KR101675292B1 - Composite material with high thermal conductive - Google Patents

Composite material with high thermal conductive Download PDF

Info

Publication number
KR101675292B1
KR101675292B1 KR1020150045207A KR20150045207A KR101675292B1 KR 101675292 B1 KR101675292 B1 KR 101675292B1 KR 1020150045207 A KR1020150045207 A KR 1020150045207A KR 20150045207 A KR20150045207 A KR 20150045207A KR 101675292 B1 KR101675292 B1 KR 101675292B1
Authority
KR
South Korea
Prior art keywords
resin
filler
composite material
carbon
high thermal
Prior art date
Application number
KR1020150045207A
Other languages
Korean (ko)
Other versions
KR20160116865A (en
Inventor
서은하
Original Assignee
주식회사 효성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 효성 filed Critical 주식회사 효성
Priority to KR1020150045207A priority Critical patent/KR101675292B1/en
Priority to PCT/KR2016/001634 priority patent/WO2016159510A1/en
Publication of KR20160116865A publication Critical patent/KR20160116865A/en
Application granted granted Critical
Publication of KR101675292B1 publication Critical patent/KR101675292B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명은 고열전도 복합소재에 관한 것으로, 보다 상세하게는 베이스 필러, 나노탄소계 필러 및 고분자 수지를 포함하는 고열전도 복합소재에 관한 것이다.TECHNICAL FIELD The present invention relates to a high thermal conductive composite material, and more particularly, to a high thermal conductive composite material including a base filler, a nano carbon filler, and a polymer resin.

Description

고열전도 복합소재{COMPOSITE MATERIAL WITH HIGH THERMAL CONDUCTIVE}[0001] COMPOSITE MATERIAL WITH HIGH THERMAL CONDUCTIVE [0002]

본 발명은 고열전도 복합소재에 관한 것으로, 보다 상세하게는 베이스 필러, 나노탄소계 필러 및 고분자 수지를 포함하는 고열전도 복합소재에 관한 것이다.TECHNICAL FIELD The present invention relates to a high thermal conductive composite material, and more particularly, to a high thermal conductive composite material including a base filler, a nano carbon filler, and a polymer resin.

LED(light emitting diode)는 열에너지를 적게 소비하며, 높은 수명을 갖는 장점으로 인하여 수많은 전자 제품에 쓰이고 있다. LEDs (light emitting diodes) are used in many electronic products because of their low thermal energy consumption and high lifetime advantages.

이러한 LED의 고휘도화, 고기능화됨에 따라 제품 내 방출 열량이 급증하고 방출열은 소자의 기능을 저하할 뿐만 아니라 주변소자의 오작동, 기판 열화 등의 원인이 되고 있다. 그러나, LED의 초경량/박형화가 급속하게 진행되어 방열 공간 제약이 문제점으로 대두하고 있다. 이를 방지하기 위하여, 경량이면서도 성형 가공성이 우수한 고분자 재료를 고열전도화하여 사용해야 한다는 요구가 점점 커지고 있다.As these LEDs become more bright and sophisticated, the amount of emitted heat in the product increases rapidly, and the emitted heat not only degrades the function of the device but also causes malfunction of peripheral devices and deterioration of the substrate. However, the ultra lightness / thinning of the LED has progressed rapidly, and heat radiation space restriction has become a problem. In order to prevent this, there is a growing demand for a polymer material that is light in weight and excellent in molding processability to be used in a high thermal conductivity.

그러나, 고분자 자체의 고열전도화는 한계가 있다. 이를 개선하기 위하여, 흑연, 카본섬유, 보론나이트라이드 등의 고 열전도성 필러(filler)를 복합화함으로써 고방열 열전도 복합소재가 개발되고 있으나, 높은 열전도도를 구현하기 위해서는 많은 필러 충진이 필요하다는 문제점이 있다. 또한, 고충진 복합소재는 낮은 기계적 물성치를 갖게 되는 문제가 발생하게 된다.However, the high thermal conductivity of the polymer itself is limited. In order to improve this, a highly heat-dissipative thermally conductive composite material has been developed by combining a high-thermal-conductive filler such as graphite, carbon fiber, and boron nitride, but a problem that a large amount of filler is required to achieve a high thermal conductivity is a problem have. In addition, the highly complex composite material has a problem that it has a low mechanical property value.

이에, 당 업계에서는 필러의 함량에 따라 높은 열전도도를 갖는 우수한 열전도성 고재의 개발이 요구되고 있다.Accordingly, there is a need in the art to develop an excellent thermally conductive base material having a high thermal conductivity according to the content of the filler.

본 발명은 베이스 필러, 나노탄소계 필러 및 고분자 수지를 포함하면서 필러의 함량을 조절함으로써, 열전도도가 향상된 고열전도 복합소재를 제공하는 것을 목적으로 한다.It is an object of the present invention to provide a high thermal conductive composite material having improved thermal conductivity by controlling the content of a filler including a base filler, a nano carbon-based filler, and a polymer resin.

상기한 목적을 달성하기 위하여, 본 발명은 탄소계, 질화계 및 금속산화물로 이루어진 군에서 선택된 1종 이상의 베이스 필러; 탄소나노튜브 또는 그래핀인 나노탄소계 필러; 및 고분자 수지를 포함하는 고열전도 복합소재를 제공한다.According to an aspect of the present invention, there is provided a semiconductor device comprising: at least one base filler selected from the group consisting of carbon-based, nitriding, and metal oxides; Carbon nanotube or graphene; And a high-thermal-conductivity composite material comprising a polymer resin.

이때, 상기 고열전도 복합소재의 전체 중량을 기준으로, 상기 베이스 필러는 30~70중량%; 나노탄소계 필러는 0.2~0.5중량%; 및 나머지는 고분자 수지를 포함하는 것을 특징으로 한다.In this case, the base filler may be 30 to 70 wt% based on the total weight of the high thermal conductive composite material; 0.2 to 0.5% by weight of a nano-carbon-based filler; And the remainder comprising a polymer resin.

또한, 상기 고분자 수지는 폴리케톤 수지, 폴리카보네이트 수지, 폴리아세탈 수지, 아크릴계 수지, 스티렌계 수지, 폴리에스테르 수지, 비닐계 수지, 폴리페닐렌에테르 수지, 폴리올레핀 수지, 폴리아미드 수지, 폴리아미드이미드 수지, 아크릴로니트릴-부타디엔-스티렌 공중합체 수지, 폴리아릴레이트 수지, 폴리아릴설폰 수지, 폴리에테르이미드 수지, 폴리에테르설폰 수지, 폴리페닐렌 설파이드 수지, 불소계 수지, 폴리에테르케톤 수지, 폴리이미드 수지, 폴리옥사디아졸 수지, 폴리벤족사졸 수지, 폴리벤조티아졸 수지, 폴리벤지미다졸 수지, 폴리피리딘 수지, 폴리트리아졸 수지, 폴리피롤리딘 수지, 폴리디벤조퓨란 수지, 폴리설폰 수지, 폴리포스파젠 수지 및 폴리우레아 수지로 이루어진 군에서 선택된 1종인 것이 바람직하다.The polymer resin may be at least one selected from the group consisting of polyketone resin, polycarbonate resin, polyacetal resin, acrylic resin, styrene resin, polyester resin, vinyl resin, polyphenylene ether resin, polyolefin resin, polyamide resin, Acrylonitrile-butadiene-styrene copolymer resin, polyarylate resin, polyaryl sulfone resin, polyetherimide resin, polyether sulfone resin, polyphenylene sulfide resin, fluorine resin, polyether ketone resin, polyimide resin, Polybenzoxazole resins, polybenzoxazole resins, polyoxadiazole resins, polybenzoxazole resins, polybenzothiazole resins, polybenzimidazole resins, polypyridine resins, polytriazole resins, polypyrrolidine resins, polydibenzofuran resins, polysulfone resins, And a polyurea resin.

본 발명의 고열전도 복합소재는 고함량의 필러를 포함함으로써, 종래의 열전도성 수지에 비해 열전도도 및 충격강도가 향상될 수 있다.Since the high thermal conductive composite material of the present invention contains a high amount of filler, thermal conductivity and impact strength can be improved as compared with the conventional thermoconductive resin.

또한, 나노탄소계 필러를 포함함으로써, 정전기 방지 및 전자파 차폐 재료로 동시에 이용될 수 있으며, 종래의 열전도성 수지에 비해 1.5배 정도 열전도도가 향상될 수 있으며, 종래의 열전도성 필러로 사용되는 알루미늄에 비해 경량화할 수 있다.Also, by including the nano carbon-based filler, it can be used simultaneously as an anti-static and electromagnetic shielding material, and the thermal conductivity can be improved by about 1.5 times as compared with the conventional thermally conductive resin. The weight can be reduced.

이하, 본 발명에 대하여 설명한다.
Hereinafter, the present invention will be described.

본 발명은 베이스 필러; 나노탄소계 필러; 및 고분자 수지를 포함하는 고열전도 복합소재를 제공한다.The present invention relates to a base pillar; Nano Carbon Filler; And a high-thermal-conductivity composite material comprising a polymer resin.

상기 고열전도 복합소재는 베이스 필러를 포함한다.The high thermal conductive composite material includes a base filler.

이때, 상기 베이스 필러의 종류는 탄소계, 질화계 및 금속산화물일 수 있으며, 이들은 단독 또는 2종 이상을 혼합하여 사용할 수 있다.At this time, the base filler may be a carbon-based, a nitriding or a metal oxide, and they may be used alone or in combination of two or more.

상기 탄소계는 흑연, 탄소섬유 등인 것이 바람직하고, 질화계는 질화붕소, 질화알루미늄 등인 것이 바람직하며, 금속산화물은 알루미나 등인 것이 바람직하나, 이에 한정되는 것은 아니다.The carbon system is preferably graphite, carbon fiber or the like, and the nitriding system is preferably boron nitride, aluminum nitride or the like, and the metal oxide is preferably alumina or the like, but is not limited thereto.

이러한 베이스 필러의 함량은 특별히 한정되지 않으나, 고열전도 복합소재의 전체 중량을 기준으로 30~70중량%인 것이 바람직하다.The content of the base filler is not particularly limited, but is preferably 30 to 70% by weight based on the total weight of the high thermal conductive composite material.

특히, 상기 베이스 필러의 함량이 30중량% 미만일 경우, 기존 복합소재 내에서 필러-수지 간 열전도 네트워크를 충분히 구현해내는 것이 어려워 열전도도 향상 효과가 미미할 수 있다. 또한, 베이스 필러의 함량이 70중량% 이상일 경우, 필러의 자체의 계면 저항이 높아지게 되어, 열전달 흐름에 방해를 하여 오히려 열전도도가 저하되는 경향이 있다.
Particularly, when the content of the base filler is less than 30% by weight, it is difficult to sufficiently realize the heat transfer network between the filler and the resin in the existing composite material, so that the effect of improving the thermal conductivity may be insufficient. In addition, when the content of the base filler is 70% by weight or more, the interface resistance of the filler itself is increased, which interferes with the heat transfer flow and tends to lower the thermal conductivity.

한편, 상기 고열전도 복합소재는 나노탄소계 필러를 포함한다.Meanwhile, the high thermal conductive composite material includes a nano carbon-based filler.

이때, 상기 나노탄소계 필러의 종류는 탄소나노튜브 또는 그래핀일 수 있으며, 이들은 단독 또는 2종 이상을 혼합하여 사용할 수 있다.At this time, the nano carbon filler may be carbon nanotubes or graphene, and they may be used alone or in combination of two or more.

상기 탄소나노튜브는 특별히 한정되지 않으나, 단일벽 탄소나노튜브, 이중벽 탄소나노튜브 또는 다중벽 탄소나노튜브일 수 있으며, 이들은 단독 또는 2종 이상을 혼합하여 사용할 수 있다.The carbon nanotube may be a single-walled carbon nanotube, a double-walled carbon nanotube, or a multi-walled carbon nanotube. The carbon nanotube may be used singly or in combination of two or more.

또한, 탄소나노튜브는 통상의 아크(arc) 방전법, 레이저 증착법, 플라즈마 화학기상증착법, 기상 합성법, 열분해법 등과 같은 방법으로 제조된 후 열처리된 것일 수 있다.The carbon nanotubes may be prepared by a conventional method such as an arc discharge method, a laser deposition method, a plasma chemical vapor deposition method, a vapor phase synthesis method, a pyrolysis method, and the like, followed by heat treatment.

상기 합성법에 의해 제조된 생성물은 합성된 탄소나노튜브와 함께 비정질 탄소 또는 결정성 흑연 입자와 같은 탄소 불순물과 촉매 전이금속 입자 등이 존재하게 된다.The product prepared by the above-described synthesis method includes carbon nanotubes synthesized, and carbon impurities such as amorphous carbon or crystalline graphite particles and catalyst transition metal particles are present.

예를 들어, 아크 방전법으로 제조되는 경우 생성물의 전체 중량 중에 탄소나노튜브 15~30중량%, 탄소 불순물 45~70중량% 및 촉매 전이금속 입자 5~25중량%가 포함된다. 상기와 같이 불순물이 함유된 탄소나노튜브를 정제과정 없이, 직접 사용할 경우 탄소나노튜브 고유의 물성이 제대로 발현되기 어렵다. 따라서, 아크 방전법으로 제조된 생성물을 열처리하여 불순물을 최대한 제거시킨 탄소나노튜브를 사용하는 것이 바람직하다.For example, when manufactured by the arc discharge method, 15 to 30% by weight of carbon nanotubes, 45 to 70% by weight of carbon impurities and 5 to 25% by weight of catalyst transition metal particles are included in the total weight of the product. When the carbon nanotubes containing impurities are directly used without purification, it is difficult for the carbon nanotubes to have proper physical properties. Therefore, it is preferable to use carbon nanotubes in which impurities are removed as much as possible by heat-treating the product produced by the arc discharge method.

이러한 나노탄소계 필러의 함량은 특별히 한정되지 않으나, 고열전도 복합소재의 전체 중량을 기준으로 0.2~0.5중량%인 것이 바람직하다.The content of the nano carbon-based filler is not particularly limited, but is preferably 0.2 to 0.5% by weight based on the total weight of the high thermal conductive composite material.

특히, 상기 나노탄소계 필러의 함량이 0.2중량% 미만일 경우, 기존 복합소재 내에서 필러-수지 간 열전도 네트워크를 충분히 구현해내는 것이 어려워 열전도도 향상 효과가 미미할 수 있다. 또한, 나노탄소계 필러의 함량이 0.5중량% 이상일 경우, 필러의 자체의 계면 저항이 높아지게 되어, 열전달 흐름에 방해를 하여 오히려 열전도도가 저하되는 경향이 있다.
Particularly, when the content of the nano-carbon-based filler is less than 0.2% by weight, it is difficult to sufficiently realize a heat-conducting network between the filler and the resin in the existing composite material, so that the effect of improving the thermal conductivity may be insufficient. In addition, when the content of the nano-carbon-based filler is 0.5 wt% or more, the interface resistance of the filler itself is increased, which interferes with the heat transfer flow and tends to lower the thermal conductivity.

또한, 본 발명에서 사용되는 고분자 수지는 폴리케톤 수지, 폴리카보네이트 수지, 폴리아세탈 수지, 아크릴계 수지, 스티렌계 수지, 폴리에스테르 수지, 비닐계 수지, 폴리페닐렌에테르 수지, 폴리올레핀 수지, 폴리아미드 수지, 폴리아미드이미드 수지, 아크릴로니트릴-부타디엔-스티렌 공중합체 수지, 폴리아릴레이트 수지, 폴리아릴설폰 수지, 폴리에테르이미드 수지, 폴리에테르설폰 수지, 폴리페닐렌 설파이드 수지, 불소계 수지, 폴리에테르케톤 수지, 폴리이미드 수지, 폴리옥사디아졸 수지, 폴리벤족사졸 수지, 폴리벤조티아졸 수지, 폴리벤지미다졸 수지, 폴리피리딘 수지, 폴리트리아졸 수지, 폴리피롤리딘 수지, 폴리디벤조퓨란 수지, 폴리설폰 수지, 폴리포스파젠 수지 및 폴리우레아 수지로 이루어진 군에서 선택된 1종일 수 있으나, 이에 한정되지 않는다.The polymeric resin used in the present invention may be a polyketone resin, a polycarbonate resin, a polyacetal resin, an acrylic resin, a styrene resin, a polyester resin, a vinyl resin, a polyphenylene ether resin, a polyolefin resin, Butadiene-styrene copolymer resin, polyarylate resin, polyaryl sulfone resin, polyether imide resin, polyether sulfone resin, polyphenylene sulfide resin, fluorine resin, polyether ketone resin, Polyimide resin, polyimide resin, polyoxadiazole resin, polybenzoxazole resin, polybenzothiazole resin, polybenzimidazole resin, polypyridine resin, polytriazole resin, polypyrrolidine resin, polydibenzofuran resin, polysulfone resin, A polyphosphazene resin, and a polyurea resin. However, It does not.

이러한 고분자 수지의 함량은 특별히 한정되지 않으나, 고열전도 복합소재의 전체 중량이 100중량%가 되도록 하는 잔량일 수 있으며, 29.5~69.8중량%인 것이 바람직하다.
The content of the polymer resin is not particularly limited, but may be a residual amount such that the total weight of the high thermal conductive composite material is 100 wt%, and preferably 29.5 to 69.8 wt%.

전술한 바와 같이 베이스 필러, 나노탄소계 필러 및 고분자 수지를 포함하는 고열전도 복합소재의 제조방법은 특별히 한정되지 않으나, 용융혼합법에 의하여 베이스 필러, 나노탄소계 필러 및 고분자 수지는 상기 고열전도 복합소재로 제조될 수 있다.As described above, the method of producing the high thermal conductive composite material including the base filler, the nano carbon filler, and the polymer resin is not particularly limited, but the base filler, the nano carbon filler, and the polymer resin are mixed by the melt- And the like.

이때, 압출기 등을 이용하여 높은 온도와 고 전단력 하에서 베이스 필러 및 나노탄소계 필러를 고분자 수지 내로 고르게 분산시켜 고열전도 복합소재를 제조함으로써, 인시츄 중합법(In-sity Pilymerization) 및 용액혼합법(Solution Mixing)에 비하여 대용량화가 가능하고, 제조단가를 낮출 수 있다.In this process, the base filler and the nano carbon filler are uniformly dispersed in the polymer resin at a high temperature and a high shear force by using an extruder or the like to produce a high thermal conductive composite material, Solution Mixing), and the manufacturing cost can be lowered.

본 발명에 따른 고열전도 복합소재는 베이스 필러, 나노탄소계 필러 및 고분자 수지를 포함함으로써, 열전도성이 향상되고 우수한 전기적 특성을 갖는 고분자 소재로, 전기적 특성을 요구하는 전기, 전자, 통신 기기의 기본 물질로 유용하게 적용될 수 있으며, 특히 전자파 차폐나 정전기 분산 등이 필요한 제품에도 효과적으로 적용될 수 있다.
The high thermal conductive composite material according to the present invention includes a base filler, a nano carbon-based filler, and a polymer resin, and thus is a polymer material having improved thermal conductivity and excellent electrical characteristics. And can be effectively applied to products requiring electromagnetic shielding or electrostatic dispersion.

이하, 본 발명을 실시예를 통해 구체적으로 설명하나, 하기 실시예 및 실험예는 본 발명의 한 형태를 예시하는 것에 불과할 뿐이며, 본 발명의 범위가 하기 실시예 및 실험예에 의해 제한되는 것은 아니다.
Hereinafter, the present invention will be described concretely with reference to Examples. However, the following Examples and Experimental Examples are merely illustrative of one form of the present invention, and the scope of the present invention is not limited by the following Examples and Experimental Examples .

실시예 1Example 1

압출기의 메인 호퍼에 폴리케톤 수지를 투입하고, 사이드 피더에는 베이스 필러인 팽창흑연 및 나노탄소계 필러인 탄소나노튜브를 투입하였다. 이때, 베이스 필러 및 나노탄소계 필러는 1 batch 투입도 가능하며, 베이스 필러 및 나노탄소계 필러의 함량은 복합체 내에 각각 50중량% 및 0.2중량%가 되도록 하였다.Polyketone resin was fed into the main hopper of the extruder, and carbon nanotubes, which are expanded graphite and nano carbon-based filler, were added to the side feeder. At this time, the base filler and the nano carbon-based filler can be put into one batch, and the content of the base filler and the nano carbon-based filler are respectively 50 wt% and 0.2 wt% in the composite.

이후, 압출시의 속도는 150RPM으로 진행하였으며, 압출온도는 240℃로 하여 열전도성 복합소재를 제조하였다.
Thereafter, the speed at the extrusion was 150 RPM, and the extrusion temperature was 240 ° C to prepare a thermoconductive composite material.

실시예 2Example 2

나노탄소계 필러의 함량을 복합체 내에 0.5중량% 투입한 것을 제외하고는, 실시예 1과 동일한 과정으로 열전도성 복합소재를 제조하였다.
A thermally conductive composite material was prepared in the same manner as in Example 1, except that the content of the nano-carbon filler was 0.5 wt% in the composite.

실시예 3Example 3

폴리케톤 수지 대신 폴리아미드 수지를 투입한 것을 제외하고는, 실시예 1과 동일한 과정으로 열전도성 복합소재를 제조하였다.
A thermally conductive composite material was prepared in the same manner as in Example 1, except that a polyamide resin was charged in place of the polyketone resin.

비교예 1 및 2Comparative Examples 1 and 2

나노탄소계 필러의 함량을 복합체 내에 각각 하기 표 1에 기재된 바와 같이 투입한 것을 제외하고는, 실시예 1과 동일한 과정으로 열전도성 복합소재를 제조하였다.
A thermoconductive composite material was prepared in the same manner as in Example 1, except that the content of the nano-carbon-based filler was each put into the composite as shown in Table 1 below.

비교예 3Comparative Example 3

나노탄소계 필러의 함량을 복합체 내에 하기 표 1에 기재된 바와 같이 투입한 것을 제외하고는, 실시예 3과 동일한 과정으로 열전도성 복합소재를 제조하였다.
A thermoconductive composite material was prepared in the same manner as in Example 3, except that the content of the nano carbon-based filler was added into the composite as shown in Table 1 below.

실험예Experimental Example

실시예 1 및 2, 비교예 1 및 2에서 각각 제조된 열전도성 복합소재의 물성은 하기와 같은 방법을 이용하여 평가하였으며, 그 결과는 하기 표 1에 나타내었다.The properties of the thermally conductive composite materials prepared in Examples 1 and 2 and Comparative Examples 1 and 2 were evaluated by the following methods. The results are shown in Table 1 below.

(1) 열전도도 : 열전도도 측정은 Laser flash를 이용하고, ASTM E1461의 방법에 근거하여 in plane 열전도도를 측정하였다.
(1) Thermal conductivity: Thermal conductivity was measured using a laser flash and in-plane thermal conductivity based on ASTM E1461 method.

수지Suzy 베이스 필러Base filler 나노탄소계 필러Nano Carbon Filler 열전도도
(W/mK, In-plane)
Thermal conductivity
(W / mK, In-plane)
실시예 1Example 1 PKPK 팽창흑연 50wt%Expanded Graphite 50wt% CNT 0.2wt%CNT 0.2wt% 2525 실시예 2Example 2 PKPK CNT 0.5wt%CNT 0.5wt% 2323 실시예 3Example 3 PAPA CNT 0.2wt%CNT 0.2wt% 1717 비교예 1Comparative Example 1 PKPK CNT 0wt%CNT 0wt% 1616 비교예 2Comparative Example 2 PKPK CNT 3wt%CNT 3wt% 1010 비교예 3Comparative Example 3 PAPA CNT 0wt%CNT 0wt% 1111

상기 표 1에서 알 수 있는 바와 같이, 본 발명에 따라 나노탄소계 필러 0.2~0.5중량%를 포함하는 열전도성 복합소재(실시예 1 내지 3)는 나노탄소계 필러를 포함하지 않는 복합소재(비교예 1 및 3)와 나노탄소계 필러의 함량이 0.5중량%를 초과하는 열전도성 복합소재(비교예 2)에 비해 열전도도가 월등히 향상된 것을 알 수 있었다.As can be seen in Table 1, the thermally conductive composite materials (Examples 1 to 3) containing 0.2 to 0.5 wt% of the nano carbon-based filler according to the present invention are composite materials that do not contain a nano carbon filler (Examples 1 and 3) and a nano carbon-based filler of more than 0.5 wt% (Comparative Example 2), the thermal conductivity was remarkably improved.

Claims (3)

베이스 필러인 팽창흑연 50중량%; 나노탄소계 필러인 탄소나노튜브 0.2~0.5중량%; 및 나머지는 폴리케톤 수지를 포함하며, 열전도도가 23~25W/mK인 것을 특징으로 하는 고열전도 복합소재.50% by weight of expanded graphite as a base filler; 0.2 to 0.5% by weight of carbon nanotubes which are nano carbon-based fillers; And the remainder comprises a polyketone resin and has a thermal conductivity of 23 to 25 W / mK. 삭제delete 삭제delete
KR1020150045207A 2015-03-31 2015-03-31 Composite material with high thermal conductive KR101675292B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020150045207A KR101675292B1 (en) 2015-03-31 2015-03-31 Composite material with high thermal conductive
PCT/KR2016/001634 WO2016159510A1 (en) 2015-03-31 2016-02-18 Highly thermally conductive composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150045207A KR101675292B1 (en) 2015-03-31 2015-03-31 Composite material with high thermal conductive

Publications (2)

Publication Number Publication Date
KR20160116865A KR20160116865A (en) 2016-10-10
KR101675292B1 true KR101675292B1 (en) 2016-11-11

Family

ID=57007330

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150045207A KR101675292B1 (en) 2015-03-31 2015-03-31 Composite material with high thermal conductive

Country Status (2)

Country Link
KR (1) KR101675292B1 (en)
WO (1) WO2016159510A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108587219A (en) * 2018-05-09 2018-09-28 南通强生石墨烯科技有限公司 Graphene resin composite materials and its purposes in LED lamp cup
KR102188834B1 (en) * 2018-09-06 2020-12-09 한국세라믹기술원 Polymer composite having excellent flame retardancy and manufacturing method of the same
KR102648718B1 (en) * 2019-01-31 2024-03-18 경일대학교 산학협력단 High heat dissipation composition and manufacturing method thereof
KR102136679B1 (en) * 2019-11-19 2020-07-23 (주)산과들 Thermal Conductive film inculding carbon nanotube
CN114989608B (en) * 2022-07-01 2024-01-30 宁夏清研高分子新材料有限公司 Heat-conducting polysulfone composite material and preparation method thereof
CN117050408A (en) * 2023-08-09 2023-11-14 国网冀北电力有限公司唐山供电公司 High-heat-conductivity composite material and preparation method thereof and high-efficiency radiating pipe prepared from high-heat-conductivity composite material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101266264B1 (en) 2013-01-02 2013-06-07 주식회사 유환 Environment friendly heat-radiating thermal conductive sheet and process thereof
KR101505746B1 (en) 2013-10-29 2015-03-26 인하대학교 산학협력단 Excellent heat dissipation and insulation back sheet for solar cells

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008041965A2 (en) * 2005-08-08 2008-04-10 Cabot Corporation Polymeric compositions containing nanotubes
KR101090729B1 (en) * 2008-11-24 2011-12-08 한화케미칼 주식회사 Highly conductive resin composition having carbon composite
KR101329974B1 (en) * 2012-01-12 2013-11-13 한화케미칼 주식회사 A resin composition for EMI shielding, comprising carbon hydride composite

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101266264B1 (en) 2013-01-02 2013-06-07 주식회사 유환 Environment friendly heat-radiating thermal conductive sheet and process thereof
KR101505746B1 (en) 2013-10-29 2015-03-26 인하대학교 산학협력단 Excellent heat dissipation and insulation back sheet for solar cells

Also Published As

Publication number Publication date
KR20160116865A (en) 2016-10-10
WO2016159510A1 (en) 2016-10-06

Similar Documents

Publication Publication Date Title
KR101675292B1 (en) Composite material with high thermal conductive
Li et al. Processing, thermal conductivity and flame retardant properties of silicone rubber filled with different geometries of thermally conductive fillers: A comparative study
Feng et al. Electrically insulating, layer structured SiR/GNPs/BN thermal management materials with enhanced thermal conductivity and breakdown voltage
Hu et al. An aqueous-only, green route to exfoliate boron nitride for preparation of high thermal conductive boron nitride nanosheet/cellulose nanofiber flexible film
Teng et al. Synergetic effect of hybrid boron nitride and multi-walled carbon nanotubes on the thermal conductivity of epoxy composites
Khanam et al. Melt processing and properties of linear low density polyethylene-graphene nanoplatelet composites
Lee et al. Enhanced through-plane thermal conductivity of paper-like cellulose film with treated hybrid fillers comprising boron nitride and aluminum nitride
Zhang et al. MgO nanoparticles-decorated carbon fibers hybrid for improving thermal conductive and electrical insulating properties of Nylon 6 composite
Chen et al. Enhanced thermal conductivity of benzoxazine nanocomposites based on non-covalent functionalized hexagonal boron nitride
Huang et al. Polyhedral oligosilsesquioxane‐modified boron nitride nanotube based epoxy nanocomposites: an ideal dielectric material with high thermal conductivity
KR101735819B1 (en) Material for carbon-based heat dissipating structurem, method for producing carbon-based heat dissipating structure using material and carbon-based heat dissipating structure produced by the same
Hong et al. A review on thermal conductivity of polymer composites using carbon-based fillers: carbon nanotubes and carbon fibers
CN104559149A (en) Carbon composite high-thermal-conductivity plastic material and preparation method thereof
US20150073088A1 (en) Composite of filler and polymer resin and method for preparing the same
WO2011074552A1 (en) Thermoplastic resin composition with high heat dissipation function, and molded products thereof
Yang et al. Nonisothermal crystallization behaviors of poly (3‐hexylthiophene)/reduced graphene oxide nanocomposites
Liu et al. Construction of 3D interconnected and aligned boron nitride nanosheets structures in phthalonitrile composites with high thermal conductivity
Anis et al. Preparation, characterization, and thermal conductivity of polyvinyl-formaldehyde/MWCNTs foam: A low cost heat sink substrate
JP2006312741A (en) Ic tray and composition for the same
Bai et al. Constructing network structure of graphene nanoplatelets/carbon nanofibers in polystyrene and the resultant heat resistance, thermal and conductive properties
KR20180045746A (en) A method for manufacturing high heat-radiating filament for three dimensional printing
Pradhan et al. Thermally conducting hybrid polycarbonate composites with enhanced electromagnetic shielding efficiency
Gul et al. Dimension effect on thermal conductivity of hexagonal boron nitride/titanium dioxide reinforced hybrid PEEK composites developed with a scalable compounding approach
Lin et al. Preparation and characterization of composites based on poly (vinylidene fluoride-co-chlorotrifluoroethylene) and carbon nanofillers: a comparative study of exfoliated graphite nanoplates and multi-walled carbon nanotubes
Wang et al. Noncovalent functionalization of boron nitride via chelation of tannic acid with Fe ions for constructing high thermally conductive polymeric composites

Legal Events

Date Code Title Description
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20191014

Year of fee payment: 4