JP6051916B2 - Nonlinear compensation apparatus, method, and transmitter - Google Patents

Nonlinear compensation apparatus, method, and transmitter Download PDF

Info

Publication number
JP6051916B2
JP6051916B2 JP2013029099A JP2013029099A JP6051916B2 JP 6051916 B2 JP6051916 B2 JP 6051916B2 JP 2013029099 A JP2013029099 A JP 2013029099A JP 2013029099 A JP2013029099 A JP 2013029099A JP 6051916 B2 JP6051916 B2 JP 6051916B2
Authority
JP
Japan
Prior art keywords
terms
pulse
symbol information
time
perturbation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013029099A
Other languages
Japanese (ja)
Other versions
JP2013172457A (en
Inventor
ドゥ リアン
ドゥ リアン
タオ ゼンイング
タオ ゼンイング
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Publication of JP2013172457A publication Critical patent/JP2013172457A/en
Application granted granted Critical
Publication of JP6051916B2 publication Critical patent/JP6051916B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/58Compensation for non-linear transmitter output
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2543Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to fibre non-linearities, e.g. Kerr effect
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03343Arrangements at the transmitter end

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Optical Communication System (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Amplifiers (AREA)
  • Transmitters (AREA)

Description

以下の実施形態は、光通信分野に関し、特にチャネル内非線形補償装置、方法及び送信機に関する。   The following embodiments relate to the field of optical communication, and more particularly, to an intra-channel nonlinear compensation apparatus, method, and transmitter.

チャネル内非線形は光伝送システムにおける固有の損傷であり、光ファイバーのカー効果に由来する。シングルチャネル速度が40〜60Gbits/s以上に達した場合、波長分散の作用によって、同一チャネル内パルスは極めて大きく広がり、相互に重畳し、非線形の作用によって、相互に重畳したパルスの間にエネルギー交換が発生する。このような場合、たとえ受信端が伝送路(link)中の残留波長分散を補償したとしても、システムは依然として重大な非線形損傷を受ける。チャネル内非線形のシステムに対する影響には、タイミングジッタ(Timing Jitter)、信号振幅変動及びゴーストパルスの発生を含む。   In-channel nonlinearity is an inherent damage in optical transmission systems and is derived from the Kerr effect of optical fibers. When the single channel speed reaches 40 to 60 Gbits / s or more, pulses in the same channel spread very greatly due to the action of chromatic dispersion, overlap each other, and exchange energy between pulses overlapped by a nonlinear action. Occurs. In such a case, even if the receiving end compensates for residual chromatic dispersion in the transmission line (link), the system still suffers significant nonlinear damage. Effects on non-channel non-linear systems include timing jitter, signal amplitude fluctuations and ghost pulse generation.

近年、光ファイバー伝送システム容量のさらなる向上にともない、より複雑な多次元変調技術が徐々に簡単な強度変調方式に取って代わり、研究の焦点になってきている。複雑な変調方式が十分な信号対雑音比を有することを保証することができるように、伝送路(link)システムがより高い入力光パワーを有する必要があり、これは間違いなくシステムの非線形代償の増加につながる。   In recent years, with the further improvement of optical fiber transmission system capacity, more complex multidimensional modulation techniques have gradually replaced simple intensity modulation schemes and have become the focus of research. In order to be able to ensure that a complex modulation scheme has a sufficient signal-to-noise ratio, the link system needs to have higher input optical power, which is definitely a non-linear compensation of the system. Leads to an increase.

長距離光通信システムについては、いかにチャンネル内非線形の代償を補償しまたは低減するかが重要な研究課題である。人々はそれぞれ伝送路設計、受信機DSP処理及び送信信号エンコード等の面から研究を行った。従来技術においてはすでに送信機端において非線形摂動を差し引いて非線形を軽減する方法が提案されている。該方法は1倍オーバーサンプリングに基づき、ここで摂動項は一連の3項(3つの時刻のシンボル情報データ)の積の重み付け和に等しく、重み付け値は伝送路の波長分散、利得/減衰及び非線形係数によって決定される。該方法の長所は複雑さの低減にあり、特にPSKシステムにおいて、予補償波形を加減法によって完全に実現することができる。   For long-distance optical communication systems, how to compensate or reduce the compensation of intra-channel nonlinearity is an important research issue. People studied from the aspects of transmission line design, receiver DSP processing and transmission signal encoding. In the prior art, a method for reducing nonlinearity by subtracting nonlinear perturbation at the transmitter end has already been proposed. The method is based on one-time oversampling, where the perturbation term is equal to the weighted sum of the product of a series of three terms (symbol information data at three times), the weight values being the chromatic dispersion, gain / attenuation and nonlinearity of the transmission line. Determined by the coefficient. The advantage of this method is reduced complexity, especially in PSK systems, the precompensation waveform can be fully realized by the subtraction method.

しかし、本発明を実現する過程において発明者は従来技術には、位相変調システムにおいて、現在の予補償方法のハードウェアの複雑さが主に複素数の加法の複雑さと複素数の加法の個数とによるもので、伝送路(link)の残留波長分散が大きい場合、よりすぐれた補償効果を得るためにパルス作用項の個数も多くなるためハードウェアに対する要求も厳しくなるという欠点があることが分かった。   However, in the process of realizing the present invention, the inventor has shown that the hardware complexity of the current precompensation method is mainly due to the complexity of complex addition and the number of complex addition in the phase modulation system. Thus, it has been found that when the residual chromatic dispersion of the transmission line (link) is large, the number of pulse action terms increases in order to obtain a better compensation effect, so that the requirement for hardware becomes severe.

以下に本発明及び通常技術を理解するために有益な文献を挙げ、引用によってそれらを本明細書中に組み込み、本明細書中に完全に明らかにした場合と同等のものとする。   The following is a list of documents useful for understanding the present invention and the prior art, which are incorporated herein by reference and are equivalent to those fully disclosed herein.

IEEE PTL Vol. 12, No. 4, 2000,Antonio Mecozzi et. al.、IEEE PTL Vol. 12, No. 4, 2000, Antonio Mecozzi et. Al., L. Dou, Z. Tao, L. Li, W. Yan, T. Tanimura, T. Hoshida, and J. C. Rasmussen, “A low complexity pre-distortion method for intra-channel nonlinearity,” in Proc. OFC/NFOEC2011 Conf., Los Angeles, U.S.A., March. 2011, paper OThF5.L. Dou, Z. Tao, L. Li, W. Yan, T. Tanimura, T. Hoshida, and JC Rasmussen, “A low complexity pre-distortion method for intra-channel nonlinearity,” in Proc. OFC / NFOEC2011 Conf ., Los Angeles, USA, March. 2011, paper OThF5.

本実施例は非線形補償装置、方法及び送信機を提供し、重み付け係数の特性に基づきパルス作用項を結合し、さらに計算の複雑さを低減し、ハードウェアに対する要求を緩和することを課題とする。   The present embodiment provides a nonlinear compensation apparatus, method, and transmitter, and combines a pulse action term based on the characteristics of the weighting coefficient, further reduces the computational complexity, and relaxes the requirement for hardware. .

本実施例の一つの面によれば、非線形補償装置を提供し、該装置は、送信端で入力されたパルス信号のシンボル情報シーケンスを取得するための情報シーケンス取得器、あらかじめ取得しておいた各項に対応する重み付け係数によって、現在時刻に対する1つ以上の時刻におけるパルス相互作用項の重み付け和を計算して一定の長さの伝送路において発生する摂動量を取得するための摂動量取得器、前記重み付け係数に基づき前記摂動量の項を結合し、複素数の加法を有限シンボル集合内のシンボルの加法と乗法との組み合わせに変換させる摂動量処理器、前記シンボル情報シーケンスと処理を行った摂動量との差分を計算して補償後のシンボル情報シーケンスを取得して、送信端に前記補償後のシンボル情報シーケンスに基づき信号を送信させるための情報補償器、を含む。   According to one aspect of the present embodiment, a non-linear compensation device is provided, and the device acquires in advance an information sequence acquisition unit for acquiring a symbol information sequence of a pulse signal input at a transmission end. A perturbation amount acquisition unit for calculating a weighted sum of pulse interaction terms at one or more times with respect to the current time by using a weighting coefficient corresponding to each term to acquire a perturbation amount generated in a transmission path of a certain length. A perturbation amount processor that combines the perturbation amount terms based on the weighting coefficients and converts the addition of complex numbers into a combination of addition and multiplication of symbols in a finite symbol set, and perturbations that have been processed with the symbol information sequence The signal is calculated based on the compensated symbol information sequence by calculating the difference with the amount and obtaining the compensated symbol information sequence. Including information compensator, for.

本実施例のもう一つの面によれば、非線形補償方法を提供し、前記非線形補償方法は、送信端で入力されたパルス信号のシンボル情報シーケンスを取得し、あらかじめ取得しておいた各項に対応する重み付け係数によって、現在時刻に対する1つ以上の時刻におけるパルス相互作用項の重み付け和を計算して一定の長さの伝送路において発生する摂動量を取得し、前記重み付け係数に基づき前記摂動量の項を結合し、複素数の加法を有限シンボル集合内のシンボルの加法と乗法との組み合わせに変換させ、前記シンボル情報シーケンスと処理を行った摂動量との差分を計算して補償後のシンボル情報シーケンスを取得して、送信端に前記補償後のシンボル情報シーケンスに基づき信号を送信させること、を含む。   According to another aspect of the present embodiment, a non-linear compensation method is provided. The non-linear compensation method acquires a symbol information sequence of a pulse signal input at a transmitting end, and stores each symbol in advance. By calculating a weighted sum of pulse interaction terms at one or more times with respect to the current time by using a corresponding weighting factor, a perturbation amount generated in a transmission path of a certain length is obtained, and the perturbation amount is based on the weighting factor The symbol information after compensation is calculated by converting the addition of complex numbers into a combination of addition and multiplication of symbols in a finite symbol set, and calculating the difference between the symbol information sequence and the perturbation amount processed. Obtaining a sequence and causing the transmitting end to transmit a signal based on the compensated symbol information sequence.

本実施例のもう一つの面によれば、上記非線形補償装置を含む送信機を提供し、前記送信機はさらに、前記非線形補償装置が取得した補償後のシンボル情報シーケンスに基づきパルス成型を行って各パルスの波形を取得するためのパルス成型器、前記パルス成型器が送信した各パルスの波形を受信し、前記波形を変調後に送信するための信号送信器、を含む。   According to another aspect of the present embodiment, a transmitter including the nonlinear compensator is provided, and the transmitter further performs pulse shaping based on a compensated symbol information sequence acquired by the nonlinear compensator. A pulse shaper for acquiring the waveform of each pulse; and a signal transmitter for receiving the waveform of each pulse transmitted by the pulse shaper and transmitting the waveform after modulating the waveform.

本実施例の有益な効果は、送信端で入力されたパルス信号のシンボル情報を補償することができ、該装置を送信機に応用した場合、送信機は該補償後のシンボル情報を用いてパルス成型及び変調を行い、最後に信号を送信することができ、これらの信号が光ファイバー伝送路の非線形効果を受けた後、受信機において望ましい無損失信号を取得することができることにある。   The beneficial effect of the present embodiment is that the symbol information of the pulse signal input at the transmission end can be compensated. When the apparatus is applied to a transmitter, the transmitter uses the symbol information after the compensation to perform a pulse. The shaping and modulation can be done and finally the signals can be transmitted, and after these signals are subjected to the nonlinear effects of the optical fiber transmission line, the desired lossless signal can be obtained at the receiver.

また、重み付け係数の特性によってパルス作用項を結合し、複素数の加法を有限シンボル集合内のシンボルの加法と乗法との組み合わせに変換させることによって、さらに計算の複雑さを低減し、ハードウェアに対する要求を緩和することができる。   In addition, by combining the pulse action terms according to the characteristics of the weighting factor and converting the addition of complex numbers into a combination of addition and multiplication of symbols in a finite symbol set, the computational complexity is further reduced and the hardware requirements are reduced. Can be relaxed.

下記の説明及び図面を参照しながら、本実施形態を詳細に公開し、本発明が採用可能な方式を明示した。本実施形態はそれによって範囲の上で制限を受けるものではないことと理解すべきである。添付の特許請求の範囲の趣旨及び項目の範囲内において、本実施形態は多くの変更、修正及び等価を含む。   With reference to the following description and drawings, this embodiment has been disclosed in detail, and a scheme in which the present invention can be employed has been clarified. It should be understood that this embodiment is not thereby limited in scope. Within the spirit and scope of the appended claims, this embodiment includes many changes, modifications and equivalents.

実施形態の記述及び/または示された特徴については、同一もしくは類似の方式により1つ以上のその他の実施方式において用いられ、その他の実施方式における特徴と組み合わせ、もしくはその他の実施方式における特徴を代替することができる。   Descriptions of embodiments and / or features shown may be used in one or more other implementations in the same or similar manner, combined with features in other implementations, or substituted for features in other implementations can do.

用語「含む/含有する(包括/包含)」は本明細書において使用する場合、特徴、物品全体、ステップまたはアセンブリの存在を指すが、1つ以上のその他の特徴、物品全体またはアセンブリの存在もしくは付加を排除するものではない。   The term “include / include” (include / include) as used herein refers to the presence of a feature, the entire article, step or assembly, but the presence or absence of one or more other features, the entire article or assembly, or It does not exclude the addition.

典型的な光通信システムを示す図である。1 is a diagram illustrating a typical optical communication system. 本実施例の非線形補償装置の構成を示す図である。It is a figure which shows the structure of the nonlinear compensation apparatus of a present Example. 本実施例の非線形補償方法の一フローチャートである。It is one flowchart of the nonlinear compensation method of a present Example. 本実施例の非線形補償方法のもう一つのフローチャートである。It is another flowchart of the nonlinear compensation method of a present Example. 本実施例の送信機の構成を示す図である。It is a figure which shows the structure of the transmitting apparatus of a present Example.

次に、図面に基づいて、各実施形態について説明を行う。これらの実施形態は例示的なものに過ぎず、本発明に対する制限ではない。本分野の当業者が本発明及び実施形態を容易に理解することができるようにするため、本実施形態は光通信システムを例に説明を行う。しかし、本実施形態は非線形損失が存在するすべての通信システムに適用することができる。   Next, each embodiment will be described based on the drawings. These embodiments are merely exemplary and are not a limitation on the present invention. In order that those skilled in the art can easily understand the present invention and the embodiments, the embodiments will be described by taking an optical communication system as an example. However, this embodiment can be applied to all communication systems in which nonlinear loss exists.

図1は典型的な光通信システムを示す図であり、ここで、送信機が送信する信号は伝送路中のさまざまなデバイス(光ファイバー、光増幅器、波長分散補償光ファイバー等)を介して受信機に到達する。本実施例においては、非線形補償装置によって送信端で入力されたパルス信号のシンボル情報シーケンスを補償し、送信端に特定変形を行った信号を送信させ、これらの信号が光ファイバー伝送の非線形効果を受けた後、受信機において望ましい無損失信号を得ることができる。   FIG. 1 is a diagram showing a typical optical communication system in which a signal transmitted by a transmitter is transmitted to a receiver via various devices (optical fiber, optical amplifier, chromatic dispersion compensating optical fiber, etc.) in a transmission path. To reach. In this embodiment, the non-linear compensator compensates the symbol information sequence of the pulse signal input at the transmission end, causes the transmission end to transmit a signal with a specific modification, and these signals receive the nonlinear effect of optical fiber transmission. After that, the desired lossless signal can be obtained at the receiver.

図1に示されたシステムにおいて、送信端で入力されたパルス信号を補償するため、発明者は本発明をする過程において、まずチャネル内非線形モデルを構築し、その後該非線形モデルに基づいて入力されたパルス信号を補償した。   In the system shown in FIG. 1, in order to compensate the pulse signal input at the transmission end, in the process of performing the present invention, the inventor first constructs an intra-channel nonlinear model and then inputs the nonlinear model based on the nonlinear model. Compensated for the pulse signal.

通常の場合、スペクトル効率を最大限増加させることができるように、送信機端では通常偏波多重の方式を用いているため、以下では二重偏波を例にチャネル内非線形モデルを得る過程について説明を行う。   In the normal case, since the transmitter end uses the normal polarization multiplexing method so that the spectral efficiency can be maximized, the following is the process of obtaining the intra-channel nonlinear model using dual polarization as an example. Give an explanation.

まず、ベクトル信号については、伝送光ファイバーは式(1)に示すとおりManakov方程式としてモデリングすることができる。

Figure 0006051916
First, for vector signals, the transmission optical fiber can be modeled as a Manakov equation as shown in equation (1).
Figure 0006051916

式中、u(t,z)、u(t,z)はそれぞれ信号の水平H及び垂直V方向偏波状態における電界成分(component)であり、α(z)、β(z)及びγ(z)はそれぞれ光ファイバー伝送路中の減衰係数、波長分散係数及び非線形係数の伝送距離に沿った分布を表す。 In the equation, u H (t, z) and u V (t, z) are electric field components (components) in the horizontal H and vertical V-direction polarization states of the signal, respectively, α (z), β 2 (z). And γ (z) represent the distribution along the transmission distance of the attenuation coefficient, chromatic dispersion coefficient, and nonlinear coefficient in the optical fiber transmission line, respectively.

次に、送信機から発生する信号は通常光パルスからなるため、送信機端の電界成分は公式(2)の形式で表すことができる。

Figure 0006051916
Next, since the signal generated from the transmitter is usually an optical pulse, the electric field component at the transmitter end can be expressed in the form of formula (2).
Figure 0006051916

式中、A 、A はそれぞれ水平H及び垂直V偏波状態における第kのパルスの信号シンボルであり、Tはパルス間隔であり、g(t)は各パルスの波形である。ここで、送信機の出力信号が任意の波形の光信号であっても、時間間隔Tを十分小さく設定すれば、出力光信号はやはり(2)式の形式とみなすことができる。 In the equation, A H k and A V k are signal symbols of the k-th pulse in the horizontal H and vertical V polarization states, respectively, T is a pulse interval, and g (t) is a waveform of each pulse. Here, even if the output signal of the transmitter is an optical signal having an arbitrary waveform, if the time interval T is set sufficiently small, the output optical signal can still be regarded as in the form of equation (2).

最後に、入力信号(2)を(1)式に代入し、送信光パワーがあまり大きくない(すなわち光ファイバー伝送路の非線形があまり強くない)場合、摂動理論を用いて式(1)を解き、式(3)を得ることができる。

Figure 0006051916
Finally, when the input signal (2) is substituted into the equation (1) and the transmission optical power is not so large (that is, the nonlinearity of the optical fiber transmission line is not so strong), the equation (1) is solved using perturbation theory, Equation (3) can be obtained.
Figure 0006051916

ここで、(3)式において、受信機端第Kパルスサンプリング時刻における電界値は送信端第Kパルスの電界値と摂動量とからなり、ここで摂動量は複数の相互作用項の重み付け和であり、各項は1つ以上の時刻の送信パルス情報シンボル積である。ここで、上記摂動理論を用いて式(1)を解く過程において、低次項のみを扱い高次項を無視して計算を行う。   Here, in the equation (3), the electric field value at the receiver end Kth pulse sampling time is composed of the electric field value of the transmitting end Kth pulse and the perturbation amount, where the perturbation amount is a weighted sum of a plurality of interaction terms. Yes, each term is a transmission pulse information symbol product of one or more times. Here, in the process of solving equation (1) using the above perturbation theory, only the low order terms are handled and the high order terms are ignored.

このため、公式(3)において第kパルスサンプリング時刻に対する3つの時刻、第m+k時刻、第n+k時刻及び第m+n+k時刻のパルス相互作用の重み付け和を計算するだけでよい。しかし解を求める過程において高次項を考慮する場合、第Kパルスサンプリング時刻に対する3つ以上の時刻のパルス相互作用の重み付け和を計算する必要がある。   Therefore, it is only necessary to calculate the weighted sum of the pulse interactions at the three times with respect to the kth pulse sampling time, the m + k time, the n + k time, and the m + n + k time in the formula (3). However, when considering higher order terms in the process of finding a solution, it is necessary to calculate a weighted sum of pulse interactions at three or more times with respect to the Kth pulse sampling time.

第kパルスに対して用いられた3つの時刻のパルスは任意のものではなく、それらの間の時間関係は(m+k)+(n+k)−(m+n+k)=kを満たす。式中、m,n及びkは同一であってもよく、すなわちパルスサンプリング時刻は現在時刻に対する1つ以上の時刻であってもよい。本実施形態はこれに限らず、3つのパルスはさらにその他の形式の組み合わせを有してもよく、それに対応する係数は適当な修正を行う必要があることに注意する必要がある。   The three time pulses used for the kth pulse are not arbitrary, and the time relationship between them satisfies (m + k) + (n + k) − (m + n + k) = k. Where m, n and k may be the same, ie the pulse sampling time may be one or more times relative to the current time. It should be noted that the present embodiment is not limited to this, and the three pulses may further have other types of combinations, and the corresponding coefficients need to be appropriately modified.

以下ではすべて3つのパルスの相互作用の重み付け和を例に説明を行う。本発明はこれに限らず、3つを超えるパルスの場合については3つのパルスの場合に類似する。   In the following description, the weighted sum of the interaction of all three pulses will be described as an example. The present invention is not limited to this, and the case of more than three pulses is similar to the case of three pulses.

式(3)からわかるように、現在偏波状態の摂動項は2つの部分に由来し、1つの部分は本偏波状態に由来し、他の部分は直交偏波状態に由来する。例えば、水平偏波状態については、本偏波状態に由来する部分はA m+k n+k(A m+n+kであり、直交偏波状態に由来する部分はA m+k n+k(A m+n+kである。垂直偏波状態についての状況は類似するため、ここではこれ以上述べない。 As can be seen from Equation (3), the perturbation term in the current polarization state is derived from two parts, one part is derived from the present polarization state, and the other part is derived from the orthogonal polarization state. For example, for the horizontal polarization state, the portion derived from this polarization state is A H m + k A H n + k (A H m + n + k ) * , and the portion derived from the orthogonal polarization state is A H m + k A V n + k (A V m + n + k) is a *. The situation for the vertically polarized state is similar and will not be discussed further here.

Masakov方程式(1)において、2つの偏波状態のシンボル情報はいつも対称に現れるため、このような対称性によって最終的には水平及び垂直偏波状態という2つの部分の摂動項の係数は同一になる。該係数は伝送路の配置及び相互作用するパルスの現在時刻のパルスとの相対位置(m,n)のみと関係する。   In the Masakov equation (1), since the symbol information of the two polarization states always appears symmetrical, the symmetry causes the coefficients of the perturbation terms in the two parts of the horizontal and vertical polarization states to be the same eventually. Become. The coefficient relates only to the arrangement of the transmission line and the relative position (m, n) of the interacting pulse with the pulse at the current time.

上記非線形モデルに基づけば、送信端で特定変形を行った信号を送信し、これらの信号が光ファイバー伝送の非線形効果を受けた後、受信端で望ましい無損失信号を得られる。ここで、チャネルの線形損失はその他の方法によってすでに補償されたものと仮定することができる。   Based on the non-linear model, signals having undergone specific deformation are transmitted at the transmitting end, and after these signals are subjected to the nonlinear effect of optical fiber transmission, a desired lossless signal can be obtained at the receiving end. Here, it can be assumed that the linear loss of the channel has already been compensated by other methods.

さらに、式(3)を整理して下記式(4)を等価に得ることができる。

Figure 0006051916
Furthermore, formula (3) can be rearranged to obtain the following formula (4) equivalently.
Figure 0006051916

PSK信号については、各シンボルのモジュラスが同一であるため、式(4)中の等号の右辺第2項において現行シンボル情報に乗じる因数は定数である。該因数が虚数であることを考慮したため、受信端で見られる効果はコンスタレーション全体の回転である。コヒーレント受信機はしばしば位相回復アルゴリズムを有するため、該回転は完全に修正される。   As for the PSK signal, since the modulus of each symbol is the same, the factor multiplied by the current symbol information in the second term on the right side of the equal sign in equation (4) is a constant. Considering that the factor is an imaginary number, the effect seen at the receiving end is the rotation of the entire constellation. Since coherent receivers often have a phase recovery algorithm, the rotation is completely corrected.

したがって、実際に非線形の作用を考察する場合、該項の作用を無視することができ、すなわち現在時刻のシンボル情報を廃棄して、(4)式の等号右辺最後の2つの加法的摂動の影響のみを考慮する。これにより、式(4)はさらに式(5)のように書くことができる。

Figure 0006051916
Therefore, when actually considering the nonlinear effect, the effect of the term can be ignored, that is, the symbol information at the current time is discarded, and the last two additive perturbations of the right side of the equal sign of equation (4) Consider impact only. Thus, equation (4) can be further written as equation (5).
Figure 0006051916

例えば、直角位相振幅変調(QAM,Quadrature Amplitude Modulation)または直交波周波数分割多重(OFDM,Orthogonal Frequency Division Multiplexing)等のその他の非定モジュラス変調信号については、伝送路の累積波長分散が大きい場合、相互作用するパルス数は多くなり、平均効果によって非線形引き込みの位相回転を近似的に同一とするため、式(5)はやはり成り立つ。式(5)においては非線形引き込みの加法性ひずみのみを考慮した。偏波多重信号については、この摂動は本偏波状態及び直交偏波状態に由来する。   For example, for other non-constant modulus modulation signals such as quadrature amplitude modulation (QAM) or orthogonal frequency division multiplexing (OFDM), if the accumulated chromatic dispersion of the transmission line is large, Since the number of acting pulses increases and the phase rotation of the non-linear pull-in is approximately the same due to the average effect, equation (5) still holds. In equation (5), only the additive strain of nonlinear entrainment was considered. For polarization multiplexed signals, this perturbation comes from the main polarization state and the orthogonal polarization state.

以上では二重偏波信号を例に説明を行ったが、チャネル中で伝送するのが単偏波信号である場合、式(5)はさらに式(6)のように簡略化することができる。

Figure 0006051916
In the above description, a dual-polarized signal is described as an example. However, when a single-polarized signal is transmitted in a channel, Equation (5) can be further simplified as Equation (6). .
Figure 0006051916

C(m,n,z=L)は現在時刻に対する第m、第n及び第m+nパルスの相互作用の重み付け係数に対応する。ここで、偏波多重システムにおいて、3つの相互作用するパルスは同一の偏波状態に由来してもよく、異なる偏波状態に由来してもよいことを指摘しておく必要がある。各項に対応する重み付け係数はあらかじめ取得しておくことができる。   C (m, n, z = L) corresponds to the weighting coefficient of the interaction of the mth, nth and m + n pulses with respect to the current time. Here, it is necessary to point out that in the polarization multiplexing system, the three interacting pulses may originate from the same polarization state or from different polarization states. The weighting coefficient corresponding to each term can be acquired in advance.

ここで、シミュレーション及び実験の方法に基づいて該重み付け係数を得る場合、シミュレーションまたは実験において異なる送信信号を設計することができ、受信した信号に基づき、該重み付け係数の値を逆算する。上記方法は正確度が高い。   Here, when the weighting coefficient is obtained based on a simulation and experiment method, different transmission signals can be designed in the simulation or experiment, and the value of the weighting coefficient is calculated backward based on the received signal. The above method is highly accurate.

ここで、伝送路配置及び異なる時刻において相互作用するパルスと現在時刻のパルスとの相対位置に基づき各項の重み付け係数を取得する場合、下記式(7)を用いて該重み付け係数を計算することができる。

Figure 0006051916
ここで、現在時刻が第k時刻である場合、現在時刻に対する3つの異なる時刻は第m+k時刻、第n+k時刻及び第m+n+k時刻となる。所定の若干項の(m,n)値、各項の(m,n)値はいずれも異なる重み付け係数C(m,n,z=L)に対応する。ここで、m及びnの取る値は負の無限大から正の無限大までの間の任意の値を含んでよく、現在の第k時刻の前、後の値すべてに関係する。 Here, when acquiring the weighting coefficient of each term based on the transmission line arrangement and the relative position between the pulse interacting at different times and the pulse at the current time, calculate the weighting coefficient using the following equation (7). Can do.
Figure 0006051916
Here, when the current time is the kth time, three different times with respect to the current time are the m + k time, the n + k time, and the m + n + k time. The predetermined (m, n) value of some terms and the (m, n) value of each term all correspond to different weighting coefficients C (m, n, z = L). Here, the values taken by m and n may include any value between negative infinity and positive infinity, and relate to all values before and after the current k-th time.

また、一般に(m,n)の絶対値の増大にともない、それに対応するC(m,n,z=L)の絶対値もともなって減少し、このため、求められる計算精度に応じて、一定数量の(m,n)値を取って摂動量を計算することができる。   In general, as the absolute value of (m, n) increases, the corresponding absolute value of C (m, n, z = L) also decreases, and therefore, constant according to the required calculation accuracy. The perturbation amount can be calculated by taking the (m, n) value of the quantity.

このようにして、m及びnはさらに以下のような方式で値を取ることができる。m及びnを扱う場合、該m及びnに基づいて得られた重み付け係数C(m,n,z=L)のモジュラス|C(m,n,z=L)|が所定の値以上である場合、該m及びnを用いてもよい。そうでない場合は、該m及びnを用いない。該所定の値はすべての係数の最大モジュラス値のある比例係数によって設定することができ、例えば標準化係数Cは|C(m,n,z=L)|>1e−3*max(|C(m,n,z=L)|)を満たすすべてのmとnとの組み合わせを選択することができる。   In this way, m and n can take values in the following manner. When m and n are handled, the modulus | C (m, n, z = L) | of the weighting coefficient C (m, n, z = L) obtained based on the m and n is a predetermined value or more. In this case, m and n may be used. Otherwise, m and n are not used. The predetermined value can be set by a proportional coefficient having a maximum modulus value of all coefficients. For example, the standardization coefficient C is | C (m, n, z = L) |> 1e−3 * max (| C ( All combinations of m and n that satisfy m, n, z = L) |) can be selected.

ここで、p(z)は伝送路において送信端からZ隔たった点の信号のパワーを表し、s(z)は伝送路において送信端からZ隔たった点の累積波長分散正味値を表し、τはパルスの半値全幅を表し、Tはパルス間隔を表し、γ(z)は伝送路において送信端からZ隔たった点の非線形係数を表す。   Here, p (z) represents the power of a signal at a point Z away from the transmission end in the transmission line, s (z) represents a cumulative chromatic dispersion net value at a point Z away from the transmission end in the transmission line, and τ Represents the full width at half maximum of the pulse, T represents the pulse interval, and γ (z) represents the nonlinear coefficient at a point Z away from the transmission end in the transmission line.

または、伝送路中に波長分散補償モジュールを含まず、且つ同時に信号伝送過程における減衰を無視し、波長分散係数と非線形係数とが伝送距離に伴って変化しない場合、下記式(8)を用いて該重み付け係数を計算することもできる。

Figure 0006051916
Alternatively, when the transmission path does not include a chromatic dispersion compensation module, and at the same time ignores attenuation in the signal transmission process, and the chromatic dispersion coefficient and the nonlinear coefficient do not change with the transmission distance, the following equation (8) is used. The weighting factor can also be calculated.
Figure 0006051916

式中、γは非線形係数を表し、pは送信端信号のパワーを表し、β は波長分散係数を表し、exp intは指数積分関数を表し、該積分関数は

Figure 0006051916
と表すことができる。 In the equation, γ represents a nonlinear coefficient, p 0 represents the power of the transmitting end signal, β 2 represents a chromatic dispersion coefficient, exp int represents an exponential integral function, and the integral function is
Figure 0006051916
It can be expressed as.

また、得られた重み付け係数を保存し、重み付け値を計算する際に使用することもできる。重み付け係数を計算するチャネルパラメータ、例えば非線形係数γ、波長分散係数β、及び伝送路長さL等のパラメータを保存することができる。 Further, the obtained weighting coefficient can be stored and used when calculating the weighting value. Channel parameters for calculating the weighting coefficient, for example, parameters such as nonlinear coefficient γ, chromatic dispersion coefficient β 2 , and transmission path length L can be stored.

チャネル反転及び受信機端において実現される非線形フィルタに基づく場合より、上記非線形予補償モデルは低い複雑さを有する。ここで、非線形引き込みのひずみは相互作用項の和であり、各項中の情報シンボル間の乗法は論理演算によって得られるため、予補償に必要な乗法数は相互作用項の項数である。システムの変調方式が位相変調システム(BPSK,QPSK等)である場合、情報シンボルと係数との間の乗法も論理演算によって得られ、予補償方法はいかなる乗法演算をも必要としない。   The nonlinear precompensation model has a lower complexity than based on channel inversion and a nonlinear filter implemented at the receiver end. Here, since the distortion of the nonlinear pull-in is the sum of the interaction terms, and the multiplication between the information symbols in each term is obtained by a logical operation, the multiplication number necessary for pre-compensation is the number of terms in the interaction term. If the modulation scheme of the system is a phase modulation system (BPSK, QPSK, etc.), the multiplication between information symbols and coefficients is also obtained by a logical operation, and the precompensation method does not require any multiplication operation.

従って、位相変調システムについては、上記予補償のハードウェアの複雑さは主に複素数の加法の複雑さと複素数の加法の個数とによって決まる。ここで複素数の加法の個数は式(5)または式(6)中の項数に等しい。伝送路の残留波長分散が大きい場合、よりすぐれた補償効果を得るため、式(5)または式(6)中の項の個数も多くなり、これにより高い計算の複雑さにつながり、ハードウェアに対する要求も厳しくなる。   Therefore, for a phase modulation system, the complexity of the precompensation hardware is mainly determined by the complexity of complex addition and the number of complex additions. Here, the number of complex additions is equal to the number of terms in the equation (5) or (6). When the residual chromatic dispersion of the transmission line is large, in order to obtain a better compensation effect, the number of terms in the equation (5) or (6) also increases, which leads to high computational complexity and The demands will also be severe.

以上の分析に基づき、以下では図1に示された光通信システム、及び該通信システムに基づく非線形モデルを例に、本実施例の非線形補償装置、方法及び送信機について詳細な説明を行う。   Based on the above analysis, the non-linear compensation apparatus, method, and transmitter of this embodiment will be described in detail below by taking the optical communication system shown in FIG. 1 and the non-linear model based on the communication system as an example.

図2は本実施例の非線形補償装置の構成を示す図である。図2に示すように、該非線形補償装置は情報シーケンス取得器201、摂動量取得器202、摂動量処理器203及び情報補償器204を含む。   FIG. 2 is a diagram showing the configuration of the nonlinear compensator of this embodiment. As shown in FIG. 2, the nonlinear compensation device includes an information sequence acquisition unit 201, a perturbation amount acquisition unit 202, a perturbation amount processing unit 203, and an information compensator 204.

ここで、情報シーケンス取得器201は送信端で入力されたパルス信号のシンボル情報シーケンスを取得するために用いられ、摂動量取得器202はあらかじめ取得しておいた各項に対応する重み付け係数によって、現在時刻に対する1つ以上の時刻におけるパルス相互作用項の重み付け和を計算して一定の長さの伝送路において発生する摂動量を取得するために用いられ、摂動量処理器203は重み付け係数に基づき摂動量の項を結合し、複素数の加法を有限シンボル集合内のシンボルの加法と乗法との組み合わせに変換させ、情報補償器204はシンボル情報シーケンスと処理を行った後の摂動量との差分を計算して補償後のシンボル情報シーケンスを取得し、送信端に補償後のシンボル情報シーケンスに基づき信号を送信させるために用いられる。   Here, the information sequence acquisition unit 201 is used to acquire a symbol information sequence of the pulse signal input at the transmission end, and the perturbation amount acquisition unit 202 uses a weighting coefficient corresponding to each term acquired in advance. The perturbation amount processor 203 is used to calculate a weighted sum of pulse interaction terms at one or more times with respect to the current time to obtain a perturbation amount generated in a transmission line of a certain length. Combining the terms of the perturbation quantity, converting the addition of complex numbers into a combination of symbol addition and multiplication in a finite symbol set, the information compensator 204 calculates the difference between the symbol information sequence and the perturbation quantity after processing. In order to calculate and obtain a compensated symbol information sequence, and to cause the transmitting end to transmit a signal based on the compensated symbol information sequence It is needed.

本実施例において、情報シーケンス取得器201が取得したシンボル情報シーケンスは補償前のシンボル情報であり、ここで、該シンボル情報は用いられた変調方式と関わり、異なる変調方式につきシンボル情報が違っていて、例えば、OOK変調方式については、該シンボル情報シーケンスは0,1であり、BPSK変調方式については、該シンボル情報シーケンスは−1,1であり、QPSK変調方式については、該シンボル情報シーケンスは1,j,−1,−jである。   In the present embodiment, the symbol information sequence acquired by the information sequence acquisition unit 201 is symbol information before compensation. Here, the symbol information is related to the modulation scheme used, and the symbol information differs for different modulation schemes. For example, for an OOK modulation scheme, the symbol information sequence is 0, 1; for a BPSK modulation scheme, the symbol information sequence is −1, 1; for a QPSK modulation scheme, the symbol information sequence is 1 , J, −1, −j.

本実施例において、摂動量取得器202は各送信シンボル(送信時刻)に対する摂動量を計算するために用いることができ、該摂動量は複数の相互作用項の重み付け和に等しく、ここで各相互作用項とは1つ以上の異なるシンボルの間の積をいう。   In the present embodiment, the perturbation amount acquisition unit 202 can be used to calculate the perturbation amount for each transmission symbol (transmission time), and the perturbation amount is equal to the weighted sum of a plurality of interaction terms. An action term is a product between one or more different symbols.

本実施例において、摂動量処理器203は具体的には、同一または近似的同一の重み付け係数に対応する項を結合し、または、重み付け係数の実部に対応する項を結合し、または、重み付け係数の虚部に対応する項を結合するために用いることができる。   In this embodiment, the perturbation amount processor 203 specifically combines terms corresponding to the same or approximately the same weighting factor, or combines terms corresponding to the real part of the weighting factor, or weights. It can be used to combine terms corresponding to the imaginary part of the coefficients.

具体的には、ハードウェアの複雑さをさらに低減するために、式(5)または(6)中の項を係数C(m,n)の特性にしたがって結合することができる。同一または近似的同一のC(m,n)もしくはその実部もしくは虚部に対応する項を結合する場合、有限シンボル集合内のシンボルの加法を用いて元の高精度の複素数の加法を代替し、同時に1つの複素数の乗法を導入することができる。   Specifically, to further reduce the hardware complexity, the terms in equation (5) or (6) can be combined according to the characteristics of the coefficient C (m, n). When combining terms corresponding to the same or approximately the same C (m, n) or its real or imaginary part, use the addition of symbols in the finite symbol set to replace the original high-precision complex addition, One complex multiplication can be introduced at the same time.

このように、式(5)または(6)中の複素数の加法の数を大幅に低減し、それによって複雑さを低下させることができる。送信データがQPSKである場合、3つのQPSKシンボルの積はやはりQPSKであり、同時にN個のQPSKの相加はこのN個の二進数中の1の個数(または0の個数)を計算することとみなすことができ、このような操作のハードウェアの複雑さはN個の任意の複素数の加法よりはるかに小さい。   In this way, the number of complex additions in equation (5) or (6) can be significantly reduced, thereby reducing complexity. If the transmission data is QPSK, the product of the three QPSK symbols is still QPSK, and the addition of N QPSKs simultaneously calculates the number of 1s (or 0s) in the N binary numbers. The hardware complexity of such operations is much less than the addition of any arbitrary N complex numbers.

本実施例において、情報補償器204は具体的には、情報シーケンス取得器201が取得したシンボル情報シーケンスを利用して摂動量処理器203が取得した摂動量を差し引いて現在時刻の補償後のシンボル情報シーケンスを取得するために用いることができる。   In this embodiment, the information compensator 204 specifically subtracts the amount of perturbation acquired by the perturbation amount processor 203 using the symbol information sequence acquired by the information sequence acquisition unit 201 and compensates for the symbol after the current time is compensated. It can be used to obtain an information sequence.

具体的に実施する場合、対応するハードウェア回路を用いてもよく、加算器、乗算器または論理演算回路等を用いて実現してもよい。例えば、PSK信号については、シンボル間の乗法はルックアップテーブルを用いて実現することができ、またPSK信号とCoefとの間の乗法は論理演算及び加算器を用いて実現することができる。具体的に実現する場合、従来の部品を用いることができる。   In a specific implementation, a corresponding hardware circuit may be used, or an adder, a multiplier, a logical operation circuit, or the like may be used. For example, for a PSK signal, multiplication between symbols can be realized using a look-up table, and multiplication between a PSK signal and Coef can be realized using a logical operation and an adder. When specifically implemented, conventional components can be used.

本実施例において、摂動量取得器202は複数項中の各項の現在時刻に対する1つ以上の時刻のパルスのシンボル情報を取得することができ、各項の現在時刻に対する1つ以上の時刻におけるパルスのシンボル情報、及びあらかじめ取得しておいた各項に対応する重み付け係数を利用して、各項中の現在時刻に対する1つ以上の時刻におけるパルスの相互作用の重み付け値を計算し、各項の重み付け値に基づき複数項の重み付け値の和を計算して一定の長さの伝送路において発生する摂動量を取得する。   In this embodiment, the perturbation amount acquisition unit 202 can acquire symbol information of one or more time pulses with respect to the current time of each term in a plurality of terms, and at one or more times with respect to the current time of each term. Using the symbol information of the pulse and the weighting coefficient corresponding to each term acquired in advance, the weight value of the interaction of the pulse at one or more times with respect to the current time in each term is calculated. Based on the weighting values, the sum of the weighting values of a plurality of terms is calculated to obtain the amount of perturbation that occurs in the transmission line of a certain length.

次に、第kパルスサンプリング時刻に対する3つの時刻、第m+k時刻、第n+k時刻及び第m+n+k時刻のパルスの相互作用の重み付け和の計算を例に、説明を行う。ここで、若干項の現在時刻に対する3つの時刻におけるパルスの相互作用の重み付け和計算中に用いる項の数はあらかじめ定められた(m,n)値によって決定される。   Next, description will be made by taking as an example the calculation of the weighted sum of the interaction of the pulses at the three times with respect to the kth pulse sampling time, the m + k time, the n + k time, and the m + n + k time. Here, the number of terms used during the weighted sum calculation of the interaction of pulses at three times with respect to the current time of some terms is determined by a predetermined (m, n) value.

m,n及びkの間で(m+k)+(n+k)−(m+n+k)=kを満たすことに注意する。ここで、m,n及びkは等しくてもよく、すなわちパルスサンプリング時刻は現在時刻に対する1つ以上の時刻であってもよい。   Note that (m + k) + (n + k) − (m + n + k) = k is satisfied between m, n and k. Here, m, n, and k may be equal, that is, the pulse sampling time may be one or more times with respect to the current time.

さらに、具体的実施例においてmn≠0であってもよく、m,nのうちいずれも0であってはならないことを表し、これによって(m+k)及び(n+k)は等しくてもよいが、(m+n+k)に等しくはなく、すなわち、パルスサンプリング時刻は現在時刻に対する少なくとも2つの時刻であってもよい。   Further, in a specific embodiment, mn ≠ 0 may be expressed, which means that neither m nor n should be 0, whereby (m + k) and (n + k) may be equal, m + n + k), ie, the pulse sampling time may be at least two times relative to the current time.

このように、摂動量取得器202は具体的には、現在時刻、例えば第k時刻に対する3つの時刻、例えば第m+k、第n+k、第m+n+k時刻におけるパルスの相互作用の重み付け和を計算して現在の第k時刻の非線形効果が一定の長さの伝送路を通過して発生する摂動量を取得するために用いることができる。   In this way, the perturbation amount acquisition unit 202 specifically calculates the weighted sum of the interaction of pulses at the current time, for example, three times with respect to the kth time, for example, the m + k, n + k, and m + n + k times, The k-th time nonlinear effect can be used to acquire the amount of perturbation that occurs through a transmission line having a certain length.

以上は摂動量取得器202がいかに摂動量を取得するかについて例示して説明を行った。次に、摂動量処理器203がいかに項の結合を行うかについて、それぞれ単偏波信号及び二重偏波信号を通して詳細な説明を行う。   The above is an example of how the perturbation amount acquisition unit 202 acquires the perturbation amount. Next, how the perturbation amount processor 203 combines terms will be described in detail through a single polarization signal and a dual polarization signal, respectively.

本実施例において、係数C(m,n,z=L)そのものは複素数であるため、式(5)または式(6)中の各相加項は任意の複素数である。該係数C(m,n,z=L)は、例えばmn≠0の場合、該係数はm,nの積にのみ関係し、mn≠0且つmnのシンボルが逆になった場合、該係数の虚部はそのまま変わらず、実部が逆になり、n=0の場合、該係数の実部は虚部よりはるかに小さいので無視することができ、n=0の場合、該係数はmのモジュラス値とのみ関係する等という特性を有することができる。 In this embodiment, since the coefficient C (m, n, z = L) itself is a complex number, each additive term in the equation (5) or the equation (6) is an arbitrary complex number. The coefficient C (m, n, z = L), for example, when m * n ≠ 0, the coefficient is related only to the product of m and n, and the symbol of m * n ≠ 0 and m * n is reversed. The imaginary part of the coefficient remains unchanged and the real part is reversed. When n = 0, the real part of the coefficient is much smaller than the imaginary part and can be ignored. In some cases, the coefficient may have properties such as being related only to the modulus value of m.

以上は係数C(m,n,z=L)の特性を例示した説明に過ぎず、これに限らないことは注意するに値する。該係数のその他の特性に基づき、摂動量の項を結合し、複素数の加法を有限シンボル集合内のシンボルの加法と乗法との組み合わせに変換させることができ、本分野の当業者なら実際の状況に応じて具体的実施形態を決定することができる。   It is worth noting that the above is merely an example illustrating the characteristics of the coefficient C (m, n, z = L), and is not limited thereto. Based on the other properties of the coefficients, the perturbation terms can be combined to convert the addition of complex numbers into a combination of symbol addition and multiplication in a finite symbol set. Depending on the specific embodiment, it can be determined.

具体的には、単偏波信号について、摂動量取得器202はまず下記式を用いて、複数項の重み付け値の和を計算することができる。

Figure 0006051916
Specifically, for a single polarization signal, the perturbation amount acquisition unit 202 can first calculate the sum of weighted values of a plurality of terms using the following equation.
Figure 0006051916

式中、Δは第k時刻の若干項の重み付け値の和を表し、C(m,n,z=L)は伝送路L点における各項の重み付け係数を表し、Am+k、An+kはそれぞれ第m+k時刻、第n+k時刻のパルスのシンボル情報を表し、(Am+n+kは第m+n+k時刻のパルスのシンボル情報の共役を表す。 In the equation, Δ k represents the sum of the weight values of some terms at the k-th time, C (m, n, z = L) represents the weight coefficient of each term at the transmission line L point, and A m + k and A n + k are The symbol information of the pulse at the ( m + k ) time and the ( n + k ) time is represented, and (A m + n + k ) * represents the conjugate of the symbol information of the pulse at the ( m + n + k ) time.

その後、摂動量処理器203は上記係数C(m,n,z=L)の一部またはすべての特性を基準として、具体的な同類項を結合することができる。例えば、mn≠0の場合、該係数はm,nの積にのみ関係することに基づき、摂動量の項を結合するとき、下記式を用いる:

Figure 0006051916
Thereafter, the perturbation amount processor 203 can combine specific similar terms based on some or all of the characteristics of the coefficient C (m, n, z = L). For example, if m * n ≠ 0, based on the fact that the coefficient is only related to the product of m, n, the following equation is used when combining perturbation terms:
Figure 0006051916

ここで、上式のRe()は実部を取ることを表し、Im()は虚部を取ることを表す。式(9)と比べると、m,nに対する二重和はmとnとの積aに対する一重和に変わっている。   Here, Re () in the above formula represents taking a real part, and Im () represents taking an imaginary part. Compared with equation (9), the double sum for m and n is changed to a single sum for the product a of m and n.

または、mn≠0の場合、該係数はm,nの積にのみ関係し、mn≠0且つmnのシンボルが逆になった場合、該係数の虚部はそのまま変わらないことに基づき、実部が逆になる。摂動量処理器203が摂動量の項を結合する場合、下記式を用いる。

Figure 0006051916
Alternatively, when m * n ≠ 0, the coefficient is related only to the product of m and n, and when the symbol of m * n ≠ 0 and m * n is reversed, the imaginary part of the coefficient remains unchanged. Based on that, the real part is reversed. When the perturbation amount processor 203 combines perturbation amount terms, the following equation is used.
Figure 0006051916

具体的には、二重偏波信号について、摂動量取得器202はまず下記式を用いて複数項の重み付け値の和を計算することができる。

Figure 0006051916
Specifically, for a dual-polarized signal, the perturbation amount acquisition unit 202 can first calculate the sum of weighted values of a plurality of terms using the following equation.
Figure 0006051916

式中、Δ 及びΔ はそれぞれ第k時刻の若干項の水平偏波状態と垂直偏波状態との重み付け値の和を表し、C(m,n,z=L)は伝送路L点における各項の重み付け係数を表し、A m+k及びA m+kはそれぞれ水平偏波状態及び垂直偏波状態における第m+k時刻のパルスのシンボル情報を表し、A n+k及びA n+kはそれぞれ水平偏波状態及び垂直偏波状態における第n+k時刻のパルスのシンボル情報を表し、(A m+n+k及び(A m+n+kはそれぞれ水平偏波状態及び垂直偏波状態における第m+n+k時刻のパルスのシンボル情報の共役を表す。 Where Δ H k and Δ V k represent the sum of weighted values of the horizontal polarization state and the vertical polarization state of some terms at the k-th time, respectively, and C (m, n, z = L) is the transmission line It represents the weighting coefficient of each term at point L, A H m + k and A V m + k represent the symbol information of the pulse at the m + k time in the horizontal polarization state and the vertical polarization state, respectively, and A H n + k and A V n + k represent respectively The symbol information of the pulse at the ( n + k ) th time in the horizontal polarization state and the vertical polarization state is expressed, and (A H m + n + k ) * and (A V m + n + k ) * are the m + n + k time in the horizontal polarization state and the vertical polarization state, respectively. Represents conjugate of pulse symbol information.

その後、摂動量処理器203は上記係数C(m,n,z=L)の一部またはすべての特性を基準として、具体的な同類項を結合することができる。例えば、mn≠0の場合、該係数はm,nの積にのみ関係し、n=0の場合、該係数の実部は虚部よりはるかに小さいのでその実部は無視することができるという特性に基づき、摂動量の項を結合するとき、下記式を用いる。式中、m及びnは整数であり、a=m×n且つ0ではない。

Figure 0006051916
Thereafter, the perturbation amount processor 203 can combine specific similar terms based on some or all of the characteristics of the coefficient C (m, n, z = L). For example, if m * n ≠ 0, the coefficient is only related to the product of m, n, and if n = 0, the real part of the coefficient is much smaller than the imaginary part and can be ignored. Based on the above characteristics, the following formula is used when combining the terms of the perturbation amount. In the formula, m and n are integers, and a = m × n and not 0.
Figure 0006051916

または、mn≠0の場合、該係数はm,nの積にのみ関係し、mn≠0、且つmnのシンボルが逆になった場合、該係数の虚部はそのまま変わらず、実部が逆になり、n=0の場合、該係数の実部は虚部よりはるかに小さいので無視することができ、n=0の場合、該係数はmのモジュラス値にのみ関係するという特性に基づき、摂動量処理器203は摂動量の項を結合するとき、下記式を用いる。

Figure 0006051916
Or, when m * n ≠ 0, the coefficient is related only to the product of m and n, and when m * n ≠ 0 and the symbol of m * n is reversed, the imaginary part of the coefficient remains unchanged. If the real part is reversed and n = 0, then the real part of the coefficient is much smaller than the imaginary part and can be ignored. If n = 0, the coefficient is only related to the modulus value of m. Based on the characteristic that the perturbation amount processor 203 combines the terms of the perturbation amount, the following equation is used.
Figure 0006051916

式中、m及びnは整数であり、a=m×n且つ0ではない。   In the formula, m and n are integers, and a = m × n and not 0.

実際の応用においてはさらに、係数の実部及び虚部それぞれを量子化し、それによってより多くの項を結合し、さらにハードウェアの複雑さを低減することができる。つまり、摂動量処理器203は該重み付け係数に対応する項を結合する前に、該重み付け係数を量子化することもできる。   In practical applications, it is further possible to quantize each real and imaginary part of the coefficients, thereby combining more terms and further reducing hardware complexity. That is, the perturbation amount processor 203 can also quantize the weighting coefficient before combining the terms corresponding to the weighting coefficient.

具体的に実施する場合、重み付け係数に対して等間隔量子化を行うことができ、例えば0〜1の数値を1に量子化し、1〜2の数値を2に量子化し、2〜3の数値を3に量子化する等と規定することができる。係数C(m,n,z=L)の値が2.6+1.3jである場合、量子化後の数値は3+2jである。しかしこれに限らず、さらに重み付け係数に対して不等間隔量子化を行うことができ、例えば、0〜1の数値を1に量子化し、1〜10の数値を5に量子化し、10を超える数値を10に量子化すると規定することができる。   When implemented concretely, it is possible to perform equal interval quantization on the weighting coefficient. For example, a numerical value of 0 to 1 is quantized to 1, a numerical value of 1 to 2 is quantized to 2, and a numerical value of 2 to 3 Can be defined to be quantized to 3 or the like. When the value of the coefficient C (m, n, z = L) is 2.6 + 1.3j, the numerical value after quantization is 3 + 2j. However, the present invention is not limited to this, and unequal interval quantization can be performed on the weighting coefficient. For example, a numerical value of 0 to 1 is quantized to 1 and a numerical value of 1 to 10 is quantized to 5 and exceeds 10. It can be specified that the numerical value is quantized to 10.

以上は量子化について例示して説明を行ったに過ぎず、実際の状況に応じて具体的実施形態を決定することができることは、注意するに値する。また、上記量子化は該重み付け係数の各項に対してそれぞれ行われ、さまざまな量子化基準を用いることができる。   It is worth noting that the above is only an example of quantization and has been described, and that specific embodiments can be determined according to the actual situation. The quantization is performed for each term of the weighting coefficient, and various quantization criteria can be used.

具体的には、入力されたパルス信号が単偏波信号である場合、摂動量処理器203は摂動量の項を結合するとき、下記式を用いることができる。

Figure 0006051916
Specifically, when the input pulse signal is a single polarization signal, the perturbation amount processor 203 can use the following equation when combining the perturbation amount terms.
Figure 0006051916

式中、Δは第k時刻の若干項の重み付け値の和を表し、C(m、n、z=L)はL点から隔たった各項の重み付け係数を表し、Rp及びIqはそれぞれ量子化後の係数C(mn≠0,z=L)の実部及び虚部を表し、m及びnは整数であり、p,qはそれぞれ異なる量子化級数を表し、Am+k、An+kはそれぞれ第m+k時刻、第n+k時刻のパルスのシンボル情報を表し、(Am+n+kは第m+n+k時刻のパルスのシンボル情報の共役を表す。 In the equation, Δ k represents the sum of the weight values of some terms at the k-th time, C (m, n, z = L) represents the weight coefficient of each term separated from the L point, and Rp and Iq are respectively quantum Represents the real and imaginary parts of the coefficient C after conversion (mn ≠ 0, z = L), m and n are integers, p and q represent different quantization series, and A m + k and A n + k are respectively Symbol information of the pulse at the ( m + k ) time and the ( n + k ) time is represented, and (A m + n + k ) * represents the conjugate of the symbol information of the pulse at the ( m + n + k ) time.

入力されたパルス信号が二重偏波信号である場合、摂動量処理器203は摂動量の項を結合するとき、下記式を用いることができる。

Figure 0006051916
When the input pulse signal is a dual polarization signal, the perturbation amount processor 203 can use the following equation when combining the perturbation amount terms.
Figure 0006051916

式中、Δ 及びΔ はそれぞれの第k時刻の若干項の水平偏波状態と垂直偏波状態との重み付け値の和を表し、C(m,n,z=L)はL点から隔たった各項の重み付け係数を表し、m及びnは整数であり、Rp及びIqはそれぞれ量子化後の係数C(mn≠0,z=L)の実部及び虚部を表し、Dsは量子化後の係数C(m,n=0,z=L)の虚部を表し、p,q,sはそれぞれ異なる量子化級数を表し、A m+k及びA m+kはそれぞれ水平偏波状態及び垂直偏波状態における第m+k時刻のパルスのシンボル情報を表し、A n+k及びA n+kはそれぞれ水平偏波状態及び垂直偏波状態における第n+k時刻のパルスのシンボル情報を表し、(A m+n+k及び(A m+n+kはそれぞれ水平偏波状態及び垂直偏波状態における第m+n+k時刻のパルスのシンボル情報の共役を表す。 In the equation, Δ H k and Δ V k represent the sum of weighted values of the horizontal polarization state and the vertical polarization state of some terms at each k-th time, and C (m, n, z = L) is L Represents the weighting coefficient of each term separated from the point, m and n are integers, Rp and Iq represent the real part and imaginary part of the quantized coefficient C (mn ≠ 0, z = L), respectively, and Ds Represents the imaginary part of the quantized coefficient C (m, n = 0, z = L), p, q, s represent different quantization series, and A H m + k and A V m + k are respectively horizontally polarized waves Represents the symbol information of the pulse at the (m + k) th time in the state and the vertical polarization state, and A H n + k and A V n + k represent the symbol information of the pulse at the (n + k) th time in the horizontal polarization state and the vertical polarization state, respectively (A H m + n + k) * and (A V m + n + k ) * each horizontal Represents the conjugation of the symbol information of the pulses of the m + n + k time in the wave state and the vertical polarization state.

ここで、mn≠0の係数C(m,n,z=L)の実部及び虚部はそれぞれRp及びIqと量子化することができ、式中、p,qはそれぞれ異なる量子化級数を表す。n=0の係数C(m,n=0,z=L)については、実部が虚部よりはるかに小さいため、虚部の寄与のみを考慮すればよく、虚部はDsと量子化され、ここでsは異なる量子化級数を表す。 Here, the real part and the imaginary part of the coefficient C (m, n, z = L) where m * n ≠ 0 can be quantized with Rp and Iq, respectively, where p and q are different quantizations. Represents a series. For the coefficient C of n = 0 (m, n = 0, z = L), since the real part is much smaller than the imaginary part, it is only necessary to consider the contribution of the imaginary part, and the imaginary part is quantized as Ds. Where s represents a different quantization series.

以上は摂動量処理器203がいかに具体的に実現されるかについて詳細に説明を行った。本分野の当業者なら上記公開された内容に基づき適当な変形または変換を行うことができることは、注意するに値する。本実施形態の公式は例示したものに過ぎず、これに限らない。   The above has described in detail how the perturbation amount processor 203 is specifically realized. It is worth noting that those skilled in the art can make appropriate modifications or transformations based on the contents disclosed above. The formula of this embodiment is only what was illustrated and is not restricted to this.

本実施例において、摂動量処理器203は得られた摂動量を所定の位相分を回転することに用いられ、所定の幅係数によって摂動量を調整することもできる。シミュレーションにおいて、さらにシステムの性能を有効に向上させることができることがわかった。   In the present embodiment, the perturbation amount processor 203 is used to rotate the obtained perturbation amount by a predetermined phase, and the perturbation amount can be adjusted by a predetermined width coefficient. In the simulation, it was found that the system performance can be further improved effectively.

これによって、単偏波信号については、情報補償器204は下記式を用いることができる。

Figure 0006051916
As a result, the information compensator 204 can use the following equation for a single polarization signal.
Figure 0006051916

式中、ξは前記幅係数を表し、θは前記位相を表し、またΔは上記項の結合を行った後の摂動量を表す。 Wherein, xi] represents the width coefficient, theta represents the phase, also delta k represents the perturbation quantity after the binding of the term.

二重偏波信号については、情報補償器204は下記式を用いることができる。

Figure 0006051916
For the dual polarization signal, the information compensator 204 can use the following equation.
Figure 0006051916

式中、ξは前記幅係数を表し、θは前記位相を表し、またΔ 及びΔ はそれぞれ上記項の結合を行った後の摂動量を表す。一般的には、幅係数ξは0より大きく1より小さい実数であり、システムの非線形が大きくなればなるほど、該幅係数ξは小さくなり、具体的数値は従来の最適化方法を用いて、例えば受信機端のビット誤り率等のシステム性能を観測することによって取得することができる。 In the equation, ξ represents the width coefficient, θ represents the phase, and Δ H k and Δ V k represent the amount of perturbation after combining the above terms. In general, the width factor ξ is a real number greater than 0 and less than 1, and the greater the nonlinearity of the system, the smaller the width factor ξ. It can be obtained by observing system performance such as the bit error rate at the receiver end.

シミュレーションによって、1500kmオールノーマルシングルモード光ファイバーの光ファイバー伝送路内につき、係数に対して量子化を用い、同類項を結合した後、複素数の加法を100倍減少させることができ、同時にシステムの性能代償は0.1dBしかないことを検証した。   Through simulation, it is possible to reduce the addition of complex numbers by a factor of 100 after combining similar terms using quantization for the coefficients within the 1500km all-normal single-mode optical fiber transmission line, and at the same time the performance cost of the system is 0 It was verified that there was only .1 dB.

上記実施例からわかるように、該非線形補償装置は送信端で入力されたパルス信号のシンボル情報を補償することができ、該装置を送信機に応用した場合、送信機は該補償後のシンボル情報を利用してパルス成型及び変調を行い、最後に信号を送信することができ、これらの信号が光ファイバー伝送路の非線形効果を受けた後、受信機において望ましい無損失信号を得ることができる。   As can be seen from the above embodiments, the nonlinear compensation device can compensate the symbol information of the pulse signal input at the transmission end, and when the device is applied to a transmitter, the transmitter can perform symbol information after the compensation. Can be used to perform pulse shaping and modulation, and finally transmit signals, and after these signals are subjected to the nonlinear effects of the optical fiber transmission line, the desired lossless signal can be obtained at the receiver.

また、重み付け係数の特性によって、パルス作用項を結合し、複素数の加法を有限シンボル集合内のシンボルの加法と乗法との組み合わせに変換させ、それによってさらに計算の複雑さを低減し、ハードウェアに対する要求項を緩和することができる。   Also, depending on the characteristics of the weighting factor, the pulse action terms are combined, and complex addition is converted into a combination of symbol addition and multiplication within a finite symbol set, thereby further reducing the computational complexity and Requirements can be relaxed.

本実施例はさらに非線形補償方法を提供する。図3は本実施例の非線形補償方法の一フローチャートである。上記実施例中と同一の内容は、ここでは述べない。   This embodiment further provides a nonlinear compensation method. FIG. 3 is a flowchart of the nonlinear compensation method of this embodiment. The same contents as in the above embodiment are not described here.

図3に示すように、該非線形補償方法は、送信端で入力されたパルス信号のシンボル情報シーケンスを取得するステップ301、あらかじめ取得しておいた各項に対応する重み付け係数によって、現在時刻に対する1つ以上の時刻におけるパルス相互作用項の重み付け和を計算して一定の長さの伝送路において発生する摂動量を取得するステップ302、重み付け係数に基づき摂動量の項を結合し、複素数の加法を有限シンボル集合内のシンボルの加法と乗法との組み合わせに変換させるステップ303、シンボル情報シーケンスと項の結合を行った後の摂動量の差分を計算して補償後のシンボル情報シーケンスを取得し、送信端に補償後のシンボル情報シーケンスに基づき信号を送信させるステップ304を含む。   As shown in FIG. 3, the nonlinear compensation method includes a step 301 for acquiring a symbol information sequence of a pulse signal input at a transmitting end, and a weighting coefficient corresponding to each term acquired in advance, and 1 for the current time. Calculating a weighted sum of pulse interaction terms at two or more times to obtain a perturbation amount generated in a transmission line of a certain length; combining the perturbation amount terms based on a weighting factor; and adding a complex number Step 303 of converting into a combination of addition and multiplication of symbols in a finite symbol set, calculating a difference between perturbations after combining the symbol information sequence and the term, obtaining a compensated symbol information sequence, and transmitting Step 304 causes the end to transmit a signal based on the compensated symbol information sequence.

さらに、ステップ303において重み付け係数に基づき摂動量の項を結合し、具体的には、同一または近似的同一の重み付け係数に対応する項を結合し、または、重み付け係数の実部に対応する項を結合し、または、重み付け係数の虚部に対応する項を結合することを含んでもよい。   Further, in step 303, the terms of the perturbation amount are combined based on the weighting coefficient, specifically, the terms corresponding to the same or approximately the same weighting coefficient are combined, or the terms corresponding to the real part of the weighting coefficient are combined. Combining or combining terms corresponding to the imaginary part of the weighting factor may be included.

一実施形態において、入力されたパルス信号は二重偏波信号であり、ステップ303において重み付け係数に基づき摂動量の項を結合する場合、具体的には下記式が用いられる。

Figure 0006051916
In one embodiment, the input pulse signal is a dual polarization signal, and when the perturbation amount term is combined based on the weighting coefficient in step 303, specifically, the following equation is used.
Figure 0006051916

式中、Δ 及びΔ はそれぞれ第k時刻の若干項の水平偏波状態と垂直偏波状態との重み付け値の和を表し、C(m,n,z=L)は伝送路L点における各項の重み付け係数を表し、m及びnは整数であり、a=m×n且つ0ではなく、A m+k及びA m+kはそれぞれ水平偏波状態及び垂直偏波状態における第m+k時刻のパルスのシンボル情報を表し、A n+k及びA n+kはそれぞれ水平偏波状態及び垂直偏波状態における第n+k時刻のパルスのシンボル情報を表し、(A m+n+k及び(A m+n+kはそれぞれ水平偏波状態及び垂直偏波状態における第m+n+k時刻のパルスのシンボル情報の共役を表す。 Where Δ H k and Δ V k represent the sum of weighted values of the horizontal polarization state and the vertical polarization state of some terms at the k-th time, respectively, and C (m, n, z = L) is the transmission line Represents the weighting coefficient of each term at point L, m and n are integers, a = m × n and not 0, and A H m + k and A V m + k are the m + k in the horizontal polarization state and the vertical polarization state, respectively. The symbol information of the pulse of the time is represented, A H n + k and A V n + k represent the symbol information of the pulse of the n + k time in the horizontal polarization state and the vertical polarization state, respectively, and (A H m + n + k ) * and (A V m + n + k * Represents the conjugate of the symbol information of the pulse at the m + n + k time in the horizontal polarization state and the vertical polarization state, respectively.

もう一つの実施形態において、入力されたパルス信号が二重偏波信号である場合、ステップ303において重み付け係数に基づき摂動量を結合し、具体的には下記式を用いることができる。

Figure 0006051916
In another embodiment, when the input pulse signal is a dual polarization signal, the amount of perturbation is combined based on the weighting coefficient in step 303, and specifically, the following equation can be used.
Figure 0006051916

式中、Δ 及びΔ はそれぞれ第k時刻の若干項の水平偏波状態と垂直偏波状態との重み付け値の和を表し、C(m,n,z=L)は伝送路L点における各項の重み付け係数を表し、m及びnは整数であり、a=m×n且つ0ではなく、A m+k及びA m+kはそれぞれ水平偏波状態及び垂直偏波状態における第m+k時刻のパルスのシンボル情報を表し、A n+k及びA n+kはそれぞれ水平偏波状態及び垂直偏波状態における第n+k時刻のパルスのシンボル情報を表し、(A m+n+k及び(A m+n+kはそれぞれ水平偏波状態及び垂直偏波状態における第m+n+k時刻のパルスのシンボル情報の共役を表す。 Where Δ H k and Δ V k represent the sum of weighted values of the horizontal polarization state and the vertical polarization state of some terms at the k-th time, respectively, and C (m, n, z = L) is the transmission line Represents the weighting coefficient of each term at point L, m and n are integers, a = m × n and not 0, and A H m + k and A V m + k are the m + k in the horizontal polarization state and the vertical polarization state, respectively. The symbol information of the pulse of the time is represented, A H n + k and A V n + k represent the symbol information of the pulse of the n + k time in the horizontal polarization state and the vertical polarization state, respectively, and (A H m + n + k ) * and (A V m + n + k * Represents the conjugate of the symbol information of the pulse at the m + n + k time in the horizontal polarization state and the vertical polarization state, respectively.

もう一つの実施形態において、入力されたパルス信号が単偏波信号である場合、ステップ303において重み付け係数に基づき摂動量の項を結合し、具体的には下記式を用いることができる。

Figure 0006051916
In another embodiment, when the input pulse signal is a single polarization signal, the term of perturbation amount is combined based on the weighting coefficient in step 303, and specifically, the following equation can be used.
Figure 0006051916

式中、Δは第k時刻の若干項の重み付け値の和を表し、C(m,n,z=L)は伝送路L点における各項の重み付け係数を表し、m及びnは整数であり、a=m×n且つ0ではなく、Am+k、An+kはそれぞれ第m+k時刻、第n+k時刻のパルスのシンボル情報を表し、(Am+n+kは第m+n+k時刻のパルスのシンボル情報の共役を表す。 In the equation, Δ k represents the sum of the weight values of some terms at the k-th time, C (m, n, z = L) represents the weighting coefficient of each term at the transmission line L point, and m and n are integers. Yes, a = m × n and not 0, A m + k and A n + k represent the symbol information of the pulse at the m + k time and the n + k time, respectively, and (A m + n + k ) * is the conjugate of the symbol information of the pulse at the m + n + k time. Represents.

もう一つの実施形態において、入力されたパルス信号が単偏波信号である場合、ステップ303において重み付け係数に基づき摂動量の項を結合し、具体的には下記式を用いることができる。

Figure 0006051916
In another embodiment, when the input pulse signal is a single polarization signal, the term of perturbation amount is combined based on the weighting coefficient in step 303, and specifically, the following equation can be used.
Figure 0006051916

式中、Δは第k時刻の若干項の重み付け値の和を表し、C(m,n,z=L)は伝送路L点における各項の重み付け係数を表し、m及びnは整数であり、a=m×n且つ0ではなく、Am+k、An+kはそれぞれ第m+k時刻、第n+k時刻のパルスのシンボル情報を表し、(Am+n+kは第m+n+k時刻のパルスのシンボル情報の共役を表す。 In the equation, Δ k represents the sum of the weight values of some terms at the k-th time, C (m, n, z = L) represents the weighting coefficient of each term at the transmission line L point, and m and n are integers. Yes, a = m × n and not 0, A m + k and A n + k represent the symbol information of the pulse at the m + k time and the n + k time, respectively, and (A m + n + k ) * is the conjugate of the symbol information of the pulse at the m + n + k time. Represents.

図4は本発明実施例の非線形補償方法のもう一つのフローチャートである。図4に示すように、該非線形補償方法は、ステップ401、送信端で入力されたパルス信号のシンボル情報シーケンスを取得すること、あらかじめ取得しておいた各項に対応する重み付け係数によって、現在時刻に対する1つ以上の時刻におけるパルス相互作用項の重み付け和を計算して一定の長さの伝送路において発生する摂動量を取得するステップ402、重み付け係数を量子化するステップ403、重み付け係数に基づき摂動量の項を結合し、複素数の加法を有限シンボル集合内のシンボルの加法と乗法との組み合わせに変換させるステップ404、シンボル情報シーケンスと処理を行った摂動量との差分を計算して補償後のシンボル情報シーケンスを取得し、送信端に補償後のシンボル情報シーケンスに基づき信号を送信させるステップ405を含む。   FIG. 4 is another flowchart of the nonlinear compensation method of the embodiment of the present invention. As shown in FIG. 4, in the nonlinear compensation method, in step 401, the symbol information sequence of the pulse signal input at the transmission end is acquired, and the current time is determined by the weighting coefficient corresponding to each term acquired in advance. Calculating a weighted sum of pulse interaction terms at one or more times with respect to, obtaining a perturbation amount generated in a transmission path of a certain length, quantizing a weighting factor 403, and perturbing based on the weighting factor Step 404 for combining the terms of the quantities and converting the addition of complex numbers into a combination of symbol addition and multiplication in a finite symbol set, calculating the difference between the symbol information sequence and the processed perturbation quantity to compensate The symbol information sequence is acquired, and the transmitting end transmits a signal based on the compensated symbol information sequence. Including the flop 405.

一実施形態において、入力されたパルス信号が二重偏波信号である場合、ステップ404において重み付け係数に基づき摂動量の項を結合し、具体的には下記式を用いることができる。

Figure 0006051916
In one embodiment, when the input pulse signal is a dual polarization signal, the perturbation amount term is combined based on the weighting coefficient in step 404, and specifically, the following equation can be used.
Figure 0006051916

式中、Δ 及びΔ はそれぞれ第k時刻の若干項の水平偏波状態と垂直偏波状態との重み付け値の和を表し、C(m,n,z=L)は伝送路L点における各項の重み付け係数を表し、m及びnは整数であり、Rp及びIqはそれぞれ量子化後の係数C(mn≠0,z=L)の実部及び虚部を表し、Dsは量子化後の係数C(m,n=0,z=L)の虚部を表し、p,q,sはそれぞれ異なる量子化級数を表し、A m+k及びA m+kはそれぞれ水平偏波状態及び垂直偏波状態における第m+k時刻のパルスのシンボル情報を表し、A n+k及びA n+kはそれぞれ水平偏波状態及び垂直偏波状態における第n+k時刻のパルスのシンボル情報を表し、(A m+n+k及び(A m+n+kはそれぞれ水平偏波状態及び垂直偏波状態における第m+n+k時刻のパルスのシンボル情報の共役を表す。 Where Δ H k and Δ V k represent the sum of weighted values of the horizontal polarization state and the vertical polarization state of some terms at the k-th time, respectively, and C (m, n, z = L) is the transmission line Represents the weighting coefficient of each term at point L, m and n are integers, Rp and Iq represent the real part and imaginary part of the coefficient C after quantization (mn ≠ 0, z = L), respectively, Ds Represents the imaginary part of the quantized coefficient C (m, n = 0, z = L), p, q, s represent different quantization series, and A H m + k and A V m + k are respectively horizontally polarized states. And A H n + k and A V n + k represent the symbol information of the pulse at the n + k time in the horizontal polarization state and the vertical polarization state, respectively, and (A H m + n + k) * and (A V m + n + k ) * each horizontal Represents the conjugation of the symbol information of the pulses of the m + n + k time in the wave state and the vertical polarization state.

もう一つの実施形態において、入力されたパルス信号が単偏波信号である場合、ステップ404において重み付け係数に基づき摂動量の項を結合し、具体的には下記式を用いることができる。

Figure 0006051916
In another embodiment, when the input pulse signal is a single polarization signal, the term of perturbation amount is combined based on the weighting coefficient in step 404, and specifically, the following equation can be used.
Figure 0006051916

式中、Δは第k時刻の若干項の重み付け値の和を表し、C(m,n,z=L)は伝送路L点における各項の重み付け係数を表し、Rp及びIqはそれぞれ量子化後の係数C(mn≠0,z=L)の実部及び虚部を表し、m及びnは整数であり、p,qはそれぞれ異なる量子化級数を表し、Am+k、An+kはそれぞれ第m+k時刻、第n+k時刻のパルスのシンボル情報を表し、(Am+n+kは第m+n+k時刻のパルスのシンボル情報の共役を表す。 Wherein, delta k represents the sum of the weighted values of some sections of the k time, C (m, n, z = L) represents a weighting coefficient of each term in the transmission path L points, Rp and Iq, respectively quantum Represents the real and imaginary parts of the coefficient C after conversion (mn ≠ 0, z = L), m and n are integers, p and q represent different quantization series, and A m + k and A n + k are respectively Symbol information of the pulse at the ( m + k ) time and the ( n + k ) time is represented, and (A m + n + k ) * represents the conjugate of the symbol information of the pulse at the ( m + n + k ) time.

本実施例においては、ステップ404の後、さらに得られた摂動量を所定の位相分回転するために用いられ、所定の幅係数によって摂動量を調整してさらにシステムの性能を有効に向上させることができる。   In this embodiment, after step 404, the obtained perturbation amount is used to rotate by a predetermined phase, and the perturbation amount is adjusted by a predetermined width coefficient to further improve the system performance effectively. Can do.

本実施例はさらに送信機を提供する。図5は本発明実施例の送信機の構成を示す図である。図5に示すように、該送信機は非線形補償器501、パルス成型器502及び信号送信器503を含む。   This embodiment further provides a transmitter. FIG. 5 is a diagram showing the configuration of the transmitter according to the embodiment of the present invention. As shown in FIG. 5, the transmitter includes a nonlinear compensator 501, a pulse shaper 502 and a signal transmitter 503.

ここで、非線形補償器501は入力されたパルスのシンボル情報シーケンスを補償することができ、上記実施例の非線形補償装置を用いることができ、ここでは述べない。   Here, the non-linear compensator 501 can compensate the symbol information sequence of the input pulse, and the non-linear compensator of the above embodiment can be used, which is not described here.

パルス成型器502は該非線形補償器501が取得した補償後のシンボル情報シーケンスに基づきパルス成型を行って各パルスの波形を得るために用いられる。   The pulse shaper 502 is used to obtain the waveform of each pulse by performing pulse shaping based on the compensated symbol information sequence acquired by the nonlinear compensator 501.

信号送信器503は該パルス成型器502が送信した各パルスの波形を受信し、前記波形を変調後に送信するために用いられる。   The signal transmitter 503 receives the waveform of each pulse transmitted by the pulse shaper 502 and is used to transmit the waveform after modulation.

本実施例においては、非線形補償装置を送信機中に応用し、該送信機は任意の光通信システム中に応用することができ、電子波長分散予補償を有するシステムを含む。これによって、該送信機はさらに波長分散補償ユニット(図示せず)を含んでもよく、波長分散予補償を含むシステムにおいて、チャネル内非線形予補償器を波長分散予補償ユニットの前に置いてもよい。各異なる時刻のパルスの相互作用の重み付け値に対応する重み付け係数はやはり上記実施例にしたがって計算することができ、波長分散配置のみ波長分散補償モジュールを考慮する必要がある。   In this embodiment, a nonlinear compensator is applied in a transmitter, which can be applied in any optical communication system, including a system with electronic chromatic dispersion precompensation. Thereby, the transmitter may further include a chromatic dispersion compensation unit (not shown), and in a system including chromatic dispersion precompensation, an intra-channel nonlinear precompensator may be placed in front of the chromatic dispersion precompensation unit. . The weighting factor corresponding to the weighting value of the interaction of pulses at different times can still be calculated according to the above embodiment, and only the chromatic dispersion arrangement needs to consider the chromatic dispersion compensation module.

上記実施例からわかるように、該非線形補償装置は送信端で入力されたパルス信号のシンボル情報を補償することができ、該装置を送信機に応用した場合、送信機は該補償後のシンボル情報を利用してパルス成型及び変調を行い、最後に信号を送信することができ、これらの信号が光ファイバー伝送路の非線形効果を受けた後、受信機において望ましい無損失信号を得ることができる。   As can be seen from the above embodiments, the nonlinear compensation device can compensate the symbol information of the pulse signal input at the transmission end, and when the device is applied to a transmitter, the transmitter can perform symbol information after the compensation. Can be used to perform pulse shaping and modulation, and finally transmit signals, and after these signals are subjected to the nonlinear effects of the optical fiber transmission line, the desired lossless signal can be obtained at the receiver.

また、重み付け係数の特性によって、パルス作用項を結合し、複素数の加法を有限シンボル集合内のシンボルの加法と乗法との組み合わせに変換させ、それによってさらに計算の複雑さを低減し、ハードウェアに対する要求を緩和することができる。   Also, depending on the characteristics of the weighting factor, the pulse action terms are combined, and complex addition is converted into a combination of symbol addition and multiplication within a finite symbol set, thereby further reducing the computational complexity and The demand can be relaxed.

本実施形態の以上の装置及び方法はハードウェアによって実現することができ、ハードウェアにソフトウェアを結びつけることによっても実現することができる。本実施形態はこのようなコンピュータ読取可能プログラムに係り、該プログラムが論理ユニットによって実行される場合、該論理部品に上述の上記装置または構成部品を実現させ、または該論理部品に上述の上記各種方法もしくはステップを実現させることができる。本実施形態はさらに以上のプログラムを保存するために用いられるハードディスク、磁気ディスク、光ディスク、DVD、フラッシュメモリ等の記憶媒体に係る。   The above apparatus and method of the present embodiment can be realized by hardware, and can also be realized by linking software to hardware. The present embodiment relates to such a computer-readable program. When the program is executed by a logic unit, the logic component realizes the above-described apparatus or component, or the logic component causes the above-described various methods. Or a step can be realized. The present embodiment further relates to a storage medium such as a hard disk, a magnetic disk, an optical disk, a DVD, or a flash memory used for storing the above program.

以上は具体的実施形態を結びつけて本発明について記述を行ったが、本分野当業者は、これらの記述はすべて例示的なものであり、本発明保護範囲に対する制限ではないものと理解すべきである。本分野当業者なら本発明の趣旨及び原理に基づき本実施形態に対して各種変形及び修正を行うことができ、これらの変形及び修正も本発明の範囲内にある。   Although the present invention has been described above in connection with specific embodiments, those skilled in the art should understand that these descriptions are all illustrative and are not limitations on the protection scope of the present invention. is there. Those skilled in the art can make various variations and modifications to the present embodiment based on the spirit and principle of the present invention, and these variations and modifications are also within the scope of the present invention.

以上の実施例を含む実施形態に関して、さらに下記の付記を公開する。
(付記1)
送信端で入力されたパルス信号のシンボル情報シーケンスを取得するための情報シーケンス取得器と、
あらかじめ取得しておいた各項に対応する重み付け係数によって、現在時刻に対する1つ以上の時刻におけるパルス相互作用項の重み付け和を計算して一定の長さの伝送路において発生する摂動量を計算するための摂動量取得器と、
前記重み付け係数に基づき前記摂動量の項を結合し、複素数の加法を有限シンボル集合内のシンボルの加法と乗法との組み合わせに変換させる摂動量処理器と、
前記シンボル情報シーケンスと処理を行った摂動量との差分を計算して補償後のシンボル情報シーケンスを取得して、送信端に前記補償後のシンボル情報シーケンスに基づき信号を送信させるための情報補償器と、
を含む非線形補償装置。
(付記2)
前記摂動量処理器は具体的には、同一または近似的同一の前記重み付け係数に対応する項を結合し、または、前記重み付け係数の実部に対応する項を結合し、または、前記重み付け係数の虚部に対応する項を結合するために用いることができる、付記1に記載の非線形補償装置。
(付記3)
前記入力されたパルス信号は二重偏波信号であり、前記摂動量処理器が下記式で前記摂動量の項を結合する、付記2に記載の非線形補償装置。

Figure 0006051916
式中、Δ 及びΔ はそれぞれ第k時刻の若干項の水平偏波状態と垂直偏波状態との重み付け値の和を表し、C(m,n,z=L)は伝送路L点における各項の重み付け係数を表し、m及びnは整数であり、a=m×n且つ0ではなく、A m+k及びA m+kはそれぞれ水平偏波状態及び垂直偏波状態における第m+k時刻のパルスのシンボル情報を表し、A n+k及びA n+kはそれぞれ水平偏波状態及び垂直偏波状態における第n+k時刻のパルスのシンボル情報を表し、(A m+n+k及び(A m+n+kはそれぞれ水平偏波状態及び垂直偏波状態における第m+n+k時刻のパルスのシンボル情報の共役を表す。
(付記4)
前記入力されたパルス信号は二重偏波信号であり、前記摂動量処理器が下記式で前記摂動量の項を結合する、付記2に記載の非線形補償装置:
Figure 0006051916
式中、Δ 及びΔ はそれぞれ第k時刻の若干項の水平偏波状態と垂直偏波状態との重み付け値の和を表し、C(m,n,z=L)は伝送路L点における各項の重み付け係数を表し、m及びnは整数であり、a=m×n且つ0ではなく、A m+k及びA m+kはそれぞれ水平偏波状態及び垂直偏波状態における第m+k時刻のパルスのシンボル情報を表し、A n+k及びA n+kはそれぞれ水平偏波状態及び垂直偏波状態における第n+k時刻のパルスのシンボル情報を表し、(A m+n+k及び(A m+n+kはそれぞれ水平偏波状態及び垂直偏波状態における第m+n+k時刻のパルスのシンボル情報の共役を表す。
(付記5)
前記入力されたパルス信号は単偏波信号であり、前記摂動量処理器が下記式で前記摂動量の項を結合する、付記2に記載の非線形補償装置。
Figure 0006051916
式中、Δは第k時刻の若干項の重み付け値の和を表し、C(m,n,z=L)は伝送路L点における各項の重み付け係数を表し、m及びnは整数であり、a=m×n且つ0ではなく、Am+k、An+kはそれぞれ第m+k時刻、第n+k時刻のパルスのシンボル情報を表し、(Am+n+kは第m+n+k時刻のパルスのシンボル情報の共役を表す。
(付記6)
前記入力されたパルス信号は単偏波信号であり、前記摂動量処理器が下記式で前記摂動量の項を結合する、付記2に記載の非線形補償装置。
Figure 0006051916
式中、Δは第k時刻の若干項の重み付け値の和を表し、C(m,n,z=L)は伝送路L点における各項の重み付け係数を表し、m及びnは整数であり、a=m×n且つ0ではなく、Am+k、An+kはそれぞれ第m+k時刻、第n+k時刻のパルスのシンボル情報を表し、(Am+n+kは第m+n+k時刻のパルスのシンボル情報の共役を表す。
(付記7)
前記摂動量処理器は前記重み付け係数に対応する項を結合する前に、さらに前記重み付け係数を量子化する、付記2に記載の非線形補償装置。
(付記8)
前記入力されたパルス信号は二重偏波信号であり、前記摂動量処理器が下記式で前記摂動量の項を結合する、付記7に記載の非線形補償装置:
Figure 0006051916
式中、Δ 及びΔ はそれぞれ第k時刻の若干項の水平偏波状態と垂直偏波状態との重み付け値の和を表し、C(m,n,z=L)は伝送路L点における各項の重み付け係数を表し、m及びnは整数であり、Rp及びIqはそれぞれ量子化後の係数C(mn≠0,z=L)の実部及び虚部を表し、Dsは量子化後の係数C(m,n=0,z=L)の虚部を表し、p,q,sはそれぞれ異なる量子化級数を表し、A m+k及びA m+kはそれぞれ水平偏波状態及び垂直偏波状態における第m+k時刻のパルスのシンボル情報を表し、A n+k及びA n+kはそれぞれ水平偏波状態及び垂直偏波状態における第n+k時刻のパルスのシンボル情報を表し、(A m+n+k及び(A m+n+kはそれぞれ水平偏波状態及び垂直偏波状態における第m+n+k時刻のパルスのシンボル情報の共役を表す。
(付記9)
前記入力されたパルス信号は単偏波信号であり、前記摂動量処理器が下記式で前記摂動量の項を結合する、付記7に記載の非線形補償装置:
Figure 0006051916
式中、Δは第k時刻の若干項の重み付け値の和を表し、C(m,n,z=L)は伝送路L点における各項の重み付け係数を表し、Rp及びIqはそれぞれ量子化後の係数C(mn≠0,z=L)の実部及び虚部を表し、m及びnは整数であり、p,qはそれぞれ異なる量子化級数を表し、Am+k、An+kはそれぞれ第m+k時刻、第n+k時刻のパルスのシンボル情報を表し、(Am+n+kは第m+n+k時刻のパルスのシンボル情報の共役を表す。
(付記10)
前記摂動量処理器はさらに取得した前記摂動量を所定の位相分回転し、所定の幅係数によって前記摂動量を調整するために用いられる、付記1または2に記載の非線形補償装置。
(付記11)
送信端で入力されたパルス信号のシンボル情報シーケンスを取得し、
あらかじめ取得しておいた各項に対応する重み付け係数によって、現在時刻に対する1つ以上の時刻におけるパルス相互作用項の重み付け和を計算して一定の長さの伝送路において発生する摂動量を取得し、
前記重み付け係数に基づき前記摂動量の項を結合し、複素数の加法を有限シンボル集合内のシンボルの加法と乗法との組み合わせに変換させ、
前記シンボル情報シーケンスと処理を行った摂動量との差分を計算して補償後のシンボル情報シーケンスを取得して、送信端に前記補償後のシンボル情報シーケンスに基づき信号を送信させる
ことを含む、非線形補償方法。
(付記12)
前記重み付け係数に基づき前記摂動量の項を結合し、具体的には、
同一または近似的同一の前記重み付け係数に対応する項を結合し、または、前記重み付け係数の実部に対応する項を結合し、または、前記重み付け係数の虚部に対応する項を結合することを含む、付記11に記載の非線形補償方法。
(付記13)
前記入力されたパルス信号は二重偏波信号であり、前記重み付け係数に基づき下記式で前記摂動量の項を結合する、付記12に記載の非線形補償方法。
Figure 0006051916
式中、Δ 及びΔ はそれぞれ第k時刻の若干項の水平偏波状態と垂直偏波状態との重み付け値の和を表し、C(m,n,z=L)は伝送路L点における各項の重み付け係数を表し、m及びnは整数であり、a=m×n且つ0ではなく、A m+k及びA m+kはそれぞれ水平偏波状態及び垂直偏波状態における第m+k時刻のパルスのシンボル情報を表し、A n+k及びA n+kはそれぞれ水平偏波状態及び垂直偏波状態における第n+k時刻のパルスのシンボル情報を表し、(A m+n+k及び(A m+n+kはそれぞれ水平偏波状態及び垂直偏波状態における第m+n+k時刻のパルスのシンボル情報の共役を表す。
(付記14)
前記入力されたパルス信号は二重偏波信号であり、前記重み付け係数に基づき下記式で前記摂動量の項を結合する、付記12に記載の非線形補償方法。
Figure 0006051916
式中、Δ 及びΔ はそれぞれ第k時刻の若干項の水平偏波状態と垂直偏波状態との重み付け値の和を表し、C(m,n,z=L)は伝送路L点における各項の重み付け係数を表し、m及びnは整数であり、a=m×n且つ0ではなく、A m+k及びA m+kはそれぞれ水平偏波状態及び垂直偏波状態における第m+k時刻のパルスのシンボル情報を表し、A n+k及びA n+kはそれぞれ水平偏波状態及び垂直偏波状態における第n+k時刻のパルスのシンボル情報を表し、(A m+n+k及び(A m+n+kはそれぞれ水平偏波状態及び垂直偏波状態における第m+n+k時刻のパルスのシンボル情報の共役を表す。
(付記15)
前記入力されたパルス信号は単偏波信号であり、前記重み付け係数に基づき下記式で前記摂動量の項を結合する、付記12に記載の非線形補償方法。
Figure 0006051916
式中、Δは第k時刻の若干項の重み付け値の和を表し、C(m,n,z=L)は伝送路L点における各項の重み付け係数を表し、m及びnは整数であり、a=m×n且つ0ではなく、Am+k、An+kはそれぞれ第m+k時刻、第n+k時刻のパルスのシンボル情報を表し、(Am+n+kは第m+n+k時刻のパルスのシンボル情報の共役を表す。
(付記16)
前記入力されたパルス信号は単偏波信号であり、前記重み付け係数に基づき下記式で前記摂動量の項を結合する、付記12に記載の非線形補償方法。
Figure 0006051916
式中、Δは第k時刻の若干項の重み付け値の和を表し、C(m,n,z=L)は伝送路L点における各項の重み付け係数を表し、m及びnは整数であり、a=m×n且つ0ではなく、Am+k、An+kはそれぞれ第m+k時刻、第n+k時刻のパルスのシンボル情報を表し、(Am+n+kは第m+n+k時刻のパルスのシンボル情報の共役を表す。
(付記17)
前記重み付け係数に基づき前記摂動量の項を結合する前に、前記重み付け係数を量子化することをさらに含む、付記12に記載の非線形補償方法。
(付記18)
前記入力されたパルス信号は二重偏波信号であり、前記重み付け係数に基づき下記式で前記摂動量の項を結合する、付記17に記載の非線形補償方法。
Figure 0006051916
式中、Δ 及びΔ はそれぞれ第k時刻の若干項の水平偏波状態と垂直偏波状態との重み付け値の和を表し、C(m,n,z=L)は伝送路L点における各項の重み付け係数を表し、m及びnは整数であり、Rp及びIqはそれぞれ量子化後の係数C(mn≠0,z=L)の実部及び虚部を表し、Dsは量子化後の係数C(m,n=0,z=L)の虚部を表し、p,q,sはそれぞれ異なる量子化級数を表し、A m+k及びA m+kはそれぞれ水平偏波状態及び垂直偏波状態における第m+k時刻のパルスのシンボル情報を表し、A n+k及びA n+kはそれぞれ水平偏波状態及び垂直偏波状態における第n+k時刻のパルスのシンボル情報を表し、(A m+n+k及び(A m+n+kはそれぞれ水平偏波状態及び垂直偏波状態における第m+n+k時刻のパルスのシンボル情報の共役を表す。
(付記19)
前記入力されたパルス信号は単偏波信号であり、前記重み付け係数に基づき下記式で前記摂動量の項を結合する、付記17に記載の非線形補償方法。
Figure 0006051916
式中、Δは第k時刻の若干項の重み付け値の和を表し、C(m,n,z=L)は伝送路L点における各項の重み付け係数を表し、Rp及びIqはそれぞれ量子化後の係数C(mn≠0,z=L)の実部及び虚部を表し、m及びnは整数であり、p,qはそれぞれ異なる量子化級数を表し、Am+k、An+kはそれぞれ第m+k時刻、第n+k時刻のパルスのシンボル情報を表し、(Am+n+kは第m+n+k時刻のパルスのシンボル情報の共役を表す。
(付記20)
付記1ないし10のいずれか1項に記載の非線形補償装置を含み、さらに、
前記非線形補償装置が取得した補償後のシンボル情報シーケンスに基づきパルス成型を行って各パルスの波形を取得するためのパルス成型器と、
前記パルス成型器が送信した各パルスの波形を受信し、前記波形を変調後に送信するための信号送信器と、
を含む送信機。 Regarding the embodiment including the above examples, the following additional notes are disclosed.
(Appendix 1)
An information sequence acquisition unit for acquiring a symbol information sequence of the pulse signal input at the transmission end;
Calculates the weighted sum of pulse interaction terms at one or more times with respect to the current time by using the weighting coefficient corresponding to each term acquired in advance, and calculates the amount of perturbation generated in a transmission line of a certain length. A perturbation amount acquirer for
A perturbation amount processor that combines the perturbation amount terms based on the weighting factors to convert the addition of complex numbers into a combination of addition and multiplication of symbols in a finite symbol set;
An information compensator for calculating a difference between the symbol information sequence and a processed perturbation amount to obtain a compensated symbol information sequence and causing a transmission end to transmit a signal based on the compensated symbol information sequence When,
A non-linear compensator comprising:
(Appendix 2)
Specifically, the perturbation amount processor combines terms corresponding to the same or approximately the same weighting factor, or combines terms corresponding to the real part of the weighting factor, or of the weighting factor. The nonlinear compensator according to appendix 1, which can be used to combine terms corresponding to imaginary parts.
(Appendix 3)
The nonlinear compensator according to appendix 2, wherein the input pulse signal is a dual polarization signal, and the perturbation amount processor combines the terms of the perturbation amount by the following equation.
Figure 0006051916
Where Δ H k and Δ V k represent the sum of weighted values of the horizontal polarization state and the vertical polarization state of some terms at the k-th time, respectively, and C (m, n, z = L) is the transmission line Represents the weighting coefficient of each term at point L, m and n are integers, a = m × n and not 0, and A H m + k and A V m + k are the m + k in the horizontal polarization state and the vertical polarization state, respectively. The symbol information of the pulse of the time is represented, A H n + k and A V n + k represent the symbol information of the pulse of the n + k time in the horizontal polarization state and the vertical polarization state, respectively, and (A H m + n + k ) * and (A V m + n + k * Represents the conjugate of the symbol information of the pulse at the m + n + k time in the horizontal polarization state and the vertical polarization state, respectively.
(Appendix 4)
The nonlinear compensator according to appendix 2, wherein the input pulse signal is a dual polarization signal, and the perturbation amount processor combines the perturbation amount terms by the following equation:
Figure 0006051916
Where Δ H k and Δ V k represent the sum of weighted values of the horizontal polarization state and the vertical polarization state of some terms at the k-th time, respectively, and C (m, n, z = L) is the transmission line Represents the weighting coefficient of each term at point L, m and n are integers, a = m × n and not 0, and A H m + k and A V m + k are the m + k in the horizontal polarization state and the vertical polarization state, respectively. The symbol information of the pulse of the time is represented, A H n + k and A V n + k represent the symbol information of the pulse of the n + k time in the horizontal polarization state and the vertical polarization state, respectively, and (A H m + n + k ) * and (A V m + n + k * Represents the conjugate of the symbol information of the pulse at the m + n + k time in the horizontal polarization state and the vertical polarization state, respectively.
(Appendix 5)
The nonlinear compensator according to appendix 2, wherein the input pulse signal is a single polarization signal, and the perturbation amount processor combines the terms of the perturbation amount by the following equation.
Figure 0006051916
In the equation, Δ k represents the sum of the weight values of some terms at the k-th time, C (m, n, z = L) represents the weighting coefficient of each term at the transmission line L point, and m and n are integers. Yes, a = m × n and not 0, A m + k and A n + k represent the symbol information of the pulse at the m + k time and the n + k time, respectively, and (A m + n + k ) * is the conjugate of the symbol information of the pulse at the m + n + k time. Represents.
(Appendix 6)
The nonlinear compensator according to appendix 2, wherein the input pulse signal is a single polarization signal, and the perturbation amount processor combines the terms of the perturbation amount by the following equation.
Figure 0006051916
In the equation, Δ k represents the sum of the weight values of some terms at the k-th time, C (m, n, z = L) represents the weighting coefficient of each term at the transmission line L point, and m and n are integers. Yes, a = m × n and not 0, A m + k and A n + k represent the symbol information of the pulse at the m + k time and the n + k time, respectively, and (A m + n + k ) * is the conjugate of the symbol information of the pulse at the m + n + k time. Represents.
(Appendix 7)
The nonlinear compensator according to appendix 2, wherein the perturbation amount processor further quantizes the weighting coefficient before combining the terms corresponding to the weighting coefficient.
(Appendix 8)
The nonlinear compensator according to appendix 7, wherein the input pulse signal is a dual polarization signal, and the perturbation amount processor combines the perturbation amount terms by the following formula:
Figure 0006051916
Where Δ H k and Δ V k represent the sum of weighted values of the horizontal polarization state and the vertical polarization state of some terms at the k-th time, respectively, and C (m, n, z = L) is the transmission line Represents the weighting coefficient of each term at point L, m and n are integers, Rp and Iq represent the real part and imaginary part of the coefficient C after quantization (mn ≠ 0, z = L), respectively, Ds Represents the imaginary part of the quantized coefficient C (m, n = 0, z = L), p, q, s represent different quantization series, and A H m + k and A V m + k are respectively horizontally polarized states. And A H n + k and A V n + k represent the symbol information of the pulse at the n + k time in the horizontal polarization state and the vertical polarization state, respectively, and (A H m + n + k) * and (A V m + n + k ) * each horizontal Represents the conjugation of the symbol information of the pulses of the m + n + k time in the wave state and the vertical polarization state.
(Appendix 9)
The nonlinear compensator according to appendix 7, wherein the input pulse signal is a single polarization signal, and the perturbation amount processor combines the terms of the perturbation amount with the following equation:
Figure 0006051916
Wherein, delta k represents the sum of the weighted values of some sections of the k time, C (m, n, z = L) represents a weighting coefficient of each term in the transmission path L points, Rp and Iq, respectively quantum Represents the real and imaginary parts of the coefficient C after conversion (mn ≠ 0, z = L), m and n are integers, p and q represent different quantization series, and A m + k and A n + k are respectively Symbol information of the pulse at the ( m + k ) time and the ( n + k ) time is represented, and (A m + n + k ) * represents the conjugate of the symbol information of the pulse at the ( m + n + k ) time.
(Appendix 10)
The nonlinear compensator according to appendix 1 or 2, wherein the perturbation amount processor further rotates the acquired perturbation amount by a predetermined phase, and is used to adjust the perturbation amount by a predetermined width coefficient.
(Appendix 11)
Obtain the symbol information sequence of the pulse signal input at the transmission end,
The weighting coefficient corresponding to each term acquired in advance is used to calculate the weighted sum of the pulse interaction terms at one or more times with respect to the current time to obtain the amount of perturbation that occurs in the transmission line of a certain length. ,
Combining the perturbation quantity terms based on the weighting factors to convert complex addition to a combination of symbol addition and multiplication in a finite symbol set;
Calculating a difference between the symbol information sequence and the amount of perturbation that has been processed to obtain a compensated symbol information sequence, and causing a transmission end to transmit a signal based on the compensated symbol information sequence. Compensation method.
(Appendix 12)
Combining the perturbation terms based on the weighting factor, specifically:
Combining terms corresponding to the same or approximately the same weighting factor, combining terms corresponding to the real part of the weighting factor, or combining terms corresponding to the imaginary part of the weighting factor. The nonlinear compensation method according to appendix 11, including:
(Appendix 13)
13. The nonlinear compensation method according to appendix 12, wherein the input pulse signal is a dual polarization signal, and the perturbation amount term is combined by the following equation based on the weighting coefficient.
Figure 0006051916
Where Δ H k and Δ V k represent the sum of weighted values of the horizontal polarization state and the vertical polarization state of some terms at the k-th time, respectively, and C (m, n, z = L) is the transmission line Represents the weighting coefficient of each term at point L, m and n are integers, a = m × n and not 0, and A H m + k and A V m + k are the m + k in the horizontal polarization state and the vertical polarization state, respectively. The symbol information of the pulse of the time is represented, A H n + k and A V n + k represent the symbol information of the pulse of the n + k time in the horizontal polarization state and the vertical polarization state, respectively, and (A H m + n + k ) * and (A V m + n + k * Represents the conjugate of the symbol information of the pulse at the m + n + k time in the horizontal polarization state and the vertical polarization state, respectively.
(Appendix 14)
13. The nonlinear compensation method according to appendix 12, wherein the input pulse signal is a dual polarization signal, and the perturbation amount term is combined by the following equation based on the weighting coefficient.
Figure 0006051916
Where Δ H k and Δ V k represent the sum of weighted values of the horizontal polarization state and the vertical polarization state of some terms at the k-th time, respectively, and C (m, n, z = L) is the transmission line Represents the weighting coefficient of each term at point L, m and n are integers, a = m × n and not 0, and A H m + k and A V m + k are the m + k in the horizontal polarization state and the vertical polarization state, respectively. The symbol information of the pulse of the time is represented, A H n + k and A V n + k represent the symbol information of the pulse of the n + k time in the horizontal polarization state and the vertical polarization state, respectively, and (A H m + n + k ) * and (A V m + n + k * Represents the conjugate of the symbol information of the pulse at the m + n + k time in the horizontal polarization state and the vertical polarization state, respectively.
(Appendix 15)
13. The nonlinear compensation method according to appendix 12, wherein the input pulse signal is a single polarization signal, and the perturbation amount term is combined by the following equation based on the weighting coefficient.
Figure 0006051916
In the equation, Δ k represents the sum of the weight values of some terms at the k-th time, C (m, n, z = L) represents the weighting coefficient of each term at the transmission line L point, and m and n are integers. Yes, a = m × n and not 0, A m + k and A n + k represent the symbol information of the pulse at the m + k time and the n + k time, respectively, and (A m + n + k ) * is the conjugate of the symbol information of the pulse at the m + n + k time. Represents.
(Appendix 16)
13. The nonlinear compensation method according to appendix 12, wherein the input pulse signal is a single polarization signal, and the perturbation amount term is combined by the following equation based on the weighting coefficient.
Figure 0006051916
In the equation, Δ k represents the sum of the weight values of some terms at the k-th time, C (m, n, z = L) represents the weighting coefficient of each term at the transmission line L point, and m and n are integers. Yes, a = m × n and not 0, A m + k and A n + k represent the symbol information of the pulse at the m + k time and the n + k time, respectively, and (A m + n + k ) * is the conjugate of the symbol information of the pulse at the m + n + k time. Represents.
(Appendix 17)
The nonlinear compensation method according to claim 12, further comprising quantizing the weighting coefficient before combining the perturbation amount terms based on the weighting coefficient.
(Appendix 18)
18. The nonlinear compensation method according to appendix 17, wherein the input pulse signal is a dual polarization signal, and the perturbation amount term is combined by the following equation based on the weighting coefficient.
Figure 0006051916
Where Δ H k and Δ V k represent the sum of weighted values of the horizontal polarization state and the vertical polarization state of some terms at the k-th time, respectively, and C (m, n, z = L) is the transmission line Represents the weighting coefficient of each term at point L, m and n are integers, Rp and Iq represent the real part and imaginary part of the coefficient C after quantization (mn ≠ 0, z = L), respectively, Ds Represents the imaginary part of the quantized coefficient C (m, n = 0, z = L), p, q, s represent different quantization series, and A H m + k and A V m + k are respectively horizontally polarized states. And A H n + k and A V n + k represent the symbol information of the pulse at the n + k time in the horizontal polarization state and the vertical polarization state, respectively, and (A H m + n + k) * and (A V m + n + k ) * each horizontal Represents the conjugation of the symbol information of the pulses of the m + n + k time in the wave state and the vertical polarization state.
(Appendix 19)
18. The nonlinear compensation method according to appendix 17, wherein the input pulse signal is a single polarization signal, and the perturbation amount term is combined by the following equation based on the weighting coefficient.
Figure 0006051916
Wherein, delta k represents the sum of the weighted values of some sections of the k time, C (m, n, z = L) represents a weighting coefficient of each term in the transmission path L points, Rp and Iq, respectively quantum Represents the real and imaginary parts of the coefficient C after conversion (mn ≠ 0, z = L), m and n are integers, p and q represent different quantization series, and A m + k and A n + k are respectively Symbol information of the pulse at the ( m + k ) time and the ( n + k ) time is represented, and (A m + n + k ) * represents the conjugate of the symbol information of the pulse at the ( m + n + k ) time.
(Appendix 20)
Including the nonlinear compensator according to any one of appendices 1 to 10, and
A pulse shaper for obtaining a waveform of each pulse by performing pulse shaping based on a symbol information sequence after compensation obtained by the nonlinear compensation device;
A signal transmitter for receiving the waveform of each pulse transmitted by the pulse shaper and transmitting the waveform after modulating the waveform;
Including transmitter.

Claims (6)

送信端で入力されたパルス信号のシンボル情報シーケンスを取得するための情報シーケンス取得器と、
あらかじめ取得しておいた各項に対応する重み付け係数によって、現在時刻に対する1つ以上の時刻におけるパルス相互作用項の重み付け和を計算して一定の長さの伝送路において発生する摂動量を取得するための摂動量取得器と、
前記重み付け係数に基づき前記摂動量の項を結合し、複素数の加法を有限シンボル集合内のシンボルの加法と乗法との組み合わせに変換させる摂動量処理器と、
前記シンボル情報シーケンスと処理を行った摂動量との差分を計算して補償後のシンボル情報シーケンスを取得して、送信端に前記補償後のシンボル情報シーケンスに基づき信号を送信させるための情報補償器と、
を含み、
前記摂動量処理器は、同一または近似的同一の前記重み付け係数に対応する項を結合し、または、前記重み付け係数の実部に対応する項を結合し、または、前記重み付け係数の虚部に対応する項を結合するために用いられ、
前記摂動量処理器は前記重み付け係数に対応する項を結合する前に、さらに前記重み付け係数を量子化し、
前記入力されたパルス信号は二重偏波信号であり、前記摂動量処理器が下記式で前記摂動量の項を結合し、
Figure 0006051916
式中、Δ 及びΔ はそれぞれ第k時刻の若干項の水平偏波状態と垂直偏波状態との重み付け値の和を表し、C(m,n,z=L)は伝送路L点における各項の重み付け係数を表し、m及びnは整数であり、R及びI はそれぞれ量子化後の係数C(mn≠0,z=L)の実部及び虚部を表し、Ds は量子化後のC(m,0,z=L)の虚部を表し、p,q,sはそれぞれ異なる量子化級数を表し、A m+k及びA m+kはそれぞれ水平偏波状態及び垂直偏波状態における第m+k時刻のパルスのシンボル情報を表し、A n+k及びA n+kはそれぞれ水平偏波状態及び垂直偏波状態における第n+k時刻のパルスのシンボル情報を表し、(A m+n+k及び(A m+n+kはそれぞれ水平偏波状態及び垂直偏波状態における第m+n+k時刻のパルスのシンボル情報の共役を表す
非線形補償装置。
An information sequence acquisition unit for acquiring a symbol information sequence of the pulse signal input at the transmission end;
A weighting coefficient corresponding to each term acquired in advance is used to calculate a weighted sum of pulse interaction terms at one or more times with respect to the current time, thereby acquiring a perturbation amount generated in a transmission line of a certain length. A perturbation amount acquirer for
A perturbation amount processor that combines the perturbation amount terms based on the weighting factors to convert the addition of complex numbers into a combination of addition and multiplication of symbols in a finite symbol set;
An information compensator for calculating a difference between the symbol information sequence and a processed perturbation amount to obtain a compensated symbol information sequence and causing a transmission end to transmit a signal based on the compensated symbol information sequence When,
Including
The perturbation amount processor combines terms corresponding to the same or approximately the same weighting coefficient, combines terms corresponding to the real part of the weighting coefficient, or corresponds to an imaginary part of the weighting coefficient. Used to combine terms
The perturbation amount processor further quantizes the weighting factor before combining the terms corresponding to the weighting factor,
The input pulse signal is a dual polarization signal, and the perturbation amount processor combines the perturbation amount terms by the following equation:
Figure 0006051916
Where Δ H k and Δ V k represent the sum of weighted values of the horizontal polarization state and the vertical polarization state of some terms at the k-th time, respectively, and C (m, n, z = L) is the transmission line Represents the weighting coefficient of each term at point L, m and n are integers, R p and I q represent the real part and the imaginary part of the quantized coefficient C (mn ≠ 0, z = L), respectively; D s represents the imaginary part of C (m, 0, z = L) after quantization, p, q, s represent different quantization series, and A H m + k and A V m + k are respectively horizontally polarized states. And A H n + k and A V n + k represent the symbol information of the pulse at the n + k time in the horizontal polarization state and the vertical polarization state, respectively, and (A H m + n + k ) * and (A V m + n + k ) * are horizontal polarization states, respectively. And the conjugate of the symbol information of the pulse at the m + n + k time in the vertical polarization state .
Nonlinear compensator.
送信端で入力されたパルス信号のシンボル情報シーケンスを取得するための情報シーケンス取得器と、
あらかじめ取得しておいた各項に対応する重み付け係数によって、現在時刻に対する1つ以上の時刻におけるパルス相互作用項の重み付け和を計算して一定の長さの伝送路において発生する摂動量を取得するための摂動量取得器と、
前記重み付け係数に基づき前記摂動量の項を結合し、複素数の加法を有限シンボル集合内のシンボルの加法と乗法との組み合わせに変換させる摂動量処理器と、
前記シンボル情報シーケンスと処理を行った摂動量との差分を計算して補償後のシンボル情報シーケンスを取得して、送信端に前記補償後のシンボル情報シーケンスに基づき信号を送信させるための情報補償器と、
を含み、
前記摂動量処理器は、同一または近似的同一の前記重み付け係数に対応する項を結合し、または、前記重み付け係数の実部に対応する項を結合し、または、前記重み付け係数の虚部に対応する項を結合するために用いられ、
前記摂動量処理器は前記重み付け係数に対応する項を結合する前に、さらに前記重み付け係数を量子化し、
前記入力されたパルス信号は単偏波信号であり、前記摂動量処理器が下記式で前記摂動量を結合し、
Figure 0006051916
式中、Δは第k時刻の若干項の重み付け値の和を表し、C(m,n,z=L)は伝送路L点における各項の重み付け係数を表し、R及びI はそれぞれ量子化後の係数C(mn≠0,z=L)の実部及び虚部を表し、m及びnは整数であり、p,qはそれぞれ異なる量子化級数を表し、Am+k、An+kはそれぞれ第m+k時刻、第n+k時刻のパルスのシンボル情報を表し、(Am+n+kは第m+n+k時刻のパルスのシンボル情報の共役を表す
非線形補償装置。
An information sequence acquisition unit for acquiring a symbol information sequence of the pulse signal input at the transmission end;
A weighting coefficient corresponding to each term acquired in advance is used to calculate a weighted sum of pulse interaction terms at one or more times with respect to the current time, thereby acquiring a perturbation amount generated in a transmission line of a certain length. A perturbation amount acquirer for
A perturbation amount processor that combines the perturbation amount terms based on the weighting factors to convert the addition of complex numbers into a combination of addition and multiplication of symbols in a finite symbol set;
An information compensator for calculating a difference between the symbol information sequence and a processed perturbation amount to obtain a compensated symbol information sequence and causing a transmission end to transmit a signal based on the compensated symbol information sequence When,
Including
The perturbation amount processor combines terms corresponding to the same or approximately the same weighting coefficient, combines terms corresponding to the real part of the weighting coefficient, or corresponds to an imaginary part of the weighting coefficient. Used to combine terms
The perturbation amount processor further quantizes the weighting factor before combining the terms corresponding to the weighting factor,
The input pulse signal is a single polarization signal, and the perturbation amount processor combines the perturbation amounts by the following equation:
Figure 0006051916
In the equation, Δ k represents the sum of the weight values of some terms at the k-th time, C (m, n, z = L) represents the weight coefficient of each term at the transmission line L point, and R p and I q are Each represents a real part and an imaginary part of the coefficient C after quantization (mn ≠ 0, z = L), m and n are integers, p and q represent different quantization series, A m + k , A n + k Represents the symbol information of the pulse at the ( m + k ) th time and the ( n + k ) th time, respectively, ( Am + n + k ) * represents the conjugate of the symbol information of the pulse at the ( m + n + k ) th time ,
Nonlinear compensator.
前記摂動量処理器はさらに取得した前記摂動量を所定の位相分に回転し、所定の幅係数によって前記摂動量を調整する、請求項1または2に記載の非線形補償装置。   The non-linear compensation apparatus according to claim 1, wherein the perturbation amount processor further rotates the acquired perturbation amount by a predetermined phase and adjusts the perturbation amount by a predetermined width coefficient. 請求項1ないしのいずれか1項に記載の非線形補償装置を含み、さらに、
前記非線形補償装置が取得した補償後のシンボル情報シーケンスに基づきパルス成型を行って各パルスの波形を取得するためのパルス成型器と、
前記パルス成型器が送信した各パルスの波形を受信し、前記波形を変調後に送信するための信号送信器と、
を含む送信機
A non-linear compensation device according to any one of claims 1 to 3 , further comprising:
A pulse shaper for obtaining a waveform of each pulse by performing pulse shaping based on a symbol information sequence after compensation obtained by the nonlinear compensation device;
A signal transmitter for receiving the waveform of each pulse transmitted by the pulse shaper and transmitting the waveform after modulating the waveform;
Including transmitter .
送信端で入力されたパルス信号のシンボル情報シーケンスを取得し、Obtain the symbol information sequence of the pulse signal input at the transmission end,
あらかじめ取得しておいた各項に対応する重み付け係数によって、現在時刻に対する1つ以上の時刻におけるパルス相互作用項の重み付け和を計算して一定の長さの伝送路において発生する摂動量を取得し、The weighting coefficient corresponding to each term acquired in advance is used to calculate the weighted sum of the pulse interaction terms at one or more times with respect to the current time to obtain the amount of perturbation that occurs in the transmission line of a certain length. ,
前記重み付け係数に基づき前記摂動量の項を結合し、複素数の加法を有限シンボル集合内のシンボルの加法と乗法との組み合わせに変換させ、Combining the perturbation quantity terms based on the weighting factors to convert complex addition to a combination of symbol addition and multiplication in a finite symbol set;
前記シンボル情報シーケンスと処理を行った摂動量との差分を計算して補償後のシンボル情報シーケンスを取得して、送信端に前記補償後のシンボル情報シーケンスに基づき信号を送信させ、Calculating a difference between the symbol information sequence and the amount of perturbation that has been processed to obtain a compensated symbol information sequence, and causing a transmission end to transmit a signal based on the compensated symbol information sequence;
前記重み付け係数に基づいた前記摂動量の項の結合では、同一または近似的同一の前記重み付け係数に対応する項を結合し、または、前記重み付け係数の実部に対応する項を結合し、または、前記重み付け係数の虚部に対応する項を結合し、In combining the perturbation amount terms based on the weighting factors, combining terms corresponding to the same or approximately the same weighting factors, combining terms corresponding to the real part of the weighting factors, or Combining terms corresponding to the imaginary part of the weighting factor;
前記重み付け係数に対応する項を結合する前に、さらに前記重み付け係数を量子化し、Prior to combining terms corresponding to the weighting factors, the weighting factors are further quantized,
前記入力されたパルス信号は二重偏波信号であり、前記摂動量の項の結合では、下記式で前記摂動量の項を結合し、The input pulse signal is a dual polarization signal, and in the combination of the perturbation amount terms, the perturbation amount terms are combined by the following equation:
Figure 0006051916
Figure 0006051916
式中、ΔWhere Δ H k 及びΔAnd Δ V k はそれぞれ第k時刻の若干項の水平偏波状態と垂直偏波状態との重み付け値の和を表し、C(m,n,z=L)は伝送路L点における各項の重み付け係数を表し、m及びnは整数であり、RRepresents the sum of the weighted values of the horizontal polarization state and the vertical polarization state of some terms at time k, and C (m, n, z = L) represents the weighting coefficient of each term at the transmission line L point. , M and n are integers and R p 及びIAnd I q はそれぞれ量子化後の係数C(mn≠0,z=L)の実部及び虚部を表し、D Represents the real part and the imaginary part of the coefficient C after quantization (mn ≠ 0, z = L), and D ss は量子化後のC(m,0,z=L)の虚部を表し、p,q,sはそれぞれ異なる量子化級数を表し、A Represents the imaginary part of C (m, 0, z = L) after quantization, p, q, s represent different quantization series, and A H m+km + k 及びAAnd A V m+km + k はそれぞれ水平偏波状態及び垂直偏波状態における第m+k時刻のパルスのシンボル情報を表し、ARepresents symbol information of the pulse at the (m + k) th time in the horizontal polarization state and the vertical polarization state, respectively. H n+kn + k 及びAAnd A V n+kn + k はそれぞれ水平偏波状態及び垂直偏波状態における第n+k時刻のパルスのシンボル情報を表し、(ARepresents symbol information of the pulse at the (n + k) th time in the horizontal polarization state and the vertical polarization state, respectively (A H m+n+km + n + k ) * 及び(AAnd (A V m+n+km + n + k ) * はそれぞれ水平偏波状態及び垂直偏波状態における第m+n+k時刻のパルスのシンボル情報の共役を表す、Represents the conjugate of the symbol information of the pulse at the m + n + k time in the horizontal polarization state and the vertical polarization state, respectively.
非線形補償方法。Nonlinear compensation method.
送信端で入力されたパルス信号のシンボル情報シーケンスを取得し、Obtain the symbol information sequence of the pulse signal input at the transmission end,
あらかじめ取得しておいた各項に対応する重み付け係数によって、現在時刻に対する1つ以上の時刻におけるパルス相互作用項の重み付け和を計算して一定の長さの伝送路において発生する摂動量を取得し、The weighting coefficient corresponding to each term acquired in advance is used to calculate the weighted sum of the pulse interaction terms at one or more times with respect to the current time to obtain the amount of perturbation that occurs in the transmission line of a certain length. ,
前記重み付け係数に基づき前記摂動量の項を結合し、複素数の加法を有限シンボル集合内のシンボルの加法と乗法との組み合わせに変換させ、Combining the perturbation quantity terms based on the weighting factors to convert complex addition to a combination of symbol addition and multiplication in a finite symbol set;
前記シンボル情報シーケンスと処理を行った摂動量との差分を計算して補償後のシンボル情報シーケンスを取得して、送信端に前記補償後のシンボル情報シーケンスに基づき信号を送信させ、Calculating a difference between the symbol information sequence and the amount of perturbation that has been processed to obtain a compensated symbol information sequence, and causing a transmission end to transmit a signal based on the compensated symbol information sequence;
前記重み付け係数に基づいた前記摂動量の項の結合では、同一または近似的同一の前記重み付け係数に対応する項を結合し、または、前記重み付け係数の実部に対応する項を結合し、または、前記重み付け係数の虚部に対応する項を結合し、In combining the perturbation amount terms based on the weighting factors, combining terms corresponding to the same or approximately the same weighting factors, combining terms corresponding to the real part of the weighting factors, or Combining terms corresponding to the imaginary part of the weighting factor;
前記重み付け係数に対応する項を結合する前に、さらに前記重み付け係数を量子化し、Prior to combining terms corresponding to the weighting factors, the weighting factors are further quantized,
前記入力されたパルス信号は単偏波信号であり、前記摂動量の項の結合では、下記式で前記摂動量を結合し、The input pulse signal is a single polarization signal, and in the combination of the perturbation amount terms, the perturbation amount is combined by the following equation:
Figure 0006051916
Figure 0006051916
式中、ΔWhere Δ k は第k時刻の若干項の重み付け値の和を表し、C(m,n,z=L)は伝送路L点における各項の重み付け係数を表し、RRepresents the sum of the weight values of some terms at the k-th time, C (m, n, z = L) represents the weight coefficient of each term at the transmission line L point, and R p 及びIAnd I q はそれぞれ量子化後の係数C(mn≠0,z=L)の実部及び虚部を表し、m及びnは整数であり、p,qはそれぞれ異なる量子化級数を表し、A Represents the real part and the imaginary part of the quantized coefficient C (mn ≠ 0, z = L), m and n are integers, p and q represent different quantization series, and A m+km + k 、A, A n+kn + k はそれぞれ第m+k時刻、第n+k時刻のパルスのシンボル情報を表し、(ARepresents symbol information of the pulses at the (m + k) th time and the (n + k) th time, respectively (A m+n+km + n + k ) * は第m+n+k時刻のパルスのシンボル情報の共役を表す、Represents the conjugate of the symbol information of the pulse at the m + n + k time,
非線形補償方法。Nonlinear compensation method.
JP2013029099A 2012-02-20 2013-02-18 Nonlinear compensation apparatus, method, and transmitter Active JP6051916B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210039262.X 2012-02-20
CN201210039262.XA CN103259597B (en) 2012-02-20 2012-02-20 Nonlinear compensating device, method and transmitter

Publications (2)

Publication Number Publication Date
JP2013172457A JP2013172457A (en) 2013-09-02
JP6051916B2 true JP6051916B2 (en) 2016-12-27

Family

ID=47720429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013029099A Active JP6051916B2 (en) 2012-02-20 2013-02-18 Nonlinear compensation apparatus, method, and transmitter

Country Status (4)

Country Link
US (1) US9143240B2 (en)
EP (1) EP2629471B1 (en)
JP (1) JP6051916B2 (en)
CN (1) CN103259597B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104104445B (en) * 2013-04-10 2017-06-30 富士通株式会社 The computing device and method of nonlinear weight coefficient
JP6176012B2 (en) * 2013-09-11 2017-08-09 富士通株式会社 Nonlinear distortion compensation apparatus and method, and communication apparatus
CN103916190B (en) * 2014-01-26 2017-10-27 北京邮电大学 To the optimization method of optical nonlinear phase compensation in a kind of optical transmission process
CN104980379B (en) * 2014-04-11 2018-06-08 富士通株式会社 Estimation device, method and the receiver of non-linear distortion
CN104158787B (en) * 2014-04-14 2018-12-07 上海大学 Based on the nonlinear impairments compensation method of VOLTERRA model in OFDM-PON system
CN107431675B (en) * 2015-03-23 2020-01-03 华为技术有限公司 Nonlinear compensation method and device
EP3157180A1 (en) * 2015-10-13 2017-04-19 Alcatel Lucent Fiber nonlinearities compensation
EP3352387B1 (en) * 2017-01-23 2021-02-24 Alcatel Lucent Digital multi-channel nonlinearity compensation scheme for optical coherent communication
JP7069578B2 (en) * 2017-07-05 2022-05-18 富士通株式会社 Optical transmission equipment and method
US10756822B1 (en) 2019-08-27 2020-08-25 Nokia Solutions And Networks Oy Digital fiber nonlinearity compensation
CN113176075B (en) * 2021-04-26 2022-03-25 南京大学 Coherent and polarization fading suppression method for synchronous monitoring of loss and vibration

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7756421B2 (en) * 2002-10-03 2010-07-13 Ciena Corporation Electrical domain compensation of non-linear effects in an optical communications system
US7869680B2 (en) * 2004-07-02 2011-01-11 Olambda, Inc. Nonlinearity compensation in a fiber optic communications system
US7522011B2 (en) * 2005-08-15 2009-04-21 Nokia Corporation High pass modulation of a phase locked loop
US8345793B2 (en) * 2008-03-10 2013-01-01 Telefonaktiebolaget Lm Ericsson (Publ) Compensation of diagonal ISI in OFDM signals
CN102420660B (en) * 2010-09-28 2014-09-03 富士通株式会社 Nonlinear compensator and transmitter
CN103023570B (en) * 2011-09-26 2016-03-30 富士通株式会社 Nonlinear compensating device, method and transmitter
CN103023828B (en) * 2011-09-26 2016-02-17 富士通株式会社 Nonlinear estimation device, method and receiver

Also Published As

Publication number Publication date
CN103259597B (en) 2016-12-07
EP2629471A2 (en) 2013-08-21
EP2629471B1 (en) 2018-07-18
US20130216238A1 (en) 2013-08-22
JP2013172457A (en) 2013-09-02
CN103259597A (en) 2013-08-21
EP2629471A3 (en) 2015-11-04
US9143240B2 (en) 2015-09-22

Similar Documents

Publication Publication Date Title
JP6051916B2 (en) Nonlinear compensation apparatus, method, and transmitter
CN103023570B (en) Nonlinear compensating device, method and transmitter
JP5834668B2 (en) Nonlinear compensator and transmitter
JP6319487B1 (en) Optical transmission characteristic estimation method, optical transmission characteristic compensation method, optical transmission characteristic estimation system, and optical transmission characteristic compensation system
US9973277B2 (en) Reduced complexity nonlinear compensation
CN103023828B (en) Nonlinear estimation device, method and receiver
Redyuk et al. Compensation of nonlinear impairments using inverse perturbation theory with reduced complexity
WO2019191099A1 (en) Non-linear adaptive neural network equalizer in optical communication
EP3207674B1 (en) Chromatic dispersion estimation for digital coherent optical receivers
WO2010020031A1 (en) System and method for reducing memory requirements for electrical domain compensation of intra-channel nonlinearity in an optical communications system
CN103095374A (en) Self-adaption nonlinear balanced method and device of polarization multiplexing optical communication system
JP2017059962A (en) Transmission apparatus and transmission system
CN113875170A (en) Optical transmission characteristic compensation method and optical transmission characteristic compensation system
JP2019041285A (en) Optical transmission characteristic compensation system and optical transmission characteristic compensation method
Kumar et al. Enhanced regular perturbation-based nonlinearity compensation technique for optical transmission systems
US11356181B2 (en) Backward propagation with compensation of some nonlinear effects of polarization mode dispersion
JP5681743B2 (en) Optical receiving apparatus and optical receiving method
US20220116113A1 (en) Apparatus and method for transmitting and/or receiving data over a fiber-optical channel employing perturbation-based fiber nonlinearity compensation in a periodic frequency domain
Frey et al. Improved perturbation-based fiber nonlinearity compensation
EP3345314B1 (en) Phase retrieval for compensation of chromatic dispersion-induced inter-symbol interference
JP6116001B2 (en) Optical transmitter and optical receiver
Ma et al. A novel high precision adaptive equalizer in digital coherent optical receivers
EP3133751A1 (en) Method for nonlinearity compensation in optical transmission systems
Tao et al. Simplified volterra series based nonlinear equalization in short reach optical transmissions
CN117411553A (en) Compensating method and system for nonlinear damage of optical fiber in coherent light transmission

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161114

R150 Certificate of patent or registration of utility model

Ref document number: 6051916

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150