KR102164519B1 - Latex modified ultra rapid hardening self levelling finish material composition having excellent curable property in low temperature - Google Patents

Latex modified ultra rapid hardening self levelling finish material composition having excellent curable property in low temperature Download PDF

Info

Publication number
KR102164519B1
KR102164519B1 KR1020190023747A KR20190023747A KR102164519B1 KR 102164519 B1 KR102164519 B1 KR 102164519B1 KR 1020190023747 A KR1020190023747 A KR 1020190023747A KR 20190023747 A KR20190023747 A KR 20190023747A KR 102164519 B1 KR102164519 B1 KR 102164519B1
Authority
KR
South Korea
Prior art keywords
weight
parts
latex
agent
acid
Prior art date
Application number
KR1020190023747A
Other languages
Korean (ko)
Other versions
KR20200105566A (en
Inventor
이봉규
이윤정
김상범
김병환
김호주
Original Assignee
주식회사 중앙폴리텍
이봉규
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 중앙폴리텍, 이봉규 filed Critical 주식회사 중앙폴리텍
Priority to KR1020190023747A priority Critical patent/KR102164519B1/en
Publication of KR20200105566A publication Critical patent/KR20200105566A/en
Application granted granted Critical
Publication of KR102164519B1 publication Critical patent/KR102164519B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • C04B18/141Slags
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/008Cement and like inorganic materials added as expanding or shrinkage compensating ingredients in mortar or concrete compositions, the expansion being the result of a recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/2641Polyacrylates; Polymethacrylates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/06Aluminous cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • C04B40/0032Controlling the process of mixing, e.g. adding ingredients in a quantity depending on a measured or desired value
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/02Selection of the hardening environment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/02Portland cement
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/20Retarders
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/30Water reducers, plasticisers, air-entrainers, flow improvers
    • C04B2103/34Flow improvers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/40Surface-active agents, dispersants
    • C04B2103/408Dispersants
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/50Defoamers, air detrainers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/60Flooring materials
    • C04B2111/62Self-levelling compositions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

본 발명은 저온에서 우수한 경화를 가지는 라텍스 개질 초속경 자기 수평 바닥재 조성물에 관한 것으로, 보다 구체적으로는 겨울철 5℃이하에서도 공사가 가능하도록 저온에서도 우수한 경화가 이루어 질 수 있도록 하며, 이로 인해 계절 및 온도에 상관없이 1년 내내 공사를 할 수 있도록 하고, 종래 기술에서 볼 수 없었던 무기질(초속경시멘트) 및 유기질(라텍스)을 혼합하여 우수한 상용성으로 유기, 무기질의 하이브리드형 거대 망상구조를 만들어 압축강도, 휨강도, 부착강도, 방수성 및 더 증진된 내구성을 가질 수 있도록 할 뿐만 아니라 내구수명을 연장시킬 수 있으며, 특히 선박, 공장, 공항, 고속도로 바닥 등 포설완료 후 4시간만에 압축강도 100 kgf/cm2 이상을 나타내어 다른 작업공정들이 들어가 작업할 수 있게 하여 공기를 단축할 수 있도록 하는, 저온에서 우수한 경화를 가지는 라텍스 개질 초속경 자기 수평 바닥재 조성물에 관한 것이다.The present invention relates to a latex-modified super-fast-hardening self-horizontal flooring composition having excellent curing at low temperatures, and more specifically, to enable excellent hardening even at low temperatures so that construction can be performed even at 5°C or less in winter. Regardless of the year-round construction, it is possible to construct a large network of organic and inorganic hybrids with excellent compatibility by mixing inorganic materials (ultra-fast cement) and organic materials (latex), which were not found in the prior art. , Flexural strength, adhesion strength, waterproofness, and more enhanced durability, as well as extending the durability life, in particular, the compressive strength of 100 kgf/cm in 4 hours after completion of installation on ships, factories, airports, highway floors, etc. It relates to a latex-modified ultra-fast hardness self-horizontal flooring composition having excellent curing at a low temperature, which exhibits 2 or more to allow other working processes to enter and shorten the air.

Description

저온에서 우수한 경화를 가지는 라텍스 개질 초속경 자기 수평 바닥재 조성물{LATEX MODIFIED ULTRA RAPID HARDENING SELF LEVELLING FINISH MATERIAL COMPOSITION HAVING EXCELLENT CURABLE PROPERTY IN LOW TEMPERATURE}Latex-modified ultra-fast hardness self-horizontal flooring composition having excellent curing at low temperatures {LATEX MODIFIED ULTRA RAPID HARDENING SELF LEVELLING FINISH MATERIAL COMPOSITION HAVING EXCELLENT CURABLE PROPERTY IN LOW TEMPERATURE}

본 발명은 초속경 시멘트 내 라텍스와 혼용 후 시멘트와 라텍스에 가교 구조를 이룰 수 있도록 함으로써, 저온에서도 우수한 경화가 이루어 질 수 있도록 하는 라텍스 개질 초속경 자기 수평 바닥재 조성물에 관한 것이다.The present invention relates to a latex-modified ultra-fast-diameter self-horizontal flooring composition that enables excellent hardening even at low temperatures by allowing the cement and latex to form a crosslinked structure after mixing with the latex in the ultrafast cement.

일반적으로 국내에서 시공되고 있는 바닥재는 크게 시멘트계 바닥재와 폴리머계 바닥재로 양분되어 있으며, 시멘트계 바닥재는 유동화제(유기물)를 첨가하여 미세 발포에 의한 바닥의 강도 보강에 주력하고 있으며, 폴리머계 바닥재는 아크릴, 천연 고무 라텍스 등으로 혼화하여 공장, 주차장 바닥 등에 시공을 한 다음 그 표면에 에폭시계 바닥재 또는 폴리우레탄계 바닥재 등을 이용하여 표면 시공을 하고 있는 실정이다. In general, domestic flooring is largely divided into cement-based flooring and polymer-based flooring, and cement-based flooring is focused on reinforcing the strength of the floor by micro-foaming by adding a fluidizing agent (organic material), and the polymer-based flooring material is acrylic. , Natural rubber latex, etc., is mixed with the floor of factories and parking lots, and then the surface is constructed using epoxy-based or polyurethane-based flooring.

폴리머계 바닥재는 원재료의 가격이 고가이고, 그리고 유기용제를 사용함에 따라 시공 시 또는 시공 후에 발생하는 유기용제의 휘발성분에 의해 환경 오염문제가 있으며 또한 시공 시 표면 미장을 하여야 하므로 인건비의 부담이 추가되는 문제점이 있다. 에폭시계 바닥재의 경우에는 표면 강도가 강하고 내충격 강도가 떨어져 크랙이 발생하여 내구력에 문제점이 있어 보수 유지비가 많이 드는 문제점이 있으며, 폴리우레탄계 바닥재는 원재료의 고가, 접착력에 의한 들뜸 현상 등의 문제점이 있다. Polymer-based flooring materials are expensive, and due to the use of organic solvents, there is a problem of environmental pollution due to the volatile components of organic solvents generated during or after construction, and the burden of labor costs is added because surface plastering is required during construction. There is a problem. In the case of epoxy-based flooring, the surface strength is strong and the impact resistance is low, causing a problem in durability due to the occurrence of cracks, resulting in a problem in that repair and maintenance costs are high, and polyurethane-based flooring has problems such as high cost of raw materials and lifting due to adhesion. .

그리고 국외의 바닥재의 동향은 국내와 유사하게 유동화제를 배합한 시멘트계와 폴리머를 배합하여 시멘트 코-메트릭스(Co-Matrix)를 형성시키는 폴리머계, 석고계, 세라믹계, 자기수평제(Self levelling) 등의 바닥재로 분류된다. 시멘트계 바닥재를 생산하는 주요업체는 독일의 피시아이(PCI), 헨켈(HENKEL), 바이엘(BAYER), 핀란드의 파텍스(PARTEX), 일본의 오노다(小野田), 字部(우베) 등이 있으며, 폴리머계 바닥재를 생산하는 업체는 독일의 피시아이(PCI), 헨켈(HENKEL), 영국의 아이씨아이(ICI) 등이 있고, 자기 수평 바닥재는 일본의 오노다(小野田), 字部(우베) 등이 있으며, 대부분 외국 회사들은 시공 목적에 따라서 시멘트계 바닥재와 폴리머계 바닥재를 병행하여 시공하는 경향이 있다.And the trend of overseas flooring materials is polymer, gypsum, ceramic, self leveling, which forms cement Co-Matrix by mixing cement-based and polymer mixed with a fluidizing agent similar to the domestic one. It is classified as a flooring material. The major companies that produce cement-based flooring are Germany's PCI, Henkel, BAYER, Finland's PARTEX, Japan's Onoda, and Japan's Ube. , Polymer-based flooring manufacturers include PCI and Henkel in Germany, and ICI in the UK. Self-horizontal flooring is Japan's Onoda and Ube. And the like, and most foreign companies tend to construct cement-based and polymer-based flooring in parallel depending on the purpose of construction.

한편, 바닥재의 상기와 같은 문제점들을 해결하기 위한 방안으로 다양하게 연구개발되어 특허출원된 내용들을 살펴보면, 특허문헌 1 내지 3 등과 같이 다양한 조성 성분과 성분비를 갖는 자기 수평 바닥재 조성물들이 개발되었지만 우수한 자기 수평의 성능을 유지하면서 경화시간이 빠르고 바닥의 탄성 부여로 인체 및 환경 친화적이면서 바닥의 강도를 향상시키기에는 미흡한 문제점이 있었다.On the other hand, looking at various research and development and patent applications as a way to solve the above problems of flooring, self-leveling flooring compositions having various composition components and composition ratios such as Patent Documents 1 to 3 have been developed, but excellent self-leveling While maintaining the performance of the floor, the hardening time is fast, and the elasticity of the floor is given to the human body and environment.

또한, 상기와 같은 종래 기술은 저온(겨울철 5℃ 이하)에서 경화가 제대로 이루어지지 않아 공사가 어려운 문제점이 있었을 뿐만 아니라 경화가 이루어질 때 까지 다른 작업공정들이 투입되지 못함에 따라 공기가 불필요하게 증가하게 되는 문제점이 있었다.In addition, the prior art as described above has a problem that construction is difficult because hardening is not performed properly at low temperatures (below 5℃ in winter), and other work processes are not input until hardening is made, resulting in unnecessary increase in air. There was a problem.

특허문헌 1 : 대한민국 등록특허공보 제10-0398074호 "건축물의 온돌바닥 난방용 자기수평성을 갖는시멘트계모르타르조성물"Patent Document 1: Republic of Korea Patent Publication No. 10-0398074 "Cement-based mortar composition having self-horizontality for heating ondol floors of buildings" 특허문헌 2 : 대한민국 등록특허공보 제10-0609347호 "건축물의 온돌바닥 마감용 준자기수평성 모르타르 조성물"Patent Document 2: Republic of Korea Patent Publication No. 10-0609347 "Quasi-magnetic horizontal mortar composition for finishing ondol floors of buildings" 특허문헌 3 : 대한민국 등록특허공보 제10-0769853호 "자기수평성 몰탈 조성물"Patent Document 3: Korean Patent Publication No. 10-0769853 "Self-horizontal mortar composition"

본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 초속경 시멘트 내 라텍스와 혼용 후 시멘트와 라텍스에 가교 구조를 이룰 수 있는 라텍스 개질 초속경 자기 수평 바닥재 조성물을 제공함을 과제로 한다.The present invention is to solve the above problems, it is an object of the present invention to provide a latex-modified ultra-fast-diameter self-horizontal flooring composition capable of forming a crosslinked structure between cement and latex after mixing with latex in ultra-fast-diameter cement.

보다 구체적으로 겨울철 5℃이하에서도 공사가 가능하도록 저온에서도 우수한 경화가 이루어 질 수 있도록 하며, 이로 인해 계절 및 온도에 상관없이 1년 내내 공사를 할 수 있도록 하고, 종래 기술에서 볼 수 없었던 무기질(초속경시멘트) 및 유기질(라텍스)을 혼합하여 우수한 상용성으로 유기, 무기질의 하이브리드형 거대 망상구조를 만들어 압축강도, 휨강도, 부착강도, 방수성 및 더 증진된 내구성을 가질 수 있도록 할 뿐만 아니라 내구수명을 연장시킬 수 있으며, 특히 선박, 공장, 공항, 고속도로 바닥 등 포설완료 후 4시간만에 압축강도 100 kgf/cm2 이상을 나타내어 다른 작업공정들이 들어가 작업할 수 있게 하여 공기를 단축할 수 있도록 함을 과제로 한다.More specifically, it enables excellent hardening even at low temperatures so that construction can be performed even at 5℃ or less in winter. This allows construction to be carried out all year round regardless of season and temperature, and inorganic materials (initial speed Light cement) and organic material (latex) are mixed to create a hybrid-type large network structure of organic and inorganic materials with excellent compatibility, so that it not only provides compression strength, flexural strength, adhesion strength, waterproofness, and improved durability, but also provides durability. It can be extended, and in particular, it shows a compressive strength of 100 kgf/cm 2 or more in 4 hours after installation of ships, factories, airports, highway floors, etc., so that other work processes can enter and work to shorten the construction period. Make it an assignment.

본 발명은 무기질(초속경시멘트) 및 유기질(라텍스)을 우수한 상용성으로 혼합함으로써 유기물질인 라텍스에 포함된 유황과 아연이 라텍스의 가교제로 영향력을 주어 IPN(interpenetrating polymer networks:망상구조)구조, 즉 유기, 무기질의 하이브리드형 거대 망상구조를 만들 수 있도록 하는, 저온에서 우수한 경화를 가지는 라텍스 개질 초속경 자기 수평 바닥재 조성물을 과제의 해결 수단으로 한다.The present invention is an IPN (interpenetrating polymer networks: network structure) structure by mixing inorganic materials (ultra fast cement) and organic materials (latex) with excellent compatibility, so that sulfur and zinc contained in the organic material latex influence the crosslinking agent of the latex, That is, a latex-modified ultra-fast hardness self-horizontal flooring composition having excellent curing at low temperatures, which enables the formation of organic and inorganic hybrid-type large networks, is used as a means of solving the problem.

본 발명은 겨울철 5℃이하에서도 공사가 가능하도록 저온에서도 우수한 경화가 이루어 질 수 있도록 하며, 이로 인해 계절 및 온도에 상관없이 1년 내내 공사를 할 수 있도록 하고, 더욱이 압축강도, 휨강도, 부착강도, 방수성 및 더 증진된 내구성을 가질 수 있도록 할 뿐만 아니라 내구수명을 연장시킬 수 있으며, 특히 선박, 공장, 공항, 고속도로 바닥 등 포설완료 후 4시간만에 압축강도 100 kgf/cm2 이상을 나타내어 다른 작업공정들이 들어가 작업할 수 있게 하여 공기를 단축할 수 있는 효과를 가진다.The present invention enables excellent hardening even at low temperatures so that construction can be performed even at 5°C or less in winter, so that construction can be carried out all year round regardless of season and temperature, and further compressive strength, flexural strength, adhesion strength, In addition to making it waterproof and more durable, it can extend the durability life. In particular, it shows a compressive strength of 100 kgf/cm 2 or more in 4 hours after installation of ships, factories, airports, highways, etc. It has the effect of shortening the period by allowing processes to enter and work.

상기의 효과를 달성하기 위한 본 발명은 라텍스 개질 초속경 자기 수평 바닥재 조성물에 관한 것으로서, 본 발명의 기술적 구성을 이해하는데 필요한 부분만이 설명되며 그 이외 부분의 설명은 본 발명의 요지를 흩트리지 않도록 생략될 것이라는 것을 유의하여야 한다.The present invention for achieving the above effect relates to a latex-modified ultra-fast hardness self-horizontal flooring composition, and only parts necessary for understanding the technical configuration of the present invention are described, and the description of the other parts is not to scatter the gist of the present invention. It should be noted that it will be omitted.

이하, 본 발명에 따른 라텍스 개질 초속경 자기 수평 바닥재 조성물을 상세히 설명하면 다음과 같다.Hereinafter, a detailed description of the latex-modified ultra-fast hardness magnetic horizontal flooring composition according to the present invention is as follows.

본 발명에 따른 라텍스 개질 초속경 자기 수평 바닥재 조성물은, 합성고무 라텍스 10 ~ 40 중량% 및 초속경성 무기계 파우더 60 ~ 90 중량%로 이루어진 기재 100 중량부에 대하여, 유동화제 0.5 ~ 0.8 중량부, 소포제 0.2 ~ 0.3 중량부 및 지연제 0.1 ~ 0.2 중량부를 혼합하여 이루어진다.The latex-modified ultra-fast-hardening self-horizontal flooring composition according to the present invention is based on 100 parts by weight of a base material consisting of 10 to 40% by weight of synthetic rubber latex and 60 to 90% by weight of ultrafast-hardening inorganic powder, 0.5 to 0.8 parts by weight of a fluidizing agent, and an antifoaming agent. It is made by mixing 0.2 to 0.3 parts by weight and 0.1 to 0.2 parts by weight of the retarder.

상기 합성고무 라텍스는 시드 라텍스를 제조하고, 1차 가교된 베이스 라텍스를 제조한 후, 2차 가교된 공중합물을 제조하여 이루어진다.The synthetic rubber latex is made by preparing a seed latex, preparing a primary crosslinked base latex, and then preparing a secondary crosslinked copolymer.

먼저 시드 라텍스를 제조하는 방법은 모노머, 음이온 유화제, 반응 개시제, 환원제 및 증류수를 이용하여 시드 라텍스를 제조하는 것으로, 구체적으로는 중합반응 전 준비단계로 회분식 반응기에 공정수를 채우고 질소가스로 공정수를 완전히 배출시키는 공정을 3회 실시하여 반응기 내부의 용존산소를 완전하게 구축한 후, 다시 공정수를 채우고 부타디엔 가스로 공정수를 배출하여 반응기 내부를 부타디엔 가스로 치환시킨다. 이후, 상기 반응기에 부타디엔 30 ~ 50 중량%, 스티렌 25 ~ 35 중량% 및 아크릴로니트릴 25 ~ 35 중량%로 이루어진 모노머 100 중량부에 대하여, 음이온 유화제 1.5 ~ 2.5 중량부, 반응개시제인 포타슘퍼설페이드 1.0 ~ 2.0 중량부, 환원제인 소듐바이설파이드 0.1 ~ 0.3 중량부 및 증류수 100 ~ 200 중량부를 투입후 90 ~ 110℃에서 1 ~ 3시간 반응시켜 제조한다. 이렇게 제조된 시드 라텍스의 물성은 도 1에서와 같이, 전 고형분함유량 30 ~ 40 중량%, 평균입자크기 300 ~ 500 Å, pH 2.0 ~ 4.0 및 점도 20 ~ 50cps를 나타낸다.First, the method of preparing the seed latex is to prepare the seed latex using a monomer, an anionic emulsifier, a reaction initiator, a reducing agent, and distilled water. Specifically, as a preparation step before the polymerization reaction, process water is filled in a batch reactor and process water is used with nitrogen gas. After completely discharging the dissolved oxygen in the reactor three times, the process water is filled again, and the process water is discharged with butadiene gas to replace the inside of the reactor with butadiene gas. Thereafter, in the reactor, based on 100 parts by weight of a monomer consisting of 30 to 50% by weight of butadiene, 25 to 35% by weight of styrene, and 25 to 35% by weight of acrylonitrile, 1.5 to 2.5 parts by weight of an anionic emulsifier, potassium persulfide as a reaction initiator 1.0 to 2.0 parts by weight, 0.1 to 0.3 parts by weight of sodium bisulfide as a reducing agent, and 100 to 200 parts by weight of distilled water are added and reacted at 90 to 110°C for 1 to 3 hours. The physical properties of the seed latex thus prepared as shown in FIG. 1 show a total solid content of 30 to 40 wt%, an average particle size of 300 to 500 Å, a pH of 2.0 to 4.0, and a viscosity of 20 to 50 cps.

그리고 베이스 라텍스를 제조하는 방법은 상기 제조된 시드 라텍스, 모노머, 불포화 카르복실산, 음이온 유화제, 암포트릭 안정제, 반응 개시제, 환원제, 전해질, 분자량 조절제, 유기 가교제, 비이온성 유화제 및 감수 지연제를 이용하여 1차 가교된 베이스 라텍스를 제조하는 것으로, 구체적으로는 상기에서와 같이, 반응기 내부의 용존산소를 제거한 후 상기 제조된 시드 라텍스를 투입하고, 상기 제조된 시드 라텍스 100 중량부에 대하여, 불포화 카르복실산인 메틸메타아크릴레이트(methyl methacrylate) 5 ~ 10 중량부, 메타크릴산(methacrylic acid) 0.3 ~ 0.5 중량부, 아크릴산(acrylic acid) 0.3 ~ 0.5 중량부, 이타코닉산(itaconic acid) 0.1 ~ 0.5 중량부, 퓨마릭산(fumaric acid) 0.1 ~ 3.0 중량부, 음이온 유화제 0.2 ~ 0.5 중량부, 암포트릭(amphoteric) 안정제 0.1 ~ 0.3 중량부, 전해질인 포타슘 카바네이트 0.5 ~ 1.5 중량부, 분자량 조절제 0.1 ~ 0.7 중량부, 유기 가교제인 디비닐벤젠 0.1 ~ 0.7 중량부, 2헥사에틸메틸아크릴레이트 1.0 ~ 5.0 중량부 및 아크릴 아마이드 1.0 ~ 5.0 중량부를 반응기에 일괄 투입하고, 25 ~ 35분간 프리에멜션 시키면서 내부온도를 50 ~ 53℃까지 상승시킨다.And the method of manufacturing the base latex uses the prepared seed latex, monomer, unsaturated carboxylic acid, anionic emulsifier, amphoteric stabilizer, reaction initiator, reducing agent, electrolyte, molecular weight modifier, organic crosslinking agent, nonionic emulsifier and water reducing retarder. To prepare a primary crosslinked base latex, specifically, as described above, after removing the dissolved oxygen inside the reactor, the prepared seed latex was added, and based on 100 parts by weight of the prepared seed latex, Acid methyl methacrylate 5 to 10 parts by weight, methacrylic acid 0.3 to 0.5 parts by weight, acrylic acid 0.3 to 0.5 parts by weight, itaconic acid 0.1 to 0.5 Parts by weight, 0.1 to 3.0 parts by weight of fumaric acid, 0.2 to 0.5 parts by weight of anionic emulsifier, 0.1 to 0.3 parts by weight of an amphoteric stabilizer, 0.5 to 1.5 parts by weight of potassium carbonate, an electrolyte, 0.1 to 0.7 parts by weight, 0.1 to 0.7 parts by weight of divinylbenzene as an organic crosslinking agent, 1.0 to 5.0 parts by weight of 2hexaethylmethyl acrylate, and 1.0 to 5.0 parts by weight of acrylamide are collectively added to the reactor and pre-emulsion for 25 to 35 minutes while internal temperature To 50 ~ 53 ℃.

내부 온도가 54 ~ 56℃에 도달했을 때, 반응 개시제인 포타슘퍼설페이드 1 ~ 3 중량부 및 환원제인 소듐바이설파이드 0.1 ~ 0.3 중량부를 투입하고 이때를 반응 시작시간으로 기준한 후, 모노머인 부타디엔 10 ~ 20 중량부, 스티렌 10 ~ 20 중량부 및 아크릴로니트릴 25 ~ 50 중량부를 3 ~ 5시간 동안 일정 유량으로 연속적으로 투입하여 1 ~ 3시간 반응시킨 후, 75 ~ 85℃로 승온하고, 반응 전화율이 90%이상인 시점, 즉 반응 3 ~ 5시간째에 불포화 카르복실산인 메타크릴산 0.3 ~ 0.5 중량부 및 아크릴산 0.3 ~ 0.5 중량부를 반응기에 투입한다.When the internal temperature reaches 54 to 56°C, 1 to 3 parts by weight of potassium persulfide as a reaction initiator and 0.1 to 0.3 parts by weight of sodium bisulfide as a reducing agent are added, and this is referred to as the reaction start time, and then 10 butadiene as a monomer. ~ 20 parts by weight, 10 to 20 parts by weight of styrene, and 25 to 50 parts by weight of acrylonitrile are continuously added at a constant flow rate for 3 to 5 hours and reacted for 1 to 3 hours, then the temperature is raised to 75 to 85°C, and the reaction conversion rate When this is 90% or more, that is, 3 to 5 hours of reaction, 0.3 to 0.5 parts by weight of methacrylic acid and 0.3 to 0.5 parts by weight of acrylic acid, which are unsaturated carboxylic acids, are added to the reactor.

그리고 최종 TSC(total solid content) 47% 이상, 전환율 98% 이상이 되었을 때 25% 수산화나트륨 수용액으로 pH를 2 ~ 4에서 9.5 ~ 11로 조정하여 라텍스의 안정성을 향상시킨 후 라텍스의 안정성, 시멘트 혼화성 및 가사시간 향상을 위해 비이온성 유화제인 노닐페닐에테르계 유화제 1 ~3 중량부 및 고성능 감수지연형 폴리카르본산염 1.0 ~ 2.0 중량부를 첨가하고 75 ~ 80℃의 진공상태에서 1 ~ 2시간 숙성 및 반응시켜 미반응물을 완전히 반응시켜 제조한다.And when the final TSC (total solid content) is 47% or more and the conversion rate is 98% or more, the pH of the latex is improved by adjusting the pH from 2 to 4 to 9.5 to 11 with 25% sodium hydroxide aqueous solution to improve the stability of the latex and the cement mixture. Add 1 to 3 parts by weight of non-ionic emulsifier nonylphenyl ether based emulsifier and 1.0 to 2.0 parts by weight of high-performance water-reducing delayed polycarboxylic acid salt to improve chemical conversion and pot life, and aged for 1 to 2 hours in a vacuum at 75 to 80℃ And reacted to completely react the unreacted product.

이때, 상기 1차 가교된 베이스 라텍스는 전 고형분 46 ~ 50 중량%%, 입자경 1400~1800Å 겔 함유량 80 ~ 85 중량%, 점도 95 ~ 100cps, pH 10 ~ 12, 응고량 0.05 ~ 0.07%를 나타낸다.At this time, the primary crosslinked base latex exhibits a total solid content of 46 to 50% by weight, a particle diameter of 1400 to 1800Å, a gel content of 80 to 85% by weight, a viscosity of 95 to 100 cps, a pH of 10 to 12, and a coagulation amount of 0.05 to 0.07%.

여기서 상기 공정에 사용되는 음이온 유화제는, 폴리카르본산염, 소디움도데실벤젠설포네이트, 소디움라우릴설페이트, 소디움옥틸설페이트, 소디움톨루엔설포네이트, 포타슘스테아릴포스페이트 또는 포타슘스테아레이트 중에서 단독 또는 2종 이상 병용하여 사용하며, 상기 암포트릭 안정제는, 노닐페닐에테르슬폰산염 또는 노닐페닐에테르슬폰산 암모늄 중에서 단독 또는 2종 이상 병용하여 사용하고, 상기 분자량 조절제는, n-도데실메르캅탄, t-도데실메르캅탄 또는 n-옥틸메르캅탄 중에서 단독 또는 2종 이상 병용하여 사용한다.Here, the anionic emulsifier used in the above process is one or two or more of polycarboxylic acid salt, sodium dodecylbenzenesulfonate, sodium lauryl sulfate, sodium octyl sulfate, sodium toluene sulfonate, potassium stearyl phosphate, or potassium stearate. Used in combination, the amphoteric stabilizer is used alone or in combination of two or more in nonylphenyl ether sulfonic acid salt or nonyl phenyl ether sulfonic acid ammonium, and the molecular weight modifier is n-dodecyl mercaptan, t-dodecyl Mercaptan or n-octyl mercaptan is used alone or in combination of two or more.

한편, 불포화성 모노머를 유화중합 함에 의해 SBR, NBR, CR 등의 합성고무 라텍스를 합성할 수 있으며, 라텍스 그대로 제품으로 하는 경우도 있지만, 대부분의 경우는 여러 가지 배합 약품을 더하여 가열해서 물성향상 시킨다. 본 발명에서는 2차 가교시킨 아크릴로니트릴, 스틸렌, 부타디엔 거대 망상 구조를 가진 공중합물 합성고무 라텍스 제조하여 고내구성 자기 수평 바닥재 조성물을 개발하고자 하는 것이며, 이론적으로 라텍스와 2차 가교제 유황과 가열하여 망상구조를 가지게 하는 것은 공명(共鳴)을 위해, 2중 결합의 주위에 있는 메틸렌에서 전자를 빼내기 쉽고, 유황에 의한 고무의 가류는 유황 라디칼에 의한 고무의 α 메틸렌 전자 제거에 의해 개시된다. 다음에 그 부타디엔 라디칼에 'S'가 부가되고, 부타디엔 폴리 설파이드 라디칼이 생겨, 이것이 더욱 부타디엔 라디칼과 결합하여 폴리설파이드를 결합 고리로 하는 부타디엔의 가교가 일어나게 되는 것이다.On the other hand, synthetic rubber latex such as SBR, NBR, and CR can be synthesized by emulsion polymerization of unsaturated monomers. In some cases, the latex is used as a product, but in most cases, properties are improved by heating by adding various chemicals. . In the present invention, the purpose of the present invention is to develop a highly durable self-horizontal flooring composition by preparing a copolymer synthetic rubber latex having a secondary crosslinked acrylonitrile, styrene, butadiene macronetwork structure, and theoretically, the network is formed by heating with the latex and the secondary crosslinking agent sulfur. It is easy to remove electrons from the methylene around the double bond for resonance, and the vulcanization of the rubber by sulfur is initiated by the removal of α methylene electrons from the rubber by sulfur radicals. Next,'S' is added to the butadiene radical, and a butadiene polysulfide radical is generated, which further combines with the butadiene radical to cause crosslinking of butadiene using polysulfide as a bonding ring.

그리고 2차 가교된 공중합물을 제조하여 합성고무 라텍스를 제조하는 방법은 상기 1차 가교된 베이스 라텍스, 무기 가교제, 가교촉진제, 가교보강제, 분산제를 이용하여 2차 가교된 공중합물을 제조하는 것으로, 구체적으로는 상기 베이스 라텍스 100 중량부에 대하여, 무기 가교제인 콜로이드 유황 5 ~ 10 중량부, 산화아연 분산액 3 ~ 5 중량부, 가교촉진제인 징크디에틸디치오카바메이트 분산액 1.0 ~ 3.0 중량부, 2-머르캅토벤조치아졸징크염 분산액 1.0 ~ 3.0 중량부, 가교보강제인 카본블랙 분산액 10 ~ 30 중량부, 화이트카본 10 ~ 30 중량부 및 분산제인 타몰엔 분산제 10 ~ 30 중량부를 혼합하고 이를 볼밀로 20 ~ 25시간 입자를 자잘하게 분산시킨 후 150 ~ 250 메쉬의 여과망으로 여과시켜 분산수용액을 제조하고, 상기 분산수용액을 반응기에 투입후 60 ~ 80℃에서 1 ~ 3시간 동안 교반시켜 2차 가교구조 및 거대망상구조를 가진 아크릴로니트릴 스틸렌 부타디엔 공중합물 합성고무 라텍스를 제조한다.And the method of preparing a synthetic rubber latex by preparing a secondary crosslinked copolymer is to prepare a secondary crosslinked copolymer using the first crosslinked base latex, an inorganic crosslinking agent, a crosslinking accelerator, a crosslinking reinforcing agent, and a dispersant, Specifically, based on 100 parts by weight of the base latex, 5 to 10 parts by weight of colloidal sulfur as an inorganic crosslinking agent, 3 to 5 parts by weight of zinc oxide dispersion, 1.0 to 3.0 parts by weight of zinc diethyldithiocarbamate dispersion as a crosslinking accelerator, 2 -Mercaptobenzothiazole zinc salt dispersion 1.0 to 3.0 parts by weight, carbon black dispersion 10 to 30 parts by weight as a crosslinking reinforcing agent, 10 to 30 parts by weight of white carbon, and 10 to 30 parts by weight of tamolene dispersant as a dispersant are mixed and this is mixed with a ball mill. After finely dispersing the particles for 20 to 25 hours, filtered through a 150 to 250 mesh filtration network to prepare a dispersion aqueous solution, and after adding the dispersion aqueous solution to the reactor, stirred at 60 to 80°C for 1 to 3 hours to form a secondary crosslinked structure And a synthetic rubber latex of an acrylonitrile styrene butadiene copolymer having a large network structure.

한편, 상기 합성고무 라텍스의 제조 조건 및 조성비 등이 상기 범위를 벗어날 경우 합성고무 라텍스가 제대로 제조되지 못하거나 또는 초속경 효율이 저하될 우려가 있다.On the other hand, if the production conditions and composition ratio of the synthetic rubber latex are out of the above range, there is a concern that the synthetic rubber latex may not be properly manufactured or the efficiency of ultra-fast setting may be lowered.

또한 상기 합성고무 라텍스의 혼합량이 10 중량% 미만이 경우에는 바닥재 조성물의 접착력, 탄성, 유동성, 압축강도 등이 충분히 향상되지 않을 우려가 있고, 그리고 합성고무 라텍스의 혼합량이 40 중량%를 초과하는 경우에는 상대적으로 무기계 파우더의 혼합량이 적어 유동성은 우수하나 모르타르의 점도가 낮아 라텍스, 시멘트, 골재분리현상으로 인하여 폴리머 시멘트 가공물성을 발휘하지 못할 우려가 있다. In addition, when the mixing amount of the synthetic rubber latex is less than 10% by weight, there is a possibility that the adhesion, elasticity, fluidity, and compressive strength of the flooring composition may not be sufficiently improved, and when the mixing amount of the synthetic rubber latex exceeds 40% by weight There is a concern that polymer cement processing properties may not be exhibited due to the separation of latex, cement, and aggregate due to the low viscosity of the mortar due to the relatively small mixing amount of inorganic powder.

상기 초속경성 무기계 파우더는 강사 100 중량부에 대하여, 초속경 시멘트 10 ~ 15 중량부, 포틀랜드 시멘트 10 ~ 15 중량부, 백색 시멘트 3 ~ 6 중량부, 알루미나 시멘트 3 ~ 6 중량부와 고로 스래그 분말 2 ~ 5 중량부 및 기타 첨가제인 감수제, 팽창제, 증점제, 분산제가 각각 0.1 ~ 0.3 중량부 혼합되어 이루어진다.The super-fast-hardening inorganic powder is based on 100 parts by weight of the instructor, 10 to 15 parts by weight of ultra-fast cement, 10 to 15 parts by weight of Portland cement, 3 to 6 parts by weight of white cement, 3 to 6 parts by weight of alumina cement, and blast furnace slag powder 2 to 5 parts by weight and 0.1 to 0.3 parts by weight of each of a water reducing agent, an expanding agent, a thickening agent, and a dispersant such as other additives are mixed.

본 발명의 초속경성 무기계 파우더에 사용되는 시멘트는 물과의 수화반응에 의해 강도를 발현하는 물질로서, 강사, 고로 슬래그 분말 등의 성분들을 결합시키는 접착제와 같은 역할을 하며, 본 발명에서는 초속경 시멘트 10 ~ 15 중량부, 포틀랜드 시멘트 10 ~ 15 중량부, 백색 시멘트 3 ~ 6 중량부, 알루미나 시멘트 3 ~ 6 중량부를 혼합하여 사용하는 것이 바람직하다. 초속경 시멘트는 초기유동성과 경화시간 및 공사시간을 단축시키고 모르타르와 라텍스의 반응결합시간을 단축시켜 강도발현시간을 앞당긴다. 또 백색 시멘트는 모르타르의 건조경화시 수축과 팽창을 제어하여 크랙 발생을 억제시키고 치수안정성 우수하게 한다. 그리고 바닥재의 모르타르의 경화시간을 단축시키기 위해 초속경 시멘트와 알루미나 시멘트를 포틀랜드 시멘트와 혼합한다.The cement used in the ultra-fast setting inorganic powder of the present invention is a material that exhibits strength by a hydration reaction with water, and serves as an adhesive for bonding components such as instructors and blast furnace slag powder. It is preferable to use a mixture of 10 to 15 parts by weight, 10 to 15 parts by weight of Portland cement, 3 to 6 parts by weight of white cement, and 3 to 6 parts by weight of alumina cement. The ultra-fast-hardening cement shortens the initial fluidity, hardening time and construction time, and shortens the reaction bonding time between mortar and latex to accelerate the strength development time. In addition, white cement suppresses the occurrence of cracks by controlling shrinkage and expansion during drying and curing of the mortar and makes it excellent in dimensional stability. In order to shorten the hardening time of the mortar of the flooring material, ultra-fast hardness cement and alumina cement are mixed with Portland cement.

그리고 상기 고로 슬래그 분말은 바닥재의 기계적 물성을 향상시키기 위해 시멘트 혼합물에 혼합시키며, 제철 및 제강과정에서 부산되는 고로 슬래그를 44㎛ 체 잔분량 10 중량부 이하가 되도록 분쇄한 것을 사용하는 것이 바람직하다. In addition, the blast furnace slag powder is mixed with a cement mixture to improve the mechanical properties of the floor material, and blast furnace slag produced by the steelmaking and steelmaking processes is pulverized so that the residual amount of the blast furnace slag is 10 parts by weight or less.

또한 강사는 강에서 채취한 모래로서, 입자의 크기가 6호사(0.60~0.425mm)인 것이 바람직하다. 강사 입자의 크기가 6호사보다 클 경우에는 바닥재의 자기 수평 성능이 저하될 우려가 있고, 강사 입자의 크기가 6호사보다 적을 경우에는 바닥재의 기계적 물성이 저하할 우려가 있다. In addition, the instructor is sand collected from the river, and it is preferable that the particle size is No. 6 (0.60~0.425mm). If the size of the instructor particle is larger than Company 6, the self-leveling performance of the flooring material may be deteriorated, and when the size of the instructor particle is smaller than Company 6, the mechanical properties of the flooring material may be deteriorated.

그리고 본 발명에서 상기 기타 첨가제들은 감수제, 팽창제, 증점제, 분산제가 각각 0.1~0.3 중량부를 첨가하는 것이 바람직하며, 상기 첨가제들은 통상적인 첨가제들로서 본 발명의 특징이 되지는 않는다. 감수제는 단위수량 저감, 강도 및 내구성 향상, 수화열 균열방지 등의 개선을 주목적으로 하는 첨가하는 혼화제로서 리그닌설폰산염계, 옥시카르본산염계, 알킬아릴설폰산염계, 고급 다가알코올설산염계 감수제 등이 있으며, 팽창제는 모르타를의 경화수축이나 건조수축으로 인한 균열발생을 저감시키고 균열에 대한 내력을 향상시키기 위해 첨가하는 혼화제이고, 증점제는 모르타르 조성물의 재료분리를 저감시키기 위해 첨가하는 혼화제로서 메틸셀룰로오스계 증점제가 바람직하고, 분산제는 낮은 물과 결합재의 비 영역에서의 감수성, 슬램프 플로우의 지속성, 빠른 강도 재현성을 갖도록 첨가하는 혼화제로서, 폴리멜라민술포네이트, 리글린술포네이트, 올레핀과 말레산(maleic acid)의 공중합체, 폴리카르복실산계 분산제 등이 있다. In the present invention, the other additives are preferably added in an amount of 0.1 to 0.3 parts by weight of a water reducing agent, an expanding agent, a thickening agent, and a dispersing agent, respectively, and the additives are conventional additives and are not a feature of the present invention. Water reducing agents are added admixtures for the purpose of improving unit quantity reduction, strength and durability improvement, and prevention of hydration heat cracking, including lignin sulfonic acid salts, oxycarboxylic acid salts, alkylarylsulfonic acid salts, and advanced polyhydric alcohol sulfate water reducing agents. In addition, the expanding agent is an admixture added to reduce the occurrence of cracks due to curing shrinkage or drying shrinkage of the mortar and improve the resistance to cracking, and the thickener is an admixture added to reduce material separation of the mortar composition. A thickener is preferred, and the dispersant is an admixture added to have sensitivity in a low water-to-binder ratio region, sustained slam flow, and rapid strength reproducibility.Polymelamine sulfonate, liglin sulfonate, olefin and maleic acid ( maleic acid) copolymers and polycarboxylic acid-based dispersants.

한편, 상기 유동화제는 모르타르 내에서 유동 특성을 발현시키는 혼화제로서 멜라민계 및 나프탈렌계를 단독 또는 혼합하여 사용하는 것이 바람직하며, 유동화제의 혼합량은 기재 100 중량부에 대하여 0.5 ~ 0.8 중량부인 것이 바람직하다. 유동화제의 혼합량이 상기에서 한정한 범위보다 적을 경우에는 모르타르의 유동성이 저하할 우려가 있고, 상기에서 한정한 범위를 초과할 경우에는 높은 유동성으로 인해 재료의 분리가 일어날 가능성이 높다. On the other hand, the fluidizing agent is an admixture that expresses flow characteristics in the mortar, and it is preferable to use melamine-based and naphthalene-based alone or in combination, and the mixing amount of the fluidizing agent is preferably 0.5 to 0.8 parts by weight based on 100 parts by weight of the substrate. Do. When the mixing amount of the fluidizing agent is less than the above-limited range, there is a concern that the fluidity of the mortar may decrease, and when it exceeds the above-limited range, there is a high possibility of material separation due to high fluidity.

상기 소포제는 기재 100 중량부에 대하여 소포제 0.2 ~ 0.3 중량부를 첨가하는 것이 바람직하며, 실리콘계 또는 지방산계 소포제를 사용하는 것이 바람직하며, 소포제의 혼합량이 상기에서 한정한 범위를 벗어날 경우에는 소포 효과가 감소할 우려가 있다. The antifoaming agent is preferably added 0.2 to 0.3 parts by weight of the antifoaming agent based on 100 parts by weight of the base material, and it is preferable to use a silicone-based or fatty acid-based antifoaming agent, and when the amount of the antifoaming agent is out of the range limited above, the antifoaming effect is reduced. There is a fear of doing it.

상기 지연제는 모르타르의 수화를 부분적으로 저하시켜 응결을 지연시키기 위한 혼화제로서, 글루콘산염계, 시트릭산염계, 타르타르산염계, 규불화마그네슘염계, 아크릴산염계, 엑시드계 지연제 중에서 1종을 선택하여 사용하는 것이 바람직하며, 지연제의 혼합량은 기재 100 중량부에 대하여 0.1 ~ 0.2 중량부인 것이 바람직하다. 지연제의 혼합량이 상기에서 한정한 범위보다 적을 경우에는 모르타르의 응결 지연이 제대로 되지 않을 우려가 있고, 상기에서 한정한 범위를 초과할 경우에는 지연제의혼합량이 과다하게 혼합될 경우는 라텍스와 속킹현상으로 혼화성이 저하되어 유동성이 떨어지며 대기온도, 바람 등에 의해 표면크랙이 발생할 우려가 있다. The retarder is an admixture for delaying coagulation by partially lowering the hydration of the mortar, and one of gluconate-based, citrate-based, tartrate-based, magnesium silicate-based, acrylate-based, and acid-based retarders It is preferable to select and use, and the mixing amount of the retarder is preferably 0.1 to 0.2 parts by weight based on 100 parts by weight of the substrate. If the mixing amount of the retarder is less than the above-limited range, there is a possibility that the condensation delay of the mortar may not be properly delayed, and if the amount of the retardant is excessively mixed, the latex and fasting phenomenon may occur. As the miscibility is lowered, fluidity is lowered, and there is a risk of surface cracking due to air temperature and wind.

그리고 본 발명은 주요 구성성분인 합성고무 라텍스와 다양한 색상의 안료와의 혼화성이 우수하여 원하고자 하는 색상의 채색이 가능하므로 건축 문화의 다양화 및 고급화가 가능하다. 이때 본 발명의 조성물에 혼합하는 안료의 혼합량은 특별히 한정되지 않으며, 원하는 안료의 색상과 채도에 따라 적절히 조정되어 질 수 있다.In addition, since the present invention has excellent compatibility with synthetic rubber latex, which is a major component, and pigments of various colors, it is possible to color the desired color, so that the architectural culture can be diversified and advanced. At this time, the amount of the pigment to be mixed with the composition of the present invention is not particularly limited, and may be appropriately adjusted according to the color and saturation of the desired pigment.

이하 본 발명의 구성을 아래 실시예에 의거하여 더욱 상세히 설명하겠는바 본 발명이 하기의 실시예에 의해서만 반드시 한정되는 것은 아니다.Hereinafter, the configuration of the present invention will be described in more detail based on the following examples, but the present invention is not necessarily limited only by the following examples.

1. 합성고무 라텍스 제조1. Synthetic rubber latex manufacturing

(1) 시드라텍스 제조(1) Sidratex manufacturing

(제조예 1)(Production Example 1)

부타디엔 30 중량%, 스티렌 30 중량% 및 아크릴로니트릴 30 중량%로 이루어진 모노머 100 중량부에 대하여, 음이온 유화제 폴리카르본산염 2.0 중량부, 반응개시제인 포타슘퍼설페이드 1.5 중량부, 환원제인 소듐바이설파이드 0.2 중량부 및 증류수 156 중량부를 회분식 반응기에 투입후 100℃에서 2시간 반응시켜 제조하였다.Based on 100 parts by weight of the monomer consisting of 30% by weight of butadiene, 30% by weight of styrene and 30% by weight of acrylonitrile, 2.0 parts by weight of an anionic emulsifier polycarboxylic acid salt, 1.5 parts by weight of potassium persulfide as a reaction initiator, sodium bisulfide as a reducing agent It was prepared by adding 0.2 parts by weight and 156 parts by weight of distilled water to a batch reactor and reacting at 100° C. for 2 hours.

(제조예 2)(Production Example 2)

부타디엔 30 중량%, 스티렌 35 중량% 및 아크릴로니트릴 35 중량%로 이루어진 모노머 100 중량부에 대하여, 음이온 유화제 폴리카르본산염 1.5 중량부, 반응개시제인 포타슘퍼설페이드 1.0 중량부, 환원제인 소듐바이설파이드 0.1 중량부 및 증류수 100 중량부를 회분식 반응기에 투입후 90℃에서 3시간 반응시켜 제조하였다.Based on 100 parts by weight of a monomer consisting of 30% by weight of butadiene, 35% by weight of styrene, and 35% by weight of acrylonitrile, 1.5 parts by weight of an anionic emulsifier polycarboxylic acid salt, 1.0 part by weight of potassium persulfide as a reaction initiator, sodium bisulfide as a reducing agent 0.1 parts by weight and 100 parts by weight of distilled water were added to a batch reactor and reacted at 90° C. for 3 hours to prepare.

(제조예 3)(Production Example 3)

부타디엔 50 중량%, 스티렌 25 중량% 및 아크릴로니트릴 25 중량%로 이루어진 모노머 100 중량부에 대하여, 음이온 유화제 폴리카르본산염 2.5 중량부, 반응개시제인 포타슘퍼설페이드 2.0 중량부, 환원제인 소듐바이설파이드 0.3 중량부 및 증류수 200 중량부를 회분식 반응기에 투입후 110℃에서 1시간 반응시켜 제조하였다.Based on 100 parts by weight of a monomer consisting of 50% by weight of butadiene, 25% by weight of styrene and 25% by weight of acrylonitrile, 2.5 parts by weight of an anionic emulsifier polycarboxylic acid salt, 2.0 parts by weight of potassium persulfide as a reaction initiator, sodium bisulfide as a reducing agent 0.3 parts by weight and 200 parts by weight of distilled water were added to a batch reactor and then reacted at 110° C. for 1 hour to prepare.

(2) 베이스 라텍스 제조(2) base latex manufacturing

(제조예 4)(Production Example 4)

상기 제조예 1에 따라 제조된 시드 라텍스 100 중량부에 대하여, 불포화 카르복실산인 메틸메타아크릴레이트 5 중량부, 메타크릴산 0.3 중량부, 아크릴산 0.3 중량부, 이타코닉산 0.1 중량부, 퓨마릭산 0.1 중량부, 음이온 유화제 0.2 중량부, 암포트릭 안정제인 노닐페닐에테르슬폰산염 0.1 중량부, 전해질인 포타슘 카바네이트 0.5 중량부, 분자량 조절제인 n-도데실메르캅탄 0.1 중량부, 유기 가교제인 디비닐벤젠 0.1 중량부, 2헥사에틸메틸아크릴레이트 1.0 중량부 및 아크릴 아마이드 1.0 중량부를 반응기에 투입하고, 30분간 교반시키면서 내부온도를 53℃까지 상승시킨 후, 내부 온도가 55℃에 도달했을 때, 반응 개시제인 포타슘퍼설페이드 1 중량부 및 환원제인 소듐바이설파이드 0.1 중량부를 투입하고 이때를 반응 시작시간으로 기준한 후, 모노머인 부타디엔 10 중량부, 스티렌 10 중량부 및 아크릴로니트릴 25 ~ 50 중량부를 4 시간 동안 일정 유량으로 연속적으로 투입하여 2 시간 반응시킨 후, 80℃로 승온하고, 반응 4 시간째에 불포화 카르복실산인 메타크릴산 0.3 ~ 0.5 중량부 및 아크릴산 0.3 ~ 0.5 중량부를 반응기에 투입하고, 최종 TSC 47% 이상, 전환율 98%이상이 되었을 때, 수산화나트륨 수용액으로 pH를 9.5 ~ 11로 조정한 후 비이온성 유화제인 노닐페닐에테르계 유화제 1 중량부 및 감수 지연제인 폴리카르본산염 1.0 중량부를 첨가하고 80℃의 진공상태에서 1시간 숙성 및 반응시켜 제조하였다.With respect to 100 parts by weight of the seed latex prepared according to Preparation Example 1, 5 parts by weight of unsaturated carboxylic acid methyl methacrylate, 0.3 parts by weight of methacrylic acid, 0.3 parts by weight of acrylic acid, 0.1 parts by weight of itaconic acid, 0.1 parts by weight of fumaric acid Parts by weight, 0.2 parts by weight of anionic emulsifier, 0.1 parts by weight of nonylphenyl ether sulfonic acid salt as an amphoteric stabilizer, 0.5 parts by weight of potassium carbonate as an electrolyte, 0.1 parts by weight of n-dodecylmercaptan as a molecular weight modifier, and divinylbenzene as an organic crosslinking agent 0.1 parts by weight, 1.0 parts by weight of 2hexaethylmethyl acrylate and 1.0 parts by weight of acrylamide were added to the reactor, and the internal temperature was raised to 53°C while stirring for 30 minutes, and when the internal temperature reached 55°C, the reaction initiator 1 part by weight of phosphorus potassium persulfide and 0.1 part by weight of sodium bisulfide as a reducing agent are added, and this is based on the reaction start time, and then 10 parts by weight of butadiene, 10 parts by weight of styrene, and 25 to 50 parts by weight of acrylonitrile are 4 hours. During the reaction, 0.3 to 0.5 parts by weight of methacrylic acid and 0.3 to 0.5 parts by weight of acrylic acid, which are unsaturated carboxylic acids, were added to the reactor after the reaction was carried out for 2 hours at a constant flow rate, and the temperature was raised to 80°C. When the TSC is 47% or more and the conversion rate is 98% or more, adjust the pH to 9.5 to 11 with an aqueous sodium hydroxide solution, and then add 1 part by weight of nonylphenyl ether-based emulsifier, which is a nonionic emulsifier, and 1.0 part by weight of polycarboxylic acid salt, which is a water reducing agent. And it was prepared by aging and reacting for 1 hour in a vacuum at 80 ℃.

(제조예 5)(Production Example 5)

상기 제조예 2에 따라 제조된 시드 라텍스 100 중량부에 대하여, 불포화 카르복실산인 메틸메타아크릴레이트 5 중량부, 메타크릴산 0.3 중량부, 아크릴산 0.3 중량부, 이타코닉산 0.1 중량부, 퓨마릭산 0.1 중량부, 음이온 유화제 0.2 중량부, 암포트릭 안정제인 노닐페닐에테르슬폰산염 0.1 중량부, 전해질인 포타슘 카바네이트 0.5 중량부, 분자량 조절제인 n-도데실메르캅탄 0.1 중량부, 유기 가교제인 디비닐벤젠 0.1 중량부, 2헥사에틸메틸아크릴레이트 1.0 중량부 및 아크릴 아마이드 1.0 중량부를 반응기에 투입하고, 25분간 교반시키면서 내부온도를 53℃까지 상승시킨 후, 내부 온도가 54℃에 도달했을 때, 반응 개시제인 포타슘퍼설페이드 1 중량부 및 환원제인 소듐바이설파이드 0.1 중량부를 투입하고 이때를 반응 시작시간으로 기준한 후, 모노머인 부타디엔 10 중량부, 스티렌 10 중량부 및 아크릴로니트릴 25 ~ 50 중량부를 3 시간 동안 일정 유량으로 연속적으로 투입하여 1 시간 반응시킨 후, 75℃로 승온하고, 반응 3 시간째에 불포화 카르복실산인 메타크릴산 0.3 ~ 0.5 중량부 및 아크릴산 0.3 ~ 0.5 중량부를 반응기에 투입하고, 최종 TSC 47% 이상, 전환율 98%이상이 되었을 때, 수산화나트륨 수용액으로 pH를 9.5 ~ 11로 조정한 후 비이온성 유화제인 노닐페닐에테르계 유화제 1 중량부 및 감수 지연제인 폴리카르본산염 1.0 중량부를 첨가하고 75℃의 진공상태에서 1시간 숙성 및 반응시켜 제조하였다.With respect to 100 parts by weight of the seed latex prepared according to Preparation Example 2, 5 parts by weight of unsaturated carboxylic acid methyl methacrylate, 0.3 parts by weight of methacrylic acid, 0.3 parts by weight of acrylic acid, 0.1 parts by weight of itaconic acid, 0.1 parts by weight of fumaric acid Parts by weight, 0.2 parts by weight of anionic emulsifier, 0.1 parts by weight of nonylphenyl ether sulfonic acid salt as an amphoteric stabilizer, 0.5 parts by weight of potassium carbonate as an electrolyte, 0.1 parts by weight of n-dodecylmercaptan as a molecular weight modifier, and divinylbenzene as an organic crosslinking agent 0.1 parts by weight, 1.0 parts by weight of 2hexaethylmethyl acrylate and 1.0 parts by weight of acrylamide were added to the reactor, and the internal temperature was raised to 53°C while stirring for 25 minutes, and when the internal temperature reached 54°C, the reaction initiator 1 part by weight of phosphorus potassium persulfide and 0.1 part by weight of sodium bisulfide as a reducing agent are added, and this is based on the reaction start time, and then 10 parts by weight of butadiene, 10 parts by weight of styrene, and 25 to 50 parts by weight of acrylonitrile are 3 hours. During the reaction, 0.3 to 0.5 parts by weight of methacrylic acid and 0.3 to 0.5 parts by weight of acrylic acid, which are unsaturated carboxylic acids, were added to the reactor for 1 hour, and then the temperature was raised to 75°C. When the TSC is 47% or more and the conversion rate is 98% or more, adjust the pH to 9.5 to 11 with an aqueous sodium hydroxide solution, and then add 1 part by weight of nonylphenyl ether-based emulsifier, which is a nonionic emulsifier, and 1.0 part by weight of polycarboxylic acid salt, which is a water reducing agent. Then, it was prepared by aging and reacting for 1 hour in a vacuum at 75°C.

(제조예 6)(Production Example 6)

상기 제조예 3에 따라 제조된 시드 라텍스 100 중량부에 대하여, 불포화 카르복실산인 메틸메타아크릴레이트 10 중량부, 메타크릴산 0.5 중량부, 아크릴산 0.5 중량부, 이타코닉산 0.5 중량부, 퓨마릭산 3.0 중량부, 음이온 유화제 0.5 중량부, 암포트릭 안정제인 노닐페닐에테르슬폰산염 0.3 중량부, 전해질인 포타슘 카바네이트 1.5 중량부, 분자량 조절제인 n-도데실메르캅탄 0.7 중량부, 유기 가교제인 디비닐벤젠 0.7 중량부, 2헥사에틸메틸아크릴레이트 5.0 중량부 및 아크릴 아마이드 5.0 중량부를 반응기에 투입하고, 35분간 교반시키면서 내부온도를 50℃까지 상승시킨 후, 내부 온도가 56℃에 도달했을 때, 반응 개시제인 포타슘퍼설페이드 3 중량부 및 환원제인 소듐바이설파이드 0.3 중량부를 투입하고 이때를 반응 시작시간으로 기준한 후, 모노머인 부타디엔 20 중량부, 스티렌 20 중량부 및 아크릴로니트릴 50 중량부를 5시간 동안 일정 유량으로 연속적으로 투입하여 3시간 반응시킨 후, 85℃로 승온하고, 반응 5시간째에 불포화 카르복실산인 메타크릴산 0.5 중량부 및 아크릴산 0.5 중량부를 반응기에 투입하고, 최종 TSC 47% 이상, 전환율 98%이상이 되었을 때, 수산화나트륨 수용액으로 pH를 9.5 ~ 11로 조정한 후 비이온성 유화제인 노닐페닐에테르계 유화제 3 중량부 및 감수 지연제인 폴리카르본산염 2.0 중량부를 첨가하고 80℃의 진공상태에서 2시간 숙성 및 반응시켜 제조하였다.Based on 100 parts by weight of the seed latex prepared according to Preparation Example 3, 10 parts by weight of unsaturated carboxylic acid methyl methacrylate, 0.5 parts by weight of methacrylic acid, 0.5 parts by weight of acrylic acid, 0.5 parts by weight of itaconic acid, and 3.0 parts by weight of fumaric acid Parts by weight, 0.5 parts by weight of anionic emulsifier, 0.3 parts by weight of nonylphenyl ether sulfonic acid salt as an amphoteric stabilizer, 1.5 parts by weight of potassium carbonate as an electrolyte, 0.7 parts by weight of n-dodecylmercaptan as a molecular weight modifier, and divinylbenzene as an organic crosslinking agent 0.7 parts by weight, 5.0 parts by weight of 2hexaethylmethyl acrylate and 5.0 parts by weight of acrylamide were added to the reactor, and the internal temperature was raised to 50°C while stirring for 35 minutes, and when the internal temperature reached 56°C, the reaction initiator After adding 3 parts by weight of phosphorus potassium persulfide and 0.3 parts by weight of sodium bisulfide as a reducing agent, and based on this as the reaction start time, 20 parts by weight of butadiene, 20 parts by weight of styrene, and 50 parts by weight of acrylonitrile as monomers were fixed for 5 hours. After 3 hours of reaction by continuously introduced at a flow rate, the temperature was raised to 85°C, and 0.5 parts by weight of methacrylic acid and 0.5 parts by weight of acrylic acid, which are unsaturated carboxylic acids, were added to the reactor at the 5th hour of reaction, and the final TSC was 47% or more, conversion rate When it is more than 98%, adjust the pH to 9.5 to 11 with sodium hydroxide aqueous solution, then add 3 parts by weight of nonylphenyl ether emulsifier, which is a nonionic emulsifier, and 2.0 parts by weight of polycarboxylic acid salt, which is a water-reducing retardant, in a vacuum at 80℃. It was prepared by aging and reacting for 2 hours.

(3) 합성고무 라텍스 제조(3) Manufacture of synthetic rubber latex

(제조예 7)(Production Example 7)

상기 제조예 4에 따라 제조된 베이스 라텍스 100 중량부에 대하여, 무기 가교제인 유황 5 중량부, 산화아연 분산액 3 중량부, 가교촉진제인 징크디에틸디치오카바메이트 분산액 1.0 중량부, 2-머르캅토벤조치아졸징크염 분산액 1.0 중량부, 가교보강제인 카본블랙 분산액 10 중량부, 화이트카본 10 중량부 및 분산제인 타몰엔 분산제 10 중량부를 혼합하고 이를 볼밀로 24 시간 분산시킨 후 200 메쉬의 여과망으로 여과시켜 분산수용액을 제조하고, 상기 분산수용액을 반응기에 투입후 75℃에서 2시간 동안 교반시켜 제조하였다.Based on 100 parts by weight of the base latex prepared according to Preparation Example 4, 5 parts by weight of sulfur as an inorganic crosslinking agent, 3 parts by weight of zinc oxide dispersion, 1.0 parts by weight of zinc diethyldithiocarbamate dispersion as a crosslinking accelerator, 2-mercapto 1.0 parts by weight of benzothiazol zinc salt dispersion, 10 parts by weight of carbon black dispersion as a crosslinking reinforcing agent, 10 parts by weight of white carbon, and 10 parts by weight of a dispersant tamolene dispersant were mixed and dispersed for 24 hours with a ball mill, and then filtered through a 200 mesh filter network. To prepare an aqueous dispersion solution, and the aqueous dispersion solution was added to a reactor and stirred at 75° C. for 2 hours to prepare.

(제조예 8)(Production Example 8)

상기 제조예 5에 따라 제조된 베이스 라텍스 100 중량부에 대하여, 무기 가교제인 유황 5 중량부, 산화아연 분산액 3 중량부, 가교촉진제인 징크디에틸디치오카바메이트 분산액 1.0 중량부, 2-머르캅토벤조치아졸징크염 분산액 1.0 중량부, 가교보강제인 카본블랙 분산액 10 중량부, 화이트카본 10 중량부 및 분산제인 타몰엔 분산제 10 중량부를 혼합하고 이를 볼밀로 20 시간 분산시킨 후 150 메쉬의 여과망으로 여과시켜 분산수용액을 제조하고, 상기 분산수용액을 반응기에 투입후 60℃에서 1시간 동안 교반시켜 제조하였다.Based on 100 parts by weight of the base latex prepared according to Preparation Example 5, 5 parts by weight of sulfur as an inorganic crosslinking agent, 3 parts by weight of zinc oxide dispersion, 1.0 parts by weight of zinc diethyldithiocarbamate dispersion as a crosslinking accelerator, 2-mercapto 1.0 parts by weight of benzothiazol zinc salt dispersion, 10 parts by weight of carbon black dispersion as a crosslinking reinforcing agent, 10 parts by weight of white carbon, and 10 parts by weight of a dispersant tamolene dispersant are mixed and dispersed for 20 hours with a ball mill, and then filtered through a 150 mesh filter network To prepare an aqueous dispersion solution, and the aqueous dispersion solution was added to a reactor and stirred at 60° C. for 1 hour to prepare.

(제조예 9)(Production Example 9)

상기 제조예 6에 따라 제조된 베이스 라텍스 100 중량부에 대하여, 무기 가교제인 유황 10 중량부, 산화아연 분산액 5 중량부, 가교촉진제인 징크디에틸디치오카바메이트 분산액 3.0 중량부, 2-머르캅토벤조치아졸징크염 분산액 3.0 중량부, 가교보강제인 카본블랙 분산액 30 중량부, 화이트카본 30 중량부 및 분산제인 타몰엔 분산제 30 중량부를 혼합하고 이를 볼밀로 25시간 분산시킨 후 250 메쉬의 여과망으로 여과시켜 분산수용액을 제조하고, 상기 분산수용액을 반응기에 투입후 60 ~ 80℃에서 3시간 동안 교반시켜 제조하였다.Based on 100 parts by weight of the base latex prepared according to Preparation Example 6, 10 parts by weight of sulfur as an inorganic crosslinking agent, 5 parts by weight of zinc oxide dispersion, 3.0 parts by weight of zinc diethyldithiocarbamate dispersion as a crosslinking accelerator, 2-mercapto 3.0 parts by weight of benzothiazol zinc salt dispersion, 30 parts by weight of carbon black dispersion as a crosslinking reinforcing agent, 30 parts by weight of white carbon, and 30 parts by weight of a dispersant tamolene dispersant are mixed and dispersed for 25 hours with a ball mill, and then filtered through a 250 mesh filter net. To prepare an aqueous dispersion solution, and the aqueous dispersion solution was added to a reactor and stirred at 60 to 80° C. for 3 hours.

2. 라텍스 개질 초속경 자기 수평 바닥재 조성물의 제조2. Preparation of latex-modified ultra-fast hardness self-horizontal flooring composition

(실시예 1)(Example 1)

제조예 7에 따른 합성고무 라텍스 10 중량%와 초속경성 무기계 파우더 90 중량%로 이루어진 기재 100 중량부에 대하여 멜라민계 유동화제 0.5 중량부, 실리콘계 소포제 0.2 중량부, 엑시드계 지연제 0.1 중량부를 혼합하여 자기 수평 바닥재 조성물을 제조하였다. Mixing 0.5 parts by weight of a melamine-based fluidizing agent, 0.2 parts by weight of a silicone-based antifoaming agent, and 0.1 parts by weight of an acid-based retardant based on 100 parts by weight of the base material consisting of 10% by weight of the synthetic rubber latex according to Preparation Example 7 and 90% by weight of the ultrafast-hardening inorganic powder. A self-leveling flooring composition was prepared.

상기 초속경성 무기계 파우더는 입자 크기가 6호사인 강사 100 중량부에 대하여, 초속경 시멘트 10 중량부, 포틀랜드 시멘트 10 중량부, 백색 시멘트 6 중량부, 알루미나 시멘트 6 중량부와 고로 스래그 분말 2 중량부 및 리그닌설폰산염계 감수제, 팽창제, 메틸셀룰로오스계 증점제, 폴리카르복실산계 분산제가 각각 0.1 중량부로 이루어진 것을 사용하였다. The ultra-fast-hardening inorganic powder is based on 100 parts by weight of the instructor with a particle size of 6, 10 parts by weight of ultra-fast-hard cement, 10 parts by weight of Portland cement, 6 parts by weight of white cement, 6 parts by weight of alumina cement, and 2 parts by weight of blast furnace slag powder. Part and lignin sulfonate-based water reducing agent, swelling agent, methylcellulose-based thickener, and polycarboxylic acid-based dispersant were each composed of 0.1 parts by weight.

(실시예 2)(Example 2)

제조예 8에 따른 합성고무 라텍스 40 중량%와 초속경성 무기계 파우더 60 중량%로 이루어진 기재 100 중량부에 대하여 멜라민계 유동화제 0.7 중량부, 실리콘계 소포제 0.2 중량부, 엑시드계 지연제 0.1 중량부를 혼합하여 자기 수평 바닥재 조성물을 제조하였다. By mixing 0.7 parts by weight of a melamine-based fluidizing agent, 0.2 parts by weight of a silicone-based antifoaming agent, and 0.1 parts by weight of an acid-based retardant based on 100 parts by weight of the base material consisting of 40% by weight of the synthetic rubber latex according to Preparation Example 8 and 60% by weight of the ultrafast-hardening inorganic powder. A self-leveling flooring composition was prepared.

상기 초속경성 무기계 파우더는 입자 크기가 6호사인 강사 100 중량부에 대하여, 초속경 시멘트 12 중량부, 포틀랜드 시멘트 12 중량부, 백색 시멘트 4 중량부, 알루미나 시멘트 4 중량부와 고로 스래그 분말 3 중량부 및 리그닌설폰산염계 감수제, 팽창제, 메틸셀룰로오스계 증점제, 폴리카르복실산계 분산제가 각각 0.2 중량부로 이루어진 것을 사용하였다. The super-fast-hardening inorganic powder is based on 100 parts by weight of the instructor with a particle size of No. 6, 12 parts by weight of super-fast-hardening cement, 12 parts by weight of Portland cement, 4 parts by weight of white cement, 4 parts by weight of alumina cement, and 3 parts by weight of blast furnace slag powder. Part and lignin sulfonate-based water reducing agent, swelling agent, methylcellulose-based thickener, and polycarboxylic acid-based dispersant were each composed of 0.2 parts by weight.

(실시예 3)(Example 3)

제조예 9에 따른 합성고무 라텍스 50 중량%와 초속경성 무기계 파우더 50 중량%로 이루어진 기재 100 중량부에 대하여 멜라민계 유동화제 0.8 중량부, 실리콘계 소포제 0.3 중량부, 엑시드계 지연제 0.2 중량부를 혼합하여 자기 수평 바닥재 조성물을 제조하였다. Mixing 0.8 parts by weight of a melamine-based fluidizing agent, 0.3 parts by weight of a silicone-based antifoaming agent, and 0.2 parts by weight of an acid-based retardant based on 100 parts by weight of the base material consisting of 50% by weight of the synthetic rubber latex according to Preparation Example 9 and 50% by weight of the ultrafast setting inorganic powder. A self-leveling flooring composition was prepared.

상기 초속경성 무기계 파우더는 입자 크기가 6호사인 강사 100 중량부에 대하여, 초속경 시멘트 15 중량부, 포틀랜드 시멘트 15 중량부, 백색 시멘트 6 중량부, 알루미나 시멘트 6 중량부와 고로 스래그 분말 5 중량부 및 리그닌설폰산염계 감수제, 팽창제, 메틸셀룰로오스계 증점제, 폴리카르복실산계 분산제가 각각 0.3 중량부로 이루어진 것을 사용하였다. The ultra-fast-hardening inorganic powder is based on 100 parts by weight of the instructor with a particle size of 6, 15 parts by weight of ultra-fast-diameter cement, 15 parts by weight of Portland cement, 6 parts by weight of white cement, 6 parts by weight of alumina cement, and 5 parts by weight of blast furnace slag powder. Part and lignin sulfonate-based water reducing agent, swelling agent, methylcellulose-based thickener, and polycarboxylic acid-based dispersant were each composed of 0.3 parts by weight.

(비교예 1)(Comparative Example 1)

실시예 1과 동일한 조성 성분 및 성분비에 의하되, 합성고무 라텍스를 사용하지 않고 제조하였다. It was prepared according to the same composition and composition ratio as in Example 1, but without using synthetic rubber latex.

(비교예 2)(Comparative Example 2)

실시예 2와 동일한 조성 성분 및 성분비에 의하되, 합성고무 라텍스를 사용하지 않고 제조하였다. It was prepared according to the same composition and composition ratio as in Example 2, but without using synthetic rubber latex.

(비교예 3)(Comparative Example 3)

실시예 3과 동일한 조성 성분 및 성분비에 의하되, 합성고무 라텍스를 사용하지 않고 제조하였다. It was prepared according to the same composition and composition ratio as in Example 3, but without using synthetic rubber latex.

3. 자기 수평 바닥재 조성물의 평가3. Evaluation of self-leveling flooring composition

상기 실시예 1 내지 3 및 비교예 1 내지 3에 따른 자기 수평 바닥재 조성물에 대해, 저온에서의 응결시간, 플로(flow), 휨강도, 압축강도 및 접착강도 시험을 실시하였다. 응결시간 시험은 KS L 5108 「비카트 침에 의한 수경성 시멘트의 응결 시간 시험 방법」에 준하여 저온(5℃)에서 규정된 침이 일정 시간 내에 침입하는 깊이를 1mm 단위로 측정하여 25mm의 침입도를 얻을 때까지 시험을 수행하여 응결시간을 구하였다. 그리고 플로 시험은 KS F 2476(폴리머 시멘트 모르타르 의 시험방법)에 준하여 시험하였으며, 작업성을 위한 Flow 증가로 낙하횟수를 5회로 수정하여 진행하였다. 휨강도 및 압축강도는 KS F 4042(콘크리트 구조물 보수용 폴리머 시멘트 모르타르)에 준하여 시험하였으며, 접착강도는 KS F 2762(콘크리트 보수·보호재의 접착 강도 시험방법)에 준하여 시험하였고 그 결과는 아래 [표 1]에 나타내었다.For the self-horizontal flooring compositions according to Examples 1 to 3 and Comparative Examples 1 to 3, the setting time at low temperature, flow, flexural strength, compressive strength, and adhesive strength were tested. The setting time test is conducted in accordance with KS L 5108 “Test Method for Setting Time of Hydraulic Cement by Vicat Needle” by measuring the depth of penetration of the specified needle within a certain time at low temperature (5°C) in units of 1 mm and measuring the penetration of 25 mm. The test was carried out until obtained, and the setting time was determined. In addition, the flow test was conducted according to KS F 2476 (Test Method of Polymer Cement Mortar), and the number of drops was modified to 5 times due to increased flow for workability. Flexural strength and compressive strength were tested according to KS F 4042 (polymer cement mortar for repairing concrete structures), and adhesive strength was tested according to KS F 2762 (Adhesion strength test method of concrete repair and protective materials), and the results are shown in [Table 1] ].

물성Properties 실시예Example 비교예Comparative example 1One 22 33 1One 22 33 초결(5℃, 분)Initial determination (5℃, minute) 77 77 66 1111 1111 1111 종결(5℃, 분)Termination (5℃, min) 2525 2626 2626 3838 3737 3838 플로(mm)Flow (mm) 270270 267267 265265 212212 231231 233233 휨강도
(kgf/cm2)
Flexural strength
(kgf/cm 2 )
3일3 days 5757 6767 6868 2626 4646 5050
7일7 days 8484 8585 8989 3030 5656 7373 28일28 days 107107 109109 109109 3030 6363 8686 압축강도
(kgf/cm2)
Compressive strength
(kgf/cm 2 )
3일3 days 342342 422422 390390 8888 101101 388388
7일7 days 372372 556556 478478 122122 128128 469469 28일28 days 521521 750750 642642 130130 228228 530530 접착강도
(kgf/cm2)
Adhesive strength
(kgf/cm 2 )
3일3 days 1818 1818 1717 44 66 1111
7일7 days 1919 2121 2222 77 88 1414 28일28 days 2424 3030 3030 88 1111 1818

상기 [표 1]에서와 같이, 본 발명의 실시예 1 내지 3에 따른 자기 수평 바닥재 조성물은 시멘트와 라텍스에 가교 구조가 이루어짐에 따라 저온에서의 경화특성이 우수할 뿐만 아니라 비교예 1 내지 3에 비하여 플로(흐름성), 휨강도, 압축강도, 접착강도 등과 같은 물리적 특성이 매우 우수한 것이 확인되었다. As shown in [Table 1], the self-horizontal flooring compositions according to Examples 1 to 3 of the present invention not only have excellent curing properties at low temperatures, but also in Comparative Examples 1 to 3 as a crosslinked structure is formed between cement and latex. In comparison, it was confirmed that physical properties such as flow (flowability), flexural strength, compressive strength, and adhesive strength were very excellent.

상술한 바와 같이, 본 발명의 바람직한 실시예를 참조하여 설명하였지만 해당 기술분야의 당업자라면 하기의 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.As described above, although it has been described with reference to preferred embodiments of the present invention, those skilled in the art will be able to variously modify and change the present invention within the scope not departing from the spirit and scope of the present invention described in the following claims. You will understand that you can.

Claims (3)

초속경 자기 수평 바닥재 조성물에 있어서,
합성고무 라텍스 10 ~ 40 중량% 및 초속경성 무기계 파우더 60 ~ 90 중량%로 이루어진 기재 100 중량부에 대하여, 유동화제 0.5 ~ 0.8 중량부, 소포제 0.2 ~ 0.3 중량부 및 지연제 0.1 ~ 0.2 중량부를 혼합하여 이루어지되,
상기 합성고무 라텍스는 베이스 라텍스 100 중량부에 대하여, 무기 가교제인 유황 5 ~ 10 중량부, 산화아연 분산액 3 ~ 5 중량부, 가교촉진제인 징크디에틸디치오카바메이트 분산액 1.0 ~ 3.0 중량부, 2-머르캅토벤조치아졸징크염 분산액 1.0 ~ 3.0 중량부, 가교보강제인 카본블랙 분산액 10 ~ 30 중량부, 화이트카본 10 ~ 30 중량부 및 분산제인 타몰엔 분산제 10 ~ 30 중량부를 혼합하고 이를 볼밀로 20 ~ 25시간 분산시킨 후 150 ~ 250 메쉬의 여과망으로 여과시켜 분산수용액을 제조하고, 상기 분산수용액을 반응기에 투입후 60 ~ 80℃에서 1 ~ 3시간 동안 교반시켜 제조되되, 상기 베이스 라텍스는, 시드 라텍스 100 중량부에 대하여, 불포화 카르복실산인 메틸메타아크릴레이트 5 ~ 10 중량부, 메타크릴산 0.3 ~ 0.5 중량부, 아크릴산 0.3 ~ 0.5 중량부, 이타코닉산 0.1 ~ 0.5 중량부, 퓨마릭산 0.1 ~ 3.0 중량부, 음이온 유화제 0.2 ~ 0.5 중량부, 암포트릭 안정제 0.1 ~ 0.3 중량부, 전해질인 포타슘 카바네이트 0.5 ~ 1.5 중량부, 분자량 조절제 0.1 ~ 0.7 중량부, 유기 가교제인 디비닐벤젠 0.1 ~ 0.7 중량부, 2헥사에틸메틸아크릴레이트 1.0 ~ 5.0 중량부 및 아크릴 아마이드 1.0 ~ 5.0 중량부를 반응기에 투입하고, 25 ~ 35분간 교반시키면서 내부온도를 50 ~ 53℃까지 상승시킨 후, 내부 온도가 54 ~ 56℃에 도달했을 때, 반응 개시제인 포타슘퍼설페이드 1 ~ 3 중량부 및 환원제인 소듐바이설파이드 0.1 ~ 0.3 중량부를 투입하고 이때를 반응 시작시간으로 기준한 후, 모노머인 부타디엔 10 ~ 20 중량부, 스티렌 10 ~ 20 중량부 및 아크릴로니트릴 25 ~ 50 중량부를 3 ~ 5시간 동안 일정 유량으로 연속적으로 투입하여 1 ~ 3시간 반응시킨 후, 75 ~ 85℃로 승온하고, 반응 3 ~ 5시간째에 불포화 카르복실산인 메타크릴산 0.3 ~ 0.5 중량부 및 아크릴산 0.3 ~ 0.5 중량부를 반응기에 투입하고, 수산화나트륨 수용액으로 pH를 9.5 ~ 11로 조정한 후 비이온성 유화제인 노닐페닐에테르계 유화제 1 ~3 중량부 및 감수 지연제인 폴리카르본산염 1.0 ~ 2.0 중량부를 첨가하고 75 ~ 80℃의 진공상태에서 1 ~ 2시간 숙성 및 반응시켜 제조되며, 상기 과정을 거쳐 제조되는, 1차 가교된 베이스 라텍스는 전 고형분 46 ~ 50 중량%, 입자경 1400~1800Å 겔 함유량 80 ~ 85 중량%, 점도 95 ~ 100cps, pH 10 ~ 12, 응고량 0.05 ~ 0.07%를 나타내며, 상기 시드 라텍스는 부타디엔 30 ~ 50 중량%, 스티렌 25 ~ 35 중량% 및 아크릴로니트릴 25 ~ 35 중량%로 이루어진 모노머 100 중량부에 대하여, 음이온 유화제 1.5 ~ 2.5 중량부, 반응개시제인 포타슘퍼설페이드 1.0 ~ 2.0 중량부, 환원제인 소듐바이설파이드 0.1 ~ 0.3 중량부 및 증류수 100 ~ 200 중량부를 회분식 반응기에 투입후 90 ~ 110℃에서 1 ~ 3시간 반응시켜 제조되고, 상기 과정을 거쳐 제조되는 시드 라텍스의 물성은 전 고형분함유량 30 ~ 40 중량%, 평균입자크기 300 ~ 500 Å, pH 2.0 ~ 4.0 및 점도 20 ~ 50cps를 나타내고, 상기 음이온 유화제는, 폴리카르본산염, 소디움도데실벤젠설포네이트, 소디움라우릴설페이트, 소디움옥틸설페이트, 소디움톨루엔설포네이트, 포타슘스테아릴포스페이트 또는 포타슘스테아레이트 중에서 단독 또는 2종 이상 병용하여 사용하며, 상기 암포트릭 안정제는, 노닐페닐에테르슬폰산염 또는 노닐페닐에테르슬폰산 암모늄 중에서 단독 또는 2종 이상 병용하여 사용하고, 상기 분자량 조절제는, n-도데실메르캅탄, t-도데실메르캅탄 또는 n-옥틸메르캅탄 중에서 단독 또는 2종 이상 병용하여 사용하며,
상기 초속경성 무기계 파우더는 강사 100 중량부에 대하여, 초속경 시멘트 10 ~ 15 중량부, 포틀랜드 시멘트 10 ~ 15 중량부, 백색 시멘트 3 ~ 6 중량부, 알루미나 시멘트 3 ~ 6 중량부와 고로 스래그 분말 2 ~ 5 중량부 및 기타 첨가제인 감수제, 팽창제, 증점제, 분산제가 각각 0.1 ~ 0.3 중량부로 이루어지는 것을 사용하고,
상기 유동화제는 멜라민계 유동화제 또는 나프탈렌계 유동화제를 단독 또는 혼합하여 사용하며,
상기 소포제는 실리콘계 소포제 또는 지방산계 소포제를 단독 또는 혼합하여 사용하고,
상기 지연제는 글루콘산염계 지연제, 시트릭산염계 지연제, 타르타르산염계 지연제, 규불화마그네슘염계 지연제, 아크릴산염계 지연제 또는 엑시드계 지연제를 사용하는 것을 특징으로 하는, 저온에서 우수한 경화를 가지는 라텍스 개질 초속경 자기 수평 바닥재 조성물.
In the ultra-fast-hardening magnetic horizontal flooring composition,
Mixing 0.5 to 0.8 parts by weight of a fluidizing agent, 0.2 to 0.3 parts by weight of a defoaming agent, and 0.1 to 0.2 parts by weight of a retarder based on 100 parts by weight of the base material consisting of 10 to 40% by weight of synthetic rubber latex and 60 to 90% by weight of the ultrafast-hardening inorganic powder. And it is done,
The synthetic rubber latex is based on 100 parts by weight of the base latex, 5 to 10 parts by weight of sulfur as an inorganic crosslinking agent, 3 to 5 parts by weight of zinc oxide dispersion, 1.0 to 3.0 parts by weight of zinc diethyldithiocarbamate dispersion as a crosslinking accelerator, 2 -Mercaptobenzothiazole zinc salt dispersion 1.0 to 3.0 parts by weight, carbon black dispersion 10 to 30 parts by weight as a crosslinking reinforcing agent, 10 to 30 parts by weight of white carbon, and 10 to 30 parts by weight of tamolene dispersant as a dispersant are mixed and this is mixed with a ball mill. Disperse for 20 to 25 hours and then filtered through a 150 to 250 mesh filter network to prepare a dispersion aqueous solution, and after introducing the dispersion aqueous solution to a reactor, prepared by stirring for 1 to 3 hours at 60 to 80°C, the base latex, Based on 100 parts by weight of seed latex, 5 to 10 parts by weight of unsaturated carboxylic acid methyl methacrylate, 0.3 to 0.5 parts by weight of methacrylic acid, 0.3 to 0.5 parts by weight of acrylic acid, 0.1 to 0.5 parts by weight of itaconic acid, 0.1 of fumaric acid ~ 3.0 parts by weight, 0.2 to 0.5 parts by weight of anionic emulsifier, 0.1 to 0.3 parts by weight of amphoteric stabilizer, 0.5 to 1.5 parts by weight of potassium carbonate as an electrolyte, 0.1 to 0.7 parts by weight of molecular weight control agent, 0.1 to 0.7 parts by weight of divinylbenzene as an organic crosslinking agent Part by weight, 1.0 to 5.0 parts by weight of 2hexaethylmethyl acrylate and 1.0 to 5.0 parts by weight of acrylamide were added to the reactor, and the internal temperature was raised to 50 to 53°C while stirring for 25 to 35 minutes, and the internal temperature was 54 to When it reaches 56°C, 1 to 3 parts by weight of potassium persulfide as a reaction initiator and 0.1 to 0.3 parts by weight of sodium bisulfide as a reducing agent are added, and this is based on the reaction start time, and then 10 to 20 parts by weight of butadiene as a monomer, 10 to 20 parts by weight of styrene and 25 to 50 parts by weight of acrylonitrile were continuously added at a constant flow rate for 3 to 5 hours and reacted for 1 to 3 hours, and then the temperature was raised to 75 to 85°C, and the reaction was performed at 3 to 5 hours. Unsaturated carboxylic acid methacrylic acid 0.3 ~ 0.5 parts by weight and 0.3 to 0.5 parts by weight of acrylic acid are added to the reactor, and the pH is adjusted to 9.5 to 11 with an aqueous sodium hydroxide solution, and then 1 to 3 parts by weight of a non-ionic emulsifier nonylphenyl ether-based emulsifier and a polycarboxylic acid salt that is a water reduction retardant 1.0 to 2.0 parts by weight are added and prepared by aging and reacting for 1 to 2 hours in a vacuum at 75 to 80°C. The primary crosslinked base latex prepared through the above process has a total solid content of 46 to 50% by weight, a particle diameter of 1400 ~1800Å gel content 80 to 85% by weight, viscosity 95 to 100cps, pH 10 to 12, coagulation amount 0.05 to 0.07%, and the seed latex is 30 to 50% by weight of butadiene, 25 to 35% by weight of styrene and acrylonitrile Based on 100 parts by weight of the monomer consisting of 25 to 35% by weight, 1.5 to 2.5 parts by weight of an anionic emulsifier, 1.0 to 2.0 parts by weight of potassium persulfide as a reaction initiator, 0.1 to 0.3 parts by weight of sodium bisulfide as a reducing agent, and 100 to 200 parts by weight of distilled water After adding the part to the batch reactor, it is prepared by reacting at 90 to 110°C for 1 to 3 hours, and the physical properties of the seed latex prepared through the above process have a total solid content of 30 to 40 wt%, an average particle size of 300 to 500 Å, pH 2.0 Represents ~ 4.0 and viscosity 20 ~ 50 cps, the anionic emulsifier, in polycarboxylic acid salt, sodium dodecylbenzenesulfonate, sodium lauryl sulfate, sodium octyl sulfate, sodium toluenesulfonate, potassium stearyl phosphate or potassium stearate It is used alone or in combination of two or more, and the amphoteric stabilizer is used alone or in combination of two or more in nonylphenyl ether sulfonic acid salt or nonyl phenyl ether sulfonic acid ammonium, and the molecular weight modifier is n-dodecyl mercaptan , t-dodecyl mercaptan or n-octyl mercaptan, used alone or in combination of two or more,
The ultra-fast-hardening inorganic powder is based on 100 parts by weight of the instructor, 10 to 15 parts by weight of ultra-fast cement, 10 to 15 parts by weight of Portland cement, 3 to 6 parts by weight of white cement, 3 to 6 parts by weight of alumina cement, and blast furnace slag powder. 2 to 5 parts by weight and 0.1 to 0.3 parts by weight of a water reducing agent, an expanding agent, a thickening agent, and a dispersant, respectively, and other additives,
The fluidizing agent is used alone or in combination with a melamine-based fluidizing agent or a naphthalene-based fluidizing agent,
The antifoaming agent is used alone or in combination with a silicone-based antifoaming agent or a fatty acid-based antifoaming agent,
The retarder is characterized by using a gluconate-based retarder, a citrate-based retarder, a tartrate-based retarder, a magnesium silicate salt-based retarder, an acrylate-based retarder or an acid-based retarder. Latex-modified ultra-fast hardness self-horizontal flooring composition with excellent curing.
삭제delete 삭제delete
KR1020190023747A 2019-02-28 2019-02-28 Latex modified ultra rapid hardening self levelling finish material composition having excellent curable property in low temperature KR102164519B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190023747A KR102164519B1 (en) 2019-02-28 2019-02-28 Latex modified ultra rapid hardening self levelling finish material composition having excellent curable property in low temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190023747A KR102164519B1 (en) 2019-02-28 2019-02-28 Latex modified ultra rapid hardening self levelling finish material composition having excellent curable property in low temperature

Publications (2)

Publication Number Publication Date
KR20200105566A KR20200105566A (en) 2020-09-08
KR102164519B1 true KR102164519B1 (en) 2020-10-13

Family

ID=72451293

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190023747A KR102164519B1 (en) 2019-02-28 2019-02-28 Latex modified ultra rapid hardening self levelling finish material composition having excellent curable property in low temperature

Country Status (1)

Country Link
KR (1) KR102164519B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102419127B1 (en) 2022-06-21 2022-07-08 김태훈 Construction method for finishing concrete floor using composition for surface preparation compound and ultra rapid hardening latex modified cement based composition for finishing concrete floor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114702262B (en) * 2022-04-18 2023-05-12 浙江鲁班建材科技股份有限公司 Impervious self-repairing concrete additive, self-repairing agent and preparation method thereof
CN115925341B (en) * 2022-12-20 2024-03-08 中国石油天然气集团有限公司 Flexible self-healing cement slurry for well cementation of salt cavern gas storage and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100837790B1 (en) * 2008-02-19 2008-06-13 이봉규 Floor finishing material composition of self-levelling usung water soluble synthetic rubber latex
KR101454400B1 (en) * 2014-06-30 2014-10-28 주식회사 유니온 Acrylic-Latex Modified Rapid Setting Concrete Composition and Manufacturing Method Thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100398074B1 (en) 1995-12-30 2003-12-18 금강종합건설 주식회사 Cement mortar composition having self-levelling property for heating hot-floor in building
JPH11236258A (en) * 1998-02-23 1999-08-31 Taiheiyo Cement Corp Self-leveling material
KR100609347B1 (en) 2004-11-18 2006-09-04 아세아시멘트주식회사 Composition of semi self leveling mortar for floor-heating system of architecture
KR100769853B1 (en) 2006-06-02 2007-10-24 주식회사 웸 Self-leveling mortar composition
KR101685141B1 (en) * 2015-05-27 2016-12-09 이봉규 Manufacturing method of synthetic rubber latex

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100837790B1 (en) * 2008-02-19 2008-06-13 이봉규 Floor finishing material composition of self-levelling usung water soluble synthetic rubber latex
KR101454400B1 (en) * 2014-06-30 2014-10-28 주식회사 유니온 Acrylic-Latex Modified Rapid Setting Concrete Composition and Manufacturing Method Thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102419127B1 (en) 2022-06-21 2022-07-08 김태훈 Construction method for finishing concrete floor using composition for surface preparation compound and ultra rapid hardening latex modified cement based composition for finishing concrete floor

Also Published As

Publication number Publication date
KR20200105566A (en) 2020-09-08

Similar Documents

Publication Publication Date Title
KR102164527B1 (en) Latex modified ultra rapid hardening concrete composition having excellent curable property in low temperature
KR101995844B1 (en) Mortar composition for repairing and reinforcing underwater concrete structures, and method of repairing and reinforcing underwater concrete structures using the same
US10584061B2 (en) Self-desiccating, dimensionally-stable hydraulic cement compositions with enhanced workability
KR101720504B1 (en) A high early strength cement concrete composition having the improved durability for road pavement and a repairing method of road pavement using the same
KR101681596B1 (en) Mortar composition of improving chemical resistance and durability for repairing and reinforcing concrete structures , and method of repairing and reinforcing concrete structures using the same
KR102164519B1 (en) Latex modified ultra rapid hardening self levelling finish material composition having excellent curable property in low temperature
KR101608018B1 (en) Method of repairing and protecting surface of concrete structure
KR100837790B1 (en) Floor finishing material composition of self-levelling usung water soluble synthetic rubber latex
KR101816756B1 (en) High Performance Fast Cement Concrete Composition and Road Pavement Maintenance Method Using the Same
CN104592460B (en) A kind of preparation method of shrinkage type polycarboxylate high performance water-reducing agent
KR102094430B1 (en) Latex modified ultra rapid hardening concrete composition having excellent curable property in low temperature using the flyash and rnace slag
KR101663690B1 (en) Mortar composition for repairing and reinforcing road gutter and small-damaged part of road, and method of repairing and reinforcing road gutter and small-damaged part of road using the same
CN103864340B (en) A kind of mortar concrete waterproofing agent
KR102054434B1 (en) Eco-Friendly Mortar Composite for Repair Section Comprising Function of Preventing Neutralization and Saltdamage and Constructing Methods Using Thereof
KR101891567B1 (en) Cement mortar composition for repairing concrete structure with improved strength and durability and repairing· reinforcement method of concrete structure therewith
KR101720034B1 (en) A high early strength cement concrete composition having the self-healing for road pavement and a repairing method of road pavement using the same
WO2020135321A1 (en) Highly water-resistant, flexible cementitious coating
KR102301607B1 (en) Latex modified ultra quick-hardening concrete composition having improved durability with graphite and maintenance and construction method of bridge deck and road pavement surface using the same
KR102094432B1 (en) Latex modified ultra rapid hardening concrete composition using the hybrid synthetic rubber latex
KR20130011560A (en) Rapid setting concrete compound containing hydrophobic emulsion and repairing method of concrete structure using the compound
CN108947430B (en) Slow-setting and quick-hardening special functional waterproof mortar and preparation method thereof
CN111875322A (en) Multi-component concrete composite repair mortar
KR101670410B1 (en) Quick-hardening Blended Cement Composition Using Seaweeds and Constructing Methods Using Thereof
CN114395086A (en) Ceramic tile adhesive, preparation method thereof and application thereof in UHPC prefabricated decorative plate reverse-beating process
KR100975581B1 (en) Polymer modified high-early strength concrete composite and repairing method of road pavement using the composite

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant