KR102159078B1 - Method for Manufacturing of Heat-radiating Structure - Google Patents

Method for Manufacturing of Heat-radiating Structure Download PDF

Info

Publication number
KR102159078B1
KR102159078B1 KR1020180161230A KR20180161230A KR102159078B1 KR 102159078 B1 KR102159078 B1 KR 102159078B1 KR 1020180161230 A KR1020180161230 A KR 1020180161230A KR 20180161230 A KR20180161230 A KR 20180161230A KR 102159078 B1 KR102159078 B1 KR 102159078B1
Authority
KR
South Korea
Prior art keywords
carbon
graphite
weight
heat dissipation
dispersion
Prior art date
Application number
KR1020180161230A
Other languages
Korean (ko)
Other versions
KR20200073353A (en
Inventor
문규식
Original Assignee
주식회사 태광뉴텍
김종무
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 태광뉴텍, 김종무 filed Critical 주식회사 태광뉴텍
Priority to KR1020180161230A priority Critical patent/KR102159078B1/en
Publication of KR20200073353A publication Critical patent/KR20200073353A/en
Application granted granted Critical
Publication of KR102159078B1 publication Critical patent/KR102159078B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/522Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/536Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite based on expanded graphite or complexed graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/62635Mixing details
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63468Polyamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/02Polythioethers; Polythioether-ethers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6022Injection moulding

Abstract

본 발명은 방열구조체를 형성하기 위한 소재로 흑연재료와 탄소나노튜브를 혼합한 탄소혼합재에 수지를 첨가한 탄소계 소재를 이용함으로써 방열구조체의 방열 성능이 향상되도록 함과 아울러 저중량으로 방열구조체가 적용된 제품의 중량을 줄일 수 있도록 한 방열구조체의 제조방법에 관한 것으로,
인상흑연, 인조흑연, 토상흑연 및 팽창흑연, 판상흑연, 구상흑연으로 이루어진 군으로부터 선택되는 1종 이상의 흑연재료를 1~50㎛의 크기로 파쇄 및 균질화하는 단계와; 탄소나노튜브, 그래핀, 카본블랙으로 이루어진 군으로부터 선택되는 1종 이상의 탄소재료를 20~500㎚의 크기로 파쇄 및 균질화하는 단계와; 분산액 전체 중량을 기준으로 2~20중량%의 함량이 되도록 파쇄된 탄소재료를 용매에 분산시켜 탄소재료 분산물을 형성하는 단계와; 파쇄 및 균질화된 흑연재료 80~98중량%와 탄소재료 분산물 2~20중량%를 혼합한 후 진공 교반기에 투입하여 교반한 후, 진공 교반기의 챔버 내부 온도를 30~50℃까지 하강시켜 안정화하는 단계와; 혼합 교반된 흑연재료와 탄소재료 분산물 20~60중량%와 폴리아미드 수지 또는 폴리페닐렌 설파이드로 이루어진 바인더 40~80중량%를 혼합한 후 건조 및 교반시켜 탄소계 소재를 형성하는 단계; 탄소계 소재에 포함된 고분자의 자외선에 의한 분해방지를 위한 분해방지제와 산화방지제를 각각 1~5중량% 더 포함시킨 후 펠릿화하는 단계; 및 펠릿화된 탄소계 소재를 일정 중량 단위로 블록 금형에 투입하고, 200~350℃의 온도 조건과 80~160㎏f/㎠의 압력으로 30~90초동안 사출 성형하여 방열구조체를 형성하는 단계;를 포함하는 것을 특징으로 한다.
The present invention is to improve the heat dissipation performance of the heat dissipation structure by using a carbon-based material in which resin is added to a carbon mixture of graphite material and carbon nanotubes as a material for forming a heat dissipation structure, and a heat dissipation structure is applied with a low weight. It relates to a method of manufacturing a heat dissipating structure that allows the weight of the product to be reduced
Crushing and homogenizing at least one graphite material selected from the group consisting of impression graphite, artificial graphite, earth graphite and expanded graphite, plate graphite, and spheroidal graphite to a size of 1 to 50 μm; Crushing and homogenizing at least one carbon material selected from the group consisting of carbon nanotubes, graphene, and carbon black to a size of 20 to 500 nm; Dispersing the crushed carbon material to a content of 2 to 20% by weight based on the total weight of the dispersion in a solvent to form a carbon material dispersion; After mixing 80 to 98% by weight of the crushed and homogenized graphite material and 2 to 20% by weight of the carbon material dispersion, putting it into a vacuum stirrer and stirring, then lowering the internal temperature of the vacuum stirrer to 30 to 50°C to stabilize Step and; Mixing the agitated graphite material and 20 to 60% by weight of a carbon material dispersion and 40 to 80% by weight of a binder composed of polyamide resin or polyphenylene sulfide, followed by drying and stirring to form a carbon-based material; Pelletizing after further including 1 to 5% by weight of each of a decomposition inhibitor and an antioxidant for preventing decomposition of the polymer contained in the carbon-based material by ultraviolet rays; And inserting the pelletized carbon-based material into a block mold by a certain weight unit, and injection molding for 30 to 90 seconds at a temperature condition of 200 to 350°C and a pressure of 80 to 160 kgf/cm 2 to form a heat dissipating structure. It characterized in that it includes;

Description

방열구조체의 제조방법{Method for Manufacturing of Heat-radiating Structure}Method for Manufacturing of Heat-radiating Structure}

본 발명은 방열구조체의 제조방법에 관한 것으로, 더욱 상세하게는 방열구조체를 형성하기 위한 소재로 흑연재료와 탄소나노튜브를 혼합한 탄소혼합재에 수지를 첨가한 탄소계 소재를 이용함으로써 방열구조체의 방열 성능이 향상되도록 함과 아울러 저중량으로 방열구조체가 적용된 제품의 중량을 줄일 수 있도록 한, 방열구조체의 제조방법에 관한 것이다.The present invention relates to a method of manufacturing a heat dissipation structure, and more particularly, as a material for forming a heat dissipation structure, heat dissipation of a heat dissipation structure by using a carbon-based material in which resin is added to a carbon mixture of graphite material and carbon nanotubes. The present invention relates to a method of manufacturing a heat dissipation structure, which improves performance and reduces the weight of a product to which the heat dissipation structure is applied at low weight.

일반적으로 가정용이나 산업용 전자기기에는 다양한 종류의 방열구조체(Heat Sink)가 사용되고 있다. 컴퓨터의 경우 CPU(Central Processing Unit)에서 고속의 연산이 이루어지는 동안 고열이 발생하기 때문에 이를 냉각시키기 위한 냉각판이나 방열판 등의 방열구조체가 반드시 장착되고 있으며, 최근 조명용으로 널리 사용되고 있는 LED(Light Emitting Diode) 조명장치의 경우에도 조명회로의 동작에 따라 열이 발생하게 되므로 인쇄회로기판(Printed Circuit Board)에 방열구조체가 장착되고 있다. In general, various types of heat sinks are used in home or industrial electronic devices. In the case of computers, since high heat is generated during high-speed calculations in the CPU (Central Processing Unit), a heat dissipation structure such as a cooling plate or heat sink to cool it is always installed, and LED (Light Emitting Diode), which is widely used for lighting recently. ) Even in the case of lighting devices, heat is generated according to the operation of the lighting circuit, so a heat dissipation structure is mounted on the Printed Circuit Board.

상기한 인쇄회로기판에는 각종 전자부품이 실장되어 회로를 구성하게 되는데, 최근 전자산업의 발전에 따라 인쇄회로기판에 구비된 회로의 고속화와 고밀도화가 요구되고 있으며, 이로 인해 인쇄회로기판은 미세회로화와 고기능화 및 고신뢰성과 우수한 전기적 특성 등의 문제 해결이 필요하다.Various electronic components are mounted on the above-described printed circuit board to constitute a circuit, and with the recent development of the electronic industry, high-speed and high-density of circuits provided on the printed circuit board are required, and for this reason, the printed circuit board becomes a microcircuit. It is necessary to solve problems such as high functionality, high reliability, and excellent electrical characteristics.

인쇄회로기판에는 IC(집적회로)나 TR(트랜지스터) 등의 반도체 소자와 발광다이오드(Light Emitting Diode) 등의 발열소자가 실장되는데, 이들의 작동 과정에서 많은 열이 발생한다. 특히, 발광다이오드와 같은 광소자의 경우에는 매우 많은 열을 발생하게 된다. 따라서, 발열소자가 실장된 회로기판에서 원활한 방열이 이루어지지 않으면 인쇄회로기판 자체의 온도가 상승하고, 이로 인해 발열소자의 오작동 및 동작불능이 야기되며, 제품의 신뢰성을 저하시키는 요인으로 작용한다. 따라서, 인쇄회로기판에는 알루미늄과 같은 금속으로 이루어진 인쇄회로기판에 별도의 방열구조체를 부착하는 방식으로 방열 문제를 해결하고 있으며, 경우에 따라 인쇄회로기판을 구성하는 알루미늄 판재나 엔지니어링 플라스틱에 방열 기능성 도료를 직접 코팅하거나 압출 방식으로 기판을 형성할 때 알루미늄 판재 또는 압출제에 방열 기능성 도료를 코팅함으로써 방열이 이루어지도록 하고 있다.A semiconductor device such as an IC (integrated circuit) or a TR (transistor) and a heating device such as a light emitting diode are mounted on the printed circuit board, and a lot of heat is generated during their operation. In particular, in the case of an optical device such as a light emitting diode, a very large amount of heat is generated. Therefore, if smooth heat dissipation is not performed on the circuit board on which the heating element is mounted, the temperature of the printed circuit board itself rises, resulting in malfunction and inoperability of the heating element, and acts as a factor deteriorating the reliability of the product. Therefore, the heat dissipation problem is solved by attaching a separate heat dissipation structure to a printed circuit board made of metal such as aluminum, and in some cases, a heat dissipation functional paint on the aluminum plate or engineering plastic constituting the printed circuit board. When forming a substrate by direct coating or extrusion method, heat radiation is achieved by coating a heat radiation functional paint on an aluminum plate or an extruding agent.

통상적인 방열구조체는 구리(copper)나 알루미늄(aluminium)과 같은 금속재료를 원료로 하여 절삭가공(切削加工), 다이캐스팅(die casting) 또는 열간압출(熱間壓出; hot extrusion) 등의 방법으로 제조되고 있으며, 경우에 따라 방열성을 높이기 위하여 금속제(金屬製)의 히트파이프(heat pipe)를 장착하기도 한다. A typical heat dissipation structure is made of a metal material such as copper or aluminum as a raw material, and is processed by cutting, die casting, or hot extrusion. It is manufactured, and in some cases, a metal heat pipe is installed to increase heat dissipation.

그러나, 이러한 금속제 방열구조체는 중량이 무겁기 때문에, 전자기기의 경량화(輕量化)에 방해가 되고 있다. 또한, 금속제의 히트파이프는 중량이 무거울 뿐만 아니라 모세관 현상(capillary phenomenon)을 발생시키기 위하여 내부가 복잡한 구조로 되어 있기 때문에 두께를 줄이기가 어렵고 가격이 고가인 단점이 있다.However, since such a metal heat dissipation structure is heavy, it is hindering the weight reduction of electronic equipment. In addition, since the metal heat pipe is not only heavy in weight, but also has a complex structure in order to generate a capillary phenomenon, it is difficult to reduce the thickness and cost is high.

한편, 본 발명과 관련한 선행기술을 조사한 결과 다수의 특허문헌이 검색되었으며, 그 중 일부를 소개하면 다음과 같다.Meanwhile, as a result of researching the prior art related to the present invention, a number of patent documents have been searched, and some of them are as follows.

특허문헌 1은, 탄소나노튜브와 금속기 원소를 전처리 과정을 통하여 탄소나노튜브와 금속기 원소를 공유 결합시키고 이를 모합금으로 하여 해당되는 금속에 추가적으로 용해시키는 방법으로 복합소재를 제조한 후 이를 이용하여 히트싱크를 구성함으로써, 역학적 강도가 강철과 같이 크고 이에 반하여 중량을 20% 이상 줄일 수 있어서 탑재되는 제품의 중량을 경감시킬 수 있는, 공유 결합 탄소나노튜브를 갖는 복합소재로 구성된 히트싱크를 개시하고 있다.Patent Document 1 is a method of covalently bonding carbon nanotubes and metal-based elements through a pretreatment process of carbon nanotubes and metal-based elements, and further dissolving them in the corresponding metal by using them as a master alloy. By configuring the sink, it is disclosed a heat sink composed of a composite material having covalently bonded carbon nanotubes that can reduce the weight of the mounted product by having a large mechanical strength like steel and reducing the weight by 20% or more. .

특허문헌 2는, 표면 개질된 탄소소재를 포함하는 분산액과 내열성 첨가제 및 점착성 향상 에멀젼을 포함하며, 방열 성능이 우수하고 온도조절을 필요로 하는 다양한 산업분야에 적용이 가능한, 탄소소재를 이용한 고효율 방열도료 조성물을 개시하고 있다. Patent Document 2 contains a dispersion containing a surface-modified carbon material, a heat-resistant additive, and an emulsion that improves adhesion, and has excellent heat dissipation performance and can be applied to various industrial fields requiring temperature control. A coating composition is disclosed.

특허문헌 3은, 탄소나노튜브의 길이방향에 대하여 직교하는 방향으로 그래핀이 결합된 구조를 형성함으로써, 기존 길이방향의 열전도를 길이 및 폭 방향으로도 열전도성 및 전기전도성을 향상시킬 수 있는 탄소 나노 소재-그래핀 복합소재로 구성된 히트싱크를 개시하고 있다.Patent Document 3, by forming a structure in which graphene is bonded in a direction orthogonal to the longitudinal direction of carbon nanotubes, carbon which can improve thermal conductivity and electrical conductivity in the length and width directions of the existing longitudinal direction It discloses a heat sink composed of a nano-material-graphene composite material.

특허문헌 4는, 1차 볼밀링 단계 및 2차 볼밀링 단계를 통해 열전도율이 높은 탄소복합소재와 알루미늄 분말을 미세 입자로 파쇄 및 혼합시킴과 동시에 분산단계를 통해 탄소복합소재의 분산성을 확보함으로써 종래의 알루미늄 방열판에 비교하여 열전도율이 우수함과 동시에 부피 및 체적을 절감하여 경량화 제작을 유도할 수 있으며, 생산 원가를 절감시킬 수 있는 탄소복합소재를 이용한 방열소재 및 이의 제조 방법을 개시하고 있다.Patent Document 4 discloses that the carbon composite material and aluminum powder having high thermal conductivity are crushed and mixed into fine particles through the first ball milling step and the second ball milling step, and at the same time, the dispersibility of the carbon composite material is secured through the dispersion step. Disclosed is a heat dissipation material using a carbon composite material and a method of manufacturing the same, which can induce lighter manufacturing by reducing volume and volume while having excellent thermal conductivity compared to conventional aluminum heat sinks, and reducing production costs.

특허문헌 5는, 방열몸체 및 방열 어셈블리들의 재질을 종래의 알루미늄이 아닌 탄소나노튜브 방열소재로 대체함으로써 열전도율, 열방출속도 및 열방출율을 현저히 높일 수 있고, 방열 어셈블리들이 방열몸체의 외측면에 슬라이딩 방식으로 부착되도록 구성됨으로써 장비점검 및 교체가 용이하게 이루어질 수 있으며, LED 기판에 대접되는 방열 어셈블리의 대접판들이 만곡부에 의해 서로 이격되게 형성됨으로써 열 교환이 더욱 활발하게 이루어지도록 하여 방열효율을 더욱 높일 수 있으며, 탄소나노튜브 방열소재 제조 시 1차 볼밀링 단계 및 2차 볼밀링 단계를 통해 열전도율이 높은 탄소복합소재 및 금속분말을 미세 입자로 파쇄 및 혼합시킴과 동시에 분산단계를 통해 탄소복합소재의 분산성을 확보하도록 함으로써 종래의 알루미늄에 비교하여 열전도율이 우수함과 동시에 부피 및 체적을 절감하여 경량화 제작을 유도할 수 있으며, 생산 원가를 절감시킬 수 있는, 탄소나노튜브 방열소재 제조 방법과 이를 구비한 조명장치용 방열프레임을 개시하고 있다. Patent Document 5, by replacing the material of the heat dissipation body and the heat dissipation assembly with a carbon nanotube heat dissipation material instead of the conventional aluminum, it is possible to significantly increase the thermal conductivity, heat dissipation rate and heat dissipation rate, and the heat dissipation assemblies slide on the outer surface of the radiating body. By being configured to be attached in a manner, equipment inspection and replacement can be made easily, and the heat exchange efficiency is further increased by making the heat exchange more active by forming the support plates of the heat dissipation assembly facing the LED substrate to be spaced apart from each other by the curved part. When manufacturing a carbon nanotube heat dissipation material, the carbon composite material and metal powder with high thermal conductivity are crushed and mixed into fine particles through the first ball milling step and the second ball milling step. By securing dispersibility, it has excellent thermal conductivity compared to conventional aluminum, and at the same time, it is possible to induce lighter manufacturing by reducing volume and volume, and to reduce production cost. Disclosed is a heat radiation frame for a lighting device.

KRKR 10-2010-000873310-2010-0008733 AA KRKR 10-2012-001391410-2012-0013914 AA KRKR 10-2017-000022010-2017-0000220 AA KRKR 10-2017-006886510-2017-0068865 AA

본 발명은 상기한 종래 기술의 문제점을 해결하기 위하여 안출된 것으로서, 방열구조체를 형성하기 위한 소재로 금속 대신 흑연재료와 탄소나노튜브를 혼합한 탄소혼합재에 수지를 첨가한 탄소계 소재를 이용할 수 있도록 함으로써 방열구조체의 방열 성능이 향상되도록 함과 아울러 방열구조체가 적용된 제품의 경량화가 가능하게 한, 방열구조체의 제조방법을 제공하는데 그 목적이 있다.The present invention was conceived to solve the problems of the prior art, so that a carbon-based material in which resin is added to a carbon mixture in which a graphite material and carbon nanotubes are mixed instead of a metal can be used as a material for forming a heat dissipating structure. It is an object of the present invention to provide a method for manufacturing a heat dissipation structure, which enables the heat dissipation performance of the heat dissipation structure to be improved and the weight of the product to which the heat dissipation structure is applied.

또, 본 발명은 방열구조체로의 성형이 용이하여 생산성이 향상되고, 생산이 완료된 방열구조체를 다층으로 적층할 수 있으며, 적층 과정에서 그 표면이 손상되지 않도록 한, 방열구조체의 제조방법을 제공하는데 목적이 있다.In addition, the present invention provides a method of manufacturing a heat dissipation structure so that the heat dissipation structure can be easily molded into a heat dissipation structure, and thus productivity is improved, and the produced heat dissipation structure can be laminated in multiple layers, and its surface is not damaged during the lamination process. There is a purpose.

상기 목적을 달성하기 위한 본 발명의 방열구조체의 제조방법은, 인상흑연(crystalline graphite), 인조흑연(synthetic graphite), 토상흑연(amorphous graphite) 및 팽창흑연(expandable graphite), 판상흑연, 구상흑연으로 이루어진 군으로부터 선택되는 1종 이상의 흑연재료를 1~50㎛의 크기로 파쇄 및 균질화하는 단계와; 탄소나노튜브, 그래핀, 카본블랙으로 이루어진 군으로부터 선택되는 1종 이상의 탄소재료를 20~500㎚의 크기로 파쇄 및 균질화하는 단계와; 분산액 전체 중량을 기준으로 2~20중량%의 함량이 되도록 파쇄된 탄소재료를, 증류수, 알코올, 디메틸포름아마이드(DMF), 메틸에틸케톤(MEK) 및 폴리올로 이루어진 군 중에서 선택되는 일종 이상으로 이루어진 용매에 분산시켜 탄소재료 분산물을 형성하는 단계와; 파쇄 및 균질화된 흑연재료 80~98중량%와 탄소재료 분산물 2~20중량%를 혼합한 후 진공 교반기에 투입하여 교반하여 탄소혼합재를 형성한 후, 진공 교반기의 챔버 내부 온도를 30~50℃까지 하강시켜 탄소혼합재를 안정화하는 단계와; 탄소혼합재 20~60중량%와 폴리아미드 수지 또는 폴리페닐렌 설파이드로 이루어진 바인더 40~80중량%를 혼합한 후 건조 및 교반시켜 탄소계 소재를 형성하는 단계; 탄소계 소재에 포함된 고분자의 자외선에 의한 분해방지를 위한 분해방지제와 산화방지제를 각각 1~5중량% 더 포함시킨 후 펠릿화하는 단계; 및 펠릿화된 탄소계 소재를 일정 중량 단위로 블록 금형에 투입하고, 200~350℃의 온도 조건과 80~160㎏f/㎠의 압력으로 30~90초동안 사출 성형하여 방열구조체를 형성하는 단계;를 포함하고,
상기 분해방지제는 히드록시벤조페논계(Hydroxy Benzophenone), 히드록시페닐 벤조트리아졸계(Hydroxypheny Benzotriazole), 아릴에스테르계(Arylester), 옥사닐라이드계(Oxanilides), 포름아미딘계(Formamidine)로 이루어진 군으로부터 선택되는 1종 이상으로 이루어지고,
상기 산화방지제는 페놀계 산화방지제, 인계 산화방지제, 황계 산화방지제, 아민계 산화방지제로 이루어진 군에서 선택되는 1종 이상으로 이루어지는 것을 특징으로 한다.
The manufacturing method of the heat dissipating structure of the present invention for achieving the above object is made of crystalline graphite, synthetic graphite, amorphous graphite, and expandable graphite, plate graphite, and nodular graphite. Crushing and homogenizing at least one graphite material selected from the group consisting of 1 to 50 μm in size; Crushing and homogenizing at least one carbon material selected from the group consisting of carbon nanotubes, graphene, and carbon black to a size of 20 to 500 nm; A carbon material crushed to have a content of 2 to 20% by weight based on the total weight of the dispersion is composed of at least one selected from the group consisting of distilled water, alcohol, dimethylformamide (DMF), methyl ethyl ketone (MEK), and polyol. Dispersing in a solvent to form a carbon material dispersion; After mixing 80 to 98% by weight of the crushed and homogenized graphite material and 2 to 20% by weight of the carbon material dispersion, putting it into a vacuum stirrer and stirring to form a carbon mixture, then the temperature inside the chamber of the vacuum stirrer is 30 to 50°C. Stabilizing the carbon mixture by descending to; Mixing 20 to 60% by weight of a carbon mixture and 40 to 80% by weight of a binder made of polyamide resin or polyphenylene sulfide, followed by drying and stirring to form a carbon-based material; Pelletizing after further including 1 to 5% by weight of each of a decomposition inhibitor and an antioxidant for preventing decomposition of the polymer contained in the carbon-based material by ultraviolet rays; And inserting the pelletized carbon-based material into a block mold by a certain weight unit, and injection molding for 30 to 90 seconds at a temperature condition of 200 to 350°C and a pressure of 80 to 160 kgf/cm 2 to form a heat dissipating structure. Including ;,
The decomposition inhibitor is from the group consisting of hydroxybenzophenone, hydroxyphenyl benzotriazole, arylester, oxanilides, and formamidine. It consists of at least one selected,
The antioxidant is characterized in that it consists of one or more selected from the group consisting of phenolic antioxidants, phosphorus antioxidants, sulfur antioxidants, and amine antioxidants.

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

본 발명의 방열구조체의 제조방법은, 흑연재료와 탄소재료를 균질한 입도분포를 갖도록 파쇄 및 균질화한 후 폴리아미드 수지 등의 바인더에 함침하여 형성한 탄소계 소재로 방열구조체를 형성하게 되므로, 탄소재료가 흑연재료 사이에서 공유결합을 유지하게 되어 우수한 방열 성능을 나타냄과 아울러 성형성이 향상되는 효과가 있다.In the method of manufacturing a heat dissipating structure of the present invention, a heat dissipating structure is formed from a carbon-based material formed by crushing and homogenizing a graphite material and a carbon material to have a homogeneous particle size distribution, and then impregnating a binder such as a polyamide resin. As the material maintains a covalent bond between graphite materials, it exhibits excellent heat dissipation performance and improves formability.

또한, 본 발명의 방열구조체의 제조방법에 따르면, 탄소재료와 폴리아미드 수지 등의 바인더로 이루어진 탄소계 소재를 이용하여 방열구조체를 형성함에 따라 금속으로 형성되는 방열구조체에 비해 현저하게 가벼운 중량을 가지게 되고, 우수한 성형성을 이용하여 슬림화 및 경량화가 가능하며 열전도성과 방열성능이 대폭 향상되는 효과가 있다.In addition, according to the manufacturing method of the heat dissipation structure of the present invention, the heat dissipation structure is formed by using a carbon-based material composed of a carbon material and a binder such as polyamide resin, so that it has a significantly lighter weight than the heat dissipation structure formed of metal. And, by using excellent formability, slimming and lightening are possible, and thermal conductivity and heat dissipation performance are significantly improved.

도 1은 본 발명에 따른 방열구조체의 제조방법에 이용되는 탄소계 소재의 제조방법을 나타낸 순서도이다.
도 2는 본 발명에 따라 제조된 방열구조체가 도시된 사시도이다.
도 3은 본 발명에 따라 제조된 방열구조체를 다층으로 적재한 모습을 나타낸 참고도이다.
1 is a flow chart showing a method of manufacturing a carbon-based material used in the method of manufacturing a heat dissipating structure according to the present invention.
2 is a perspective view showing a heat dissipation structure manufactured according to the present invention.
3 is a reference diagram showing a state in which the heat dissipation structure manufactured according to the present invention is stacked in multiple layers.

이하, 첨부된 도면을 참조하여 본 발명의 방열구조체의 제조방법에 대하여 설명하면 다음가 같다.Hereinafter, a method of manufacturing the heat dissipating structure of the present invention will be described with reference to the accompanying drawings.

도 1은 본 발명에 따른 방열구조체의 제조방법에 이용되는 탄소계 소재의 제조방법을 나타낸 순서도이고, 도 2는 본 발명에 따라 제조된 방열구조체가 도시된 사시도이며, 도 3은 본 발명에 따라 제조된 방열구조체를 다층으로 적재한 모습을 나타낸 참고도이다.1 is a flow chart showing a method of manufacturing a carbon-based material used in the method of manufacturing a heat dissipating structure according to the present invention, FIG. 2 is a perspective view showing a heat dissipating structure manufactured according to the present invention, and FIG. 3 is It is a reference diagram showing a state in which the manufactured heat dissipation structure is stacked in multiple layers.

본 발명에 따른 방열구조체의 제조방법에 이용되는 탄소계 소재의 제조방법은 도 1에 도시된 바와 같이, 흑연재료를 파쇄 및 균질화하는 단계와; 탄소재료를 파쇄 및 균질화하는 단계와; 파쇄된 탄소재료를 용매에 분산시켜 탄소재료 분산물을 형성하는 단계와; 파쇄된 흑연재료와 탄소재료 분산물을 교반하여 흑연재료와 탄소재료 분산물이 혼합된 탄소혼합재를 형성하는 단계와; 탄소혼합재와 바인더를 혼합한 후 건조 및 교반시켜 탄소계 소재를 형성하는 단계;를 포함하여 이루어진다.As shown in Fig. 1, a method of manufacturing a carbon-based material used in a method of manufacturing a heat dissipating structure according to the present invention includes the steps of crushing and homogenizing a graphite material; Crushing and homogenizing the carbon material; Dispersing the crushed carbon material in a solvent to form a carbon material dispersion; Stirring the crushed graphite material and the carbon material dispersion to form a carbon mixture in which the graphite material and the carbon material dispersion are mixed; And drying and stirring after mixing the carbon mixture and the binder to form a carbon-based material.

흑연재료를 파쇄 및 균질화하는 단계는, 인상흑연(crystalline graphite), 인조흑연(synthetic graphite), 토상흑연(amorphous graphite) 및 팽창흑연(expandable graphite), 판상흑연, 구상흑연으로 이루어진 군으로부터 선택되는 1종 이상의 흑연재료를 파쇄하여 균질화하는 단계이다. 이러한 흑연재료는 열전도도가 높고, 기계적 물성 및 내부식성이 우수하며, 가벼운 특성을 지니고 있으므로, 방열구조체 및 인쇄회로기판용 재료로 사용될 때 우수한 성능을 발휘할 수 있도록 한다. 그리고 흑연재료를 파쇄 및 균질화하는 단계(S10)는, 불균질한 입도 분포를 갖는 원료 상태의 흑연재료가 균질한 입도 분포를 갖도록 하는 것으로, 흑연재료의 입도분포가 균질하게 조절됨에 따라, 흑연재료에 의한 열전도 및 방열성능이 대폭 향상된다. The step of crushing and homogenizing the graphite material is 1 selected from the group consisting of crystalline graphite, synthetic graphite, amorphous graphite, and expandable graphite, plate graphite, and nodular graphite. This is the step of homogenizing by crushing more than a kind of graphite material. This graphite material has high thermal conductivity, excellent mechanical properties and corrosion resistance, and has light properties, so that it can exhibit excellent performance when used as a material for heat dissipation structures and printed circuit boards. And the step of crushing and homogenizing the graphite material (S10) is to make the graphite material in the raw material state having a heterogeneous particle size distribution have a homogeneous particle size distribution. As the particle size distribution of the graphite material is uniformly controlled, the graphite material The heat conduction and heat dissipation performance is greatly improved.

이러한 흑연재료를 파쇄 및 균질화하는 단계는 통상적인 물리적인 방법을 사용하여 수행할 수도 있지만, 액체질소를 이용하여 수행할 수도 있다. 즉, 흑연재료가 들어 있는 용기 내에 액체질소를 흘려넣은 후 대략 30분 내지 2시간 정도 방치함으로써, 흑연재료가 파쇄 및 균질화되도록 할 수 있다. 이는 흑연재료에 액체질소가 스며든 후 기화되는 과정에서 흑연재료가 미세하게 파쇄되는 것을 이용한 것이다. 그리고, 흑연재료를 파쇄 및 균질화하는 단계는 원하는 입도와 균일한 입도 분포를 갖는 흑연재료를 얻을 수 있을 때까지 파쇄 및 균질화단계를 반복수행되는 것이 바람직하며, 파쇄 및 균질화된 흑연재료는 60~80℃의 온도에서 12~36시간 건조되는 것이 바람직하다.The step of crushing and homogenizing the graphite material may be performed using a conventional physical method, but may also be performed using liquid nitrogen. That is, by pouring liquid nitrogen into a container containing the graphite material and leaving it for about 30 minutes to 2 hours, the graphite material can be crushed and homogenized. This is a result of fine crushing of the graphite material in the process of vaporization after liquid nitrogen permeates the graphite material. In addition, the crushing and homogenizing step of the graphite material is preferably repeated crushing and homogenization steps until a graphite material having a desired particle size and a uniform particle size distribution is obtained, and the crushed and homogenized graphite material is 60 to 80. It is preferable to dry for 12 to 36 hours at a temperature of °C.

이때, 흑연재료의 입자크기는 최종 생성물인 방열구조체의 구체적인 특성이나 공정 조건 및 작업환경을 고려하여 적절하게 선택되며, 흑연재료의 입자크기가 1~50㎛로 될 때까지 반복 수행하는 것이 바람직하다. 흑연재료의 입자크기가 1㎛ 미만인 경우에는 파쇄하기가 어렵고, 크기 감소에 따른 방형 성능의 변화가 미미하며, 50㎛를 초과하는 경우에는 성형품의 표면층에 수지의 비율이 높아짐으로써 열전도와 방열성능이 저하되는 요인으로 작용하게 되므로, 적절하지 못하다.At this time, the particle size of the graphite material is appropriately selected in consideration of the specific characteristics of the heat dissipation structure, the final product, the process conditions, and the working environment, and it is preferable to repeat the process until the particle size of the graphite material becomes 1-50㎛. . If the particle size of the graphite material is less than 1㎛, it is difficult to crush, and the change in the square performance according to the size decrease is insignificant. It is not appropriate because it acts as a deteriorating factor.

상기 탄소재료를 파쇄 및 균질화하는 단계(S20)는, 탄소나노튜브, 그래핀, 카본블랙으로 이루어진 군으로부터 선택되는 1종 이상으로 이루어진 탄소재를 파쇄 및 균질화하는 것으로, 불균질한 입도 분포를 갖는 원료 상태의 탄소재료를 파쇄하여 균질한 입도 분포를 갖도록 하게 된다. 이때, 상기 탄소재료의 파쇄 및 균질화 단계에서도 흑연재료의 파쇄 및 균질화 단계와 마찬가지로 액체질소를 이용할 수 있다. 그리고, 탄소재료를 파쇄 및 균질화하는 단계 역시 원하는 입도와 균일한 입도 분포를 갖는 탄소재료를 얻을 수 있을 때까지 반복수행되는 것이 바람직하다.The step of crushing and homogenizing the carbon material (S20) is to crush and homogenize a carbon material consisting of at least one selected from the group consisting of carbon nanotubes, graphene, and carbon black, having a heterogeneous particle size distribution. The carbon material in the raw material state is crushed to have a homogeneous particle size distribution. In this case, in the crushing and homogenizing step of the carbon material, liquid nitrogen may be used as in the crushing and homogenizing step of the graphite material. In addition, the step of crushing and homogenizing the carbon material is also preferably repeated until a carbon material having a desired particle size and a uniform particle size distribution can be obtained.

이때, 탄소재료의 입자크기는 최종 생성물인 방열구조체의 구체적인 특성이나 공정 조건 및 작업환경을 고려하여 적절하게 선택되며, 탄소재료의 입자크기가 20~500㎚로 될 때까지 파쇄 및 균질화단계를 반복 수행하는 것이 바람직하다. 탄소재료의 입자크기가 20㎚ 미만인 경우에는 응집이 일어나기 어렵고, 500㎚를 초과하는 경우에는 이미 응집이 일어난 상태로서 후속 공정에서 탄소재료를 균일하게 분산시키기 어렵기 때문에 적절하지 못하다.At this time, the particle size of the carbon material is appropriately selected in consideration of the specific characteristics of the heat dissipation structure, the final product, the process conditions, and the working environment, and the crushing and homogenization steps are repeated until the particle size of the carbon material becomes 20 to 500 nm. It is desirable to carry out. When the particle size of the carbon material is less than 20 nm, aggregation is difficult to occur, and when the particle size of the carbon material exceeds 500 nm, aggregation has already occurred, and it is difficult to uniformly disperse the carbon material in a subsequent process, which is not appropriate.

상기한 탄소재료 중 탄소나노튜브는 6개의 탄소 원자가 육각형 모양을 이룬 후 튜브 모양으로 이어진 그물 구조의 나선형 물질로서, 3차원 구조로 이루어진다. 이러한 탄소나노튜브는 그래파이트(Graphite)가 변형된 형태로서, 한 겹의 그래파이트가 튜브 형태로 밀려 있는 단일벽 탄소나노튜브(Single-wall Carbon Nanotube)와 여러 겹으로 구성된 다중벽 탄소나노튜브(Multi-wall Carbon Nanotube)로 구분되고 있다. 이러한 탄소나노튜브는 뛰어난 역학절 특징을 가지며, 매우 높은 형상비(길이/직경)를 가지고 있어 인장응력이 우수하고 열전도성이 탁월한 특징이 있어 매우 많은 범위에 적용되고 있다. 또한, 감긴 형태에 따라 도체 또는 반도체의 성질을 가지며, 직경에 따라 에너지 갭이 달리지고, 3차원 구조이면서도 준 일차원적 구조를 가지고 있어 특이한 양자효과를 나타낸다. 또한, 탄소나노튜브의 가장 중요한 열적 성질은 열전도가 6,600W/mK으로 아주 높다는 것이며, 포논(phonon)의 평균 자유경로가 아주 큰 것에 기인하는 것으로 알려져 있다.Among the above-described carbon materials, carbon nanotubes are helical materials of a network structure in which six carbon atoms form a hexagonal shape and are connected in a tube shape, and have a three-dimensional structure. These carbon nanotubes are graphite-modified, single-walled carbon nanotubes in which one layer of graphite is pushed into a tube, and multi-walled carbon nanotubes composed of several layers. wall Carbon Nanotube). These carbon nanotubes have excellent mechanical properties, have a very high aspect ratio (length/diameter), have excellent tensile stress and excellent thermal conductivity, and are therefore applied to a very large range. In addition, it has the properties of a conductor or a semiconductor depending on the shape of the coil, the energy gap varies according to the diameter, and has a three-dimensional structure and a quasi-one-dimensional structure, thus exhibiting a peculiar quantum effect. In addition, the most important thermal property of carbon nanotubes is that the thermal conductivity is very high at 6,600W/mK, and is known to be due to the very large average free path of phonons.

그리고, 상기한 탄소나노튜브 등의 탄소재료를 후속 공정에서 흑연재료와 혼합하게 되면, 흑연재료 사이에 탄소재료가 공유결합에 의해 연결됨으로써 열전도도를 향상시키고 우수한 방열성능을 발휘할 수 있게 된다.In addition, when a carbon material such as carbon nanotubes is mixed with a graphite material in a subsequent process, the carbon material is connected by covalent bonds between the graphite materials, thereby improving thermal conductivity and exhibiting excellent heat dissipation performance.

상기 파쇄된 탄소재료를 용매에 분산시켜 탄소재료 분산물을 형성하는 단계는, 분산액 전체 중량을 기준으로 2~20중량%의 함량이 되도록 파쇄된 탄소재료를 용매에 분산시키는 단계이다. 이때, 용매는 증류수, 알코올, 디메틸포름아마이드(DMF), 메틸에틸케톤(MEK) 및 폴리올로 이루어진 군 중에서 선택되는 일종 이상으로 이루어질 수 있으며, 침전성과 장기성, 소재 단가, 제조 환경 등 다양한 공정 조건을 고려하여 적합하게 선택한다.The step of dispersing the crushed carbon material in a solvent to form a carbon material dispersion is a step of dispersing the crushed carbon material in a solvent so that the content is 2 to 20% by weight based on the total weight of the dispersion. At this time, the solvent may be made of at least one selected from the group consisting of distilled water, alcohol, dimethylformamide (DMF), methyl ethyl ketone (MEK), and polyol, and various process conditions such as precipitation and long-term properties, material cost, and manufacturing environment Choose appropriately in consideration.

탄소재료 분산물 형성에 있어서, 탄소재료는 분산액 전체 중량을 기준으로 2~20중량%의 양으로 함유되는데, 이는 탄소재료의 함량이 2중량% 미만인 경우 분산성의 문제는 발생하지 않지만 후속 공정에서 흑연재료와 혼합하였을 때 열전도도 및 방열 효과의 특성을 발휘할 수 없고, 탄소재료의 함량이 20 중량%를 초과하는 경우 분산성의 문제가 발생할 우려가 있을 뿐 아니라 함량 증가에 따른 더 이상의 효과 증대를 기대할 수 없기 때문이다.In forming the carbon material dispersion, the carbon material is contained in an amount of 2 to 20% by weight based on the total weight of the dispersion, which does not cause dispersibility problems when the content of the carbon material is less than 2% by weight, but graphite in the subsequent process. When mixed with a material, the properties of thermal conductivity and heat dissipation cannot be exhibited, and when the content of the carbon material exceeds 20% by weight, there is a concern that a problem of dispersibility may occur, and further effects can be expected to increase according to the content increase. Because there is no.

탄소재료 분산물의 제조는 초음파, 롤 밀링, 볼 밀링, 제트 밀링, 스크루 혼합, 어트리션 밀링, 비즈 밀링, 바스켓 밀링, 공자전 혼합 및 수퍼밀로 이루어진 군으로부터 선택되는 하나 이상의 방식을 사용할 수 있다. 즉, 탄소재료 분산물 제조시 이용되는 각각의 방식에서 구체적인 작동 조건 등은 균일한 분산물이 형성될 수 있도록 적절하게 선택하는 것이다.The production of the carbon material dispersion may use one or more methods selected from the group consisting of ultrasonic, roll milling, ball milling, jet milling, screw mixing, attraction milling, bead milling, basket milling, co-rotation mixing and super milling. That is, in each method used in the production of the carbon material dispersion, specific operating conditions and the like are appropriately selected so that a uniform dispersion can be formed.

또한, 탄소재료 분산물 제조시에는 탄소재료의 분산성 향상, 공정 편의성 등을 위하여 필요에 따라 분산제, 중화제 및 소포제로 이루어진 군으로부터 선택되는 일종 이상을 첨가할 수 있다. 그리고, 탄소재료 분산물 형성 단계 후에 탄소재료 분산물을 50~70℃의 온도에서 12~36시간 동안 건조시킬 수도 있다.In addition, at the time of manufacturing the carbon material dispersion, one or more selected from the group consisting of a dispersant, a neutralizing agent, and an antifoaming agent may be added as necessary to improve the dispersibility of the carbon material and process convenience. In addition, after the carbon material dispersion forming step, the carbon material dispersion may be dried for 12 to 36 hours at a temperature of 50 to 70°C.

상기 파쇄 및 균질화된 흑연재료와 탄소재료 분산물을 혼합하여 탄소혼합재를 형성하는 단계는, 파쇄 및 균질화된 흑연재료 80~98중량%와 탄소재료 분산물 2~20중량%를 혼합하여 탄소혼합재를 형성하는 단계로서, 진공 교반기 내에서 수행된다. 상기 파쇄 및 규질화된 흑연재료와 탄소나노 분산물의 혼합 교반은, 진공 교반기에서 진공도 10-1 Torr, 온도 80~120℃, 교반속도 100~120rpm로 하여 질소분위기 하에서 40~100분간 이루어진다.In the step of forming a carbon mixture by mixing the crushed and homogenized graphite material and the carbon material dispersion, 80 to 98% by weight of the crushed and homogenized graphite material and 2 to 20% by weight of the carbon material dispersion are mixed to prepare a carbon mixture. As a forming step, it is carried out in a vacuum stirrer. Mixing and stirring of the crushed and silicified graphite material and the carbon nanodispersion is performed in a vacuum stirrer with a vacuum degree of 10 -1 Torr, a temperature of 80 to 120°C, and a stirring speed of 100 to 120 rpm, and for 40 to 100 minutes under a nitrogen atmosphere.

혼합 교반에 있어서 탄소재료 분산물이 2~20중량%가 첨가되는데, 이는 탄소재료 분산물의 함량이 2 중량% 미만인 경우 흑연 재료의 열전도도를 향상시키는 효과가 미미하고, 20 중량%를 초과하는 경우에는 함량 증가에 따른 더 이상의 열전도도 향상 효과를 기대할 수 없어 비경제적이기 때문이다.In mixing and stirring, 2 to 20% by weight of the carbon material dispersion is added, which means that when the content of the carbon material dispersion is less than 2% by weight, the effect of improving the thermal conductivity of the graphite material is insignificant, and when it exceeds 20% by weight This is because it is uneconomical because it is not possible to expect any more effect of improving thermal conductivity according to the increase in the content of the

혼합 교반 후에는, 진공 밸브를 열어 공기를 투입하고, 진공 교반기의 챔버 내부 온도를 30~50℃로 낮추어 줌으로써 탄소혼합재를 안정화시킨다. 이와 같이, 진공 교반기의 챔버 내부 온도를 낮추는 것은, 챔버 내부 온도가 50℃를 초과할 경우, 후속 공정에서 투입되는 방열구조체용 탄소계 재료의 바인더 역할을 하는 폴리아미드 수지와 폴리페닐렌 설파이드가 열경화되고, 입자의 경질화가 일어날 수 있기 때문이다.After mixing and stirring, the carbon mixture is stabilized by opening the vacuum valve to introduce air and lowering the temperature inside the chamber of the vacuum stirrer to 30 to 50°C. In this way, lowering the internal temperature of the chamber of the vacuum stirrer is that when the internal temperature of the chamber exceeds 50°C, polyamide resin and polyphenylene sulfide, which serve as binders for carbon-based materials for heat dissipation structures introduced in the subsequent process, are heated. This is because hardening and hardening of the particles may occur.

상기 탄소혼합재와 바인더를 혼합한 후 건조 및 교반시켜 탄소계 소재를 완성하는 단계는, 방열구조체를 제작하기 위한 탄소계 소재를 형성하는 단계로서, 탄소혼합재 20~60중량%와 폴리아미드 수지 또는 폴리페닐렌 수지로 이루어진 바인더 40~80중량%를 혼합한 후 건조 및 교반시키는 방식으로 이루어진다. 그리고, 탄소혼합재와 바인더를 혼합한 후 건조 및 교반할 때에는 100~120rpm의 교반속도로 60~150분 동안 교반하는 것이 바람직하다.The step of mixing the carbon mixture and the binder, drying and stirring to complete the carbon-based material, is a step of forming a carbon-based material for manufacturing a heat dissipating structure, and 20 to 60% by weight of the carbon mixture and polyamide resin or poly After mixing 40 to 80% by weight of a binder made of phenylene resin, it is dried and stirred. And, when drying and stirring after mixing the carbon mixture and the binder, it is preferable to stir for 60 to 150 minutes at a stirring speed of 100 to 120 rpm.

상기 폴리아미드 수지 또는 폴리페닐렌 설파이드는 방열구조체용 탄소계 소재에 있어서 탄소혼합재를 연결하는 바인더 역할을 하는 것으로, 방열구조체로의 성형을 위한 용이한 가공성 및 경제성을 가지며, 열전도도가 우수한 흑연재료 및 탄소재료와 혼합되어 방열 특성을 갖는 성형 구조체를 형성할 수 있도록 한다.The polyamide resin or polyphenylene sulfide serves as a binder that connects the carbon mixture in the carbon-based material for a heat radiation structure, and has easy processability and economy for molding into a heat radiation structure, and has excellent thermal conductivity. And a carbon material to form a molded structure having heat dissipation properties.

이때, 상기 탄소혼합재의 함량이 60중량%를 초과하는 경우에는 방열구조체의 성형이 곤란해질 수 있을 뿐 아니라 성형된 구조체의 기계적 성질이 저하될 수 있고, 20중량% 미만인 경우에는 방열 성능이 미미하여, 방열구조체용 재료로 사용하기에 부적합하다.At this time, when the content of the carbon mixture exceeds 60% by weight, not only may the molding of the heat dissipation structure become difficult, but also the mechanical properties of the formed structure may be deteriorated, and when the content of the carbon mixture is less than 20% by weight, the heat dissipation performance is insignificant, It is not suitable for use as a material for heat dissipation structures.

또한, 탄소계 소재에 포함된 고분자의 자외선에 의한 분해방지를 위한 분해방지제와 산화방지제를 각각 1~5중량% 더 포함시킨 후 펠릿화하는 단계;를 더 포함할 수 있다. 이때, 상기 분해방지제는 히드록시벤조페논계(Hydroxy Benzophenone), 히드록시페닐 벤조트리아졸계(Hydroxypheny Benzotriazole), 아릴에스테르계(Arylester), 옥사닐라이드계(Oxanilides), 포름아미딘계(Formamidine)로 이루어진 군으로부터 선택되는 1종 이상으로 이루어지고, 상기 산화방지제는 페놀계 산화방지제, 인계 산화방지제, 황계 산화방지제, 아민계 산화방지제로 이루어진 군에서 선택되는 1종 이상으로 이루어지는 것이 바람직하다.In addition, the step of pelletizing after further including 1 to 5% by weight of each of a decomposition inhibitor and an antioxidant for preventing decomposition by ultraviolet rays of the polymer contained in the carbon-based material; may further include. At this time, the decomposition inhibitor is composed of hydroxybenzophenone, hydroxyphenyl benzotriazole, arylester, oxanilides, and formamidine. It is made of at least one selected from the group, and the antioxidant is preferably made of at least one selected from the group consisting of phenolic   antioxidants, phosphorus   antioxidants, sulfur-based antioxidants, amine-based antioxidants.

그리고, 본 발명에 따른 탄소계 소재의 효과를 검증하기 위하여 탄소계 소재를 제작하여 수평방향의 열전도도와 수직 방향의 열전도도 및 방사율을 각각 비교한 결과, 표 1과 같이 나타났다.In addition, in order to verify the effect of the carbon-based material according to the present invention, a carbon-based material was manufactured and compared with the thermal conductivity in the horizontal direction and the thermal conductivity and emissivity in the vertical direction, respectively, as shown in Table 1.

<비교예><Comparative Example>

흑연재료인 판상 그래파이트 50중량%와 폴리아미드 수지 50중량%로 이루어진 탄소계 소재로 판을 제작한 후, 수평방향의 열전도도와 수직방향의 열전도도 및 방사율을 각각 측정하여 기준으로 설정하였다.After making a plate from a carbon-based material consisting of 50% by weight of graphite plate-like graphite and 50% by weight of a polyamide resin, the thermal conductivity in the horizontal direction and the thermal conductivity and emissivity in the vertical direction were measured and set as a reference.

<실시예 1><Example 1>

흑연재료인 판상 그래파이트 35중량% 및 구상 그래파이트 20중량%와, 탄소나노튜브 3중량%, 폴리아미드 수지 42중량%로 이루어진 탄소계 소재로 판을 제작한 후, 수평 방향의 열전도도와 수직방향의 열전도도 및 방사율을 각각 측정하였다.After making a plate with a carbon-based material consisting of 35% by weight of graphite material, plate-like graphite and 20% by weight of spherical graphite, 3% by weight of carbon nanotubes, and 42% by weight of polyamide resin, thermal conductivity in the horizontal direction and thermal conduction in the vertical direction Degree and emissivity were measured respectively.

<실시예 2><Example 2>

흑연재료인 판상 그래파이트 25중량% 및 구상 그래파이트 30중량%와, 탄소나노튜브 5중량%, 폴리아미드 수지 40중량%로 이루어진 탄소계 소재로 판을 제작한 후, 수평 방향의 열전도도와 수직방향의 열전도도 및 방사율을 각각 측정하였다.After fabricating a plate from a carbon-based material consisting of 25% by weight of graphite plate-like graphite and 30% by weight of spherical graphite, 5% by weight of carbon nanotubes, and 40% by weight of polyamide resin, thermal conductivity in the horizontal direction and thermal conduction in the vertical direction Degree and emissivity were measured respectively.

<실시예 3><Example 3>

흑연재료인 판상 그래파이트 30중량% 및 구상 그래파이트 20중량%와, 탄소나노튜브 8중량%, 폴리아미드 수지 42중량%로 이루어진 탄소계 소재로 판을 제작한 후, 수평 방향의 열전도도와 수직방향의 열전도도 및 방사율을 각각 측정하였다.After fabricating a plate from a carbon-based material consisting of 30% by weight of graphite plate-like graphite and 20% by weight of spherical graphite, 8% by weight of carbon nanotubes, and 42% by weight of polyamide resin, thermal conductivity in the horizontal direction and thermal conduction in the vertical direction Degree and emissivity were measured respectively.

Figure 112018125457131-pat00001
Figure 112018125457131-pat00001

상기한 표 1을 참조하면, 탄소계 소재를 형성하기 위한 재료로 구상 그래파이트와 탄소나노튜브가 더 포함됨에 따라 수평방향 및 수직방향의 열전도도가 각각 증가하였고, 방사율 또한 증가함이 확인되었다. 특히, 구상 그래파이트에 비해 탄소나노튜브의 함량이 증가할수록 열전도도와 방사율이 더 증가함이 확인되었다.Referring to Table 1 above, it was confirmed that as the materials for forming the carbon-based material further included spherical graphite and carbon nanotubes, the thermal conductivity in the horizontal direction and the vertical direction increased, respectively, and the emissivity was also increased. In particular, it was confirmed that the thermal conductivity and emissivity further increased as the content of carbon nanotubes increased compared to spherical graphite.

한편, 본 발명의 방열구조체는 상기한 탄소계 소재를 사출 성형하여 제조된다. 구체적으로, 상기한 탄소계 소재를 일정 중량 단위로 블록 금형에 투입하고, 200~350℃의 온도 조건과 80~160㎏f/㎠의 압력으로 30~90초동안 사출 성형하여 방열구조체를 제조한다. 이때, 사출 성형의 조건은 바인더인 폴리아미드 수지 또는 폴리페닐렌 설파이드의 열경화가 이루어지도록 설정되며, 자연 냉각에 필요한 시간을 포함하여 2분 내외의 시간동안 사출 성형한다. 물론, 자연 냉각 방식이 아닌 강제 냉각 방식을 이용함으로써 사출 성형에 필요한 시간을 더욱 단축할 수 있다.On the other hand, the heat dissipation structure of the present invention is manufactured by injection molding the above carbon-based material. Specifically, the above-described carbon-based material is injected into a block mold by a certain weight unit, and injection-molded for 30 to 90 seconds at a temperature condition of 200 to 350°C and a pressure of 80 to 160 kgf/cm 2 to manufacture a heat dissipating structure. . At this time, the conditions for injection molding are set to perform thermal curing of the polyamide resin or polyphenylene sulfide, which is a binder, and injection molding is performed for about 2 minutes including the time required for natural cooling. Of course, it is possible to further shorten the time required for injection molding by using the forced cooling method instead of the natural cooling method.

그리고, 본 발명의 방열구조체(100)는 도 2에 도시된 바와 같이, 일면은 평면부(110)로 형성되고 타면은 요철부(120)가 형성되도록 하는 것이 바람직하다. 이는 방열구조체(100)를 적층할 때 요철부(120)끼리 서로 맞물리도록 함으로써 평면부(110)가 손상되지 않도록 하기 위한 것이다. 따라서, 방열구조체(100)를 다층으로 적층하는 경우에는 도 3에 도시된 바와 같이, 요철부(120)끼리 맞물리도록 함과 아울러 서로 맞닿는 평면부(110) 사이에는 보호판(200)을 개재함으로써 평면부(110)를 손상으로부터 보호할 수 있게 된다.In addition, it is preferable that the heat dissipation structure 100 of the present invention is formed with a flat portion 110 on one side and an uneven portion 120 on the other side, as shown in FIG. 2. This is to prevent damage to the flat portion 110 by allowing the uneven portions 120 to engage with each other when the heat radiation structure 100 is stacked. Therefore, in the case of stacking the heat dissipation structure 100 in multiple layers, as shown in FIG. 3, the uneven portions 120 are engaged with each other, and a protective plate 200 is interposed between the flat portions 110 that abut each other. It is possible to protect the part 110 from damage.

이상으로 본 발명의 기술적 사상을 예시하기 위한 몇 가지 실시 예들과 관련하여 설명하고 도시하였지만, 본 발명은 이와 같이 설명된 그대로의 구성 및 작용에만 국한되는 것이 아니며, 발명의 설명에 기재된 기술적 사상의 범주를 일탈함이 없이 본 발명에 대해 다수의 변경 및 수정이 가능함을 통상의 기술자들은 잘 이해할 수 있을 것이다. 따라서 그러한 모든 적절한 변경 및 수정과 균등물들도 본 발명의 범위에 속하는 것으로 간주되어야 할 것이다.As described above and illustrated in connection with some embodiments for illustrating the technical idea of the present invention, the present invention is not limited to the configuration and operation as described above, but the scope of the technical idea described in the description of the invention It will be well understood by those of ordinary skill in the art that a number of changes and modifications can be made to the present invention without departing from it. Accordingly, all such appropriate changes and modifications and equivalents should be considered to be within the scope of the present invention.

100...방열구조체
110...평면부
120...요철부
200...보호판
100... heat dissipation structure
110...plane
120...
200...protective plate

Claims (5)

인상흑연(crystalline graphite), 인조흑연(synthetic graphite), 토상흑연(amorphous graphite) 및 팽창흑연(expandable graphite), 판상흑연, 구상흑연으로 이루어진 군으로부터 선택되는 1종 이상의 흑연재료를 1~50㎛의 크기로 파쇄 및 균질화하는 단계와;
탄소나노튜브, 그래핀, 카본블랙으로 이루어진 군으로부터 선택되는 1종 이상의 탄소재료를 20~500㎚의 크기로 파쇄 및 균질화하는 단계와;
분산액 전체 중량을 기준으로 2~20중량%의 함량이 되도록 파쇄된 탄소재료를, 증류수, 알코올, 디메틸포름아마이드(DMF), 메틸에틸케톤(MEK) 및 폴리올로 이루어진 군 중에서 선택되는 일종 이상으로 이루어진 용매에 분산시켜 탄소재료 분산물을 형성하는 단계와;
파쇄 및 균질화된 흑연재료 80~98중량%와 탄소재료 분산물 2~20중량%를 혼합한 후 진공 교반기에 투입하여 교반하여 탄소혼합재를 형성한 후, 진공 교반기의 챔버 내부 온도를 30~50℃까지 하강시켜 탄소혼합재를 안정화하는 단계와;
탄소혼합재 20~60중량%와 폴리아미드 수지 또는 폴리페닐렌 설파이드로 이루어진 바인더 40~80중량%를 혼합한 후 건조 및 교반시켜 탄소계 소재를 형성하는 단계;
탄소계 소재에 포함된 고분자의 자외선에 의한 분해방지를 위한 분해방지제와 산화방지제를 각각 1~5중량% 더 포함시킨 후 펠릿화하는 단계; 및
펠릿화된 탄소계 소재를 일정 중량 단위로 블록 금형에 투입하고, 200~350℃의 온도 조건과 80~160㎏f/㎠의 압력으로 30~90초동안 사출 성형하여 방열구조체를 형성하는 단계;를 포함하며,
상기 분해방지제는 히드록시벤조페논계(Hydroxy Benzophenone), 히드록시페닐 벤조트리아졸계(Hydroxypheny Benzotriazole), 아릴에스테르계(Arylester), 옥사닐라이드계(Oxanilides), 포름아미딘계(Formamidine)로 이루어진 군으로부터 선택되는 1종 이상으로 이루어지고,
상기 산화방지제는 페놀계 산화방지제, 인계 산화방지제, 황계 산화방지제, 아민계 산화방지제로 이루어진 군에서 선택되는 1종 이상으로 이루어지며,
적층시 요철부(120)끼리 서로 맞물려 평면부(110)가 손상되지 않도록, 방열구조체의 일면은 평면부(110)로 형성되고 타면은 요철부(120)로 형성되는 것을 특징으로 하는 방열구조체의 제조방법.
At least one graphite material selected from the group consisting of crystalline graphite, synthetic graphite, amorphous graphite, expandable graphite, plate graphite, and nodular graphite is used in a range of 1 to 50 μm. Crushing and homogenizing to size;
Crushing and homogenizing at least one carbon material selected from the group consisting of carbon nanotubes, graphene, and carbon black to a size of 20 to 500 nm;
A carbon material crushed to have a content of 2 to 20% by weight based on the total weight of the dispersion is composed of at least one selected from the group consisting of distilled water, alcohol, dimethylformamide (DMF), methyl ethyl ketone (MEK), and polyol. Dispersing in a solvent to form a carbon material dispersion;
After mixing 80 to 98% by weight of the crushed and homogenized graphite material and 2 to 20% by weight of the carbon material dispersion, putting it into a vacuum stirrer and stirring to form a carbon mixture, then the temperature inside the chamber of the vacuum stirrer is 30 to 50°C. Stabilizing the carbon mixture by descending to;
Mixing 20 to 60% by weight of a carbon mixture and 40 to 80% by weight of a binder made of polyamide resin or polyphenylene sulfide, followed by drying and stirring to form a carbon-based material;
Pelletizing after further including 1 to 5% by weight of each of a decomposition inhibitor and an antioxidant for preventing decomposition of the polymer contained in the carbon-based material by ultraviolet rays; And
Injecting the pelletized carbon-based material into a block mold by a predetermined weight unit, and injection molding for 30 to 90 seconds at a temperature condition of 200 to 350°C and a pressure of 80 to 160 kgf/cm 2 to form a heat dissipating structure; Including,
The decomposition inhibitor is from the group consisting of hydroxybenzophenone, hydroxyphenyl benzotriazole, arylester, oxanilides, and formamidine. It consists of at least one selected,
The antioxidant is made of at least one selected from the group consisting of phenolic antioxidants, phosphorus antioxidants, sulfur antioxidants, and amine antioxidants,
In order to prevent damage to the flat portion 110 by interlocking the uneven portions 120 during stacking, one surface of the heat dissipation structure is formed of a flat portion 110 and the other surface is formed of an uneven portion 120. Manufacturing method.
삭제delete 삭제delete 삭제delete 삭제delete
KR1020180161230A 2018-12-13 2018-12-13 Method for Manufacturing of Heat-radiating Structure KR102159078B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180161230A KR102159078B1 (en) 2018-12-13 2018-12-13 Method for Manufacturing of Heat-radiating Structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180161230A KR102159078B1 (en) 2018-12-13 2018-12-13 Method for Manufacturing of Heat-radiating Structure

Publications (2)

Publication Number Publication Date
KR20200073353A KR20200073353A (en) 2020-06-24
KR102159078B1 true KR102159078B1 (en) 2020-09-24

Family

ID=71407890

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180161230A KR102159078B1 (en) 2018-12-13 2018-12-13 Method for Manufacturing of Heat-radiating Structure

Country Status (1)

Country Link
KR (1) KR102159078B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112032227B (en) * 2020-08-18 2021-12-07 东风商用车有限公司 Friction plate material and preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014093427A (en) * 2012-11-05 2014-05-19 Unitika Ltd Heat sink
KR101709686B1 (en) * 2015-09-23 2017-02-24 이석 Method for producing carbon-based material for heat dissipating structure, method for producing heat dissipating structure using carbon-based material
KR101832769B1 (en) * 2017-08-18 2018-02-28 인텍전기전자 주식회사 Heat-disspating printed circuit board using carbon-based material and method for fabricating the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101497412B1 (en) 2008-07-16 2015-03-02 주식회사 뉴파워 프라즈마 Heat sink with compound material having covalent bond carbon nanotube
CN103097470B (en) 2010-08-05 2015-10-14 韩华石油化学株式会社 Utilize the high efficiency heat radiation coating composition of carbon material
KR20170000220A (en) 2015-06-23 2017-01-02 (주) 어큠 The heat sink using nano carbon nano-graphene composites
KR101766230B1 (en) 2015-12-10 2017-08-08 인성 엔프라 주식회사 Heat exchanger materials using carbon composites and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014093427A (en) * 2012-11-05 2014-05-19 Unitika Ltd Heat sink
KR101709686B1 (en) * 2015-09-23 2017-02-24 이석 Method for producing carbon-based material for heat dissipating structure, method for producing heat dissipating structure using carbon-based material
KR101832769B1 (en) * 2017-08-18 2018-02-28 인텍전기전자 주식회사 Heat-disspating printed circuit board using carbon-based material and method for fabricating the same

Also Published As

Publication number Publication date
KR20200073353A (en) 2020-06-24

Similar Documents

Publication Publication Date Title
KR101735819B1 (en) Material for carbon-based heat dissipating structurem, method for producing carbon-based heat dissipating structure using material and carbon-based heat dissipating structure produced by the same
Idumah et al. Recently emerging trends in thermal conductivity of polymer nanocomposites
US10834854B2 (en) Methods for the manufacture of thermal interfaces, thermal interfaces, and articles comprising the same
WO2014080743A1 (en) Highly filled high thermal conductive material, method for manufacturing same, composition, coating liquid and molded article
US20130240261A1 (en) Composite material for shielding electromagnetic wave
CN104559149A (en) Carbon composite high-thermal-conductivity plastic material and preparation method thereof
US20060155043A1 (en) Nanostructure composites
KR101349160B1 (en) Functionality nanocomposites containing glass fiber coated with carbonnanotube and graphite and a fabrication process thereof
KR101349161B1 (en) Polymer nanocomposites containing glass fiber coated with metal-carbonnanotube and graphite and a fabrication process thereof
KR101709686B1 (en) Method for producing carbon-based material for heat dissipating structure, method for producing heat dissipating structure using carbon-based material
JP2012072363A (en) Heat-conductive resin composition and heat-radiating material comprising the same
KR101839920B1 (en) Heat-dissipating Printed Circuit Board and Manufacturing Method Thereof
Liu et al. Construction of 3D interconnected and aligned boron nitride nanosheets structures in phthalonitrile composites with high thermal conductivity
KR101832769B1 (en) Heat-disspating printed circuit board using carbon-based material and method for fabricating the same
KR101675292B1 (en) Composite material with high thermal conductive
KR102159078B1 (en) Method for Manufacturing of Heat-radiating Structure
JP2015000937A (en) Heat-conductive resin composition
KR102259867B1 (en) LED Module for Lighting with Heat Dissipating PCB and LED Lighting Apparatus with It
KR101681291B1 (en) Hybrid heat radiating sheet based on carbon nanotube and fabrication method thereof
KR101649613B1 (en) Cabon and Nano Hybrid Heat Insulating compotion and battery module housing using the same
JP2018030942A (en) Method for producing heat-conductive sheet
KR101977125B1 (en) method for fabricating PCB using carbon-based materal for LED lighting
KR101766230B1 (en) Heat exchanger materials using carbon composites and manufacturing method thereof
KR102134080B1 (en) Heat Dissipating Printed Circuit Board and The Manufacturing Method thereof
KR102280275B1 (en) Heat sink material using carbon composite and manufacturing method thereof

Legal Events

Date Code Title Description
AMND Amendment
E601 Decision to refuse application
AMND Amendment
AMND Amendment
X701 Decision to grant (after re-examination)
N231 Notification of change of applicant
GRNT Written decision to grant