형 왜곡을 보상하는 단계는,
상기 비선형 항들 중 일부를 그룹화하여, 상기 이차-계수들의 수를 감소시키는 단계; 및
비선형 등화기를 통해, 상기 감소된 수의 이차-계수들을 기반으로, 상기 비선형 왜곡을 보상하는 단계를 포함하고,
상기 이차-계수들의 절대값들에 대한 최대 합계를 최적의 그룹 깊이로 식별하는 단계를 더 포함하고,
상기 이차-계수들의 수를 감소시키는 단계는,
상기 식별된 그룹 깊이를 기반으로, 상기 비선형 항들 중 일부를 그룹화하는 방법.
In the method of operating an electronic nonlinear equalization device,
Generating second-order coefficients; And
Compensating for nonlinear distortion of the input signal using a function consisting of a plurality of quadratic nonlinear terms based on the matrix consisting of the quadratic-coefficients,
Compensating for the nonlinear distortion,
Grouping some of the nonlinear terms to reduce the number of quadratic-coefficients; And
Compensating for the nonlinear distortion based on the reduced number of quadratic-coefficients through a nonlinear equalizer,
Further comprising the step of identifying a maximum sum of the absolute values of the quadratic-coefficients as an optimal group depth,
The step of reducing the number of secondary-coefficients,
A method of grouping some of the nonlinear terms based on the identified group depth.
삭제delete 제 11 항에 있어서, 상기 비선형 왜곡을 보상하는 단계는,
하기 수학식과 같이 표현되는 함수를 이용하여, 상기 비선형 왜곡을 보상하는 방법.
Figure 112020105478326-pat00005

여기서, 상기 x(n)과 상기 y(n)은 각각 상기 비선형 등화기에 n 번째로 입력되는 신호와 상기 비선형 등화기로부터 n 번째로 출력되는 신호를 나타내고, 상기 Lp와 상기 hp는 p(p=1, 2) 차 항의 메모리 길이와 이차-계수를 나타내고, 상기 W는 상기 행렬에서 대각선들의 수를 나타내고, 상기 Q는 그룹 깊이를 나타냄.
The method of claim 11, wherein compensating for the nonlinear distortion comprises:
A method of compensating for the nonlinear distortion by using a function represented by the following equation.
Figure 112020105478326-pat00005

Here, x(n) and y(n) denote an n-th signal input to the nonlinear equalizer and an n-th signal output from the nonlinear equalizer, respectively, and L p and h p denote p( p=1, 2) represents the memory length and quadratic-coefficient of the order term, where W represents the number of diagonal lines in the matrix, and Q represents the group depth.
제 11 항에 있어서, 상기 비선형 왜곡을 보상하는 단계는,
하기 수학식과 같이 표현되는 함수를 이용하여, 상기 비선형 왜곡을 보상하는 방법.
Figure 112020105478326-pat00006

여기서, 상기 x(n)과 상기 y(n)은 각각 상기 비선형 등화기에 n 번째로 입력되는 신호와 상기 비선형 등화기로부터 n 번째로 출력되는 신호를 나타내고, 상기 Lp와 상기 hp는 p(p=1, 2) 차 항의 메모리 길이와 이차-계수를 나타내고, 상기 W는 상기 행렬에서 대각선들의 수를 나타내고, 상기 Q는 그룹 깊이를 나타냄.
The method of claim 11, wherein compensating for the nonlinear distortion comprises:
A method of compensating for the nonlinear distortion by using a function represented by the following equation.
Figure 112020105478326-pat00006

Here, x(n) and y(n) denote an n-th signal input to the nonlinear equalizer and an n-th signal output from the nonlinear equalizer, respectively, and L p and h p denote p( p=1, 2) represents the memory length and quadratic-coefficient of the order term, where W represents the number of diagonal lines in the matrix, and Q represents the group depth.
제 11 항에 있어서, 상기 전자 비선형 등화 장치는,
송신 장치 또는 수신 장치 중 적어도 어느 하나에 적용되는 방법.
The method of claim 11, wherein the electron nonlinear equalization device,
A method applied to at least one of a transmitting device or a receiving device.
제 15 항에 있어서, 상기 송신 장치는,
입력 신호에 대해 직접 변조 레이저(DML) 기반 세기 변조(IM)를 수행하도록 구성되는 DML 기반 세기 변조 유닛을 포함하고,
상기 전자 비선형 등화 장치는,
상기 DML 기반 세기 변조 유닛의 전단에 적용되는 방법.
The method of claim 15, wherein the transmitting device,
A DML-based intensity modulation unit configured to perform direct modulation laser (DML) based intensity modulation (IM) on the input signal,
The electronic nonlinear equalization device,
Method applied to the front end of the DML-based intensity modulation unit.
제 15 항에 있어서, 상기 수신 장치는,
상기 송신 장치로부터 수신되는 신호에 대해 직접 검출(DD)을 수행하도록 구성되는 직접 검출 유닛을 포함하고,
상기 전자 비선형 등화 장치는,
상기 직접 검출 유닛의 후단에 적용되는 방법.
The method of claim 15, wherein the receiving device,
And a direct detection unit configured to perform direct detection (DD) on a signal received from the transmitting device,
The electronic nonlinear equalization device,
Method applied to the rear end of the direct detection unit.
제 11 항에 있어서, 상기 최대 합계를 상기 그룹 깊이로 식별하는 단계는,
복수 개의 블록들로 이루어지는 훈련 시퀀스를 기반으로 수행되며,
각 블록에서 이차-계수들의 절대값들에 대한 최대 합계를 획득하는 방법.
The method of claim 11, wherein identifying the maximum sum by the group depth,
It is performed based on a training sequence consisting of a plurality of blocks,
A method of obtaining the maximum sum of the absolute values of the quadratic-coefficients in each block.
제 18 항에 있어서, 상기 최대 합계를 상기 그룹 깊이로 식별하는 단계는,
상기 블록들 중 어느 하나에 대한 최대 합계를 획득하는 단계;
상기 블록들 중 어느 하나에 대한 최대 합계와 이전 블록에 대한 최대 합계를 비교하는 단계;
상기 블록들 중 어느 하나에 대한 최대 합계를 기반으로 그룹 깊이를 생성하는 단계; 및
상기 블록들 중 어느 하나에 대한 최대 합계와 이전 블록에 대한 최대 합계에 대한 비교 결과에 따라, 그룹 깊이를 선택하는 단계를 포함하는 방법.
The method of claim 18, wherein identifying the maximum sum by the group depth comprises:
Obtaining a maximum sum for any one of the blocks;
Comparing a maximum sum for any one of the blocks with a maximum sum for a previous block;
Generating a group depth based on the maximum sum of any one of the blocks; And
And selecting a group depth according to a result of comparing the maximum sum for any one of the blocks and the maximum sum for the previous block.
제 19 항에 있어서,
상기 비교하는 단계는,
상기 블록들 중 어느 하나에 대한 최대 합계가 이전 블록에 대한 최대 합계 보다 작으면, 1을 출력하고,
그렇지 않으면, 0을 출력하고,
상기 선택하는 단계는,
1의 출력에 대응하여, 이전의 그룹 깊이를 선택하고 유지하는 단계를 포함하는 방법.
The method of claim 19,
The comparing step,
If the maximum sum for any one of the blocks is less than the maximum sum for the previous block, output 1,
Otherwise, it prints 0,
The selecting step,
In response to an output of 1, selecting and maintaining a previous group depth.
KR1020190164416A 2019-12-11 2019-12-11 Method and appratus for electronic nonlinear equalization in intensity-modulation/direct-detection optical communication systems KR102177925B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190164416A KR102177925B1 (en) 2019-12-11 2019-12-11 Method and appratus for electronic nonlinear equalization in intensity-modulation/direct-detection optical communication systems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190164416A KR102177925B1 (en) 2019-12-11 2019-12-11 Method and appratus for electronic nonlinear equalization in intensity-modulation/direct-detection optical communication systems

Publications (1)

Publication Number Publication Date
KR102177925B1 true KR102177925B1 (en) 2020-11-12

Family

ID=73398646

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190164416A KR102177925B1 (en) 2019-12-11 2019-12-11 Method and appratus for electronic nonlinear equalization in intensity-modulation/direct-detection optical communication systems

Country Status (1)

Country Link
KR (1) KR102177925B1 (en)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Ahmed Galib Reza et al., "Nonlinear Equalizer Based on Neural Networks for PAM-4 Signal Transmission Using DML," IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 30, NO. 15, (2018. 08. 01)* *
Noriaki Kaneda et al., "Nonlinear Equalizer for 112-Gb/s SSB-PAM4 in 80-km Dispersion Uncompensated Link," OFC 2017, (2017)* *

Similar Documents

Publication Publication Date Title
JP6319487B1 (en) Optical transmission characteristic estimation method, optical transmission characteristic compensation method, optical transmission characteristic estimation system, and optical transmission characteristic compensation system
JP6738682B2 (en) Optical transmitter/receiver, optical transmitter integrated circuit, and optical receiver integrated circuit
JP6661263B2 (en) Optical transmission device, nonlinear distortion compensation method, and nonlinear distortion pre-equalization method
JP6051916B2 (en) Nonlinear compensation apparatus, method, and transmitter
CN111010239A (en) Nonlinear phase noise compensation method and system in coherent optical fiber communication system
JPWO2011052423A1 (en) Pre-equalized optical transmitter and pre-equalized optical fiber transmission system
Killey et al. Electronic dispersion compensation by signal predistortion
Freire et al. Reducing computational complexity of neural networks in optical channel equalization: From concepts to implementation
US10985845B2 (en) Adaptive equalization filter and signal processing device
KR102177925B1 (en) Method and appratus for electronic nonlinear equalization in intensity-modulation/direct-detection optical communication systems
US11349524B2 (en) Symbol-determining device and symbol determination method
US11799547B2 (en) Signal processing apparatus, signal processing method, and program
JP7311744B2 (en) Optical receiver and coefficient optimization method
US20230097741A1 (en) Optical receiving apparatus and optical receiving method
Glentis et al. Electronic dispersion compensation of fiber links using sparsity induced volterra equalizers
CN115412412A (en) Explicit solution for DFE optimization with constraints
KR102275351B1 (en) Apparatus and method for nonlinear equalization based on absolute operation
JP7139909B2 (en) waveform equalizer
Faig et al. Nonlinear system identification scheme for efficient compensators design
Fehenberger et al. Digital back-propagation of a superchannel: Achievable rates and adaption of the GN model
Buchali et al. Statistical transmission experiments using a real-time 12.1 Gb/s OFDM transmitter
JP2016025518A (en) Photoreceiver, transmitter receiver, optical communication system, and waveform distortion compensation method
CN113517934B (en) Signal processing method and related equipment
JP2023543270A (en) Waveform equalizer, waveform equalization method and waveform equalization program
Soelch et al. Application study of digital resolution enhancement for digital-to-analog converters

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant