KR102170566B1 - 목적 유전자의 발현을 조기 종결하기 위한 벡터 및 이를 포함하는 균주 - Google Patents

목적 유전자의 발현을 조기 종결하기 위한 벡터 및 이를 포함하는 균주 Download PDF

Info

Publication number
KR102170566B1
KR102170566B1 KR1020190004662A KR20190004662A KR102170566B1 KR 102170566 B1 KR102170566 B1 KR 102170566B1 KR 1020190004662 A KR1020190004662 A KR 1020190004662A KR 20190004662 A KR20190004662 A KR 20190004662A KR 102170566 B1 KR102170566 B1 KR 102170566B1
Authority
KR
South Korea
Prior art keywords
gene
vector
corynebacterium glutamicum
expression
target gene
Prior art date
Application number
KR1020190004662A
Other languages
English (en)
Other versions
KR20200088093A (ko
Inventor
우한민
강석원
Original Assignee
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성균관대학교산학협력단 filed Critical 성균관대학교산학협력단
Priority to KR1020190004662A priority Critical patent/KR102170566B1/ko
Publication of KR20200088093A publication Critical patent/KR20200088093A/ko
Application granted granted Critical
Publication of KR102170566B1 publication Critical patent/KR102170566B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/77Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Corynebacterium; for Brevibacterium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/102Mutagenizing nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1137Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2830/00Vector systems having a special element relevant for transcription
    • C12N2830/36Vector systems having a special element relevant for transcription being a transcription termination element

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Virology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본원은 크리스퍼 유전자 편집기술을 이용하여 코리네박테리움 글루타미쿰에서 목적 유전자 발현을 조기종결시키기 위한 벡터를 포함하는 키트 및 균주, 및 이를 이용한 목적 유전자 발현의 조기종결 방법에 관한 것이다.

Description

목적 유전자의 발현을 조기 종결하기 위한 벡터 및 이를 포함하는 균주 {VECTOR FOR PREMATURE TERMINATION OF TARGET GENE EXPRESSION AND STRAIN CONTAINING THE SAME}
본원은 크리스퍼 유전자 편집기술을 이용하여 코리네박테리움 글루타미쿰에서 목적 유전자 발현을 조기종결시키기 위한 벡터를 포함하는 키트 및 균주, 및 이를 이용한 목적 유전자 발현의 조기종결 방법에 관한 것이다.
코리네박테리움 글루타미쿰(Corynebacterium glutamicum)은 그람 양성 균주로서, 글루타메이트, 라이신, 트레오닌과 같은 아미노산 및 이노신산과 같은 퓨린 계열의 핵산을 생산하는 등의 용도로 널리 이용되고 있다. 코리네박테리움 글루타미쿰은 생장 조건이 용이하며, 대장균에 비해 4 배 가량 고농도 배양이 가능하고, 유전체 구조가 안정적이어서 돌연변이 발생 확률이 낮다. 또한, GRAS균주로서 안전한 종의 미생물이고 다양한 탄소원을 이용하여 빠른 성장이 가능하며, 유전체의 분석도 완료가 되어있어 다양한 특성의 유전자가 알려져 있다. 이러한 다양한 특성들이 활용이 가능하기에 산업적 균주로 많은 기업에서 이용하고 있다.
코리네박테리움 글루타미쿰 균주를 활용해 다양한 산업 물질을 얻고자 하는 연구가 활발히 진행되고 있는데, 그러한 돌연변이 균주를 만드는 방법으로 크게 화학적인 방법과 생물학적인 방법이 있다. 하지만 이러한 방법에는 각 한계가 존재하는데 화학적인 방법의 경우 미생물에게 인공적인 스트레스를 주어 돌연변이를 일으키는 방법들은 미생물의 생존력을 낮추어 얻기 어려울 뿐 아니라 원하고자 하는 돌연변이를 얻는 것에도 한계가 있기 때문에 사용이 어렵다.
또한, 생물학적으로 외래 DNA나 플라스미드를 이용하여 돌연변이 균주를 얻는 방법이 있는데 이러한 방법에도 GMO 관련 문제점이나 독성에 의해 원하는 균주를 얻기 힘들거나 하는 문제가 항상 제기되어 왔다.
한편, 세균의 유전자 발현을 조절하기 위한 다양한 유전자 조작 기술들이 알려져 있으며, 그 중에서도 Cas9 기반으로 목적 유전자의 발현을 차단하는 CRISPR (크리스퍼) 유전자가위 시스템이 이용되어 왔다. 그러나 이 방법은 목적 유전자를 절단하기 때문에 세포독성을 유발할 수 있다. 또한 불활성화된 Cas9(dCas9) 기반으로 목적 유전자의 발현을 저해하는 CRISPRi(CRISPR interference, 크리스퍼 간섭) 시스템이 개발된 바 있으나, 이 역시 목적하는 개별 유전자를 정확하게 조작하지는 못한다는 한계를 지니고 있었다.
1. Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A., & Liu, D. R. (2016). Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature, 533(7603), 420. 2. Kang, M. K., Lee, J., Um, Y., Lee, T. S., Bott, M., Park, S. J., & Woo, H. M. (2014). Synthetic biology platform of CoryneBrick vectors for gene expression in Corynebacterium glutamicum and its application to xylose utilization. Applied microbiology and biotechnology, 98(13), 5991-6002. 3. Heider, S. A., Peters-Wendisch, P., Beekwilder, J., & Wendisch, V. F. (2014). IdsA is the major geranylgeranyl pyrophosphate synthase involved in carotenogenesis in Corynebacterium glutamicum. The FEBS journal, 281(21), 4906-4920. 4. Litsanov, B., Brocker, M., & Bott, M. (2012). Toward homosuccinate fermentation: metabolic engineering of Corynebacterium glutamicum for anaerobic production of succinate from glucose and formate. Applied and environmental microbiology, 78(9), 3325-3337.
본원은 크리스퍼 유전자 편집기술에 탈아미노화효소를 접목하여, 코리네박테리움 글루타미쿰 균주에서 유전자를 자르지 않고, 동시에 외래유전자의 삽입 없이, 유전체 내 특정 염기서열 중 사이토신을 타이민으로 바꾸어 줌으로써, 유전자 결손과 동일한 효과를 나타낼 수 있는 유전자발현의 조기종결기술을 제공하고자 한다.
그러나 본원이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
본원의 제 1 측면은, 탈아미노화효소, Cas9 니케이즈 (nCas9) 및 우라실 글라코실레이즈 억제제 (UGI)를 각각 인코딩하는 유전자, 및 이에 작동가능하게 연결된 프로모터를 포함하는 제 1 벡터; 및 목적 유전자의 가이드 RNA (sgRNA)를 인코딩하는 프로토스페이서 서열 및 이에 작동가능하게 연결된 프로모터를 포함하는 제 2 벡터를 포함하는, 코리네박테리움 글루타미쿰에서 목적 유전자 특정 사이토신을 타이민으로 치환하여 해당 유전자의 발현을 조기종결시키기 위한 키트에 관한 것이다.
본원의 제 2 측면은, 탈아미노화효소, Cas9 니케이즈 (nCas9) 및 우라실 글라코실레이즈 억제제 (UGI)를 각각 인코딩하는 유전자, 및 이에 작동가능하게 연결된 프로모터를 포함하는 제 1 벡터, 및 목적 유전자의 가이드 RNA (sgRNA)를 인코딩하는 프로토스페이서 서열 및 이에 작동가능하게 연결된 프로모터를 포함하는 제 2 벡터를 코리네박테리움 글루타미쿰 내로 형질전환하는 단계; 및 상기 형질전환된 코리네박테리움 글루타미쿰을 상기 유전자 및 가이드 RNA의 발현을 위한 배양 조건에서 배양하는 단계를 포함하는, 코리네박테리움 글루타미쿰에서 목적 유전자 발현의 조기종결 방법에 관한 것이다.
본원의 제 3 측면은, 탈아미노화효소, Cas9 니케이즈 (nCas9) 및 우라실 글라코실레이즈 억제제 (UGI)를 각각 인코딩하는 유전자, 및 이에 작동가능하게 연결된 프로모터를 포함하는 제 1 벡터로 형질전환된 코리네박테리움 글루타미쿰 균주에 관한 것이다.
본원의 제 4 측면은, 탈아미노화효소, Cas9 니케이즈 (nCas9) 및 우라실 글라코실레이즈 억제제 (UGI)를 각각 인코딩하는 유전자, 및 이에 작동가능하게 연결된 프로모터를 포함하는 제 1 벡터를 포함하는, 수탁번호 KCTC13698BP로 기탁된 대장균 균주에 관한 것이다.
상술한 과제 해결 수단은 단지 예시적인 것으로서, 본원발명을 제한하려는 의도로 해석되지 않아야 한다. 상술한 예시적인 구현예 외에도, 도면 및 발명의 상세한 설명에 기재된 추가적인 구현예 및 실시예가 존재할 수 있다.
본원발명에 따르면, 코리네박테리움 글루타미쿰에서 원하는 특정 유전자의 발현을 간단하게 조기종결 할 수 있다. 본원발명에서 사용하는 크리스퍼 염기편집 기술은 종래의 다른 유전자 편집기술과 달리 매우 간단하며, 유전자를 잘라서 염기서열을 바꾸는 것이 아니라 탈아미노화효소를 이용해 특정 유전자의 서열 내 사이토신을 타이민으로 바꾸는 것이기 때문에 균주에 독성이 적어 효과적이다. 이러한 크리스퍼 염기편집 기술을 통해 사이토신을 타이민으로 바꾸어 주면 다양한 돌연변이를 동해 유전자의 조작이 가능해지며, 일부 코돈을 종결 코돈으로 바꾸어줌으로써 유전자 발현을 효과적으로 조기종결할 수 있다.
또한, 본원발명의 방법을 활용하면 상업적으로 널리 사용되는 코리네박테리움 글루타미쿰의 유전자 편집이 더욱 간단해지고, 원하는 물질을 생산하는 방향이나 균주개발에 있어 다양한 방안을 제시할 수 있으며, 코리네박테리움 글루타미쿰 외의 다양한 균주에도 동일한 기술을 적용할 수 있어 매우 유용하다. 더욱이, 이러한 방법으로 유전자를 조작할 경우 GMO에 해당하지 않아 산업적 이용이 한층 용이해질 수 있다.
도 1은 본원의 일 실시예에서 사용된 pCoryne-BE3 벡터 (a) 및 pCoryne-sgRNA 벡터 (b)의 개략도이다.
도 2는 크리스퍼 유전자 염기편집 기술의 작용기작에 대한 개략도이다.
도 3은 크리스퍼 유전자 염기편집 기술을 응용하여 목적 유전자 내에 종결코돈을 생성함으로써 유전자 발현을 조기종결시키는 작용기작의 개략도이다.
도 4는 본원의 일 실시예에서 idsA 유전자 (a)와 ldh 유전자 (b)를 각각 조기종결하기 위한 타겟 프로토스페이서의 위치와 아미노산을 나타낸 개략도이다.
도 5는 본원의 일 실시예에서 idsA 유전자의 발현을 조기종결하기 위해 사용된 3 종의 프로토스페이서들의 종결코돈 전환 효율을 나타낸 그래프이다.
도 6은 본원의 일 실시예에서 idsA 유전자의 발현을 조기종결하기 위해 사용된 3 종의 프로토스페이서들에 의해 유전자 발현이 조기종결된 균주들의 표현형을 보여주는 이미지이다.
도 7은 본원의 일 실시예에서 ldh 유전자의 발현을 조기종결하기 위해 사용된 3 종의 프로토스페이서들의 종결코돈 전환 효율을 나타낸 그래프이다.
도 8은 본원의 일 실시예에서 ldh 유전자의 발현을 조기종결하기 위해 사용된 3 종의 프로토스페이서들에 의해 유전자 발현이 조기종결된 균주들의 성장 정도 (a)와 표현형 (b)을 보여주는 이미지이다.
아래에서는 첨부한 도면을 참조하여 본원이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본원의 실시예를 상세히 설명한다. 그러나 본원은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본원을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였다.
본원 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본원 명세서 전체에서 사용되는 정도의 용어 "약", "실질적으로" 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다. 본원 명세서 전체에서 사용되는 정도의 용어 "~(하는) 단계" 또는 "~의 단계"는 "~를 위한 단계"를 의미하지 않는다.
본원 명세서 전체에서, 마쿠시 형식의 표현에 포함된 "이들의 조합"의 용어는 마쿠시 형식의 표현에 기재된 구성 요소들로 이루어진 군에서 선택되는 하나 이상의 혼합 또는 조합을 의미하는 것으로서, 상기 구성 요소들로 이루어진 군에서 선택되는 하나 이상을 포함하는 것을 의미한다.
본원 명세서 전체에서, "A 및/또는 B" 의 기재는, "A, B, 또는, A 및 B" 를 의미한다.
본원 명세서 전체에서, 용어 “작동가능하게 연결된"은 하나의 핵산 단편이 다른 핵산 단편과 결합되어 그의 기능 또는 발현이 다른 핵산 단편에 의해 영향을 받는 것을 의미한다.
본원 명세서 전체에서, 용어 "가이드 RNA"는 일반적으로 Cas 단백질 (nCas 단백질 포함)에 결합할 수 있고 Cas 단백질을 표적 폴리뉴클레오타이드 (예를 들어, DNA)내의 특정 위치에 표적화하는 것을 도울 수 있는 RNA 분자(또는 집합적으로 RNA 분자들의 그룹)를 지칭할 수 있다. 가이드 RNA는 crRNA 분절 및 tracrRNA 분절을 포함할 수 있다. 본원 명세서에 사용되는 "crRNA" 또는 "crRNA 분절"이란 용어는 폴리뉴클레오타이드-표적화 가이드 서열, 줄기 서열 및 임의로 5'-오버행 서열을 포함하는 RNA 분자 또는 그의 부분을 지칭한다. 본원 명세서에 사용되는 "tracrRNA" 또는 "tracrRNA 분절"이란 용어는 단백질-결합 분절(예를 들어, 상기 단백질-결합 분절은 크리스퍼-결합된 단백질, 예를 들어 Cas9와 상호작용할 수 있다)을 포함하는 RNA 분자 또는 그의 부분을 지칭한다. 상기 "가이드 RNA"란 용어는 단일 가이드 RNA(sgRNA)를 포함하며, 이때 상기 crRNA 분절 및 상기 tracrRNA 분절은 동일한 RNA 분자 중에 위치한다. "가이드 RNA"란 용어는 또한 집합적으로 2개 이상의 RNA 분자들의 그룹을 포함하며, 이때 상기 crRNA 및 상기 tracrRNA 분절은 별도의 RNA 분자 중에 위치한다.
본원 명세서 전체에서, 용어 "핵산", "폴리뉴클레오타이드" 또는 "올리고뉴클레오타이드"란 용어는 DNA 분자, RNA 분자 또는 이들의 유사체를 지칭한다. 본원 명세서에 사용되는 "핵산", "폴리뉴클레오타이드" 및 "올리고뉴클레오타이드"란 용어는 비제한적으로 DNA 분자, 예를 들어 cDNA, 게놈 DNA 또는 합성 DNA 및 RNA 분자, 예를 들어 가이드 RNA, 전령 RNA 또는 합성 RNA를 포함한다. 더욱이, 본원 명세서에 사용되는 "핵산" 및 "폴리뉴클레오타이드"란 용어는 단일-가닥 및 이중-가닥 형태를 포함한다.
이하, 본원의 코리네박테리움 글루타미쿰에서 목적 유전자 발현을 조기종결시키기 위한 키트, 코리네박테리움 글루타미쿰에서 목적 유전자 발현의 조기종결 방법, 및 형질전환된 코리네박테리움 균주 및 대장균 균주에 대하여 구현예 및 실시예와 도면을 참조하여 구체적으로 설명하도록 한다. 그러나, 본원이 이러한 구현예 및 실시예와 도면에 제한되는 것은 아니다.
본원의 제 1 측면은, 탈아미노화효소, Cas9 니케이즈 (nCas9) 및 우라실 글라코실레이즈 억제제 (UGI)를 각각 인코딩하는 유전자, 및 이에 작동가능하게 연결된 프로모터를 포함하는 제 1 벡터; 및 목적 유전자의 가이드 RNA (sgRNA)를 인코딩하는 프로토스페이서 서열 및 이에 작동가능하게 연결된 프로모터를 포함하는 제 2 벡터를 포함하는, 코리네박테리움 글루타미쿰에서 목적 유전자 발현을 조기종결시키기 위한 키트를 제공할 수 있다.
본원발명은 크리스퍼 유전자 염기편집 기술을 코리네박테리움 글루타미쿰 균주에 적용하여 유전자를 자르지 않고 염기서열을 편집하는 것이 가능하며 따라서 세포독성을 최소화할 수 있다. 균주 내로 도입되는 nCas9를 이용하여 DNA의 이중가닥을 벌려주고, 이후 탈아미노 효소에 의해 특정 구역, 즉 PAM (protospacer adjacent motif) 구역으로부터 9 번째부터 17 번째, 내지는 13 번째부터 17 번째 염기서열의 사이토신 (C)이 타이민 (T)으로 치환되게 된다. PAM 구역은 발현되는 가이드 RNA에 의해 인식된다. 이후 우라실 글라코실레이즈 억제제가 발현되어 사이토신에서 우라실 (U)로 바뀐 돌연변이가 원래대로 사이토신으로 글라코실화 반응에 의해 복구되지 않은 채 우라실이 타이민으로 바뀌게 된다. 상보적인 위치에 있는 구아닌 (G) 또한 돌연변이 복구과정에 의해 아데닌 (A)으로 바뀔 수 있다 (도 2 및 도 3).
본원의 일 구현예에서, 상기 탈아미노화효소는 쥐에서 유래된 것일 수 있고, 상기 nCas9는 스트렙토코커스 피오제네스 (streptococcus pyogenes)에서 유래된 Cas9 단백질에서 열 번째 아미노산이 아스파르트산에서 알라닌으로 바뀌어 뉴클레아제로써 기능을 일부 상실하게 하여 유전자가 잘리는 것을 방지한 것일 수 있다. 또한 우라실 글라코실레이즈 억제제(UGI)는 고초균 박테리오파지(bacillus subtilis bacteriophage)에서 유래한 것일 수 있다.
이와 같이 크리스퍼 유전자 염기편집 기술을 이용하여 코리네박테리움 글루타미쿰 내에서 목적 유전자의 발현을 조기종결시키기 위해 본원의 실시예에서 사용된 벡터의 구조가 도 1에 나타나 있다. 도 1의 (a)는 탈아미노화효소, Cas9 니케이즈 (nCas9) 및 우라실 글라코실레이즈 억제제 (UGI)를 각각 인코딩하는 유전자, 및 이에 작동가능하게 연결된 프로모터를 포함하는 pCoryne-BE3 벡터 (제 1 벡터)이고, 도 1의 (b)는 목적 유전자의 가이드 RNA (sgRNA)를 인코딩하는 프로토스페이서 서열 및 이에 작동가능하게 연결된 프로모터를 포함하는 pCoryne-sgRNA 벡터 (제 2 벡터)의 구조이다.
본원의 일 구현예에 따르면, 상기 키트는 코리네박테리움 글루타미쿰의 목적 유전자 내에서 글루타민 및 아르기닌을 인코딩하는 코돈의 사이토신을 타이민으로 전환시킴으로써 종결코돈을 생성하기 위한 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 따르면, 상기 키트는 트립토판을 인코딩하는 코돈의 구아닌을 아데닌으로 전환시킴으로써 종결코돈을 생성하기 위한 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 따르면, 상기 키트는 PAM (protospacer adjacent motif) 구역으로부터 13 번째 내지 17 번째, 또는 9 번째 내지 17 번째 염기서열 내의 글루타민 및 아르기닌을 인코딩하는 코돈의 사이토신을 타이민으로 전환시킴으로써 종결코돈을 생성하기 위한 것일 수 있고, 구체적으로 PAM 구역으로부터 9 번째 내지 17 번째 염기서열 내의 글루타민 및 아르기닌을 인코딩하는 코돈의 사이토신을 90% 이상, 92% 이상, 95% 이상, 98% 이상 또는 100%의 확률로 타이민으로 전환시킴으로써 종결코돈을 생성하기 위한 것일 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 상기 키트는 PAM 구역으로부터 13 번째 내지 17 번째, 또는 9 번째 내지 17 번째 염기서열 내의 트립토판을 인코딩하는 코돈의 구아닌을 90% 이상, 92% 이상, 95% 이상, 98% 이상 또는 100%의 확률로 아데닌으로 전환시킴으로써 종결코돈을 생성하기 위한 것일 수 있으나, 이에 제한되지 않을 수 있다.
예를 들어, 상기 프로모터는 당업계에 알려진 미생물 내에서 작동하는 프로모터들로부터 제한 없이 선택하여 사용할 수 있으며, 특정 발달 단계, 특정 시기, 특정 조건 및 특정 부위 등에서 선택적으로 작동하는 프로모터를 사용할 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 따르면, 상기 벡터는 다중클로닝부위, 전사종결자, 및 리포터 유전자로부터 선택되는 하나 이상의 요소를 더 포함할 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 상기 리포터 유전자는 당업계에 알려진 항생제 저항성 유전자 또는 형광 단백질 발현 유전자일 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 가이드 RNA를 인코딩하는 프로토스페이서 서열은 상기 다중클로닝부위에 삽입될 수 있고, 바람직하게는 서열번호 6의 서열의 136번째 서열과 137번째 서열 사이에 삽입될 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 따르면, 상기 벡터는 코리네박테리움 글루타미쿰 유래의 복제 개시점, 예를 들어 pHM1519 또는 pBL1을 포함할 수 있으나 이에 제한되지 않을 수 있으며, 당업계에 알려진 코리네박테리움 글루타미쿰 유래의 복제 개시점을 적절하게 선택하여 사용할 수 있다.
본원의 일 구현예에 따르면, 상기 제 1 벡터는 서열번호 1에 나타난 뉴클레오티드 서열을 가질 수 있으나, 이에 제한되지 않을 수 있다. 상기 제 1 벡터에 포함되는 탈아미노화효소의 유전자는 서열번호 3에 나타난 뉴클레오티드 서열을 가질 수 있고, nCas9의 유전자는 서열번호 4에 나타난 뉴클레오티드 서열을 가질 수 있으며, 우라실 글라코실레이즈 억제제 유전자는 서열번호 5에 나타난 뉴클레오티드 서열을 가질 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 따르면, 상기 제 2 벡터가 서열번호 6에 나타난 뉴클레오티드 서열 및 상기 서열에 삽입된 프로토스페이서 서열을 포함할 수 있으나, 이에 제한되지 않을 수 있다.
예를 들어, 상기 프로토스페이서 서열은 서열번호 7 내지 서열번호 12에 나타난 뉴클레오티드 서열로부터 선택되는 것일 수 있으나 이에 제한되지 않을 수 있으며, 목적 유전자를 인식할 수 있는 가이드 RNA를 인코딩하는 서열이라면 통상의 기술자가 적절히 선택하여 프로토스페이서 서열로 사용할 수 있다.
예를 들어, 상기 목적 유전자는 코리네박테리움 글루타미쿰의 idsA (Geranylgeranyl pyrophosphate synthase) 및/또는 ldh(lactate dehydrogenase)을 포함할 수 있으나 이에 제한되지 않을 수 있으며, 코리네박테리움 글루타미쿰 내에서 발현을 조절하고자 하는 임의의 유전자를 목적 유전자로 선택할 수 있다.
본원의 제 2 측면은, 탈아미노화효소, Cas9 니케이즈 (nCas9) 및 우라실 글라코실레이즈 억제제 (UGI)를 각각 인코딩하는 유전자, 및 이에 작동가능하게 연결된 프로모터를 포함하는 제 1 벡터, 및 목적 유전자의 가이드 RNA (sgRNA)를 인코딩하는 프로토스페이서 서열 및 이에 작동가능하게 연결된 프로모터를 포함하는 제 2 벡터를 코리네박테리움 글루타미쿰 내로 형질전환하는 단계; 및 상기 형질전환된 코리네박테리움 글루타미쿰을 상기 유전자 및 가이드 RNA의 발현을 위한 배양 조건에서 배양하는 단계를 포함하는, 코리네박테리움 글루타미쿰에서 목적 유전자 발현의 조기종결 방법을 제공할 수 있다.
본원의 제 1 측면과 관련하여 기술된 내용은, 특별한 언급이 없는 한 본원의 제 2 측면에 대해서도 동일하게 적용될 수 있다.
본원의 제 3 측면은, 탈아미노화효소, Cas9 니케이즈 (nCas9) 및 우라실 글라코실레이즈 억제제 (UGI)를 각각 인코딩하는 유전자, 및 이에 작동가능하게 연결된 프로모터를 포함하는 제 1 벡터로 형질전환된 코리네박테리움 글루타미쿰 균주를 제공할 수 있다.
본원의 제 1 측면과 관련하여 기술된 내용은, 특별한 언급이 없는 한 본원의 제 3 측면에 대해서도 동일하게 적용될 수 있다.
본원의 일 구현예에 따르면, 상기 코리네박테리움 글루타미쿰 균주는 목적 유전자의 가이드 RNA (sgRNA)를 인코딩하는 프로토스페이서 서열 및 이에 작동가능하게 연결된 프로모터를 포함하는 제 2 벡터에 의해 추가로 형질전환된 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 제 4 측면은, 탈아미노화효소, Cas9 니케이즈 (nCas9) 및 우라실 글라코실레이즈 억제제 (UGI)를 각각 인코딩하는 유전자, 및 이에 작동가능하게 연결된 프로모터를 포함하는 제 1 벡터를 포함하는, 수탁번호 KCTC13698BP로 기탁된 대장균 균주를 제공할 수 있다.
본원의 제 1 측면과 관련하여 기술된 내용은, 특별한 언급이 없는 한 본원의 제 4 측면에 대해서도 동일하게 적용될 수 있다.
이하 실시예를 통하여 본원발명을 더욱 상세하게 설명하고자 하나, 하기의 실시예는 단지 설명의 목적을 위한 것이며 본원의 범위를 한정하고자 하는 것은 아니다.
[실시예]
1. 크리스퍼 유전자 염기편집을 위한 코리네박테리움 글루타미쿰용 벡터 개발
(a) 크리스퍼 유전자 염기편집 기술
크리스퍼 유전자 염기편집 기술을 적용하고 최적화한 선행 논문을 참조하여 사용된 탈아미노화효소 (rAPOBEC1), Cas9니케이즈 (nCas9) 및 UGI 유전자를 이용하여 코리네박테리움 글루타미쿰에서 크리스퍼 유전자 염기편집 기술을 적용하기 위한 벡터를 제조하고자 하였다. (Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A., & Liu, D. R. (2016). Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature, 533(7603), 420. [1]).
(b) pCoryne-BE3 벡터의 제조
먼저 탈아미노화효소 (rAPOBEC1), nCas9 및 UGI의 시퀀스를 가진 벡터를 addgene (87437)에서 구매하고, 해당 유전자 시퀀스를 PCR을 통해 증폭하여 크리스퍼 유전자 염기편집 유전자 시퀀스를 수득하였다. 상기 탈아미노화 효소는 쥐에서 유래한 것을 사용하였고, 상기 nCas9는 스트렙토코커스 피오제네스 (streptococcus pyogenes)에서 유래된 Cas9 단백질에서 열 번째 아미노산이 아스파르트산에서 알라닌으로 바뀌어 뉴클레아제로써 기능을 일부 상실하게 하여 유전자가 잘리는 것을 방지한 것을 사용하였으며, UGI는 고초균 박테리오파지(bacillus subtilis bacteriophage)에서 유래한 것을 사용하였다. 사용된 탈아미노화효소의 유전자 서열이 서열번호 3에, nCas9의 유전자 서열이 서열번호 4에, UGI의 유전자 서열이 서열번호 5에 나타나 있다. 그 후 CoryneBrick 벡터인 pBbEb2c-rfp (Kang, M. K., Lee, J., Um, Y., Lee, T. S., Bott, M., Park, S. J., & Woo, H. M. (2014). Synthetic biology platform of CoryneBrick vectors for gene expression in Corynebacterium glutamicum and its application to xylose utilization. Applied microbiology and biotechnology, 98(13), 5991-6002.[2]) 벡터를 이용하여 rfp 부분을 BglII 및 XhoI 제한효소 처리를 통해 제거한 후, 그 자리에 증폭된 유전자 시퀀스를 삽입하여 pCoryne-BE3 벡터를 제조하여 크리스퍼 유전자 염기편집 기술을 위한 벡터를 완성하였다. 제조된 pCoryne-BE3 벡터의 모식도가 도 1의 (a)에 나타나 있으며, pCoryne-BE3 벡터의 서열은 서열번호 1에, 변형 전의 BE3 벡터의 서열은 서열번호 2에 나타나 있다. 이렇게 완성된 pCoryne-BE3 벡터를 코리네박테리움 글루타미쿰 ATCC 13032 야생형 균주에 삽입하여 크리스퍼 유전자 염기편집 능력을 갖춘 균주를 제조하였다. pCoryne-BE3 벡터를 포함하는 대장균은 2018. 11. 05. 자로 생물자원센터에 수탁번호 KCTC 13698BP로 기탁되었다.
(c) pCoryne-sgRNA 벡터의 제조
크리스퍼 유전자 염기편집 벡터가 발현되어 타겟으로 할 프로토스페이서 (protospacer)를 가진 pCoryne-sgRNA 벡터를 PCR을 이용하여 제조하였다. 가이드RNA 제작용 프라이머 시퀀스는 아래 표 1에 나타나 있고, 제조된 pCoryne-sgRNA 벡터의 모식도는 도 1의 (b)에 나타나 있다.
[표 1]
Figure 112019004343895-pat00001
가이드 RNA를 인코딩하는 프로토스페이서 서열이 삽입되기 전의 pCoryne-sgRNA 벡터의 서열은 서열번호 6에 나타나 있으며, 해당 서열의 137 번째 위치에 프로토스페이서 서열이 삽입된다.
2. 코리네박테리움 글루타미쿰에서의 유전자 염기서열 변환 검증
완성된 pCoryne-BE3 벡터가 발현되면, 표적 가이드 RNA의 PAM (protospacer adjacent motif) 구역을 인식하여 nCas9에 의해 DNA의 이중가닥이 벌어지게 된다. 이후 탈아미노화효소가 작용하여 프로토스페이서의 PAM 구역으로부터 13-17번째의 염기서열이 사이토신에서 우라실로 바뀌게 되며, 우라실은 DNA 복제를 통해 타이민으로 바뀐다. 이때 우라실이 글라코실레이즈에 의해 다시 사이토신으로 돌아가는 것을 막고자 우라실 글라코실레이즈 억제제 (UGI)를 달아 주었고, 미스매칭에 의해 복구가 되는 것을 최대한 상보적인 위치에 있는 구아닌이 아데닌으로 바뀌도록 방향성을 띠게 하여 염기편집을 완료하게 된다 (도 2).
이러한 기작을 응용하여, 기존 유전자가 가지고 있는 코돈 중 일부 글루타민 (CAA, CAG)과 아르기닌 (CGA)을 종결코돈에 해당하는 TAA, TGA, TAG로 바꾸어 줌으로써 유전자의 발현을 강제로 멈추게 할 수 있다. 그 뿐만 아니라 사이토신이 타이민으로 바뀌게 되면 상보적으로 구아닌이 아데닌으로 바뀌게 되는데, 이를 이용하면 트립토판 (TGG)의 구아닌을 아데닌으로 바뀌게 하여 종결코돈으로 바꾸어 줄 수도 있다. 이를 이용하기 위해 유전자 내에서 PAM 구역과 그 해당하는 표적 가이드RNA에서 아미노산 코돈 순서에 맞는 글루타민 (CAA, CAG), 아르기닌 (CGA) 및 트립토판 (TGG)를 찾아 해당 사이토신 또는 구아닌을 타이민 또는 아데닌으로 바꾸어 주면 이들 아미노산이 종결코돈으로 바뀌고, 그에 따라 유전자가 발현이 조기종결될 수 있다 (도 3).
이러한 기작이 성공적으로 작동하는지 검증하기 위해, 유전자 내의 표적 사이토신이 모든 윈도우 구역에 존재하도록 다양한 위치를 고려하여 6 개의 프로토스페이서를 선정하였고 그 염기편집능을 확인하였다. pCoryne-BE3가 삽입된 균주에 타겟 프로토스페이서를 가진 pCoryne-sgRNA를 벡터를 형질전환을 통해 넣어주어 균주 내에서 크리스퍼 유전자 염기편집능을 확인하였다.
형질전환 여부는 항생제 저항 유전자의 발현으로 인해 클로람페니콜과 카나마이신 배지에서 균주가 생장하는지를 확인하여 검증하였다. 이후, 최종적으로 항생제가 없는 BHI-소르비톨 액체 배지에서 균주를 배양하여 벡터를 큐어링함으로써 벡터가 제거된 돌연변이 균주를 얻을 수 있었다. 벡터의 큐어링은 37℃, 200rpm의 조건에서 2 일간 진행하였고, 이후 고체 배지에 배양하여 큐어링된 콜로니를 얻었다.
추가적으로 DNA 시퀀싱을 의뢰하여 각 균주당 네 개의 콜로니에서 종결코돈으로 바뀐 시퀀스를 확인하였고, 프로토스페이서 내에서 사이토신이 타이민으로 바뀐 시퀀스의 개수를 확률로 나타내었으며, 그 결과 100% 확률로 사이토신이 타이민으로 바뀐 것이 확인되었으며, 구체적인 결과는 아래의 실시예 3 및 4에 나타내었다.
이로써 크리스퍼 유전자 염기편집 기술이 코리네박테리움 글루타미쿰 균주에서 적용되는지 확인할 수 있었으며, 기존에 알려진 범위 (13-17 번째 염기서열)보다 더 넓은 범위 (최소 9 번째 염기서열부터 최대 17 번째 염기서열)의 윈도우에 해당되는 사이토신을 타이민으로 바꾸어 주는 것을 확인하였다. 이로써, pCoryne-BE3를 이용하여 코리네박테리움의 목적 유전자의 염기서열을 매우 높은 정확도록 변환할 수 있음이 검증되었다.
3. 코리네박테리움 글루타미쿰에서 목적 유전자 발현의 조기종결 검증
코리네박테리움 글루타미쿰 균주에서 idsA (Geranylgeranyl pyrophosphate synthase) 유전자의 발현을 조기종결하게 되면 카르테노이드 생합성경로가 차단되고 이로 인해 최종 산물인 디카프레노옥산틴의 생성이 차단된다. idsA 유전자의 발현이 조기종결된 돌연변이 균주와 야생형 균주를 비교하였을 때, 디카프레노옥산틴의 생성이 저하됨에 따라 돌연변이 균주의 세포 펠렛의 색상이 퇴색된다 (Heider, S. A., Peters-Wendisch, P., Beekwilder, J., & Wendisch, V. F. (2014). IdsA is the major geranylgeranyl pyrophosphate synthase involved in carotenogenesis in Corynebacterium glutamicum. The FEBS journal, 281(21), 4906-4920. [3])
이를 이용하여 콜로니 단계에서 크리스퍼 유전자 염기편집 벡터의 발현 정도와 그 효율성을 확인하였다. 1200 bp의 idsA 유전자에서 PAM 구역, 종결코돈 프레임, 탈아미노화효소 활성 구역에 맞는 사이토신 조건에 맞추어 프로토스페이서를 선정하였고, 총 5 개의 프로토스페이서 중 위치와 아미노산 조건의 다양성을 고려하여 3 개를 선정하여 확인하였다 (도 4의 (a)).
해당 프로토스페이서 시퀀스의 위치를 토대로 pCoryne-sgRNA-idsA_F1, idsA_F2, idsA_F3 벡터를 PCR을 통해 각각 만들어 주었다. 5’ -> 3’ 프로토스페이서 시퀀스는 아래 표 2에 나타나 있다. 해당 벡터를 pCoryne-BE3 벡터가 삽입된 균주에 넣어주었고, 이를 통해 각 idsA 유전자의 70 번째, 179 번째 및 337 번째 아미노산을 종결 코돈으로 바꾸어 주었다.
[표 2]
Figure 112019004343895-pat00002
이후 DNA 시퀀싱을 의뢰하여 각 균주당 네 개의 콜로니에서 종결코돈으로 바뀐 시퀀스를 확인하였고, 프로토스페이서 내에서 사이토신이 타이민으로 바뀐 시퀀스의 개수를 확률로 도 5의 (a) 내지 (c)의 그래프에 나타내었다.
idsA_F1, idsA_F2 및 idsA_F3 각각에서 4 개의 콜로니를 확인한 결과, idsA_F1은 15 및 16 번째 사이토신이, idsA_F2는 9, 16 및 17 번째 사이토신이, idsA_F3는 14, 15 및 16 번째 사이토신이 모두 타이민으로 바뀐 것을 확인하였다. 이들 중 종결코돈으로 바뀌게 되는 타겟 뉴클레오타이드는 idsA_F1은 15 및 16 번째, idsA_F2는 16 및 17 번째, idsA_F3은 14 번째 염기서열이며, 이들 모두가 100%의 효율로 사이토신 치환에 의해 종결코돈으로 전환되었음을 확인하였다.
이후 콜로니를 BHI-소르비톨 3 mL에서 액체 배양하여 색상의 변화를 확인하였다. 30℃, 200rpm의 조건에서 2 일간 배양한 뒤 원심분리를 통해 콜로니의 색상을 야생형과 비교하였다 (도 6 (a)). 또한 구체적인 색상변화를 확인하기 위해 179 번째 아미노산이 종결코돈으로 변형된 균주를 CGXII 최소 배지를 이용하여 50 mL 플라스크 배양을 하였다. 이 때의 배지 조성은 다음과 같았다: (NH4)2SO4 20g/L, Urea 5g/L, KH2PO4 1g/L, K2HPO4 1g/L, MgSO4·7H2O 0.25g/L, MOPS 42g/L; 및 각 1000x의 Trace Metal, CaCl2, Biotin 및 Protecatechuic acid. 30℃, 120rpm의 조건에서 배양한지 24 시간째에 10 mL로 샘플링한 균주를 원심분리를 통해 세포 펠렛을 확인하였다 (도 6 (b)). 그 결과, 해당 유전자의 발현의 조기종결에 의해 디카프레노옥산틴의 생성이 억제되어 세포 펠렛의 색상이 탈색되었음을 확인하였다. 이로부터, pCoryne-BE3를 이용한 코리네박테리움의 목적 유전자의 조기종결 기술의 유효성이 검증되었다.
4. 코리네박테리움 글루타미쿰에서 젖산 탈수소효소 발현의 조기종결 검증
코리네박테리움 글루타미쿰 균주를 이용하여 진행된 선행 연구의 결과에 따르면, 혐기조건에서 pqo, pta-ackA, cat 및 ldh 유전자의 발현을 조기종결시키는 것만으로 숙신산을 생산할 수 있었다. 이 중에서도 ldh (lactate dehydrogenase) 유전자의 발현을 조기종결하기만 하여도 젖산이 생산되지 않으며, 숙신산과 아세트산이 생산되었다 (Litsanov, B., Brocker, M., & Bott, M. (2012). Toward homosuccinate fermentation: metabolic engineering of Corynebacterium glutamicum for anaerobic production of succinate from glucose and formate. Applied and environmental microbiology, 78(9), 3325-3337. [4]).
이를 통해 945 bp의 ldh 유전자에서 PAM 구역, 종결코돈 프레임, 탈아미노화효소 활성 구역에 맞는 사이토신 조건에 맞추어 프로토스페이서를 선정하였고, 총 5 개의 프로토스페이서 중 위치와 아미노산 조건의 다양성을 고려하여 3개를 선정하여 확인하였다 (도 4의 (b)).
해당 프로토스페이서 시퀀스의 위치를 토대로 pCoryne-sgRNA-ldh_F1, ldh_F2, ldh_F3 벡터를 PCR를 통해 각각 만들어 주었다. 5’-> 3’ 프로토스페이서 시퀀스는 아래 표 3에 나타나 있다. 해당 벡터를 pCoryne-BE3 벡터가 삽입된 균주에 넣어주었고 이를 통해 각 ldh 유전자의 58 번째, 135 번째 및 155 번째 아미노산을 종결 코돈으로 바꾸어 주었다.
[표 3]
Figure 112019004343895-pat00003
추가적으로 DNA 시퀀싱을 의뢰하여 각 균주당 네 개의 콜로니에서 종결코돈으로 바뀐 시퀀스를 확인하였고, 프로토스페이서 내에서 사이토신이 타이민으로 바뀐 시퀀스의 개수를 확률로 도 7의 (a) 내지 (c)에 나타내었다.
ldh_F1, ldh_F2 및 ldh_F3 각각에서 4 개의 콜로니를 확인한 결과, ldh_F1은 10, 12, 13 및 17 번째 사이토신이, ldh_F2는 15 및 16 번째 사이토신이, ldh_F3은 11 및 16 번째 사이토신이 모두 타이민으로 바뀐 것을 확인하였다. 이들 중 종결코돈으로 바뀌게 되는 타겟 뉴클레오타이드는 ldh_F1은 12 및 13 번째, ldh_F2는 15 및 16 번째, ldh_F3은 16 번째 염기서열이며, 이들 모두가 100%의 효율로 사이토신 치환에 의해 종결코돈으로 전환되었음을 확인하였다.
이후 각각의 돌연변이 균주를 CGXII 최소 배지를 이용해 동일한 배양조건에서 50 mL 플라스크 배양을 하여 야생형과 비교했을 때의 성장 정도를 보았으며 (도 8의 (a)), 이후 HPLC를 통해 야생형과 반대로 모든 돌연변이 균주에서 젖산이 생성되지 않는 것을 보았다 (도 8의 (b)). 이로써, pCoryne-BE3를 이용한 코리네박테리움의 목적 유전자의 조기종결 기술의 유효성이 검증되었다.
전술한 본원의 설명은 예시를 위한 것이며, 본원이 속하는 기술분야의 통상의 지식을 가진 자는 본원의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며, 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.
본원의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본원의 범위에 포함되는 것으로 해석되어야 한다.
생물자원센터 KCTC13698BP 20181105
<110> Research and Business Foundation SUNGKYUNKWAN UNIVERSITY <120> VECTOR FOR PREMATURE TERMINATION OF TARGET GENE EXPRESSION AND STRAIN CONTAINING THE SAME <130> 1 <160> 12 <170> KoPatentIn 3.0 <210> 1 <211> 10503 <212> DNA <213> Artificial Sequence <220> <223> pCoryne-BE3 <400> 1 gacgtcttaa gacccacttt cacatttaag ttgtttttct aatccgcata tgatcaattc 60 aaggccgaat aagaaggctg gctctgcacc ttggtgatca aataattcga tagcttgtcg 120 taataatggc ggcatactat cagtagtagg tgtttccctt tcttctttag cgacttgatg 180 ctcttgatct tccaatacgc aacctaaagt aaaatgcccc acagcgctga gtgcatataa 240 tgcattctct agtgaaaaac cttgttggca taaaaaggct aattgatttt cgagagtttc 300 atactgtttt tctgtaggcc gtgtacctaa atgtactttt gctccatcgc gatgacttag 360 taaagcacat ctaaaacttt tagcgttatt acgtaaaaaa tcttgccagc tttccccttc 420 taaagggcaa aagtgagtat ggtgcctatc taacatctca atggctaagg cgtcgagcaa 480 agcccgctta ttttttacat gccaatacaa tgtaggctgc tctacaccta gcttctgggc 540 gagtttacgg gttgttaaac cttcgattcc gacctcatta agcagctcta atgcgctgtt 600 aatcacttta cttttatcta atctagacat cattaattcc taatttttgt tgacactcta 660 tcgttgatag agttatttta ccactcccta tcagtgatag agaaaagaat tcaaaagatc 720 ttttgtttaa ctttaagaag gagatatacc atgggcagca gtcatcatca tcaccatcac 780 tcttctgaaa ccggtccggt tgcggttgac ccgaccctgc gtcgtcgtat cgaaccgcac 840 gaattcgaag ttttcttcga cccgcgtgaa ctgcgtaaag aaacctgcct gctgtacgaa 900 atcaactggg gtggtcgtca ctctatctgg cgtcacacct ctcagaacac caacaaacac 960 gttgaagtta acttcatcga aaaattcacc accgaacgtt acttctgccc gaacacccgt 1020 tgctctatca cctggttcct gtcttggtct ccgtgcggtg aatgctctcg tgcgatcacc 1080 gaattcctgt ctcgttaccc gcacgttacc ctgttcatct acatcgcgcg tctgtaccac 1140 cacgcggacc cgcgtaaccg tcagggtctg cgtgacctga tctcttctgg tgttaccatc 1200 cagatcatga ccgaacagga atctggttac tgctggcgta acttcgttaa ctactctccg 1260 tctaacgaag cgcactggcc gcgttacccg cacctgtggg ttcgtctgta cgttctggaa 1320 ctgtactgca tcatcctggg tctgccgccg tgcctgaaca tcctgcgtcg taaacagccg 1380 cagctgacct tcttcaccat cgcgctgcag tcttgccact accagcgtct gccgccgcac 1440 atcctgtggg cgaccggtct gaaatccggt agcgaaacac cggggacttc agaatcggcc 1500 accccggagt ctgataagaa atactcaata ggcttagcta tcggcacaaa tagcgtcgga 1560 tgggcggtga tcactgatga atataaggtt ccgtctaaaa agttcaaggt tctgggaaat 1620 acagaccgcc acagtatcaa aaaaaatctt ataggggctc ttttatttga cagtggagag 1680 acagcggaag cgactcgtct caaacggaca gctcgtagaa ggtatacacg tcggaagaat 1740 cgtatttgtt atctacagga gattttttca aatgagatgg cgaaagtaga tgatagtttc 1800 tttcatcgac ttgaagagtc ttttttggtg gaagaagaca agaagcatga acgtcatcct 1860 atttttggaa atatagtaga tgaagttgct tatcatgaga aatatccaac tatctatcat 1920 ctgcgaaaaa aattggtaga ttctactgat aaagcggatt tgcgcttaat ctatttggcc 1980 ttagcgcata tgattaagtt tcgtggtcat tttttgattg agggagattt aaatcctgat 2040 aatagtgatg tggacaaact atttatccag ttggtacaaa cctacaatca attatttgaa 2100 gaaaacccta ttaacgcaag tggagtagat gctaaagcga ttctttctgc acgattgagt 2160 aaatcaagac gattagaaaa tctcattgct cagctccccg gtgagaagaa aaatggctta 2220 tttgggaatc tcattgcttt gtcattgggt ttgaccccta attttaaatc aaattttgat 2280 ttggcagaag atgctaaatt acagctttca aaagatactt acgatgatga tttagataat 2340 ttattggcgc aaattggaga tcaatatgct gatttgtttt tggcagctaa gaatttatca 2400 gatgctattt tactttcaga tatcctaaga gtaaatactg aaataactaa ggctccccta 2460 tcagcttcaa tgattaaacg ctacgatgaa catcatcaag acttgactct tttaaaagct 2520 ttagttcgac aacaacttcc agaaaagtat aaagaaatct tttttgatca atcaaaaaac 2580 ggatatgcag gttatattga tgggggagct agccaagaag aattttataa atttatcaaa 2640 ccaattttag aaaaaatgga tggtactgag gaattattgg tgaaactaaa tcgtgaagat 2700 ttgctgcgca agcaacggac ctttgacaac ggctctattc cccatcaaat tcacttgggt 2760 gagctgcatg ctattttgag aagacaagaa gacttttatc catttttaaa agacaatcgt 2820 gagaagattg aaaaaatctt gacttttcga attccttatt atgttggtcc attggcgcgt 2880 ggcaatagtc gttttgcatg gatgactcgg aagtctgaag aaacaattac cccatggaat 2940 tttgaagaag ttgtcgataa aggtgcttca gctcaatcat ttattgaacg catgacaaac 3000 tttgataaaa atcttccaaa tgaaaaagta ctaccaaaac atagtttgct ttatgagtat 3060 tttacggttt ataacgaatt gacaaaggtc aaatatgtta ctgaaggaat gcgaaaacca 3120 gcatttcttt caggtgaaca gaagaaagcc attgttgatt tactcttcaa aacaaatcga 3180 aaagtaaccg ttaagcaatt aaaagaagat tatttcaaaa aaatagaatg ttttgatagt 3240 gttgaaattt caggagttga agatagattt aatgcttcat taggtaccta ccatgatttg 3300 ctaaaaatta ttaaagataa agattttttg gataatgaag aaaatgaaga tatcttagag 3360 gatattgttt taacattgac cttatttgaa gatagggaga tgattgagga aagacttaaa 3420 acatatgctc acctctttga tgataaggtg atgaaacagc ttaaacgtcg ccgttatact 3480 ggttggggac gtttgtctcg aaaattgatt aatggtatta gggataagca atctggcaaa 3540 acaatattag attttttgaa atcagatggt tttgccaatc gcaattttat gcagctgatc 3600 catgatgata gtttgacatt taaagaagac attcaaaaag cacaagtgtc tggacaaggc 3660 gatagtttac atgaacatat tgcaaattta gctggtagcc ctgctattaa aaaaggtatt 3720 ttacagactg taaaagttgt tgatgaattg gtcaaagtaa tggggcggca taagccagaa 3780 aatatcgtta ttgaaatggc acgtgaaaat cagacaactc aaaagggcca gaaaaattcg 3840 cgagagcgta tgaaacgaat cgaagaaggt atcaaagaat taggaagtca gattcttaaa 3900 gagcatcctg ttgaaaatac tcaattgcaa aatgaaaagc tctatctcta ttatctccaa 3960 aatggaagag acatgtatgt ggaccaagaa ttagatatta atcgtttaag tgattatgat 4020 gtcgatcaca ttgttccaca aagtttcctt aaagacgatt caatagacaa taaggtctta 4080 acgcgttctg ataaaaatcg tggtaaatcg gataacgttc caagtgaaga agtagtcaaa 4140 aagatgaaaa actattggag acaacttcta aacgccaagt taatcactca acgtaagttt 4200 gataatttaa cgaaagctga acgtggaggt ttgagtgaac ttgataaagc tggttttatc 4260 aaacgccaat tggttgaaac tcgccaaatc actaagcatg tggcacaaat tttggatagt 4320 cgcatgaata ctaaatacga tgaaaatgat aaacttattc gagaggttaa agtgattacc 4380 ttaaaatcta aattagtttc tgacttccga aaagatttcc aattctataa agtacgtgag 4440 attaacaatt accatcatgc ccatgatgcg tatctaaatg ccgtcgttgg aactgctttg 4500 attaagaaat atccaaaact tgaatcggag tttgtctatg gtgattataa agtttatgat 4560 gttcgtaaaa tgattgctaa gtctgagcaa gaaataggca aagcaaccgc aaaatatttc 4620 ttttactcta atatcatgaa cttcttcaaa acagaaatta cacttgcaaa tggagagatt 4680 cgcaaacgcc ctctaatcga aactaatggg gaaactggag aaattgtctg ggataaaggg 4740 cgagattttg ccacagtgcg caaagtattg tccatgcccc aagtcaatat tgtcaagaaa 4800 acagaagtac agacaggcgg attctccaag gagtcaattt taccaaaaag aaattcggac 4860 aagcttattg ctcgtaaaaa agactgggat ccaaaaaaat atggtggttt tgatagtcca 4920 acggtagctt attcagtcct agttgttgct aaggtggaaa aagggaaatc gaagaagtta 4980 aaatccgtta aagagttact agggatcaca attatggaaa gaagttcctt tgaaaaaaat 5040 ccgattgact ttttagaagc taaaggatat aaggaagtta aaaaagactt aatcattaaa 5100 ctacctaaat atagtctttt tgagttagaa aacggtcgta aacggatgct ggctagtgcc 5160 ggagaattac aaaaaggaaa tgagctggct ctgccaagca aatatgtgaa ttttttatat 5220 ttagctagtc attatgaaaa gttgaagggt agtccagaag ataacgaaca aaaacaattg 5280 tttgtggagc agcataagca ttatttagat gagattattg agcaaatcag tgaattttct 5340 aagcgtgtta ttttagcaga tgccaattta gataaagttc ttagtgcata taacaaacat 5400 agagacaaac caatacgtga acaagcagaa aatattattc atttatttac gttgacgaat 5460 cttggagctc ccgctgcttt taaatatttt gatacaacaa ttgatcgtaa acgatatacg 5520 tctacaaaag aagttttaga tgccactctt atccatcaat ccatcactgg tctttatgaa 5580 acacgcattg atttgagtca gctaggaggt gactctggtg gttctactaa tctgtcagat 5640 attattgaaa aggagaccgg taagcaactg gttatccagg aatccatcct catgctccca 5700 gaggaggtgg aagaagtcat tgggaacaag ccggaaagcg atatactcgt gcacaccgcc 5760 tacgacgaga gcaccgacga gaatgtcatg cttctgacta gcgacgcccc tgaatacaag 5820 ccttgggctc tggtcataca ggatagcaac ggtgagaaca agattaagat gctcctcgag 5880 taaggatctc caggcatcaa ataaaacgaa aggctcagtc gaaagactgg gcctttcgtt 5940 ttatctgttg tttgtcggtg aacgctctct actagagtca cactggctca ccttcgggtg 6000 ggcctttctg cgtttatacc tagggcgttc ggctgcggcg agcggtatca gcagttattg 6060 gtgcccttcg aaatgaccga ccaagcgacg cccaacctgc catcacgaga tttcgattcc 6120 accgccgcct tctatgaaag gttgggcttc ggaatcgttt tccgggacgc caacaacaag 6180 acccatcata gtttgccccc gcgacattga ccataaattc atcgcacaaa atatcgaacg 6240 gggtttatgc cgcttttagt gggtgcgaag aatagtctgc tcattacccg cgaacaccgc 6300 cgcattcaga tcacgcttag tagcgtcccc atgagtaggc agaaccgcgt ccaagtccac 6360 atcatccata acgatcatgc acggggtgga atccacaccc agacttgcca gcacctcatt 6420 agcgacacgt tgcgcagcgg ccacgtcctt agccttatcc acgcaatcga gaacgtactg 6480 cctaaccgcg aaatcagact gaatcagttt ccaatcatcg ggcttcacca aagcaacagc 6540 aacgcgggtt gattcgaccc gttccggtgc ttccagaccg gcgagcttgt acagttcttc 6600 ttccatttca cgacgtacat cagcgtctat gtaatcaatg cccaaagcac gcttagcccc 6660 acgtgaccag gacgaacgca ggtttttaga accaacctca tactcacgcc accgagccac 6720 caaaacagcg tccatatcct cgccggcgtc gctttgatcg gccaacatat ccaacatctg 6780 aaacggcgtg tacgacccct tagacgcggt tttagtagcg gagccagtca gttcctgaga 6840 catgccctta gcgaggtagg ttgccatttt cgcagcgtct ccaccccagg tagacacctg 6900 atcaagtttg accccgtgct cacgcagtgg cgcgtccata ccggccttaa ccacaccagc 6960 agaccagcgg gaaaacatgg aatcctcaaa cgccttgagt tcatcgtcag acagtggacg 7020 atccaagaac aacagcatgt tgcggtgcaa gtgccaaccg ttcgcccaag agtctgtgac 7080 ctcatagtca ctataggtgt gctccacccc gtaccgtgca cgttctttct tccactgaga 7140 tgttttcacc atcgaagagt acgcagtctt aatacccgct tcaacctgcg caaatgactg 7200 tgagcggttg tgtcgaacag tgcccacaaa catcatgagc gcgccacccg ccgccaagtg 7260 attcttagta gcaatagcca gctcaatgcg gcgttcgccc atgacttcca attcagccag 7320 aggtgacccc cagcgagagt gagagttttg cagaccctca aactgcgaag caccgttaga 7380 cgaccaggac accgcaacag cttcgtccct gcgccaccta tggcaccccg ccagagcctt 7440 actattggtg atcttgtaca tgacgttttg cctacgccac gccctagcgc gagtgacctt 7500 agaaccctca ttgacctgcg gttccttaga ggtgttcact tctatttcag tgttactcag 7560 tgttacctag acccgatgtt gtgcggggtt gcgcagtgcg agtttgtgcg ggtgttgtgc 7620 ccgttgtctt agctagtgct atggttgtca attgaaaccc cttcgggtta tgtggccccc 7680 gtgcatatga gttggtagct cgcacggggg tttgtcttgt ctagggacta ttaattttta 7740 gtggtgtttg gtggccgcct agcttggcta tgcgtgccag cttacccgta ctcaatgtta 7800 aagatttgca tcgacatggg agggttacgt gtccgatacc tagggggggt atccgcgact 7860 aggtgccccg gtgctcactg tctgtaccgg cggggcaagc cccacacccc gcatggacag 7920 ggtggctccg ccccctgcac ccccagcaat ctgcatgtac atgttttaca cattagcacg 7980 acatgactgc atgtgcatgc actgcatgca gactaggtaa atatgagtat gtacgactag 8040 taacaggagc actgcacata atgaatgagt tgcaggacaa tgtttgctac gcatgcgcat 8100 gacatatcgc aggaaagcta ctagagtctt aaagcatggc aaccaaggca cagctagaac 8160 agcaactaca agaagctcaa caggcactac aggcgcagca agcgcaggca caagccacca 8220 tcgaagcact agaagcgcag gcaaaggcta agcccgtcgt ggtcaccgca cgcgttcctt 8280 tggcactacg tgaggacatg aagcgcgcag gcatgcagaa cggtgaaaac ctccaagagt 8340 tcatgatcgc cgcgtttacc gagcggctag aaaagctcac caccaccgac aacgaggaaa 8400 acaatgtcta acccactagt tctctttgcc caccgtgacc cggtaaatga cgtgacgttc 8460 gagtgcattg agcacgccac ctacgacaca ctttcacacg ctaaagacca gatcaccgcc 8520 caaatgcaag ccctagacga agaagccgcc ctactgccct aatgggtgtt tcatgggtgt 8580 ttccctagtg tttcatggtg ttttcaccta agctagggaa ttgcgcgaga agtctcgcaa 8640 aaatcagcaa cccccggaac cacacagttc acgggggttc ttctatgcca gaaatcagaa 8700 aggggaacca gtgaacgacc ccgaatggct ggatgatcct ccagcgcggg gatctcatgc 8760 tggagttctt cgcccacccc aaaaggatct aggtgaagat cctttttgat aatctcatga 8820 ccaaaatccc ttaacgtgag ttttcgttcc actgagcgtc agaccccgta tgagcaaaag 8880 gccagcaaaa ggccaggaac cgtaaaaagg ccgcgttgct ggcgtttttc cataggctcc 8940 gcccccctga cgagcatcac aaaaatcgac gctcaagtca gaggtggcga aacccgacag 9000 gactataaag ataccaggcg tttccccctg gaagctccct cgtgcgctct cctgttccga 9060 ccctgccgct taccggatac ctgtccgcct ttctcccttc gggaagcgtg gcgctttctc 9120 atagctcacg ctgtaggtat ctcagttcgg tgtaggtcgt tcgctccaag ctgggctgtg 9180 tgcacgaacc ccccgttcag cccgaccgct gcgccttatc cggtaactat cgtcttgagt 9240 ccaacccggt aagacacgac ttatcgccac tggcagcagc cactggtaac aggattagca 9300 gagcgaggta tgtaggcggt gctacagagt tcttgaagtg gtggcctaac tacggctaca 9360 ctagaaggac agtatttggt atctgcgctc tgctgaagcc agttaccttc ggaaaaagag 9420 ttggtagctc ttgatccggc aaacaaacca ccgctggtag cggtggtttt tttgtttgca 9480 agcagcagat tacgcgcaga aaaaaaggat ctcaagaaga tcctttgatc ttttctacgg 9540 ggtctgacgc tcagtggaac gaaaactcac gttaagggat tttggtcatg actagtgctt 9600 ggattctcac caataaaaaa cgcccggcgg caaccgagcg ttctgaacaa atccagatgg 9660 agttctgagg tcattactgg atctatcaac aggagtccaa gcgagctcga tatcaaatta 9720 cgccccgccc tgccactcat cgcagtactg ttgtaattca ttaagcattc tgccgacatg 9780 gaagccatca caaacggcat gatgaacctg aatcgccagc ggcatcagca ccttgtcgcc 9840 ttgcgtataa tatttgccca tggtgaaaac gggggcgaag aagttgtcca tattggccac 9900 gtttaaatca aaactggtga aactcaccca gggattggct gagacgaaaa acatattctc 9960 aataaaccct ttagggaaat aggccaggtt ttcaccgtaa cacgccacat cttgcgaata 10020 tatgtgtaga aactgccgga aatcgtcgtg gtattcactc cagagcgatg aaaacgtttc 10080 agtttgctca tggaaaacgg tgtaacaagg gtgaacacta tcccatatca ccagctcacc 10140 gtctttcatt gccatacgaa attccggatg agcattcatc aggcgggcaa gaatgtgaat 10200 aaaggccgga taaaacttgt gcttattttt ctttacggtc tttaaaaagg ccgtaatatc 10260 cagctgaacg gtctggttat aggtacattg agcaactgac tgaaatgcct caaaatgttc 10320 tttacgatgc cattgggata tatcaacggt ggtatatcca gtgatttttt tctccatttt 10380 agcttcctta gctcctgaaa atctcgataa ctcaaaaaat acgcccggta gtgatcttat 10440 ttcattatgg tgaaagttgg aacctcttac gtgccgatca acgtctcatt ttcgccagat 10500 atc 10503 <210> 2 <211> 5094 <212> DNA <213> Artificial Sequence <220> <223> BE3 vector <400> 2 tcttctgaaa ccggtccggt tgcggttgac ccgaccctgc gtcgtcgtat cgaaccgcac 60 gaattcgaag ttttcttcga cccgcgtgaa ctgcgtaaag aaacctgcct gctgtacgaa 120 atcaactggg gtggtcgtca ctctatctgg cgtcacacct ctcagaacac caacaaacac 180 gttgaagtta acttcatcga aaaattcacc accgaacgtt acttctgccc gaacacccgt 240 tgctctatca cctggttcct gtcttggtct ccgtgcggtg aatgctctcg tgcgatcacc 300 gaattcctgt ctcgttaccc gcacgttacc ctgttcatct acatcgcgcg tctgtaccac 360 cacgcggacc cgcgtaaccg tcagggtctg cgtgacctga tctcttctgg tgttaccatc 420 cagatcatga ccgaacagga atctggttac tgctggcgta acttcgttaa ctactctccg 480 tctaacgaag cgcactggcc gcgttacccg cacctgtggg ttcgtctgta cgttctggaa 540 ctgtactgca tcatcctggg tctgccgccg tgcctgaaca tcctgcgtcg taaacagccg 600 cagctgacct tcttcaccat cgcgctgcag tcttgccact accagcgtct gccgccgcac 660 atcctgtggg cgaccggtct gaaatccggt agcgaaacac cggggacttc agaatcggcc 720 accccggagt ctgataagaa atactcaata ggcttagcta tcggcacaaa tagcgtcgga 780 tgggcggtga tcactgatga atataaggtt ccgtctaaaa agttcaaggt tctgggaaat 840 acagaccgcc acagtatcaa aaaaaatctt ataggggctc ttttatttga cagtggagag 900 acagcggaag cgactcgtct caaacggaca gctcgtagaa ggtatacacg tcggaagaat 960 cgtatttgtt atctacagga gattttttca aatgagatgg cgaaagtaga tgatagtttc 1020 tttcatcgac ttgaagagtc ttttttggtg gaagaagaca agaagcatga acgtcatcct 1080 atttttggaa atatagtaga tgaagttgct tatcatgaga aatatccaac tatctatcat 1140 ctgcgaaaaa aattggtaga ttctactgat aaagcggatt tgcgcttaat ctatttggcc 1200 ttagcgcata tgattaagtt tcgtggtcat tttttgattg agggagattt aaatcctgat 1260 aatagtgatg tggacaaact atttatccag ttggtacaaa cctacaatca attatttgaa 1320 gaaaacccta ttaacgcaag tggagtagat gctaaagcga ttctttctgc acgattgagt 1380 aaatcaagac gattagaaaa tctcattgct cagctccccg gtgagaagaa aaatggctta 1440 tttgggaatc tcattgcttt gtcattgggt ttgaccccta attttaaatc aaattttgat 1500 ttggcagaag atgctaaatt acagctttca aaagatactt acgatgatga tttagataat 1560 ttattggcgc aaattggaga tcaatatgct gatttgtttt tggcagctaa gaatttatca 1620 gatgctattt tactttcaga tatcctaaga gtaaatactg aaataactaa ggctccccta 1680 tcagcttcaa tgattaaacg ctacgatgaa catcatcaag acttgactct tttaaaagct 1740 ttagttcgac aacaacttcc agaaaagtat aaagaaatct tttttgatca atcaaaaaac 1800 ggatatgcag gttatattga tgggggagct agccaagaag aattttataa atttatcaaa 1860 ccaattttag aaaaaatgga tggtactgag gaattattgg tgaaactaaa tcgtgaagat 1920 ttgctgcgca agcaacggac ctttgacaac ggctctattc cccatcaaat tcacttgggt 1980 gagctgcatg ctattttgag aagacaagaa gacttttatc catttttaaa agacaatcgt 2040 gagaagattg aaaaaatctt gacttttcga attccttatt atgttggtcc attggcgcgt 2100 ggcaatagtc gttttgcatg gatgactcgg aagtctgaag aaacaattac cccatggaat 2160 tttgaagaag ttgtcgataa aggtgcttca gctcaatcat ttattgaacg catgacaaac 2220 tttgataaaa atcttccaaa tgaaaaagta ctaccaaaac atagtttgct ttatgagtat 2280 tttacggttt ataacgaatt gacaaaggtc aaatatgtta ctgaaggaat gcgaaaacca 2340 gcatttcttt caggtgaaca gaagaaagcc attgttgatt tactcttcaa aacaaatcga 2400 aaagtaaccg ttaagcaatt aaaagaagat tatttcaaaa aaatagaatg ttttgatagt 2460 gttgaaattt caggagttga agatagattt aatgcttcat taggtaccta ccatgatttg 2520 ctaaaaatta ttaaagataa agattttttg gataatgaag aaaatgaaga tatcttagag 2580 gatattgttt taacattgac cttatttgaa gatagggaga tgattgagga aagacttaaa 2640 acatatgctc acctctttga tgataaggtg atgaaacagc ttaaacgtcg ccgttatact 2700 ggttggggac gtttgtctcg aaaattgatt aatggtatta gggataagca atctggcaaa 2760 acaatattag attttttgaa atcagatggt tttgccaatc gcaattttat gcagctgatc 2820 catgatgata gtttgacatt taaagaagac attcaaaaag cacaagtgtc tggacaaggc 2880 gatagtttac atgaacatat tgcaaattta gctggtagcc ctgctattaa aaaaggtatt 2940 ttacagactg taaaagttgt tgatgaattg gtcaaagtaa tggggcggca taagccagaa 3000 aatatcgtta ttgaaatggc acgtgaaaat cagacaactc aaaagggcca gaaaaattcg 3060 cgagagcgta tgaaacgaat cgaagaaggt atcaaagaat taggaagtca gattcttaaa 3120 gagcatcctg ttgaaaatac tcaattgcaa aatgaaaagc tctatctcta ttatctccaa 3180 aatggaagag acatgtatgt ggaccaagaa ttagatatta atcgtttaag tgattatgat 3240 gtcgatcaca ttgttccaca aagtttcctt aaagacgatt caatagacaa taaggtctta 3300 acgcgttctg ataaaaatcg tggtaaatcg gataacgttc caagtgaaga agtagtcaaa 3360 aagatgaaaa actattggag acaacttcta aacgccaagt taatcactca acgtaagttt 3420 gataatttaa cgaaagctga acgtggaggt ttgagtgaac ttgataaagc tggttttatc 3480 aaacgccaat tggttgaaac tcgccaaatc actaagcatg tggcacaaat tttggatagt 3540 cgcatgaata ctaaatacga tgaaaatgat aaacttattc gagaggttaa agtgattacc 3600 ttaaaatcta aattagtttc tgacttccga aaagatttcc aattctataa agtacgtgag 3660 attaacaatt accatcatgc ccatgatgcg tatctaaatg ccgtcgttgg aactgctttg 3720 attaagaaat atccaaaact tgaatcggag tttgtctatg gtgattataa agtttatgat 3780 gttcgtaaaa tgattgctaa gtctgagcaa gaaataggca aagcaaccgc aaaatatttc 3840 ttttactcta atatcatgaa cttcttcaaa acagaaatta cacttgcaaa tggagagatt 3900 cgcaaacgcc ctctaatcga aactaatggg gaaactggag aaattgtctg ggataaaggg 3960 cgagattttg ccacagtgcg caaagtattg tccatgcccc aagtcaatat tgtcaagaaa 4020 acagaagtac agacaggcgg attctccaag gagtcaattt taccaaaaag aaattcggac 4080 aagcttattg ctcgtaaaaa agactgggat ccaaaaaaat atggtggttt tgatagtcca 4140 acggtagctt attcagtcct agttgttgct aaggtggaaa aagggaaatc gaagaagtta 4200 aaatccgtta aagagttact agggatcaca attatggaaa gaagttcctt tgaaaaaaat 4260 ccgattgact ttttagaagc taaaggatat aaggaagtta aaaaagactt aatcattaaa 4320 ctacctaaat atagtctttt tgagttagaa aacggtcgta aacggatgct ggctagtgcc 4380 ggagaattac aaaaaggaaa tgagctggct ctgccaagca aatatgtgaa ttttttatat 4440 ttagctagtc attatgaaaa gttgaagggt agtccagaag ataacgaaca aaaacaattg 4500 tttgtggagc agcataagca ttatttagat gagattattg agcaaatcag tgaattttct 4560 aagcgtgtta ttttagcaga tgccaattta gataaagttc ttagtgcata taacaaacat 4620 agagacaaac caatacgtga acaagcagaa aatattattc atttatttac gttgacgaat 4680 cttggagctc ccgctgcttt taaatatttt gatacaacaa ttgatcgtaa acgatatacg 4740 tctacaaaag aagttttaga tgccactctt atccatcaat ccatcactgg tctttatgaa 4800 acacgcattg atttgagtca gctaggaggt gactctggtg gttctactaa tctgtcagat 4860 attattgaaa aggagaccgg taagcaactg gttatccagg aatccatcct catgctccca 4920 gaggaggtgg aagaagtcat tgggaacaag ccggaaagcg atatactcgt gcacaccgcc 4980 tacgacgaga gcaccgacga gaatgtcatg cttctgacta gcgacgcccc tgaatacaag 5040 ccttgggctc tggtcataca ggatagcaac ggtgagaaca agattaagat gctc 5094 <210> 3 <211> 684 <212> DNA <213> Mus musculus <400> 3 tcttctgaaa ccggtccggt tgcggttgac ccgaccctgc gtcgtcgtat cgaaccgcac 60 gaattcgaag ttttcttcga cccgcgtgaa ctgcgtaaag aaacctgcct gctgtacgaa 120 atcaactggg gtggtcgtca ctctatctgg cgtcacacct ctcagaacac caacaaacac 180 gttgaagtta acttcatcga aaaattcacc accgaacgtt acttctgccc gaacacccgt 240 tgctctatca cctggttcct gtcttggtct ccgtgcggtg aatgctctcg tgcgatcacc 300 gaattcctgt ctcgttaccc gcacgttacc ctgttcatct acatcgcgcg tctgtaccac 360 cacgcggacc cgcgtaaccg tcagggtctg cgtgacctga tctcttctgg tgttaccatc 420 cagatcatga ccgaacagga atctggttac tgctggcgta acttcgttaa ctactctccg 480 tctaacgaag cgcactggcc gcgttacccg cacctgtggg ttcgtctgta cgttctggaa 540 ctgtactgca tcatcctggg tctgccgccg tgcctgaaca tcctgcgtcg taaacagccg 600 cagctgacct tcttcaccat cgcgctgcag tcttgccact accagcgtct gccgccgcac 660 atcctgtggg cgaccggtct gaaa 684 <210> 4 <211> 4101 <212> DNA <213> Streptococcus pyogenes <400> 4 gataagaaat actcaatagg cttagctatc ggcacaaata gcgtcggatg ggcggtgatc 60 actgatgaat ataaggttcc gtctaaaaag ttcaaggttc tgggaaatac agaccgccac 120 agtatcaaaa aaaatcttat aggggctctt ttatttgaca gtggagagac agcggaagcg 180 actcgtctca aacggacagc tcgtagaagg tatacacgtc ggaagaatcg tatttgttat 240 ctacaggaga ttttttcaaa tgagatggcg aaagtagatg atagtttctt tcatcgactt 300 gaagagtctt ttttggtgga agaagacaag aagcatgaac gtcatcctat ttttggaaat 360 atagtagatg aagttgctta tcatgagaaa tatccaacta tctatcatct gcgaaaaaaa 420 ttggtagatt ctactgataa agcggatttg cgcttaatct atttggcctt agcgcatatg 480 attaagtttc gtggtcattt tttgattgag ggagatttaa atcctgataa tagtgatgtg 540 gacaaactat ttatccagtt ggtacaaacc tacaatcaat tatttgaaga aaaccctatt 600 aacgcaagtg gagtagatgc taaagcgatt ctttctgcac gattgagtaa atcaagacga 660 ttagaaaatc tcattgctca gctccccggt gagaagaaaa atggcttatt tgggaatctc 720 attgctttgt cattgggttt gacccctaat tttaaatcaa attttgattt ggcagaagat 780 gctaaattac agctttcaaa agatacttac gatgatgatt tagataattt attggcgcaa 840 attggagatc aatatgctga tttgtttttg gcagctaaga atttatcaga tgctatttta 900 ctttcagata tcctaagagt aaatactgaa ataactaagg ctcccctatc agcttcaatg 960 attaaacgct acgatgaaca tcatcaagac ttgactcttt taaaagcttt agttcgacaa 1020 caacttccag aaaagtataa agaaatcttt tttgatcaat caaaaaacgg atatgcaggt 1080 tatattgatg ggggagctag ccaagaagaa ttttataaat ttatcaaacc aattttagaa 1140 aaaatggatg gtactgagga attattggtg aaactaaatc gtgaagattt gctgcgcaag 1200 caacggacct ttgacaacgg ctctattccc catcaaattc acttgggtga gctgcatgct 1260 attttgagaa gacaagaaga cttttatcca tttttaaaag acaatcgtga gaagattgaa 1320 aaaatcttga cttttcgaat tccttattat gttggtccat tggcgcgtgg caatagtcgt 1380 tttgcatgga tgactcggaa gtctgaagaa acaattaccc catggaattt tgaagaagtt 1440 gtcgataaag gtgcttcagc tcaatcattt attgaacgca tgacaaactt tgataaaaat 1500 cttccaaatg aaaaagtact accaaaacat agtttgcttt atgagtattt tacggtttat 1560 aacgaattga caaaggtcaa atatgttact gaaggaatgc gaaaaccagc atttctttca 1620 ggtgaacaga agaaagccat tgttgattta ctcttcaaaa caaatcgaaa agtaaccgtt 1680 aagcaattaa aagaagatta tttcaaaaaa atagaatgtt ttgatagtgt tgaaatttca 1740 ggagttgaag atagatttaa tgcttcatta ggtacctacc atgatttgct aaaaattatt 1800 aaagataaag attttttgga taatgaagaa aatgaagata tcttagagga tattgtttta 1860 acattgacct tatttgaaga tagggagatg attgaggaaa gacttaaaac atatgctcac 1920 ctctttgatg ataaggtgat gaaacagctt aaacgtcgcc gttatactgg ttggggacgt 1980 ttgtctcgaa aattgattaa tggtattagg gataagcaat ctggcaaaac aatattagat 2040 tttttgaaat cagatggttt tgccaatcgc aattttatgc agctgatcca tgatgatagt 2100 ttgacattta aagaagacat tcaaaaagca caagtgtctg gacaaggcga tagtttacat 2160 gaacatattg caaatttagc tggtagccct gctattaaaa aaggtatttt acagactgta 2220 aaagttgttg atgaattggt caaagtaatg gggcggcata agccagaaaa tatcgttatt 2280 gaaatggcac gtgaaaatca gacaactcaa aagggccaga aaaattcgcg agagcgtatg 2340 aaacgaatcg aagaaggtat caaagaatta ggaagtcaga ttcttaaaga gcatcctgtt 2400 gaaaatactc aattgcaaaa tgaaaagctc tatctctatt atctccaaaa tggaagagac 2460 atgtatgtgg accaagaatt agatattaat cgtttaagtg attatgatgt cgatcacatt 2520 gttccacaaa gtttccttaa agacgattca atagacaata aggtcttaac gcgttctgat 2580 aaaaatcgtg gtaaatcgga taacgttcca agtgaagaag tagtcaaaaa gatgaaaaac 2640 tattggagac aacttctaaa cgccaagtta atcactcaac gtaagtttga taatttaacg 2700 aaagctgaac gtggaggttt gagtgaactt gataaagctg gttttatcaa acgccaattg 2760 gttgaaactc gccaaatcac taagcatgtg gcacaaattt tggatagtcg catgaatact 2820 aaatacgatg aaaatgataa acttattcga gaggttaaag tgattacctt aaaatctaaa 2880 ttagtttctg acttccgaaa agatttccaa ttctataaag tacgtgagat taacaattac 2940 catcatgccc atgatgcgta tctaaatgcc gtcgttggaa ctgctttgat taagaaatat 3000 ccaaaacttg aatcggagtt tgtctatggt gattataaag tttatgatgt tcgtaaaatg 3060 attgctaagt ctgagcaaga aataggcaaa gcaaccgcaa aatatttctt ttactctaat 3120 atcatgaact tcttcaaaac agaaattaca cttgcaaatg gagagattcg caaacgccct 3180 ctaatcgaaa ctaatgggga aactggagaa attgtctggg ataaagggcg agattttgcc 3240 acagtgcgca aagtattgtc catgccccaa gtcaatattg tcaagaaaac agaagtacag 3300 acaggcggat tctccaagga gtcaatttta ccaaaaagaa attcggacaa gcttattgct 3360 cgtaaaaaag actgggatcc aaaaaaatat ggtggttttg atagtccaac ggtagcttat 3420 tcagtcctag ttgttgctaa ggtggaaaaa gggaaatcga agaagttaaa atccgttaaa 3480 gagttactag ggatcacaat tatggaaaga agttcctttg aaaaaaatcc gattgacttt 3540 ttagaagcta aaggatataa ggaagttaaa aaagacttaa tcattaaact acctaaatat 3600 agtctttttg agttagaaaa cggtcgtaaa cggatgctgg ctagtgccgg agaattacaa 3660 aaaggaaatg agctggctct gccaagcaaa tatgtgaatt ttttatattt agctagtcat 3720 tatgaaaagt tgaagggtag tccagaagat aacgaacaaa aacaattgtt tgtggagcag 3780 cataagcatt atttagatga gattattgag caaatcagtg aattttctaa gcgtgttatt 3840 ttagcagatg ccaatttaga taaagttctt agtgcatata acaaacatag agacaaacca 3900 atacgtgaac aagcagaaaa tattattcat ttatttacgt tgacgaatct tggagctccc 3960 gctgctttta aatattttga tacaacaatt gatcgtaaac gatatacgtc tacaaaagaa 4020 gttttagatg ccactcttat ccatcaatcc atcactggtc tttatgaaac acgcattgat 4080 ttgagtcagc taggaggtga c 4101 <210> 5 <211> 249 <212> DNA <213> Bacillus subtilis phage PBSX <400> 5 actaatctgt cagatattat tgaaaaggag accggtaagc aactggttat ccaggaatcc 60 atcctcatgc tcccagagga ggtggaagaa gtcattggga acaagccgga aagcgatata 120 ctcgtgcaca ccgcctacga cgagagcacc gacgagaatg tcatgcttct gactagcgac 180 gcccctgaat acaagccttg ggctctggtc atacaggata gcaacggtga gaacaagatt 240 aagatgctc 249 <210> 6 <211> 7184 <212> DNA <213> Artificial Sequence <220> <223> pCoryne-sgRNA vector without protospacer <400> 6 aaacttggtc tgacagttac caatgcttaa tcagtgaggc acctatctca gcgatctgtc 60 tatttcgttc atccatagtt gcctgagaat tctaaagatc tttgacagct agctcagtcc 120 taggtataat actagtrtsa crbgttttag agctagaaat agcaagttaa aataaggcta 180 gtccgttatc aacttgaaaa agtggcaccg agtcggtgct ttttttgaag cttgggcccg 240 aacaaaaact catctcagaa gaggatctga atagcgccgt cgaccatcat catcatcatc 300 attgagttta aacggtctcc agcttggctg ttttggcgga tgagagaaga ttttcagcct 360 gatacagatt aaatcagaac gcagaagcgg tctgataaaa cagaatttgc ctggcggcag 420 tagcgcggtg gtcccacctg accccatgcc gaactcagaa gtgaaacgcc gtagcgccga 480 tggtagtgtg gggtctcccc atgcgagagt agggaactgc caggcatcaa ataaaacgaa 540 aggctcagtc gaaagactgg gcctttcgtt ttatctgttg tttgtcggtg aactggatcc 600 gtcgacctgc agccaagctt ctgttttggc ggatgagaga agattttcag cctgatacag 660 attaaatcag aacgcagaag cggtctgata aaacagaatt tgcctggcgg cagtagcgcg 720 gtggtcccac ctgaccccat gccgaactca gaagtgaaac gccgtagcgc cgatggtagt 780 gtggggtctc cccatgcgag agtagggaac tgccaggcat caaataaaac gaaaggctca 840 gtcgaaagac tgggcctttc gttttatctg ttgtttgtcg gtgaacgctc tcctgagtag 900 gacaaatccg ccgggagcgg atttgaacgt tgcgaagcaa cggcccggag ggtggcgggc 960 aggacgcccg ccataaactg ccaggcatca aattaagcag aaggccatcc tgacggatgg 1020 cctttttgcg tttctacaaa ctcttttgtt tatttttcta aatacattca aatatgtatc 1080 cgctcatgag acaataaccc tgataaatgc ttcaataata ttgaaaaagg aagagtatga 1140 gtattcaaca tttccgtgtc gcccttattc ccttttttgc ggcattttgc cttcctgttt 1200 ttgctcaccc agaaacgctg gtgaaagtaa aagatgctga agatcagttg ggtgcacgag 1260 tgggttacat cgaactggat ctcaacagcg gtaagatcct tgagagtttt cgccccgaag 1320 aacgttttcc aatgatgagc acttttaaag ttctgctatg tggcgcggta ttatcccgtg 1380 ttgacgccgg gcaagagcaa ctcggtcgcc gcatacacta ttctcagaat gacttggttg 1440 agtactgcgg cgtcgctgat cgccctggcg acgttgtgcg ggtggcttgt ccctgagggc 1500 gctgcgacag atagctaaaa atctgggtca ggatcgccgt agagcgcgcg tcgtcgattg 1560 gaggcttccc ctttggttga cggtcttcaa tcgctctacg gcgatcctga cgcttttttg 1620 ttgcgtaccg tcgatcgttt tatttctgtc gatcccgaaa aagtttttgc cttttgtaaa 1680 aaacttctcg gtcgccccgc aaattttcga ttccagattt tttaaaaacc aagccagaaa 1740 tacgacacac cgtttgcaga taatctgtct ttcggaaaaa tcaagtgcga tacaaaattt 1800 ttagcacccc tgagctgcgc aaagtcccgc ttcgtgaaaa ttttcgtgcc gcgtgatttt 1860 ccgccaaaaa ctttaacgaa cgttcgttat aatggtgtca tgaccttcac gacgaagtac 1920 taaaattggc ccgaatcatc agctatggat ctctctgatg tcgcgctgga gtccgacgcg 1980 ctcgatgctg ccgtcgattt aaaaacggtg atcggatttt tccgagctct cgatacgacg 2040 gacgcgccag catcacgaga ctgggccagt gccgcgagcg acctagaaac tctcgtggcg 2100 gatcttgagg agctggctga cgagctgcgt gctcggccag cgccaggagg acgcacagta 2160 gtggaggatg caatcagttg cgcctactgc ggtggcctga ttcctccccg gcctgacccg 2220 cgaggacggc gcgcaaaata ttgctcagat gcgtgtcgtg ccgcagccag ccgcgagcgc 2280 gccaacaaac gccacgccga ggagctggag gcggctaggt cgcaaatggc gctggaagtg 2340 cgtcccccga gcgaaatttt ggccatggtc gtcacagagc tggaagcggc agcgagaatt 2400 atccgcgatc gtggcgcggt gcccgcaggc atgacaaaca tcgtaaatgc cgcgtttcgt 2460 gtggccgtgg ccgcccagga cgtgtcagcg ccgccaccac ctgcaccgaa tcggcagcag 2520 cgtcgcgcgt cgaaaaagcg cacaggcggc aagaagcgat aagctgcacg aatacctgaa 2580 aaatgttgaa cgccccgtga gcggtaactc acagggcgtc ggctaacccc cagtccaaac 2640 ctgggagaaa gcgctcaaaa atgactctag cggattcacg agacattgac acaccggcct 2700 ggaaattttc cgctgatctg ttcgacaccc atcccgagct cgcgctgcga tcacgtggct 2760 ggacgagcga agaccgccgc aaattcctcg ctcacctggg cagagaaaat ttccagggca 2820 gcaagacccg cgacttcgcc agcgcttgga tcaaagaccc ggacacggga gaaacacagc 2880 cgaagttata ccgagttggt tcaaaatcgc ttgcccggtg ccagtatgtt gctctgacgc 2940 acgcgcagca cgcagccgtg cttgtcctgg acattgatgt gccgagccac caggccggcg 3000 ggaaaatcga gcacgtaaac cccgaggtct acgcgatttt ggagcgctgg gcacgcctgg 3060 aaaaagcgcc agcttggatc ggcgtgaatc cactgagcgg gaaatgccag ctcatctggc 3120 tcattgatcc ggtgtatgcc gcagcaggca tgagcagccc gaatatgcgc ctgctggctg 3180 caacgaccga ggaaatgacc cgcgttttcg gcgctgacca ggctttttca cataggctga 3240 gccgtggcca ctgcactctc cgacgatccc agccgtaccg ctggcatgcc cagcacaatc 3300 gcgtggatcg cctagctgat cttatggagg ttgctcgcat gatctcaggc acagaaaaac 3360 ctaaaaaacg ctatgagcag gagttttcta gcggacgggc acgtatcgaa gcggcaagaa 3420 aagccactgc ggaagcaaaa gcacttgcca cgcttgaagc aagcctgccg agcgccgctg 3480 aagcgtctgg agagctgatc gacggcgtcc gtgtcctctg gactgctcca gggcgtgccg 3540 cccgtgatga gacggctttt cgccacgctt tgactgtggg ataccagtta aaagcggctg 3600 gtgagcgcct aaaagacacc aagggtcatc gagcctacga gcgtgcctac accgtcgctc 3660 aggcggtcgg aggaggccgt gagcctgatc tgccgccgga ctgtgaccgc cagacggatt 3720 ggccgcgacg tgtgcgcggc tacgtcgcta aaggccagcc agtcgtccct gctcgtcaga 3780 cagagacgca gagccagccg aggcgaaaag ctctggccac tatgggaaga cgtggcggta 3840 aaaaggccgc agaacgctgg aaagacccaa acagtgagta cgcccgagca cagcgagaaa 3900 aactagctaa gtccagtcaa cgacaagcta ggaaagctaa aggaaatcgc ttgaccattg 3960 caggttggtt tatgactgtt gagggagaga ctggctcgtg gccgacaatc aatgaagcta 4020 tgtctgaatt tagcgtgtca cgtcagaccg tgaatagagc acttaaggtc tgcgggcatt 4080 gaacttccac gaggacgccg aaagcttccc agtaaatgtg ccatctcgta ggcagaaaac 4140 ggttcccccg tagggtctct ctcttggcct cctttctagg tcgggctgat tgctcttgaa 4200 gctctctagg ggggctcaca ccataggcag ataacgttcc ccaccggctc gcctcgtaag 4260 cgcacaagga ctgctcccaa agatcttcaa agccactgcc gcgactgcct tcgcgaagcc 4320 ttgccccgcg gaaatttcct ccaccgagtt cgtgcacacc cctatgccaa gcttctttca 4380 ccctaaattc gagagattgg attcttaccg tggaaattct tcgcaaaaat cgtcccctga 4440 tcgcccttgc gacgttggcg tcggtgccgc tggttgcgct tggcttgacc gacttgatcc 4500 tccggcgttc agcctgtgcc acagccgaca ggatggtgac caccatttgc cccatatcac 4560 cgtcggtact gatcccgtcg tcaataaacc gaaccgctac accctgagca tcaaactctt 4620 ttatcagttg gatcatgtcg gcgtgtcgcg gccaagacgg tcgagcttct tcaccagaat 4680 gacatcacct tcctccacct tcatcctcag caaatccagc ccttcccgat ctgttgaact 4740 gccggatgcc ttgtcggtaa agatgcggtt agcttttacc cctgcatctt tgagcgctga 4800 ggtctgcctc gtgaagaagg tgttgctgac tcataccagg cctgaatcgc cccatcatcc 4860 agccagaaag tgagggagcc acggttgatg agagctttgt tgtaggtgga ccagttggtg 4920 attttgaact tttgctttgc cacggaacgg tctgcgttgt cgggaagatg cgtgatctga 4980 tccttcaact cagcaaaagt tcgatttatt caacaaagcc gccgtcccgt caagtcagcg 5040 taatgctctg ccagtgttac aaccaattaa ccaattctga ttagaaaaac tcatcgagca 5100 tcaaatgaaa ctgcaattta ttcatatcag gattatcaat accatatttt tgaaaaagcc 5160 gtttctgtaa tgaaggagaa aactcaccga ggcagttcca taggatggca agatcctggt 5220 atcggtctgc gattccgact cgtccaacat caatacaacc tattaatttc ccctcgtcaa 5280 aaataaggtt atcaagtgag aaatcaccat gagtgacgac tgaatccggt gagaatggca 5340 aaagcttatg catttctttc cagacttgtt caacaggcca gccattacgc tcgtcatcaa 5400 aatcactcgc atcaaccaaa ccgttattca ttcgtgattg cgcctgagcg agacgaaata 5460 cgcgatcgct gttaaaagga caattacaaa caggaatcga atgcaaccgg cgcaggaaca 5520 ctgccagcgc atcagcaata ttttcacctg aatcaggata ttcttctaat acctggaatg 5580 ctgttttccc ggggatcgca gtggtgagta accatgcatc atcaggagta cggataaaat 5640 gcttgatggt cggaagaggc ataaattccg tcagccagtt tagtctgacc atctcatctg 5700 taacatcatt ggcaacgcta cctttgccat gtttcagaaa caactctggc gcatcgggct 5760 tcccatacaa tcgatagatt gtcgcacctg attgcccgac attatcgcga gcccatttat 5820 acccatataa atcagcatcc atgttggaat ttaatcgcgg cctcgagcaa gacgtttccc 5880 gttgaatatg gctcataaca ccccttgtat tactgtttat gtaagcagac agttttattg 5940 ttcatgatga tatattttta tcttgtgcaa tgtaacatca gagattttga gacacaacgt 6000 ggctttgttg aataaatcga acttttgctg agttgaagga tcagatcacg catcttcccg 6060 acaacgcaga ccgttccgtg gcaaagcaaa agttcaaaat caccaactgg tccacctaca 6120 acaaagctct catcaaccgt ggctccctca ctttctggct ggatgatggg gcgattcagg 6180 cctggtatga gtcagcaaca ccttcttcac gaggcagacc tcagcgctag cggagtgtat 6240 actggcttac tatgttggca ctgatgaggg tgtcagtgaa gtgcttcatg tggcaggaga 6300 aaaaaggctg caccggtgcg tcagcagaat atgtgataca ggatatattc cgcttcctcg 6360 ctcactgact cgctacgctc ggtcgttcga ctgcggcgag cggaaatggc ttacgaacgg 6420 ggcggagatt tcctggaaga tgccaggaag atacttaaca gggaagtgag agggccgcgg 6480 caaagccgtt tttccatagg ctccgccccc ctgacaagca tcacgaaatc tgacgctcaa 6540 atcagtggtg gcgaaacccg acaggactat aaagatacca ggcgtttccc cctggcggct 6600 ccctcgtgcg ctctcctgtt cctgcctttc ggtttaccgg tgtcattccg ctgttatggc 6660 cgcgtttgtc tcattccacg cctgacactc agttccgggt aggcagttcg ctccaagctg 6720 gactgtatgc acgaaccccc cgttcagtcc gaccgctgcg ccttatccgg taactatcgt 6780 cttgagtcca acccggaaag acatgcaaaa gcaccactgg cagcagccac tggtaattga 6840 tttagaggag ttagtcttga agtcatgcgc cggttaaggc taaactgaaa ggacaagttt 6900 tggtgactgc gctcctccaa gccagttacc tcggttcaaa gagttggtag ctcagagaac 6960 cttcgaaaaa ccgccctgca aggcggtttt ttcgttttca gagcaagaga ttacgcgcag 7020 accaaaacga tctcaagaag atcatcttat taaggggtct gacgctcagt ggaacgaaaa 7080 ctcacgttaa gggattttgg tcatgagatt atcaaaaagg atcttcacct agatcctttt 7140 aaattaaaaa tgaagtttta aatcaatcta aagtatatat gagt 7184 <210> 7 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> idsA_F1 protospacer <400> 7 cagcccacgc ataaagagga 20 <210> 8 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> idsA_F2 protospacer <400> 8 acgccaagca tccctcgtgc 20 <210> 9 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> idsA_F3 protospacer <400> 9 atttcccagc tgactgaatc 20 <210> 10 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> ldh_F1 protospacer <400> 10 aatcggccca cacaacacca 20 <210> 11 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> ldh_F2 protospacer <400> 11 atttccacac tgcgtaggtc 20 <210> 12 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> ldh_F3 protospacer <400> 12 cgctcgattc cgctacatgc 20

Claims (13)

  1. 탈아미노화효소, Cas9 니케이즈 (nCas9) 및 우라실 글라코실레이즈 억제제 (UGI)를 각각 인코딩하는 유전자, 및 이에 작동가능하게 연결된 프로모터를 포함하는 제 1 벡터; 및
    목적 유전자의 가이드 RNA (sgRNA)를 인코딩하는 프로토스페이서 서열 및 이에 작동가능하게 연결된 프로모터를 포함하는 제 2 벡터;를 포함하는 코리네박테리움 글루타미쿰에서 목적 유전자 발현을 조기종결시키기 위한 키트로서,
    상기 코리네박테리움 글루타미쿰의 목적 유전자 내에서 글루타민 및 아르기닌을 인코딩하는 코돈의 사이토신을 타이민으로 전환시킴으로써 종결코돈을 생성하기 위한 것으로,
    상기 코리네박테리움 글루타미쿰의 목적 유전자 내에서 트립토판을 인코딩하는 코돈의 구아닌은 아데닌으로 전환되는 것이고,
    상기 코리네박테리움 글루타미쿰의 목적 유전자 내에서 PAM (protospacer adjacent motif) 구역으로부터 9 번째 내지 17 번째 염기서열 내의 글루타민 및 아르기닌을 인코딩하는 코돈의 사이토신을 타이민으로 전환시킴으로써 종결코돈을 생성하기 위한 것이며,
    상기 제 1 벡터는 서열번호 1에 나타난 뉴클레오티드 서열을 가지고,
    상기 제 2 벡터는 서열번호 6에 나타난 뉴클레오티드 서열 및 상기 서열에 삽입된 프로토스페이서 서열을 가지는
    코리네박테리움 글루타미쿰에서 목적 유전자 발현을 조기종결시키기 위한 키트.
  2. 삭제
  3. 삭제
  4. 삭제
  5. 제 1 항에 있어서, PAM 구역으로부터 9 번째 내지 17 번째 염기서열 내의 글루타민 및 아르기닌을 인코딩하는 코돈의 사이토신을 90% 이상 타이민으로 전환시킴으로써 종결코돈을 생성하기 위한, 키트.
  6. 제 1 항에 있어서, PAM 구역으로부터 9 번째 내지 17 번째 염기서열 내의 글루타민 및 아르기닌을 인코딩하는 코돈의 사이토신을 100% 타이민으로 전환시킴으로써 종결코돈을 생성하기 위한, 키트.
  7. 삭제
  8. 삭제
  9. 제 1 항에 있어서, 상기 목적 유전자가 idsA (Geranylgeranyl pyrophosphate synthase) 또는 ldh (lactate dehydrogenase)인, 키트.
  10. 탈아미노화효소, Cas9 니케이즈 (nCas9) 및 우라실 글라코실레이즈 억제제 (UGI)를 각각 인코딩하는 유전자, 및 이에 작동가능하게 연결된 프로모터를 포함하는 제 1 벡터, 및 목적 유전자의 가이드 RNA (sgRNA)를 인코딩하는 프로토스페이서 서열 및 이에 작동가능하게 연결된 프로모터를 포함하는 제 2 벡터를 코리네박테리움 글루타미쿰 내로 형질전환하는 단계; 및
    상기 형질전환된 코리네박테리움 글루타미쿰을 상기 유전자 및 가이드 RNA의 발현을 위한 배양 조건에서 배양하는 단계;를 포함하는, 코리네박테리움 글루타미쿰에서 목적 유전자 발현의 조기종결 방법으로서,
    상기 코리네박테리움 글루타미쿰의 목적 유전자 내에서 글루타민 및 아르기닌을 인코딩하는 코돈의 사이토신을 타이민으로 전환시킴으로써 종결코돈을 생성하기 위한 것으로,
    상기 코리네박테리움 글루타미쿰의 목적 유전자 내에서 트립토판을 인코딩하는 코돈의 구아닌은 아데닌으로 전환되는 것이고,
    상기 코리네박테리움 글루타미쿰의 목적 유전자 내에서 PAM (protospacer adjacent motif) 구역으로부터 9 번째 내지 17 번째 염기서열 내의 글루타민 및 아르기닌을 인코딩하는 코돈의 사이토신을 타이민으로 전환시킴으로써 종결코돈을 생성하기 위한 것이며,
    상기 제 1 벡터는 서열번호 1에 나타난 뉴클레오티드 서열을 가지고,
    상기 제 2 벡터는 서열번호 6에 나타난 뉴클레오티드 서열 및 상기 서열에 삽입된 프로토스페이서 서열을 가지는
    코리네박테리움 글루타미쿰에서 목적 유전자 발현의 조기종결 방법.
  11. 삭제
  12. 삭제
  13. 삭제
KR1020190004662A 2019-01-14 2019-01-14 목적 유전자의 발현을 조기 종결하기 위한 벡터 및 이를 포함하는 균주 KR102170566B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190004662A KR102170566B1 (ko) 2019-01-14 2019-01-14 목적 유전자의 발현을 조기 종결하기 위한 벡터 및 이를 포함하는 균주

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190004662A KR102170566B1 (ko) 2019-01-14 2019-01-14 목적 유전자의 발현을 조기 종결하기 위한 벡터 및 이를 포함하는 균주

Publications (2)

Publication Number Publication Date
KR20200088093A KR20200088093A (ko) 2020-07-22
KR102170566B1 true KR102170566B1 (ko) 2020-10-27

Family

ID=71892993

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190004662A KR102170566B1 (ko) 2019-01-14 2019-01-14 목적 유전자의 발현을 조기 종결하기 위한 벡터 및 이를 포함하는 균주

Country Status (1)

Country Link
KR (1) KR102170566B1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102399035B1 (ko) * 2020-10-21 2022-05-17 성균관대학교산학협력단 산업 균주 내 온-타겟 효율의 감소 없이 오프-타겟이 없는 사이토신 염기 편집기를 발현하는 벡터 및 이의 용도

Also Published As

Publication number Publication date
KR20200088093A (ko) 2020-07-22

Similar Documents

Publication Publication Date Title
AU2021203937B2 (en) Compositions and methods for rapid and dynamic flux control using synthetic metabolic valves
CN108486146B (zh) LbCpf1-RR突变体用于CRISPR/Cpf1系统在植物基因编辑中的应用
CN111534535B (zh) 一种构建麦角硫因生产菌的方法
CN108997484B (zh) 小麦TaWox5基因在提高小麦转化效率中的应用
CN106834338B (zh) 拟南芥基因rem16的表达载体及其在调控植株开花期中的应用
CN106916828A (zh) 一种调控杨树叶片发育的生长调节因子基因及其应用
CN109022285B (zh) 一种提高集胞藻pcc6803铵盐耐受能力的方法与应用
RU2730667C2 (ru) Генотерапевтический ДНК-вектор на основе генотерапевтического ДНК-вектора VTvaf17, несущий целевой ген, выбранный из группы генов KRT5, KRT14, LAMB3, COL7A1, для повышения уровня экспрессии этих целевых генов, способ его получения и применения, штамм Escherichia coli SCS110-AF/VTvaf17-KRT5, или Escherichia coli SCS110-AF/VTvaf17-KRT14, или Escherichia coli SCS110-AF/VTvaf17-LAMB3, или Escherichia coli SCS110-AF/VTvaf17-COL7A1, несущий генотерапевтический ДНК-вектор, способ его получения, способ производства в промышленных масштабах генотерапевтического ДНК-вектора
KR102170566B1 (ko) 목적 유전자의 발현을 조기 종결하기 위한 벡터 및 이를 포함하는 균주
CN107384951A (zh) 一种谷氨酸棒状杆菌的基因编辑载体、制备方法、系统及其应用
CA2548125A1 (en) Methods for the preparation of a fine chemical by fermentation
CN112553246A (zh) 一种基于CRISPR-SaCas9系统的高效基因组编辑载体及其应用
CN114672509B (zh) 一种具有高表达能力的棒状杆菌和大肠杆菌双表达载体及其构建方法
CN101709300B (zh) 水稻人工miRNA基因干涉载体快速构建方法
KR102399035B1 (ko) 산업 균주 내 온-타겟 효율의 감소 없이 오프-타겟이 없는 사이토신 염기 편집기를 발현하는 벡터 및 이의 용도
CN115011539A (zh) 重组大肠杆菌及其制备方法和应用以及降解塑料的方法
CN110669794B (zh) 以突变的筛选剂抗性基因为报告体系的c·t碱基替换的细胞富集技术及其应用
CN110938650B (zh) 一种mRNA可变剪切-荧光素酶报告系统及其应用
CN113528561B (zh) 用于生产1,5-戊二胺的重组微生物及方法
CN113166771A (zh) 基因治疗dna载体gdtt1.8nas12及用于获得它的方法
KR20200009010A (ko) 유기 화합물 제조 방법
KR101820605B1 (ko) 단회 포자 형성 균주 및 이의 제조 방법
JP2003245078A (ja) 放射線抵抗性細菌/大腸菌シャトルベクター
KR20210137055A (ko) 네이티브 miRNA의 게놈 편집을 통한 표적 유전자 발현의 억제
RU2715314C1 (ru) Генотерапевтический ДНК-вектор VTvaf17-Act1-Cas9 на основе генотерапевтического ДНК-вектора VTvaf17, несущий целевой ген Cas9, для гетерологичной экспрессии этого целевого гена в клетках растений при геномном редактировании растений, способ получения и применения генотерапевтического ДНК-вектора, штамм Escherichia coli SCS110-AF/VTvaf17-Act1-Cas9, несущий генотерапевтический ДНК-вектор, способ его получения, способ производства в промышленных масштабах генотерапевтического ДНК-вектора

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant