KR102143644B1 - Method for producing male-sterile plant - Google Patents
Method for producing male-sterile plant Download PDFInfo
- Publication number
- KR102143644B1 KR102143644B1 KR1020180111497A KR20180111497A KR102143644B1 KR 102143644 B1 KR102143644 B1 KR 102143644B1 KR 1020180111497 A KR1020180111497 A KR 1020180111497A KR 20180111497 A KR20180111497 A KR 20180111497A KR 102143644 B1 KR102143644 B1 KR 102143644B1
- Authority
- KR
- South Korea
- Prior art keywords
- myb81
- pollen
- male
- gene
- present
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/415—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8216—Methods for controlling, regulating or enhancing expression of transgenes in plant cells
- C12N15/8218—Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8287—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for fertility modification, e.g. apomixis
- C12N15/8289—Male sterility
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6888—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
- C12Q1/6895—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/13—Plant traits
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/158—Expression markers
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biomedical Technology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biophysics (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Microbiology (AREA)
- Botany (AREA)
- Cell Biology (AREA)
- Plant Pathology (AREA)
- Immunology (AREA)
- Mycology (AREA)
- Gastroenterology & Hepatology (AREA)
- Medicinal Chemistry (AREA)
- Virology (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
본 발명은 미세포자 특이적인 유전자에서의 돌연변이가 현화식물에서 웅성 불임을 유발하는 것에 관한 것으로, 현화식물에서 MYB81의 특정 서열 변이가 웅성 불임 유발에 결정적으로 작용하는 것과 웅성 불임 유발이 기관/시기 특이성을 가지는 것을 규명함으로써 이를 결정적 유전자도구로 사용할 수 있으며, 미세포자 특이적으로 현화식물의 웅성 불임을 유도할 수 있다. 따라서, 본 발명의 방법은 종래의 웅성불임 식물체 제조방법에 비해 안정성이 있으며, 웅성불임계를 유지하기 위한 다른 유지계통 필요없이 웅성불임 식물체를 제조할 수 있으므로, 본 발명은 손쉬운 신품종 개발 및 고부가가치의 산업생산에 유용하게 이용할 수 있을 것이다.The present invention relates to a mutation in a microcell-specific gene induces male infertility in flowering plants, and a specific sequence mutation of MYB81 in flowering plants plays a crucial role in inducing male infertility and the induction of male infertility is organ/stage specificity. It can be used as a decisive genetic tool by identifying what has a, and can induce male sterility in flowering plants specifically for microcells. Therefore, the method of the present invention is more stable than the conventional method for producing male infertile plants, and since it is possible to manufacture male infertile plants without the need for other maintenance systems to maintain male infertility, the present invention provides easy development of new varieties and high added value. It will be useful for industrial production.
Description
본 발명은 미세포자 특이적인 유전자에서의 돌연변이가 현화식물에서 웅성 불임을 유발하는 것에 관한 것으로, 화분 발생 특이적인 MYB81 유전자의 핵산 결합부위의 두 아미노산을 제거함으로써 웅성불임을 유도하는 방법에 관한 것이다.The present invention relates to a mutation in a microcell-specific gene induces male infertility in flowering plants, and to a method for inducing male infertility by removing two amino acids at the nucleic acid binding site of the MYB81 gene specific for pollen generation.
고등 식물은 이배체 포자체 유기체의 성장 및 매우 감소된 일배체 배우체 형태를 번갈아 나타내는 복잡한 생활사를 가진다. 현화식물에서, 중복 수정을 위해 웅성배우체(male gametophyte) (또는 화분립)는 웅성 배우체의 생성 및 배아 낭(embryo sac)으로의 전달을 통해 식물 번식 및 작물 생산에서 필수적인 역할을 한다 (Borg et al, 2009). 배우체 (화분) 조직 및 포자체 (약 및 융단층) 조직 모두가 이 과정에 참여한다. 웅성 배우체 생활사는 두 개의 상으로 나눠질 수 있다: (1) 약실 내부에서 일어나고 성숙 화분의 형성으로 이어지는 발육 단계(developmental phase), 및 (2) 암술 머리 표면에서 립(grain)의 영향과 함께 시작되어 화분관 성장과 함께 계속되고 중복 수정에서 끝나는 기능 단계 또는 프로게이믹 단계(progamic phase) (Honys et al, 2006). 종자 식물의 웅성 배우체에서 유성 생식(sexual reproduction)의 일부로서 포함된 현화 식물의 화분은 꽃의 약(anther)에서 생산된다. 화분 발달은 어린 약실에서 시작되고 두 주요 단계-미세포자발생 단계 및 미세배우체발생 단계로 이루어진다. 약(anther) 안에 형성된 2배체인 화분모세포로부터 시작하여 한 번의 감수분열과 두 번의 유사분열을 거친다. 감수분열 후 4개의 반수체인 4분체가 형성되고, 이후 칼로스 분해에 의해 유리 되어 나온 미세포자의 핵은 화분 생식극(germ cell pole)으로 이동한다. 이 후 극성 미세포자는 '비대칭적 제1 화분세포 분열 (asymmetric pollen mitosis I)'을 통하여 전혀 다른 세포 특성을 가진 영양세포와 생식세포가 된다. 영양세포는 대부분의 세포질과 세포내 소기관을 포함하며, 핵은 덜 응축되어 있다. 이에 반해, 생식세포는 매우 제한된 세포질과 세포내 소기관을 포함하며, 그 핵은 매우 응축되어 있다. 이후 생식세포를 둘러싼 칼로스가 분해되면서 생식세포가 영양세포의 세포질 안으로 이동하여 영양세포 내에 생식세포가 있는 독특한 구조의 2세포 화분이 된다. 생식세포가 다시 대칭적 제2 화분세포분열(pollen mitosis Ⅱ, PMⅡ)을 거쳐 2개의 정자세포를 만들어 최종적으로 3세포 화분을 완성하며 (McCormick, 2004) 영양세포는 이후 정자세포를 자성배우자로 이동시키는 화분관을 만드는 기능을 한다. Higher plants have a complex life cycle that alternates between the growth of diploid sporangial organisms and very reduced haplotype gametes. In flowering plants, for redundant fertilization, the male gametophyte (or pollen grain) plays an essential role in plant propagation and crop production through the generation of male gametophytes and delivery to the embryo sac (Borg et al. , 2009). Both gametophyte (potted) and sporophyte (drug and carpet) tissues participate in this process. The male gamete life history can be divided into two phases: (1) a developmental phase that occurs inside the chamber and leads to the formation of a mature pollen, and (2) begins with the influence of grains on the surface of the pistil head. The functional phase or progamic phase that continues with pollen tube growth and ends in redundant fertilization (Honys et al, 2006). Pollen of flowering plants included as part of sexual reproduction in the male gamete of seed plants is produced from the anther of flowers. Pollen development begins in a young chamber and consists of two main stages-microcell development and microembryo development. It starts from the pollen blast, which is a diploid formed in the anther, and undergoes one meiosis and two mitosis. After meiosis, four haploids are formed, and then the nuclei of microcells released by calos decomposition move to the germ cell pole. After that, the polar microcells become vegetative cells and reproductive cells with completely different cellular characteristics through'asymmetric pollen mitosis I'. Feeder cells contain most of the cytoplasm and intracellular organelles, and the nucleus is less condensed. In contrast, germ cells contain very limited cytoplasm and intracellular organelles, and their nuclei are highly condensed. Subsequently, as the carlos surrounding the germ cells is decomposed, the germ cells move into the cytoplasm of the feeder cells, becoming a two-cell pollen with a unique structure with the germ cells in the feeder cells. The reproductive cells go through the second symmetrical pollen cell division (pollen mitosis II, PMII) to create two sperm cells and finally complete the three-cell pollen (McCormick, 2004). The vegetative cells then move the sperm cells to the magnetic spouse. It functions to make a flower pot tube.
화분발달은 웅성배우자를 만드는 생식세대로서 매우 짧은 주기이나 현화식물의 존재에 근간이 되는 중요한 생물학적 과정인 동시에 농업분야로의 그 접목가능성 또한 크며, 화분발달과정 중 비대칭 제1 화분세포분열의 조절유전자네트워크는 아직 밝혀진 바가 없다.Pollen development is a reproductive generation that creates male spouses. It is an important biological process that is the basis for the existence of flowering plants in a very short cycle, and at the same time, the possibility of grafting it into the agricultural field is also great, and a regulatory gene for the asymmetric first pollen cell division during the pollen development process. The network has yet to be revealed.
자연 돌연변이 및 유도 돌연변이로 인한 웅성불임(male sterile) 돌연변이는 여러 종의 고등식물에서 보고되어 왔다. 비기능성 꽃가루를 생성하는 상기 돌연변이들은 여러 가지 다른 표현형들과 연관되어 있으며, 이는 구조적 변이들을 가지고, 배우자 형성, 특히 감수분열과 연관된 기능적 결함들도 가진 꽃가루를 포함한다. 웅성불임은 유전양식에 따라 핵유전형(genic male sterility)과 세포질유전형(cytoplasmic male sterility)으로 나눌 수 있다. 핵유전형 웅성불임은 생존에 불리하게 작용하기 때문에 발견되는 것으로, 주로 열성유전을 하며 열성동형(homozygously recessive)인 경우에 불임성을 띠게 되기 때문에 불임계의 유지 및 증식에 많은 노력이 소요되고, 작물에 따라서는 꽃이 작아 번식력(fertility)의 판별이 힘들고, 꽃이 필 때까지 시간이 많이 소요되는 작물에서는 적용이 힘든 단점이 있다. 또한, 세포질 웅성불임은 어느 가임계를 교배해도 100% 불임주가 나오기 때문에, 불임주에 여러 가지 가임주를 교배하여 50% 혹은 100% 불임주를 낼 수 있는 개체 및 계통, 즉 유지계통(maintainer)을 찾아내서 심어주어야 하기 때문에 불편한 점은 있으나 불임활용의 소기의 목적을 달성할 수 있다. 하지만 일대잡종 육종을 위해 웅성불임계 획득을 위한 방사선 및 화학 약품을 통한 인위적 웅성불임 유기도 시도된 바가 있으나, 부작용을 해소해야 하는 문제점을 가지고 있다. 일대 잡종종자를 생산하기 위한 웅성불임 식물의 개발 및 연구에 많은 투자를 하고 있지만 현재까지 웅성불임 식물이 가지고 있는 문제점으로 인해 이에 관한 연구 성과는 매우 미비한 실정이다. 만약 이러한 웅성불임계 식물이 가지고 있는 단점들을 극복, 즉 안정성 있는 웅성불임계의 확보 및 다른 유지계통이 필요 없이 불임계를 유지할 수만 있다면, 이를 이용한 손쉬운 신품종 개발 및 고부가가치의 산업생산에 유용하게 이용할 수 있을 것이다. 따라서 안정성 있는 웅성불임계를 확보할 수 있고 다른 유지계통 필요없이 불임계를 유지할 있는 신규한 유전자에 대한 요구가 끊임없이 존재하여 왔다.Male sterile mutations due to natural and induced mutations have been reported in several higher plants. The mutations that produce non-functional pollen are associated with several different phenotypes, including pollen with structural mutations and also functional defects associated with gamete formation, particularly meiosis. Male infertility can be divided into genotypic male sterility and cytoplasmic male sterility according to heredity. Nuclear genotype male infertility is found because it adversely affects survival. Since it is mainly recessive and becomes infertile in the case of a homozygous recessive, a lot of effort is required to maintain and propagate the infertility system. Therefore, it is difficult to determine fertility because the flowers are small, and there is a disadvantage that it is difficult to apply to crops that take a lot of time until flowers bloom. In addition, since cytoplasmic male infertility produces 100% fertility strains no matter which fertile line is bred, individuals and lines capable of producing 50% or 100% fertility strains by crossing various fertile strains to infertile strains, that is, the maintenance system. It is inconvenient because it has to be found and planted, but the intended purpose of the use of infertility can be achieved. However, for hybrid breeding, artificial male infertility through radiation and chemical drugs to obtain male infertility has also been attempted, but there is a problem in that side effects must be resolved. Although a lot of investment is invested in the development and research of male sterile plants for the production of hybrid seeds, the research results on this are very poor due to the problems of male sterile plants so far. If it is possible to overcome the shortcomings of these male sterilization plants, that is, secure a stable male sterility and maintain sterility without the need for other maintenance systems, it can be used for easy development of new varieties and high value-added industrial production. I will be able to. Therefore, there has been a constant demand for a novel gene capable of securing stable male infertility and maintaining infertility without the need for other maintenance systems.
이에, 웅성불임과 관련된 다양한 유전자들이, 애기장대, 밀, 배추, 콩, 토마토, 해바라기 및 골파와 같은 다양한 식물 종들에서 동정되어 왔으나, 본 발명에서와 같이 식물체의 웅성불임에 결정적인 MYB81 유전자 및 이의 용도에 관해서는 밝혀진 바가 없다.Thus, various genes related to male infertility have been identified in various plant species such as Arabidopsis thaliana, wheat, cabbage, soybean, tomato, sunflower and chive, but as in the present invention, the MYB81 gene, which is crucial for male infertility in plants, and uses thereof Nothing has been revealed about.
본 발명의 목적은 MYB81 유전자의 ORF에서 TACGTT가 결실된 핵산을 제공하는 것이다.An object of the present invention is to provide a nucleic acid in which TACGTT is deleted from the ORF of the MYB81 gene.
또한, 본 발명의 목적은 본 발명의 핵산을 포함하는 식물 형질전환용 벡터 및 상기 벡터로 형질전환된 형질전환 식물체를 제공하는 것이다.In addition, an object of the present invention is to provide a vector for plant transformation comprising the nucleic acid of the present invention and a transgenic plant transformed with the vector.
또한, 본 발명의 목적은 MYB81 유전자의 ORF에서 TACGTT가 결실되어 있는, 웅성 불임 식물체 (AP28-23 이형 및 동형접합체)를 제공하는 것이다.In addition, an object of the present invention is to provide a male infertile plant (AP28-23 heterozygous and homozygous) in which TACGTT is deleted from the ORF of the MYB81 gene.
또한, 본 발명의 목적은 MYB81 유전자의 발현을 억제하는 핵산 분자 및 이를 포함하는 웅성 불임 유발용 조성물을 제공하는 것이다.In addition, an object of the present invention is to provide a nucleic acid molecule that inhibits the expression of the MYB81 gene and a composition for inducing male infertility comprising the same.
또한, 본 발명의 목적은 식물체의 웅성 불임 판별용 조성물을 제공하는 것이다.In addition, it is an object of the present invention to provide a composition for determining male infertility of a plant.
또한, 본 발명의 목적은 웅성 불임 식물체의 제조 방법을 제공하는 것이다.In addition, an object of the present invention is to provide a method for producing a male infertile plant.
아울러, 본 발명의 목적은 식물체의 웅성 불임 판별 방법을 제공하는 것이다.In addition, an object of the present invention is to provide a method for determining male infertility of a plant.
상기 과제를 해결하기 위하여, 본 발명은 MYB81 유전자의 ORF에서 TACGTT가 결실된 핵산을 제공한다.In order to solve the above problems, the present invention provides a nucleic acid in which TACGTT is deleted from the ORF of the MYB81 gene.
또한, 본 발명은 본 발명의 핵산을 포함하는 식물 형질전환용 벡터 및 상기 벡터로 형질전환된 형질전환 식물체를 제공한다.In addition, the present invention provides a vector for plant transformation comprising the nucleic acid of the present invention and a transgenic plant transformed with the vector.
또한, 본 발명은 MYB81 유전자의 ORF에서 TACGTT가 결실되어 있는, 웅성 불임 식물체 (AP28-23 이형 및 동형접합체)를 제공한다.In addition, the present invention provides a male infertile plant (AP28-23 heterozygous and homozygous) in which TACGTT is deleted in the ORF of the MYB81 gene.
또한, 본 발명은 MYB81 유전자의 발현을 억제하는 핵산 분자 및 이를 포함하는 웅성 불임 유발용 조성물을 제공한다.In addition, the present invention provides a nucleic acid molecule that inhibits the expression of the MYB81 gene, and a composition for inducing male infertility comprising the same.
또한, 본 발명은 식물체의 웅성 불임 판별용 조성물을 제공한다.In addition, the present invention provides a composition for determining male infertility of a plant.
또한, 본 발명은 웅성 불임 식물체의 제조 방법을 제공한다.In addition, the present invention provides a method for producing a male infertile plant.
아울러, 본 발명은 식물체의 웅성 불임 판별 방법을 제공한다.In addition, the present invention provides a method for determining male infertility of a plant.
본 발명에서는 현화식물에서 MYB81의 특정 서열 변이가 웅성 불임 유발에 결정적으로 작용하는 것과 웅성 불임 유발이 기관/시기 특이성을 가지는 것을 규명하였으므로, 이를 결정적 유전자도구로 사용할 수 있으며, 미세포자 특이적으로 현화식물의 웅성 불임을 유도할 수 있다. 따라서, 종래의 웅성불임 식물체 제조방법에 비해 안정성이 있으며, 웅성불임계를 유지하기 위한 다른 유지계통 필요없이 웅성불임 식물체를 제조할 수 있으므로, 본 발명은 손쉬운 신품종 개발 및 고부가가치의 산업생산에 유용하게 이용할 수 있을 것이다.In the present invention, since specific sequence mutations of MYB81 in flowering plants have been found to act decisively in inducing male infertility and that inducing male infertility has organ/stage specificity, this can be used as a definitive genetic tool, and microcell-specific flowering May induce male infertility in plants. Therefore, it is more stable than the conventional male infertility plant manufacturing method, and since it is possible to manufacture male infertile plants without the need for other maintenance systems to maintain male infertility, the present invention is useful for the development of new varieties and high value-added industrial production. You will be able to use it.
도 1은 야생형 애기장대의 화분립, AP28-23 이형 접합체 또는 동형 접합체의 화분 표현형을 확인한 도이다.
도 2는 AP28-23 돌연변이체의 원인 발생 시기를 나타낸 도이다:
TET: tetrad;
CMS: central microspore;
PMS: polarized microspore;
EBC: early bicellular pollen;
LBC: late bicellular pollen;
TC: tricellular pollen;
AbDEG: abnormally degenerating or dead pollen;
AbEBC: abnormal phenotype resembling early bicellular pollen; 및
AbPMS: abnormal phenotype resembling polarized microspore.
도 3은 AP28-23의 유전적 전달 분석 결과를 나타낸 도이다:
A: 쌍방간의 교잡 테스트에서의 AP28-23 돌연변이체 (AP28-23/+) 및 야생형 (+/+) 식물체의 수;
B: 이형 접합 AP28-23 웅성 및 자성 배우체(gamete) 집단에서 예측된 돌연변이 및 야생형 대립유전자의 빈도; 및
C: 이형 접합 AP28-23의 자가 자손에서 예측/관찰된 돌연변이 빈도.
도 4는 AP28-23 지도-기반 클로닝의 과정을 나타낸 도이다.
도 5는 SSLP 매핑의 원리를 나타낸 도이다.
도 6은 유전적 지도(genetic mapping) 분석에서 사용된 SSLP 마커 위치를 나타낸 모식도이다.
도 7은 AP28-23의 돌연변이 유전자좌를 나타낸 도이다.
도 8은 At2g26960의 유전체 DNA의 서열 분석 결과를 나타낸 도이다:
파란색 하이라이트: 개시/종결 코돈;
파란색 대문자: 엑손;
보라색 소문자: 인트론;
회색 하이라이트: 테스트된 서열 부위;
빨간색 하이라이트: Col/Ler의 다형성 (polymorphism) 서열;
녹색 하이라이트: 돌연변이 부위; 및
빨간색 박스: 프라이머 결합 위치.
도 9는 At2g26960-gDNA의 서열 분석 결과 6bp (TACGTT)가 결실된 것을 확인한 도이다.
도 10은 MYB81 유전자의 결실에 의한 표현형을 확인한 도이다:
A: 상보성 벡터(complementation vector) (MYB81)로 형질전환된 6개의 AP28-23 이형 접합체 식물체 (+/-), 49개의 AP28-23 이형 접합체 식물체 (+/-) 및 8개의 AP28-23 동형 접합체 (-/-) 돌연변이체의 정상 및 비정상 화분립의 백분율;
B: MYB81 전사체 발현;
SD: 유묘(seedlings);
RT: 뿌리;
Lf: 잎;
ST: 줄기;
YB: 어린 꽃봉오리;
OF: 개화된 꽃,
F2.1: 사배체 및 미세포자 혼합;
F2.2: 미세포자 및 조기 이세포 화분 혼합;
F2.3: 후기 이세포 화분;
F3.0: 삼세포 화분; 및
MP: 성숙 화분.
도 11은 pMYB81-GUS (A 및 C) 또는 pMYB81-CYCB1:1MDB-GUS (B)를 포함하는 형질전환 라인을 이용한 프로모터 GUS 분석 결과를 나타낸 도이다.
도 12는 화분 발달 동안 MYB81 단백질의 세포내 위치를 나타낸 도이다:
A: 칼로스 해체(callose dissolution);
B 및 C: 외벽(exine) 축적과 함께 중앙 미세포자;
D: 극성화 미세포자;
E: 조기 이세포;
F: 중기-이세포;
G: 후기 이세포;
H: 삼세포 화분;
I: pMYB81-MYB81-mRFP를 포함하는 형질전환 식물체의 뿌리 세포;
mn: 미세포자 핵;
vn: 영양세포 핵;
gn: 생성된 핵(generative nucleus);
sn, 정자 세포 핵(sperm cell nucleus); 및
v: 액포.
도 13은 p35S-MYB81-mRFP1 (K) 또는 에스트라디올의 존재하에 pXVE-MYB81-mRFP1 (J)를 포함하는 형질전환 식물체의 뿌리 세포를 나타낸 도이다.1 is a view confirming the pollen phenotype of the wild-type Arabidopsis pollen grain, AP28-23 heterozygous or homozygous.
Figure 2 is a diagram showing the time of occurrence of the cause of the AP28-23 mutant:
TET: tetrad;
CMS: central microspore;
PMS: polarized microspore;
EBC: early bicellular pollen;
LBC: late bicellular pollen;
TC: tricellular pollen;
AbDEG: abnormally degenerating or dead pollen;
AbEBC: abnormal phenotype resembling early bicellular pollen; And
AbPMS: abnormal phenotype resembling polarized microspore.
3 is a diagram showing the results of the genetic transmission analysis of AP28-23:
A: AP28-23 in bilateral hybridization test Number of mutant (AP28-23/+) and wild type (+/+) plants;
B: Heterozygous AP28-23 frequency of mutations and wild-type alleles predicted in male and female gamete populations; And
C: Predicted/observed mutation frequency in autologous offspring of heterozygous AP28-23.
4 is a diagram showing a process of AP28-23 map-based cloning.
5 is a diagram showing the principle of SSLP mapping.
Figure 6 is a schematic diagram showing the location of the SSLP marker used in the genetic mapping (genetic mapping) analysis.
7 is a diagram showing the mutant locus of AP28-23.
8 is a diagram showing the results of sequence analysis of genomic DNA of At2g26960:
Blue highlight: start/end codon;
Blue capital letters: exons;
Lowercase purple: intron;
Gray highlight: tested sequence site;
Red highlight: polymorphism sequence of Col/Ler;
Green highlight: mutation site; And
Red box: primer binding site.
9 is a diagram confirming that 6bp (TACGTT) was deleted as a result of sequence analysis of At2g26960- gDNA.
Figure 10 is a diagram confirming the phenotype by deletion of the MYB81 gene:
A: 6 AP28-23 heterozygous plants (+/-) transformed with a complementation vector ( MYB81 ), 49 AP28-23 heterozygous plants (+/-) and 8 AP28-23 homozygous (-/-) percentage of normal and abnormal pollen grains in the mutant;
B: MYB81 transcript expression;
SD: seedlings;
RT: root;
Lf: leaf;
ST: stem;
YB: young buds;
OF: blooming flowers,
F2.1: tetraploid and microcellular mixture;
F2.2: Mixture of microcellular and early two-cell pollen;
F2.3: late two-cell pollen;
F3.0: three-cell pollen; And
MP: mature pollen.
11 is a diagram showing the results of promoter GUS analysis using a transformation line containing pMYB81-GUS (A and C) or pMYB81-CYCB1:1 MDB- GUS (B).
12 is a diagram showing the intracellular location of the MYB81 protein during pollen development:
A: callose dissolution;
B and C: median microcells with exine accumulation;
D: polarized microcells;
E: early ear cells;
F: metaphase-ear cell;
G: late ear cell;
H: three cell pollen;
I: root cells of transgenic plants containing pMYB81-MYB81-mRFP;
mn: microcellular nucleus;
vn: feeder cell nucleus;
gn: generative nucleus;
sn, sperm cell nucleus; And
v: vacuole.
13 is a diagram showing the root cells of a transgenic plant containing p35S-MYB81-mRFP1 (K) or pXVE-MYB81-mRFP1 (J) in the presence of estradiol.
이하, 첨부된 도면을 참조하여 본 발명의 구현예로 본 발명을 상세히 설명하기로 한다. 다만, 하기 구현예는 본 발명에 대한 예시로 제시되는 것으로, 당업자에게 주지 저명한 기술 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 수 있고, 이에 의해 본 발명이 제한되지는 않는다. 본 발명은 후술하는 특허청구범위의 기재 및 그로부터 해석되는 균등 범주 내에서 다양한 변형 및 응용이 가능하다. Hereinafter, the present invention will be described in detail as an embodiment of the present invention with reference to the accompanying drawings. However, the following embodiments are presented as examples of the present invention, and if it is determined that a detailed description of a technique or configuration well known to those skilled in the art may unnecessarily obscure the subject matter of the present invention, the detailed description may be omitted. However, the present invention is not limited thereby. The present invention is capable of various modifications and applications within the scope of equality interpreted from the description of the claims to be described later and therefrom.
또한, 본 명세서에서 사용되는 용어(terminology)들은 본 발명의 바람직한 실시예를 적절히 표현하기 위해 사용된 용어들로서, 이는 사용자, 운용자의 의도 또는 본 발명이 속하는 분야의 관례 등에 따라 달라질 수 있다. 따라서, 본 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다. 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.In addition, terms used in the present specification (terminology) are terms used to properly express a preferred embodiment of the present invention, which may vary according to a user, an operator's intention, or customs in the field to which the present invention pertains. Therefore, definitions of these terms should be made based on the contents throughout the present specification. Throughout the specification, when a part "includes" a certain component, it means that other components may be further included rather than excluding other components unless otherwise stated.
본 발명에서 사용되는 모든 기술용어는, 달리 정의되지 않는 이상, 본 발명의 관련 분야에서 통상의 당업자가 일반적으로 이해하는 바와 같은 의미로 사용된다. 또한 본 명세서에는 바람직한 방법이나 시료가 기재되나, 이와 유사하거나 동등한 것들도 본 발명의 범주에 포함된다. 본 명세서에 참고문헌으로 기재되는 모든 간행물의 내용은 본 발명에 도입된다.All technical terms used in the present invention, unless defined otherwise, are used in the sense as commonly understood by those skilled in the art in the relevant field of the present invention. In addition, although preferred methods or samples are described in the present specification, those similar or equivalent are included in the scope of the present invention. The contents of all publications described by reference herein are incorporated into the present invention.
일 측면에서, 본 발명은 MYB81 유전자의 ORF에서 TACGTT가 결실된 핵산에 관한 것이다.In one aspect, the present invention relates to a nucleic acid in which TACGTT is deleted in the ORF of the MYB81 gene.
일 구현예에서, MYB81 유전자는 애기장대 유래일 수 있다.In one embodiment, the MYB81 gene may be derived from Arabidopsis thaliana.
일 구현예에서, 상기 핵산은 화분 발달 단계에 꽃봉오리에서 특이적으로 발현될 수 있다.In one embodiment, the nucleic acid may be specifically expressed in flower buds during the pollen development stage.
일 구현예에서, MYB81 유전자는 서열번호 3의 염기서열을 포함할 수 있으며, MYB81의 ORF는 서열번호 2의 염기서열을 포함할 수 있고, MYB81 유전자의 ORF에서 TACGTT가 결실된 핵산은 서열번호 1의 염기서열을 포함할 수 있다.In one embodiment, the MYB81 gene may include the nucleotide sequence of SEQ ID NO: 3, the ORF of MYB81 may include the nucleotide sequence of SEQ ID NO: 2, and the nucleic acid in which TACGTT is deleted in the ORF of the MYB81 gene is SEQ ID NO: 1 It may include a nucleotide sequence of.
일 구현예에서, MYB81 유전자의 ORF에서 TACGTT가 결실된 핵산은 서열번호 1의 염기서열일 수 있다.In one embodiment, the nucleic acid in which TACGTT is deleted in the ORF of the MYB81 gene may be the nucleotide sequence of SEQ ID NO: 1.
일 구현예에서, 서열번호 4의 염기서열을 포함하는 프로모터를 추가로 포함할 수 있다. 상기 서열번호 4의 염기서열을 포함하는 pMYB81 프로모터는, 감수 분열 이 후 발생하는 어린 화분 세포 시기에 특이적으로 발현을 유도하므로, 특정 유전자 또는 변형된 유전자의 표적화된 발현이 가능하게 한다. 본 발명의 일 실시예에서, MYB81 유전자의 ORF에서 TACGTT가 결실된 유전자를 광범위하게 발현시킨 경우 식물이 치사하였으므로, 상기 결실된 유전자를 이용하여 식물의 웅성 불임을 유발하기 위해서는, 본 프로모터를 이용하는 것이 바람직하다.In one embodiment, a promoter including the nucleotide sequence of SEQ ID NO: 4 may be further included. The pMYB81 promoter including the nucleotide sequence of SEQ ID NO: 4 specifically induces expression at the time of young pollen cells occurring after meiosis, thereby enabling targeted expression of specific genes or modified genes. In one embodiment of the present invention, when the gene in which the TACGTT is deleted was widely expressed in the ORF of the MYB81 gene, the plant died, so in order to induce male sterility of the plant using the deleted gene, using the present promoter desirable.
일 구현예에서, MYB81 유전자의 ORF에서의 TACGTT 결실은 웅성-특이적인 표현형을 나타낼 수 있다.In one embodiment, the deletion of TACGTT in the ORF of the MYB81 gene may indicate a male-specific phenotype.
일 구현예에서, 상기 TACGTT 결실에 의해 식물체에서 웅성 불임이 유발될 수 있다.In one embodiment, male infertility may be caused in plants by the deletion of the TACGTT.
일 측면에서, 본 발명은 MYB81 유전자의 ORF에서 TACGTT가 결실된 핵산을 포함하는 웅성 불임 식물체에 관한 것이다.In one aspect, the present invention relates to a male infertile plant comprising a nucleic acid in which TACGTT is deleted in the ORF of the MYB81 gene.
일 구현예에서, 상기 MYB81 유전자는 유전체 DNA (게놈 DNA) 및 cDNA를 모두 포함한다.In one embodiment, the MYB81 gene includes both genomic DNA (genomic DNA) and cDNA.
일 구현예에서, 상기 TACGTT의 결실은 공지된 유전자 편집 기술, 예컨대, 유전자 가위와 같은 방법을 이용하여 수행될 수 있다.In one embodiment, the deletion of the TACGTT may be performed using a known gene editing technique, for example, a method such as gene scissors.
일 구현예에서, 본 발명의 웅성 불임 식물체는 R2R3-MYB 전사 인자 유전자 패밀리의 멤버인, MYB 도메인 단백질 81의 발린 및 타이로신 (V35 및 Y36)이 결실되어 있는 식물체일 수 있다.In one embodiment, the male infertile plant of the present invention may be a plant in which valine and tyrosine (V35 and Y36) of MYB domain protein 81, which are members of the R2R3-MYB transcription factor gene family, are deleted.
일 구현예에서, 상기 식물체는 현화식물일 수 있다.In one embodiment, the plant may be a flowering plant.
일 측면에서, 본 발명은 본 발명의 핵산을 포함하는 식물 형질전환용 벡터에 관한 것이다.In one aspect, the present invention relates to a vector for plant transformation comprising the nucleic acid of the present invention.
일 구현예에서, 본 발명의 벡터는 서열번호 4의 염기서열을 포함하는 프로모터를 추가로 포함할 수 있다. 상기 서열번호 4의 염기서열을 포함하는 pMYB81 프로모터는, 감수 분열 이 후 발생하는 어린 화분 세포 시기에 특이적으로 발현을 유도하므로, 특정 유전자 또는 변형된 유전자의 표적화된 발현이 가능하게 한다. 본 발명의 일 실시예에서, MYB81 유전자의 ORF에서 TACGTT가 결실된 유전자를 광범위하게 발현시킨 경우 식물이 치사하였으므로, 상기 결실된 유전자를 이용하여 식물의 웅성 불임을 유발하기 위해서는, 본 프로모터를 이용하는 것이 바람직하다.In one embodiment, the vector of the present invention may further include a promoter comprising the nucleotide sequence of SEQ ID NO: 4. The pMYB81 promoter including the nucleotide sequence of SEQ ID NO: 4 specifically induces expression at the time of young pollen cells occurring after meiosis, thereby enabling targeted expression of specific genes or modified genes. In one embodiment of the present invention, when the gene in which the TACGTT is deleted was widely expressed in the ORF of the MYB81 gene, the plant died, so in order to induce male sterility of the plant using the deleted gene, using the present promoter desirable.
일 구현예에서, 본 발명의 벡터는 CaMV 35S, UBQ14, 액틴, 유비퀴틴, pEMU, MAS, 히스톤, SCP (Oh et al, 2010), MSP1 (Honys et al, 2006) 또는 DUO1 (Rotman etal, 2005)의 프로모터를 포함할 수 있으며, 화분 세포의 발생 단계에서 특이적으로 작동하는 SCP, MSP1 또는 DUO1를 포함할 수 있다.In one embodiment, the vector of the present invention is CaMV 35S, UBQ14, actin, ubiquitin, pEMU, MAS, histone, SCP (Oh et al, 2010), MSP1 (Honys et al, 2006) or DUO1 (Rotman et al, 2005). It may include a promoter of, and may include SCP, MSP1 or DUO1 that specifically operates in the developmental stage of pollen cells.
일 구현예에서, 본 발명의 벡터는 서열번호 4의 염기서열을 포함하는 프로모터를 포함할 수 있다. In one embodiment, the vector of the present invention may include a promoter comprising the nucleotide sequence of SEQ ID NO: 4.
본 발명의 용어 "MYB81 또는 MYB81"는 MYB81의 야생형 유전자를 말하며, "myb81 또는 myb81"는 MYB81의 6bp가 결실된 본 발명의 돌연변이 유전자를 말한다.The term "MYB81 or MYB81 " of the present invention refers to the wild-type gene of MYB81, "myb81 Or myb81 " refers to the mutant gene of the present invention in which 6bp of MYB81 is deleted.
본 발명의 용어 "프로모터"는 구조 유전자로부터의 DNA 업스트림의 영역을 의미하며 전사를 개시하기 위하여 RNA 폴리머라아제가 결합하는 DNA 분자를 말한다. "식물 프로모터"는 식물 세포에서 전사를 개시할 수 있는 프로모터이다. "구성적(constitutive) 프로모터"는 대부분의 환경 조건 및 발달 상태 또는 세포 분화하에서 활성이 있는 프로모터이다. The term "promoter" of the present invention refers to a region upstream of DNA from a structural gene and refers to a DNA molecule to which an RNA polymerase binds to initiate transcription. A “plant promoter” is a promoter capable of initiating transcription in a plant cell. A “constitutive promoter” is a promoter that is active under most environmental conditions and developmental states or cell differentiation.
본 발명의 벡터는 필요에 따라 리더 서열, 폴리아데닐화 서열, 프로모터, 인핸서, 업스트림 활성화 서열, 신호펩타이드 서열 및 전사 종결인자를 비롯한 조절서열을 추가로 포함할 수도 있다.The vector of the present invention may further include a leader sequence, a polyadenylation sequence, a promoter, an enhancer, an upstream activation sequence, a signal peptide sequence, and a regulatory sequence including a transcription terminator, if necessary.
본 발명의 용어 "벡터"는 세포 내로 전달하는 DNA 단편(들), 핵산 분자를 지칭할 때 사용된다. 벡터는 DNA를 복제시키고, 숙주세포에서 독립적으로 재생산될 수 있다. 용어 "전달체"는 흔히 "벡터"와 호환하여 사용된다. 용어 "발현 벡터"는 목적한 코딩 서열과, 특정 숙주 생물에서 작동가능하게 연결된 코딩 서열을 발현하는데 필수적인 적정 핵산 서열을 포함하는 재조합 DNA 분자를 의미한다. 진핵세포에서 이용 가능한 프로모터, 인핸서, 종결신호 및 폴리아데닐레이션 신호는 공지되어 있다.The term "vector" of the present invention is used to refer to a DNA fragment(s) or nucleic acid molecule that is delivered into a cell. Vectors replicate DNA and can be reproduced independently in host cells. The term “carrier” is often used interchangeably with “vector”. The term “expression vector” refers to a recombinant DNA molecule comprising a coding sequence of interest and an appropriate nucleic acid sequence essential for expressing the coding sequence operably linked in a particular host organism. Promoters, enhancers, termination signals and polyadenylation signals usable in eukaryotic cells are known.
식물의 형질전환은 DNA를 식물에 전이시키는 임의의 방법을 의미한다. 그러한 형질전환 방법은 반드시 재생 및 (또는) 조직배양 기간을 가질 필요는 없다. 식물 종의 형질전환은 이제는 쌍자엽 식물뿐만 아니라 단자엽 식물을 포함한 식물 종에 대해 일반적이다. 원칙적으로, 임의의 형질전환 방법은 본 발명에 따른 잡종 DNA를 적당한 선조 세포로 도입시키는데 이용될 수 있다. 방법은 원형질체에 대한 칼슘/폴리에틸렌 글리콜 방법 (Krens et al, 1982, Nature 296: 72-74; Negrutiu et al, 1987, Plant Mol Biol 8: 363-373), 원형질체의 전기천공법 (Shillito et al, 1985, Bio/Technol 3: 1099-1102), 식물 요소로의 현미주사법 (Crossway et al,1986, Mol Gen Genet 202: 179-185), 각종 식물 요소의(DNA 또는 RNA-코팅된) 입자 충격법 (Klein et al,1987, Nature 327: 70), 식물의 침윤 또는 성숙 화분 또는 소포자의 형질전환에 의한 아그로박테리움 투머파시엔스 매개된 유전자 전이에서(비완전성) 바이러스에 의한 감염 (EP 0 301 316호) 등으로부터 적당하게 선택될 수 있다. 본 발명에 따른 바람직한 방법은 아그로박테리움 매개된 DNA 전달을 포함한다.Transformation of plants refers to any method of transferring DNA into plants. Such transformation methods do not necessarily have periods of regeneration and/or tissue culture. Transformation of plant species is now common for plant species including monocotyledons as well as dicotyledons. In principle, any transformation method can be used to introduce hybrid DNA according to the present invention into suitable progenitor cells. Methods include calcium/polyethylene glycol method for protoplasts (Krens et al, 1982, Nature 296: 72-74; Negrutiu et al, 1987, Plant Mol Biol 8: 363-373), electroporation method for protoplasts (Shillito et al, 1985, Bio/Technol 3: 1099-1102), microinjection with plant urea (Crossway et al, 1986, Mol Gen Genet 202: 179-185), particle bombardment of various plant urea (DNA or RNA-coated) (Klein et al, 1987, Nature 327: 70), Infection by viruses in Agrobacterium tumerfaciens-mediated gene transfer (incomplete) by invasion of plants or transformation of mature pollen or vesicles (
본 발명의 벡터는 하나 이상의 선택성 마커를 포함할 수 있다. 상기 마커는 통상적으로 화학적인 방법으로 선택될 수 있는 특성을 갖는 핵산 서열로, 형질전환된 세포를 비형질전환 세포로부터 구별할 수 있는 모든 유전자가 이에 해당된다. 그 예로는 글리포세이트(glyphosate), 포스피노트리신(phosphinothricin) 및 글루포시네이트(glufosinate)와 같은 제초제 저항성 유전자, 카나마이신(Kanamycin), G418, 블레오마이신(Bleomycin), 하이그로마이신(hygromycin), 클로람페니콜(chloramphenicol)과 같은 항생제 내성 유전자가 있으나, 이에 한정되는 것은 아니다.The vectors of the invention may contain one or more selectable markers. The marker is typically a nucleic acid sequence having properties that can be selected by a chemical method, and all genes capable of distinguishing a transformed cell from a non-transgenic cell correspond to this. Examples include herbicide resistance genes such as glyphosate, phosphinothricin and glufosinate, kanamycin, G418, bleomycin, hygromycin, There is an antibiotic resistance gene such as chloramphenicol, but is not limited thereto.
일 측면에서, 본 발명은 본 발명의 벡터로 형질전환된, 형질전환 식물체에 관한 것이다.In one aspect, the present invention relates to a transgenic plant transformed with the vector of the present invention.
일 측면에서, 본 발명은 MYB81 유전자의 발현을 억제하는 핵산 분자에 관한 것이다.In one aspect, the present invention relates to a nucleic acid molecule that inhibits the expression of the MYB81 gene.
일 구현예에서, MYB81 유전자의 발현을 억제하는 siRNA, shRNA 또는 miRNA일 수 있다.In one embodiment, it may be siRNA, shRNA or miRNA that inhibits the expression of the MYB81 gene.
본 발명의 용어, “발현 억제"란 표적 유전자의 (mRNA로의) 발현 또는 (단백질로의) 번역 저하를 야기하는 것을 의미하며, 바람직하게는 이에 의해 표적 유전자 발현이 탐지 불가능해지거나 무의미한 수준으로 존재하게 되는 것을 의미한다.As used herein, the term “expression inhibition” refers to causing a decrease in the expression (to mRNA) or translation (to a protein) of a target gene, preferably thereby making the target gene expression undetectable or present at an insignificant level. Means being done.
본 발명의 용어, “siRNA(small interfering RNA)”란 특정 mRNA의 절단(cleavage)을 통하여 RNAi(RNA interference) 현상을 유도할 수 있는 짧은 이중사슬 RNA를 의미한다. 일반적으로 siRNA는 타겟 유전자의 mRNA와 상동인 서열을 가지는 센스 RNA 가닥과 이와 상보적인 서열을 가지는 안티센스 RNA 가닥으로 구성된다.As used herein, the term “siRNA (small interfering RNA)” refers to a short double-stranded RNA capable of inducing RNAi (RNA interference) through cleavage of a specific mRNA. In general, siRNA is composed of a sense RNA strand having a sequence homologous to the mRNA of a target gene and an antisense RNA strand having a sequence complementary thereto.
일 측면에서, 본 발명은 MYB81 유전자의 발현을 억제하는 핵산 분자를 포함하는 웅성 불임 유발용 조성물에 관한 것이다.In one aspect, the present invention relates to a composition for inducing male infertility comprising a nucleic acid molecule that inhibits the expression of the MYB81 gene.
일 측면에서, 본 발명은 MYB81 유전자의 ORF에서 TACGTT의 결실을 확인할 수 있는 제제를 포함하는, 식물체의 웅성 불임 판별용 조성물에 관한 것이다.In one aspect, the present invention relates to a composition for determining male infertility of plants, comprising an agent capable of confirming the deletion of TACGTT in the ORF of the MYB81 gene.
일 구현예에서, 상기 제제는 프로브 또는 프라이머 세트일 수 있으며, 서열번호 8 및 9, 10 및 11, 10 및 12, 10 및 13, 14 및 15, 및 14 및 16으로 표시되는 프라이머 세트를 포함할 수 있으며, 서열번호 14 및 15로 표시되는 프라이머 세트는 결실 돌연변이가 없는 야생형 MYB81 유전자를 특이적으로 검출할 수 있고, 서열번호 14 및 16으로 표시되는 프라이머 세트는 결실 돌연변이가 있는 myb81 유전자를 특이적으로 검출할 수 있다.In one embodiment, the agent may be a probe or a primer set, and may include a primer set represented by SEQ ID NOs: 8 and 9, 10 and 11, 10 and 12, 10 and 13, 14 and 15, and 14 and 16. In addition, the primer set represented by SEQ ID NOs: 14 and 15 can specifically detect the wild-type MYB81 gene without the deletion mutation, and the primer sets represented by SEQ ID NOs: 14 and 16 are specific for the myb81 gene with the deletion mutation. Can be detected.
일 구현예에서, 상기 프라이머 세트를 이용하면 야생형 (MYB81 +/+), 이형 접합체 (myb81 +/-) 및 동형 접합체 (myb81 -/-) 식물체들을 구별할 수 있다.In one embodiment, by using the primer set, wild type (MYB81 +/+), heterozygous (myb81 +/-) and homozygous (myb81 -/-) plants can be distinguished.
일 측면에서, 본 발명은 MYB81 유전자의 ORF에서 TACGTT를 결실시키는 단계를 포함하는, 웅성 불임 식물체의 제조 방법에 관한 것이다.In one aspect, the present invention relates to a method for producing a male infertile plant comprising the step of deleting TACGTT in the ORF of the MYB81 gene.
일 측면에서, 본 발명은 1) 식물체에서 유전체 DNA를 추출하는 단계; 및 2) MYB81 유전자의 ORF에서 유전자 변이를 확인하는 단계를 포함하는, 식물체의 웅성 불임 판별 방법에 관한 것이다.In one aspect, the present invention 1) extracting genomic DNA from a plant; And 2) It relates to a method for determining male infertility of a plant comprising the step of confirming the gene mutation in the ORF of the MYB81 gene.
일 구현예에서, 유전자 변이는 TACGTT 결실일 수 있다.In one embodiment, the genetic variation may be a TACGTT deletion.
하기의 실시예를 통하여 본 발명을 보다 상세하게 설명한다. 그러나 하기 실시예는 본 발명의 내용을 구체화하기 위한 것일 뿐 이에 의해 본 발명이 한정되는 것은 아니다.The present invention will be described in more detail through the following examples. However, the following examples are only for embodiing the contents of the present invention and the present invention is not limited thereto.
실시예 1. 웅성-배우체 돌연변이 라인 선발Example 1. Selection of male-embryonic mutant lines
화분발생에 중요한 유전자를 분리하기 위하여 애기장대 집단들 (Ler-O 야생형)에서 제초제 저항성 T-DNA 벡터를 이용하여 유전자표지 돌연변이 집단을 확보한 뒤, 다음 세대에서 제초제 저항성 식물체들을 선발하여 성숙 화분을 채취하고 DAPI로 염색한 후 화분표현형을 관찰하는 방법으로 화분발달관련 변이체 (거대 화분, 1핵 혹은 2핵성 화분, 2세포화분, 사멸화분 등)를 선별하여, 죽은 화분의 빈도가 매우 높은 돌연변이인 AP28-23 라인 (웅성-배우체 돌연변이)을 선발하였다. 선발 후 AP28-23 라인의 화분 표현형을 확인하기 위하여, 야생형 애기장대 (n=4601), AP28-23 이형접합 변이체 (n=7,186) 및 동형접합 변이체 (n=1,191) 애기장대의 꽃 (n=6349)에서 각각 성숙 화분 시료를 채취하여 250㎕의 DAPI(4',6'-diamidino-2-phenylindole) 염색 용액 (0.1 M sodium phosphate (pH 7), 1 mM EDTA, 01% Triton X-100 및 0,4μl/ml DAPI; high grade, Sigma)이 들어있는 마이크로원심분리 튜브(microfuge tube)에 담아 볼텍싱하고 원심분리하여 화분 펠릿을 얻었다. 얻은 화분 펠릿을 광학현미경 슬라이드에 옮기고 명시야 및 UV epi-illumination으로 확인하였다. In order to isolate the genes important for pollen development, a genetically-labeled mutant group was obtained from Arabidopsis thaliana groups (Ler-O wild type) using a herbicide-resistant T-DNA vector, and then herbicide-resistant plants were selected from the next generation to produce mature pollen. Pollen development-related mutants (giant pollen, one- or two-nucleated pollen, two-cell pollen, dead pollen, etc.) are selected by the method of observing pollen phenotype after collecting and staining with DAPI. The AP28-23 line (male-embryonic mutation) was selected. To confirm the pollen phenotype of the AP28-23 line after selection, wild-type Arabidopsis (n=4601), AP28-23 heterozygous mutant (n=7,186) and homozygous mutant (n=1,191) Arabidopsis flowers (n= 6349) from each of the mature pollen samples, and 250 µl of DAPI (4',6'-diamidino-2-phenylindole) staining solution (0.1 M sodium phosphate (pH 7), 1 mM EDTA, 01% Triton X-100 and 0,4 μl/ml DAPI; high grade, Sigma) was placed in a microfuge tube, vortexed, and centrifuged to obtain a pollen pellet. The obtained pollen pellet was transferred to an optical microscope slide and confirmed by bright field and UV epi-illumination.
그 결과, 야생형의 경우, 96.7%의 화분립이 삼세포 화분으로 나타났으며 (도 1A), 3.3%가 비정상 화분립으로 나타났으며, 이 중 사멸 화분립이 3.2% (도 1B 및 C) 및 단핵 또는 이중핵이 0.1%로 나타났다 (도 1G 및 J). 반면, AP28-23 이형 접합체 및 동형 접합체는 각각 48.5% 및 0%의 정상적인 삼세포 화분립을 나타냈으며 (도 1A), 비정상 화분립 중, 하멸 화분은 각각 45.2% 및 99.5% (도 1B 및 C)으로, 다른 비정상 화분은 6.2% 및 0.5% (도 1D 내지 L)로 나타났다. 또한, 일부 비정상 화분립은 식물 세포질 내부에 불규칙적 사이즈의 액포-유사 구조를 함유하고 있었다 (도 1F, I 및 L).As a result, in the case of the wild type, 96.7% of pollen grains appeared as three-cell pollen (Fig. 1A), and 3.3% were abnormal pollen grains, of which 3.2% of dead pollen grains (Figs. 1B and C) And 0.1% mononuclear or double nuclei (Fig. 1G and J). On the other hand, AP28-23 heterozygous and homozygous showed 48.5% and 0% of normal three-cell pollen grains, respectively (Fig. 1A), among abnormal pollen grains, and apoptotic pollen grains, respectively, 45.2% and 99.5% (Figs. 1B and C ), other abnormal pollen was found to be 6.2% and 0.5% (Figs. 1D to L). In addition, some abnormal pollen grains contained an irregularly sized vacuole-like structure inside the plant cytoplasm (Figs. 1F, I and L).
실시예 2.Example 2. AP28-23 돌연변이체의 원인 발생 시기 확인Determine when the cause of the AP28-23 mutant occurs
AP28-23의 화분 발생시 어느 단계에서 결함이 발생하는지를 확인하기 위하여, DAPI 염색된 야생형, AP28-23 이형 접합체 및 동형 접합체 애기장대의 단계별 꽃봉오리의 약(anther)으로부터 발달 과정의 화분을 관찰하였다. In order to determine at which stage the defect occurs when pollen of AP28-23 occurs, pollen in the development process was observed from the anther of the DAPI-stained wild type, AP28-23 heterozygous and homozygous Arabidopsis buds.
그 결과, 야생형의 경우 (도 2A 내지 H), 이배체 미세포자세포(microsporocytes)의 감수분열이 두꺼운 칼로스(callose) 벽 내에 둘러싸인 네 개의 반수체인 사배체를 생성하였으며 (도 2A), 그 후 효소 복합체에 의해 각각의 미세포자(microspore)로 분리되었다 (도 2B). 이 후, 미세포자의 성장과 발달은 외막벽, 진행성 액포 발생(progressive vacuole biogenesis) 융합의 증대를 동반하였다 (도 2C 및 D). 미세포자의 벽으로부터 편심된 위치로 극성화되었고 (도 2D), 극성화된 미세포자는 PMⅠ에서 비대칭 분할을 거쳐 이세포성 화분립이 되었다 (도 2E). 생성 세포는 칼로스 소화 후 영양 세포질에 내재화되고 (도 2F), PMⅡ (도 2G)에 대한 두 번째 세포 주기에 들어가 2 개의 정자 세포를 가진 삼세포 화분을 생성하였다 (도 2H). AP28-23 이형 접합체에서, 사배체에서 미세포자의 극성화 단계까지는 정상적으로 발생하였으나 (도 2I 내지 L), 다음 꽃봉오리 단계에서부터 비정상 표현형이 나타나기 시작했다. 발달 포자의 약 절반에서 두 개의 불균등 딸세포를 생산하는 PMI가 완료되었을 때 (도 2E), 돌연변이 포자의 다른 절반은 극성화된 핵 및 큰 액포 잔류를 가지는 것으로 나타났다 (도 2M). 이러한 분열되지 않은 미세포자는 단일 액포가 크기가 증가하면서 계속 성장하였으나, 동시에 점차 퇴화되어 DAPI로 염색된 핵이 감소하였다 (도 2T, 도 2M 내지 P에 AbDEG로 표시). 일부 경우에만 돌연변이 미세포자가 지연된 단계에서 분열하여 두 개의 핵을 가진 훨씬 더 큰 이세포-유사 화분이 되고, DAPI 염색 된 세포 소기관 DNA가 정상 이세포 화분립 (도 2E)에 비해 풍부한 것으로 나타났다 (2.7%~4.2%, 도 2T 및 도 2Q 내지 S에서 AbEBC로 표시). 또한, 후기-이세포 및 삼세포 단계에서도, 조기-이세포 단계에서와 유사하게 비정상 포자(spore)의 발생 빈도는 야생형 1.9 내지 2.3%, AP28-23 이형 접합체 51.3 내지 51.6% 및 AP28-23 동형 접합체 100%로 나타났다 (표 1). AP28-23 이형 접합체 및 동형 접합체에서, 극성화된 미세포자 단계에서는 정상 표현형이 관찰되었으나, 조기-이세포 단계에서는 비정상 화분이 관찰되었다 (표 1). 이 단계에서, 야생형은 1.7%의 빈도로 비정상 화분을 나타냈으나, AP28-23 이형 접합체는 49.2%, AP28-23 동형 접합체는 100%의 비정상 화분을 나타냈다 (표 1). 이를 통해, AP28-23 라인에서 돌연변이 된 유전자의 정상적인 기능이 극성화된 미세포자가 PMI를 진행시키는데 결정적으로 중요하다는 것을 알 수 있었다. As a result, in the case of the wild type (Fig. 2A to H), meiosis of diploid microsporocytes produced tetraploids, which are four haploids surrounded by thick callose walls (Fig. 2A), and then in the enzyme complex. It was separated into each microspore (Fig. 2B). Thereafter, the growth and development of microcells was accompanied by an increase in fusion of the outer membrane wall and progressive vacuole biogenesis (FIGS. 2C and D). The polarized microcells were polarized to an eccentric position from the wall of microcells (FIG. 2D), and the polarized microcells became bicellular pollen grains through asymmetric division in PMI (FIG. 2E). The resulting cells were internalized in the vegetative cytoplasm after calose digestion (FIG. 2F), entered the second cell cycle for PMII (FIG. 2G), and produced a three-cell pollen with two sperm cells (FIG. 2H). In the AP28-23 heterozygote, from tetraploid to microcellular polarization stage normally occurred (Figs. 2I to L), but abnormal phenotypes began to appear from the next bud stage. When the PMI producing two unequal daughter cells in about half of the developing spores was completed (Figure 2E), the other half of the mutant spores were found to have polarized nuclei and large vacuole retention (Figure 2M). These undivided microcells continued to grow as the size of the single vacuoles increased, but at the same time, they gradually degenerated and the nuclei stained with DAPI decreased (Fig. 2T, indicated by AbDEG in Figs. 2M to P). In only some cases, mutant microcells were found to divide at a delayed stage to become a much larger two-cell-like pollen with two nuclei, and DAPI-stained organelle DNA was found to be abundant compared to normal two-cell pollen grains (Figure 2E) (2.7 %-4.2%, denoted AbEBC in FIGS. 2T and 2Q-S). In addition, the incidence of abnormal spores in the late-two-cell and three-cell stage, similar to the early-two-cell stage, was 1.9-2.3% for wild type, 51.3- 51.6% for AP28-23 heterozygote, and AP28-23 isotype. It was found to be 100% conjugate (Table 1). In AP28-23 heterozygous and homozygous, a normal phenotype was observed in the polarized microcellular stage, but abnormal pollen was observed in the early-two cell stage (Table 1). At this stage, wild-type showed abnormal pollen with a frequency of 1.7%, but AP28-23 heterozygous showed 49.2% and AP28-23 homozygous showed 100% abnormal pollen (Table 1). Through this, it was found that the normal function of the mutated gene in the AP28-23 line is critically important for the progression of PMI by polarized microcells.
따라서, 극성화된 미세포자시기까지는 정상적으로 발생하나 이후 미세포자분열 (제1화분유사분열)이 일어나지 않고 점진적 세포사멸이 진행된다는 것을 알 수 있었다.Therefore, it can be seen that the polarized microcellular vesicles normally occur until, but after that, microcellular dysplasia (first mitotic mitosis) does not occur and gradual apoptosis proceeds.
실시예 3. AP28-23 돌연변이체의 유전적 전달 및 불임 확인Example 3. Confirmation of genetic transfer and infertility of AP28-23 mutants
AP28-23의 웅성 및 자성 생식 세포를 통한 유전적 전달을 AP28-23 이형 접합체 돌연변이를 랜드버그 생태형 (Landsberg erecta, Ler-0)과 쌍방간의 교잡 테스트를 수행하여 확인하였고 F1 자손의 화분 표현형이 스크리닝되었다. 웅성 및 자성 생식 세포를 통한 AP28-23의 전달 효율 (transmission efficiency, TE)은 수학식 1로 계산되었다. 예컨대, 돌연변이 대립유전자가 100% 효율로 전달되면, 교잡 테스트 자손은 1:1의 돌연변이:야생형으로 분리될 것이다.AP28-23's genetic transmission through male and female germ cells Heterozygous mutations were confirmed by performing a hybridization test between the Landsberg ecological type (Landsberg erecta, L er -0) and the pollen phenotype of the F 1 progeny was screened. The transmission efficiency (TE) of AP28-23 through male and magnetic germ cells was calculated by
웅성 및 자성 생식 세포를 통한 돌연변이 AP28-23 대립유전자의 전달 효율 (TE)은 도 3과 같이 나타났다. 돌연변이를 다음 세대에 성공적으로 전이시킨 돌연변이 대립 유전자의 비율 (%)을 나타내는 TE는, 돌연변이 대립유전자를 가진 웅성 생식 세포 (n=300)의 오직 0.7%만이 성공적으로 전달했으며, 돌연변이 대립유전자를 가진 자성 생식세포 (n=300)는 89.9%가 전달에 성공했다 (도 3A 및 표 2). 또한, AP28-23/+ 자가 자손 중에 AP28-23 동형 접합체가 0.3%의 매우 낮은 빈도로 존재하는 것은 AP28-23의 전달 감소에 따른 결과인 것으로 유추된다 (도 3C). 이에, AP28-23의 변이 화분표현형을 유발하는 유전물질은 자성배우자체를 통해서는 정상적으로 다음세대에 전달되나 웅성배우자체를 통해서는 지극히 낮은 빈도로 전달되는 것을 확인함으로써 해당 유전자의 기능이 웅성배우자체발생에 특이적으로 요구되는 것을 알 수 있었다.The transduction efficiency (TE) of the mutant AP28-23 allele through male and female germ cells was shown in FIG. 3. TE, which represents the percentage of mutant alleles that successfully transferred the mutation to the next generation, only 0.7% of the male germ cells with the mutant allele (n=300) successfully transferred, and with the mutant allele. 89.9% of the female germ cells (n=300) were successfully delivered (Fig. 3A and Table 2). In addition, the presence of the AP28-23 homozygous at a very low frequency of 0.3% among AP28-23/+ autologous progeny is inferred as a result of decreased transmission of AP28-23 (Fig. 3C). Therefore, it is confirmed that the genetic material that causes the mutant pollen phenotype of AP28-23 is normally transmitted to the next generation through the female spouse itself, but is transmitted at an extremely low frequency through the male spouse itself, so that the function of the corresponding gene is transmitted to the male spouse itself. It was found that it was specifically required for development.
실시예 4. AP28-23 돌연변이체의 불임 유발 원인 유전자 확인Example 4. Identification of genes causing infertility in AP28-23 mutants
AP28-23의 변이 화분표현형을 유발하는 원인 유전자를 확인하기 위해여, 지도-기반 클로닝 방법을 이용하였다 (도 4). 구체적으로, 이형 접합체인 AP28-23 돌연변이체 (Ler)를 야생형 화분립 (Col-0)으로 수정하여 얻은 F1을 자가-수정하여 이들의 F2 종자를 성장시켜 매핑 집단으로 이용하였다. 2908개의 F2 식물의 잎을 각각 수집하여 CTAB(Cetyl Trimethyl Ammonium Bromide) 방법 (Murray et al, 6 1980)에 따라 유전체 DNA를 추출하였다. 그 후, 5개의 염색체에 분포된 10개의 알려진 SSLP 마커 및 13개의 DNA 샘플을 이용하여 PCR-기반 매핑(mapping)을 수행하였다 (도 5). To identify the causative gene that causes the mutant pollen phenotype of AP28-23, a map-based cloning method was used (FIG. 4). Specifically, F 1 obtained by fertilizing the heterozygous AP28-23 mutant ( Ler ) with wild-type pollen grains (Col-0) was self-fertilized, and their F 2 seeds were grown and used as a mapping population. The leaves of 2908 F 2 plants were collected, and genomic DNA was extracted according to the CTAB (Cetyl Trimethyl Ammonium Bromide) method (Murray et al, 6 1980). Then, PCR-based mapping was performed using 10 known SSLP markers and 13 DNA samples distributed on 5 chromosomes (FIG. 5).
그 결과, 마커 nga168와의 재조합 사건의 3%는 돌연변이 유전자좌가 염색체 2 상의 At2g39010에 밀접하게 연관된 것으로 나타났다 (도 6). nga168 주변으로 설계된 새로운 8개의 SSLP 마커를 가지는, 동일한 F2 집단 유래의 야생형 자손의 또 다른 20개의 DNA 샘플도 낮은 재조합 비율을 나타내, 염색체 2 상의 테스트된 마커들과의 돌연변이 유전자좌의 유전적 연관을 나타낸다. 분석을 통해, 11개의 후보유전자를 포함하는 2번 염색체의 26940 및 27030의 두 마커 사이의 ~37Kb 영역 (도 7 및 8, 서열번호 3)으로 돌연변이 유전자좌(AP28-23의 변이 화분표현형을 유발하는 원인 유전자들을 포함)를 좁힐 수 있었다.As a result, 3% of the recombination events with the marker nga168 showed that the mutant locus was closely related to At2g39010 on chromosome 2 (FIG. 6 ). Another 20 DNA samples from wild-type progeny from the same F 2 population, with new 8 SSLP markers designed around nga168, also showed a low recombination rate, indicating the genetic association of the mutant locus with the tested markers on
그 후, 11개 후보 유전자들의 코딩 영역을 시퀀싱한 결과, 이 부위에서 11 후보자 유전자중 At2g26960의 6개 염기 (TACGTT)가 결실됨을 확인했다 (표 3 및 도 9). 이들은 발린 및 타이로신 (V35 및 Y36)을 암호화하는 유전 암호로서, BLAST 검색을 통해, 상기 At2g26960 유전자는 전사인자 MYB81의 R2R3 MYB 도메인을 암호화하며, 유전자 변이가 일어난 부위는 R2 도메인의 106-111bp의 TACGTT인 것으로 나타났다. 이를 통해, R2R3 DNA 결합 부위에 위치하는 돌연변이로 인해 MYB 전사 조절 인자로서의 기능이 교란되는 것으로 유추되었다. Thereafter, as a result of sequencing the coding regions of 11 candidate genes, it was confirmed that 6 bases (TACGTT) of At2g26960 among 11 candidate genes were deleted at this site (Table 3 and FIG. 9). These are the genetic codes that encode valine and tyrosine (V35 and Y36), through BLAST search, the At2g26960 gene encodes the R2R3 MYB domain of the transcription factor MYB81, and the region where the gene mutation occurs is TACGTT of 106-111 bp of the R2 domain. Appeared to be. Through this, it was inferred that the function as a MYB transcriptional regulatory factor is disturbed due to the mutation located at the R2R3 DNA binding site.
실시예 5. 불임 유발 원인 유전자 검증Example 5. Verification of genes causing infertility
5-1. 결실 돌연변이의 표현형 확인5-1. Phenotypic identification of deletion mutations
Col 야생형 식물로부터 PCR 증폭된 MYB81 cDNA 단편은 애기장대 정보에서 예측된 2 엑손 및 1 인트론과 달리 3 엑손 및 2 인트론으로 구성되어 있었다. MYB8의 정확한 구조를 확인하기 위해, 야생형 및 돌연변이 식물체 모두에서 결실이 없는 전장의 cDNA를 각각 서열분석한 결과, 동일한 구조 (3 엑손 및 2 인트론)로 이루어져 있으며 (도 7), 427개의 아미노산 대신 405개의 아미노산 (1215bp)을 암호화하는 것으로 추론되었다. 이에, 상기에서 확인한 6bp 결실 돌연변이가 AP28-23 돌연변이체의 결함이 있는 화분 표현형의 원인이 맞는지 확인하기 위하여, 야생형 MYB81 유전자의 5' 상류 및 전장의 cDNA를 포함하는 벡터를 제작하였다. 구체적으로, 시작 코돈 ATG의 ~1.6-kb 상류 프로모터 (1,619kb) (AscI 및 NotI 제한효소 인지 부위 16bp를 포함한 1635bp, 서열번호 4) 및 전장의 cDNA 단편 (1,215kb, 서열번호 7)을 증폭하여 이를 포함하는 벡터를 제작한 뒤, 각각 아그로박테리움 투머파시엔스(Agrobacterium tumefaciens) (GV3101)를 이용하여 꽃 침지 방법(floral dipping method)으로 AP28-23 이형 접합체 돌연변이체에 도입하였다. 형질전환 식물체를 20mg/L의 하이그로마이신(hygromycin)이 포함된 MS(Murashige and Skoog) 아가에서 선별하였다. 식물체의 유전형질 분석을 위해, 유전체 DNA를 각 형질전환 식물체의 잎 조직에서 추출한 뒤 TissueLyser (Qiagen, http://wwwqiagencom)로 균질화하고 PCR 증폭에 사용하였다.The MYB81 cDNA fragment amplified by PCR from Col wild-type plants consisted of 3 exons and 2 introns, unlike 2 exons and 1 intron predicted from Arabidopsis information. In order to confirm the exact structure of MYB8 , as a result of sequencing the full-length cDNA without deletion in both wild-type and mutant plants, respectively, it consists of the same structure (3 exons and 2 introns) (Fig. 7), 405 instead of 427 amino acids. It was deduced to encode dog amino acids (1215 bp). Accordingly, in order to confirm whether the 6bp deletion mutation identified above is the cause of the defective pollen phenotype of the AP28-23 mutant, a vector containing 5'upstream of the wild-type MYB81 gene and full-length cDNA was constructed. Specifically, by amplifying the ~1.6-kb upstream promoter (1,619kb) of the start codon ATG (1635bp including 16bp of Asci and NotI restriction enzyme recognition sites, SEQ ID NO: 4) and the full length cDNA fragment (1,215kb, SEQ ID NO: 7) After constructing a vector containing this, each of Agrobacterium tumefaciens (GV3101) was AP28-23 by the floral dipping method using It was introduced into heterozygous mutants. Transgenic plants were selected on MS (Murashige and Skoog) agar containing 20 mg/L of hygromycin. For genotyping analysis of plants, genomic DNA was extracted from the leaf tissue of each transgenic plant, homogenized with TissueLyser (Qiagen, http://wwwqiagencom), and used for PCR amplification.
그 결과, 야생형 MYB81 및 돌연변이 myb81 대립유전자에 특이적인 프라이머들로 T1 식물체들을 유전형질분석한 결과, 상보성 T-DNA 벡터를 품은 49개의 이형 접합체 및 8개의 동형 접합체 돌연변이체가 분리되었고, 비-형질전환된 대조군 돌연변이 식물체에 비해 돌연변이 화분 표현형이 감소하였다 (도 10A). 이를 통해, MYB81 유전자가 AP28-23에서 돌연변이 화분의 원인임을 알 수 있었다.As a result, as a result of genotyping T1 plants with primers specific for the wild-type MYB81 and mutant myb81 alleles, 49 heterozygous and 8 homozygous mutants bearing the complementary T-DNA vector were isolated, and non-transformed The mutant pollen phenotype was decreased compared to the control mutant plants (FIG. 10A). Through this, it was found that the MYB81 gene is the cause of the mutant pollen in AP28-23.
5-2. MYB81 유전자 발현 부위 및 시기 분석5-2. MYB81 gene expression site and timing analysis
포자체 조직별 및 화분 발달 단계별 MYB81 유전자의 발현을 확인하기 위하여, 야생형 애기장대의 유묘(seedling), 뿌리, 잎, 줄기, 닫힌 꽃봉오리 클로스터 및 개화한 꽃, 및 발달 중인 화분립 유래 RNA를 각각 이용하여 세미-정량 RT-PCR 분석을 수행하였다. 구체적으로, RNeasy Plant Mini kit (Qiagen, http://www qiagencom/)를 이용하여 야생형의 포자체 조직으로는 유묘, 뿌리, 잎, 줄기, 닫힌 꽃봉오리 클로스터 및 개화한 꽃을 이용하고, 화분 발달 단계로는 사배체 및 미세포자 혼합물 (F2.1), 미세포자 및 조기 이세포 화분 혼합물 (F2.2), 후기 이세포 화분 (F2.3), 삼세포 화분 (F3.0) 및 성숙 화분 (MP)로부터 각각 총 RNAs를 추출하여 cDNA로 변환한 뒤, 단일-가닥 cDNA 시료 1㎕, e-taq 중합효소 및 각 프라이머 10pmol을 포함하는 20㎕의 반응물을 이용하여, 95℃에서 30초, 95℃에서 15초, 55℃에서 15초 및 72℃에서 50초로 35사이클의 조건으로 RT-PCR(Reverse transcriptase-PCR)을 수행하였다. 히스톤 유전자는 대조군으로 사용하였다. PCR 증폭 산물은 1% 아가로스 젤에 로딩하여 1X TAE 버퍼에서 전기영동한 뒤 EtBr(ethidium bromide)로 염색하였다.In order to confirm the expression of MYB81 gene for each spore tissue and pollen development stage, seedlings, roots, leaves, stems, closed bud closters and blooming flowers, and RNA derived from developing pollen grains, respectively Was used to perform a semi-quantitative RT-PCR analysis. Specifically, using the RNeasy Plant Mini kit (Qiagen, http://www qiagencom/), seedlings, roots, leaves, stems, closed bud closters, and blooming flowers are used as wild-type spore tissues, and pollen development Stages include tetraploid and microcellular pollen mixture (F2.1), microcellular and early two-cell pollen mixture (F2.2), late two-cell pollen (F2.3), three-cell pollen (F3.0) and mature pollen ( MP), each of the total RNAs was extracted and converted into cDNA, and then a reaction product of 20 µl containing 1 µl of a single-stranded cDNA sample, e-taq polymerase, and 10 pmol of each primer was used for 30 seconds at 95° C., 95 RT-PCR (Reverse transcriptase-PCR) was performed under the conditions of 35 cycles at 15 seconds at ℃, 15 seconds at 55 ℃ and 50 seconds at 72 ℃. The histone gene was used as a control. PCR amplification products were loaded on 1% agarose gel, electrophoresed in 1X TAE buffer, and stained with EtBr (ethidium bromide).
그 결과, MYB81 전사체가 포자체 조직 중에서는 어린 꽃봉오리에서만 검출되었고, 다른 포자체 조직에서는 발견되지 않았다 (도 10B). 또한, 화분 발달의 특정 단계에 대해 농축된 RNA 샘플들로 테스트한 결과, 성숙 화분립에서는 MYB81 전사체가 발현되지 않았으나, 다른 발달 중인 화분립들에서는 발현이 검출되었고, 특히, 전사체는 미세포자 및 이세포 화분립에서 가장 많은 것으로 나타났다 (도 10C). As a result, the MYB81 transcript was detected only in young buds among spore tissues, and not found in other spore tissues (FIG. 10B). In addition, as a result of testing with RNA samples concentrated for a specific stage of pollen development, the MYB81 transcript was not expressed in mature pollen grains, but expression was detected in other developing pollen grains. It was found to be the largest in two-cell pollen grains (Fig. 10C).
5-3. 구체적 MYB81 유전자 발현 양상 확인5-3. Confirmation of specific MYB81 gene expression pattern
하더 구체적인 MYB81 발현 양상을 확인하기 위해, 화서(inflorescence) 및 유묘를 이용하여 GUS 리포터 분석을 수행하였다. 구체적으로, CYCB1;1 유전자 유래 MDB(mitotic destruction box)를 가진 또는 가지지 않은, GUS 리포터와 융합된 MYB81 프로모터를 포함하는 벡터 pMYB81-GUS 및 pMYB81-MDB-GUS (pMYB81-CYCB1:1MDB-GUS)로 각각 형질전환된 라인을 생성하여 각 벡터에 대해 50개의 T1 식물체에서의 MYB81 발현 양상을 확인하였다. 상기의 pMYB81-GUS 리포터 벡터는 상 실시예에서 확인된 pMYB81 단편을 Oh et al., 2016에서 사용된 중간 벡터에서 NotI 및 SpeI 사이에 위치한 GUS 코딩 영역 앞의 AscI 및 NotI 사이에 도입하였다. AscI 및 SpeI로 절단한 뒤 pMYB81-GUS 단편은 형질전환 식물체를 카나마이신으로 선별 가능한 pER10에 클로닝하여 제작되었다.In order to confirm the more specific MYB81 expression pattern, GUS reporter analysis was performed using inflorescence and seedlings. Specifically, the vectors pMYB81-GUS and pMYB81-MDB-GUS (pMYB81-CYCB1: 1 MDB- GUS) containing MYB81 promoter fused with a GUS reporter with or without CYCB1;1 gene-derived MDB (mitotic destruction box) Each transformed line was generated to confirm the expression pattern of MYB81 in 50 T1 plants for each vector. The pMYB81-GUS reporter vector described above is a pMYB81 fragment identified in the above example, Oh et al. , In the intermediate vector used in 2016, it was introduced between AscI and NotI in front of the GUS coding region located between NotI and SpeI. After cutting with AscI and SpeI, the pMYB81-GUS fragment was produced by cloning the transgenic plant into pER10, which can be selected with kanamycin.
그 결과, pMYB81-GUS 형질전환체들 중 42개 및 pMYB81-MDB-GUS 형질전환체들 중 45개의 화서 내의 어린 꽃봉오리에서 GUS 신호가 나타났다. MDB의 사용은 발달 중인 미세포자를 포함할 가능성이 있는 더 어린 꽃봉오리의 더 작은 군에서조차 GUS 신호를 유도하였다 (도 11A 및 C). 반면, pMYB81-GUS의 20개의 T2 라인 유래 유묘에서는 GUS 신호가 관찰되지 않았다 (도 11B). 이를 통해, myb81 돌연변이체 표현형은 웅성-특이적이며 화분 발달의 조기 단계에 시작되는 것을 알 수 있었다.As a result, GUS signals were shown in young buds in 42 inflorescences among the pMYB81-GUS transformants and 45 among the pMYB81-MDB-GUS transformants. The use of MDB induced GUS signaling even in a smaller group of younger buds that are likely to contain developing microcells (Figures 11A and C). On the other hand, no GUS signal was observed in the seedlings derived from 20 T2 lines of pMYB81-GUS (Fig. 11B). From this, it was found that the myb81 mutant phenotype is male-specific and begins at an early stage of pollen development.
5-4. MYB81 단백질의 세포 내 발현 부위 및 시기 확인5-4. Confirmation of the intracellular expression site and timing of MYB81 protein
pMYB81-MYB81-mRFP1 벡터로 생성된 형질전환체 라인을 이용하여 화분 발달 단계별 MYB81 단백질의 세포내 발현 위치를 확인하였다. 구체적으로, pMYB81-MYB81를 제작하기 위해, 시작 코돈의 바로 위의 상류 서열을 포함하는 1,628bp 유전자 단편을 각각 AscI 및 NotI 위치로 태그된 순방향 및 역방향 프라이머로 증폭하였다. 종결 코돈을 가지는 전장의 MYB81 cDNA는 NotI 및 SpeI에 의해 인식되는 서열로 각각 태그된 순방향 및 역방향 프라이머로 증폭되었다. 상기 두 단편은 AscI, NotI 및 SpeI를 포함하는 변형된 pBluscript-기반 벡터 백본에 서브클로닝되었다. pMYB81-MYB81 단편은 AscI 및 SpeI로 절단되어 형질전환 식물체를 하이그로마이신으로 선별이 가능한 pER8 벡터로 클로닝되었다. 세포 내 위치 부분석을 위한 pMYB81-MYB81-mRFP1을 제작하기 위하여, 종결 코돈을 포함하지 않는 전장의 MYB81 cDNA 단편을 증폭하여 MYB81 프로모터 하위의 NotI 및 BamHI 위치 사이에 삽입하였다. 그 후, 종결 코돈을 포함하는 mRFP1 코딩 영역을 Oh et al., 2016에서 사용된 중간 벡터의 BamHI 및 SpeI 위치 사이에 서브-클로닝하였다. 전체 발현 카세트는 pER10에 클로닝하여 pMYB81-MYB81cDNA-mRFP1 (서열번호 5)를 제작하였으며 형질전환 식물체 (50개)를 제조하여 화분 발달 단계별 세포내 MYB81의 발현을 확인하였다.Using the transformant line generated with the pMYB81-MYB81-mRFP1 vector, the intracellular expression position of the MYB81 protein at each stage of pollen development was confirmed. Specifically, to construct pMYB81-MYB81, a 1,628 bp gene fragment containing a sequence immediately above the start codon was amplified with forward and reverse primers tagged with AscI and NotI positions, respectively. Full-length MYB81 cDNA with a stop codon was amplified with forward and reverse primers tagged with sequences recognized by NotI and SpeI, respectively. These two fragments were subcloned into a modified pBluscript-based vector backbone containing AscI, NotI and SpeI. The pMYB81-MYB81 fragment was cut with AscI and SpeI, and then cloned into a pER8 vector capable of selecting a transgenic plant with hygromycin. In order to construct pMYB81-MYB81-mRFP1 for partial analysis of intracellular positions, a full-length MYB81 cDNA fragment that does not contain a stop codon was amplified and inserted between NotI and BamHI positions under the MYB81 promoter. Then, the mRFP1 coding region including the stop codon was determined by Oh et al. , Sub-cloned between the BamHI and SpeI positions of the intermediate vector used in 2016. The entire expression cassette was cloned into pER10 to produce pMYB81-MYB81cDNA-mRFP1 (SEQ ID NO: 5), and transgenic plants (50) were prepared to confirm the expression of MYB81 in cells at each stage of pollen development.
그 결과, 성숙 화분에서는 RFP 신호가 검출되지 않았으나, 발달하는 포자 또는 화분을 포함하는 혼합된 꽃봉오리 단계의 어린 약에서는, 40개의 T1 라인 중 36개에서 특이적으로 핵 내에 위치한 RFP 신호가 관찰되었다. 또한, 보다 정확한 MYB81 단백질 발현 위치 및 발현 시기를 확인하기 위해, T1 및 T2 세대에서 여러 라인 유래의 연속 단계 꽃봉오리 시료를 이용하여 화분 발달 단계별 발현 위치를 확인한 결과, MYB81-mRFP1가 사배체로부터 방출된 직후 가장 어린 미세포자에서 검출되지 않았으나 (도 12A), 곧 핵에서 보이기 시작하였으며 극성화된 미세포자 단계까지 검출 가능하게 유지되었다 (도 12B 내지 D). 그 후, 후기 PMI 단계부터 RFP 신호는 크게 감소하여 더 이상 검출되지 않았다 (도 12E 내지 H). 참고로, 유묘의 뿌리에서도 MYB81이 발현을 확인한 결과, 프로모터-GUS 리포터 라인에서의 결과와 동일하게, RFP 신호가 ~10일 유묘의 뿌리 세포에서 관찰되지 않았다 (도 12I). 이를 통해, MYB81 발현이 시간 및 공간적으로 엄격한 규제를 받고 있으며, 화분 발달 중 미세포자 단계에 특이적임을 알 수 있었다.As a result, no RFP signal was detected in mature pollen, but RFP signals specifically located in the nucleus were observed in 36 out of 40 T1 lines in young drugs at the mixed bud stage including developing spores or pollen. . In addition, in order to confirm the more accurate MYB81 protein expression location and timing, as a result of confirming the expression location at each stage of pollen development using continuous stage bud samples derived from several lines in T1 and T2 generations, MYB81-mRFP1 was released from the tetraploid. Immediately after, it was not detected in the youngest microcells (Fig. 12A), but soon began to be seen in the nucleus and remained detectable until the polarized microcell stage (Figs. 12B to D). Thereafter, from the later PMI stage, the RFP signal was significantly reduced and was no longer detected (Figs. 12E to H). For reference, as a result of confirming the expression of MYB81 in the roots of the seedlings, the same as the results in the promoter-GUS reporter line, RFP signals were not observed in the root cells of the seedlings for ~10 days (Fig. 12I). Through this, it was found that the expression of MYB81 is subject to strict temporal and spatial regulation, and is specific to the microcellular stage during pollen development.
5-5. 5-5. MYB81MYB81 유전자의 이소성 발현시 표현형 확인 Phenotype identification upon ectopic expression of genes
상기 실시예를 통해 확인한 MYB81 발현이 화분립 발달을 매우 제한한다는 사실에 기초하여, 결실된 MYB81의 이소성 발현이 식물 발달에 다른 영향을 주는지 확인하기 위해, 본 발명에서 확인한 405aa의 MYB81로 과발현 분석을 위해, 광범위발현 프로모터인 p35S 또는 pUBQ14을 이용하여 pUBQ14-MYB81 및 p35S-MYB81-dHA를 제작하여 야생성의 애기장대에 도입하였다. 구체적으로, pUBQ14-MYB81 및 p35S-MYB81는 pMYB81-MYB81 중간 벡터에서 pMYB81 단편을 AscI 및 NotI 위치로 태그된 프라이머를 이용하여 증폭된 pUBQ14 및 p35S 단편으로 각각 교체되었다. 또한, 상기 방법으로 2개의 아미노산이 결실된 돌연변이 myb81를 발현하는 pUBQ14-myb81 및 p35S-myb81도 동일한 제한효소 부위를 이용하여 제작하였다. 발현 카세트들은 pER8 또는 pER10에 클로닝하여 각 벡터를 제작한 뒤, 각각 야생형 애기장대에 도입하여 형질전환체를 선발하였다. 또한, MYB81 및 myb81가 포자체 세포에서 과발현하였을 때, 동일하게 핵에 위치하는지 확인하기 위하여, 구성적 프로모터는 MYB81 과발현에 사용할 수 없었기 때문에 에스트라디올(estradiol) 유도성 MYB81-mRFP1 (pXVE-MYB81-mRFP1) 및 p35S-myb81-mRFP1 벡터를 제작하여 형질전환체를 제조하였다. pXVE-MYB81-mRFP1 형질전환체의 유묘는 5μM 에스트라디올이 포함되거나 포함되지 않은 MS 배지에서, p35S-myb81-mRFP1 형질전환체의 유묘는 MS 배지에서 성장시켰다. Based on the fact that the expression of MYB81 confirmed through the above examples very restricts the development of pollen grains, in order to confirm whether ectopic expression of deleted MYB81 has other effects on plant development, an overexpression analysis of MYB81 of 405aa identified in the present invention was performed. For this purpose, pUBQ14-MYB81 and p35S-MYB81-dHA were prepared using p35S or pUBQ14, which are broadly expressed promoters, and introduced into wild Arabidopsis thaliana. Specifically, pUBQ14-MYB81 and p35S-MYB81 were replaced with pUBQ14 and p35S fragments amplified using primers tagged with AscI and NotI sites for the pMYB81 fragment in the pMYB81-MYB81 intermediate vector, respectively. In addition, pUBQ14-myb81 and p35S-myb81 expressing the mutant myb81 in which two amino acids were deleted by the above method were also constructed using the same restriction enzyme site. Expression cassettes were cloned into pER8 or pER10, each vector was prepared, and then transformants were selected by introducing each into wild-type Arabidopsis thaliana. In addition, in order to confirm whether MYB81 and myb81 are located in the same nucleus when overexpressed in spore cells, a constitutive promoter could not be used for MYB81 overexpression, so estradiol inducible MYB81-mRFP1 (pXVE-MYB81-mRFP1 ) And p35S-myb81-mRFP1 vector were prepared to prepare a transformant. Seedlings of the pXVE-MYB81-mRFP1 transformant were grown in MS medium with or without 5 μM estradiol, and seedlings of the p35S-myb81-mRFP1 transformant were grown in MS medium.
그 결과, 결실 돌연변이가 없는 myb81를 포함하는 p35S-MYB81-RFP 및 pUBQ14-MYB81-RFP 벡터로 형질전환할 경우 모두 형질전환체를 선발할 수 없었다. 반면, V35Y36에 대한 6bp가 결실된 돌연변이 myb81 cDNA를 이용하여 제작한 벡터로 과발현한 경우, 일반적인 형질전환(transformation) 빈도로 풍부한 형질전환 라인들을 생성하였으며, 각 벡터로부터 선택된 50개의 T1 식물체 중 어느 것도 표현형 변화를 나타내지 않았다. As a result, transformants could not be selected when transformed with p35S-MYB81-RFP and pUBQ14-MYB81-RFP vectors containing myb81 without the deletion mutation. On the other hand, when overexpressing with a vector constructed using a mutant myb81 cDNA in which 6bp for V 35 Y 36 was deleted, abundant transformation lines were generated at a normal transformation frequency, and 50 T1 plants selected from each vector None of them showed phenotypic changes.
또한, 에스트라디올 유도 후 MYB81-mRFP1 (도 13J) 및 myb81-mRFP1 (도 13K)는 뿌리 세포의 핵에서 검출되었다. 이를 통해, 정상 MYB81 및 돌연변이 myb81 단백질 모두 체세포에서 핵에 국한되지만, 구성적 프로모터 하에 기능적 MYB81의 이소성 과발현이 유묘기 동안 치사를 유발하는 것을 유추할 수 있었다. 따라서 MYB81 유전자의 발현시기와 위치는 식물발생에 매우 중요함을 알 수 있음.In addition, after induction of estradiol, MYB81-mRFP1 (Fig. 13J) and myb81-mRFP1 (Fig. 13K) were detected in the nuclei of root cells. Through this, it could be inferred that both normal MYB81 and mutant myb81 proteins are confined to the nucleus in somatic cells, but ectopic overexpression of functional MYB81 under a constitutive promoter causes lethality during the seedling phase. Therefore, it can be seen that the expression timing and location of the MYB81 gene are very important for plant development.
<110> Kyungpook National University Industry-Academic Cooperation Foundation <120> Method for producing male-sterile plant <130> PN1807-261 <160> 16 <170> KoPatentIn 3.0 <210> 1 <211> 1407 <212> DNA <213> Artificial Sequence <220> <223> myb81 mutant orf <400> 1 atggggaaag ttcgtcaaga ttcaggatca gacgatgaca attcaataaa gaaatctttt 60 actaaaggtc cttggacaca agcagaagac aatcttttga tagctgataa acatggtgat 120 ggaaactgga acgctgttca aaacaactcg ggcctttctc gttgtggtaa aagttgtcgc 180 cttcgttggg taaatcatct gagaccagat ttgaaaaaag gcgcttttac agagaaagaa 240 gagaaacgtg tcatcgaact tcatgctttg ttagggaaca aatgggcacg aatggctgaa 300 gaagtatagc tcacgtttcc ttctttaacc ctaatcttga tttttttttt cgtcttctaa 360 tcttttgttg tttctttcag ctaccgggac gaacagataa tgagatcaag aacttctgga 420 atacaagact taagagactg caacgacttg gtttacctgt ttaccccgat gaagttcgag 480 agcatgcgat gaatgcagcg acacattccg gtctaaacac tgattcattg gatggtcatc 540 atagtcaaga atatatggag gcagatactg ttgagattcc tgaagtggat ttcgagcatt 600 taccactcaa tcgatcttct tcatactacc agtcaatgct tcgacatgtt cctcccacta 660 acgtctttgt gagacaaaaa ccgtgtttct ttcagccgcc taatgtgtat aacttgatac 720 caccatctcc ttacatgtct accggaaaac gtcctagaga accagaaacc gcgtttcctt 780 gcccgggtgg atataccatg aacgagcaaa gccctcggct ctggaactat ccttttgttg 840 agaacgtttc agaacagtta ccggatagtc atttgcttgg taatgctgct tattcttctc 900 ctcctggacc tcttgttcac ggggttgaga atttcgagtt cccttcattc caatatcatg 960 aagagcctgg cggttgggga gcagatcaac ctaacccaat gccggaacat gagtcagata 1020 acactttggt tcaatctcct ctgacagctc aaacaccatc agattgtcca tcatcatcac 1080 tctatgatgg actgttggaa tcagttgtct atggatcatc aggggagaaa ccggcaaccg 1140 ataccgattc agaatcttca ctgtttcagt catttacacc agccaatgaa aacataaccg 1200 gtaaaacttg ttttcttact ctttatgcat tacatgcact tcattgtttg tgtaatcaat 1260 tcaagaagtc tcctcttctc catctgcatg acaaacttaa ttggtgtaac aaatttaggt 1320 tcaactcctt caaatcaggg acacacatcc tttgatggtg attggataag attacttctc 1380 ggtgaggata gatataaaac cgagtag 1407 <210> 2 <211> 1413 <212> DNA <213> Arabidopsis sp. <400> 2 atggggaaag ttcgtcaaga ttcaggatca gacgatgaca attcaataaa gaaatctttt 60 actaaaggtc cttggacaca agcagaagac aatcttttga tagcttacgt tgataaacat 120 ggtgatggaa actggaacgc tgttcaaaac aactcgggcc tttctcgttg tggtaaaagt 180 tgtcgccttc gttgggtaaa tcatctgaga ccagatttga aaaaaggcgc ttttacagag 240 aaagaagaga aacgtgtcat cgaacttcat gctttgttag ggaacaaatg ggcacgaatg 300 gctgaagaag tatagctcac gtttccttct ttaaccctaa tcttgatttt ttttttcgtc 360 ttctaatctt ttgttgtttc tttcagctac cgggacgaac agataatgag atcaagaact 420 tctggaatac aagacttaag agactgcaac gacttggttt acctgtttac cccgatgaag 480 ttcgagagca tgcgatgaat gcagcgacac attccggtct aaacactgat tcattggatg 540 gtcatcatag tcaagaatat atggaggcag atactgttga gattcctgaa gtggatttcg 600 agcatttacc actcaatcga tcttcttcat actaccagtc aatgcttcga catgttcctc 660 ccactaacgt ctttgtgaga caaaaaccgt gtttctttca gccgcctaat gtgtataact 720 tgataccacc atctccttac atgtctaccg gaaaacgtcc tagagaacca gaaaccgcgt 780 ttccttgccc gggtggatat accatgaacg agcaaagccc tcggctctgg aactatcctt 840 ttgttgagaa cgtttcagaa cagttaccgg atagtcattt gcttggtaat gctgcttatt 900 cttctcctcc tggacctctt gttcacgggg ttgagaattt cgagttccct tcattccaat 960 atcatgaaga gcctggcggt tggggagcag atcaacctaa cccaatgccg gaacatgagt 1020 cagataacac tttggttcaa tctcctctga cagctcaaac accatcagat tgtccatcat 1080 catcactcta tgatggactg ttggaatcag ttgtctatgg atcatcaggg gagaaaccgg 1140 caaccgatac cgattcagaa tcttcactgt ttcagtcatt tacaccagcc aatgaaaaca 1200 taaccggtaa aacttgtttt cttactcttt atgcattaca tgcacttcat tgtttgtgta 1260 atcaattcaa gaagtctcct cttctccatc tgcatgacaa acttaattgg tgtaacaaat 1320 ttaggttcaa ctccttcaaa tcagggacac acatcctttg atggtgattg gataagatta 1380 cttctcggtg aggatagata taaaaccgag tag 1413 <210> 3 <211> 3700 <212> DNA <213> Arabidopsis sp. <400> 3 cgatattgta gggatcgctt ttgattagca catttttccg atttttatta aaccctaata 60 tattagatac cttttaaagc ctcaaaatac tcagacgcta attctctatc aaattttgag 120 atttttggtg agtttttcct aaacattttt ttaatttctc ctcttcagat ttttgtaact 180 ttttcggcaa ttcattatca gaattttttg catgtttagg attagacgtt cgcctctgtt 240 attagttctc tatcaccgat caggtaagct tcattttttt ctttgttcaa tttttaatct 300 cactccaaga aagtgagatt taagcttttt aatgttgtct atattttcag ggatattaat 360 gggttgatct atacttcttt aaatctgatc gatcatacaa atccaccgcc gttgatcacg 420 aggacaaagt ctaggtagat ttttggatat ttcctagcaa aaaatcggga ggtttcgttc 480 ttgatgtttt gagattgagt ttggactttg gtaatagaga gtctatcaaa ctagtgaaat 540 cagtttatca acccataaat atcattggtc atctatcatt tctaaaccga ctataagtac 600 taaaccatac atgtctagat acggatttat ttcgtcgaaa cctttcaaga ttgtttacta 660 aacacaattt tgttatcaat ggtataggtg aattatttcg taaaaccatt gctagattca 720 gattgatgtt ttagcacacc ccaatatcct ctcaactgcg cgcggagtgc ttatggaata 780 tcctgttgag tgggtttaag acgtctgtaa tcatttccta tgtaagttct aactatagta 840 atatttacag taaaacctaa gaaattgatt aatctaaaaa ggtattaatt tatcgataaa 900 ttaataaaat tgtacaactt ttgtaaattc ttaaaaaaat tcgatataaa atgtattttt 960 ttctttataa caatagtaat taaaagtaga aagcaaatat taagtttaaa aaacaataaa 1020 acttttttta catgttgtta aatattagaa ttgaacacta caacaaatta ataaaaattg 1080 aagaaaaaaa ttactacaga tattttacat atgatattta taatatatat tagtaaattt 1140 ataaaattat taatttatac tattgatgag accatatatt attgatttgt atcaattttc 1200 acattggtct aaactcggga ccggaaaaat ttattaattt atagagatta ttaatttatc 1260 gatattaatt tatagaggtt ttactgtatt atgcattgat atatcattct taaagatgaa 1320 ttgtgtaata tactaatttt atctgattta acctaattaa tctggactaa catattcagc 1380 ataatcaatc ttgtatacat attattctag cagaattaat cttctcgata tgttgttatt 1440 tttgtgagtt ttgagcaatc tattaagaaa aagtgctgtc tatatgatgc tcaatcatag 1500 aggttatggt caaaactaac atttttaaca tttaagtgta gaggagaaaa gtttatagtt 1560 aagtctcaga aaaaatcatg tcaacttatt ccattgatag ataccatcca tcgtaccacc 1620 actgcccgcg acatgcaaac cttctccaaa agtaaagcgt taagtctctt aggagtttaa 1680 ccaccttttg tgaattttgg tgtactccat tttgcgtctt ccatagattt ctttcaataa 1740 gaaagattat gataaaaaaa attaggattt gctttggact tatcgcttgc aatttaacat 1800 gttcaaatac gcaaaaccta tatatagtta acaaataaag ccacatgagt attgattact 1860 aatttctttg tttgcttgtt tgaataccaa gaaaacttta gtgactgtaa aacgctaaaa 1920 tacacttttc ttagagaaaa tttcactgaa aaacaaaaag atatacatag agagatttca 1980 tgttagaata aggtttctac gagtatttca taagttatat tatgtatgaa ttaattaact 2040 attgcacgaa aggagtttat cttcaatatt tttttaattc cggaattata taggttaatt 2100 ttgttggcta gagagaaact tgtatatata tatatatata taaataatta catattattt 2160 tacagatgac acaagatggg gaaagttcgt caagattcag gatcagacga tgacaattca 2220 ataaagaaat cttttactaa aggtccttgg acacaagcag aagacaatct tttgatagct 2280 tacgttgata aacatggtga tggaaactgg aacgctgttc aaaacaactc gggcctttct 2340 cgttgtggta aaagttgtcg ccttcgttgg gtaaatcatc tgagaccaga tttgaaaaaa 2400 ggcgctttta cagagaaaga agagaaacgt gtcatcgaac ttcatgcttt gttagggaac 2460 aaatgggcac gaatggctga agaagtatag ctcacgtttc cttctttaac cctaatcttg 2520 attttttttt tcgtcttcta atcttttgtt gtttctttca gctaccggga cgaacagata 2580 atgagatcaa gaacttctgg aatacaagac ttaagagact gcaacgactt ggtttacctg 2640 tttaccccga tgaagttcga gagcatgcga tgaatgcagc gacacattcc ggtctaaaca 2700 ctgattcatt ggatggtcat catagtcaag aatatatgga ggcagatact gttgagattc 2760 ctgaagtgga tttcgagcat ttaccactca atcgatcttc ttcatactac cagtcaatgc 2820 ttcgacatgt tcctcccact aacgtctttg tgagacaaaa accgtgtttc tttcagccgc 2880 ctaatgtgta taacttgata ccaccatctc cttacatgtc taccggaaaa cgtcctagag 2940 aaccagaaac cgcgtttcct tgcccgggtg gatataccat gaacgagcaa agccctcggc 3000 tctggaacta tccttttgtt gagaacgttt cagaacagtt accggatagt catttgcttg 3060 gtaatgctgc ttattcttct cctcctggac ctcttgttca cggggttgag aatttcgagt 3120 tcccttcatt ccaatatcat gaagagcctg gcggttgggg agcagatcaa cctaacccaa 3180 tgccggaaca tgagtcagat aacactttgg ttcaatctcc tctgacagct caaacaccat 3240 cagattgtcc atcatcatca ctctatgatg gactgttgga atcagttgtc tatggatcat 3300 caggggagaa accggcaacc gataccgatt cagaatcttc actgtttcag tcatttacac 3360 cagccaatga aaacataacc ggtaaaactt gttttcttac tctttatgca ttacatgcac 3420 ttcattgttt gtgtaatcaa ttcaagaagt ctcctcttct ccatctgcat gacaaactta 3480 attggtgtaa caaatttagg ttcaactcct tcaaatcagg gacacacatc ctttgatggt 3540 gattggataa gattacttct cggtgaggat agatataaaa ccgagtagaa gaggtttctt 3600 tggaaggcct aatttataaa gtgcttgttc tctttcgtct gcataatgtc tttttatgcg 3660 ttgagtagat tagtcatgtc tttagatata tcagtatagt 3700 <210> 4 <211> 1635 <212> DNA <213> Artificial Sequence <220> <223> pMYB81 promoter <400> 4 ggcgcgccca acccataaat atcattggtc atctatcatt tctaaaccga ctataagtac 60 taaaccatac atgtctagat acggatttat ttcgtcgaaa cctttcaaga ttgtttacta 120 aacacaattt tgttatcaat ggtataggtg aattatttcg taaaaccatt gctagattca 180 gattgatgtt ttagcacacc ccaatatcct ctcaactgcg cgcggagtgc ttatggaata 240 tcctgttgag tgggtttaag acgtctgtaa tcatttccta tgtaagttct aactatagta 300 atatttacag taaaacctaa gaaattgatt gatctaaaaa ggtattaatt tatcgataaa 360 ttaataaaat tgtacaactt ttgtaaattc ttacaaaaat tcgatataaa atgtattttt 420 ttctttataa caatagtaat taaaagtaga aagcaaatat taagtttaaa aaacaataaa 480 acttttttta catgttgtta aatattagaa ttgaacacta caacaaatta ataaaaattg 540 aagaaaaaaa ttactacaga tattttacat atgatattta taatatatat tagtaaattt 600 ataaaattat taatttacac tattgatgag accatatatt attgatttgt atcaattttc 660 acattggtct aaactcggga ccggaaaaat ttattaattt atagagatta ttaatttatc 720 gatattaatt tatagaggtt ttactgtatt atgcattgat atatcattct taaagatgaa 780 ttgtgtaata tactaatttt atctgattta acctaattaa tctggactaa catattcagc 840 ataatcaatc ttgtatacat attattctag cagaattaat cttctcgata tgttgttatt 900 tttgtgagtt ttgagcaatc tattaagaaa aagtgctgtc tatatgatgc tcaatcatag 960 aggttatggt caaaactaac atttttaaca tttaagtgta gaggagaaaa gtttatagtt 1020 aagtctcaga aaaaatcatg tcaacttatt ccattgatag ataccatcca tcgtaccacc 1080 actgcccgcg acatgcaaac cttctccaaa agtaaagcgt taagtctctt aggagtttaa 1140 ccaccttttg tgaattttgg tgtactccat tttgcgtctt ccatagattt ctttcaataa 1200 gaaagattat gataaaaaaa attaggattt gctttggact tatcgcttgc aatttaacat 1260 gttcaaatac gcaaaaccta tatatagtta acaaataaag ccacatgagt attgattact 1320 aatttctttg tttgcttgtt tgaataccaa gaaaacttta gtgactgtaa aacgctaaaa 1380 tacacttttc ttagagaaaa tttcactgaa aaacaaaaag atatacatag agagatttca 1440 tgttagaata aggtttctac gagtatttca taagttatat tgtgtatgaa ttaattaact 1500 attgcacgaa aggagtttat cttcaatatt tttttaattc cggaattata taggttaatt 1560 ttgttggcta gagagaaact tgtatatata tataaataat tacatattat tttacagatg 1620 acacaaggcg gccgc 1635 <210> 5 <211> 6732 <212> DNA <213> Artificial Sequence <220> <223> pMYB81-MYB81cDNA-mRFP1 vector <400> 5 gtggcacttt tcggggaaat gtgcgcggaa cccctatttg tttatttttc taaatacatt 60 caaatatgta tccgctcatg agacaataac cctgataaat gcttcaataa tattgaaaaa 120 ggaagagtat gagtattcaa catttccgtg tcgcccttat tccctttttt gcggcatttt 180 gccttcctgt ttttgctcac ccagaaacgc tggtgaaagt aaaagatgct gaagatcagt 240 tgggtgcacg agtgggttac atcgaactgg atctcaacag cggtaagatc cttgagagtt 300 ttcgccccga agaacgtttt ccaatgatga gcacttttaa agttctgcta tgtggcgcgg 360 tattatcccg tattgacgcc gggcaagagc aactcggtcg ccgcatacac tattctcaga 420 atgacttggt tgagtactca ccagtcacag aaaagcatct tacggatggc atgacagtaa 480 gagaattatg cagtgctgcc ataaccatga gtgataacac tgcggccaac ttacttctga 540 caacgatcgg aggaccgaag gagctaaccg cttttttgca caacatgggg gatcatgtaa 600 ctcgccttga tcgttgggaa ccggagctga atgaagccat accaaacgac gagcgtgaca 660 ccacgatgcc tgtagcaatg gcaacaacgt tgcgcaaact attaactggc gaactactta 720 ctctagcttc ccggcaacaa ttaatagact ggatggaggc ggataaagtt gcaggaccac 780 ttctgcgctc ggcccttccg gctggctggt ttattgctga taaatctgga gccggtgagc 840 gtgggtctcg cggtatcatt gcagcactgg ggccagatgg taagccctcc cgtatcgtag 900 ttatctacac gacggggagt caggcaacta tggatgaacg aaatagacag atcgctgaga 960 taggtgcctc actgattaag cattggtaac tgtcagacca agtttactca tatatacttt 1020 agattgattt aaaacttcat ttttaattta aaaggatcta ggtgaagatc ctttttgata 1080 atctcatgac caaaatccct taacgtgagt tttcgttcca ctgagcgtca gaccccgtag 1140 aaaagatcaa aggatcttct tgagatcctt tttttctgcg cgtaatctgc tgcttgcaaa 1200 caaaaaaacc accgctacca gcggtggttt gtttgccgga tcaagagcta ccaactcttt 1260 ttccgaaggt aactggcttc agcagagcgc agataccaaa tactgtcctt ctagtgtagc 1320 cgtagttagg ccaccacttc aagaactctg tagcaccgcc tacatacctc gctctgctaa 1380 tcctgttacc agtggctgct gccagtggcg ataagtcgtg tcttaccggg ttggactcaa 1440 gacgatagtt accggataag gcgcagcggt cgggctgaac ggggggttcg tgcacacagc 1500 ccagcttgga gcgaacgacc tacaccgaac tgagatacct acagcgtgag ctatgagaaa 1560 gcgccacgct tcccgaaggg agaaaggcgg acaggtatcc ggtaagcggc agggtcggaa 1620 caggagagcg cacgagggag cttccagggg gaaacgcctg gtatctttat agtcctgtcg 1680 ggtttcgcca cctctgactt gagcgtcgat ttttgtgatg ctcgtcaggg gggcggagcc 1740 tatggaaaaa cgccagcaac gcggcctttt tacggttcct ggccttttgc tggccttttg 1800 ctcacatgtt ctttcctgcg ttatcccctg attctgtgga taaccgtatt accgcctttg 1860 agtgagctga taccgctcgc cgcagccgaa cgaccgagcg cagcgagtca gtgagcgagg 1920 aagcggaaga gcgcccaata cgcaaaccgc ctctccccgc gcgttggccg attcattaat 1980 gcagctggca cgacaggttt cccgactgga aagcgggcag tgagcgcaac gcaattaatg 2040 tgagttagct cactcattag gcaccccagg ctttacactt tatgcttccg gctcgtatgt 2100 tgtgtggaat tgtgagcgga taacaatttc acacaggaaa cagctatgac catgattacg 2160 ccaagcgcgc aattaaccct cactaaaggg aacaaaagct ggagctcggc gcgcccaacc 2220 cataaatatc attggtcatc tatcatttct aaaccgacta taagtactaa accatacatg 2280 tctagatacg gatttatttc gtcgaaacct ttcaagattg tttactaaac acaattttgt 2340 tatcaatggt ataggtgaat tatttcgtaa aaccattgct agattcagat tgatgtttta 2400 gcacacccca atatcctctc aactgcgcgc ggagtgctta tggaatatcc tgttgagtgg 2460 gtttaagacg tctgtaatca tttcctatgt aagttctaac tatagtaata tttacagtaa 2520 aacctaagaa attgattgat ctaaaaaggt attaatttat cgataaatta ataaaattgt 2580 acaacttttg taaattctta caaaaattcg atataaaatg tatttttttc tttataacaa 2640 tagtaattaa aagtagaaag caaatattaa gtttaaaaaa caataaaact ttttttacat 2700 gttgttaaat attagaattg aacactacaa caaattaata aaaattgaag aaaaaaatta 2760 ctacagatat tttacatatg atatttataa tatatattag taaatttata aaattattaa 2820 tttacactat tgatgagacc atatattatt gatttgtatc aattttcaca ttggtctaaa 2880 ctcgggaccg gaaaaattta ttaatttata gagattatta atttatcgat attaatttat 2940 agaggtttta ctgtattatg cattgatata tcattcttaa agatgaattg tgtaatatac 3000 taattttatc tgatttaacc taattaatct ggactaacat attcagcata atcaatcttg 3060 tatacatatt attctagcag aattaatctt ctcgatatgt tgttattttt gtgagttttg 3120 agcaatctat taagaaaaag tgctgtctat atgatgctca atcatagagg ttatggtcaa 3180 aactaacatt tttaacattt aagtgtagag gagaaaagtt tatagttaag tctcagaaaa 3240 aatcatgtca acttattcca ttgatagata ccatccatcg taccaccact gcccgcgaca 3300 tgcaaacctt ctccaaaagt aaagcgttaa gtctcttagg agtttaacca ccttttgtga 3360 attttggtgt actccatttt gcgtcttcca tagatttctt tcaataagaa agattatgat 3420 aaaaaaaatt aggatttgct ttggacttat cgcttgcaat ttaacatgtt caaatacgca 3480 aaacctatat atagttaaca aataaagcca catgagtatt gattactaat ttctttgttt 3540 gcttgtttga ataccaagaa aactttagtg actgtaaaac gctaaaatac acttttctta 3600 gagaaaattt cactgaaaaa caaaaagata tacatagaga gatttcatgt tagaataagg 3660 tttctacgag tatttcataa gttatattgt gtatgaatta attaactatt gcacgaaagg 3720 agtttatctt caatattttt ttaattccgg aattatatag gttaattttg ttggctagag 3780 agaaacttgt atatatatat aaataattac atattatttt acagatgaca caaggcggcc 3840 gcatggggaa agttcgtcaa gattcaggat cagacgatga caattcaata aagaaatctt 3900 ttattaaagg tccttggaca caagcagaag acaatctttt gatagcttac gttgataaac 3960 atggtgatgg aaactggaac gctgttcaaa acaactcggg cctttctcgt tgtggtaaaa 4020 gttgtcgcct tcgttgggta aatcatctga gaccagattt gaaaaaaggc gcttttacag 4080 agaaagaaga gaaacgtgtc atcgaacttc atgctttgtt agggaacaaa tgggcacgaa 4140 tggctgaaga actaccggga cgaacagata atgagatcaa gaacttctgg aatacaagac 4200 ttaagagact gcaacgactt ggtttacctg tttaccccga tgaagttcga gagcatgcga 4260 tgaatgtagc gacacattcc ggtctaaaca ctgattcatt ggatggtcat catagtcaag 4320 aatatatgga ggcagatact gttgagattc ctgaagtgga tttcgagcat ttaccactca 4380 atcgatcttc ttcatactac cagtcaatgc ttcgacatgt tcctcccact aacgtctttg 4440 tgagacaaaa accgtgtttc tttcagccgc ctaatgtgta taacttgata ccaccatctc 4500 cttacatgtc taccggaaaa cgtcctagag aaccagaaac cgcgtttcct tgcccgggtg 4560 gatataccat gaacgagcaa agccctcggc tctggaacta tccttttgtt gagaacgttt 4620 cagaacagtt accggatagt catttgcttg gtaatgctgc ttattcttct cctcctggac 4680 ctcttgttca cggggttgag aatttcgagt tcccttcatt ccaatatcat gaagagcctg 4740 gcggttgggg agcagatcaa cctaacccaa tgccggaaca tgagtcagat aacactttgg 4800 ttcaatctcc tctgacagct caaacaccat cagattgtcc atcatcatca ctctatgatg 4860 gactgttgga atcagttgtc tatggatcat caggggagaa accggcaacc gataccgatt 4920 cagaatcttc actgtttcag tcatttacac cagccaatga aaacataacc ggttcaactc 4980 cttcaaatca gggacacaca tcctttgatg gtgattggat aagattactt ctcggtgagg 5040 atagatataa aaccgaggga tccatggcct cctccgagga cgtcatcaag gagttcatgc 5100 gcttcaaggt gcgcatggag ggctccgtga acggccacga gttcgagatc gagggcgagg 5160 gcgagggccg cccctacgag ggcacccaga ccgccaagct gaaggtgacc aagggcggcc 5220 ccctgccctt cgcctgggac atcctgtccc ctcagttcca gtacggctcc aaggcctacg 5280 tgaagcaccc cgccgacatc cccgactact tgaagctgtc cttccccgag ggcttcaagt 5340 gggagcgcgt gatgaacttc gaggacggcg gcgtggtgac cgtgacccag gactcctccc 5400 tgcaggacgg cgagttcatc tacaaggtga agctgcgcgg caccaacttc ccctccgacg 5460 gccccgtaat gcagaagaag accatgggct gggaggcctc caccgagcgg atgtaccccg 5520 aggacggcgc cctgaagggc gagatcaaga tgaggctgaa gctgaaggac ggcggccact 5580 acgacgccga ggtcaagacc acctacatgg ccaagaagcc cgtgcagctg cccggcgcct 5640 acaagaccga catcaagctg gacatcacct cccacaacga ggactacacc atcgtggaac 5700 agtacgagcg cgccgagggc cgccactcca ccggcgccta actagttacc catacgacgt 5760 tccagactac gctggttacc catacgacgt tccagactac gcttgactgc agatcgttca 5820 aacatttggc aataaagttt cttaagattg aatcctgttg ccggtcttgc gatgattatc 5880 atataatttc tgttgaatta cgttaagcat gtaataatta acatgtaatg catgacgtta 5940 tttatgagat gggtttttat gattagagtc ccgcaattat acatttaata cgcgatagaa 6000 aacaaaatat agcgcgcaaa ctaggataaa ttatcgcgcg cggtgtcatc tatgttacta 6060 gatccgttaa ttaaggtacc caattcgccc tatagtgagt cgtattacgc gcgctcactg 6120 gccgtcgttt tacaacgtcg tgactgggaa aaccctggcg ttacccaact taatcgcctt 6180 gcagcacatc cccctttcgc cagctggcgt aatagcgaag aggcccgcac cgatcgccct 6240 tcccaacagt tgcgcagcct gaatggcgaa tgggacgcgc cctgtagcgg cgcattaagc 6300 gcggcgggtg tggtggttac gcgcagcgtg accgctacac ttgccagcgc cctagcgccc 6360 gctcctttcg ctttcttccc ttcctttctc gccacgttcg ccggctttcc ccgtcaagct 6420 ctaaatcggg ggctcccttt agggttccga tttagtgctt tacggcacct cgaccccaaa 6480 aaacttgatt agggtgatgg ttcacgtagt gggccatcgc cctgatagac ggtttttcgc 6540 cctttgacgt tggagtccac gttctttaat agtggactct tgttccaaac tggaacaaca 6600 ctcaacccta tctcggtcta ttcttttgat ttataaggga ttttgccgat ttcggcctat 6660 tggttaaaaa atgagctgat ttaacaaaaa tttaacgcga attttaacaa aatattaacg 6720 cttacaattt ag 6732 <210> 6 <211> 632 <212> PRT <213> Artificial Sequence <220> <223> AtMYB81-mRFP1 vector <400> 6 Met Gly Lys Val Arg Gln Asp Ser Gly Ser Asp Asp Asp Asn Ser Ile 1 5 10 15 Lys Lys Ser Phe Ile Lys Gly Pro Trp Thr Gln Ala Glu Asp Asn Leu 20 25 30 Leu Ile Ala Tyr Val Asp Lys His Gly Asp Gly Asn Trp Asn Ala Val 35 40 45 Gln Asn Asn Ser Gly Leu Ser Arg Cys Gly Lys Ser Cys Arg Leu Arg 50 55 60 Trp Val Asn His Leu Arg Pro Asp Leu Lys Lys Gly Ala Phe Thr Glu 65 70 75 80 Lys Glu Glu Lys Arg Val Ile Glu Leu His Ala Leu Leu Gly Asn Lys 85 90 95 Trp Ala Arg Met Ala Glu Glu Leu Pro Gly Arg Thr Asp Asn Glu Ile 100 105 110 Lys Asn Phe Trp Asn Thr Arg Leu Lys Arg Leu Gln Arg Leu Gly Leu 115 120 125 Pro Val Tyr Pro Asp Glu Val Arg Glu His Ala Met Asn Val Ala Thr 130 135 140 His Ser Gly Leu Asn Thr Asp Ser Leu Asp Gly His His Ser Gln Glu 145 150 155 160 Tyr Met Glu Ala Asp Thr Val Glu Ile Pro Glu Val Asp Phe Glu His 165 170 175 Leu Pro Leu Asn Arg Ser Ser Ser Tyr Tyr Gln Ser Met Leu Arg His 180 185 190 Val Pro Pro Thr Asn Val Phe Val Arg Gln Lys Pro Cys Phe Phe Gln 195 200 205 Pro Pro Asn Val Tyr Asn Leu Ile Pro Pro Ser Pro Tyr Met Ser Thr 210 215 220 Gly Lys Arg Pro Arg Glu Pro Glu Thr Ala Phe Pro Cys Pro Gly Gly 225 230 235 240 Tyr Thr Met Asn Glu Gln Ser Pro Arg Leu Trp Asn Tyr Pro Phe Val 245 250 255 Glu Asn Val Ser Glu Gln Leu Pro Asp Ser His Leu Leu Gly Asn Ala 260 265 270 Ala Tyr Ser Ser Pro Pro Gly Pro Leu Val His Gly Val Glu Asn Phe 275 280 285 Glu Phe Pro Ser Phe Gln Tyr His Glu Glu Pro Gly Gly Trp Gly Ala 290 295 300 Asp Gln Pro Asn Pro Met Pro Glu His Glu Ser Asp Asn Thr Leu Val 305 310 315 320 Gln Ser Pro Leu Thr Ala Gln Thr Pro Ser Asp Cys Pro Ser Ser Ser 325 330 335 Leu Tyr Asp Gly Leu Leu Glu Ser Val Val Tyr Gly Ser Ser Gly Glu 340 345 350 Lys Pro Ala Thr Asp Thr Asp Ser Glu Ser Ser Leu Phe Gln Ser Phe 355 360 365 Thr Pro Ala Asn Glu Asn Ile Thr Gly Ser Thr Pro Ser Asn Gln Gly 370 375 380 His Thr Ser Phe Asp Gly Asp Trp Ile Arg Leu Leu Leu Gly Glu Asp 385 390 395 400 Arg Tyr Lys Thr Glu Gly Ser Met Ala Ser Ser Glu Asp Val Ile Lys 405 410 415 Glu Phe Met Arg Phe Lys Val Arg Met Glu Gly Ser Val Asn Gly His 420 425 430 Glu Phe Glu Ile Glu Gly Glu Gly Glu Gly Arg Pro Tyr Glu Gly Thr 435 440 445 Gln Thr Ala Lys Leu Lys Val Thr Lys Gly Gly Pro Leu Pro Phe Ala 450 455 460 Trp Asp Ile Leu Ser Pro Gln Phe Gln Tyr Gly Ser Lys Ala Tyr Val 465 470 475 480 Lys His Pro Ala Asp Ile Pro Asp Tyr Leu Lys Leu Ser Phe Pro Glu 485 490 495 Gly Phe Lys Trp Glu Arg Val Met Asn Phe Glu Asp Gly Gly Val Val 500 505 510 Thr Val Thr Gln Asp Ser Ser Leu Gln Asp Gly Glu Phe Ile Tyr Lys 515 520 525 Val Lys Leu Arg Gly Thr Asn Phe Pro Ser Asp Gly Pro Val Met Gln 530 535 540 Lys Lys Thr Met Gly Trp Glu Ala Ser Thr Glu Arg Met Tyr Pro Glu 545 550 555 560 Asp Gly Ala Leu Lys Gly Glu Ile Lys Met Arg Leu Lys Leu Lys Asp 565 570 575 Gly Gly His Tyr Asp Ala Glu Val Lys Thr Thr Tyr Met Ala Lys Lys 580 585 590 Pro Val Gln Leu Pro Gly Ala Tyr Lys Thr Asp Ile Lys Leu Asp Ile 595 600 605 Thr Ser His Asn Glu Asp Tyr Thr Ile Val Glu Gln Tyr Glu Arg Ala 610 615 620 Glu Gly Arg His Ser Thr Gly Ala 625 630 <210> 7 <211> 1215 <212> DNA <213> Artificial Sequence <220> <223> MYB8 cDNA <400> 7 atggggaaag ttcgtcaaga ttcaggatca gacgatgaca attcaataaa gaaatctttt 60 attaaaggtc cttggacaca agcagaagac aatcttttga tagcttacgt tgataaacat 120 ggtgatggaa actggaacgc tgttcaaaac aactcgggcc tttctcgttg tggtaaaagt 180 tgtcgccttc gttgggtaaa tcatctgaga ccagatttga aaaaaggcgc ttttacagag 240 aaagaagaga aacgtgtcat cgaacttcat gctttgttag ggaacaaatg ggcacgaatg 300 gctgaagaac taccgggacg aacagataat gagatcaaga acttctggaa tacaagactt 360 aagagactgc aacgacttgg tttacctgtt taccccgatg aagttcgaga gcatgcgatg 420 aatgtagcga cacattccgg tctaaacact gattcattgg atggtcatca tagtcaagaa 480 tatatggagg cagatactgt tgagattcct gaagtggatt tcgagcattt accactcaat 540 cgatcttctt catactacca gtcaatgctt cgacatgttc ctcccactaa cgtctttgtg 600 agacaaaaac cgtgtttctt tcagccgcct aatgtgtata acttgatacc accatctcct 660 tacatgtcta ccggaaaacg tcctagagaa ccagaaaccg cgtttccttg cccgggtgga 720 tataccatga acgagcaaag ccctcggctc tggaactatc cttttgttga gaacgtttca 780 gaacagttac cggatagtca tttgcttggt aatgctgctt attcttctcc tcctggacct 840 cttgttcacg gggttgagaa tttcgagttc ccttcattcc aatatcatga agagcctggc 900 ggttggggag cagatcaacc taacccaatg ccggaacatg agtcagataa cactttggtt 960 caatctcctc tgacagctca aacaccatca gattgtccat catcatcact ctatgatgga 1020 ctgttggaat cagttgtcta tggatcatca ggggagaaac cggcaaccga taccgattca 1080 gaatcttcac tgtttcagtc atttacacca gccaatgaaa acataaccgg ttcaactcct 1140 tcaaatcagg gacacacatc ctttgatggt gattggataa gattacttct cggtgaggat 1200 agatataaaa ccgag 1215 <210> 8 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> 26960P-AscIF1 forward primer <400> 8 aaaaggcgcg cccaacccat aaatatcatt ggtc 34 <210> 9 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> MYB81-CGNR reverse primer <400> 9 agaagcggcc gccttgtgtc atctgtaaaa taatatg 37 <210> 10 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> 26960P-NotIF forward primer <400> 10 ttaggcggcc gcatggggaa agttcgtcaa gattcag 37 <210> 11 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> MYB81-SR405 reverse primer <400> 11 ttggactagt ctactcggtt ttatatctat cc 32 <210> 12 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> MYB81-SRnostop reverse primer <400> 12 gccaactagt ctcggtttta tatctatcct c 31 <210> 13 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> MYB81-BR405 reverse primer <400> 13 gccaggatcc ctcggtttta tatctatcct c 31 <210> 14 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> 26960P-For1 forward primer <400> 14 ctattgatga gaccatatat tattg 25 <210> 15 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> 26960-Rev4 reverse primer <400> 15 ccatcaccat gtttatcaac gta 23 <210> 16 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> 26960-Rev6 reverse primer <400> 16 ccatgtttat cagctatcaa aa 22 <110> Kyungpook National University Industry-Academic Cooperation Foundation <120> Method for producing male-sterile plant <130> PN1807-261 <160> 16 <170> KoPatentIn 3.0 <210> 1 <211> 1407 <212> DNA <213> Artificial Sequence <220> <223> myb81 mutant orf <400> 1 atggggaaag ttcgtcaaga ttcaggatca gacgatgaca attcaataaa gaaatctttt 60 actaaaggtc cttggacaca agcagaagac aatcttttga tagctgataa acatggtgat 120 ggaaactgga acgctgttca aaacaactcg ggcctttctc gttgtggtaa aagttgtcgc 180 cttcgttggg taaatcatct gagaccagat ttgaaaaaag gcgcttttac agagaaagaa 240 gagaaacgtg tcatcgaact tcatgctttg ttagggaaca aatgggcacg aatggctgaa 300 gaagtatagc tcacgtttcc ttctttaacc ctaatcttga tttttttttt cgtcttctaa 360 tcttttgttg tttctttcag ctaccgggac gaacagataa tgagatcaag aacttctgga 420 atacaagact taagagactg caacgacttg gtttacctgt ttaccccgat gaagttcgag 480 agcatgcgat gaatgcagcg acacattccg gtctaaacac tgattcattg gatggtcatc 540 atagtcaaga atatatggag gcagatactg ttgagattcc tgaagtggat ttcgagcatt 600 taccactcaa tcgatcttct tcatactacc agtcaatgct tcgacatgtt cctcccacta 660 acgtctttgt gagacaaaaa ccgtgtttct ttcagccgcc taatgtgtat aacttgatac 720 caccatctcc ttacatgtct accggaaaac gtcctagaga accagaaacc gcgtttcctt 780 gcccgggtgg atataccatg aacgagcaaa gccctcggct ctggaactat ccttttgttg 840 agaacgtttc agaacagtta ccggatagtc atttgcttgg taatgctgct tattcttctc 900 ctcctggacc tcttgttcac ggggttgaga atttcgagtt cccttcattc caatatcatg 960 aagagcctgg cggttgggga gcagatcaac ctaacccaat gccggaacat gagtcagata 1020 acactttggt tcaatctcct ctgacagctc aaacaccatc agattgtcca tcatcatcac 1080 tctatgatgg actgttggaa tcagttgtct atggatcatc aggggagaaa ccggcaaccg 1140 ataccgattc agaatcttca ctgtttcagt catttacacc agccaatgaa aacataaccg 1200 gtaaaacttg ttttcttact ctttatgcat tacatgcact tcattgtttg tgtaatcaat 1260 tcaagaagtc tcctcttctc catctgcatg acaaacttaa ttggtgtaac aaatttaggt 1320 tcaactcctt caaatcaggg acacacatcc tttgatggtg attggataag attacttctc 1380 ggtgaggata gatataaaac cgagtag 1407 <210> 2 <211> 1413 <212> DNA <213> Arabidopsis sp. <400> 2 atggggaaag ttcgtcaaga ttcaggatca gacgatgaca attcaataaa gaaatctttt 60 actaaaggtc cttggacaca agcagaagac aatcttttga tagcttacgt tgataaacat 120 ggtgatggaa actggaacgc tgttcaaaac aactcgggcc tttctcgttg tggtaaaagt 180 tgtcgccttc gttgggtaaa tcatctgaga ccagatttga aaaaaggcgc ttttacagag 240 aaagaagaga aacgtgtcat cgaacttcat gctttgttag ggaacaaatg ggcacgaatg 300 gctgaagaag tatagctcac gtttccttct ttaaccctaa tcttgatttt ttttttcgtc 360 ttctaatctt ttgttgtttc tttcagctac cgggacgaac agataatgag atcaagaact 420 tctggaatac aagacttaag agactgcaac gacttggttt acctgtttac cccgatgaag 480 ttcgagagca tgcgatgaat gcagcgacac attccggtct aaacactgat tcattggatg 540 gtcatcatag tcaagaatat atggaggcag atactgttga gattcctgaa gtggatttcg 600 agcatttacc actcaatcga tcttcttcat actaccagtc aatgcttcga catgttcctc 660 ccactaacgt ctttgtgaga caaaaaccgt gtttctttca gccgcctaat gtgtataact 720 tgataccacc atctccttac atgtctaccg gaaaacgtcc tagagaacca gaaaccgcgt 780 ttccttgccc gggtggatat accatgaacg agcaaagccc tcggctctgg aactatcctt 840 ttgttgagaa cgtttcagaa cagttaccgg atagtcattt gcttggtaat gctgcttatt 900 cttctcctcc tggacctctt gttcacgggg ttgagaattt cgagttccct tcattccaat 960 atcatgaaga gcctggcggt tggggagcag atcaacctaa cccaatgccg gaacatgagt 1020 cagataacac tttggttcaa tctcctctga cagctcaaac accatcagat tgtccatcat 1080 catcactcta tgatggactg ttggaatcag ttgtctatgg atcatcaggg gagaaaccgg 1140 caaccgatac cgattcagaa tcttcactgt ttcagtcatt tacaccagcc aatgaaaaca 1200 taaccggtaa aacttgtttt cttactcttt atgcattaca tgcacttcat tgtttgtgta 1260 atcaattcaa gaagtctcct cttctccatc tgcatgacaa acttaattgg tgtaacaaat 1320 ttaggttcaa ctccttcaaa tcagggacac acatcctttg atggtgattg gataagatta 1380 cttctcggtg aggatagata taaaaccgag tag 1413 <210> 3 <211> 3700 <212> DNA <213> Arabidopsis sp. <400> 3 cgatattgta gggatcgctt ttgattagca catttttccg atttttatta aaccctaata 60 tattagatac cttttaaagc ctcaaaatac tcagacgcta attctctatc aaattttgag 120 atttttggtg agtttttcct aaacattttt ttaatttctc ctcttcagat ttttgtaact 180 ttttcggcaa ttcattatca gaattttttg catgtttagg attagacgtt cgcctctgtt 240 attagttctc tatcaccgat caggtaagct tcattttttt ctttgttcaa tttttaatct 300 cactccaaga aagtgagatt taagcttttt aatgttgtct atattttcag ggatattaat 360 gggttgatct atacttcttt aaatctgatc gatcatacaa atccaccgcc gttgatcacg 420 aggacaaagt ctaggtagat ttttggatat ttcctagcaa aaaatcggga ggtttcgttc 480 ttgatgtttt gagattgagt ttggactttg gtaatagaga gtctatcaaa ctagtgaaat 540 cagtttatca acccataaat atcattggtc atctatcatt tctaaaccga ctataagtac 600 taaaccatac atgtctagat acggatttat ttcgtcgaaa cctttcaaga ttgtttacta 660 aacacaattt tgttatcaat ggtataggtg aattatttcg taaaaccatt gctagattca 720 gattgatgtt ttagcacacc ccaatatcct ctcaactgcg cgcggagtgc ttatggaata 780 tcctgttgag tgggtttaag acgtctgtaa tcatttccta tgtaagttct aactatagta 840 atatttacag taaaacctaa gaaattgatt aatctaaaaa ggtattaatt tatcgataaa 900 ttaataaaat tgtacaactt ttgtaaattc ttaaaaaaat tcgatataaa atgtattttt 960 ttctttataa caatagtaat taaaagtaga aagcaaatat taagtttaaa aaacaataaa 1020 acttttttta catgttgtta aatattagaa ttgaacacta caacaaatta ataaaaattg 1080 aagaaaaaaa ttactacaga tattttacat atgatattta taatatatat tagtaaattt 1140 ataaaattat taatttatac tattgatgag accatatatt attgatttgt atcaattttc 1200 acattggtct aaactcggga ccggaaaaat ttattaattt atagagatta ttaatttatc 1260 gatattaatt tatagaggtt ttactgtatt atgcattgat atatcattct taaagatgaa 1320 ttgtgtaata tactaatttt atctgattta acctaattaa tctggactaa catattcagc 1380 ataatcaatc ttgtatacat attattctag cagaattaat cttctcgata tgttgttatt 1440 tttgtgagtt ttgagcaatc tattaagaaa aagtgctgtc tatatgatgc tcaatcatag 1500 aggttatggt caaaactaac atttttaaca tttaagtgta gaggagaaaa gtttatagtt 1560 aagtctcaga aaaaatcatg tcaacttatt ccattgatag ataccatcca tcgtaccacc 1620 actgcccgcg acatgcaaac cttctccaaa agtaaagcgt taagtctctt aggagtttaa 1680 ccaccttttg tgaattttgg tgtactccat tttgcgtctt ccatagattt ctttcaataa 1740 gaaagattat gataaaaaaa attaggattt gctttggact tatcgcttgc aatttaacat 1800 gttcaaatac gcaaaaccta tatatagtta acaaataaag ccacatgagt attgattact 1860 aatttctttg tttgcttgtt tgaataccaa gaaaacttta gtgactgtaa aacgctaaaa 1920 tacacttttc ttagagaaaa tttcactgaa aaacaaaaag atatacatag agagatttca 1980 tgttagaata aggtttctac gagtatttca taagttatat tatgtatgaa ttaattaact 2040 attgcacgaa aggagtttat cttcaatatt tttttaattc cggaattata taggttaatt 2100 ttgttggcta gagagaaact tgtatatata tatatatata taaataatta catattattt 2160 tacagatgac acaagatggg gaaagttcgt caagattcag gatcagacga tgacaattca 2220 ataaagaaat cttttactaa aggtccttgg acacaagcag aagacaatct tttgatagct 2280 tacgttgata aacatggtga tggaaactgg aacgctgttc aaaacaactc gggcctttct 2340 cgttgtggta aaagttgtcg ccttcgttgg gtaaatcatc tgagaccaga tttgaaaaaa 2400 ggcgctttta cagagaaaga agagaaacgt gtcatcgaac ttcatgcttt gttagggaac 2460 aaatgggcac gaatggctga agaagtatag ctcacgtttc cttctttaac cctaatcttg 2520 attttttttt tcgtcttcta atcttttgtt gtttctttca gctaccggga cgaacagata 2580 atgagatcaa gaacttctgg aatacaagac ttaagagact gcaacgactt ggtttacctg 2640 tttaccccga tgaagttcga gagcatgcga tgaatgcagc gacacattcc ggtctaaaca 2700 ctgattcatt ggatggtcat catagtcaag aatatatgga ggcagatact gttgagattc 2760 ctgaagtgga tttcgagcat ttaccactca atcgatcttc ttcatactac cagtcaatgc 2820 ttcgacatgt tcctcccact aacgtctttg tgagacaaaa accgtgtttc tttcagccgc 2880 ctaatgtgta taacttgata ccaccatctc cttacatgtc taccggaaaa cgtcctagag 2940 aaccagaaac cgcgtttcct tgcccgggtg gatataccat gaacgagcaa agccctcggc 3000 tctggaacta tccttttgtt gagaacgttt cagaacagtt accggatagt catttgcttg 3060 gtaatgctgc ttattcttct cctcctggac ctcttgttca cggggttgag aatttcgagt 3120 tcccttcatt ccaatatcat gaagagcctg gcggttgggg agcagatcaa cctaacccaa 3180 tgccggaaca tgagtcagat aacactttgg ttcaatctcc tctgacagct caaacaccat 3240 cagattgtcc atcatcatca ctctatgatg gactgttgga atcagttgtc tatggatcat 3300 caggggagaa accggcaacc gataccgatt cagaatcttc actgtttcag tcatttacac 3360 cagccaatga aaacataacc ggtaaaactt gttttcttac tctttatgca ttacatgcac 3420 ttcattgttt gtgtaatcaa ttcaagaagt ctcctcttct ccatctgcat gacaaactta 3480 attggtgtaa caaatttagg ttcaactcct tcaaatcagg gacacacatc ctttgatggt 3540 gattggataa gattacttct cggtgaggat agatataaaa ccgagtagaa gaggtttctt 3600 tggaaggcct aatttataaa gtgcttgttc tctttcgtct gcataatgtc tttttatgcg 3660 ttgagtagat tagtcatgtc tttagatata tcagtatagt 3700 <210> 4 <211> 1635 <212> DNA <213> Artificial Sequence <220> <223> pMYB81 promoter <400> 4 ggcgcgccca acccataaat atcattggtc atctatcatt tctaaaccga ctataagtac 60 taaaccatac atgtctagat acggatttat ttcgtcgaaa cctttcaaga ttgtttacta 120 aacacaattt tgttatcaat ggtataggtg aattatttcg taaaaccatt gctagattca 180 gattgatgtt ttagcacacc ccaatatcct ctcaactgcg cgcggagtgc ttatggaata 240 tcctgttgag tgggtttaag acgtctgtaa tcatttccta tgtaagttct aactatagta 300 atatttacag taaaacctaa gaaattgatt gatctaaaaa ggtattaatt tatcgataaa 360 ttaataaaat tgtacaactt ttgtaaattc ttacaaaaat tcgatataaa atgtattttt 420 ttctttataa caatagtaat taaaagtaga aagcaaatat taagtttaaa aaacaataaa 480 acttttttta catgttgtta aatattagaa ttgaacacta caacaaatta ataaaaattg 540 aagaaaaaaa ttactacaga tattttacat atgatattta taatatatat tagtaaattt 600 ataaaattat taatttacac tattgatgag accatatatt attgatttgt atcaattttc 660 acattggtct aaactcggga ccggaaaaat ttattaattt atagagatta ttaatttatc 720 gatattaatt tatagaggtt ttactgtatt atgcattgat atatcattct taaagatgaa 780 ttgtgtaata tactaatttt atctgattta acctaattaa tctggactaa catattcagc 840 ataatcaatc ttgtatacat attattctag cagaattaat cttctcgata tgttgttatt 900 tttgtgagtt ttgagcaatc tattaagaaa aagtgctgtc tatatgatgc tcaatcatag 960 aggttatggt caaaactaac atttttaaca tttaagtgta gaggagaaaa gtttatagtt 1020 aagtctcaga aaaaatcatg tcaacttatt ccattgatag ataccatcca tcgtaccacc 1080 actgcccgcg acatgcaaac cttctccaaa agtaaagcgt taagtctctt aggagtttaa 1140 ccaccttttg tgaattttgg tgtactccat tttgcgtctt ccatagattt ctttcaataa 1200 gaaagattat gataaaaaaa attaggattt gctttggact tatcgcttgc aatttaacat 1260 gttcaaatac gcaaaaccta tatatagtta acaaataaag ccacatgagt attgattact 1320 aatttctttg tttgcttgtt tgaataccaa gaaaacttta gtgactgtaa aacgctaaaa 1380 tacacttttc ttagagaaaa tttcactgaa aaacaaaaag atatacatag agagatttca 1440 tgttagaata aggtttctac gagtatttca taagttatat tgtgtatgaa ttaattaact 1500 attgcacgaa aggagtttat cttcaatatt tttttaattc cggaattata taggttaatt 1560 ttgttggcta gagagaaact tgtatatata tataaataat tacatattat tttacagatg 1620 acacaaggcg gccgc 1635 <210> 5 <211> 6732 <212> DNA <213> Artificial Sequence <220> <223> pMYB81-MYB81cDNA-mRFP1 vector <400> 5 gtggcacttt tcggggaaat gtgcgcggaa cccctatttg tttatttttc taaatacatt 60 caaatatgta tccgctcatg agacaataac cctgataaat gcttcaataa tattgaaaaa 120 ggaagagtat gagtattcaa catttccgtg tcgcccttat tccctttttt gcggcatttt 180 gccttcctgt ttttgctcac ccagaaacgc tggtgaaagt aaaagatgct gaagatcagt 240 tgggtgcacg agtgggttac atcgaactgg atctcaacag cggtaagatc cttgagagtt 300 ttcgccccga agaacgtttt ccaatgatga gcacttttaa agttctgcta tgtggcgcgg 360 tattatcccg tattgacgcc gggcaagagc aactcggtcg ccgcatacac tattctcaga 420 atgacttggt tgagtactca ccagtcacag aaaagcatct tacggatggc atgacagtaa 480 gagaattatg cagtgctgcc ataaccatga gtgataacac tgcggccaac ttacttctga 540 caacgatcgg aggaccgaag gagctaaccg cttttttgca caacatgggg gatcatgtaa 600 ctcgccttga tcgttgggaa ccggagctga atgaagccat accaaacgac gagcgtgaca 660 ccacgatgcc tgtagcaatg gcaacaacgt tgcgcaaact attaactggc gaactactta 720 ctctagcttc ccggcaacaa ttaatagact ggatggaggc ggataaagtt gcaggaccac 780 ttctgcgctc ggcccttccg gctggctggt ttattgctga taaatctgga gccggtgagc 840 gtgggtctcg cggtatcatt gcagcactgg ggccagatgg taagccctcc cgtatcgtag 900 ttatctacac gacggggagt caggcaacta tggatgaacg aaatagacag atcgctgaga 960 taggtgcctc actgattaag cattggtaac tgtcagacca agtttactca tatatacttt 1020 agattgattt aaaacttcat ttttaattta aaaggatcta ggtgaagatc ctttttgata 1080 atctcatgac caaaatccct taacgtgagt tttcgttcca ctgagcgtca gaccccgtag 1140 aaaagatcaa aggatcttct tgagatcctt tttttctgcg cgtaatctgc tgcttgcaaa 1200 caaaaaaacc accgctacca gcggtggttt gtttgccgga tcaagagcta ccaactcttt 1260 ttccgaaggt aactggcttc agcagagcgc agataccaaa tactgtcctt ctagtgtagc 1320 cgtagttagg ccaccacttc aagaactctg tagcaccgcc tacatacctc gctctgctaa 1380 tcctgttacc agtggctgct gccagtggcg ataagtcgtg tcttaccggg ttggactcaa 1440 gacgatagtt accggataag gcgcagcggt cgggctgaac ggggggttcg tgcacacagc 1500 ccagcttgga gcgaacgacc tacaccgaac tgagatacct acagcgtgag ctatgagaaa 1560 gcgccacgct tcccgaaggg agaaaggcgg acaggtatcc ggtaagcggc agggtcggaa 1620 caggagagcg cacgagggag cttccagggg gaaacgcctg gtatctttat agtcctgtcg 1680 ggtttcgcca cctctgactt gagcgtcgat ttttgtgatg ctcgtcaggg gggcggagcc 1740 tatggaaaaa cgccagcaac gcggcctttt tacggttcct ggccttttgc tggccttttg 1800 ctcacatgtt ctttcctgcg ttatcccctg attctgtgga taaccgtatt accgcctttg 1860 agtgagctga taccgctcgc cgcagccgaa cgaccgagcg cagcgagtca gtgagcgagg 1920 aagcggaaga gcgcccaata cgcaaaccgc ctctccccgc gcgttggccg attcattaat 1980 gcagctggca cgacaggttt cccgactgga aagcgggcag tgagcgcaac gcaattaatg 2040 tgagttagct cactcattag gcaccccagg ctttacactt tatgcttccg gctcgtatgt 2100 tgtgtggaat tgtgagcgga taacaatttc acacaggaaa cagctatgac catgattacg 2160 ccaagcgcgc aattaaccct cactaaaggg aacaaaagct ggagctcggc gcgcccaacc 2220 cataaatatc attggtcatc tatcatttct aaaccgacta taagtactaa accatacatg 2280 tctagatacg gatttatttc gtcgaaacct ttcaagattg tttactaaac acaattttgt 2340 tatcaatggt ataggtgaat tatttcgtaa aaccattgct agattcagat tgatgtttta 2400 gcacacccca atatcctctc aactgcgcgc ggagtgctta tggaatatcc tgttgagtgg 2460 gtttaagacg tctgtaatca tttcctatgt aagttctaac tatagtaata tttacagtaa 2520 aacctaagaa attgattgat ctaaaaaggt attaatttat cgataaatta ataaaattgt 2580 acaacttttg taaattctta caaaaattcg atataaaatg tatttttttc tttataacaa 2640 tagtaattaa aagtagaaag caaatattaa gtttaaaaaa caataaaact ttttttacat 2700 gttgttaaat attagaattg aacactacaa caaattaata aaaattgaag aaaaaaatta 2760 ctacagatat tttacatatg atatttataa tatatattag taaatttata aaattattaa 2820 tttacactat tgatgagacc atatattatt gatttgtatc aattttcaca ttggtctaaa 2880 ctcgggaccg gaaaaattta ttaatttata gagattatta atttatcgat attaatttat 2940 agaggtttta ctgtattatg cattgatata tcattcttaa agatgaattg tgtaatatac 3000 taattttatc tgatttaacc taattaatct ggactaacat attcagcata atcaatcttg 3060 tatacatatt attctagcag aattaatctt ctcgatatgt tgttattttt gtgagttttg 3120 agcaatctat taagaaaaag tgctgtctat atgatgctca atcatagagg ttatggtcaa 3180 aactaacatt tttaacattt aagtgtagag gagaaaagtt tatagttaag tctcagaaaa 3240 aatcatgtca acttattcca ttgatagata ccatccatcg taccaccact gcccgcgaca 3300 tgcaaacctt ctccaaaagt aaagcgttaa gtctcttagg agtttaacca ccttttgtga 3360 attttggtgt actccatttt gcgtcttcca tagatttctt tcaataagaa agattatgat 3420 aaaaaaaatt aggatttgct ttggacttat cgcttgcaat ttaacatgtt caaatacgca 3480 aaacctatat atagttaaca aataaagcca catgagtatt gattactaat ttctttgttt 3540 gcttgtttga ataccaagaa aactttagtg actgtaaaac gctaaaatac acttttctta 3600 gagaaaattt cactgaaaaa caaaaagata tacatagaga gatttcatgt tagaataagg 3660 tttctacgag tatttcataa gttatattgt gtatgaatta attaactatt gcacgaaagg 3720 agtttatctt caatattttt ttaattccgg aattatatag gttaattttg ttggctagag 3780 agaaacttgt atatatatat aaataattac atattatttt acagatgaca caaggcggcc 3840 gcatggggaa agttcgtcaa gattcaggat cagacgatga caattcaata aagaaatctt 3900 ttattaaagg tccttggaca caagcagaag acaatctttt gatagcttac gttgataaac 3960 atggtgatgg aaactggaac gctgttcaaa acaactcggg cctttctcgt tgtggtaaaa 4020 gttgtcgcct tcgttgggta aatcatctga gaccagattt gaaaaaaggc gcttttacag 4080 agaaagaaga gaaacgtgtc atcgaacttc atgctttgtt agggaacaaa tgggcacgaa 4140 tggctgaaga actaccggga cgaacagata atgagatcaa gaacttctgg aatacaagac 4200 ttaagagact gcaacgactt ggtttacctg tttaccccga tgaagttcga gagcatgcga 4260 tgaatgtagc gacacattcc ggtctaaaca ctgattcatt ggatggtcat catagtcaag 4320 aatatatgga ggcagatact gttgagattc ctgaagtgga tttcgagcat ttaccactca 4380 atcgatcttc ttcatactac cagtcaatgc ttcgacatgt tcctcccact aacgtctttg 4440 tgagacaaaa accgtgtttc tttcagccgc ctaatgtgta taacttgata ccaccatctc 4500 cttacatgtc taccggaaaa cgtcctagag aaccagaaac cgcgtttcct tgcccgggtg 4560 gatataccat gaacgagcaa agccctcggc tctggaacta tccttttgtt gagaacgttt 4620 cagaacagtt accggatagt catttgcttg gtaatgctgc ttattcttct cctcctggac 4680 ctcttgttca cggggttgag aatttcgagt tcccttcatt ccaatatcat gaagagcctg 4740 gcggttgggg agcagatcaa cctaacccaa tgccggaaca tgagtcagat aacactttgg 4800 ttcaatctcc tctgacagct caaacaccat cagattgtcc atcatcatca ctctatgatg 4860 gactgttgga atcagttgtc tatggatcat caggggagaa accggcaacc gataccgatt 4920 cagaatcttc actgtttcag tcatttacac cagccaatga aaacataacc ggttcaactc 4980 cttcaaatca gggacacaca tcctttgatg gtgattggat aagattactt ctcggtgagg 5040 atagatataa aaccgaggga tccatggcct cctccgagga cgtcatcaag gagttcatgc 5100 gcttcaaggt gcgcatggag ggctccgtga acggccacga gttcgagatc gagggcgagg 5160 gcgagggccg cccctacgag ggcacccaga ccgccaagct gaaggtgacc aagggcggcc 5220 ccctgccctt cgcctgggac atcctgtccc ctcagttcca gtacggctcc aaggcctacg 5280 tgaagcaccc cgccgacatc cccgactact tgaagctgtc cttccccgag ggcttcaagt 5340 gggagcgcgt gatgaacttc gaggacggcg gcgtggtgac cgtgacccag gactcctccc 5400 tgcaggacgg cgagttcatc tacaaggtga agctgcgcgg caccaacttc ccctccgacg 5460 gccccgtaat gcagaagaag accatgggct gggaggcctc caccgagcgg atgtaccccg 5520 aggacggcgc cctgaagggc gagatcaaga tgaggctgaa gctgaaggac ggcggccact 5580 acgacgccga ggtcaagacc acctacatgg ccaagaagcc cgtgcagctg cccggcgcct 5640 acaagaccga catcaagctg gacatcacct cccacaacga ggactacacc atcgtggaac 5700 agtacgagcg cgccgagggc cgccactcca ccggcgccta actagttacc catacgacgt 5760 tccagactac gctggttacc catacgacgt tccagactac gcttgactgc agatcgttca 5820 aacatttggc aataaagttt cttaagattg aatcctgttg ccggtcttgc gatgattatc 5880 atataatttc tgttgaatta cgttaagcat gtaataatta acatgtaatg catgacgtta 5940 tttatgagat gggtttttat gattagagtc ccgcaattat acatttaata cgcgatagaa 6000 aacaaaatat agcgcgcaaa ctaggataaa ttatcgcgcg cggtgtcatc tatgttacta 6060 gatccgttaa ttaaggtacc caattcgccc tatagtgagt cgtattacgc gcgctcactg 6120 gccgtcgttt tacaacgtcg tgactgggaa aaccctggcg ttacccaact taatcgcctt 6180 gcagcacatc cccctttcgc cagctggcgt aatagcgaag aggcccgcac cgatcgccct 6240 tcccaacagt tgcgcagcct gaatggcgaa tgggacgcgc cctgtagcgg cgcattaagc 6300 gcggcgggtg tggtggttac gcgcagcgtg accgctacac ttgccagcgc cctagcgccc 6360 gctcctttcg ctttcttccc ttcctttctc gccacgttcg ccggctttcc ccgtcaagct 6420 ctaaatcggg ggctcccttt agggttccga tttagtgctt tacggcacct cgaccccaaa 6480 aaacttgatt agggtgatgg ttcacgtagt gggccatcgc cctgatagac ggtttttcgc 6540 cctttgacgt tggagtccac gttctttaat agtggactct tgttccaaac tggaacaaca 6600 ctcaacccta tctcggtcta ttcttttgat ttataaggga ttttgccgat ttcggcctat 6660 tggttaaaaa atgagctgat ttaacaaaaa tttaacgcga attttaacaa aatattaacg 6720 cttacaattt ag 6732 <210> 6 <211> 632 <212> PRT <213> Artificial Sequence <220> <223> AtMYB81-mRFP1 vector <400> 6 Met Gly Lys Val Arg Gln Asp Ser Gly Ser Asp Asp Asp Asn Ser Ile 1 5 10 15 Lys Lys Ser Phe Ile Lys Gly Pro Trp Thr Gln Ala Glu Asp Asn Leu 20 25 30 Leu Ile Ala Tyr Val Asp Lys His Gly Asp Gly Asn Trp Asn Ala Val 35 40 45 Gln Asn Asn Ser Gly Leu Ser Arg Cys Gly Lys Ser Cys Arg Leu Arg 50 55 60 Trp Val Asn His Leu Arg Pro Asp Leu Lys Lys Gly Ala Phe Thr Glu 65 70 75 80 Lys Glu Glu Lys Arg Val Ile Glu Leu His Ala Leu Leu Gly Asn Lys 85 90 95 Trp Ala Arg Met Ala Glu Glu Leu Pro Gly Arg Thr Asp Asn Glu Ile 100 105 110 Lys Asn Phe Trp Asn Thr Arg Leu Lys Arg Leu Gln Arg Leu Gly Leu 115 120 125 Pro Val Tyr Pro Asp Glu Val Arg Glu His Ala Met Asn Val Ala Thr 130 135 140 His Ser Gly Leu Asn Thr Asp Ser Leu Asp Gly His His Ser Gln Glu 145 150 155 160 Tyr Met Glu Ala Asp Thr Val Glu Ile Pro Glu Val Asp Phe Glu His 165 170 175 Leu Pro Leu Asn Arg Ser Ser Ser Tyr Tyr Gln Ser Met Leu Arg His 180 185 190 Val Pro Pro Thr Asn Val Phe Val Arg Gln Lys Pro Cys Phe Phe Gln 195 200 205 Pro Pro Asn Val Tyr Asn Leu Ile Pro Pro Ser Pro Tyr Met Ser Thr 210 215 220 Gly Lys Arg Pro Arg Glu Pro Glu Thr Ala Phe Pro Cys Pro Gly Gly 225 230 235 240 Tyr Thr Met Asn Glu Gln Ser Pro Arg Leu Trp Asn Tyr Pro Phe Val 245 250 255 Glu Asn Val Ser Glu Gln Leu Pro Asp Ser His Leu Leu Gly Asn Ala 260 265 270 Ala Tyr Ser Ser Pro Pro Gly Pro Leu Val His Gly Val Glu Asn Phe 275 280 285 Glu Phe Pro Ser Phe Gln Tyr His Glu Glu Pro Gly Gly Trp Gly Ala 290 295 300 Asp Gln Pro Asn Pro Met Pro Glu His Glu Ser Asp Asn Thr Leu Val 305 310 315 320 Gln Ser Pro Leu Thr Ala Gln Thr Pro Ser Asp Cys Pro Ser Ser Ser 325 330 335 Leu Tyr Asp Gly Leu Leu Glu Ser Val Val Tyr Gly Ser Ser Gly Glu 340 345 350 Lys Pro Ala Thr Asp Thr Asp Ser Glu Ser Ser Leu Phe Gln Ser Phe 355 360 365 Thr Pro Ala Asn Glu Asn Ile Thr Gly Ser Thr Pro Ser Asn Gln Gly 370 375 380 His Thr Ser Phe Asp Gly Asp Trp Ile Arg Leu Leu Leu Gly Glu Asp 385 390 395 400 Arg Tyr Lys Thr Glu Gly Ser Met Ala Ser Ser Glu Asp Val Ile Lys 405 410 415 Glu Phe Met Arg Phe Lys Val Arg Met Glu Gly Ser Val Asn Gly His 420 425 430 Glu Phe Glu Ile Glu Gly Glu Gly Glu Gly Arg Pro Tyr Glu Gly Thr 435 440 445 Gln Thr Ala Lys Leu Lys Val Thr Lys Gly Gly Pro Leu Pro Phe Ala 450 455 460 Trp Asp Ile Leu Ser Pro Gln Phe Gln Tyr Gly Ser Lys Ala Tyr Val 465 470 475 480 Lys His Pro Ala Asp Ile Pro Asp Tyr Leu Lys Leu Ser Phe Pro Glu 485 490 495 Gly Phe Lys Trp Glu Arg Val Met Asn Phe Glu Asp Gly Gly Val Val 500 505 510 Thr Val Thr Gln Asp Ser Ser Leu Gln Asp Gly Glu Phe Ile Tyr Lys 515 520 525 Val Lys Leu Arg Gly Thr Asn Phe Pro Ser Asp Gly Pro Val Met Gln 530 535 540 Lys Lys Thr Met Gly Trp Glu Ala Ser Thr Glu Arg Met Tyr Pro Glu 545 550 555 560 Asp Gly Ala Leu Lys Gly Glu Ile Lys Met Arg Leu Lys Leu Lys Asp 565 570 575 Gly Gly His Tyr Asp Ala Glu Val Lys Thr Thr Tyr Met Ala Lys Lys 580 585 590 Pro Val Gln Leu Pro Gly Ala Tyr Lys Thr Asp Ile Lys Leu Asp Ile 595 600 605 Thr Ser His Asn Glu Asp Tyr Thr Ile Val Glu Gln Tyr Glu Arg Ala 610 615 620 Glu Gly Arg His Ser Thr Gly Ala 625 630 <210> 7 <211> 1215 <212> DNA <213> Artificial Sequence <220> <223> MYB8 cDNA <400> 7 atggggaaag ttcgtcaaga ttcaggatca gacgatgaca attcaataaa gaaatctttt 60 attaaaggtc cttggacaca agcagaagac aatcttttga tagcttacgt tgataaacat 120 ggtgatggaa actggaacgc tgttcaaaac aactcgggcc tttctcgttg tggtaaaagt 180 tgtcgccttc gttgggtaaa tcatctgaga ccagatttga aaaaaggcgc ttttacagag 240 aaagaagaga aacgtgtcat cgaacttcat gctttgttag ggaacaaatg ggcacgaatg 300 gctgaagaac taccgggacg aacagataat gagatcaaga acttctggaa tacaagactt 360 aagagactgc aacgacttgg tttacctgtt taccccgatg aagttcgaga gcatgcgatg 420 aatgtagcga cacattccgg tctaaacact gattcattgg atggtcatca tagtcaagaa 480 tatatggagg cagatactgt tgagattcct gaagtggatt tcgagcattt accactcaat 540 cgatcttctt catactacca gtcaatgctt cgacatgttc ctcccactaa cgtctttgtg 600 agacaaaaac cgtgtttctt tcagccgcct aatgtgtata acttgatacc accatctcct 660 tacatgtcta ccggaaaacg tcctagagaa ccagaaaccg cgtttccttg cccgggtgga 720 tataccatga acgagcaaag ccctcggctc tggaactatc cttttgttga gaacgtttca 780 gaacagttac cggatagtca tttgcttggt aatgctgctt attcttctcc tcctggacct 840 cttgttcacg gggttgagaa tttcgagttc ccttcattcc aatatcatga agagcctggc 900 ggttggggag cagatcaacc taacccaatg ccggaacatg agtcagataa cactttggtt 960 caatctcctc tgacagctca aacaccatca gattgtccat catcatcact ctatgatgga 1020 ctgttggaat cagttgtcta tggatcatca ggggagaaac cggcaaccga taccgattca 1080 gaatcttcac tgtttcagtc atttacacca gccaatgaaa acataaccgg ttcaactcct 1140 tcaaatcagg gacacacatc ctttgatggt gattggataa gattacttct cggtgaggat 1200 agatataaaa ccgag 1215 <210> 8 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> 26960P-AscIF1 forward primer <400> 8 aaaaggcgcg cccaacccat aaatatcatt ggtc 34 <210> 9 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> MYB81-CGNR reverse primer <400> 9 agaagcggcc gccttgtgtc atctgtaaaa taatatg 37 <210> 10 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> 26960P-NotIF forward primer <400> 10 ttaggcggcc gcatggggaa agttcgtcaa gattcag 37 <210> 11 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> MYB81-SR405 reverse primer <400> 11 ttggactagt ctactcggtt ttatatctat cc 32 <210> 12 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> MYB81-SRnostop reverse primer <400> 12 gccaactagt ctcggtttta tatctatcct c 31 <210> 13 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> MYB81-BR405 reverse primer <400> 13 gccaggatcc ctcggtttta tatctatcct c 31 <210> 14 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> 26960P-For1 forward primer <400> 14 ctattgatga gaccatatat tattg 25 <210> 15 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> 26960-Rev4 reverse primer <400> 15 ccatcaccat gtttatcaac gta 23 <210> 16 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> 26960-Rev6 reverse primer <400> 16 ccatgtttat cagctatcaa aa 22
Claims (18)
2) 애기장대 유래의 서열번호 2의 염기서열로 이루어진 MYB81 유전자의 2276-2282 위치의 염기서열인 TACGTT의 결실인 유전자 변이를 서열번호 14 및 서열번호 15로 이루어진 프라이머 세트 및 서열번호 14 및 서열번호 16으로 이루어진 프라이머 세트를 이용하여 판별하는 단계;를 포함하는 애기장대의 웅성 불임 판별 방법.
1) extracting genomic DNA from Arabidopsis thaliana; And
2) A gene mutation that is a deletion of TACGTT, a nucleotide sequence of 2276-2282 of the MYB81 gene consisting of the nucleotide sequence of SEQ ID NO: 2 derived from Arabidopsis, is a primer set consisting of SEQ ID NO: 14 and SEQ ID NO: 15, and SEQ ID NO: 14 and SEQ ID NO: A method for determining male infertility in Arabidopsis including a step of determining using a primer set consisting of 16.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180111497A KR102143644B1 (en) | 2018-09-18 | 2018-09-18 | Method for producing male-sterile plant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180111497A KR102143644B1 (en) | 2018-09-18 | 2018-09-18 | Method for producing male-sterile plant |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20200032450A KR20200032450A (en) | 2020-03-26 |
KR102143644B1 true KR102143644B1 (en) | 2020-08-11 |
Family
ID=69958541
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020180111497A KR102143644B1 (en) | 2018-09-18 | 2018-09-18 | Method for producing male-sterile plant |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102143644B1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102412890B1 (en) * | 2020-05-26 | 2022-06-27 | 대한민국 | Guide RNA for editing ms1-like gene and use thereof |
KR102496764B1 (en) * | 2020-09-25 | 2023-02-07 | 대한민국 | Guide RNA for editing AMS-like gene and use thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3372676A1 (en) | 2004-12-21 | 2018-09-12 | Monsanto Technology, LLC | Recombinant dna constructs and methods for controlling gene expression |
-
2018
- 2018-09-18 KR KR1020180111497A patent/KR102143644B1/en active IP Right Grant
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3372676A1 (en) | 2004-12-21 | 2018-09-12 | Monsanto Technology, LLC | Recombinant dna constructs and methods for controlling gene expression |
Non-Patent Citations (4)
Title |
---|
Development, 2004, Vol. 131, p. 3357-3365 [doi:10.1242/dev.01206] |
Helena torchova, Int.J.Mol.Sci.18,2429:p.1-13 (2017.11.16.)* |
Int. J. Mol. Sci. 2017, 18, 2429; doi:10.3390/ijms18112429 |
Silence 2010, 1:18, p.1-18 [doi:10.1186/1758-907X-1-18] |
Also Published As
Publication number | Publication date |
---|---|
KR20200032450A (en) | 2020-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2018279457B2 (en) | Method for manufacturing DNA-edited eukaryotic cell, and kit used in method | |
TW565609B (en) | Regulatory sequences for transgenic plants | |
CN111705006B (en) | Oral recombinant yeast for expressing novel coronavirus S protein and preparation and application thereof | |
CN108289933B (en) | Secreted splice variants of mammalian Klotho as cognitive and behavioral impairment drugs | |
CN107105626B (en) | Genetically modified higher plants with increased photosynthesis and/or biomass production, methods and uses thereof | |
CN108823226A (en) | A kind of Chinese soybean mosaic virus infectious clone carrier and its construction method and application | |
KR101961667B1 (en) | Transgenic cloned pig resistant to the Porcine epidemic diarrhea virus and producing method thereof | |
BRPI0712304A2 (en) | method and process for improving plant growth characteristics over corresponding control plants, plant, plant part or plant cell, isolated nucleic acid molecule, gene construct, vector, transgenic plant, and use of a plant molecule. nucleic acid or gene construct or vector | |
CN113817775B (en) | Modified aflibercept, compositions, methods and uses thereof in gene therapy | |
KR102143644B1 (en) | Method for producing male-sterile plant | |
CN111621522A (en) | Method for cultivating intestinal tract specific expression red fluorescent transgenic zebra fish | |
JPH07184662A (en) | Recombinant racoon pox virus and use thereof as vaccine effective in cat infections peritonitis virus disease | |
KR102070176B1 (en) | Double labeled virus vector detectable neural network and use thereof | |
KR101495276B1 (en) | Light Inducible Promoter and Gene Expression System Comprising The Same | |
KR20140094757A (en) | A cassette comprising promoter sequences of a target gene and a method for gene manipulation using the same | |
CN113073102B (en) | Application of autophagy gene ATG9 in rice breeding and/or rice grain type mechanism research | |
CN113667017A (en) | Method capable of improving homologous recombination efficiency of CRISPR/Cas9 system and application | |
KR102175930B1 (en) | Enhancer Element of the Cux2 Gene and Uses Thereof | |
RU2800264C1 (en) | Method of obtaining genetically modified laboratory animals with inducible systemic and tissue-specific expression of human cyclophilin a | |
CN113025638B (en) | Double-stranded nucleic acid-based paper folding structure and preparation method and application thereof | |
US20240368632A1 (en) | Cells modified by a cas12i polypeptide | |
WO2023034475A1 (en) | Cells modified by a cas12i polypeptide | |
CN117693592A (en) | Compositions and methods for nuclease-mediated gene targeting in vivo for treatment of genetic disorders | |
CN115232818A (en) | Gene editing system for constructing congenital myasthenia model pig nuclear transplantation donor cells with DOK7 gene mutation and application thereof | |
CN115232816A (en) | CRISPR system for constructing cataract model pig nuclear transplantation donor cells with YAP1 gene mutation and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |