CN113667017A - Method capable of improving homologous recombination efficiency of CRISPR/Cas9 system and application - Google Patents

Method capable of improving homologous recombination efficiency of CRISPR/Cas9 system and application Download PDF

Info

Publication number
CN113667017A
CN113667017A CN202110855459.XA CN202110855459A CN113667017A CN 113667017 A CN113667017 A CN 113667017A CN 202110855459 A CN202110855459 A CN 202110855459A CN 113667017 A CN113667017 A CN 113667017A
Authority
CN
China
Prior art keywords
homologous recombination
cas9
tetr
leu
lys
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202110855459.XA
Other languages
Chinese (zh)
Inventor
孙瑞林
王津津
周宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Nanmo Biotechnology Co ltd
Shanghai Dishi Biotechnology Co Ltd
Shanghai Model Organisms Center Inc
Original Assignee
Guangdong Nanmo Biotechnology Co ltd
Shanghai Dishi Biotechnology Co Ltd
Shanghai Model Organisms Center Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Nanmo Biotechnology Co ltd, Shanghai Dishi Biotechnology Co Ltd, Shanghai Model Organisms Center Inc filed Critical Guangdong Nanmo Biotechnology Co ltd
Priority to CN202110855459.XA priority Critical patent/CN113667017A/en
Publication of CN113667017A publication Critical patent/CN113667017A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New breeds of animals
    • A01K67/027New breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • A01K67/0276Knockout animals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New breeds of animals
    • A01K67/027New breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • A01K67/0278Humanized animals, e.g. knockin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4702Regulators; Modulating activity
    • C07K14/4703Inhibitors; Suppressors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • C12N15/907Stable introduction of foreign DNA into chromosome using homologous recombination in mammalian cells
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2207/00Modified animals
    • A01K2207/15Humanized animals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • A01K2217/072Animals genetically altered by homologous recombination maintaining or altering function, i.e. knock in
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • A01K2217/075Animals genetically altered by homologous recombination inducing loss of function, i.e. knock out
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/105Murine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2830/00Vector systems having a special element relevant for transcription
    • C12N2830/001Vector systems having a special element relevant for transcription controllable enhancer/promoter combination
    • C12N2830/005Vector systems having a special element relevant for transcription controllable enhancer/promoter combination repressible enhancer/promoter combination, e.g. KRAB
    • C12N2830/006Vector systems having a special element relevant for transcription controllable enhancer/promoter combination repressible enhancer/promoter combination, e.g. KRAB tet repressible

Abstract

The invention provides a method and application for improving homologous recombination efficiency of a CRISPR/Cas9 system, which comprises the following steps: cas9-TetR fusion proteins, guide RNAs, vectors containing tetracycline operator (tetO) elements, and a method of homologous recombination using the above system. The method does not need to carry out additional chemical modification and purification on the recombinant vector or the Cas9 protein, and only needs to construct the homologous recombinant vector into a skeleton vector containing a tetO element like the construction of a conventional vector; the positive rate of homologous recombination of mediated DNA large fragments (more than 2000 base pairs) can be improved; and the homologous recombination positive rate can be improved by 2-3 times in the preparation of a gene modified animal model.

Description

Method capable of improving homologous recombination efficiency of CRISPR/Cas9 system and application
Technical Field
The invention belongs to the technical field of bioengineering, and particularly belongs to the technical field of recombination.
Background
The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein 9 (Cas 9) system is an adaptive immune defense mechanism formed in the long-term evolution process of bacteria and archaea, and is used for resisting invading viruses and exogenous DNA. The Cas9 nuclease of the CRISPR/Cas9 system can cause DNA double strand break aiming at a specific target site of a genome through the combination of a gRNA and a specific target sequence under the guidance of a single-stranded guide RNA (gRNA), thereby efficiently playing the gene editing role, and being an important tool for editing genomes of various organisms. In mammalian cells, CRISPR/Cas 9-initiated DNA double strand breaks can be repaired by at least two different competing mechanisms, namely non-homologous end joining (NHEJ) and homologous recombination-mediated targeted repair (HDR): NHEJ results in DNA insertions and deletions, while HDR can mediate precise genetic modifications. HDR repair can be artificially introduced to repair DNA templates, and the genome of an organism is artificially written, deleted and replaced at DNA fragmentation sites by taking the repair DNA templates as a standard. Therefore, HDR-mediated precise gene editing has great application prospects and applicability in basic research and clinical applications, such as construction of animal models for gene knock-in and gene therapy for correcting gene mutations.
Although HDR-mediated precise repair has a wide application prospect, HDR recombination efficiency is greatly limited. In response to this situation, scientists have studied to improve HDR efficiency from several aspects: 1) enhancement of HDR by inhibition of NHEJ or small molecules that up-regulate the HDR pathway; 2) the cell cycle process or time control of Cas9 expression is regulated through small molecules or Cas9 protein fusion, so that the HDR efficiency is improved; 3) the frequency of HDR occurrence is increased by increasing the local concentration of donor DNA at the double strand break site. Studies show that various small molecule compounds obtained by the methods 1) and 2) can improve HDR efficiency in cells and in vivo, but most of the compounds have negative effects on cell or embryo growth and inconsistent efficiency of different cell types or aiming at different sites, and meanwhile, the interference of small molecules on endogenous genes also has potential harmful side effects (Eric J. Aird, et al, incorporated Cas9-mediated homology-directed repair effective mutation and restriction of DNA repair template, COMMUNICATIONS BIOGY, (2018)1:54, DOI: 10.1038/s 03-420018-. Previous studies suggest that a key limiting step for HDR may be the local concentration of double strand break site donor DNA, and recently various laboratories have reported methods to improve HDR efficiency using the strategy of method 3): the Beijing university Jianzhong Jeff Xi laboratory and the American university of Wisconsin, Madison division Krishanu Saha laboratory utilize the binding activity of Biotin (Biotin) -Streptavidin (Streptavidin) to carry out Biotin modification on single-stranded DNA (ssDNA), and respectively construct Cas9-Avidin fusion protein and construct a gRNA linker capable of non-covalently binding with Streptavidin to increase the ssDNA concentration of the Cas9/gRNA complex locally at the DNA cleavage site, thereby increasing the HDR efficiency (Ming Ma, et. al, effective generation of microbial catalysis-colony-flow antibodies using the Cas 9-Avidin/Biotin-done DNA system. Research (2017) 27: 578. 10.1038/10.1038. J. 7. J. Pat. No. 7. 2017. see. branched. C. 12. branched RNA-peptide-binding RNA-peptide linker of nucleic acids, 8: 1711, DOI: 10.1038/s 41467-017-01875-9); the HDR efficiency was improved by O6-Benzylguanine (BG) modification of ssDNA by the Covalent binding of Cas9-SNAP fusion protein to BG-ssDNA at the university of Zurich, Switzerland, by using the Covalent binding of Cas9-SNAP fusion protein to BG-ssDNA (Natasa Savic, et al, equivalent linking of the DNA repalign to the CRISPR-Cas9 nucleic acids handling homology-directed repalign. eLife 2018; 7: e33761. DOI: https:// DOI. org/10.7554/eLife.333333338); the strategy that the HUH endonuclease can form covalent bonds with a specific sequence of unmodified single-stranded DNA (ssDNA) is utilized by the Wendy R. Gordon laboratory of Minnesota university, ssDNA is enriched to recombination sites through Cas9-HUH fusion protein, and HDR efficiency is improved (Eric J. Aird, et al, incorporated Cas9-mediated homology-directed repair efficiency genetic modification of DNA repair template, COMMUNICATIONSBIOLOGY, (2018)1:54, DOI 10.1038/s 42003-018-; the group of Tao Liu, university of Beijing, uses genetic code expansion techniques to chemically modify Cas9 proteins with azide-containing unnatural amino acids (ncAA) at specific positions of Cas9 proteins, which modifications allow for recruitment of the modified donor DNA template into the cleavage complex by alkyne-azide cycloaddition reactions followed by conjugation of Dibenzylcyclooctyne (DBCO) -containing donor ssODN or DNA adaptors, increasing the HDR efficiency (Xinyu Ling, et. al, improvement of the understanding of the affinity of the cleavage genome with site-specific Cas9-oligonucleotide conjugates, Science Advances 08 Apr 2020: Vol. 6, No. 15, eaaz0051, DOI: 10.1126/Science dv. aaz0051). These strategies have some limitations: 1) additional chemical modification and purification of ssDNA or Cas9 protein are often required, increasing the application cost; 2) the long ssDNA (more than 200 nucleotides in length) with modified ends has the supply problems of difficult preparation, high price and the like, and limits the application of recombination repair to large DNA fragments (more than 2000 base pairs); 3) the modification sites for ssDNA are limited, usually at one end of the ssDNA, and may not be optimal for HDR reaction efficiency.
Therefore, in order to improve the HDR efficiency mediated by CRISPR/Cas9, a new method which is simple to prepare and low in cost and can improve the HDR efficiency, especially the HDR efficiency of large-fragment DNA homologous recombination, is urgently needed to be developed.
Disclosure of Invention
Aiming at the problem of low HDR efficiency of the current CRISPR/Cas9 system, the invention describes a novel CRISPR/Cas9 mediated system for improving HDR homologous recombination efficiency, which mainly comprises three parts: cas9-TetR fusion protein, guide rna (grna), and donor DNA containing a tetracycline operator (tetO) element. Wherein, the Cas9-TetR fusion protein fuses Cas9 with a TetR (Tet reducer protein, TetR) structural domain through a linker; TetR is the protein domain of the regulatory gene expression repressor and tetO element binding in the tetracycline resistance operon of E.coli Tn 10; donor dna (donor vector) containing the tetracycline operator (tetO) element is a recombinant vector containing the tetO element. According to literature reports, the donor DNA concentration of the homologous sequence of the DNA break site may be a key rate-limiting step in the development of homologous recombination HDR. Thus, the inventive assumption of this system is that if the donor DNA is associated with the CRISPR/Cas9 module, there is more opportunity for the donor DNA to appear at the break site, then there is a greater probability that the donor DNA will be used.
In the invention, on one hand, the inventor obtains an artificial fusion protein Cas9-TetR through screening, and obtains a fusion protein which not only has high Cas9 protein nuclease activity, but also has the binding activity of a TetR structural domain to a tetO element by comparing the influence of connecting peptides with different lengths between Cas9 and TetR on the protein activity; on the other hand, the inventors compared the effects of different numbers of tetO elements and positions on the efficiency of homologous recombination, and screened out the information on the number and position of tetO elements having high efficiency of homologous recombination. After the Cas9-TetR protein is combined with the gRNA, the DNA at a specific site is cut under the guidance of the gRNA to cause double-strand DNA break, and the TetR domain of the Cas9-TetR can be combined with a tetO element on donor DNA to recruit more donor DNA to the DNA break site, so that the positive rate of homologous recombination HDR by using the donor DNA as a template is improved.
Specifically, the present invention relates to:
a fusion protein comprising a Cas9 protein and a TetR protein linked by a flexible linker peptide. The flexible linker peptide comprises 1 to 6 GGGGS domains, preferably 4 domains.
Further, the coding sequence of the Cas9 protein is shown as SEQ ID NO. 1, and the coding sequence of the TetR protein is shown as SEQ ID NO. 2.
Furthermore, the encoding nucleic acid sequence of the fusion protein is shown as SEQ ID NO. 13, the protein sequence is shown as SEQ ID NO. 14, and the fusion protein comprises deletion, substitution and homology of more than 90 percent on the basis of maintaining functions to a certain extent.
The invention also provides a homologous recombination system, which comprises Cas9-TetR fusion protein, guide RNA and a vector containing a tetracycline operator (tetO) element.
The tetO sites are positioned at the outer side of the homologous recombination left arm and/or the homologous recombination right arm of the recombination vector, and the number of the tetOs is 1-7 per arm.
Preferably, 3 tetO sites are added simultaneously outside the left arm of homologous recombination and outside the right arm of homologous recombination.
Further, the vector containing the tetracycline operator (tetO) element is a DNA vector; preferably, the vector comprises a homologous recombination left arm, an insertion element and a homologous recombination right arm which are connected in sequence from 5 'to 3'.
The insertion element is a gene that can be expressed and has a certain function, and specific selection can be found in the detailed description section.
Further, the system may include a guide RNA expression vector or Cas9-TetR expression vector or Cas9-TetR-gRNA expression vector.
The invention also provides a fusion protein and a homologous recombination system, and application of the fusion protein and the homologous recombination system in improving the homologous recombination positive rate, wherein the homologous recombination vector is a DNA fragment of more than 2000 bp.
Further, provides the application of the fusion protein and the homologous recombination system in preparing a gene modification animal model.
The present invention further relates to a gene recombination method comprising:
step 1: gene synthesis or plasmid template amplification mode to obtain homologous recombination left arm, homologous recombination right arm, and inserted element sequence segment, PCR amplification, and connecting the vector and the segment to form homologous recombination vector;
step 2: aiming at a gRNA sequence designed by a genome site of a target cell, a Cas9-tetR expression vector and a gRNA expression vector are constructed; or in vitro transcription to obtain Cas9-tetR mRNA, and artificially synthesizing gRNA;
and step 3: introducing the homologous recombination vector obtained in the step 1, the Cas9-tetR and gRNA expression vector obtained in the step 2 or the Cas9-tetR mRNA and artificially synthesized gRNA into a target cell together;
wherein the vector in step 1 is a plasmid vector comprising tetO.
Wherein, the introduction mode in the step 3 is microinjection or cotransfection.
Advantageous effects
Compared with the prior method, the method of the invention has the following advantages:
1) the recombinant vector or the Cas9 protein does not need to be subjected to additional chemical modification and purification, and the homologous recombinant vector is constructed into a skeleton vector containing a tetO element just like the construction of a conventional vector;
2) the positive rate of homologous recombination of mediated DNA large fragments (more than 2000 base pairs) can be improved;
3) the homologous recombination positive rate can be improved by 2-3 times in the preparation of a gene modified animal model.
Drawings
FIG. 1 shows a schematic diagram of a recombination enhancement system to increase the efficiency of homologous recombination; wherein: panel a in fig. 1 is a schematic representation of homologous recombination mediated by a conventional CRISPR/Cas9 system; panel B in figure 1 is a schematic representation of the recombination enhancement system mediated increase in efficiency of homologous recombination in which the Cas9-TetR fusion protein recruits the recombined donor DNA template to the periphery of the Cas9 cleavage site by binding to tetO elements located at both ends of the homology arm, increasing the efficiency of HDR generation.
Figure 2 shows Cas9 cleavage activity of Cas9 and 3 Cas9-tetR fusion proteins against EGFP; wherein: panel A in FIG. 2 is a schematic representation of a Cas9-tetR fusion protein structure; FIG. 2B is a schematic diagram of the principle of reflecting the cleavage activity of Cas9 and Cas9-tetR fusion protein Cas9 by using EGFP-expressing fluorescent cell lines; panel C in FIG. 2 is the flow cytometry results of the cleavage activity of Cas9, Cas9-GGGGS-TetR, Cas9- (GGGGS)2-TetR and Cas9- (GGGGS)4-TetR against EGFP, respectively, in CHO-K1-EGFP cell lines.
FIG. 3 shows the effect of the number and location of tetO on the efficiency of Cas9-tetR mediated homologous recombination HDR; wherein: FIG. 3A is schematic diagram of principle of reflecting efficiency of homologous recombination HDR by inserting IRES-tdTomato system in 3' UTR region of Actin gene by using CRISPR/Cas 9; FIG. 3B is a schematic diagram of 6 homologous recombination vectors with different amounts and positions of tetO added; FIG. 3 is a C-plot representing the flow cytometry detection results of the effect of single-sided different tetO number of recombinant vectors on the efficiency of IRES-tdTomato homologous recombination HDR; the D plot in FIG. 3 is the statistical analysis of the experiments for the C plot in FIG. 3 (. about.p < 0.05; p < 0.01; p < 0.001); FIG. 3 is a diagram E showing the flow cytometry detection results of the influence of the addition of 3 tetO elements to the single-side homology arm and the addition of 3 tetO elements to the outer side of the two-side homology arms on the efficiency of IRES-tdTomato homologous recombination HDR; the F plot in FIG. 3 is a statistical analysis of the experiment on the E plot in FIG. 3 (. about.p < 0.05; p < 0.01; p < 0.001).
FIG. 4 shows the difference in efficiency of insertion of the CAG-zsGreen-wpre-polyA fragment at the Rosa26 site in fertilized eggs using the Cas9 and Cas9-tetR systems; wherein: FIG. 4 is a schematic diagram of FIG. 4; FIG. 4B is a photograph showing the results of fluorescence photographs of 3.5-day embryos of each group; FIG. 4C is an electrophoretogram of PCR-identified homologous recombination for each group of embryos. The left panel shows the results of the identification of the left arm of homologous recombination, and the right panel shows the results of the right arm of homologous recombination (the DNA template in lane 1 is the wild-type mouse genome control; the DNA template in lane 2 is the blastocyst genome injected with only tetO-zsGreen recombinant vector; the DNA template in lane 3 is the blastocyst genome injected with Cas9/tetO-zsGreen recombinant vector; the DNA template in lane 4 is the blastocyst genome injected with Cas9-tetR/tetO-zsGreen recombinant vector; and M is 1kb DNA marker).
FIG. 5 shows the difference in efficiency of making a mouse with a Rosa26 site inserted into CAG-LSL-zsGreen-WPRE-polyA using Cas9 and Cas9-tetR systems; wherein: FIG. 5A is a schematic diagram of the preparation of mice conditionally overexpressed at the Rosa26 site; the B picture in FIG. 5 is a PCR electrophoretogram prepared by using Cas9 system to obtain genotype identification of F0 mouse. The top panel shows the identification result of the left arm homologous recombination, and the bottom panel shows the identification result of the right arm homologous recombination. The number is the mouse number, and M is 1kb DNA marker; panel C in figure 5 is a PCR electropherogram prepared using the Cas9-tetR system to obtain genotype identification for F0 mouse. The top panel shows the identification result of the left arm homologous recombination, and the bottom panel shows the identification result of the right arm homologous recombination. The numbers are mouse numbers and M is a 1kb DNA marker.
FIG. 6 shows the difference in efficiency of the preparation of H11 site inserted CAG-LSL-mTagBFP2-WPRE-poly conditional overexpression mice using Cas9 and Cas9-tetR systems; wherein: FIG. 6A is a schematic diagram of the preparation of mice conditionally overexpressed at H11 site; the B picture in FIG. 6 is a PCR electrophoretogram prepared by using Cas9 system to obtain genotype identification of F0 mouse. The top panel shows the identification result of the left arm homologous recombination, and the bottom panel shows the identification result of the right arm homologous recombination. The number is the mouse number, and M is 1kb DNA marker; panel C in figure 6 is a PCR electropherogram prepared using the Cas9-tetR system to obtain genotype identification for F0 mouse. The top panel shows the identification result of the left arm homologous recombination, and the bottom panel shows the identification result of the right arm homologous recombination. The numbers are mouse numbers and M is a 1kb DNA marker.
FIG. 7 shows the difference in efficiency of making Tpc1 conditional knockout mice using Cas9 and Cas9-tetR systems; wherein: panel A in FIG. 7 is a schematic diagram showing the principle of preparation of a TPC1 conditional knockout mouse (TPC 1 flox); the B picture in FIG. 7 is a PCR electrophoretogram prepared by using Cas9 system to obtain genotype identification of F0 mouse. The top panel shows the identification result of the left arm homologous recombination, and the bottom panel shows the identification result of the right arm homologous recombination. The number is the mouse number, and M is 1kb DNA marker; panel C in FIG. 7 is a PCR electropherogram prepared using the Cas9-tetR system to obtain genotype identification for F0 mouse. The top panel shows the identification result of the left arm homologous recombination, and the bottom panel shows the identification result of the right arm homologous recombination. The numbers are mouse numbers and M is a 1kb DNA marker.
FIG. 8 shows the difference in efficiency of Tmem119-2A-tdTomato mice prepared using Cas9 and Cas9-tetR systems; wherein: FIG. 8A is a schematic diagram of the preparation of Tmem119-2A-tdTomato mice; the B picture in FIG. 8 is a PCR electrophoretogram prepared by using Cas9 system to obtain genotype identification of F0 mouse. The top panel shows the identification result of the left arm homologous recombination, and the bottom panel shows the identification result of the right arm homologous recombination. The number is the mouse number, and M is 1kb DNA marker; panel C in FIG. 8 is a PCR electropherogram prepared using the Cas9-tetR system to obtain genotype identification for F0 mouse. The top panel shows the identification result of the left arm homologous recombination, and the bottom panel shows the identification result of the right arm homologous recombination. The numbers are mouse numbers and M is a 1kb DNA marker.
Detailed Description
Example one
Cas9 and Cas9-tetR series expression vector construction
The construction process of pcDNA3.1-Cas9, pcDNA3.1-Cas9-GGGGS-TetR, pcDNA3.1-Cas9- (GGGGS)2-TetR, and pcDNA3.1-Cas9- (GGGGS)4-TetR expression vector is as follows:
1) the Cas9 protein coding sequence and the TetR structural domain protein coding sequence are synthesized by the company of biological engineering (Shanghai), and the sequence information is SEQ ID NO: 1-2;
2) according to the insertion element sequences of a backbone vector sequence Cas9, a Cas9-GGGGS-TetR, a Cas9- (GGGGS)2-TetR and a Cas9- (GGGGGGS) 4-TetR of pcDNA3.1, PCR primers (the primer sequence information is shown In the following table, SEQ ID NO: 3-9) are respectively designed, a synthesized Cas9 and TetR fragment is used as a template for amplification to obtain a Cas9, a GGGGS-TetR, (GGGGGGS) 2-TetR and a (GGGGS)4-TetR fragment, and a pcDNA3.1-Cas9, a pcDNA3.1-Cas 9-GGS-TetR, a pcDNA3.1-9- (GGCas) 2-TetDNA, a pcDNA3.1-9- (GGS) 4-TetR, a vector is constructed by a fragment In-Fusion kit from Takara company, and the vector is correctly expressed after enzyme digestion and confirmation.
Figure DEST_PATH_IMAGE002
Example two
Comparison of cleavage activity of Cas9, Cas9-tetR fusion proteins against Cas9, a sequence of interest
The CHO-K1-EGFP cell strain constructed earlier by the inventor is used as a verification system for verifying the target sequence nuclease cleavage activity of 3 Cas9-tetR (the protein structure is shown as a diagram in figure 2), and the principle of the system is shown as a diagram B in figure 2. In previous work, the inventors inserted a CAG-EGFP-IRES-BSD-polyA expression cassette site-specifically at position CAAGTATACACTTGAGCCAGTAGTGGGGGGAGGGGTGG (SEQ ID NO:10) of the CHO-K1 cell line. By constructing a gRNA expression vector aiming at EGFP and cotransfecting a CHO-K1-EGFP cell strain with a Cas9 expression vector and 3 Cas9-tetR expression vectors, the Cas9 cuts an EGFP locus under the guidance of the gRNA to cause NHEJ, if the reading frame is shifted, the EGFP fluorescence disappears, and if the frame shift is not caused, the EGFP protein still expresses fluorescence. Because the probability that cleavage by Cas9 triggers reading frame shift of EGFP is the same, the ratio of EGFP fluorescence-depleted cells can be used as the basis for Cas9 activity.
Constructing an EGFP gRNA expression vector:
target sites for EGFP gRNA were: CGATGCCCTTCAGCTCGATGCGG (SEQ ID NO: 11, PAM sequence in bold underlined portion), the process for constructing EGFP gRNA expression vector was: a DNA fragment (see SEQ ID NO: 12) containing a U6 promoter, a gRNA target sequence, a gRNA scaffold and other expression elements is obtained through whole-gene synthesis, and is connected to a pUC57 vector through enzyme digestion, so that a gRNA expression vector aiming at the EGFP fragment is obtained.
Flow cytometry was used to compare the effect of 3 Cas9-tetR structures on Cas9 nuclease activity as follows:
1) using a Lipo3000 transfection reagent, operating according to instructions, and co-transfecting a Cas9/EGFP-gRNA expression vector, a Cas9-GGGGS-TetR/EGFP-gRNA expression vector, a Cas9- (GGGGS)2-TetR/EGFP-gRNA expression vector, a Cas9- (GGGGS)4-TetR/EGFP-gRNA expression vector with CHO-K1-EGFP cells respectively;
2) flow cytometry detection
After 6 days of transfection, old culture medium is removed from transfected cells, an appropriate amount of PBS is added for cleaning, after trypsinization, the cells are centrifugally collected, supernatant is removed, PBS is added for washing the cells for two times for resuspension, and then the cells are tested on a machine. Representative results of the assay are shown in panel C of figure 2. According to the analysis result: the fraction of EGFP-negative cells (17.5%) of Cas9-GGGGS-TetR group was significantly lower than Cas9 control group (33.2%), Cas9- (GGGGS)2-TetR group (28.2%) and Cas9- (GGGGS)4-TetR group (34.7%) were not significantly different compared to Cas9 control group. According to this result, the fusion of linker GGGGS-tetR in Cas9-GGGGS-tetR protein affects the nuclease activity of Cas9 itself; the fusion of Cas9- (GGGGS)4-TetR protein linker and TetR did not affect the nuclease activity of Cas 9. Therefore, Cas9- (GGGGS)4-TetR was selected as the Cas9-tetR fusion protein in the subsequent experiment, Cas9-tetR for short (the nucleic acid sequence is shown as SEQ ID NO: 13, and the protein sequence is shown as SEQ ID NO: 14).
EXAMPLE III
Effect of different tetO numbers and positions on Cas9-tetR mediated homologous recombination HDR efficiency
By inserting an IRES-tdTomato expression frame through homologous recombination in a 3' UTR region of an Actin gene of a Neuro2a cell line, the influence of different tetO numbers and positions on the HDR efficiency of homologous recombination mediated by Cas9- (GGGGS)4-TetR (hereinafter, abbreviated as "Cas 9-tetR") is evaluated through a detection system reflecting the HDR efficiency of homologous recombination by the proportion of tdTomato fluorescent cells, and the principle schematic diagram of the detection system is shown as a graph A in FIG. 3: in this system, the IRES-tdTomato element will express tdTomato fluorescence only if it is inserted into the transcribed region of the gene; actin is a housekeeping gene and is continuously and highly expressed in cells, gRNA is designed aiming at the 3 'UTR (untranslated regions) region of Actin, double-stranded DNA breakage is caused by Cas9 or Cas9-tetR, an IRES-tdTomato element is integrated into the 3' UTR region of Actin through homologous recombination HDR, IRES-tdTomato is transcribed and translated into red fluorescent protein, and cells show red color. Although IRES-tdTomato elements may also be randomly inserted into the transcription regions of other genes, resulting in tdTomato expression, the probability is overall low, and thus the efficiency of homologous recombination HDR can be reflected by the amount of red fluorescence of tdTomato.
gRNA target sites for the Actin 3' UTR were: CCACCCCCACTCCTAAGAGGAGG (PAM sequence underlined in bold, SEQ ID NO: 15), a gRNA expression vector was constructed for this site.
Construction of IRES-tdTomato recombinant vector containing tetO site
To verify the effect of the number and location of tetO sites on the efficiency of Cas9-tetR mediated homologous recombination HDR, recombination vectors containing 0, 1, 2, 3, 4, and 7 tetO sites at the 5' end of the left arm of homologous recombination (named donor, donor-L1, donor-L2, donor-L3, donor-L4, and donor-L7, respectively) were constructed as shown in Panel B of FIG. 3. The sequence information of 1, 2, 3, 4 and 7 tetO sites are SEQ ID NO: 16-20. The sequence of homologous recombination fragments of the recombinant vector is SEQ ID NO: 21, wherein the sequence of the homologous recombination left arm is SEQ ID NO. 22, the sequence of the homologous recombination right arm is SEQ ID NO. 23, and the sequence of the insertion element IRES-tdTomato is SEQ ID NO. 24.
The experimental procedure for comparing the effect of recombinant vectors containing different tetO number sites on the efficiency of homologous recombination HDR by flow cytometry is as follows:
1) by using a Lipo3000 transfection reagent, operating according to the instruction, simultaneously co-transfecting a Cas9-tetR expression vector and a gRNA expression vector with a donor-L1 recombinant vector, a donor-L2 recombinant vector, a donor-L3 recombinant vector, a donor-L4 recombinant vector and a donor-L7 recombinant vector respectively to a Neuro2a cell line of a mouse, and performing efficiency comparison with a Neuro2a group co-transfected by a Cas9 expression vector, a gRNA expression vector and a donor recombinant vector;
2) flow cytometry detection
After 72 hours of transfection, old culture medium is removed from transfected cells, a proper amount of PBS is added for cleaning, after trypsinization, the cells are centrifugally collected, supernatant is removed, PBS is added for washing the cells for two times, and after resuspension, the cells are tested on a machine. Representative results of the assay are shown in graph C in fig. 3, and statistical analysis results are shown in graph D in fig. 3. According to the analysis result: the Cas9-tetR/tetO-donor system can significantly improve the efficiency of homologous recombination in cells, with the addition of 3 tetO sites at the 5' end of the homologous left arm having the highest efficiency of homologous recombination compared to the number of other tetO sites. To further analyze whether the one-sided and two-sided tetO sites have an effect on the efficiency of homologous recombination, the inventors further constructed a recombination vector (donor-LR 3) containing 3 tetO sites outside the left and right arms of homologous recombination. The detection method and the process for comparing the same influence of the recombination vectors containing different tetO number sites on the homologous recombination HDR efficiency through the flow cytometry are compared, and the homologous recombination HDR efficiency is compared by independently adding 3 tetOs outside the homologous left arm and simultaneously adding 3 tetOs outside the homologous left arm and the homologous right arm through the flow cytometry. Representative results of flow cytometry assays are shown in FIG. 3, panel E, and statistical analysis in FIG. 3, panel F. According to the analysis result: compared with the method of adding 3 tetOs outside the homologous left arm, the method of simultaneously adding 3 tetOs outside the homologous left arm and the homologous right arm has higher homologous recombination efficiency, and in subsequent verification, 3 tetO elements are simultaneously added outside the homologous left arm and the homologous right arm to serve as homologous recombination vectors.
Example four
Comparison of efficiency of Cas9 and Cas9-tetR systems in mediating homologous recombination in mouse zygotes
The CAG-zsGreen-WPRE-polyA (zsGreen) expression frame is integrated to a mouse genome Rosa26 site by a Cas9 and Cas9-tetR system respectively through a homologous recombination mode, after the zsGreen expression frame is inserted, a CAG promoter can drive the expression of zsGreen fluorescence, the generation efficiency of homologous recombination HDR can be determined through the expression reaction of the fluorescence, the strategy schematic diagram is shown as an A diagram in figure 4, and the flow is as follows:
1) constructing a tetO-zsGreen homologous recombination vector: obtaining homologous recombination left arm (SEQ ID NO: 25), right arm (SEQ ID NO: 26) and zsGreen-WPRE-polyA element (SEQ ID NO: 27) through DNA synthesis, obtaining a required fragment for vector construction through PCR amplification, obtaining a CAG promoter fragment (SEQ ID NO: 28) through amplification by taking plvct-tTR-KRAB plasmid as a template, and then inserting 4 fragments of the homologous recombination left arm, the CAG promoter, the zsGreen-WPRE-polyA and the homologous recombination right arm into a skeleton vector (PBR 322-tetO, SEQ ID NO: 29) through an In-Fusion method to construct a tetO-zsGreen homologous recombination vector;
2) cas9 and Cas9-tetR mRNA are obtained by in vitro transcription, wherein a Cas9 and Cas9-tetR expression vector constructed in the previous period is used as a template, a T7 promoter is used as a part of a primer sequence to be amplified to obtain a T7-Cas9-polyA fragment and a T7-Cas9-tetR-polyA fragment, the T7-Cas9-polyA fragment and the T7-Cas9-tetR-polyA fragment are used as DNA templates for in vitro transcription, and the Cas9 mRNA and the Cas9-tetR mRNA are obtained by in vitro transcription according to the guidance of a T7 in vitro transcription kit instruction (purchased from Life technologies). Artificially synthesizing gRNA (Rosa 26-gRNA for short) aiming at the Rosa26 locus, wherein the sequence is shown as SEQ ID NO: 30;
3) injecting the fertilized eggs: fertilized eggs from C57BL/6 mice were divided into three groups as shown in the following table:
grouping Cas9 mRNA(ng/ul) Cas9-tetR mRNA (ng/ul) Rosa26-gRNA (ng/ul) tetO-zsGreen plasmid (ng/ul)
Control group 0 0 0 5
Experimental group 1 5 0 2 5
Experimental group 2 0 5 2 5 
Microinjection of fertilized eggs was performed according to the method in the handbook of mouse embryo manipulation experiments (third edition), and only tetO-zsGreen recombinant vector was injected for the control group without Cas9 or Cas 9-tetR; experimental group 1 injection of a mixture of Cas 9/Rosa 26-RNA/tetO-zsGreen; experiment group 2 injected with a mixture of Cas9-tetR/Rosa26-RNA/tetO-zsGreen, the injected fertilized eggs were transferred to an incubator and cultured for 3 days, fluorescence photographing was performed, the fluorescence expression of zsGreen was detected (FIG. 4, panel B), and after the fluorescence embryos were cleaved, whether the zGreen fragments were integrated into the Rosa sites by homologous recombination was identified by PCR.
Identifying primer sequence information:
primer name Primer sequence (5' ->3')
Left arm forward primer TGTGTTGTGTGTGCTTGTGC (SEQ ID NO:31)
Left arm reverse primer CAATCCAGCGGACCTTCCTT (SEQ ID NO:32)
Right arm forward primer AGAGTGAAGCAGAACGTGGG (SEQ ID NO:33)
Right arm reverse primer AGACCTGTTGCTGCTCAGAC (SEQ ID NO:34)
And (3) PCR reaction system:
PCR reaction composition Volume (mu l)
ddH2O 31
PCR Buffer 10
2.5 mM dNTP 4
Forward primer 1
Reverse primer 1
DNA Polymerase 2
genomic DNA 1
Total of 50
PCR reaction procedure:
step (ii) of Temperature (. degree.C.) Time Remarks for note
1 98 2 min
2 98 15 sec
3 68 15 sec
4 68 1 min Repeat steps 2-4 for a total of 34 cycles
5 68 1 min
6 12 10 min  
The results of PCR identification electrophoresis are shown in FIG. 4C. The result of fluorescence of the blastocyst and the result of identification of homologous recombination show that: simply injecting a tetO-zsGreen recombinant vector group, detecting that 2 blastula have zsGreen fluorescence (the fluorescence positive rate is 1.9%), taking the fluorescent blastula for PCR identification, failing to amplify a positive PCR product for homologous recombination, and randomly inserting the detected fluorescent embryos into the recombinant vector; cas9/tetO-zsGreen recombinant vector group is injected, zsGreen fluorescence (the fluorescence positive rate is 4.4%) is detected in 4 blastula, the fluorescent blastula is taken for PCR identification, a positive PCR product for homologous recombination can be amplified, and the detected fluorescent embryos are subjected to homologous recombination; cas9-tetR/tetO-zsGreen recombinant vector group is injected, zsGreen fluorescence (fluorescence positive rate is 9.4%) is detected in 11 blastula, the fluorescent blastula is taken for PCR identification, a positive PCR product for homologous recombination can be amplified, and the detected fluorescent embryos are subjected to homologous recombination.
In conclusion, by using both the Cas9 system and the Cas9-tetR system, the integration of the exogenous fragment of CAG-zsGreen-WPRE-polyA about 3.3kb into the Rosa26 site through homologous recombination can be realized, and preliminary evidence shows that the Cas9-tetR system has higher efficiency of mediating homologous recombination HDR than the conventional Cas9 system.
EXAMPLE five
Cas9 and Cas9-tetR System for comparison of efficiency in making mice with knockin of Rosa26 site Gene
A homologous recombination scheme for preparing a Rosa26-CAG-LSL-zsGreen-WPRE-polyA (R26-LSL-zsGreen) fixed-point knock-in mouse by using a Cas9 system and a Cas9-tetR system is shown as a diagram A in figure 5, and the flow is as follows:
1) constructing a Rosa26 site tetO-CAG-LSL-zsGreen-WPRE-polyA homologous recombination vector: obtaining a loxp-stop-loxp sequence (LSL for short, SEQ ID NO:35) through whole gene synthesis, connecting the LSL sequence with a CAG-zsGreen-WPRE-polyA recombinant vector through enzyme digestion on the CAG-zsGreen-WPRE-polyA recombinant vector obtained by the previous construction, and constructing to obtain a tetO-CAG-LSL-zsGreen-WPRE-polyA homologous recombinant vector (LSL-zsGreen for short);
2) injecting the fertilized eggs: fertilized eggs of C57BL/6 mice were collected and divided into two groups: carrying out microinjection on fertilized eggs according to a method in a mouse embryo operation experimental manual (third edition) in the Cas9 group and the Cas9-tetR group, wherein the injection dosage is the same as that in the fourth example, the injected fertilized eggs are transplanted to an oviduct of a receptor mother mouse after being cultured in a culture box for a short time, and a genetically modified mouse F0 generation mouse is obtained;
3) mouse genotype identification: whether the CAG-LSL-zsGreen-WPRE-polyA fragment of the F0 generation mouse is integrated to the target Rosa26 site through homologous recombination or not is identified by respectively designing primers on the outside of the homologous arm and the insertion element CAG-LSL-zsGreen-WPRE-polyA for PCR amplification, and the identification primer and the PCR condition are the same as the fourth embodiment.
The electrophoresis results of the homologous recombination PCR identification are shown in the B diagram in FIG. 5 and the C diagram in FIG. 5 (the positive mice in the B diagram in FIG. 5 are No. 5, 9, 12; the positive mice in the C diagram in FIG. 5 are No. 2, 3, 7, 8, 11, 12, 13. the upper diagram is the identification result of the left arm homologous recombination, and the lower diagram is the identification result of the right arm homologous recombination), and the statistical results of the gene knock-in prepared by using the Cas9 system and the Cas9-tetR system are shown in the following table:
group of Number of fertilized eggs transplanted Number of mice born Number of positive mice Positive rate
Cas9
100 14 3 3%
Cas9-tetR 100 17 7 7%
According to the result, a mouse model of the Rosa26 site-directed knock-in is prepared by using a Cas9-tetR system, a CAG-LSL-zsGreen-WPRE-polyA fragment of about 5.1kb is knocked in, and F0 generation mice have higher homologous recombination positive rate than that of a conventional Cas9 system.
EXAMPLE six
Cas9 and Cas9-tetR System for making H11 site knock-in mice
A homologously recombined sketch map of a H11-CAG-LSL-mTagBFP2-WPRE-polyA (called H11-LSL-mTagBFP2 for short) prepared by a Cas9 and Cas9-tetR system is shown in a diagram A in figure 6, and the specific construction flow is as follows:
1) constructing a H11 site tetO-CAG-LSL-mTagBFP2-WPRE-polyA homologous recombination vector: h11 site homologous recombination left arm (SEQ ID NO: 36), homologous recombination right arm (SEQ ID NO: 37) and mTagBFP2 sequence (SEQ ID NO:38) are obtained through whole gene synthesis, a previously constructed LSL-zsGreen vector is used as a template, a CAG-LSL and WPRE-polyA sequence are obtained through PCR amplification, and an H11 site tetO-CAG-LSL-mTagBFP2-WPRE-polyA homologous recombination vector (LSL-mTagBFP 2 for short) is finally constructed through an In-Fusion method;
2) injecting the fertilized eggs: fertilized eggs of C57BL/6 mice were collected and divided into two groups: carrying out microinjection on fertilized eggs according to a method in a mouse embryo operation experimental manual (third edition) in the Cas9 group and the Cas9-tetR group, wherein the injection dosage is the same as that in the fourth example, the injected fertilized eggs are transplanted to an oviduct of a receptor mother mouse after being cultured in a culture box for a short time, and a genetically modified mouse F0 generation mouse is obtained;
3) mouse genotype identification: whether the F0 generation mouse CAG-LSL-mTagBFP2-WPRE-polyA fragment is integrated to the target H11 site through homologous recombination or not is identified by utilizing a method of designing primers on the outside of the homologous arm and the insertion element CAG-LSL-mTagBFP2-WPRE-polyA respectively for PCR amplification, and the identification primers and PCR conditions are shown as follows.
PCR identification primer sequence information:
primer name Primer sequence (5' ->3')
Left arm forward primer TGCATCCTCCAGGCTCTAGT (SEQ ID NO:39)
Left arm reverse primer AGAGTGAAGCAGAACGTGGG (SEQ ID NO:40)
Right arm forward primer CAATCCAGCGGACCTTCCTT (SEQ ID NO:41)
Right arm reverse primer CACAACCTGGTCAGTCCCTC (SEQ ID NO:42)
And (3) PCR reaction system:
PCR reaction composition Volume (mu l)
ddH2O 31
PCR Buffer 10
2.5 mM dNTP 4
Forward primer 1
Reverse primer 1
DNA Polymerase 2
genomic DNA 1
Total of 50
PCR reaction procedure:
step (ii) of Temperature (. degree.C.) Time Remarks for note
1 98 2 min
2 98 15 sec
3 68 15 sec
4 68 1 min Repeat steps 2-4 for a total of 34 cycles
5 68 1 min
6 12 10 min  
The electrophoresis results of the homologous recombination PCR identification are shown in B diagram in FIG. 6 and C diagram in FIG. 6, and the right arm correct homologous recombination should amplify PCR product with 1.9kb size, and the right arm correct homologous recombination should amplify PCR product with 1.4kb size. (the B picture in figure 6 is the identification result of the Cas9 injection group homologous recombination mouse, the number of the positive mouse is 3, 9; the C picture in figure 6 is the identification result of the Cas9-tetR injection group homologous recombination mouse, the number of the positive mouse is 2, 4, 5, 10; the upper pictures of the B picture in figure 6 and the C picture in figure 6 are the identification result of the left arm homologous recombination, the lower picture is the identification result of the right arm homologous recombination, the upper figure of the pictures is the mouse number, and M is 1kb DNA marker).
Statistical results for generating gene knockins using the Cas9 system and Cas9-tetR system are shown in the following table:
group of Number of fertilized eggs transplanted Number of mice born Number of positive mice Positive rate
Cas9
100 12 2 2%
Cas9-tetR 100 14 4 4%
The result shows that a H11 site-directed knock-in mouse model is prepared by using a Cas9-tetR system, a CAG-LSL-mTagBFP2-WPRE-polyA fragment of about 5.3kb is knocked in, and F0 generation mice have higher homologous recombination positive rate than the conventional Cas9 system.
EXAMPLE seven
Comparison of efficiency of Cas9 and Cas9-tetR System in the preparation of Tcp1 conditional knockout mice
A Tcp1 conditional knockout mouse (abbreviated as 'Tcp 1 flox') is prepared by respectively utilizing a Cas9 system and a Cas9-tetR system, a homologous recombination schematic diagram for preparing the mouse is shown as a diagram A in figure 7, and the specific construction flow is as follows:
1) constructing a Tcp1 flox homologous recombinant vector: obtaining a homologous recombination fragment through whole gene synthesis, wherein the fragment comprises a homologous recombination left arm (SEQ ID NO: 43), two loxp sites, a flox region (SEQ ID NO: 44) and a homologous recombination right arm (SEQ ID NO: 45), inserting the homologous recombination fragment into a PBR322-tetO framework vector through an In-Fusion method, and finally constructing to obtain a Tcp1 flox homologous recombination vector after correct sequencing;
2) injecting the fertilized eggs: fertilized eggs of C57BL/6 mice were collected and divided into two groups: carrying out microinjection on fertilized eggs according to a method in a mouse embryo operation experimental manual (third edition) in the Cas9 group and the Cas9-tetR group, wherein the injection dosage is the same as that in the fourth example, the injected fertilized eggs are transplanted to an oviduct of a receptor mother mouse after being cultured in a culture box for a short time, and a genetically modified mouse F0 generation mouse is obtained;
3) mouse genotype identification: whether F0 generation mice mediated the integration of flox region by homologous recombination was identified by PCR amplification using primers designed outside the homology arm and on the recombination sequence, the identifying primers and PCR conditions are shown in the following table:
PCR primer information:
primer name Primer sequence (5' ->3')
Left arm forward primer ATCCCTACCGCTTTCCCGGCA (SEQ ID NO:46)
Left arm reverse primer TCATCAATGCCACCAGTGGTTA (SEQ ID NO:47)
Right arm forward primer CAACCTGGCCGTTAAGATGC (SEQ ID NO:48)
Right arm reverse primer CGATAGCCACTAATAACTGAT (SEQ ID NO:49)
And (3) PCR reaction system:
PCR reaction composition Volume (mu l)
ddH2O 31
PCR Buffer 10
2.5 mM dNTP 4
Forward primer 1
Reverse primer 1
DNA Polymerase 2
genomic DNA 1
Total of 50
PCR reaction procedure:
step (ii) of Temperature (. degree.C.) Time Remarks for note
1 98 2 min
2 98 15 sec
3 68 15 sec
4 68 1 min Repeat steps 2-4 for a total of 34 cycles
5 68 1 min
6 12 10 min  
The electrophoresis results of the homologous recombination PCR identification are shown in B diagram in FIG. 7 and C diagram in FIG. 7, and the right arm correct homologous recombination should amplify a PCR product of 2.2kb in size. (the B picture in figure 7 is the identification result of the Cas9 injection group homologous recombination mouse, the number of the positive mouse is 6, 7 and 14; the C picture in figure 7 is the identification result of the Cas9-tetR injection group homologous recombination mouse, the number of the positive mouse is 3, 4, 10, 11 and 12; the B picture in figure 7 and the upper picture of the C picture in figure 7 are the identification result of the left arm homologous recombination, the lower picture is the identification result of the right arm homologous recombination, the upper figure of the picture is the mouse number, and M is 1kb DNA marker).
Statistics of the positivity of Tcp1 flox mice prepared using the Cas9 system and the Cas9-tetR system are shown in the following table:
group of Number of fertilized eggs transplanted Number of mice born Number of positive mice Positive rate
Cas9
100 20 3 3%
Cas9-tetR 100 17 5 5%
The result shows that when a Tcp1 flox mouse model is prepared by using a Cas9-tetR system, the flox region is about 1kb, and F0 generation mice have higher homologous recombination positive rate than the conventional Cas9 system.
Example eight
Comparison of efficiency of Cas9 and Cas9-tetR System in preparation of Tmem119-tdTomato knock-in mice
A Tmem119-tdTomato knock-in mouse is prepared by respectively utilizing a Cas9 system and a Cas9-tetR system, a homologous recombination scheme for preparing the mouse is shown as a diagram A in figure 8, and the specific construction flow is as follows:
1) constructing a Tmem119-tdTomato homologous recombination vector: obtaining a homologous recombination fragment through whole gene synthesis, wherein the fragment comprises a homologous recombination left arm (SEQ ID NO: 50), a 2A-tdTomato element (SEQ ID NO: 51) and a homologous recombination right arm (SEQ ID NO: 52), inserting the homologous recombination fragment into a PBR322-tetO skeleton vector through an In-Fusion method, and finally constructing and obtaining a Tmem119-tdTomato homologous recombination vector after correct sequencing;
2) injecting the fertilized eggs: fertilized eggs of C57BL/6 mice were collected and divided into two groups: carrying out microinjection on fertilized eggs according to a method in a mouse embryo operation experimental manual (third edition) in the Cas9 group and the Cas9-tetR group, wherein the injection dosage is the same as that in the fourth example, the injected fertilized eggs are transplanted to an oviduct of a receptor mother mouse after being cultured in a culture box for a short time, and a genetically modified mouse F0 generation mouse is obtained;
3) mouse genotype identification: whether F0 generation mice mediated the integration of 2A-tdTomato element at the Tmem119 gene position by homologous recombination was identified by PCR amplification method using primers designed on the outside of the homology arm and the insertion element respectively, and the identification primers and PCR conditions are shown in the following table:
primer sequence information:
primer name Primer sequence (5' ->3')
Left arm forward primer ATAACCTATCCCCTAACACATAAGCACCAG (SEQ ID NO:53)
Left arm reverse primer CAGCTTGGTGTCCACGTAGT (SEQ ID NO:54)
Right arm forward primer CATGGACGAGCTGTACAAGTAA (SEQ ID NO:55 )
Right arm reverse primer TGGAATGGTATTTGGGTGTT (SEQ ID NO:56)
And (3) PCR reaction system:
PCR reaction composition Volume (mu l)
ddH2O 31
PCR Buffer 10
2.5 mM dNTP 4
Forward primer 1
Reverse primer 1
DNA Polymerase 2
genomic DNA 1
Total of 50
PCR reaction procedure:
step (ii) of Temperature (. degree.C.) Time Remarks for note
1 98 2 min
2 98 15 sec
3 68 15 sec
4 68 1 min Repeat steps 2-4 for a total of 34 cycles
5 68 1 min
6 12 10 min  
The electrophoresis results of the homologous recombination PCR identification are shown in B diagram in FIG. 8 and C diagram in FIG. 8, and the right arm correct homologous recombination should amplify a PCR product of 2.1 kb in size, and the right arm correct homologous recombination should amplify a PCR product of 1.9kb in size. (the B picture in figure 8 is the identification result of the Cas9 injection group homologous recombination mouse, the number of the positive mouse is 9; the C picture in figure 8 is the identification result of the Cas9-tetR injection group homologous recombination mouse, the number of the positive mouse is 1, 5, 11; the B picture in figure 8 and the C picture in figure 8 are the identification result of the left arm homologous recombination, the lower picture is the identification result of the right arm homologous recombination, the number above the picture is the mouse number, and M is 1kb DNA marker).
Statistical results for Tmem119-tdTomato mouse positivity prepared using the Cas9 system and the Cas9-tetR system are shown in the following table:
group of Number of fertilized eggs transplanted Number of mice born Number of positive mice Positive rate
Cas9
100 22 1 1%
Cas9-tetR 100 15 3 3%
The result shows that Tmem119-tdTomato mouse model is prepared by using Cas9-tetR system, a 1.5kb DNA fragment is inserted, and F0 generation mice have higher homologous recombination positive rate than the conventional Cas9 system.
To sum up, the inventors screened an artificial fusion protein Cas9-TetR, which has the nuclease activity of Cas9 protein; the inventor screens and obtains the quantity and position information of tetO elements with high homologous recombination efficiency, and establishes a Cas9-TetR/tetO recombination enhancement system. The inventor uses the system to prepare a conditional overexpression mouse model and a conditional knockout mouse model and a gene knock-in mouse model of an unconventional locus at the conventional Rosa26 and H11 loci respectively, and compares the efficiency of the system and the efficiency of the conventional Cas9 system in the preparation process, and the result shows that the system can remarkably improve the homologous recombination efficiency by 2-3 times in the preparation process of a gene modification animal model.
Sequence listing
<110> Shanghai's Square model Biotech Co., Ltd
Shanghai Yushi Biological Technology Co., Ltd.
Guangdong Nanmo Biological Technology Co., Ltd.
<120> method capable of improving homologous recombination efficiency of CRISPR/Cas9 system and application
<160> 56
<170> SIPOSequenceListing 1.0
<210> 1
<211> 4203
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 1
atgatggccc caaagaagaa gcggaaggtc ggtatccacg gagtcccagc agccgacaag 60
aagtacagca tcggcctgga catcggcacc aactctgtgg gctgggccgt gatcaccgac 120
gagtacaagg tgcccagcaa gaaattcaag gtgctgggca acaccgaccg gcacagcatc 180
aagaagaacc tgatcggagc cctgctgttc gacagcggcg aaacagccga ggccacccgg 240
ctgaagagaa ccgccagaag aagatacacc agacggaaga accggatctg ctatctgcaa 300
gagatcttca gcaacgagat ggccaaggtg gacgacagct tcttccacag actggaagag 360
tccttcctgg tggaagagga taagaagcac gagcggcacc ccatcttcgg caacatcgtg 420
gacgaggtgg cctaccacga gaagtacccc accatctacc acctgagaaa gaaactggtg 480
gacagcaccg acaaggccga cctgcggctg atctatctgg ccctggccca catgatcaag 540
ttccggggcc acttcctgat cgagggcgac ctgaaccccg acaacagcga cgtggacaag 600
ctgttcatcc agctggtgca gacctacaac cagctgttcg aggaaaaccc catcaacgcc 660
agcggcgtgg acgccaaggc catcctgtct gccagactga gcaagagcag acggctggaa 720
aatctgatcg cccagctgcc cggcgagaag aagaatggcc tgttcggaaa cctgattgcc 780
ctgagcctgg gcctgacccc caacttcaag agcaacttcg acctggccga ggatgccaaa 840
ctgcagctga gcaaggacac ctacgacgac gacctggaca acctgctggc ccagatcggc 900
gaccagtacg ccgacctgtt tctggccgcc aagaacctgt ccgacgccat cctgctgagc 960
gacatcctga gagtgaacac cgagatcacc aaggcccccc tgagcgcctc tatgatcaag 1020
agatacgacg agcaccacca ggacctgacc ctgctgaaag ctctcgtgcg gcagcagctg 1080
cctgagaagt acaaagagat tttcttcgac cagagcaaga acggctacgc cggctacatt 1140
gacggcggag ccagccagga agagttctac aagttcatca agcccatcct ggaaaagatg 1200
gacggcaccg aggaactgct cgtgaagctg aacagagagg acctgctgcg gaagcagcgg 1260
accttcgaca acggcagcat cccccaccag atccacctgg gagagctgca cgccattctg 1320
cggcggcagg aagattttta cccattcctg aaggacaacc gggaaaagat cgagaagatc 1380
ctgaccttcc gcatccccta ctacgtgggc cctctggcca ggggaaacag cagattcgcc 1440
tggatgacca gaaagagcga ggaaaccatc accccctgga acttcgagga agtggtggac 1500
aagggcgctt ccgcccagag cttcatcgag cggatgacca acttcgataa gaacctgccc 1560
aacgagaagg tgctgcccaa gcacagcctg ctgtacgagt acttcaccgt gtataacgag 1620
ctgaccaaag tgaaatacgt gaccgaggga atgagaaagc ccgccttcct gagcggcgag 1680
cagaaaaagg ccatcgtgga cctgctgttc aagaccaacc ggaaagtgac cgtgaagcag 1740
ctgaaagagg actacttcaa gaaaatcgag tgcttcgact ccgtggaaat ctccggcgtg 1800
gaagatcggt tcaacgcctc cctgggcaca taccacgatc tgctgaaaat tatcaaggac 1860
aaggacttcc tggacaatga ggaaaacgag gacattctgg aagatatcgt gctgaccctg 1920
acactgtttg aggacagaga gatgatcgag gaacggctga aaacctatgc ccacctgttc 1980
gacgacaaag tgatgaagca gctgaagcgg cggagataca ccggctgggg caggctgagc 2040
cggaagctga tcaacggcat ccgggacaag cagtccggca agacaatcct ggatttcctg 2100
aagtccgacg gcttcgccaa cagaaacttc atgcagctga tccacgacga cagcctgacc 2160
tttaaagagg acatccagaa agcccaggtg tccggccagg gcgatagcct gcacgagcac 2220
attgccaatc tggccggcag ccccgccatt aagaagggca tcctgcagac agtgaaggtg 2280
gtggacgagc tcgtgaaagt gatgggccgg cacaagcccg agaacatcgt gatcgaaatg 2340
gccagagaga accagaccac ccagaaggga cagaagaaca gccgcgagag aatgaagcgg 2400
atcgaagagg gcatcaaaga gctgggcagc cagatcctga aagaacaccc cgtggaaaac 2460
acccagctgc agaacgagaa gctgtacctg tactacctgc agaatgggcg ggatatgtac 2520
gtggaccagg aactggacat caaccggctg tccgactacg atgtggacca tatcgtgcct 2580
cagagctttc tgaaggacga ctccatcgac aacaaggtgc tgaccagaag cgacaagaac 2640
cggggcaaga gcgacaacgt gccctccgaa gaggtcgtga agaagatgaa gaactactgg 2700
cggcagctgc tgaacgccaa gctgattacc cagagaaagt tcgacaatct gaccaaggcc 2760
gagagaggcg gcctgagcga actggataag gccggcttca tcaagagaca gctggtggaa 2820
acccggcaga tcacaaagca cgtggcacag atcctggact cccggatgaa cactaagtac 2880
gacgagaatg acaagctgat ccgggaagtg aaagtgatca ccctgaagtc caagctggtg 2940
tccgatttcc ggaaggattt ccagttttac aaagtgcgcg agatcaacaa ctaccaccac 3000
gcccacgacg cctacctgaa cgccgtcgtg ggaaccgccc tgatcaaaaa gtaccctaag 3060
ctggaaagcg agttcgtgta cggcgactac aaggtgtacg acgtgcggaa gatgatcgcc 3120
aagagcgagc aggaaatcgg caaggctacc gccaagtact tcttctacag caacatcatg 3180
aactttttca agaccgagat taccctggcc aacggcgaga tccggaagcg gcctctgatc 3240
gagacaaacg gcgaaaccgg ggagatcgtg tgggataagg gccgggattt tgccaccgtg 3300
cggaaagtgc tgagcatgcc ccaagtgaat atcgtgaaaa agaccgaggt gcagacaggc 3360
ggcttcagca aagagtctat cctgcccaag aggaacagcg ataagctgat cgccagaaag 3420
aaggactggg accctaagaa gtacggcggc ttcgacagcc ccaccgtggc ctattctgtg 3480
ctggtggtgg ccaaagtgga aaagggcaag tccaagaaac tgaagagtgt gaaagagctg 3540
ctggggatca ccatcatgga aagaagcagc ttcgagaaga atcccatcga ctttctggaa 3600
gccaagggct acaaagaagt gaaaaaggac ctgatcatca agctgcctaa gtactccctg 3660
ttcgagctgg aaaacggccg gaagagaatg ctggcctctg ccggcgaact gcagaaggga 3720
aacgaactgg ccctgccctc caaatatgtg aacttcctgt acctggccag ccactatgag 3780
aagctgaagg gctcccccga ggataatgag cagaaacagc tgtttgtgga acagcacaag 3840
cactacctgg acgagatcat cgagcagatc agcgagttct ccaagagagt gatcctggcc 3900
gacgctaatc tggacaaagt gctgtccgcc tacaacaagc accgggataa gcccatcaga 3960
gagcaggccg agaatatcat ccacctgttt accctgacca atctgggagc ccctgccgcc 4020
ttcaagtact ttgacaccac catcgaccgg aagaggtaca ccagcaccaa agaggtgctg 4080
gacgccaccc tgatccacca gagcatcacc ggcctgtacg agacacggat cgacctgtct 4140
cagctgggag gcgacaaaag gccggcggcc acgaaaaagg ccggccaggc aaaaaagaaa 4200
aag 4203
<210> 2
<211> 642
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 2
atggctagat tagataaaag taaagtgatt aacagcgcat tagagctgct taatgaggtc 60
ggaatcgaag gtttaacaac ccgtaaactc gcccagaagc taggtgtaga gcagcctaca 120
ttgtattggc atgtaaaaaa taagcgggct ttgctcgacg ccttagccat tgagatgtta 180
gataggcacc atactcactt ttgcccttta gaaggggaaa gctggcaaga ttttttacgt 240
aataacgcta aaagttttag atgtgcttta ctaagtcatc gcgatggagc aaaagtacat 300
ttaggtacac ggcctacaga aaaacagtat gaaactctcg aaaatcaatt agccttttta 360
tgccaacaag gtttttcact agagaatgca ttatatgcac tcagcgctgt ggggcatttt 420
actttaggtt gcgtattgga agatcaagag catcaagtcg ctaaagaaga aagggaaaca 480
cctactactg atagtatgcc gccattatta cgacaagcta tcgaattatt tgatcaccaa 540
ggtgcagagc cagccttctt attcggcctt gaattgatca tatgcggatt agaaaaacaa 600
cttaaatgtg aaagtgggtc gccaaaaaag aagagaaagg tc 642
<210> 3
<211> 41
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 3
agggagaccc aagctgccac catgatggcc ccaaagaaga a 41
<210> 4
<211> 35
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 4
gctcggtacc aagctctact ttttcttttt tgcct 35
<210> 5
<211> 35
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 5
actgccaccg ccaccctttt tcttttttgc ctggc 35
<210> 6
<211> 35
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 6
ggtggcggtg gcagtatggc tagattagat aaaag 35
<210> 7
<211> 35
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 7
gctcggtacc aagctttaga cctttctctt ctttt 35
<210> 8
<211> 50
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 8
ggtggcggtg gcagtggtgg cggtggcagt atggctagat tagataaaag 50
<210> 9
<211> 80
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 9
ggtggcggtg gcagtggtgg cggtggcagt ggtggcggtg gcagtggtgg cggtggcagt 60
atggctagat tagataaaag 80
<210> 10
<211> 38
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 10
caagtataca cttgagccag tagtgggggg aggggtgg 38
<210> 11
<211> 23
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 11
cgatgccctt cagctcgatg cgg 23
<210> 12
<211> 491
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 12
ggatcccgac acgagggcct atttcccatg attccttcat atttgcatat acgatacaag 60
gctgttagag agataattgg aattaatttg actgtaaaca caaagatatt agtacaaaat 120
acgtgacgta gaaagtaata atttcttggg tagtttgcag ttttaaaatt atgttttaaa 180
atggactatc atatgcttac cgtaacttga aagtatttcg atttcttggc tttatatatc 240
ttgtggaaag gacgaaacac cgcgatgccc ttcagctcga tggttttaga gctagaaata 300
gcaagttaaa ataaggctag tccgttatca acttgaaaaa gtggcaccga gtcggtgctt 360
ttttgtttta gagctagaaa tagcaagtta aaataaggct agtccgtttt tagcgcgtgc 420
gccaattctg cagacaaatg gagaggcatg tgacacgggc ccgtcgactg cagaggcctg 480
catgcaagct t 491
<210> 13
<211> 4908
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 13
atgatggccc caaagaagaa gcggaaggtc ggtatccacg gagtcccagc agccgacaag 60
aagtacagca tcggcctgga catcggcacc aactctgtgg gctgggccgt gatcaccgac 120
gagtacaagg tgcccagcaa gaaattcaag gtgctgggca acaccgaccg gcacagcatc 180
aagaagaacc tgatcggagc cctgctgttc gacagcggcg aaacagccga ggccacccgg 240
ctgaagagaa ccgccagaag aagatacacc agacggaaga accggatctg ctatctgcaa 300
gagatcttca gcaacgagat ggccaaggtg gacgacagct tcttccacag actggaagag 360
tccttcctgg tggaagagga taagaagcac gagcggcacc ccatcttcgg caacatcgtg 420
gacgaggtgg cctaccacga gaagtacccc accatctacc acctgagaaa gaaactggtg 480
gacagcaccg acaaggccga cctgcggctg atctatctgg ccctggccca catgatcaag 540
ttccggggcc acttcctgat cgagggcgac ctgaaccccg acaacagcga cgtggacaag 600
ctgttcatcc agctggtgca gacctacaac cagctgttcg aggaaaaccc catcaacgcc 660
agcggcgtgg acgccaaggc catcctgtct gccagactga gcaagagcag acggctggaa 720
aatctgatcg cccagctgcc cggcgagaag aagaatggcc tgttcggaaa cctgattgcc 780
ctgagcctgg gcctgacccc caacttcaag agcaacttcg acctggccga ggatgccaaa 840
ctgcagctga gcaaggacac ctacgacgac gacctggaca acctgctggc ccagatcggc 900
gaccagtacg ccgacctgtt tctggccgcc aagaacctgt ccgacgccat cctgctgagc 960
gacatcctga gagtgaacac cgagatcacc aaggcccccc tgagcgcctc tatgatcaag 1020
agatacgacg agcaccacca ggacctgacc ctgctgaaag ctctcgtgcg gcagcagctg 1080
cctgagaagt acaaagagat tttcttcgac cagagcaaga acggctacgc cggctacatt 1140
gacggcggag ccagccagga agagttctac aagttcatca agcccatcct ggaaaagatg 1200
gacggcaccg aggaactgct cgtgaagctg aacagagagg acctgctgcg gaagcagcgg 1260
accttcgaca acggcagcat cccccaccag atccacctgg gagagctgca cgccattctg 1320
cggcggcagg aagattttta cccattcctg aaggacaacc gggaaaagat cgagaagatc 1380
ctgaccttcc gcatccccta ctacgtgggc cctctggcca ggggaaacag cagattcgcc 1440
tggatgacca gaaagagcga ggaaaccatc accccctgga acttcgagga agtggtggac 1500
aagggcgctt ccgcccagag cttcatcgag cggatgacca acttcgataa gaacctgccc 1560
aacgagaagg tgctgcccaa gcacagcctg ctgtacgagt acttcaccgt gtataacgag 1620
ctgaccaaag tgaaatacgt gaccgaggga atgagaaagc ccgccttcct gagcggcgag 1680
cagaaaaagg ccatcgtgga cctgctgttc aagaccaacc ggaaagtgac cgtgaagcag 1740
ctgaaagagg actacttcaa gaaaatcgag tgcttcgact ccgtggaaat ctccggcgtg 1800
gaagatcggt tcaacgcctc cctgggcaca taccacgatc tgctgaaaat tatcaaggac 1860
aaggacttcc tggacaatga ggaaaacgag gacattctgg aagatatcgt gctgaccctg 1920
acactgtttg aggacagaga gatgatcgag gaacggctga aaacctatgc ccacctgttc 1980
gacgacaaag tgatgaagca gctgaagcgg cggagataca ccggctgggg caggctgagc 2040
cggaagctga tcaacggcat ccgggacaag cagtccggca agacaatcct ggatttcctg 2100
aagtccgacg gcttcgccaa cagaaacttc atgcagctga tccacgacga cagcctgacc 2160
tttaaagagg acatccagaa agcccaggtg tccggccagg gcgatagcct gcacgagcac 2220
attgccaatc tggccggcag ccccgccatt aagaagggca tcctgcagac agtgaaggtg 2280
gtggacgagc tcgtgaaagt gatgggccgg cacaagcccg agaacatcgt gatcgaaatg 2340
gccagagaga accagaccac ccagaaggga cagaagaaca gccgcgagag aatgaagcgg 2400
atcgaagagg gcatcaaaga gctgggcagc cagatcctga aagaacaccc cgtggaaaac 2460
acccagctgc agaacgagaa gctgtacctg tactacctgc agaatgggcg ggatatgtac 2520
gtggaccagg aactggacat caaccggctg tccgactacg atgtggacca tatcgtgcct 2580
cagagctttc tgaaggacga ctccatcgac aacaaggtgc tgaccagaag cgacaagaac 2640
cggggcaaga gcgacaacgt gccctccgaa gaggtcgtga agaagatgaa gaactactgg 2700
cggcagctgc tgaacgccaa gctgattacc cagagaaagt tcgacaatct gaccaaggcc 2760
gagagaggcg gcctgagcga actggataag gccggcttca tcaagagaca gctggtggaa 2820
acccggcaga tcacaaagca cgtggcacag atcctggact cccggatgaa cactaagtac 2880
gacgagaatg acaagctgat ccgggaagtg aaagtgatca ccctgaagtc caagctggtg 2940
tccgatttcc ggaaggattt ccagttttac aaagtgcgcg agatcaacaa ctaccaccac 3000
gcccacgacg cctacctgaa cgccgtcgtg ggaaccgccc tgatcaaaaa gtaccctaag 3060
ctggaaagcg agttcgtgta cggcgactac aaggtgtacg acgtgcggaa gatgatcgcc 3120
aagagcgagc aggaaatcgg caaggctacc gccaagtact tcttctacag caacatcatg 3180
aactttttca agaccgagat taccctggcc aacggcgaga tccggaagcg gcctctgatc 3240
gagacaaacg gcgaaaccgg ggagatcgtg tgggataagg gccgggattt tgccaccgtg 3300
cggaaagtgc tgagcatgcc ccaagtgaat atcgtgaaaa agaccgaggt gcagacaggc 3360
ggcttcagca aagagtctat cctgcccaag aggaacagcg ataagctgat cgccagaaag 3420
aaggactggg accctaagaa gtacggcggc ttcgacagcc ccaccgtggc ctattctgtg 3480
ctggtggtgg ccaaagtgga aaagggcaag tccaagaaac tgaagagtgt gaaagagctg 3540
ctggggatca ccatcatgga aagaagcagc ttcgagaaga atcccatcga ctttctggaa 3600
gccaagggct acaaagaagt gaaaaaggac ctgatcatca agctgcctaa gtactccctg 3660
ttcgagctgg aaaacggccg gaagagaatg ctggcctctg ccggcgaact gcagaaggga 3720
aacgaactgg ccctgccctc caaatatgtg aacttcctgt acctggccag ccactatgag 3780
aagctgaagg gctcccccga ggataatgag cagaaacagc tgtttgtgga acagcacaag 3840
cactacctgg acgagatcat cgagcagatc agcgagttct ccaagagagt gatcctggcc 3900
gacgctaatc tggacaaagt gctgtccgcc tacaacaagc accgggataa gcccatcaga 3960
gagcaggccg agaatatcat ccacctgttt accctgacca atctgggagc ccctgccgcc 4020
ttcaagtact ttgacaccac catcgaccgg aagaggtaca ccagcaccaa agaggtgctg 4080
gacgccaccc tgatccacca gagcatcacc ggcctgtacg agacacggat cgacctgtct 4140
cagctgggag gcgacaaaag gccggcggcc acgaaaaagg ccggccaggc aaaaaagaaa 4200
aagggtggcg gtggcagtgg tggcggtggc agtggtggcg gtggcagtgg tggcggtggc 4260
agtatggcta gattagataa aagtaaagtg attaacagcg cattagagct gcttaatgag 4320
gtcggaatcg aaggtttaac aacccgtaaa ctcgcccaga agctaggtgt agagcagcct 4380
acattgtatt ggcatgtaaa aaataagcgg gctttgctcg acgccttagc cattgagatg 4440
ttagataggc accatactca cttttgccct ttagaagggg aaagctggca agatttttta 4500
cgtaataacg ctaaaagttt tagatgtgct ttactaagtc atcgcgatgg agcaaaagta 4560
catttaggta cacggcctac agaaaaacag tatgaaactc tcgaaaatca attagccttt 4620
ttatgccaac aaggtttttc actagagaat gcattatatg cactcagcgc tgtggggcat 4680
tttactttag gttgcgtatt ggaagatcaa gagcatcaag tcgctaaaga agaaagggaa 4740
acacctacta ctgatagtat gccgccatta ttacgacaag ctatcgaatt atttgatcac 4800
caaggtgcag agccagcctt cttattcggc cttgaattga tcatatgcgg attagaaaaa 4860
caacttaaat gtgaaagtgg gtcgccaaaa aagaagagaa aggtctaa 4908
<210> 14
<211> 1635
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 14
Met Met Ala Pro Lys Lys Lys Arg Lys Val Gly Ile His Gly Val Pro
1 5 10 15
Ala Ala Asp Lys Lys Tyr Ser Ile Gly Leu Asp Ile Gly Thr Asn Ser
20 25 30
Val Gly Trp Ala Val Ile Thr Asp Glu Tyr Lys Val Pro Ser Lys Lys
35 40 45
Phe Lys Val Leu Gly Asn Thr Asp Arg His Ser Ile Lys Lys Asn Leu
50 55 60
Ile Gly Ala Leu Leu Phe Asp Ser Gly Glu Thr Ala Glu Ala Thr Arg
65 70 75 80
Leu Lys Arg Thr Ala Arg Arg Arg Tyr Thr Arg Arg Lys Asn Arg Ile
85 90 95
Cys Tyr Leu Gln Glu Ile Phe Ser Asn Glu Met Ala Lys Val Asp Asp
100 105 110
Ser Phe Phe His Arg Leu Glu Glu Ser Phe Leu Val Glu Glu Asp Lys
115 120 125
Lys His Glu Arg His Pro Ile Phe Gly Asn Ile Val Asp Glu Val Ala
130 135 140
Tyr His Glu Lys Tyr Pro Thr Ile Tyr His Leu Arg Lys Lys Leu Val
145 150 155 160
Asp Ser Thr Asp Lys Ala Asp Leu Arg Leu Ile Tyr Leu Ala Leu Ala
165 170 175
His Met Ile Lys Phe Arg Gly His Phe Leu Ile Glu Gly Asp Leu Asn
180 185 190
Pro Asp Asn Ser Asp Val Asp Lys Leu Phe Ile Gln Leu Val Gln Thr
195 200 205
Tyr Asn Gln Leu Phe Glu Glu Asn Pro Ile Asn Ala Ser Gly Val Asp
210 215 220
Ala Lys Ala Ile Leu Ser Ala Arg Leu Ser Lys Ser Arg Arg Leu Glu
225 230 235 240
Asn Leu Ile Ala Gln Leu Pro Gly Glu Lys Lys Asn Gly Leu Phe Gly
245 250 255
Asn Leu Ile Ala Leu Ser Leu Gly Leu Thr Pro Asn Phe Lys Ser Asn
260 265 270
Phe Asp Leu Ala Glu Asp Ala Lys Leu Gln Leu Ser Lys Asp Thr Tyr
275 280 285
Asp Asp Asp Leu Asp Asn Leu Leu Ala Gln Ile Gly Asp Gln Tyr Ala
290 295 300
Asp Leu Phe Leu Ala Ala Lys Asn Leu Ser Asp Ala Ile Leu Leu Ser
305 310 315 320
Asp Ile Leu Arg Val Asn Thr Glu Ile Thr Lys Ala Pro Leu Ser Ala
325 330 335
Ser Met Ile Lys Arg Tyr Asp Glu His His Gln Asp Leu Thr Leu Leu
340 345 350
Lys Ala Leu Val Arg Gln Gln Leu Pro Glu Lys Tyr Lys Glu Ile Phe
355 360 365
Phe Asp Gln Ser Lys Asn Gly Tyr Ala Gly Tyr Ile Asp Gly Gly Ala
370 375 380
Ser Gln Glu Glu Phe Tyr Lys Phe Ile Lys Pro Ile Leu Glu Lys Met
385 390 395 400
Asp Gly Thr Glu Glu Leu Leu Val Lys Leu Asn Arg Glu Asp Leu Leu
405 410 415
Arg Lys Gln Arg Thr Phe Asp Asn Gly Ser Ile Pro His Gln Ile His
420 425 430
Leu Gly Glu Leu His Ala Ile Leu Arg Arg Gln Glu Asp Phe Tyr Pro
435 440 445
Phe Leu Lys Asp Asn Arg Glu Lys Ile Glu Lys Ile Leu Thr Phe Arg
450 455 460
Ile Pro Tyr Tyr Val Gly Pro Leu Ala Arg Gly Asn Ser Arg Phe Ala
465 470 475 480
Trp Met Thr Arg Lys Ser Glu Glu Thr Ile Thr Pro Trp Asn Phe Glu
485 490 495
Glu Val Val Asp Lys Gly Ala Ser Ala Gln Ser Phe Ile Glu Arg Met
500 505 510
Thr Asn Phe Asp Lys Asn Leu Pro Asn Glu Lys Val Leu Pro Lys His
515 520 525
Ser Leu Leu Tyr Glu Tyr Phe Thr Val Tyr Asn Glu Leu Thr Lys Val
530 535 540
Lys Tyr Val Thr Glu Gly Met Arg Lys Pro Ala Phe Leu Ser Gly Glu
545 550 555 560
Gln Lys Lys Ala Ile Val Asp Leu Leu Phe Lys Thr Asn Arg Lys Val
565 570 575
Thr Val Lys Gln Leu Lys Glu Asp Tyr Phe Lys Lys Ile Glu Cys Phe
580 585 590
Asp Ser Val Glu Ile Ser Gly Val Glu Asp Arg Phe Asn Ala Ser Leu
595 600 605
Gly Thr Tyr His Asp Leu Leu Lys Ile Ile Lys Asp Lys Asp Phe Leu
610 615 620
Asp Asn Glu Glu Asn Glu Asp Ile Leu Glu Asp Ile Val Leu Thr Leu
625 630 635 640
Thr Leu Phe Glu Asp Arg Glu Met Ile Glu Glu Arg Leu Lys Thr Tyr
645 650 655
Ala His Leu Phe Asp Asp Lys Val Met Lys Gln Leu Lys Arg Arg Arg
660 665 670
Tyr Thr Gly Trp Gly Arg Leu Ser Arg Lys Leu Ile Asn Gly Ile Arg
675 680 685
Asp Lys Gln Ser Gly Lys Thr Ile Leu Asp Phe Leu Lys Ser Asp Gly
690 695 700
Phe Ala Asn Arg Asn Phe Met Gln Leu Ile His Asp Asp Ser Leu Thr
705 710 715 720
Phe Lys Glu Asp Ile Gln Lys Ala Gln Val Ser Gly Gln Gly Asp Ser
725 730 735
Leu His Glu His Ile Ala Asn Leu Ala Gly Ser Pro Ala Ile Lys Lys
740 745 750
Gly Ile Leu Gln Thr Val Lys Val Val Asp Glu Leu Val Lys Val Met
755 760 765
Gly Arg His Lys Pro Glu Asn Ile Val Ile Glu Met Ala Arg Glu Asn
770 775 780
Gln Thr Thr Gln Lys Gly Gln Lys Asn Ser Arg Glu Arg Met Lys Arg
785 790 795 800
Ile Glu Glu Gly Ile Lys Glu Leu Gly Ser Gln Ile Leu Lys Glu His
805 810 815
Pro Val Glu Asn Thr Gln Leu Gln Asn Glu Lys Leu Tyr Leu Tyr Tyr
820 825 830
Leu Gln Asn Gly Arg Asp Met Tyr Val Asp Gln Glu Leu Asp Ile Asn
835 840 845
Arg Leu Ser Asp Tyr Asp Val Asp His Ile Val Pro Gln Ser Phe Leu
850 855 860
Lys Asp Asp Ser Ile Asp Asn Lys Val Leu Thr Arg Ser Asp Lys Asn
865 870 875 880
Arg Gly Lys Ser Asp Asn Val Pro Ser Glu Glu Val Val Lys Lys Met
885 890 895
Lys Asn Tyr Trp Arg Gln Leu Leu Asn Ala Lys Leu Ile Thr Gln Arg
900 905 910
Lys Phe Asp Asn Leu Thr Lys Ala Glu Arg Gly Gly Leu Ser Glu Leu
915 920 925
Asp Lys Ala Gly Phe Ile Lys Arg Gln Leu Val Glu Thr Arg Gln Ile
930 935 940
Thr Lys His Val Ala Gln Ile Leu Asp Ser Arg Met Asn Thr Lys Tyr
945 950 955 960
Asp Glu Asn Asp Lys Leu Ile Arg Glu Val Lys Val Ile Thr Leu Lys
965 970 975
Ser Lys Leu Val Ser Asp Phe Arg Lys Asp Phe Gln Phe Tyr Lys Val
980 985 990
Arg Glu Ile Asn Asn Tyr His His Ala His Asp Ala Tyr Leu Asn Ala
995 1000 1005
Val Val Gly Thr Ala Leu Ile Lys Lys Tyr Pro Lys Leu Glu Ser Glu
1010 1015 1020
Phe Val Tyr Gly Asp Tyr Lys Val Tyr Asp Val Arg Lys Met Ile Ala
1025 1030 1035 1040
Lys Ser Glu Gln Glu Ile Gly Lys Ala Thr Ala Lys Tyr Phe Phe Tyr
1045 1050 1055
Ser Asn Ile Met Asn Phe Phe Lys Thr Glu Ile Thr Leu Ala Asn Gly
1060 1065 1070
Glu Ile Arg Lys Arg Pro Leu Ile Glu Thr Asn Gly Glu Thr Gly Glu
1075 1080 1085
Ile Val Trp Asp Lys Gly Arg Asp Phe Ala Thr Val Arg Lys Val Leu
1090 1095 1100
Ser Met Pro Gln Val Asn Ile Val Lys Lys Thr Glu Val Gln Thr Gly
1105 1110 1115 1120
Gly Phe Ser Lys Glu Ser Ile Leu Pro Lys Arg Asn Ser Asp Lys Leu
1125 1130 1135
Ile Ala Arg Lys Lys Asp Trp Asp Pro Lys Lys Tyr Gly Gly Phe Asp
1140 1145 1150
Ser Pro Thr Val Ala Tyr Ser Val Leu Val Val Ala Lys Val Glu Lys
1155 1160 1165
Gly Lys Ser Lys Lys Leu Lys Ser Val Lys Glu Leu Leu Gly Ile Thr
1170 1175 1180
Ile Met Glu Arg Ser Ser Phe Glu Lys Asn Pro Ile Asp Phe Leu Glu
1185 1190 1195 1200
Ala Lys Gly Tyr Lys Glu Val Lys Lys Asp Leu Ile Ile Lys Leu Pro
1205 1210 1215
Lys Tyr Ser Leu Phe Glu Leu Glu Asn Gly Arg Lys Arg Met Leu Ala
1220 1225 1230
Ser Ala Gly Glu Leu Gln Lys Gly Asn Glu Leu Ala Leu Pro Ser Lys
1235 1240 1245
Tyr Val Asn Phe Leu Tyr Leu Ala Ser His Tyr Glu Lys Leu Lys Gly
1250 1255 1260
Ser Pro Glu Asp Asn Glu Gln Lys Gln Leu Phe Val Glu Gln His Lys
1265 1270 1275 1280
His Tyr Leu Asp Glu Ile Ile Glu Gln Ile Ser Glu Phe Ser Lys Arg
1285 1290 1295
Val Ile Leu Ala Asp Ala Asn Leu Asp Lys Val Leu Ser Ala Tyr Asn
1300 1305 1310
Lys His Arg Asp Lys Pro Ile Arg Glu Gln Ala Glu Asn Ile Ile His
1315 1320 1325
Leu Phe Thr Leu Thr Asn Leu Gly Ala Pro Ala Ala Phe Lys Tyr Phe
1330 1335 1340
Asp Thr Thr Ile Asp Arg Lys Arg Tyr Thr Ser Thr Lys Glu Val Leu
1345 1350 1355 1360
Asp Ala Thr Leu Ile His Gln Ser Ile Thr Gly Leu Tyr Glu Thr Arg
1365 1370 1375
Ile Asp Leu Ser Gln Leu Gly Gly Asp Lys Arg Pro Ala Ala Thr Lys
1380 1385 1390
Lys Ala Gly Gln Ala Lys Lys Lys Lys Gly Gly Gly Gly Ser Gly Gly
1395 1400 1405
Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Met Ala Arg
1410 1415 1420
Leu Asp Lys Ser Lys Val Ile Asn Ser Ala Leu Glu Leu Leu Asn Glu
1425 1430 1435 1440
Val Gly Ile Glu Gly Leu Thr Thr Arg Lys Leu Ala Gln Lys Leu Gly
1445 1450 1455
Val Glu Gln Pro Thr Leu Tyr Trp His Val Lys Asn Lys Arg Ala Leu
1460 1465 1470
Leu Asp Ala Leu Ala Ile Glu Met Leu Asp Arg His His Thr His Phe
1475 1480 1485
Cys Pro Leu Glu Gly Glu Ser Trp Gln Asp Phe Leu Arg Asn Asn Ala
1490 1495 1500
Lys Ser Phe Arg Cys Ala Leu Leu Ser His Arg Asp Gly Ala Lys Val
1505 1510 1515 1520
His Leu Gly Thr Arg Pro Thr Glu Lys Gln Tyr Glu Thr Leu Glu Asn
1525 1530 1535
Gln Leu Ala Phe Leu Cys Gln Gln Gly Phe Ser Leu Glu Asn Ala Leu
1540 1545 1550
Tyr Ala Leu Ser Ala Val Gly His Phe Thr Leu Gly Cys Val Leu Glu
1555 1560 1565
Asp Gln Glu His Gln Val Ala Lys Glu Glu Arg Glu Thr Pro Thr Thr
1570 1575 1580
Asp Ser Met Pro Pro Leu Leu Arg Gln Ala Ile Glu Leu Phe Asp His
1585 1590 1595 1600
Gln Gly Ala Glu Pro Ala Phe Leu Phe Gly Leu Glu Leu Ile Ile Cys
1605 1610 1615
Gly Leu Glu Lys Gln Leu Lys Cys Glu Ser Gly Ser Pro Lys Lys Lys
1620 1625 1630
Arg Lys Val
1635
<210> 15
<211> 23
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 15
ccacccccac tcctaagagg agg 23
<210> 16
<211> 42
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 16
gagtttacca ctccctatca gtgatagaga aaagtgaaag tc 42
<210> 17
<211> 84
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 17
gagtttacca ctccctatca gtgatagaga aaagtgaaag tcgagtttac cactccctat 60
cagtgataga gaaaagtgaa agtc 84
<210> 18
<211> 126
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 18
gagtttacca ctccctatca gtgatagaga aaagtgaaag tcgagtttac cactccctat 60
cagtgataga gaaaagtgaa agtcgagttt accactccct atcagtgata gagaaaagtg 120
aaagtc 126
<210> 19
<211> 168
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 19
gagtttacca ctccctatca gtgatagaga aaagtgaaag tcgagtttac cactccctat 60
cagtgataga gaaaagtgaa agtcgagttt accactccct atcagtgata gagaaaagtg 120
aaagtcgagt ttaccactcc ctatcagtga tagagaaaag tgaaagtc 168
<210> 20
<211> 294
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 20
gagtttacca ctccctatca gtgatagaga aaagtgaaag tcgagtttac cactccctat 60
cagtgataga gaaaagtgaa agtcgagttt accactccct atcagtgata gagaaaagtg 120
aaagtcgagt ttaccactcc ctatcagtga tagagaaaag tgaaagtcga gtttaccact 180
ccctatcagt gatagagaaa agtgaaagtc gagtttacca ctccctatca gtgatagaga 240
aaagtgaaag tcgagtttac cactccctat cagtgataga gaaaagtgaa agtc 294
<210> 21
<211> 3619
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 21
cctgaggctc ttttccagcc ttccttcttg ggtaagttgt agcctagtcc tttctccatc 60
taaaggtgac aaaactcctg aggccatagt acaagttaag tctgatttct gtcactcttc 120
tcttaggtat ggaatcctgt ggcatccatg aaactacatt caattccatc atgaagtgtg 180
acgttgacat ccgtaaagac ctctatgcca acacagtgct gtctggtggt accaccatgt 240
acccaggcat tgctgacagg atgcagaagg agattactgc tctggctcct agcaccatga 300
agatcaaggt aagctaagca tccttagctt ggtgagggtg ggccctgtgg ttgtcagagc 360
aaccttctag gtttaagggg aatcccagca cccagagagc tcaccattca ccatcttgtc 420
ttgctttctt cagatcattg ctcctcctga gcgcaagtac tctgtgtgga tcggtggctc 480
catcctggcc tcactgtcca ccttccagca gatgtggatc agcaagcagg agtacgatga 540
gtccggcccc tccatcgtgc accgcaagtg cttctaggcg gactgttact gagctgcgtt 600
ttacaccctt tctttgacaa aacctaactt gcgcagaaaa aaaaaaaata agagacaaca 660
ttggcatggc tttgtttttt taaatttttt ttaaagtttt tttttttttt tttttttttt 720
tttttaagtt tttttgtttt gttttggcgc ttttgactca ggatttaaaa actggaacgg 780
tgaaggcgac agcagttggt gcccctctcc ctcccccccc cctaacgtta ctggccgaag 840
ccgcttggaa taaggccggt gtgcgtttgt ctatatgtta ttttccacca tattgccgtc 900
ttttggcaat gtgagggccc ggaaacctgg ccctgtcttc ttgacgagca ttcctagggg 960
tctttcccct ctcgccaaag gaatgcaagg tctgttgaat gtcgtgaagg aagcagttcc 1020
tctggaagct tcttgaagac aaacaacgtc tgtagcgacc ctttgcaggc agcggaaccc 1080
cccacctggc gacaggtgcc tctgcggcca aaagccacgt gtataagata cacctgcaaa 1140
ggcggcacaa ccccagtgcc acgttgtgag ttggatagtt gtggaaagag tcaaatggct 1200
ctcctcaagc gtattcaaca aggggctgaa ggatgcccag aaggtacccc attgtatggg 1260
atctgatctg gggcctcggt gcacatgctt tacatgtgtt tagtcgaggt taaaaaaacg 1320
tctaggcccc ccgaaccacg gggacgtggt tttcctttga aaaacacgat gataatatgg 1380
ccacaaccat ggtgagcaag ggcgaggagg tcatcaaaga gttcatgcgc ttcaaggtgc 1440
gcatggaggg ctccatgaac ggccacgagt tcgagatcga gggcgagggc gagggccgcc 1500
cctacgaggg cacccagacc gccaagctga aggtgaccaa gggcggcccc ctgcccttcg 1560
cctgggacat cctgtccccc cagttcatgt acggctccaa ggcgtacgtg aagcaccccg 1620
ccgacatccc cgattacaag aagctgtcct tccccgaggg cttcaagtgg gagcgcgtga 1680
tgaacttcga ggacggcggt ctggtgaccg tgacccagga ctcctccctg caggacggca 1740
cgctgatcta caaggtgaag atgcgcggca ccaacttccc ccccgacggc cccgtaatgc 1800
agaagaagac catgggctgg gaggcctcca ccgagcgcct gtacccccgc gacggcgtgc 1860
tgaagggcga gatccaccag gccctgaagc tgaaggacgg cggccactac ctggtggagt 1920
tcaagaccat ctacatggcc aagaagcccg tgcaactgcc cggctactac tacgtggaca 1980
ccaagctgga catcacctcc cacaacgagg actacaccat cgtggaacag tacgagcgct 2040
ccgagggccg ccaccacctg ttcctggggc atggcaccgg cagcaccggc agcggcagct 2100
ccggcaccgc ctcctccgag gacaacaaca tggccgtcat caaagagttc atgcgcttca 2160
aggtgcgcat ggagggctcc atgaacggcc acgagttcga gatcgagggc gagggcgagg 2220
gccgccccta cgagggcacc cagaccgcca agctgaaggt gaccaagggc ggccccctgc 2280
ccttcgcctg ggacatcctg tccccccagt tcatgtacgg ctccaaggcg tacgtgaagc 2340
accccgccga catccccgat tacaagaagc tgtccttccc cgagggcttc aagtgggagc 2400
gcgtgatgaa cttcgaggac ggcggtctgg tgaccgtgac ccaggactcc tccctgcagg 2460
acggcacgct gatctacaag gtgaagatgc gcggcaccaa cttccccccc gacggccccg 2520
taatgcagaa gaagaccatg ggctgggagg cctccaccga gcgcctgtac ccccgcgacg 2580
gcgtgctgaa gggcgagatc caccaggccc tgaagctgaa ggacggcggc cactacctgg 2640
tggagttcaa gaccatctac atggccaaga agcccgtgca actgcccggc tactactacg 2700
tggacaccaa gctggacatc acctcccaca acgaggacta caccatcgtg gaacagtacg 2760
agcgctccga gggccgccac cacctgttcc tgtacggcat ggacgagctg tacaagtaat 2820
ggagcaaaca tcccccaaag ttctacaaat gtggctgagg actttgtaca ttgttttgtt 2880
tttttttttt tttggttttg tcttttttta atagtcattc caagtatcca tgaaataagt 2940
ggttacagga agtccctcac cctcccaaaa gccaccccca ctcctaagag gaggatggtc 3000
gcgtccatgc cctgagtcca ccccggggaa ggtgacagca ttgcttctgt gtaaattatg 3060
tactgcaaaa atttttttaa atcttccgcc ttaatacttc atttttgttt ttaatttctg 3120
aatggcccag gtctgaggcc tccctttttt ttgtcccccc aacttgatgt atgaaggctt 3180
tggtctccct gggagggggt tgaggtgttg aggcagccag ggctggcctg tacactgact 3240
tgagaccaat aaaagtgcac accttacctt acacaaacag cttgtggctc tgtggctttg 3300
ctgggtgtgg ggagcaggtt gggtgggtgt ggagctctat tggggggggc atctagggtg 3360
ggctaggcct tgctgatggt atctagtggg agggctacag gccctttaat gaagtctcac 3420
aaataaccac accttcagac tgtcttgaag agttgaaaag gtactcctcc agaaacctag 3480
gccaagttgg cctgcactaa cactaccttc ctcaaccgag gggtgtccac accctttgcc 3540
tccatctgca taactgggtt tcaagcccct ctgctagtct gaagctgccc tttccagagc 3600
tgtgactgac agcaggaag 3619
<210> 22
<211> 800
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 22
cctgaggctc ttttccagcc ttccttcttg ggtaagttgt agcctagtcc tttctccatc 60
taaaggtgac aaaactcctg aggccatagt acaagttaag tctgatttct gtcactcttc 120
tcttaggtat ggaatcctgt ggcatccatg aaactacatt caattccatc atgaagtgtg 180
acgttgacat ccgtaaagac ctctatgcca acacagtgct gtctggtggt accaccatgt 240
acccaggcat tgctgacagg atgcagaagg agattactgc tctggctcct agcaccatga 300
agatcaaggt aagctaagca tccttagctt ggtgagggtg ggccctgtgg ttgtcagagc 360
aaccttctag gtttaagggg aatcccagca cccagagagc tcaccattca ccatcttgtc 420
ttgctttctt cagatcattg ctcctcctga gcgcaagtac tctgtgtgga tcggtggctc 480
catcctggcc tcactgtcca ccttccagca gatgtggatc agcaagcagg agtacgatga 540
gtccggcccc tccatcgtgc accgcaagtg cttctaggcg gactgttact gagctgcgtt 600
ttacaccctt tctttgacaa aacctaactt gcgcagaaaa aaaaaaaata agagacaaca 660
ttggcatggc tttgtttttt taaatttttt ttaaagtttt tttttttttt tttttttttt 720
tttttaagtt tttttgtttt gttttggcgc ttttgactca ggatttaaaa actggaacgg 780
tgaaggcgac agcagttggt 800
<210> 23
<211> 800
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 23
tggagcaaac atcccccaaa gttctacaaa tgtggctgag gactttgtac attgttttgt 60
tttttttttt ttttggtttt gtcttttttt aatagtcatt ccaagtatcc atgaaataag 120
tggttacagg aagtccctca ccctcccaaa agccaccccc actcctaaga ggaggatggt 180
cgcgtccatg ccctgagtcc accccgggga aggtgacagc attgcttctg tgtaaattat 240
gtactgcaaa aattttttta aatcttccgc cttaatactt catttttgtt tttaatttct 300
gaatggccca ggtctgaggc ctcccttttt tttgtccccc caacttgatg tatgaaggct 360
ttggtctccc tgggaggggg ttgaggtgtt gaggcagcca gggctggcct gtacactgac 420
ttgagaccaa taaaagtgca caccttacct tacacaaaca gcttgtggct ctgtggcttt 480
gctgggtgtg gggagcaggt tgggtgggtg tggagctcta ttgggggggg catctagggt 540
gggctaggcc ttgctgatgg tatctagtgg gagggctaca ggccctttaa tgaagtctca 600
caaataacca caccttcaga ctgtcttgaa gagttgaaaa ggtactcctc cagaaaccta 660
ggccaagttg gcctgcacta acactacctt cctcaaccga ggggtgtcca caccctttgc 720
ctccatctgc ataactgggt ttcaagcccc tctgctagtc tgaagctgcc ctttccagag 780
ctgtgactga cagcaggaag 800
<210> 24
<211> 2019
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 24
gcccctctcc ctcccccccc cctaacgtta ctggccgaag ccgcttggaa taaggccggt 60
gtgcgtttgt ctatatgtta ttttccacca tattgccgtc ttttggcaat gtgagggccc 120
ggaaacctgg ccctgtcttc ttgacgagca ttcctagggg tctttcccct ctcgccaaag 180
gaatgcaagg tctgttgaat gtcgtgaagg aagcagttcc tctggaagct tcttgaagac 240
aaacaacgtc tgtagcgacc ctttgcaggc agcggaaccc cccacctggc gacaggtgcc 300
tctgcggcca aaagccacgt gtataagata cacctgcaaa ggcggcacaa ccccagtgcc 360
acgttgtgag ttggatagtt gtggaaagag tcaaatggct ctcctcaagc gtattcaaca 420
aggggctgaa ggatgcccag aaggtacccc attgtatggg atctgatctg gggcctcggt 480
gcacatgctt tacatgtgtt tagtcgaggt taaaaaaacg tctaggcccc ccgaaccacg 540
gggacgtggt tttcctttga aaaacacgat gataatatgg ccacaaccat ggtgagcaag 600
ggcgaggagg tcatcaaaga gttcatgcgc ttcaaggtgc gcatggaggg ctccatgaac 660
ggccacgagt tcgagatcga gggcgagggc gagggccgcc cctacgaggg cacccagacc 720
gccaagctga aggtgaccaa gggcggcccc ctgcccttcg cctgggacat cctgtccccc 780
cagttcatgt acggctccaa ggcgtacgtg aagcaccccg ccgacatccc cgattacaag 840
aagctgtcct tccccgaggg cttcaagtgg gagcgcgtga tgaacttcga ggacggcggt 900
ctggtgaccg tgacccagga ctcctccctg caggacggca cgctgatcta caaggtgaag 960
atgcgcggca ccaacttccc ccccgacggc cccgtaatgc agaagaagac catgggctgg 1020
gaggcctcca ccgagcgcct gtacccccgc gacggcgtgc tgaagggcga gatccaccag 1080
gccctgaagc tgaaggacgg cggccactac ctggtggagt tcaagaccat ctacatggcc 1140
aagaagcccg tgcaactgcc cggctactac tacgtggaca ccaagctgga catcacctcc 1200
cacaacgagg actacaccat cgtggaacag tacgagcgct ccgagggccg ccaccacctg 1260
ttcctggggc atggcaccgg cagcaccggc agcggcagct ccggcaccgc ctcctccgag 1320
gacaacaaca tggccgtcat caaagagttc atgcgcttca aggtgcgcat ggagggctcc 1380
atgaacggcc acgagttcga gatcgagggc gagggcgagg gccgccccta cgagggcacc 1440
cagaccgcca agctgaaggt gaccaagggc ggccccctgc ccttcgcctg ggacatcctg 1500
tccccccagt tcatgtacgg ctccaaggcg tacgtgaagc accccgccga catccccgat 1560
tacaagaagc tgtccttccc cgagggcttc aagtgggagc gcgtgatgaa cttcgaggac 1620
ggcggtctgg tgaccgtgac ccaggactcc tccctgcagg acggcacgct gatctacaag 1680
gtgaagatgc gcggcaccaa cttccccccc gacggccccg taatgcagaa gaagaccatg 1740
ggctgggagg cctccaccga gcgcctgtac ccccgcgacg gcgtgctgaa gggcgagatc 1800
caccaggccc tgaagctgaa ggacggcggc cactacctgg tggagttcaa gaccatctac 1860
atggccaaga agcccgtgca actgcccggc tactactacg tggacaccaa gctggacatc 1920
acctcccaca acgaggacta caccatcgtg gaacagtacg agcgctccga gggccgccac 1980
cacctgttcc tgtacggcat ggacgagctg tacaagtaa 2019
<210> 25
<211> 800
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 25
cttcaaggtg aaatgcttga ctcctagact tgtgacccag caaagtgctc tataggtagg 60
gttactaggt cagagagtct tgcctgcaaa ccacaattat acaattccac caaatgtaag 120
acatgtaaaa atgacttatt tagctcaggt tttgaaaatt aaaaatcaaa cccacaaaga 180
cctaactttc acattaagta caaatgttta acatatataa catgttttgc cttgatatat 240
gaaatcatat gacatcacct gacaggaaac ttaagtttat ttgaacaaca atcagcctaa 300
ggtaggccta gcacatgatc aggatagtgc agggaaaccc aaagaagtgc ttctgagtat 360
aaaccaagag acctcgaaat agcagctttg ttctgtatct catgggcttt aactatcact 420
tgaaaacaat ttcacaaatc acaaaaccaa catttgttta gtttccaact ctgcctattc 480
accggagaaa tccatgtccc aatttgatgg gggaaaactt gaatgaaata ttatttggaa 540
tattttaata tccctgtgta tatgcagatg gtttaaagac aggtaacctt aactgtagtt 600
tcttggttgt ctgccttgtt ttttgaaata tgctctcacc aggagcctgc caagtaacta 660
ctcttgtgtg ctcagcaagt cctagggatc ccttaagcat gctctaacag gcctggcttt 720
tttttttaaa aagtaggttg cggtgataat aattcaagtt ttcatcactt gaaacacatt 780
ttaccaacta tcacccaagc 800
<210> 26
<211> 799
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 26
tcccttagtg tgtcccctat aaaagaatct gacctgcaag ttccaaaagt attactacat 60
tttaacctta gtattcagga gacaaaagca ggcagaactt tagtctacat atcttgttgc 120
agatcaggca gagatacata gtgagaccct gcctcaggaa aagctatcat ttttatattc 180
acagtaagca aattaacatt aaaagtcaga aattcttaat ttgactttgg ctgtgaagaa 240
tttggattct ctggatttga aactagaaaa tctgattaag cgatgcaaca gtttctgtat 300
actaaaactc taagaccctt ggttctaaag ataccacatt taaaaaaaaa gttaagtata 360
agacaaaaag ccttaatagc tcttttatag gggagggact catttaatat tagtccacct 420
cactcctcat aactatttta tgaggtttat tatataaccc attttttaaa aaaaaaatta 480
aaggacaatt ttagtgtttg aaagatttcc caaccccacc ctggaaatca ggctgcaaat 540
ctcagcagct gcccttagaa ggcaaaaagc catgccattt aagccatggg aagttagtag 600
caaacaagag accacatggc aggaaggagg ctttaaagaa agcccacagt gtcaaaagac 660
ccaaccaaca gcagagacag aaaaaataat acccaaatct catcagaaag gtagacggat 720
ttagccacat ccatagtggc tcattaggga atgcttcaat tataatttta tgaaatctca 780
gagcccccct ccccaacag 799
<210> 27
<211> 1592
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 27
ctcgaggcca ccatggccca gtccaagcac ggcctgacca aggagatgac catgaagtac 60
cgcatggagg gctgcgtgga cggccacaag ttcgtgatca ccggcgaggg catcggctac 120
cccttcaagg gcaagcaggc catcaacctg tgcgtggtgg agggcggccc cttgcccttc 180
gccgaggaca tcttgtccgc cgccttcatg tacggcaacc gcgtgttcac cgagtacccc 240
caggacatcg tcgactactt caagaactcc tgccccgccg gctacacctg ggaccgctcc 300
ttcctgttcg aggacggcgc cgtgtgcatc tgcaacgccg acatcaccgt gagcgtggag 360
gagaactgca tgtaccacga gtccaagttc tacggcgtga acttccccgc cgacggcccc 420
gtgatgaaga agatgaccga caactgggag ccctcctgcg agaagatcat ccccgtgccc 480
aagcagggca tcttgaaggg cgacgtgagc atgtacctgc tgctgaagga cggtggccgc 540
ttgcgctgcc agttcgacac cgtgtacaag gccaagtccg tgccccgcaa gatgcccgac 600
tggcacttca tccagcacaa gctgacccgc gaggaccgca gcgacgccaa gaaccagaag 660
tggcacctga ccgagcacgc catcgcctcc ggctccgcct tgccctgact cgaggggcca 720
ccgtatcaag cttatcgata atcaacctct ggattacaaa atttgtgaaa gattgactgg 780
tattcttaac tatgttgctc cttttacgct atgtggatac gctgctttaa tgcctttgta 840
tcatgctatt gcttcccgta tggctttcat tttctcctcc ttgtataaat cctggttgct 900
gtctctttat gaggagttgt ggcccgttgt caggcaacgt ggcgtggtgt gcactgtgtt 960
tgctgacgca acccccactg gttggggcat tgccaccacc tgtcagctcc tttccgggac 1020
tttcgctttc cccctcccta ttgccacggc ggaactcatc gccgcctgcc ttgcccgctg 1080
ctggacaggg gctcggctgt tgggcactga caattccgtg gtgttgtcgg ggaaatcatc 1140
gtcctttcct tggctgctcg cctgtgttgc cacctggatt ctgcgcggga cgtccttctg 1200
ctacgtccct tcggccctca atccagcgga ccttccttcc cgcggcctgc tgccggctct 1260
gcggcctctt ccgcgtcttc gccttcgccc tcagacgagt cggatctccc tttgggccgc 1320
ctccccgcat cgataccgtc gatcctgtgc cttctagttg ccagccatct gttgtttgcc 1380
cctcccccgt gccttccttg accctggaag gtgccactcc cactgtcctt tcctaataaa 1440
atgaggaaat tgcatcgcat tgtctgagta ggtgtcattc tattctgggg ggtggggtgg 1500
ggcaggacag caagggggag gattgggaag acaatagcag gcatgctggg gatgcggtgg 1560
gctctatggg atgagggcaa tctgggaagg tt 1592
<210> 28
<211> 1753
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 28
gcaacactcc cctcccccac ataacttacg gtaaatggcc cgcctggctg accgcccaac 60
gacccccgcc cattgacgtc aataatgacg tatgttccca tagtaacgcc aatagggact 120
ttccattgac gtcaatgggt ggagtattta cggtaaactg cccacttggc agtacatcaa 180
gtgtatcata tgccaagtac gccccctatt gacgtcaatg acggtaaatg gcccgcctgg 240
cattatgccc agtacatgac cttatgggac tttcctactt ggcagtacat ctacgtatta 300
gtcatcgcta ttaccatggt cgaggtgagc cccacgttct gcttcactct ccccatctcc 360
cccccctccc cacccccaat tttgtattta tttatttttt aattattttg tgcagcgatg 420
ggggcggggg gggggggggg gcgcgcgcca ggcggggcgg ggcggggcga ggggcggggc 480
ggggcgaggc ggagaggtgc ggcggcagcc aatcagagcg gcgcgctccg aaagtttcct 540
tttatggcga ggcggcggcg gcggcggccc tataaaaagc gaagcgcgcg gcgggcgggg 600
agtcgctgcg acgctgcctt cgccccgtgc cccgctccgc cgccgcctcg cgccgcccgc 660
cccggctctg actgaccgcg ttactcccac aggtgagcgg gcgggacggc ccttctcctc 720
cgggctgtaa ttagcgcttg gtttaatgac ggcttgtttc ttttctgtgg ctgcgtgaaa 780
gccttgaggg gctccgggag ggccctttgt gcggggggag cggctcgggg ggtgcgtgcg 840
tgtgtgtgtg cgtggggagc gccgcgtgcg gctccgcgct gcccggcggc tgtgagcgct 900
gcgggcgcgg cgcggggctt tgtgcgctcc gcagtgtgcg cgaggggagc gcggccgggg 960
gcggtgcccc gcggtgcggg gggggctgcg aggggaacaa aggctgcgtg cggggtgtgt 1020
gcgtgggggg gtgagcaggg ggtgtgggcg cgtcggtcgg gctgcaaccc cccctgcacc 1080
cccctccccg agttgctgag cacggcccgg cttcgggtgc ggggctccgt acggggcgtg 1140
gcgcggggct cgccgtgccg ggcggggggt ggcggcaggt gggggtgccg ggcggggcgg 1200
ggccgcctcg ggccggggag ggctcggggg aggggcgcgg cggcccccgg agcgccggcg 1260
gctgtcgagg cgcggcgagc cgcagccatt gccttttatg gtaatcgtgc gagagggcgc 1320
agggacttcc tttgtcccaa atctgtgcgg agccgaaatc tgggaggcgc cgccgcaccc 1380
cctctagcgg gcgcggggcg aagcggtgcg gcgccggcag gaaggaaatg ggcggggagg 1440
gccttcgtgc gtcgccgcgc cgccgtcccc ttctccctct ccagcctcgg ggctgtccgc 1500
ggggggacgg ctgccttcgg gggggacggg gcagggcggg gttcggcttc tggcgtgtga 1560
ccggcggctc tagagcctct gctaaccatg ttcatgcctt cttctttttc ctacagctcc 1620
tgggcaacgt gctggttatt gtgctgtctc atcattttgg caaagaattg atttgatacc 1680
gcgggcccta aacgcgtacc aacgtgaaaa aattattagg taccttcgcg gccggccttc 1740
acgagccgcc acc 1753
<210> 29
<211> 4760
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 29
ttcttgaaga cgaaagggcc tcgtgatacg cctattttta taggttaatg tcatgataat 60
aatggtttct tagacgtcag gtggcacttt tcggggaaat gtgcgcggaa cccctatttg 120
tttatttttc taaatacatt caaatatgta tccgctcatg agacaataac cctgataaat 180
gcttcaataa tattgaaaaa ggaagagtat gagtattcaa catttccgtg tcgcccttat 240
tccctttttt gcggcatttt gccttcctgt ttttgctcac ccagaaacgc tggtgaaagt 300
aaaagatgct gaagatcagt tgggtgcacg agtgggttac atcgaactgg atctcaacag 360
cggtaagatc cttgagagtt ttcgccccga agaacgtttt ccaatgatga gcacttttaa 420
agttctgcta tgtggcgcgg tattatcccg tgttgacgcc gggcaagagc aactcggtcg 480
ccgcatacac tattctcaga atgacttggt tgagtactca ccagtcacag aaaagcatct 540
tacggatggc atgacagtaa gagaattatg cagtgctgcc ataaccatga gtgataacac 600
tgcggccaac ttacttctga caacgatcgg aggaccgaag gagctaaccg cttttttgca 660
caacatgggg gatcatgtaa ctcgccttga tcgttgggaa ccggagctga atgaagccat 720
accaaacgac gagcgtgaca ccacgatgcc tgcagcaatg gcaacaacgt tgcgcaaact 780
attaactggc gaactactta ctctagcttc ccggcaacaa ttaatagact ggatggaggc 840
ggataaagtt gcaggaccac ttctgcgctc ggcccttccg gctggctggt ttattgctga 900
taaatctgga gccggtgagc gtgggtctcg cggtatcatt gcagcactgg ggccagatgg 960
taagccctcc cgtatcgtag ttatctacac gacggggagt caggcaacta tggatgaacg 1020
aaatagacag atcgctgaga taggtgcctc actgattaag cattggtaac tgtcagacca 1080
agtttactca tatatacttt agattgattt aaaacttcat ttttaattta aaaggatcta 1140
ggtgaagatc ctttttgata atctcatgac caaaatccct taacgtgagt tttcgttcca 1200
ctgagcgtca gaccccgtag aaaagatcaa aggatcttct tgagatcctt tttttctgcg 1260
cgtaatctgc tgcttgcaaa caaaaaaacc accgctacca gcggtggttt gtttgccgga 1320
tcaagagcta ccaactcttt ttccgaaggt aactggcttc agcagagcgc agataccaaa 1380
tactgtcctt ctagtgtagc cgtagttagg ccaccacttc aagaactctg tagcaccgcc 1440
tacatacctc gctctgctaa tcctgttacc agtggctgct gccagtggcg ataagtcgtg 1500
tcttaccggg ttggactcaa gacgatagtt accggataag gcgcagcggt cgggctgaac 1560
ggggggttcg tgcacacagc ccagcttgga gcgaacgacc tacaccgaac tgagatacct 1620
acagcgtgag ctatgagaaa gcgccacgct tcccgaaggg agaaaggcgg acaggtatcc 1680
ggtaagcggc agggtcggaa caggagagcg cacgagggag cttccagggg gaaacgcctg 1740
gtatctttat agtcctgtcg ggtttcgcca cctctgactt gagcgtcgat ttttgtgatg 1800
ctcgtcaggg gggcggagcc tatggaaaaa cgccagcaac gcggcctttt tacggttcct 1860
ggccttttgc tggccttttg ctcacatgtt ctttcctgcg ttatcccctg attctgtgga 1920
taaccgtatt accgcctttg agtgagctga taccgctcgc cgcagccgaa cgaccgagcg 1980
cagcgagtca gtgagcgagg aagcggaaga gcgcctgatg cggtattttc tccttacgca 2040
tctgtgcggt atttcacacc gcatatggtg cactctcagt acaatctgct ctgatgccgc 2100
atagttaagc cagtatacac tccgctatcg ctacgtgact gggtcatggc tgcgccccga 2160
cacccgccaa cacccgctga cgcgccctga cgggcttgtc tgctcccggc atccgcttac 2220
agacaagctg tgaccgtctc cgggagctgc atgtgtcaga ggttttcacc gtcatcaccg 2280
aaacgcgcga ggcagctgcg gtaaagctca tcagcgtggt cgtgaagcga ttcacagatg 2340
tctgcctgtt catccgcgtc cagctcgttg agtttctcca gaagcgttaa tgtctggctt 2400
ctgataaagc gggccatgtt aagggcggtt ttttcctgtt tggtcactga tgcctccgtg 2460
taagggggat ttctgttcat gggggtaatg ataccgatga aacgagagag gatgctcacg 2520
atacgggtta ctgatgatga acatgcccgg ttactggaac gttgtgaggg taaacaactg 2580
gcggtatgga tgcggcggga ccagagaaaa atcactcagg gtcaatgcca gcgcttcgtt 2640
aatacagatg taggtgttcc acagggtagc cagcagcatc ctgcgatgca gatccggaac 2700
ataatggtgc agggcgctga cttccgcgtt tccagacttt acgaaacacg gaaaccgaag 2760
accattcatg ttgttgctca ggtcgcagac gttttgcagc agcagtcgct tcacgttcgc 2820
tcgcgtatcg gtgattcatt ctgctaacca gtaaggcaac cccgccagcc tagccgggtc 2880
ctcaacgaca ggagcacgat catgcgcacc cgtggccagg acccaacgct gcccgagatg 2940
cgccgcgtgc ggctgctgga gatggcggac gcgatggata tgttctgcca agggttggtt 3000
tgcgcattca cagttctccg caagaattga ttggctccaa ttcttggagt ggtgaatccg 3060
ttagcgaggt gccgccggct tccattcagg tcgaggtggc ccggctccat gcaccgcgac 3120
gcaacgcggg gaggcagaca aggtataggg cggcgcctac aatccatgcc aacccgttcc 3180
atgtgctcgc cgaggcggca taaatcgccg tgacgatcag cggtccagtg atcgaagtta 3240
ggctggtaag agccgcgagc gatccttgaa gctgtccctg atggtcgtca tctacctgcc 3300
tggacagcat ggcctgcaac gcgggcatcc cgatgccgcc ggaagcgaga agaatcataa 3360
tggggaaggc catccagcct cgcgtcgcga acgccagcaa gacgtagccc agcgcgtcgg 3420
ccgccatgcc ggcgataatg gcctgcttct cgccgaaacg tttggtggcg ggaccagtga 3480
cgaaggcttg agcgagggcg tgcaagattc cgaataccgc aagcgacagg ccgatcatcg 3540
tcgcgctcca gcgaaagcgg tcctcgccga aaatgaccca gagcgctgcc ggcacctgtc 3600
ctacgagttg catgataaag aagacagtca taagtgcggc gacgatagtc atgccccgcg 3660
cccaccggaa ggagctgact gggttgaagg ctctcaaggg catcggtcga ggaaactcgg 3720
ccgtggtgac caatacaaaa caaaagcgct cctcgtacca gcgaagaagg ggcagagatg 3780
ccgtagtcag gtttagttcg tccggcggcg ccagaaatcc gcgcggtggt ttttgggggt 3840
cgggggtgtt tggcagccac agacgcccgg tgttcgtgtc gcgccagtac atgcggtcca 3900
tgcccaggcc atccaaaaac catgggtctg tctgctcagt ccagtcgtgg actgacccca 3960
cgcaacgccc aaaataataa cccccacgaa ccataaacca ttccccatgg gggaccccgt 4020
ccctaaccca cggggcccgt ggctatggca gggcctgccg ccccgacgtt ggctgcgagc 4080
cctgggcctt cacccgaact tggggggtgg ggtggggaaa aggaagaaac gcgggcgtat 4140
tggccccaat ggggtctcgg tggggtatcg acagagtgcc agccctggga ccgaaccccg 4200
cgtttatgtg gacctgggac cgcgccgccc cgactgcatc tgcgtgttcg aattcgccaa 4260
tgacaagacg ctgggcgggg tttgctcgac attgggtgga aacattccag gcctgggtgg 4320
agaggctttt tgcttcctct tgcaaaacca cactgctcga cattgggtgg aaacattcca 4380
ggcctgggtg gagaggcttt ttgcttcctc ttgaaaacca cgagtttacc actccctatc 4440
agtgatagag aaaagtgaaa gtcgagttta ccactcccta tcagtgatag agaaaagtga 4500
aagtcgagtt taccactccc tatcagtgat agagaaaagt gaaagtcact gctcgactct 4560
agaggatcgc ggccggccgc agcttgtcga ccgcggcctt tagcgagttt accactccct 4620
atcagtgata gagaaaagtg aaagtcgagt ttaccactcc ctatcagtga tagagaaaag 4680
tgaaagtcga gtttaccact ccctatcagt gatagagaaa agtgaaagtc ttatcgatga 4740
taagctgtca aacatgagaa 4760
<210> 30
<211> 100
<212> RNA
<213> Artificial Sequence (Artificial Sequence)
<400> 30
ggggacacac uaagggagcu guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60
cguuaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100
<210> 31
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 31
tgtgttgtgt gtgcttgtgc 20
<210> 32
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 32
caatccagcg gaccttcctt 20
<210> 33
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 33
agagtgaagc agaacgtggg 20
<210> 34
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 34
agacctgttg ctgctcagac 20
<210> 35
<211> 1887
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 35
ttaggtacct tcgcataact tcgtatagca tacattatac gaagttatcc tcagcaccat 60
ggctagcggc agcctcggag tttgaataga tagaataaaa tatctttatt ttcattccat 120
ctgtgtgttg gttttttgtg tgagatctac gggtggcatc cctgtgaccc ctccccagtg 180
cctctcctgg ccctggaagt tgccactcca gtgcccacca gccttgtcct aataaaatta 240
agttgcatca ttttgtctga ctaggtgtcc ttctataata ttatggggtg gaggggggtg 300
gtatggagca aggggcaagt tgggaagaca acctgtaggg cctgcggggt ctattgggaa 360
ccaagctgga gtgcagtggc acaatcttgg ctcactgcaa tctccgcctc ctgggttcaa 420
gcgattctcc tgcctcaggc tcccgagttg ttgggattcc aggcatgcat gaccaggctc 480
agctaatttt tgtttttttg gtagagacgg ggtttcacca tattggccag gctggtctcc 540
aactcctaat ctcaggtgat ctacccacct tggcctccca aattgctggg attacaggcg 600
tgaaccactg ctcccttccc tgtccttctg cctcagctaa ttgagtaggg gggaggctaa 660
ctgaaacacg gaaggagaca ataccggaag gaacccgcgc tatgacggca ataaaaagac 720
agaataaaac gcacgggtgt tgggtcgttt gttcataaac gcggggttcg gtcccagggc 780
tggcactctg tcgatacccc accgagaccc cattggggcc aatacgcccg cgtttcttcc 840
ttttccccac cccacccccc aagttcgggt gaaggcccag ggctcgcagc caacgtcggg 900
gcggcaggcc gtggaattcg taaatgaatt ttctgtatga ggtcgcgatg aataaatgaa 960
agcttgcaga tctgcgactc tagaggatct gcgactctag aggatcataa tcagccatac 1020
cacatttgta gaggttttac ttgctttaaa aaacctccca cacctccccc tgaacctgaa 1080
acataaaatg aatgcaattg ttgttgttaa cttgtttatt gcagcttata atggttacaa 1140
ataaagcaat agcatcacaa atttcacaaa taaagcattt ttttcactgc attctagttg 1200
tggtttgtcc aaactcatca atgtatctta tcatgtctgg atctgcgact ctagaggatc 1260
ataatcagcc ataccacatt tgtagaggtt ttacttgctt taaaaaacct cccacacctc 1320
cccctgaacc tgaaacataa aatgaatgca attgttgttg ttaacttgtt tattgcagct 1380
tataatggtt acaaataaag caatagcatc acaaatttca caaataaagc atttttttca 1440
ctgcattcta gttgtggttt gtccaaactc atcaatgtat cttatcatgt ctggatctgc 1500
gactctagag gatcataatc agccatacca catttgtaga ggttttactt gctttaaaaa 1560
acctcccaca cctccccctg aacctgaaac ataaaatgaa tgcaattgtt gttgttaact 1620
tgtttattgc agcttataat ggttacaaat aaagcaatag catcacaaat ttcacaaata 1680
aagcattttt ttcactgcat tctagttgtg gtttgtccaa actcatcaat gtatcttatc 1740
atgtctggat ccccatcaag ctgatccgga acccttaata taacttcgta tagcatacat 1800
tatacgaagt tattaggtcc ctcgacctgc agcccaagct agatcgaatt cggccggcct 1860
tcacgagccg ccaccctcga ggccacc 1887
<210> 36
<211> 800
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 36
acatacagct gtacataaag taactatcag ttaggcttgt gtcaactgtt tggatttttt 60
tcacttgaat atttgggact ttttcttttg gtttattaaa agttacatat gccacgtgtg 120
tgaacgatat ggctggtact gtgtttattt cttccatgaa ctaagacagt ctaaatgagt 180
tcctttcacg ttttaatttt accttaggac ttctggaatt tcttctgcac ataaagttct 240
gatagcatta gtttaagctg gactaaccct gaaagtagct tgtggcaagt atcaaggaat 300
caatattata ctctacaaaa tcaaagttta cagagaagtc atatagtaat ttttctgaaa 360
tttactggca caatgttaat ccagcctgac tccaactaat taatggtcac attaatttaa 420
gtctttccct tgcctctgct gcattagttt ctctcaaaat tgttaactta caacttgaag 480
tctggtatta taaattgaat gtaaagcatt ctgaaagata ctatactgat tgcaggtttt 540
tcagtcaggt tcaagctaat ttgaccagtc attggattaa ttatggatct ggggccataa 600
atgctatttt aattccacta tagagattaa aataagccat tctccatttc ataatattct 660
attggacttt gactgcaggg gcctccaagt cttgacagta gattataatc cttcagctgc 720
ccactctact ggaggaggac aaactggtca cttttcagca aaacctggct gtggatcagg 780
gcagtctggt acttccaagc 800
<210> 37
<211> 800
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 37
tcattagatg ccatcatgct ctcactgcct cctcagcttc aagaggaatc tggaaaaagc 60
agtcccactg gtcaggaaag gaacactagt gcacttatcc tgggtgtctg ctgagccaac 120
agtggtagta aggtaagggc aggatgtgtc aaactgccaa tagagaacta cttactcttc 180
aggctgaagc tgatggaaca ggtaacaaag gcaaacacta atcatgatca gcaagatgaa 240
gcagaaaggg aacaagggga tattaaatgt gtatagacac gctagagaga tggctcagca 300
gttaagagaa ctagctggtc tttcagaggt cctgagatca attttagaca cccacatggt 360
ggctcatgac catctatcta taaatggatc tgattttcat gtctggcagt gtacagaagc 420
taactgaaga aaggtggaag acccacaaga gttcaagata agccctatat agtgaagttc 480
aaggcaagct ttttctacct gaaacttagt ctcaaaaaaa aatgaatacg taaacagtct 540
tccaggggat aagaacctta cagaaaaagc agaaatgcct ggggcactgg attaccgatg 600
taatcaaatt cagtccttga attgaacaca ggattgccta gagcaaggcc agccagagat 660
tcatctcaga gggagaaagg tgtctttgga gcaattttgt ggtaatctag tatgtatcac 720
ataagtttag acgcatttgg gactggaaag atgtgaacaa agcaccctat ggctcacatc 780
tgtcattaac tctagttcca 800
<210> 38
<211> 768
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 38
atgagcgagc tgattaagga gaacatgcac atgaagctgt acatggaggg caccgtggac 60
aaccatcact tcaagtgcac atccgagggc gaaggcaagc cctacgaggg cacccagacc 120
atgagaatca aggtggtcga gggcggccct ctccccttcg ccttcgacat cctggctact 180
agcttcctct acggcagcaa gaccttcatc aaccacaccc agggcatccc cgacttcttc 240
aagcagtcct tccctgaggg cttcacatgg gagagagtca ccacatacga agacgggggc 300
gtgctgaccg ctacccagga caccagcctc caggacggct gcctcatcta caacgtcaag 360
atcagagggg tgaacttcac atccaacggc cctgtgatgc agaagaaaac actcggctgg 420
gaggccttca ccgagacgct gtaccccgct gacggcggcc tggaaggcag aaacgacatg 480
gccctgaagc tcgtgggcgg gagccatctg atcgcaaaca tcaagaccac atatagatcc 540
aagaaacccg ctaagaacct caagatgcct ggcgtctact atgtggacta cagactggaa 600
agaatcaagg aggccaacaa cgagacctac gtcgagcagc acgaggtggc agtggccaga 660
tactgcgacc tccctagcaa actggggcac aagcttaatg actacaaaga ccatgacggt 720
gattataaag atcatgatat cgattacaag gatgacgatg acaagtag 768
<210> 39
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 39
tgcatcctcc aggctctagt 20
<210> 40
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 40
agagtgaagc agaacgtggg 20
<210> 41
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 41
caatccagcg gaccttcctt 20
<210> 42
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 42
cacaacctgg tcagtccctc 20
<210> 43
<211> 800
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 43
gggaccgcag cactggggag gcggtccgct cccagaatgg taagggcgag agaatggtaa 60
gggtccagct cgcggcggcg caggccgaag cccagccgca gtccgtaggc cggggctgtc 120
cgccgggccc agtgaagttc cttcaggaga agcccagcca tcccggatcc gccctcacta 180
gcggccggct cggcgccatt gcgccctacc gtgtaaggga agaatgttcg agaatgcaca 240
cggttggggg aggcgttcaa gatgggtgtg ggcgtccgtg ccccaatacc tagtagagga 300
gctccagata gacttctccg ccactcccct ctgctccttt gttgggttcc aagccggttg 360
gagcacctct gacatagcca gaaaagagta gctttcaccg gttccattgg cccttgagaa 420
gatgctcata gaatctaggt ggcttttgcg ttgcttccct tccctggtct ggttcttgga 480
tgcccagaat ctgcaggtga cagctgctcc cccagtaaaa cgtaacggaa tgcaaactga 540
acgttattaa gcgatacttt tagctgcctt tatcgtggtt aactttaata cgagtaagca 600
cgtggtttgc tgtggttgaa tttgttcttg aaagcattcc cttgcaggaa ccgtgttctg 660
tgttgtgctt tttttttttt tttaaacaac tctcttagaa attactacta ctttatcctg 720
gtgaactatc taatattctt actaaacttg ccagagtctg aagagaaagg ctgaacttaa 780
agggtttttt cccccctagt 800
<210> 44
<211> 1169
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 44
caacctggcc gttaagatgc ataacttcgt ataatgtatg ctatacgaag ttatgtagta 60
gtaaggaatg aacttaagat tgcttataat ttgaggcatt aaaatctttg caatcggtga 120
tataccaata ctaaatagaa aaaagaatag ttaaccttca ctggtcctta agtaagtgat 180
tccccccccc ccccacacac acacacacac acacacacag ggtttcactg tatagctgtg 240
gctgtcctgg aagcaacttt gtagaccagg ctggcctcga actcagaaat ctgcctgcct 300
ctgcctcccg agtgctggga ttaaaggcgt gcgccgccac acccggcttg attttttttt 360
ttttaaatag taattacaga ctttagattt tagcaaatca taggtagttg agtgtcatag 420
tttatgtgtt gttctaatta gttttcactg ttcatctaca gttatggctg cagcttctat 480
tgccaacatt gttaaaagtt cttttgggcc agttggcttg gataaaatgt tggtggatga 540
tattggtgta agtatatatc taattgctct tgcttgcctt gataaaagta cattgtttta 600
aatttcaaaa aaaaatcttt ggtaaagtct ttgtttttac ctgagtatgg atggcatcct 660
agagcttggt ttctgtgttg accacttatt ccttcatatt tcttaggatg taaccattac 720
taacgatggt gccaccatcc tgaagttact ggaggtagaa catcccgcag ccaaagttct 780
gtgtgagctg gctgacctgc aagacaaaga agttggagat ggaactacct cagtggtgag 840
acgctaccag gaaatggcta gagaatagtc aatttattag agttgaatcc atgagagagt 900
catactctag gtcagaaata agtcaccttt taaggcagtc tcacaaactt ttgaaaacta 960
accattgtaa ctagtttgtg taatttaagt aagggaagaa cttaaggtga ttaaataaat 1020
acaagcttgt tttaaatact ggagtctcgt gaatttggag ccttatttaa acctacttaa 1080
ccatgatgat gttcatgtag aaaatgttac cagataactt cgtataatgt atgctatacg 1140
aagttattaa ccactggtgg cattgatga 1169
<210> 45
<211> 800
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 45
gtttggactt ttttctttgt tgtttaatag atacttttgt attttaaatg tgaacaagaa 60
atctttggaa ttcaaaatag aaatttgcag aagttaattt gctaccatat agtgctaatg 120
gctagtcagc aaacatggcg aatagtgtaa cattttgtga gttagcctgc ttaagtagta 180
aaatactgtt tggtgaggca gattttagac ctggcaaaat aaatggtgag ggaaaagtat 240
ttatagactt accctttact aggaaagaat tgaatctgtt tttaaatagt gaaaatggac 300
tttatctaat ttgttcatag acaatgtaac ttaaaaataa ccttaattcc actcgaaaga 360
agaaaagttt tttggagatt ttgttttgtt ttattattaa gaaaactggt ttttcacagt 420
gttctctatt ttaaatgatc ttaagatttt attgaaatta ctggaatgat accagtcatt 480
tccattgatt gctatctagc tcttgttgca gtaagtctgt aaatgtaatg gatataaatt 540
ctgctgtatt agatttttag cattttctgg cttttccagc ttggaccatt tccatagaat 600
acttttaggt tttttgaggc aggatttctc tgtgtagccc tgactgtcct ggagctcact 660
ttgtagacca ggctggcctc gaactcagaa atccgcctgc ctctacctcc caagtgctag 720
gattaaaggc atgcgccacc acgcctggca cagaatactt cctagtggtc tctatgttgt 780
gttttcaacg agttgctact 800
<210> 46
<211> 21
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 46
atccctaccg ctttcccggc a 21
<210> 47
<211> 22
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 47
tcatcaatgc caccagtggt ta 22
<210> 48
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 48
caacctggcc gttaagatgc 20
<210> 49
<211> 21
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 49
cgatagccac taataactga t 21
<210> 50
<211> 800
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 50
ggcctgtgcc tggggtggcc tactctgtgt cactcccggc ctccttcctg gaggatgtag 60
ccggcagcgg ggaagctgag ggttcttcag cctcttcccc gagcctgccg ccgcctggga 120
ctccagcctt cagtcccaca ccggagagac cccagcccac agctctggac ggccccgtgc 180
cacccaccaa cctcctggaa gggatcatgg atttcttccg gcagtacgtg atgctcatcg 240
cggtggtggg ctcgctgacc ttcctcatca tgttcatagt ctgcgccgcc ctcatcacgc 300
gccagaagca caaggccaca gcctactacc catcctcgtt ccctgaaaag aagtatgtgg 360
accagagaga ccgggctggg ggaccccgta ccttcagcga ggtccctgac agggcacctg 420
acagccggca tgaagaaggc ctggacacct cccatcagct ccaggctgac attctggctg 480
ctacccagaa cctccggtct ccagctagag ccctgccagg caatggggag ggagcaaagc 540
ctgtgaaggg tgggtcggag gaggaggagg aagaggtgct cagcggtcag gaggaggccc 600
aggaagcccc agtatgtggg gtcactgaag agaagctggg ggtcccagag gagtcggtct 660
cagcagaggc tgaaggggtt cctgccacca gtgagggcca aggggaagca gaagggtctt 720
tctccttagc ccaggaatcc cagggagcaa ctggtcctcc tgaaagtccc tgtgcctgca 780
acagagtctc ccccagtgtc 800
<210> 51
<211> 1563
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 51
gactacaaag accatgacgg tgattataaa gatcatgata tcgattacaa ggatgacgat 60
gacaagggaa gcggagctac taacttcagc ctgctgaagc aggctggcga cgtggaggag 120
aaccctggtc ctatggtgag caagggcgag gaggtcatca aagagttcat gcgcttcaag 180
gtgcgcatgg agggctccat gaacggccac gagttcgaga tcgagggcga gggcgagggc 240
cgcccctacg agggcaccca gaccgccaag ctgaaggtga ccaagggcgg ccccctgccc 300
ttcgcctggg acatcctgtc cccccagttc atgtacggct ccaaggcgta cgtgaagcac 360
cccgccgaca tccccgatta caagaagctg tccttccccg agggcttcaa gtgggagcgc 420
gtgatgaact tcgaggacgg cggtctggtg accgtgaccc aggactcctc cctgcaggac 480
ggcacgctga tctacaaggt gaagatgcgc ggcaccaact tcccccccga cggccccgta 540
atgcagaaga agaccatggg ctgggaggcc tccaccgagc gcctgtaccc ccgcgacggc 600
gtgctgaagg gcgagatcca ccaggccctg aagctgaagg acggcggcca ctacctggtg 660
gagttcaaga ccatctacat ggccaagaag cccgtgcaac tgcccggcta ctactacgtg 720
gacaccaagc tggacatcac ctcccacaac gaggactaca ccatcgtgga acagtacgag 780
cgctccgagg gccgccacca cctgttcctg gggcatggca ccggcagcac cggcagcggc 840
agctccggca ccgcctcctc cgaggacaac aacatggccg tcatcaaaga gttcatgcgc 900
ttcaaggtgc gcatggaggg ctccatgaac ggccacgagt tcgagatcga gggcgagggc 960
gagggccgcc cctacgaggg cacccagacc gccaagctga aggtgaccaa gggcggcccc 1020
ctgcccttcg cctgggacat cctgtccccc cagttcatgt acggctccaa ggcgtacgtg 1080
aagcaccccg ccgacatccc cgattacaag aagctgtcct tccccgaggg cttcaagtgg 1140
gagcgcgtga tgaacttcga ggacggcggt ctggtgaccg tgacccagga ctcctccctg 1200
caggacggca cgctgatcta caaggtgaag atgcgcggca ccaacttccc ccccgacggc 1260
cccgtaatgc agaagaagac catgggctgg gaggcctcca ccgagcgcct gtacccccgc 1320
gacggcgtgc tgaagggcga gatccaccag gccctgaagc tgaaggacgg cggccactac 1380
ctggtggagt tcaagaccat ctacatggcc aagaagcccg tgcaactgcc cggctactac 1440
tacgtggaca ccaagctgga catcacctcc cacaacgagg actacaccat cgtggaacag 1500
tacgagcgct ccgagggccg ccaccacctg ttcctgtacg gcatggacga gctgtacaag 1560
taa 1563
<210> 52
<211> 800
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 52
ggctctgggt tagctgtctc aaaggttgct aggtccgtgg caggccccag aactgctggg 60
acccgaatgt tgggtccttg agggtcacct ctttggtcaa gaaaggcatt cagctctaac 120
tgctccttga taccacgtgg cttggccatt gctggtgcca aggctgaccc cgaactggca 180
gagccgatgc cctctggtgc accccaggaa acatctcccc aagttccagc gcccttaatg 240
actcttgcca ccctgggggc ttcaccctaa cgcaccactt ctctggaagg ggaaggccag 300
acacatgcca gttggggctg catgaggcag tcctcagagc agaaggggac caggccagag 360
gccacctgtg acggggcaaa ctgcatctcg gctgtggaga ccagaggggc tgttagattt 420
ggaagacatc aatgactggg cctgcggcgc agcccgtgtc tggtaatacc agggacggca 480
gaggcgtttg catcttccca tcacctgcaa tgtcgctgtc actctgcccc tgttcagtgg 540
acttgattag ttaggaaact tctggaaggg gccccctact ttatatcaca gagtttgccc 600
tagacacccc gtggaaacac aaactcaaaa tcaagtggct ttaggagccg ctgtgcccct 660
ccacaagctg acatggctac tctaagggtt cctgctgggc tggctttgct acgctttcct 720
caagctgctt tcttattacc aggatgcctc acagctacaa agtccaatct cacagcaccc 780
gcactggaaa atactgttct 800
<210> 53
<211> 30
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 53
ataacctatc ccctaacaca taagcaccag 30
<210> 54
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 54
cagcttggtg tccacgtagt 20
<210> 55
<211> 22
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 55
catggacgag ctgtacaagt aa 22
<210> 56
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 56
tggaatggta tttgggtgtt 20

Claims (17)

1. A fusion protein comprises a Cas9 protein and a TetR protein, wherein the Cas9 protein and the TetR protein are connected through a flexible connecting peptide.
2. The fusion protein of claim 1, wherein the flexible linker peptide consists of 1-6 GGGGS domains.
3. The fusion protein of claim 2, wherein the flexible linker peptide consists of 4 GGGGS domains.
4. The fusion protein of any one of claims 1-3, wherein the coding sequence of the Cas9 protein is shown as SEQ ID NO 1, and the coding sequence of the TetR protein is shown as SEQ ID NO 2.
5. The fusion protein of claim 4, wherein the encoding nucleic acid sequence of the fusion protein is shown as SEQ ID NO. 13, and the protein sequence thereof is shown as SEQ ID NO. 14.
6. A homologous recombination system comprising a Cas9-TetR fusion protein, a gRNA, a vector containing a tetracycline operator (tetO) element.
7. The homologous recombination system of claim 6, wherein the tetO sites are located outside the left arm and/or the right arm of the homologous recombination of the recombination vector, and the number of tetOs is 1-7 per arm.
8. The homologous recombination system of claim 7, wherein 3 tetO sites are added simultaneously outside the left arm of homologous recombination and outside the right arm of homologous recombination.
9. The homologous recombination system of claim 8, wherein the vector containing the tetracycline operator (tetO) element is a DNA vector.
10. The homologous recombination system of claim 9, wherein the vector comprises a left arm of homologous recombination, an insertion element, and a right arm of homologous recombination, all connected in sequence from 5 'to 3'.
11. The homologous recombination system of claim 10, comprising a gRNA expression vector or a Cas9-TetR expression vector or a Cas9-TetR-gRNA expression vector.
12. Use of the fusion protein of any one of claims 1 to 5 or the homologous recombination system of any one of claims 6 to 11 for increasing the positive rate of homologous recombination.
13. The use according to claim 12, wherein the vector for homologous recombination is a DNA fragment of more than 2000 bp.
14. Use of the fusion protein of any one of claims 1-5, the homologous recombination system of any one of claims 6-11, for the preparation of a genetically modified animal model.
15. A method of gene recombination comprising:
step 1: gene synthesis or plasmid template amplification mode to obtain homologous recombination left arm, homologous recombination right arm, and inserted element sequence segment, PCR amplification, and connecting the vector and the segment to form homologous recombination vector;
step 2: designing a gRNA sequence aiming at a genome site of a target cell, and constructing a Cas9-tetR expression vector and a gRNA expression vector; or in vitro transcription to obtain Cas9-tetR mRNA, and artificially synthesizing gRNA;
and step 3: introducing the homologous recombination vector obtained in the step 1, the Cas9-tetR and gRNA expression vector obtained in the step 2, or the Cas9-tetR mRNA and the artificially synthesized gRNA into a target cell together.
16. The gene recombination method according to claim 15, wherein the vector in step 1 is a plasmid vector comprising tetO.
17. The method of gene recombination according to claim 15, wherein the introduction in step 3 is microinjection or cotransfection.
CN202110855459.XA 2021-07-28 2021-07-28 Method capable of improving homologous recombination efficiency of CRISPR/Cas9 system and application Withdrawn CN113667017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110855459.XA CN113667017A (en) 2021-07-28 2021-07-28 Method capable of improving homologous recombination efficiency of CRISPR/Cas9 system and application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110855459.XA CN113667017A (en) 2021-07-28 2021-07-28 Method capable of improving homologous recombination efficiency of CRISPR/Cas9 system and application

Publications (1)

Publication Number Publication Date
CN113667017A true CN113667017A (en) 2021-11-19

Family

ID=78540411

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110855459.XA Withdrawn CN113667017A (en) 2021-07-28 2021-07-28 Method capable of improving homologous recombination efficiency of CRISPR/Cas9 system and application

Country Status (1)

Country Link
CN (1) CN113667017A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114686456A (en) * 2022-05-10 2022-07-01 中山大学 Base editing system based on bimolecular deaminase complementation and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180250424A1 (en) * 2014-10-10 2018-09-06 Editas Medicine, Inc. Compositions and methods for promoting homology directed repair
CN108546716A (en) * 2017-02-20 2018-09-18 中国科学院遗传与发育生物学研究所 A kind of genome edit methods
WO2019040664A1 (en) * 2017-08-22 2019-02-28 Salk Institute For Biological Studies Rna targeting methods and compositions
US20190309275A1 (en) * 2018-03-25 2019-10-10 GeneTether, Inc. Modified nucleic acid editing systems for tethering donor dna
CN111373041A (en) * 2017-09-26 2020-07-03 伊利诺伊大学理事会 CRISPR/CAS systems and methods for genome editing and regulation of transcription
CN112210573A (en) * 2020-10-14 2021-01-12 浙江大学 DNA template for modifying primary cells by using gene editing and fixed-point insertion method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180250424A1 (en) * 2014-10-10 2018-09-06 Editas Medicine, Inc. Compositions and methods for promoting homology directed repair
CN108546716A (en) * 2017-02-20 2018-09-18 中国科学院遗传与发育生物学研究所 A kind of genome edit methods
WO2019040664A1 (en) * 2017-08-22 2019-02-28 Salk Institute For Biological Studies Rna targeting methods and compositions
CN111373041A (en) * 2017-09-26 2020-07-03 伊利诺伊大学理事会 CRISPR/CAS systems and methods for genome editing and regulation of transcription
US20190309275A1 (en) * 2018-03-25 2019-10-10 GeneTether, Inc. Modified nucleic acid editing systems for tethering donor dna
CN112210573A (en) * 2020-10-14 2021-01-12 浙江大学 DNA template for modifying primary cells by using gene editing and fixed-point insertion method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
方肇勤等: "分子生物学技术在中医药研究中的应用 第3版", 上海科学技术出版社, pages: 195 - 204 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114686456A (en) * 2022-05-10 2022-07-01 中山大学 Base editing system based on bimolecular deaminase complementation and application thereof
CN114686456B (en) * 2022-05-10 2023-02-17 中山大学 Base editing system based on bimolecular deaminase complementation and application thereof

Similar Documents

Publication Publication Date Title
KR102622910B1 (en) Pd-1 homing endonuclease variants, compositions, and methods of use
AU2018279457B2 (en) Method for manufacturing DNA-edited eukaryotic cell, and kit used in method
AU2011266843C9 (en) Animal models and therapeutic molecules
AU2016337408A1 (en) Inducible modification of a cell genome
AU774643B2 (en) Compositions and methods for use in recombinational cloning of nucleic acids
KR20200064129A (en) Transgenic selection methods and compositions
KR102628872B1 (en) Tools and methods for using cell division loci to control proliferation of cells
CN101356275A (en) Recombinant expression of multiprotein complexes using polygenes
CN111621522A (en) Method for cultivating intestinal tract specific expression red fluorescent transgenic zebra fish
CN112912112A (en) Liver-specific nucleic acid regulatory elements and methods and uses thereof
CN113667017A (en) Method capable of improving homologous recombination efficiency of CRISPR/Cas9 system and application
CN109082442B (en) A kind of preparation method for the mescenchymal stem cell for releasing immunosupress and enhancing tumor-targeting killing
CN113215265B (en) Application of bta-miRNA29d-3p in regulating process of accumulation of mammary epithelial cell lipid of dairy cow
CN114846141B (en) Isolated nucleic acid molecule and application thereof
CN108949690B (en) A method of prepare can real-time detection mescenchymal stem cell bone differentiation cell model
KR20220142502A (en) Muscle-specific nucleic acid regulatory elements and methods and uses thereof
KR102175930B1 (en) Enhancer Element of the Cux2 Gene and Uses Thereof
RU2800264C1 (en) Method of obtaining genetically modified laboratory animals with inducible systemic and tissue-specific expression of human cyclophilin a
NL2027815B1 (en) Genomic integration
CN109628487A (en) A method of growth factor of human nerve is prepared using transgene pig salivary gland
CN114958758B (en) Construction method and application of breast cancer model pig
CN109082443A (en) A method of preparing can the cell model that breaks up to mature hepatic lineage of real-time detection mescenchymal stem cell
KR20240004433A (en) ERT2 mutants and their uses
CN116768983A (en) Protein for preventing and/or treating chronic hepatitis B, coding gene, recombinant adeno-associated virus and application thereof
CN114958758A (en) Construction method and application of breast cancer model pig

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20211119