KR102162783B1 - 엔벨로프 트래킹 변조기에 대한 개선된 공진 억제 - Google Patents

엔벨로프 트래킹 변조기에 대한 개선된 공진 억제 Download PDF

Info

Publication number
KR102162783B1
KR102162783B1 KR1020157023511A KR20157023511A KR102162783B1 KR 102162783 B1 KR102162783 B1 KR 102162783B1 KR 1020157023511 A KR1020157023511 A KR 1020157023511A KR 20157023511 A KR20157023511 A KR 20157023511A KR 102162783 B1 KR102162783 B1 KR 102162783B1
Authority
KR
South Korea
Prior art keywords
path
signal
power supply
envelope tracking
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020157023511A
Other languages
English (en)
Korean (ko)
Other versions
KR20150117681A (ko
Inventor
제라드 윔페니
Original Assignee
스냅트랙 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 스냅트랙 인코포레이티드 filed Critical 스냅트랙 인코포레이티드
Publication of KR20150117681A publication Critical patent/KR20150117681A/ko
Application granted granted Critical
Publication of KR102162783B1 publication Critical patent/KR102162783B1/ko
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • H03F1/0216Continuous control
    • H03F1/0222Continuous control by using a signal derived from the input signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • H03F1/0216Continuous control
    • H03F1/0222Continuous control by using a signal derived from the input signal
    • H03F1/0227Continuous control by using a signal derived from the input signal using supply converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • H03F1/0216Continuous control
    • H03F1/0233Continuous control by using a signal derived from the output signal, e.g. bootstrapping the voltage supply
    • H03F1/0238Continuous control by using a signal derived from the output signal, e.g. bootstrapping the voltage supply using supply converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/211Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only using a combination of several amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/217Class D power amplifiers; Switching amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/38Synchronous or start-stop systems, e.g. for Baudot code
    • H04L25/40Transmitting circuits; Receiving circuits
    • H04L25/49Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
    • H04L25/4902Pulse width modulation; Pulse position modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0045Converters combining the concepts of switch-mode regulation and linear regulation, e.g. linear pre-regulator to switching converter, linear and switching converter in parallel, same converter or same transistor operating either in linear or switching mode
    • H02M2001/0045
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of DC power input into DC power output
    • H02M3/02Conversion of DC power input into DC power output without intermediate conversion into AC
    • H02M3/04Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
    • H02M3/10Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/102A non-specified detector of a signal envelope being used in an amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/135Indexing scheme relating to amplifiers there being a feedback over one or more internal stages in the global amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/375Circuitry to compensate the offset being present in an amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/391Indexing scheme relating to amplifiers the output circuit of an amplifying stage comprising an LC-network
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/432Two or more amplifiers of different type are coupled in parallel at the input or output, e.g. a class D and a linear amplifier, a class B and a class A amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/20Indexing scheme relating to power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F2203/21Indexing scheme relating to power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F2203/211Indexing scheme relating to power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only using a combination of several amplifiers
    • H03F2203/21106An input signal being distributed in parallel over the inputs of a plurality of power amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/20Indexing scheme relating to power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F2203/21Indexing scheme relating to power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F2203/211Indexing scheme relating to power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only using a combination of several amplifiers
    • H03F2203/21142Output signals of a plurality of power amplifiers are parallel combined to a common output

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Amplifiers (AREA)
  • Dc-Dc Converters (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
KR1020157023511A 2013-02-01 2014-01-31 엔벨로프 트래킹 변조기에 대한 개선된 공진 억제 Active KR102162783B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB1301855.1A GB2510396A (en) 2013-02-01 2013-02-01 Controlling resonance in an envelope tracking power supply
GB1301855.1 2013-02-01
PCT/EP2014/051960 WO2014118341A2 (en) 2013-02-01 2014-01-31 Improved resonance suppression for envelope tracking modulator

Publications (2)

Publication Number Publication Date
KR20150117681A KR20150117681A (ko) 2015-10-20
KR102162783B1 true KR102162783B1 (ko) 2020-10-07

Family

ID=47988595

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020157023511A Active KR102162783B1 (ko) 2013-02-01 2014-01-31 엔벨로프 트래킹 변조기에 대한 개선된 공진 억제

Country Status (7)

Country Link
US (1) US9628025B2 (enExample)
EP (1) EP2951922B1 (enExample)
JP (1) JP6392786B2 (enExample)
KR (1) KR102162783B1 (enExample)
CN (1) CN105052036B (enExample)
GB (1) GB2510396A (enExample)
WO (1) WO2014118341A2 (enExample)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9954436B2 (en) 2010-09-29 2018-04-24 Qorvo Us, Inc. Single μC-buckboost converter with multiple regulated supply outputs
US9813036B2 (en) 2011-12-16 2017-11-07 Qorvo Us, Inc. Dynamic loadline power amplifier with baseband linearization
US9300252B2 (en) 2013-01-24 2016-03-29 Rf Micro Devices, Inc. Communications based adjustments of a parallel amplifier power supply
US9445371B2 (en) * 2014-08-13 2016-09-13 Skyworks Solutions, Inc. Apparatus and methods for wideband envelope tracking systems
US9595869B2 (en) * 2015-02-27 2017-03-14 Qualcomm Incorporated Multi-level switching regulator circuits and methods with finite state machine control
GB2538782A (en) 2015-05-28 2016-11-30 Snap Track Inc Improved tracking
US9948240B2 (en) 2015-07-01 2018-04-17 Qorvo Us, Inc. Dual-output asynchronous power converter circuitry
US9912297B2 (en) * 2015-07-01 2018-03-06 Qorvo Us, Inc. Envelope tracking power converter circuitry
US10103693B2 (en) 2015-09-30 2018-10-16 Skyworks Solutions, Inc. Power amplifier linearization system and method
US9973147B2 (en) 2016-05-10 2018-05-15 Qorvo Us, Inc. Envelope tracking power management circuit
US10110169B2 (en) 2016-09-14 2018-10-23 Skyworks Solutions, Inc. Apparatus and methods for envelope tracking systems with automatic mode selection
US10236831B2 (en) 2017-05-12 2019-03-19 Skyworks Solutions, Inc. Envelope trackers providing compensation for power amplifier output load variation
US10516368B2 (en) 2017-06-21 2019-12-24 Skyworks Solutions, Inc. Fast envelope tracking systems for power amplifiers
US10615757B2 (en) 2017-06-21 2020-04-07 Skyworks Solutions, Inc. Wide bandwidth envelope trackers
US10476437B2 (en) 2018-03-15 2019-11-12 Qorvo Us, Inc. Multimode voltage tracker circuit
US11387797B2 (en) 2019-03-15 2022-07-12 Skyworks Solutions, Inc. Envelope tracking systems for power amplifiers
US11374538B2 (en) * 2019-04-09 2022-06-28 Skyworks Solutions, Inc. Apparatus and methods for envelope tracking
CN110365296B (zh) * 2019-05-27 2024-02-13 陕西亚成微电子股份有限公司 一种用于射频功率放大器的电源
WO2022103493A1 (en) * 2020-11-16 2022-05-19 Qorvo Us, Inc. Progressive envelope tracking with delay compensation
US12040758B2 (en) 2022-06-30 2024-07-16 Avago Technologies International Sales PTE, Limited Current sensing circuit with integrated resistor and switch matrix
US12500552B2 (en) * 2022-09-23 2025-12-16 Qualcomm Incorporated Radio frequency (RF) front end envelope tracking with machine learning
US12401279B2 (en) 2023-03-31 2025-08-26 Qorvo Us, Inc. Efficiency improvement in a power management integrated circuit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2484475A (en) * 2010-10-11 2012-04-18 Toshiba Res Europ Ltd A power supply modulator for an RF amplifier, using a current-output class G amplifier

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5543753A (en) * 1994-06-22 1996-08-06 Carver Corporation Audio frequency power amplifiers with actively damped filter
KR101434604B1 (ko) * 2008-03-03 2014-08-26 삼성전자주식회사 제로 전류 스위칭을 이용한 바이어스 모듈레이터 장치 및 방법
JP5430438B2 (ja) * 2010-02-18 2014-02-26 パナソニック株式会社 デジタルアンプ
JP2011193054A (ja) * 2010-03-11 2011-09-29 Fujitsu Ltd 電源装置及び電源装置制御方法
US20130342185A1 (en) * 2011-03-03 2013-12-26 Nec Corporation Power supplying apparatus and control method thereof
WO2013115039A1 (ja) * 2012-02-03 2013-08-08 日本電気株式会社 電源装置及びこれを用いた送信装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2484475A (en) * 2010-10-11 2012-04-18 Toshiba Res Europ Ltd A power supply modulator for an RF amplifier, using a current-output class G amplifier

Also Published As

Publication number Publication date
CN105052036A (zh) 2015-11-11
JP6392786B2 (ja) 2018-09-19
WO2014118341A3 (en) 2014-11-27
GB2510396A (en) 2014-08-06
KR20150117681A (ko) 2015-10-20
US20160006397A1 (en) 2016-01-07
JP2016507190A (ja) 2016-03-07
GB201301855D0 (en) 2013-03-20
US9628025B2 (en) 2017-04-18
EP2951922A2 (en) 2015-12-09
WO2014118341A2 (en) 2014-08-07
EP2951922B1 (en) 2019-01-02
CN105052036B (zh) 2018-08-28

Similar Documents

Publication Publication Date Title
KR102162783B1 (ko) 엔벨로프 트래킹 변조기에 대한 개선된 공진 억제
KR102162776B1 (ko) 피드백을 갖는 인벨로프 추적 변조기
US9590563B2 (en) 2G support for 2G and 3G/4G envelope tracking modulator
KR102243869B1 (ko) Et 변조기에 대한 개선된 전압 부스트
US9298198B2 (en) Noise reduction for envelope tracking
JP4941553B2 (ja) 増幅装置及びドハティ増幅回路の制御方法
EP2951920B1 (en) Improved efficiency for linear amplifier of envelope tracking modulator
WO2014118344A2 (en) Low power modes for 3g/4g envelope tracking modulator
US20170279422A1 (en) Btl output self-oscillating class d amplifier
JP5276428B2 (ja) 電源回路
JP2013165384A (ja) 電源変調装置及び増幅装置

Legal Events

Date Code Title Description
PA0105 International application

Patent event date: 20150828

Patent event code: PA01051R01D

Comment text: International Patent Application

N231 Notification of change of applicant
PN2301 Change of applicant

Patent event date: 20150915

Comment text: Notification of Change of Applicant

Patent event code: PN23011R01D

PG1501 Laying open of application
A201 Request for examination
PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 20190115

Comment text: Request for Examination of Application

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20200416

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20200814

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20200928

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20200928

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20230626

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20240624

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20250625

Start annual number: 6

End annual number: 6