KR102142255B1 - Expression Method of CRM197 Protein - Google Patents

Expression Method of CRM197 Protein Download PDF

Info

Publication number
KR102142255B1
KR102142255B1 KR1020190160771A KR20190160771A KR102142255B1 KR 102142255 B1 KR102142255 B1 KR 102142255B1 KR 1020190160771 A KR1020190160771 A KR 1020190160771A KR 20190160771 A KR20190160771 A KR 20190160771A KR 102142255 B1 KR102142255 B1 KR 102142255B1
Authority
KR
South Korea
Prior art keywords
crm197
protein
dna
expression
crm197 protein
Prior art date
Application number
KR1020190160771A
Other languages
Korean (ko)
Inventor
김정현
김현도
박은혜
강정현
반재구
김의중
이찬규
박민철
Original Assignee
주식회사 제노포커스
주식회사 유바이오로직스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 제노포커스, 주식회사 유바이오로직스 filed Critical 주식회사 제노포커스
Priority to KR1020190160771A priority Critical patent/KR102142255B1/en
Application granted granted Critical
Publication of KR102142255B1 publication Critical patent/KR102142255B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/08Linear peptides containing only normal peptide links having 12 to 20 amino acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/34Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Corynebacterium (G)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/02Fusion polypeptide containing a localisation/targetting motif containing a signal sequence

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The present invention relates to a signal sequence for expressing and secreting CRM197 protein into the periplasm in E. coli and a use thereof and, more specifically, to a signal sequence for expressing CRM197 protein, a nucleic acid encoding the signal sequence, a nucleic acid structure or expression vector including the nucleic acid and the CRM197 protein gene, a recombinant microorganism into which the nucleic acid structure or expression vector is introduced, and a method for preparing CRM197 protein including the step of culturing the recombinant microorganism. According to the present invention, CRM197 protein having the same physicochemical/immune properties as the protein isolated from the parental cell can be expressed even in general E. coli that does not control the redox potential, and it is possible to prepare CRM197 protein with high secretion efficiency to the periplasm without any change in the pH of the medium to increase secretion into the periplasm, and thus the present invention is very useful in the production of CRM197 protein.

Description

CRM197 단백질 발현 방법{Expression Method of CRM197 Protein}CRM197 protein expression method {Expression Method of CRM197 Protein}

본 발명은 CRM197 단백질을 대장균에서 발현 및 주변세포질(periplasm)로 분비시키기 위한 신호서열 및 그 용도에 관한 것으로, 보다 구체적으로는, CRM197 단백질 발현용 신호서열, 상기 신호서열을 코딩하는 핵산, 상기 핵산 및 CRM197 단백질 유전자를 포함하는 핵산 구조체 또는 발현벡터, 상기 핵산 구조체 또는 발현벡터가 도입된 재조합미생물 및 상기 재조합미생물을 배양하는 단계를 포함하는 CRM197 단백질의 제조방법에 관한 것이다.The present invention relates to a signal sequence for the expression of CRM197 protein in E. coli and secretion into the periplasm and its use, more specifically, a signal sequence for CRM197 protein expression, a nucleic acid encoding the signal sequence, and the nucleic acid And a nucleic acid construct or expression vector comprising the CRM197 protein gene, a recombinant microorganism into which the nucleic acid construct or expression vector is introduced, and a step of culturing the recombinant microorganism.

디프테리아 독소(diphtheria toxin, DT)는 코리네박테리움 디프테리아(Corynebacterium diphtheriae)의 병원성 균주로부터 합성 및 분비되는 단백질성 외독소이다. 디프테리아 독소는, 535개의 잔기로 된 전효소(proenzyme)로서 분비되어 트립신-유사 프로테아제에 의해 처리됨으로써 2개의 단편(A와 B)으로 분리되는, ADP-리보실화 효소(ADP-ribosylating enzyme)이다. 단편 A는 촉매적으로 활성인 부위이며 특이적으로 단백질 합성 인자 EF-2를 타겟으로 하는 NAD-의존성 ADP-리보실트랜스퍼라아제이고, 이로 인해 EF-2를 불활성화시키고 세포 내에서 단백질 합성을 중단시킨다.Diphtheria toxin (DT) is a proteinaceous exotoxin that is synthesized and secreted from a pathogenic strain of Corynebacterium diphtheriae . Diphtheria toxin is an ADP-ribosylating enzyme that is secreted as a proenzyme of 535 residues and processed into trypsin-like proteases to separate into two fragments (A and B). Fragment A is a catalytically active site and is a NAD-dependent ADP-ribosyltransferase specifically targeting the protein synthesis factor EF-2, thereby inactivating EF-2 and protein synthesis in cells. Stop it.

디프테리아 독소의 다양한 무독성 형태와 부분 독성의 면역학적으로 교차 반응하는 형태(CRM 또는 교차 반응하는 물질들)의 분리를 통해 CRM197이 발견되었다(Uchida et al ., Journal of Biological Chemistry 248, 3845-3850, 1973). 바람직하게는, CRM은 DT 전체 또는 그 일부를 포함하는 임의의 크기 및 조성일 수 있다.CRM197 was discovered through separation of various non-toxic and partially toxic immunologically cross-reactive forms (CRM or cross-reactive substances) of diphtheria toxin (Uchida et. al . , Journal of Biological Chemistry 248, 3845-3850, 1973). Preferably, the CRM can be of any size and composition, including all or part of the DT.

CRM197은 하나의 아미노산 치환 G52E이 존재하는, 효소학적으로 고도로 비활성적이고 무독성인 형태의 디프테리아 독소이다. 이 돌연변이는 NAD-결합 부위 앞쪽에 위치한 활성-부위 루프에 고유한 유연성을 부여함으로써, NAD에 대한 CRM197의 결합성을 낮추고, DT의 독성을 없앤다(Malito et al ., Proc Natl Acad Sci USA 109(14):5229-342012). CRM197은, DT와 마찬가지로 이황화 결합을 2개 보유하고 있다. 이황화 결합 하나는 Cys186을 Cys201과 연결하여, 단편 A를 단편 B와 연결한다. 2번째 이황화 결합은 단편 B내에서 Cys461을 Cys471과 연결한다. DT와 CRM197은 단편 A에 기인한 뉴클레아제 활성을 가지고 있다(Bruce et al ., Proc.Natl. Acad. Sci. USA 87, 2995-8, 1990).CRM197 is an enzymatically highly inactive and non-toxic form of diphtheria toxin with one amino acid substitution G52E. This mutation lowers the binding of CRM197 to NAD and eliminates the toxicity of DT by conferring unique flexibility to the active-site loop located in front of the NAD-binding site (Malito et. al . , Proc Natl Acad Sci USA 109(14):5229-342012). CRM197, like DT, has two disulfide bonds. One disulfide bond connects Cys186 to Cys201, thereby linking fragment A to fragment B. The second disulfide bond connects Cys461 with Cys471 in fragment B. DT and CRM197 have nuclease activity due to fragment A (Bruce et al . , Proc. Natl. Acad. Sci. USA 87, 2995-8, 1990).

다수의 항원들은 단백질에 화학적으로 연결되지 않은 한, 특히 영유아에서, 면역원성이 낮아, 접합체 또는 접합 백신으로 제조된다. 이러한 접합 백신에서 단백질 성분을 “운반 단백질(carrier protein)”이라고도 한다. CRM197은 단백질-탄수화물 접합 및 합텐-단백질 접합에서 운반 단백질로 흔히 사용된다. CRM197은, 운반 단백질로서, 디프테리아 톡소이드 뿐만 아니라 다른 톡소이드 단백질을 능가하는 여러 장점을 가지고 있다(Shinefield Vaccine, 28:4335, 2010).Many antigens are made of conjugates or conjugated vaccines, as long as they are not chemically linked to the protein, especially in young children, because of their low immunogenicity. In these conjugated vaccines, the protein component is also called a “carrier protein”. CRM197 is commonly used as a transport protein in protein-carbohydrate conjugation and hapten-protein conjugation. CRM197, as a transport protein, has several advantages over diphtheria toxoid as well as other toxoid proteins (Shinefield Vaccine, 28:4335, 2010).

디프테리아 독소(DT)의 제조 방법은 당업계에 잘 알려져 있다. 예를 들어, DT는 코리네박테리움 디프테리아의 배양물로부터 톡신의 정제에 뒤따르는 화학적 무독화(detoxification)에 의해 생산될 수 있거나, 재조합체 또는 유전적으로 무독화된 톡신의 유사체의 정제에 의해 제조될 수 있다.Methods of preparing diphtheria toxin (DT) are well known in the art. For example, DT can be produced by chemical detoxification followed by purification of toxin from cultures of Corynebacterium diphtheria, or by purification of recombinants or analogs of genetically detoxified toxins Can be.

단백질 존재량(abundance)으로 인해, 백신에 사용하기 위한 CRM197과 같은 디프테리아 독소의 대량 생산을 할 수 없었다. 이러한 문제점은 이전에 대장균에서 CRM197을 발현시키는 것에 의해 다루어져 왔으며(Bishai, et al ., J Bacteriol. 169:5140-5151), Bishai 등은 분해된 단백질의 생산을 초래하는 디프테리아 독소(tox 신호서열을 포함함)를 함유하는 재조합 융합 단백질의 발현을 기술하였다.Due to the protein abundance, mass production of diphtheria toxins such as CRM197 for use in vaccines was not possible. This problem has previously been addressed by expressing CRM197 in E. coli (Bishai, et. al . , J Bacteriol. 169:5140-5151), Bishai et al. described the expression of a recombinant fusion protein containing diphtheria toxin (including tox signal sequence) resulting in the production of degraded proteins.

주변세포질(periplasm)에서 박테리아 독소의 생산은 세포질(cytoplasmic) 생산에 비해 i) 단백질이 신호 펩티드 절단 후에 성숙형으로 생산되거나, ii) 대장균의 주변세포질이 이황화 결합의 형성을 허용하는 산화 환경이어서 가용성의, 제대로 폴딩된 단백질의 생산을 도울 수 있고, iii) 대장균의 주변세포질이 세포질보다 적은 프로테아제를 함유하여 발현된 단백질의 단백질 분해성 절단을 피하도록 도울 수 있고, iv) 주변세포질이 또한 더 적은 단백질을 함유하여 보다 순도 높은 재조합 단백질이 수득되는 것을 허용한다.The production of bacterial toxins in the periplasm is soluble compared to cytoplasmic production i) because the protein is produced in mature form after cleavage of the signal peptide, or ii) the peripheral cytoplasm of E. coli is an oxidizing environment that allows the formation of disulfide bonds, making it soluble Of, can help to produce properly folded proteins, iii) help to avoid proteolytic cleavage of the expressed protein by containing less protease in the E. coli periplasm, and iv) less periplasmic protein It contains, allowing a higher purity recombinant protein to be obtained.

일반적으로 단백질 상의 신호서열(signal sequence)의 존재는 주변세포질로의 단백질의 수송(원핵 숙주) 또는 분비(진핵 숙주)를 촉진한다. 원핵 숙주에서 신호서열은 신생 단백질을 내막을 가로질러 주변세포질로 조정하며, 그 후 신호서열은 절단된다. 즉, 상업적으로 중요한 단백질을 보다 효율적으로 대량 생산할 수 있는 신호서열 탐색이 중요하며, 재조합미생물의 개발이 요구되고 있는 실정이다.In general, the presence of a signal sequence on a protein facilitates the transport (prokaryotic host) or secretion (eukaryotic host) of the protein to the periplasm. In a prokaryotic host, the signal sequence modulates the new protein across the inner membrane to the periplasm, and the signal sequence is then cut. That is, it is important to search for a signal sequence capable of more efficiently mass-producing commercially important proteins, and the development of recombinant microorganisms is required.

이에 본 발명자들은 효율적이고, 비용 효과적인 방식으로 CRM197 단백질을 생산하는 방법을 개발하고자 예의 노력한 결과, 특정 신호서열을 선택하고 대장균에서의 translation을 최적화하기 위해 codon context와 2차 구조를 복합하여 염기서열을 디자인하였으며, CRM197 단백질을 코딩하는 CRM197 염기서열 또한 대장균 발현 최적화하였으며, 이들을 이용하는 경우 대장균에서 CRM197이 효율적으로 발현되고, pH 변화 없이도 CRM197의 주변세포질로의 분비가 효율적으로 이루어지는 것을 확인하고 본 발명을 완성하였다.Accordingly, the present inventors tried to develop a method for producing a CRM197 protein in an efficient and cost-effective manner. As a result, they selected a specific signal sequence and combined the codon context with a secondary structure to optimize translation in E. coli to sequence the sequence. Designed, CRM197 nucleotide sequence encoding CRM197 protein was also optimized for E. coli expression, and when these were used, it was confirmed that CRM197 was efficiently expressed in E. coli, and secretion of CRM197 into the peripheral cytoplasm was efficiently performed without changing the pH, and completed the present invention. Did.

본 배경기술 부분에 기재된 상기 정보는 오직 본 발명의 배경에 대한 이해를 향상시키기 위한 것이며, 이에 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자에게 있어 이미 알려진 선행기술을 형성하는 정보를 포함하지 않을 수 있다.The above information described in this background section is only for improving the understanding of the background of the present invention, and therefore does not include information that forms prior art already known to those of ordinary skill in the art. It may not.

본 발명의 목적은 CRM197 단백질을 대장균의 주변세포질로 분비하여 CRM197 단백질의 대장균에 대한 독성을 최소화하며 발현을 극대화시키기 위하여, 특정 서열의 CRM197 단백질 발현용 신호서열과 상기 신호서열을 코딩하는 핵산 및 상기 핵산을 이용한 CRM197 단백질의 제조방법을 제공하는 데 있다.The object of the present invention is to secrete CRM197 protein into the peripheral cytoplasm of E. coli to minimize the toxicity to the E. coli of CRM197 protein and maximize expression, nucleic acid encoding the signal sequence and the signal sequence for CRM197 protein expression of a specific sequence and the It is to provide a method for producing a CRM197 protein using nucleic acids.

상기 목적을 달성하기 위하여, 본 발명은 서열번호 13 내지 서열번호 21 중 어느 하나의 아미노산 서열로 표시되는 CRM197 단백질 발현용 신호서열을 제공한다.In order to achieve the above object, the present invention provides a signal sequence for CRM197 protein expression represented by any one of the amino acid sequence of SEQ ID NO: 13 to SEQ ID NO: 21.

본 발명은 또한, 상기 CRM197 단백질 발현용 신호서열을 코딩하는 핵산을 제공한다.The present invention also provides a nucleic acid encoding the signal sequence for expressing the CRM197 protein.

본 발명은 또한, 상기 핵산 및 CRM197 단백질의 유전자를 포함하는 핵산 구조체 또는 발현벡터, 상기 핵산 구조체 또는 발현벡터가 도입되어 있는 재조합미생물 및 상기 재조합미생물을 배양하는 단계를 포함하는 CRM197 단백질의 제조방법을 제공한다.The present invention also provides a nucleic acid construct or expression vector comprising the gene of the nucleic acid and CRM197 protein, a recombinant microorganism into which the nucleic acid construct or expression vector is introduced, and a method of producing the CRM197 protein comprising culturing the recombinant microorganism. to provide.

본 발명에 따르면, 산화환원전위(redox potential)를 조절하지 않은 일반 대장균에서도 모균에서 분리된 단백질과 이화학적/면역학적 성질이 동일한 CRM197 단백질을 발현시킬 수 있으며, 주변세포질로의 분비 증가를 위한 배지의 pH 변화(shift) 없이도 주변세포질로의 분비 효율이 높은 CRM197 단백질 제조가 가능하므로, CRM197 단백질 생산에 있어 매우 유용하다.According to the present invention, even in general E. coli that does not regulate redox potential, it can express CRM197 protein having the same physicochemical/immunological properties as the protein isolated from the parental bacteria, and a medium for increasing secretion to the periplasm. It is very useful in the production of CRM197 protein because it can produce CRM197 protein with high secretion efficiency to the surrounding cytoplasm without changing the pH of the product.

도 1은 발현모듈 TPB1Tv1.3의 모식도를 나타낸 것으로, Ptrc은 trc promoter, RBS는 A/U rich enhancer + SD, λ tR2 & T7Te, rrnB T1T2는 transcription terminators, BsaI와 DraI은 cloning시 사용된 restriction enzyme site를 의미한다.
도 2는 대장균 발현 플라스미드 pHex1.3를 나타낸 것으로, Ori(pBR322)는 pBR322의 replication origin, KanR은 kanamycin 마커, lacI는 lacI 유전자를 의미하며, 나머지는 도 1과 같다.
도 3은 CRM197 발현 플라스미드 제작 모식도를 나타낸 것으로, T1은 λ tR2와 T7Te transcription terminator, T2는 rrnB T1T2 transcription terminators, 화살표는 PCR primer, 알파벳 A, B, C, D는 LIC를 위한 homologous region을 의미하며, 나머지는 도 1과 같다.
도 4는 다양한 대장균 균주에서 L3, L5 fusion CRM197의 발현 양상을 나타낸 것으로, 대장균 total cell의 SDS_PAGE 후 Coomassie straining(좌), Western blotting(우)을 나타낸다. C는 C2894H, B는 BL21(DE3), W는 W3110-1, O는 Origami™ 2, S는 Shuffle을 의미한다. C-v는 negative control로 사용된 pHex1.3을 함유하는 C2984H을 나타내며, L3, L5는 fusion된 signal sequence, CRM197은 reference CRM197을 나타낸다. Coomassie straining을 위해서는 well 당 0.025 OD600에 해당하는 세포를 loading하였고, Western blotting의 경우 0.0005 OD600에 해당하는 세포를 loading하였다.
도 5는 inducer의 종류 및 농도가 L5에 의해 유도되는 CRM197 발현에 미치는 영향을 나타낸 것으로, SDS_PAGE 후 Coomassie straining(좌), Western blotting(우)을 나타낸다. Loading 양은 도 4와 동일하며, I는 insoluble fraction, S는 soluble fraction을 의미한다. (A)는 25℃ 배양, (B)는 30℃ 배양이다.
도 6은 L5 fusion에 의해 유도되는 CRM197 단백질의 위치를 나타낸 것으로, 위쪽은 SDS_PAGE 후 Coomassie straining, 아래는 Western blotting을 나타낸다. Cr은 reference CRM197, 화살표는 matured CRM197의 위치를 나타낸다. P1은 원형질막 유도 완충용액 처리 후 상등액, P2는 periplasmic fraction, Cy는 cytoplasm faction을 의미한다.
도 7은 inducer의 종류 및 농도가 L3에 의해 유도되는 CRM197 발현에 미치는 영향을 나타낸 것으로, (A)는 25℃ 배양, (B)는 30℃ 배양이다.
도 8은 L3 fusion에 의해 유도되는 CRM197 단백질의 위치를 나타낸 것이다.
도 9는 L3 균주의 pH, 온도, 임펠러 속도, 용존 산소량(Dissolved oxygen, DO)의 변화 및 발현 유도제의 투입 시간을 나타낸 것으로, (A)는 온도를 30℃로 유지하였고, (B)는 발현 유도 전에 온도를 25℃로 낮추었다.
도 10은 L5 균주의 pH, 온도, 임펠러 속도, 용존 산소량(Dissolved oxygen, DO)의 변화 및 발현 유도제의 투입 시간을 나타낸 도면이다.
도 11은 배양 중 발현 유도제 투입 전·후의 CRM197 단백질 발현의 변화를 나타낸 것으로, (A)는 L3 균주를 30℃에서 발현 유도하였으며, (B)는 25℃에서 발현 유도하였고, (C)는 L5 균주를 25℃에서 발현 유도하였다. (A)의 line 3, 10과 (B)의 line 4, 10, (C)의 line 3, 9는 reference CRM197 200ng을 loading하였다. (A)의 line 1, 2와 (B)의 line 1, 2, 3, (C)의 line 1, 2는 발현 유도제 투입 전의 세포 배양액이며, (A)와 (C)의 line 16은 배양 종료 후의 상등액이며, 이후의 line은 유도제 투입 후 2시간 단위로 sampling된 세포 배양액이다. Loading 양은 도 4와 동일하다.
도 12는 L3/L5 균주에서의 CRM197 단백질의 발현 및 분리 거동을 나타낸 것으로, (A)는 L3를 이용한 배양에서의 단백질 분리 거동이며, (B)는 L5를 이용한 배양에서의 단백질 분리 거동이다. Line 1은 reference CRM197 200ng을 loading하였고, Line 2는 배양 종료 후의 세포 배양액(total cell)이며, Line 3는 원형질막 유도 완충용액 처리 후 상등액, Line 4와 7은 periplasmic fraction(Line 7은 line 4 보다 4배의 단백질을 loading하였다), Line 5와 6은 cytoplasm faction을 나타낸다.
도 13은 DEAE Chromatography(A)와 HA Chromatography(B) 정제 샘플을 SDS-PAGE로 분석한 결과이다. (A)의 Line 1은 코리네박테리아에서 생산한 CRM197이며, Line 2는 회수된 periplasmic fraction에 존재하는 단백질을 의미한다. Line 3은 한외여과 후 2배 농축된 DEAE Chromatography 로딩 전 샘플이며, Line 4와 5는 DEAE Chromatography의 Flow-through, washing 액으로 CRM197을 제외한 불순물 단백질을 확인할 수 있다. Line 6은 불순물이 제거된 용출 샘플이며, Line 7은 레진에 결합하고 있는 모든 단백질을 제거하기 위하여 고농도 salt를 이용하여 용출한 샘플이다. (B)의 HA Elu는 HA 레진에 결합되지 않은 단백질을 제거한 후 용출한 CRM197이다.
도 14는 최종 정제 CRM197을 SEC-HPLC로 분석한 결과로, 순도는 99% 이상이었다.
도 15는 SDS-PAGE(좌)와 Western blot(우) 결과이다. Line 1은 코리네박테리움에서 생산한 CRM197이며, Line 2은 대장균(L3)에서 생산한 CRM197이다. 두 CRM197은 동일한 위치에서 밴드가 확인되었다.
도 16은 LC/MS를 이용한 Intact protein molecular mass 분석 결과로, 분자량 58,409Da으로 이론적 분자량과 일치하였다.
도 17은 Circular dichroism(CD) 분석 결과로, 코리네박테리움 생산 CRM197(

Figure 112019125933951-pat00001
)과 대장균 pHex-L3 생산 CRM197( Χ ) 간의 고차 구조의 차이가 없음을 확인하였다.
도 18은 형광스펙트럼 분석 결과로, 코리네박테리움 생산 CRM197(
Figure 112019125933951-pat00002
)과 대장균 pHex-L3 생산 CRM197(실선)은 최대 방출파장이 338nm로 동일하였다.Figure 1 shows the schematic diagram of the expression module TPB1Tv1.3, Ptrc is a trc promoter, RBS is A/U rich enhancer + SD, λ tR2 & T7Te, rrnB T1T2 is transcription terminators, Bsa I and Dra I are used for cloning restriction enzyme site.
Figure 2 shows the E. coli expression plasmid pHex1.3, Ori (pBR322) is the replication origin of pBR322, KanR is the kanamycin marker, lacI is the lac I gene, and the rest are as shown in FIG. 1.
Figure 3 shows a schematic diagram of CRM197 expression plasmid production, T1 is λ tR2 and T7Te transcription terminator, T2 is rrnB T1T2 transcription terminators, arrows are PCR primers, alphabets A, B, C, D are homologous regions for LIC, , The rest is as shown in FIG. 1.
Figure 4 shows the expression pattern of L3, L5 fusion CRM197 in a variety of E. coli strains, shows Coomassie straining (left) and Western blotting (right) after SDS_PAGE of E. coli total cells. C means C2894H, B means BL21(DE3), W means W3110-1, O means Origami 2, and S means Shuffle. Cv represents C2984H containing pHex1.3 used as a negative control, L3, L5 represents a fused signal sequence, and CRM197 represents a reference CRM197. For coomassie straining, cells corresponding to 0.025 OD 600 per well were loaded, and cells corresponding to 0.0005 OD 600 were loaded for Western blotting.
5 shows the effect of the type and concentration of inducer on CRM197 expression induced by L5, and shows Coomassie straining (left) and Western blotting (right) after SDS_PAGE. The loading amount is the same as in Fig. 4, I is the insoluble fraction, S is the soluble fraction. (A) is cultured at 25°C, (B) is cultured at 30°C.
Figure 6 shows the location of the CRM197 protein induced by L5 fusion, SDS_PAGE on the top shows Coomassie straining, and Western blotting on the bottom. Cr indicates reference CRM197 and the arrow indicates the position of matured CRM197. P1 is the supernatant after plasma membrane induction buffer treatment, P2 is the periplasmic fraction, and Cy is the cytoplasm faction.
Figure 7 shows the effect of the type and concentration of inducer on the expression of CRM197 induced by L3, (A) 25 ℃ culture, (B) is 30 ℃ culture.
Figure 8 shows the location of the CRM197 protein induced by L3 fusion.
Figure 9 shows the change in the pH, temperature, impeller speed, dissolved oxygen (DO) of the L3 strain, and the input time of the expression inducer, (A) maintained the temperature at 30 °C, (B) expression The temperature was lowered to 25°C before induction.
FIG. 10 is a graph showing changes in pH, temperature, impeller speed, dissolved oxygen (DO) of L5 strain, and input time of the expression inducer.
Figure 11 shows the change in expression of CRM197 protein before and after the introduction of the expression inducer during culture, (A) induced L3 strain expression at 30°C, (B) induced expression at 25°C, and (C) L5 The strain was induced to express at 25°C. Lines 3 and 10 of (A) and lines 4 and 10 of (B) and lines 3 and 9 of (C) loaded 200 ng of reference CRM197. Lines 1, 2 of (A) and lines 1, 2, 3 of (B), and lines 1 and 2 of (C) are cell culture solutions prior to the introduction of the expression inducing agent, and lines 16 of (A) and (C) are terminated. After the supernatant, the subsequent line is the cell culture sample sampled every 2 hours after the introduction of the inducer. Loading amount is the same as in FIG. 4.
Figure 12 shows the expression and separation behavior of CRM197 protein in the L3/L5 strain, (A) is the protein separation behavior in culture using L3, and (B) is the protein separation behavior in culture using L5. Line 1 loaded 200ng of reference CRM197, Line 2 is the cell culture solution after completion of culture, Line 3 is the supernatant after treatment with plasma membrane-induced buffer solution, and lines 4 and 7 are periplasmic fractions (Line 7 is 4 than line 4). Pear protein was loaded), Lines 5 and 6 indicate cytoplasm faction.
13 is a result of analyzing the DEAE Chromatography (A) and HA Chromatography (B) purified samples by SDS-PAGE. Line 1 in (A) is CRM197 produced by Corynebacteria, and Line 2 means the protein present in the recovered periplasmic fraction. Line 3 is a sample before loading DEAE Chromatography that is double-concentrated after ultrafiltration, and lines 4 and 5 are flow-through and washing solutions of DEAE Chromatography to identify impurity proteins except CRM197. Line 6 is an eluted sample from which impurities have been removed, and Line 7 is a sample eluted using a high concentration salt to remove all proteins bound to the resin. (B) HA Elu is CRM197 eluted after removing the protein that is not bound to the HA resin.
14 is a result of analyzing the final purified CRM197 by SEC-HPLC, the purity was 99% or more.
15 is a result of SDS-PAGE (left) and Western blot (right). Line 1 is CRM197 produced by Corynebacterium, and Line 2 is CRM197 produced by E. coli (L3). Both CRM197 bands were identified at the same location.
FIG. 16 shows the results of Intact protein molecular mass analysis using LC/MS, and the molecular weight was 58,409 Da, which was consistent with the theoretical molecular weight.
17 is a result of circular dichroism (CD) analysis, Corynebacterium production CRM197 (
Figure 112019125933951-pat00001
) And E. coli pHex-L3 production CRM197 ( Χ ) was confirmed that there is no difference in the higher order structure.
Figure 18 shows the results of fluorescence spectrum analysis, Corynebacterium production CRM197 (
Figure 112019125933951-pat00002
) And E. coli pHex-L3 production CRM197 (solid line) had the same maximum emission wavelength of 338 nm.

다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로 본 명세서에서 사용된 명명법은 본 기술분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by a person skilled in the art to which the present invention pertains. In general, the nomenclature used herein is well known in the art and commonly used.

본 발명의 일 실시예에서는, 9개의 신호서열(signal sequence)을 CRM197 단백질과 융합(fusion)시켜 발현을 시도하였다. 각 signal sequence는, codon context와 mRNA의 2차 구조를 고려하여 translation에 최적화한 염기서열(서열번호 4 내지 서열번호 12)을 디자인하였다. 이 구조물을 발현 플라스미드 pHex1.3에 삽입하였고, 각 구조물의 최적의 대장균 균주를 찾기 위해 5종의 대장균 균주에서 CRM197의 발현을 조사하였다. 또한 선정된 대장균에서 배양 온도 및 inducer의 종류, 농도를 설정하였다. 결과적으로, 상기 구조물들을 다양한 대장균 균주에 형질전환시킨 결과, redox potential에 관련된 유전자(trxB, gor)를 조작하지 않은 균주에서도 CRM197 단백질을 soluble form으로 발현시킬 수 있었으며, periplasm으로 분비시킬 수 있었다.In one embodiment of the present invention, nine signal sequences were attempted to be expressed by fusion with the CRM197 protein. For each signal sequence, the base sequence (SEQ ID NO: 4 to SEQ ID NO: 12) optimized for translation was designed in consideration of the codon context and the secondary structure of mRNA. This construct was inserted into the expression plasmid pHex1.3, and expression of CRM197 was examined in 5 E. coli strains to find the optimal E. coli strain of each construct. In addition, the culture temperature and the type and concentration of the inducer were set in the selected E. coli. As a result, as a result of transforming the constructs into various E. coli strains, CRM197 protein could be expressed in a soluble form and secreted into periplasm even in a strain that did not manipulate genes (trxB, gor) related to redox potential.

따라서, 본 발명은 일 관점에서, 서열번호 13 내지 서열번호 21 중 어느 하나의 아미노산 서열로 표시되는 CRM197 단백질 발현용 신호서열에 관한 것이다.Therefore, in one aspect, the present invention relates to a signal sequence for CRM197 protein expression represented by an amino acid sequence of any one of SEQ ID NOs: 13 to 21.

본 발명은 다른 관점에서, 상기 CRM197 단백질 발현용 신호서열을 코딩하는 핵산에 관한 것이다.In another aspect, the present invention relates to a nucleic acid encoding a signal sequence for CRM197 protein expression.

본 발명에 있어서, 상기 핵산은 서열번호 4 내지 서열번호 12 중 어느 하나의 염기서열로 표시되는 것을 특징으로 할 수 있으며, 바람직하게는 서열번호 6 또는 서열번호 8의 염기서열로 표시되는 것을 특징으로 할 수 있으나, 이에 제한되는 것은 아니다.In the present invention, the nucleic acid may be characterized in that represented by any one of the nucleotide sequence of SEQ ID NO: 4 to SEQ ID NO: 12, preferably characterized by the nucleotide sequence of SEQ ID NO: 6 or SEQ ID NO: 8 It can, but is not limited to this.

본 명세서에서, “CRM197 단백질 발현용 신호서열”이란, CRM197 단백질의 발현 및 주변세포질(periplasm)로의 분비를 위한 신호서열을 의미한다.In the present specification, "signal sequence for CRM197 protein expression" means a signal sequence for expression of CRM197 protein and secretion into periplasm.

본 발명의 일 실시예에서, CRM197 단백질을 periplasm으로 분비시키기 위해 대장균의 외막(outermembrane)으로 targeting되는 단백질의 신호서열과 M13 파아지 유래의 신호서열을 선택하였다(표 3). 선택한 신호서열을 대장균에서 translation을 최적화하기 위해 codon context와 2차 구조를 복합하여 염기서열을 디자인하였다(서열번호 4 내지 서열번호 12).In one embodiment of the present invention, the signal sequence of the protein targeted to the outer membrane (outermembrane) of E. coli to secrete the CRM197 protein into the periplasm and the signal sequence derived from the M13 phage were selected (Table 3). In order to optimize the translation of the selected signal sequence in E. coli, the base sequence was designed by combining the codon context and the secondary structure (SEQ ID NOs: 4 to 12).

본 발명은 또 다른 관점에서, 상기 CRM197 단백질 발현용 신호서열을 코딩하는 핵산 및 CRM197 단백질의 유전자를 포함하는 핵산 구조체에 관한 것이다.In another aspect, the present invention relates to a nucleic acid construct encoding a signal sequence for CRM197 protein expression and a gene for CRM197 protein.

본 발명은 또 다른 관점에서, 상기 CRM197 단백질 발현용 신호서열을 코딩하는 핵산 및 CRM197 단백질의 유전자를 포함하는 발현벡터에 관한 것이다.In another aspect, the present invention relates to an expression vector comprising a nucleic acid encoding a signal sequence for expressing the CRM197 protein and a gene of the CRM197 protein.

본 발명의 일 실시예에서, CRM197 단백질의 아미노산 서열(서열번호 3)을 coding하는 DNA 염기서열 또한 대장균 발현 최적화하였다(서열번호 2). 디자인된 각 signal sequence의 DNA fragment와 최적화된 CRM197 DNA fragment를 플라스미드 pHex1.3에 삽입하였다(도 3).In one embodiment of the present invention, the DNA nucleotide sequence encoding the amino acid sequence of CRM197 protein (SEQ ID NO: 3) was also optimized for E. coli expression (SEQ ID NO: 2). The DNA fragment of each designed signal sequence and the optimized CRM197 DNA fragment were inserted into the plasmid pHex1.3 (Fig. 3).

본 발명에 있어서, 상기 CRM197 단백질의 유전자는 CRM197 단백질을 암호화하는 유전자이면 제한 없이 이용 가능하다. 바람직하게는 서열번호 2의 염기서열로 표시되는 것을 특징으로 할 수 있으나, 이에 제한되는 것은 아니다.In the present invention, the gene of the CRM197 protein can be used without limitation as long as it is a gene encoding the CRM197 protein. Preferably, it may be characterized by being represented by the nucleotide sequence of SEQ ID NO: 2, but is not limited thereto.

본 명세서에서, “형질전환(transformation)”이란 특정 외래의 DNA 가닥을 세포 밖에서 세포 내로 도입하는 것을 의미한다. 도입된 DNA 가닥을 포함한 숙주 미생물은 ‘형질 전환된 미생물’이라 한다. DNA를 숙주로 도입하여 DNA가 염색체외 인자로서 또는 염색체 통합완성에 의해 복제 가능하게 되는 것을 의미하는 ‘형질전환’은 표적 단백질을 암호화하는 폴리뉴클레오타이드를 포함하는 벡터를 숙주세포 내에 도입하거나 표적 단백질을 암호화하는 폴리뉴클레오타이드를 숙주세포의 염색체에 통합 완성시켜 숙주세포 내에서 상기 폴리뉴클레오타이드가 암호화하는 단백질이 발현할 수 있도록 하는 것을 의미한다. 형질전환된 폴리뉴클레오타이드는 숙주세포 내에 발현될 수 있기만 한다면, 숙주세포의 염색체 내에 삽입되어 위치하거나 염색체 외에 위치하든지 상관없이 이들 모두를 포함한다.As used herein, “transformation” refers to the introduction of a specific foreign DNA strand from outside the cell into the cell. The host microorganism including the introduced DNA strand is called a “transformed microorganism”. By introducing DNA into the host,'transformation', meaning that the DNA can be replicated as an extrachromosomal factor or by chromosomal integration, introduces a vector containing a polynucleotide encoding a target protein into a host cell or introduces the target protein. It means that the coding polynucleotide is integrated into the chromosome of the host cell, so that the protein encoded by the polynucleotide can be expressed in the host cell. The transformed polynucleotide includes all of them, whether they can be inserted into the host cell's chromosome or located outside the chromosome, as long as it can be expressed in the host cell.

본 발명에 있어서, 상기 “핵산 구조체”는 숙주세포 내에 발현될 수 있기만 한다면, 숙주세포의 염색체(chromosome) 내에 삽입되어 위치하거나 염색체 외에 위치하든지 상관없이 이들 모두를 포함한다.In the present invention, the "nucleic acid construct" includes all of these, regardless of whether they are inserted into the chromosome of the host cell or located outside the chromosome, as long as they can be expressed in the host cell.

또한, 본 명세서에서, 상기 “폴리뉴클레오타이드”는 “핵산”과 동일한 의미로 사용되며, 표적 단백질을 암호화하는 DNA 및 RNA를 포함한다. 상기 폴리뉴클레오타이드는 숙주세포 내로 도입되어 발현될 수 있는 것이면, 어떠한 형태로 도입되는 것이든 상관없다. 예를 들면, 상기 폴리뉴클레오타이드는 자체적으로 발현되는데 필요한 모든 요소를 포함하는 유전자 구조체인 발현 카세트(expression cassette)의 형태로 숙주세포에 도입될 수 있다. 상기 발현 카세트는 통상 상기 폴리뉴클레오타이드에 작동가능하게 연결되어 있는 프로모터(promoter), 전사 종결 신호, 리보좀 결합부위 및 번역 종결신호를 포함한다. 상기 발현 카세트는 자체 복제가 가능한 발현 벡터 형태일 수 있다. 또한, 상기 폴리뉴클레오타이드는 그 자체의 형태로 숙주세포에 도입되어, 숙주세포에서 발현에 필요한 서열과 작동 가능하게 연결되어 있는 것일 수도 있다.In addition, in the present specification, the “polynucleotide” is used in the same sense as “nucleic acid,” and includes DNA and RNA encoding a target protein. As long as the polynucleotide can be expressed by being introduced into a host cell, it does not matter what form it is introduced into. For example, the polynucleotide may be introduced into a host cell in the form of an expression cassette, which is a gene construct containing all elements necessary for self-expression. The expression cassette usually includes a promoter operably linked to the polynucleotide, a transcription termination signal, a ribosome binding site, and a translation termination signal. The expression cassette may be in the form of an expression vector capable of self-replicating. In addition, the polynucleotide may be introduced into a host cell in its own form, and may be operably linked to a sequence required for expression in the host cell.

본 명세서에서, “벡터(vector)”는 적합한 숙주 내에서 DNA를 발현시킬 수 있는 적합한 조절 서열에 작동가능하게 연결된 DNA 서열을 함유하는 DNA 제조물을 의미한다. 벡터는 플라스미드, 파지 입자 또는 간단하게 잠재적 게놈 삽입물일 수 있다. 적당한 숙주로 형질전환되면, 벡터는 숙주게놈과 무관하게 복제하고 기능할 수 있거나, 또는 일부 경우에 게놈 그 자체에 통합될 수 있다. 플라스미드가 현재 벡터의 가장 통상적으로 사용되는 형태이므로, 본 발명의 명세서에서 “플라스미드(plasmid)” 및 “벡터(vector)”는 때로 상호교환적으로 사용된다.As used herein, “vector” means a DNA preparation containing a DNA sequence operably linked to a suitable regulatory sequence capable of expressing DNA in a suitable host. The vector can be a plasmid, phage particle or simply a potential genomic insert. When transformed into a suitable host, the vector can replicate and function independently of the host genome, or in some cases can be integrated into the genome itself. Because plasmids are the most commonly used form of current vectors, “plasmid” and “vector” are sometimes used interchangeably in the context of the present invention.

본 발명의 목적상, 플라스미드 벡터를 이용하는 것이 바람직하다. 이러한 목적에 사용될 수 있는 전형적인 플라스미드 벡터는 (a) 숙주세포당 수십 개에서 수백 개의 플라스미드 벡터를 포함하도록 복제가 효율적으로 이루어지도록 하는 복제 개시점, (b) 플라스미드 벡터로 형질전환된 숙주세포가 선발될 수 있도록 하는 항생제 내성 유전자 및 (c) 외래 DNA 절편이 삽입될 수 있도록 하는 제한효소 절단부위를 포함하는 구조를 지니고 있다. 적절한 제한효소 절단부위가 존재하지 않을지라도, 통상의 방법에 따른 합성 올리고뉴클레오타이드 어댑터(oligonucleotide adaptor) 또는 링커(linker)를 사용하면 벡터와 외래 DNA를 용이하게 라이게이션(ligation)할 수 있다.For the purposes of the present invention, it is preferred to use plasmid vectors. Typical plasmid vectors that can be used for this purpose include: (a) a replication initiation point for efficient replication to include dozens to hundreds of plasmid vectors per host cell, (b) selection of host cells transformed with plasmid vectors. It has a structure that includes a restriction enzyme cleavage site that allows the insertion of foreign DNA fragments and (c) an antibiotic resistance gene. Even if a suitable restriction enzyme cleavage site does not exist, a synthetic oligonucleotide adapter or linker according to a conventional method can be used to easily ligate a vector and foreign DNA.

아울러, 상기 유전자는 다른 핵산 서열과 기능적 관계로 배치될 때 “작동가능하게 연결(operably linked)”된다. 이것은 적절한 분자(예를 들면, 전사 활성화 단백질)가 조절 서열(들)에 결합될 때 유전자 발현을 가능하게 하는 방식으로 연결된 유전자 및 조절 서열(들)일 수 있다. 예를 들면, 전서열(pre-sequence) 또는 분비 리더(leader)에 대한 DNA는 폴리펩타이드의 분비에 참여하는 전단백질로서 발현되는 경우 폴리펩타이드에 대한 DNA에 작동가능하게 연결되고; 프로모터 또는 인핸서는 서열의 전사에 영향을 끼치는 경우 코딩서열에 작동가능하게 연결되거나; 또는 리보좀 결합 부위는 서열의 전사에 영향을 끼치는 경우 코딩 서열에 작동가능하게 연결되거나; 또는 리보좀 결합 부위는 번역을 용이하게 하도록 배치되는 경우 코딩 서열에 작동가능하게 연결된다.In addition, the gene is “operably linked” when placed in a functional relationship with other nucleic acid sequences. This can be a gene and regulatory sequence(s) linked in a manner that enables gene expression when an appropriate molecule (eg, a transcriptional activation protein) is coupled to the regulatory sequence(s). For example, DNA for a pre-sequence or secretory leader is operably linked to DNA for a polypeptide when expressed as a shear protein that participates in the secretion of the polypeptide; A promoter or enhancer is operably linked to a coding sequence when it affects transcription of the sequence; Or the ribosome binding site is operably linked to the coding sequence if it affects the transcription of the sequence; Alternatively, the ribosome binding site is operably linked to the coding sequence when arranged to facilitate translation.

일반적으로 “작동가능하게 연결된”은 연결된 DNA 서열이 접촉하고, 또한 분비 리더의 경우 접촉하고 리딩 프레임 내에 존재하는 것을 의미한다. 그러나, 인핸서(enhancer)는 접촉할 필요가 없다. 이들 서열의 연결은 편리한 제한 효소 부위에서 라이게이션(연결)에 의해 수행된다. 그러한 부위가 존재하지 않는 경우, 통상의 방법에 따른 합성 올리고뉴클레오타이드 어댑터(oligonucleotide adaptor) 또는 링커(linker)를 사용한다.Generally, “operably linked” means that the linked DNA sequence is in contact, and in the case of a secretory leader, is in contact and is present in the reading frame. However, the enhancer does not need to be in contact. Linking these sequences is accomplished by ligation (linking) at convenient restriction enzyme sites. If such a site does not exist, a synthetic oligonucleotide adapter or linker according to a conventional method is used.

본 발명에 있어서, 상기 발현벡터는 Trc 프로모터를 추가로 포함하는 것을 특징으로 할 수 있다.In the present invention, the expression vector may be characterized in that it further comprises a Trc promoter.

본 발명에 있어서, 상기 발현벡터는 pHex1.3인 것을 특징으로 할 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the expression vector may be characterized as being pHex1.3, but is not limited thereto.

CRM197은 nuclease 활성이 존재하여 대장균에 매우 toxic한 것으로 알려져 있다. 따라서 원하지 않는 조건에서 CRM197 발현은 대장균 성장에 악영향을 미칠 수 있다. 대장균 발현 플라스미드 pHex1.3은 LacI 유전자를 가지고 있어 trc 프로모터의 background 발현을 억제할 수 있으며, 이 플라스미드에 삽입된 발현모듈 TPB1Tv1.3(도 1)은, 발현될 CRM197 유전자의 upstream에 λ 파아지 유래의 tR2 transcription terminator, T7 파아지 유래의 Te transcription terminator, downstream에 대장균 유래의 rrnB T1T2 transcription terminator가 삽입되어, 플라스미드 유래의 프로모터로부터 전사되는 CRM197의 발현을 억제할 수 있도록 디자인되었다.CRM197 is known to be very toxic to E. coli due to the presence of nuclease activity. Therefore, under unfavorable conditions, CRM197 expression can adversely affect E. coli growth. The E. coli expression plasmid pHex1.3 has the LacI gene and can suppress the background expression of the trc promoter, and the expression module TPB1Tv1.3 (FIG. 1) inserted into this plasmid is derived from λ phage upstream of the CRM197 gene to be expressed. The tR2 transcription terminator, the T7 phage-derived Te transcription terminator, and the E. coli-derived rrnB T1T2 transcription terminator were inserted downstream and designed to suppress the expression of CRM197 transcribed from the plasmid-derived promoter.

본 발명은 또 다른 관점에서, 상기 핵산 구조체 또는 발현벡터가 도입되어 있는 재조합미생물에 관한 것이다.In another aspect, the present invention relates to a recombinant microorganism into which the nucleic acid construct or expression vector is introduced.

본 발명에 있어서, 상기 재조합미생물은 대장균(Escherichia coli)인 것을 특징으로 할 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the recombinant microorganism is Escherichia coli ( Escherichia coli ), but is not limited thereto.

상기 재조합미생물은 DNA의 도입효율이 높고, 도입된 DNA의 발현 효율이 높은 숙주세포가 통상 사용되며, 원핵 및 진핵 세포를 포함하는 모든 미생물로서, 박테리아, 효모, 곰팡이 등이 이용 가능하고, 본 발명의 실시예에서는 대장균을 사용하였으나, 이에 한정되지 않고, 상기 CRM197 단백질이 충분히 발현될 수 있는 것이라면 어떠한 종류의 미생물이라도 무방하다.In the recombinant microorganism, host cells having high DNA introduction efficiency and high expression efficiency of the introduced DNA are commonly used. As all microorganisms including prokaryotic and eukaryotic cells, bacteria, yeast, fungi, and the like are available, and the present invention E. coli was used in the embodiment of the present invention, but is not limited thereto, and any type of microorganism may be used as long as the CRM197 protein can be sufficiently expressed.

물론 모든 벡터가 본 발명의 DNA 서열을 발현하는데 모두 동등하게 기능을 발휘하지는 않고, 마찬가지로 모든 숙주가 동일한 발현 시스템에 대해 동일하게 기능을 발휘하지는 않는다. 그러나, 당업자라면 과도한 실험적 부담 없이 본 발명의 범위를 벗어나지 않는 상태에서, 다른 여러 벡터, 발현 조절 서열 및 숙주 중에서 적절한 선택하여 적용할 수 있다. 예를 들어, 벡터를 선택함에 있어서는 숙주를 고려하여야 하는데, 이는 벡터가 그 안에서 복제되어야만 하기 때문이고, 벡터의 복제 수, 복제 수를 조절할 수 있는 능력 및 당해 벡터에 의해 코딩되는 다른 단백질, 예를 들어 항생제 마커의 발현도 또한 고려되어야만 한다.Of course, not all vectors function equally well to express the DNA sequence of the present invention, and likewise, not all hosts function equally to the same expression system. However, a person skilled in the art can select and apply appropriately among various other vectors, expression control sequences and hosts without departing from the scope of the present invention without undue experimental burden. For example, when selecting a vector, the host must be considered, because the vector must be replicated therein, the number of copies of the vector, the ability to control the number of copies, and other proteins encoded by the vector, e.g. For example, the expression of antibiotic markers should also be considered.

상기 형질전환된 재조합미생물은 통상적으로 알려진 임의의 형질전환 방법에 따라 제조할 수 있다.The transformed recombinant microorganism can be prepared according to any conventionally known transformation method.

또한, 본 발명에서 상기 유전자를 숙주세포의 염색체상에 삽입하는 방법으로는 통상적으로 알려진 유전자조작방법을 사용할 수 있으며, 일 예로는 레트로바이러스 벡터, 아데노바이러스 벡터, 아데노-연관 바이러스 벡터, 헤르페스 심플렉스 바이러스 벡터, 폭스바이러스 벡터, 렌티바이러스 벡터 또는 비바이러스성 벡터를 이용하는 방법을 들 수 있다.In addition, in the present invention, as a method of inserting the gene on the chromosome of the host cell, a commonly known gene manipulation method may be used, and examples thereof include retrovirus vector, adenovirus vector, adeno-associated virus vector, and herpes simplex. And a viral vector, poxvirus vector, lentiviral vector, or non-viral vector.

또한, 형질전환방법에는 발현벡터를 이용한 방법 외에도, 상기 핵산 구조체를 숙주세포의 염색체상에 직접 삽입하는 방법도 이용될 수 있다.In addition, in addition to a method using an expression vector, a method of directly inserting the nucleic acid construct onto a chromosome of a host cell may be used as a transformation method.

일반적으로 전기천공법(electroporaton), 리포펙션, 탄도법, 비로솜, 리포솜, 면역리포솜, 다가양이온 또는 지질:핵산 접합체, 네이키드 DNA, 인공 바이론, 화학물질 촉진 DNA 유입, 인산칼슘(CaPO4) 침전, 염화칼슘(CaCl2)침전, 미세주입법(microinjection), 초산 리튬-DMSO법 등이 이용될 수 있다.In general, electroporaton, lipofection, ballistic, virosome, liposome, immunoliposome, polycationic or lipid: nucleic acid conjugate, naked DNA, artificial viron, chemical-promoting DNA inflow, calcium phosphate (CaPO 4 ) Precipitation, calcium chloride (CaCl 2 ) precipitation, microinjection, lithium acetate-DMSO, and the like can be used.

소소노포레이션, 예를 들어 Sonitron 2000 시스템(Rich-Mar)을 이용한 방법도 핵산의 전달에 사용할 수 있으며, 다른 대표적인 핵산 전달 시스템은 Amaxa Biosystems(Cologne, Germany), Maxcyte, Inc.(Rockville, Maryland) 및 BTX Molesular Syetem(Holliston, MA)의 방법을 포함한다. 리포펙션 방법은 미국특허 제5,049,386호, 미국특허 제4,946,787호 및 미국특허 제4,897,355호에 명시되어 있으며 리포펙션 시약은 상업적으로 시판되고 있으며, 예를 들어, TRANSFECTAMTM 및 LIPOFECTINTM이 있다. 폴리뉴클레오타이드의 효과적인 리셉터-인식 리포펙션에 적당한 양이온 또는 중성 지질은 Felgner의 지질을 포함하며(WO91/17424 및 WO91/16024), 생체 외 도입을 통해 세포로, 생체 내 도입을 통해 표적 조직으로 전달할 수 있다. 면역지질 복합체 등 표적 리포솜을 포함하는 지질:핵산 복합체의 제조 방법은 당해 업계에 잘 알려져 있다(Crystal, Science., 270:404-410, 1995; Blaese et al ., Cancer Gene Ther., 2:291-297, 1995; Behr et al ., Bioconjugate Chem., 5:382389, 1994; Remy et al ., Bioconjugate Chem., 5:647-654, 1994; Gao et al ., Gene Therapy., 2:710-722, 1995; Ahmad et al ., Cancer Res., 52:4817-4820, 1992; 미국특허 제4,186,183호; 미국특허 제4,217,344호; 미국특허 제4,235,871호; 미국특허 제4,261,975호; 미국특허 제4,485,054호; 미국특허 제4,501,728호; 미국특허 제4,774,085호; 미국특허 제4,837,028호; 미국특허 제4,946,787호).Sonoporation, for example, using the Sonitron 2000 system (Rich-Mar) can also be used for the delivery of nucleic acids. Other representative nucleic acid delivery systems are Amaxa Biosystems (Cologne, Germany), Maxcyte, Inc. (Rockville, Maryland). And BTX Molesular Syetem (Holliston, MA). Lipofection methods are specified in U.S. Patent Nos. 5,049,386, 4,946,787 and 4,897,355, and lipofection reagents are commercially available, e.g., TRANSFECTAM TM And LIPOFECTIN . Cationic or neutral lipids suitable for effective receptor-recognition lipofection of polynucleotides include Felgner's lipids (WO91/17424 and WO91/16024) and can be delivered to cells via ex vivo introduction and to target tissues via in vivo introduction. have. Methods of preparing lipid:nucleic acid complexes containing target liposomes, such as immunolipid complexes, are well known in the art (Crystal, Science., 270:404-410, 1995; Blaese et. al . , Cancer Gene Ther., 2:291-297, 1995; Behr et al . , Bioconjugate Chem., 5:382389, 1994; Remy et al ., Bioconjugate Chem., 5:647-654, 1994; Gao et al . , Gene Therapy., 2:710-722, 1995; Ahmad et al . , Cancer Res., 52:4817-4820, 1992; U.S. Patent 4,186,183; U.S. Patent No. 4,217,344; U.S. Patent No. 4,235,871; U.S. Patent 4,261,975; U.S. Patent 4,485,054; U.S. Patent 4,501,728; U.S. Patent 4,774,085; U.S. Patent No. 4,837,028; U.S. Patent No. 4,946,787).

본 발명의 일 실시예에서, 제조된 플라스미드 벡터를 다양한 대장균 균주(표 4)에 형질전환시킨 결과, L3 fusion의 경우 모든 균주에서 CRM197이 발현되었고, L5 fusion의 경우 Origami™ 2를 제외한 균주에서 CRM197이 발현되었다(도 4). L3, L5 fusion 모두 redox potential에 관련된 유전자(trxB, gor)를 조작하지 않은 균주에서도 CRM197 단백질을 soluble form으로 발현시킬 수 있었고, 상기 단백질은 모균에서 분리된 단백질과 이화학적/면역학적 성질이 동일하였다. 또한, L3 fusion의 경우, 25℃뿐 아니라 30℃에서도 CRM197 단백질을 soluble form으로 발현시킬 수 있었다(도 7, 도 12A).In one embodiment of the present invention, as a result of transforming the prepared plasmid vector into various E. coli strains (Table 4), CRM197 was expressed in all strains in the case of L3 fusion, and CRM197 in the strains except Origami™ 2 in the case of L5 fusion. Was expressed (Fig. 4). Both L3 and L5 fusion were able to express the CRM197 protein in a soluble form even in a strain that did not manipulate the redox potential-related genes (trxB, gor), and the proteins had the same physicochemical/immunological properties as proteins isolated from the parental bacteria. . In addition, in the case of L3 fusion, CRM197 protein could be expressed in a soluble form at 25°C as well as at 30°C (FIG. 7, FIG. 12A).

기존 보고에 의하면 배양 시, pH 6.5~6.8에서 배양하다가 induction 시 pH 7.5로 shift를 하면 CRM197의 periplasm으로 분비가 개선된다. 이와 달리, 본 발명에서 제조된 균주의 경우, 배지의 pH shift 없이 CRM197의 periplasm로의 효율적인 분비를 확인하였다(도 12). pH shift 없는 고농도 배양에서 L5 fusion의 경우 CRM197의 생산성은 3.7g/L, periplasm으로 분비되는 CRM197은 2g/L 이상이었다.According to previous reports, when cultured at pH 6.5~6.8, and shifted to pH 7.5 during induction, secretion to CRM197 periplasm is improved. In contrast, in the case of the strain prepared in the present invention, efficient secretion of CRM197 into the periplasm without pH shift of the medium was confirmed (FIG. 12 ). In a high concentration culture without pH shift, the productivity of CRM197 was 3.7g/L for L5 fusion and CRM197 secreted to periplasm was 2g/L or more.

본 발명은 또 다른 관점에서, (a) 상기 핵산 구조체 또는 발현벡터가 도입되어 있는 재조합미생물을 배양하여 CRM197 단백질을 생성하는 단계; 및 (b) 상기 생성된 CRM197 단백질을 분리하는 단계를 포함하는 CRM197 단백질의 제조방법에 관한 것이다.In another aspect, the present invention, (a) culturing a recombinant microorganism in which the nucleic acid construct or expression vector is introduced to generate a CRM197 protein; And (b) separating the generated CRM197 protein.

본 발명에 있어서, 상기 (b) 단계는 주변세포질(periplasm)에 분비된 CRM197 단백질을 분리하는 것을 특징으로 할 수 있다.In the present invention, step (b) may be characterized by separating the CRM197 protein secreted in the periplasm.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail through examples. These examples are only for illustrating the present invention, it will be apparent to those skilled in the art that the scope of the present invention is not to be construed as limited by these examples.

실시예Example 1: One: CRM197CRM197 과발현 플라스미드 제조 Overexpression plasmid preparation

실시예Example 1.1: 플라스미드 1.1: Plasmid pHex1pHex1 .3 제조.3 Manufacturing

대장균 발현 플라스미드 pHex1.3은 다음과 같이 제작하였다. ptrc99a(Amann et al., Gene. 69, 301-15, 1988)를 SspI과 DraI 으로 double digestion한 후, agarose 전기영동을 이용하여 약 3.2kb DNA fragment를 정제하였다. Kanamycin resistant gene은 PCR을 이용하여 증폭하였다. 사용한 template인 플라스미드 pCR2.1, primer는 KF2, KR를 사용하였다(표 1).E. coli expression plasmid pHex1.3 was prepared as follows. After double digestion of ptrc99a (Amann et al., Gene. 69, 301-15, 1988) with Ssp I and Dra I, about 3.2 kb DNA fragment was purified using agarose electrophoresis. Kanamycin resistant gene was amplified using PCR. As the template used, plasmid pCR2.1 and primer were used KF2 and KR (Table 1).

PCR 프라이머PCR primer PrimerPrimer 염기서열(5’ -> 3’)Base sequence (5' -> 3') 주형template 목적purpose 서열번호Sequence number KF2KF2 GCGGATCCAAGAGACAGGATGAGGATCGTTTCGCGCGGATCCAAGAGACAGGATGAGGATCGTTTCGC pCR2.1pCR2.1 Km gene 증폭Km gene amplification 2222 KRKR CGGATATCAAGCTTGGAAATGTTGAATACTCATACTCTTCCGGATATCAAGCTTGGAAATGTTGAATACTCATACTCTTC 2323 TPB_FTPB_F GAGATCCGGAGCTTATACTGAGCTAATAACGAGATCCGGAGCTTATACTGAGCTAATAAC TPB1Tv1.3TPB1Tv1.3 TPB1Tv1.3 증폭, insert 확인TPB1Tv1.3 amplification, insert confirmation 2424 TPB_RTPB_R GAAAAATAAACAAAAACAAAAAGAGTTTGGAAAAATAAACAAAAACAAAAAGAGTTTG 2525 pHex_FpHex_F TACAAACTCTTTTTGTTTTTGTTTATTTTTCTACAAACTCTTTTTGTTTTTGTTTATTTTTC pHex1.1pHex1.1 pHex1.1 backbpne 증폭pHex1.1 backbpne amplification 2626 pHex_RpHex_R CCTGTTATTAGCTCAGTATAAGCTCCGGATCTCGCCTGTTATTAGCTCAGTATAAGCTCCGGATCTCG 2727 L1FL1F AATTGGAGGAACAATATGAAATATCTAATTGGAGGAACAATATGAAATATCT L1L1 L1 signal seq. 증폭L1 signal seq. Amplification 2828 L1RL1R AACATCGTCAGCGCCCGCCATCGCCGGCTAACATCGTCAGCGCCCGCCATCGCCGGCT 2929 L2FL2F TTGGAGGAACAATATGAAAAAAAGCCTTTGGAGGAACAATATGAAAAAAAGCCT L2L2 L2 signal seq. 증폭L2 signal seq. Amplification 3030 L2RL2R AACATCGTCAGCGCCGGCAAACGACAGCATAACATCGTCAGCGCCGGCAAACGACAGCAT 3131 L3FL3F TTGGAGGAACAATATGCGTTCTGTGATTGGAGGAACAATATGCGTTCTGTGA L3L3 L3 signal seq. 증폭L3 signal seq. Amplification 3232 L3RL3R AACATCGTCAGCGCCGGCGCTCACGCAAAACATCGTCAGCGCCGGCGCTCACGCAA 3333 L4FL4F TTGGAGGAACAATATGCGTGCGAAACTTTGGAGGAACAATATGCGTGCGAAACT L4L4 L4 signal seq. 증폭L4 signal seq. Amplification 3434 L4RL4R AACATCGTCAGCGCCGGCAAAGCTGGAAATAACATCGTCAGCGCCGGCAAAGCTGGAAAT 3535 L5FL5F TTGGAGGAACAATATGAAAAAAACCTTGGAGGAACAATATGAAAAAAACC L5L5 L5 signal seq. 증폭L5 signal seq. Amplification 3636 L5RL5R AACATCGTCAGCGCCCGCCTGCGCCACGGTAACATCGTCAGCGCCCGCCTGCGCCACGGT 3737 L6FL6F TTGGAGGAACAATATGAAACTGCTGATTGGAGGAACAATATGAAACTGCTGA L6L6 L6 signal seq. 증폭L6 signal seq. Amplification 3838 L6RL6R AACATCGTCAGCGCCGGCAAAACTACTGCTAACATCGTCAGCGCCGGCAAAACTACTGCT 3939 L7FL7F TTGGAGGAACAATATGAAAAAACTGTTGGAGGAACAATATGAAAAAACTG L7L7 L7 signal seq. 증폭L7 signal seq. Amplification 4040 L7RL7R ACATCGTCAGCGCCGCTGTGGCTGTAAAAACATCGTCAGCGCCGCTGTGGCTGTAAAA 4141 L8FL8F TTGGAGGAACAATATGAAAGCGACGAAATTGGAGGAACAATATGAAAGCGACGAAA L8L8 L8 signal seq. 증폭L8 signal seq. Amplification 4242 L8RL8R AACATCGTCAGCGCCGCCCGCCAGCAGCGTAACATCGTCAGCGCCGCCCGCCAGCAGCGT 4343 L9FL9F TTGGAGGAACAATATGAAAGGTCTGAATTGGAGGAACAATATGAAAGGTCTGAA L9L9 L9 signal seq. 증폭L9 signal seq. Amplification 4444 L9RL9R AACATCGTCAGCGCCCGCATGACCCGCGCAAACATCGTCAGCGCCCGCATGACCCGCGCA 4545 C1FC1F AGCCGGCGATGGCGGGCGCTGACGATGAGCCGGCGATGGCGGGCGCTGACGATG CRM197ecCRM197ec L1과 호환되는 CRM197 증폭CRM197 amplification compatible with L1 4646 C2FC2F ATGCTGTCGTTTGCCGGCGCTGACGATGATGCTGTCGTTTGCCGGCGCTGACGATG CRM197ecCRM197ec L2와 호환되는 CRM197 증폭CRM297 amplification compatible with L2 4747 C3FC3F TTGCGTGAGCGCCGGCGCTGACGATGTTGCGTGAGCGCCGGCGCTGACGATG CRM197ecCRM197ec L3과 호환되는 CRM197 증폭CRM197 amplification compatible with L3 4848 C4FC4F TTTCCAGCTTTGCCGGCGCTGACGATGTTTCCAGCTTTGCCGGCGCTGACGATG CRM197ecCRM197ec L4와 호환되는 CRM197 증폭CRM197 amplification compatible with L4 4949 C5FC5F ACCGTGGCGCAGGCGGGCGCTGACGATGACCGTGGCGCAGGCGGGCGCTGACGATG CRM197ecCRM197ec L5와 호환되는 CRM197 증폭CRM197 amplification compatible with L5 5050 C6FC6F AGCAGTAGTTTTGCCGGCGCTGACGATGAGCAGTAGTTTTGCCGGCGCTGACGATG CRM197ecCRM197ec L6과 호환되는 CRM197 증폭CRM197 amplification compatible with L6 5151 C7FC7F TTTTACAGCCACAGCGGCGCTGACGATGTTTTACAGCCACAGCGGCGCTGACGATG CRM197ecCRM197ec L7과 호환되는 CRM197 증폭CRM197 amplification compatible with L7 5252 C8FC8F TGCTGGCGGGCGGCGCTGACGATGTGCTGGCGGGCGGCGCTGACGATG CRM197ecCRM197ec L8과 호환되는 CRM197 증폭CRM197 amplification compatible with L8 5353 C9FC9F CGCGGGTCATGCGGGCGCTGACGATGCGCGGGTCATGCGGGCGCTGACGATG CRM197ecCRM197ec L9와 호환되는 CRM197 증폭CRM197 amplification compatible with L9 5454 C9RC9R GATATCCGCTTTTCATTAGCTTTTAATCTCGAAGAAGATATCCGCTTTTCATTAGCTTTTAATCTCGAAGAA CRM197ecCRM197ec 모든 CRM197 증폭을 위한 reverse primerReverse primer for all CRM197 amplification 5555 crm_mconfcrm_mconf GGCGCAAGCGTGCGCGGGTAACCGTGTGCGGGCGCAAGCGTGCGCGGGTAACCGTGTGCG pHex-L#-CRMpHex-L#-CRM insert확인Insert confirmation 5656

PCR 반응액의 조건은 dNTP 각 2.5mM, primer 각 10pmol, 주형 DNA, 200 ~ 500ng, PrimeSTAR HS DNA Polymerase(Takara Bio Inc., Japan) 1.25U, 반응 부피 50μl로 하고, PCR 조건은, 98℃ 10초, 60℃ 5초, 72℃ 분/kb의 3단계를 30회 반복하였다. 이와 같은 PCR 조건으로 생성된 약 0.8kb의 DNA fragment를 BamHI과 HindIII로 double digestion한 후, klenow fragment를 이용하여 blunt end로 fill-in한 후, 전 과정에서 제조한 3.2kb DNA fragment와 T4 DNA ligase를 이용하여 ligation하였다. 이 반응액을 E. coli C2984H 에 transformation하여, selection marker가 Amp에서 Km으로 치환된 pHex1.1을 제조하였다.The conditions of the PCR reaction solution are 2.5 mM for dNTP, 10 pmol for each primer, template DNA, 200 to 500 ng, PrimeSTAR HS DNA Polymerase (Takara Bio Inc., Japan) 1.25 U, reaction volume 50 μl, and PCR conditions are 98° C. 10 3 steps of 30 seconds at 60°C for 5 seconds at 72°C/min were repeated 30 times. After double digestion of the DNA fragment of about 0.8kb generated with the PCR conditions with Bam HI and Hin dIII, fill-in with blunt end using klenow fragment, 3.2kb DNA fragment and T4 prepared in the previous step It was ligated using DNA ligase. The reaction solution was transformed into E. coli C2984H to prepare pHex1.1 in which the selection marker was substituted with Km in Amp.

Promoter, RBS, transcription terminator를 포함하는 발현모듈 TPB1Bv1.3(도 1)은 Bioneer에서 합성하였다(서열번호 1). 발현모듈 TPB1Bv1.3을 pHex1.3에 탑재하는 과정은 다음과 같다. 발현모듈 TPB1Bv1.3을 주형, TPB_F, TPB_R를 primer(표 1)로 이용하여 PCR 증폭하여 얻은 DNA fragment(1255bp)와, pHex1.1를 주형으로, pHex_F, pHex_R을 primer로 이용하여 PCR 증폭한 DNA fragment(4561bp)를 표 2와 같은 조건으로 ligation-independent cloning(LIC; Jeong et al., Appl Environ Microbiol. 78, 5440-3, 2012)을 이용하여 in vitro에서 assemble한 후, E. coli C2984H에 transformation하여 pHex1.3을 제조하였다(도 2).The expression module TPB1Bv1.3 (FIG. 1) including Promoter, RBS, and transcription terminator was synthesized from Bioneer (SEQ ID NO: 1). The process of loading the expression module TPB1Bv1.3 into pHex1.3 is as follows. DNA fragment obtained by PCR amplification using the expression module TPB1Bv1.3 as a template, TPB_F, and TPB_R as a primer (Table 1), and DNA amplified by PCR using pHex1.1 as a template, pHex_F, and pHex_R as a primer fragment (4561bp) a ligation-independent cloning into the conditions as shown in Table 2; in using (LIC.. Jeong et al, Appl Environ Microbiol 78, 5440-3, 2012) After assemble in vitro , pHex1.3 was prepared by transformation into E. coli C2984H (FIG. 2).

LIC 반응액LIC reaction solution Stock conc.Stock conc. Linearized vectorLinearized vector 100ng100ng Insert 1 Insert 1 40ng40ng Insert 2(필요 시)Insert 2 (if necessary) 40ng40ng T4 DNA polymerase(NEB)T4 DNA polymerase (NEB) 1U1U H20H 2 0 Up to 10μLUp to 10μL

LIC 반응 조건: 벡터는 제한 효소로 자르거나 PCR을 이용하여 linear 형태의 DNA fragment로 만든다. Insert는 PCR을 이용하여 제조한다. 벡터와 insert는 위의 표와 같이 섞은 후, 상온에서 2분 30초 동안 반응하였다.LIC reaction conditions: Vectors are cut with restriction enzymes or made into linear DNA fragments using PCR. Inserts are prepared using PCR. The vector and insert were mixed as shown in the table above, and reacted at room temperature for 2 minutes 30 seconds.

실시예Example 1.2: 1.2: CRM197CRM197 유전자 제조 Gene manufacturing

대장균에서 발현이 최적화된 CRM197의 염기서열(CRM197ec)은 Genscript에서 합성하였다(서열번호 2). CRM197ec가 coding하는 아미노산 서열은 서열번호 3과 같다.The base sequence of CRM197 optimized for expression in E. coli (CRM197ec) was synthesized by Genscript (SEQ ID NO: 2). The amino acid sequence coding for CRM197ec is as SEQ ID NO: 3.

실시예Example 1.3: 1.3: SignalSignal sequencesequence 유전자 제조 Gene manufacturing

CRM197 단백질을 대장균의 periplasm으로 분비시키기 위해 사용된 signal sequence는 하기 표 3에 나타내었다(서열번호 13 내지 서열번호 21). 대장균에서의 발현을 최적화하기 위해 codon context와 2차 구조를 고려하여, 서열번호 4 내지 서열번호 12의 DNA를 합성하였다(표 3).Signal sequences used to secrete CRM197 protein into the periplasm of E. coli are shown in Table 3 below (SEQ ID NOs: 13 to 21). In order to optimize expression in E. coli, considering the codon context and secondary structure, DNAs of SEQ ID NOs: 4 to 12 were synthesized (Table 3).

본 발명에 사용된 signal sequenceSignal sequence used in the present invention 이름name 설명Explanation 아미노산 서열Amino acid sequence 염기서열(5’ -> 3’)Base sequence (5' -> 3') L1L1 PelB signal sequencePelB signal sequence MKYLLPTAAAGLLLLAAQPAMA
(서열번호 13)
MKYLLPTAAAGLLLLAAQPAMA
(SEQ ID NO: 13)
GGTCTCATATGAAATATCTGTTACCGACCGCCGCTGCCGGACTGCTGTTACTGGCGGCGCAGCCGGCGATGGCGGGCGAGAGACC
(서열번호 4)
GGTCTCATATGAAATATCTGTTACCGACCGCCGCTGCCGGACTGCTGTTACTGGCGGCGCAGCCGGCGATGGCGGGCGAGAGACC
(SEQ ID NO: 4)
L2L2 M13 G8 signal sequenceM13 G8 signal sequence MKKSLVLKASVAVATLVPMLSFA
(서열번호 14)
MKKSLVLKASVAVATLVPMLSFA
(SEQ ID NO: 14)
GGTCTCATATGAAAAAAAGCCTGGTTCTGAAAGCGTCTGTTGCGGTGGCGACGCTGGTGCCGATGCTGTCGTTTGCCGGCGAGAGACC
(서열번호 5)
GGTCTCATATGAAAAAAAGCCTGGTTCTGAAAGCGTCTGTTGCGGTGGCGACGCTGGTGCCGATGCTGTCGTTTGCCGGCGAGAGACC
(SEQ ID NO: 5)
L3L3 E. coli hypothetical protein (WP_001258047) signal sequenceE. coli hypothetical protein (WP_001258047) signal sequence MRSVIVAFLFACSFCVSA
(서열번호 15)
MRSVIVAFLFACSFCVSA
(SEQ ID NO: 15)
GGTCTCATATGCGTTCTGTGATTGTTGCCTTCCTGTTTGCCTGTAGCTTTTGCGTGAGCGCCGGCGAGAGACC
(서열번호 6)
GGTCTCATATGCGTTCTGTGATTGTTGCCTTCCTGTTTGCCTGTAGCTTTTGCGTGAGCGCCGGCGAGAGACC
(SEQ ID NO: 6)
L4L4 E. coli OmpT signal sequenceE. coli OmpT signal sequence MRAKLLGIVLTTPIAISSFA
(서열번호 16)
MRAKLLGIVLTTPIAISSFA
(SEQ ID NO: 16)
GGTCTCATATGCGTGCGAAACTGCTCGGCATTGTTCTGACCACCCCGATTGCCATTTCCAGCTTTGCCGGCGAGAGACC
(서열번호 7)
GGTCTCATATGCGTGCGAAACTGCTCGGCATTGTTCTGACCACCCCGATTGCCATTTCCAGCTTTGCCGGCGAGAGACC
(SEQ ID NO: 7)
L5L5 E. coli OmpA signal sequenceE. coli OmpA signal sequence MKKTAIAIAVALAGFATVAQA
(서열번호 17)
MKKTAIAIAVALAGFATVAQA
(SEQ ID NO: 17)
GGTCTCATATGAAAAAAACCGCCATCGCCATTGCCGTTGCCCTCGCTGGCTTTGCCACCGTGGCGCAGGCGGGCGAGAGACC
(서열번호 8)
GGTCTCATATGAAAAAAACCGCCATCGCCATTGCCGTTGCCCTCGCTGGCTTTGCCACCGTGGCGCAGGCGGGCGAGAGACC
(SEQ ID NO: 8)
L6L6 M13 G4 signal sequenceM13 G4 signal sequence MKLLNVINFVFLMFVSSSSFA
(서열번호 18)
MKLLNVINFVFLMFVSSSSFA
(SEQ ID NO: 18)
GGTCTCATATGAAACTGCTGAACGTGATCAACTTTGTTTTCCTGATGTTTGTCAGCAGCAGTAGTTTTGCCGGCGAGAGACC
(서열번호 9)
GGTCTCATATGAAACTGCTGAACGTGATCAACTTTGTTTTCCTGATGTTTGTCAGCAGCAGTAGTTTTGCCGGCGAGAGACC
(SEQ ID NO: 9)
L7L7 M13 G3 signal sequenceM13 G3 signal sequence MKKLLFAIPLVVPFYSHS
(서열번호 19)
MKKLLFAIPLVVPFYSHS
(SEQ ID NO: 19)
GGTCTCATATGAAAAAACTGCTGTTTGCCATTCCGCTGGTTGTACCGTTTTACAGCCACAGCGGCGAGAGACC
(서열번호 10)
GGTCTCATATGAAAAAACTGCTGTTTGCCATTCCGCTGGTTGTACCGTTTTACAGCCACAGCGGCGAGAGACC
(SEQ ID NO: 10)
L8L8 E. coli Lpp signal sequenceE. coli Lpp signal sequence MKATKLVLGAVILGSTLLAG
(서열번호 20)
MKATKLVLGAVILGSTLLAG
(SEQ ID NO: 20)
GGTCTCATATGAAAGCGACGAAACTGGTGCTGGGTGCTGTGATTCTGGGCAGCACGCTGCTGGCGGGCGGCGAGAGACC
(서열번호 11)
GGTCTCATATGAAAGCGACGAAACTGGTGCTGGGTGCTGTGATTCTGGGCAGCACGCTGCTGGCGGGCGGCGAGAGACC
(SEQ ID NO: 11)
L9L9 E. coli GspD signal sequenceE. coli GspD signal sequence MKGLNKITCCLLAALLMPCAGHA
(서열번호 21)
MKGLNKITCCLLAALLMPCAGHA
(SEQ ID NO: 21)
GGTCTCATATGAAAGGTCTGAATAAAATTACCTGCTGTTTACTGGCGGCGCTGCTGATGCCGTGCGCGGGTCATGCGGGCGAGAGACC
(서열번호 12)
GGTCTCATATGAAAGGTCTGAATAAAATTACCTGCTGTTTACTGGCGGCGCTGCTGATGCCGTGCGCGGGTCATGCGGGCGAGAGACC
(SEQ ID NO: 12)

실시예Example 1.4: 1.4: CRM197CRM197 과발현을 위한 플라스미드의 제조 Preparation of plasmid for overexpression

CRM197을 대장균에서 과발현 및 periplasm으로 분비시키기 위한 플라스미드는 도 3과 같이 제조하였다. pHex1.3을 BsaI과 DraI으로 double digestion한 후, agarose 전기영동을 이용하여 약 5kb의 DNA fragment를 분리하였다. signal sequence L1~L9는 표 1의 프라이머와 주형을 이용하여 PCR 증폭하였다. LIC 방법을 이용하여 각 signal sequence에 CRM197 유전자를 fusion하기 위한 CRM197 DNA fragment는 표 1의 프라이머와 주형을 이용하여 PCR 증폭하였다. BsaI과 DraI으로 절단된 pHex1.3과 각 signal sequence fragment, 이와 호환되는 CRM197 fragment는 전술한 LIC 조건을 이용하여 in vitro 에서 조립(assemble)한 후, E. coli C2984H에 transformation하여 각 signal sequence와 fusion된 CRM197을 함유하는 플라스미드 pHex-L1-CRM, pHex-L2-CRM, pHex-L3-CRM, pHex-L4-CRM, pHex-L5-CRM, pHex-L6-CRM, pHex-L7-CRM, pHex-L8-CRM, pHex-L9-CRM을 제조하였다.A plasmid for overexpressing CRM197 in E. coli and secreting it into periplasm was prepared as shown in FIG. 3. After double digestion of pHex1.3 with Bsa I and Dra I, DNA fragments of about 5 kb were isolated using agarose electrophoresis. Signal sequences L1 to L9 were PCR amplified using the primers and templates in Table 1. The CRM197 DNA fragment for fusion of the CRM197 gene to each signal sequence using the LIC method was PCR amplified using the primers and templates in Table 1. The pHex1.3 cut by Bsa I and Dra I, each signal sequence fragment, and the compatible CRM197 fragment are in vitro After assembling in E. coli C2984H, the plasmids pHex-L1-CRM, pHex-L2-CRM, pHex-L3-CRM, pHex-L4-CRM, containing CRM197 fused with each signal sequence, pHex-L5-CRM, pHex-L6-CRM, pHex-L7-CRM, pHex-L8-CRM, pHex-L9-CRM were prepared.

실시예Example 2: 대장균에서 2: in E. coli CRM197CRM197 단백질 발현 Protein expression

실시예 1에서 제조된 플라스미드 중 발현량과 세포의 성장 정도를 고려하여 pHex-L3-CRM, pHex-L5-CRM를 선택하였다. 하기 표 4의 대장균 균주에 transformation하여, CRM197 단백질의 발현 및 발현 위치를 조사하였다.In the plasmid prepared in Example 1, pHex-L3-CRM and pHex-L5-CRM were selected in consideration of the expression level and the degree of cell growth. It was transformed into the E. coli strain of Table 4 below to investigate expression and expression position of the CRM197 protein.

본 발명에 사용한 대장균 균주E. coli strain used in the present invention VendorVendor GenotypeGenotype OO Origami™ 2Origami™ 2 NovagenNovagen K12K12 Δ(ara-leu)7697 ΔlacX74 ΔphoAPvuIIphoR araD139 ahpCgalEgalKrpsL F′[lac+ lacIq pro] gor522::Tn10 trxB(CamR, StrR, TetR)Δ(ara-leu)7697 ΔlacX74 ΔphoAPvuIIphoR araD139 ahpCgalEgalKrpsL F′[lac+ lacIq pro] gor522::Tn10 trxB(CamR, StrR, TetR) SS ShuffleShuffle NEBNEB BB fhuA2 [lon] ompTahpC gal λatt::pNEB3-r1-cDsbC (SpecR, lacIq) ΔtrxBsulA11 R(mcr-73::miniTn10--TetS)2 [dcm] R(zgb-210::Tn10 --TetS) endA1 Δgor Δ(mcrC-mrr)114::IS10fhuA2 [lon] ompTahpC gal λatt::pNEB3-r1-cDsbC (SpecR, lacIq) ΔtrxBsulA11 R(mcr-73::miniTn10--TetS)2 [dcm] R(zgb-210::Tn10 --TetS) endA1 Δgor Δ(mcrC-mrr) 114::IS10 CC C2894HC2894H NEBNEB K12K12 F' proA+B+ lacIq ΔlacZM15 / fhuA2 Δ(lac-proAB) glnV galK16 galE15 R(zgb-210::Tn10)TetS endA1 thi-1 Δ(hsdS-mcrB)5F'proA+B+ lacIq ΔlacZM15 / fhuA2 Δ(lac-proAB) glnV galK16 galE15 R(zgb-210::Tn10)TetS endA1 thi-1 Δ(hsdS-mcrB)5 WW W3110-1W3110-1 KCTCKCTC K12K12 F- λ- rph-1 INV(rrnD, rrnE), ΔompTF- λ- rph-1 INV (rrnD, rrnE), ΔompT BB BL21(DE3)BL21(DE3) BB F- ompT gal dcmlonhsdSB(rB-mB-) λ(DE3 [lacI lacUV5-T7p07 ind1 sam7 nin5]) [malB+]K-12(λS)F- ompT gal dcmlonhsdSB(rB-mB-) λ(DE3 [lacI lacUV5-T7p07 ind1 sam7 nin5]) [malB+]K-12(λS)

배양 방법은, 고체 배지(soytone 1%, Yeast extract 0.5%, NaCl 1%, agar 1.5 %)에서 생성된 colony를 100mM Potassium phosphate(pH 7.5), km 50μg/ml, 0.2% Lactose를 함유하는 LB 액체 배지에서 30℃ 15시간 동안 진탕배양 후, total cell을 SDS PAGE를 수행한 후, Coomassie Blue straining과 Western blotting을 이용하여 CRM197의 발현을 분석하였다(도 4). L3 fusion은 사용한 모든 균주에서 CRM197 단백질이 발현되었지만, L5 fusion의 경우, Origami™ 2에 transformation하였을 때, 액체 배지에서 성장하지 못하였다. 이 외의 균주에서는 CRM197 단백질 발현이 관찰되었다.The culture method is LB liquid containing 100mM Potassium phosphate (pH 7.5), 50 μg/ml, 0.2% Lactose in colony generated in solid medium (soytone 1%, Yeast extract 0.5%, NaCl 1%, agar 1.5%) After shaking culture at 30° C. for 15 hours in the medium, total cells were subjected to SDS PAGE, and then expression of CRM197 was analyzed using Coomassie Blue straining and Western blotting (FIG. 4 ). The L3 fusion expressed CRM197 protein in all the strains used, but in the case of L5 fusion, it did not grow in the liquid medium when transformed with Origami™ 2. In other strains, CRM197 protein expression was observed.

실시예Example 2.1: L5에 의한 2.1: by L5 CRM197CRM197 발현 Manifestation

pHex-L5-CRM을 함유하는 BL21(DE3)를 100mM Potassium phosphate(pH 7.5), km 50μg/ml을 함유하는 LB 액체 배지(50mL/500mL baffled flask)에서 OD600이 0.4~0.6에 도달할 때까지 배양한 후, inducer로서 lactose 0.2, 0.4. 0.6%, 또는 IPTG(Isopropyl β-D-1-thiogalactopyranosid) 0.02, 0.2, 2mM을 첨가하여 발현을 유도하였다. 배양 온도는 25℃ 또는 30℃를 사용하였다. 배양 후 세포를 회수한 후, 50mM potassium phosphate(pH 7.0)에 현탁한 후, sonication을 수행하여 세포를 파쇄하였다. 파쇄 후, 원심분리하여 상등액(soluble fraction)과 침전물(insoluble fraction)을 분리하였다. 각 sample을 SDS_PAGE 후, Coomassie straining과 Western blotting을 이용하여 CRM197 단백질의 발현을 분석하였다(도 5). Inducer(lactose, IPTG)를 첨가한 후, 25℃에서 배양한 경우 발현된 CRM197 단백질의 대부분은 soluble form으로 존재하였고, reference CRM197의 분자량과 동일한 것으로 보아, 발현된 단백질은 L5 signal sequence가 제거된 matured CRM197으로 판단된다(도 5A). 반면, 30℃에서 배양한 경우, lactose를 inducer로 사용하면 CRM197 단백질의 약 50%는 insoluble fraction에서 발견되었고, IPTG를 inducer로 첨가하면 CRM197 단백질의 대부분은 insoluble fraction에서 발견되었다(도 5B).BL21 (DE3) containing pHex-L5-CRM in LB liquid medium (50mL/500mL baffled flask) containing 100mM Potassium phosphate (pH 7.5), km 50μg/ml until OD 600 reaches 0.4~0.6 After cultivation, lactose 0.2 and 0.4 as inducers. Expression was induced by adding 0.6%, or IPTG (Isopropyl β-D-1-thiogalactopyranosid) 0.02, 0.2, 2 mM. The culture temperature was 25°C or 30°C. After incubation, the cells were recovered, suspended in 50 mM potassium phosphate (pH 7.0), and then sonication was performed to crush the cells. After crushing, centrifugation was performed to separate the soluble fraction and the insoluble fraction. After SDS_PAGE of each sample, the expression of CRM197 protein was analyzed using Coomassie straining and Western blotting (FIG. 5). When inducer (lactose, IPTG) was added, most of the expressed CRM197 protein was present in a soluble form when cultured at 25°C. Considering that the molecular weight of the reference CRM197 was the same, the expressed protein was matured with the L5 signal sequence removed. It is judged as CRM197 (Fig. 5A). On the other hand, when cultured at 30°C, when lactose was used as an inducer, about 50% of the CRM197 protein was found in the insoluble fraction, and when IPTG was added as an inducer, most of the CRM197 protein was found in the insoluble fraction (FIG. 5B).

CRM197의 발현 위치를 확인하기 위해 osmotic shock을 이용하여, periplasm fraction을 회수하였다. 과정은 다음과 같다. pHex-L5-CRM을 함유하는 BL21(DE3)를 25℃에서 배양한 후, 원심분리하여 세포를 회수하였다. 원형질막 유도 완충용액[30mM Tris-HCl(pH 8.0), 20% 수크로스, 1 또는 10mM EDTA, 1mM PMSF(Phenylmethylsulfonyl fluoride)]에 세포 농도가 OD600 10이 되도록 재현탁한 후, 상온에서 0.5~1시간 동안 교반하였다. 이후 4,000 x g에서 15분간 원심분리하여 세포을 취하고, 동일한 양의 4℃ 이하의 차가운 30mM Tris-HCl(pH 8.0)을 첨가하여 상온에서 0.5~1시간 교반하였다. 이후 4,000 x g에서 15분간 원심분리하여 상등액을 얻었다(periplasmic fraction, P2). 원형질막 유도 완충용액 처리 후 상등액(P1)과 periplasmic fraction(P2), cytoplasm faction을 SDS-PAGE를 이용하여 전개한 후, Coomassie straining과 Western blotting을 이용하여 CRM197의 발현 및 발현 위치를 조사하였다(도 5). L5는 CRM197을 성공적으로 periplasm으로 분비시킬 수 있는 것을 확인하였다(도 6). 원형질막 유도 완충용액에 EDTA는 1mM보다 10mM인 경우 효과적이었다.To confirm the expression position of CRM197, periplasm fraction was recovered using osmotic shock. The process is as follows. After culturing BL21 (DE3) containing pHex-L5-CRM at 25°C, cells were recovered by centrifugation. Plasma membrane induction buffer solution (30 mM Tris-HCl (pH 8.0), 20% sucrose, 1 or 10 mM EDTA, 1 mM PMSF (Phenylmethylsulfonyl fluoride)) was resuspended to a cell concentration of OD 600 10, followed by 0.5 to 1 hour at room temperature. While stirring. Then, cells were collected by centrifugation at 4,000 xg for 15 minutes, and the same amount of cold 30 mM Tris-HCl (pH 8.0) at 4° C. or less was added and stirred at room temperature for 0.5 to 1 hour. Subsequently, supernatant was obtained by centrifugation at 4,000 xg for 15 minutes (periplasmic fraction, P2). After treatment of the plasma membrane-induced buffer solution, supernatant (P1), periplasmic fraction (P2), and cytoplasm faction were developed using SDS-PAGE, and expression and expression position of CRM197 was examined using Coomassie straining and Western blotting (FIG. 5). ). It was confirmed that L5 can successfully secrete CRM197 into periplasm (FIG. 6). EDTA in the plasma membrane-induced buffer solution was effective when 10 mM than 1 mM.

실시예Example 2.2: L3에 의한 2.2: by L3 CRM197CRM197 발현 Manifestation

pHex-L3-CRM을 함유하는 BL21(DE3)를 실시예 2.1과 동일한 조건에서 발현시켰다. L3에 의해 유도되는 CRM197의 경우, L5와 달리 모든 조건에서 soluble form으로 존재하였고(도 7), periplasm으로 분비됨을 확인하였다(도 8).BL21 (DE3) containing pHex-L3-CRM was expressed under the same conditions as in Example 2.1. In the case of CRM197 induced by L3, unlike L5, it was present in a soluble form under all conditions (FIG. 7) and was confirmed to be secreted into periplasm (FIG. 8).

실시예Example 3: 대장균 BL21(DE3)의 배양 3: Culture of E. coli BL21 (DE3)

pHex-L3-CRM 또는 pHex-L5-CRM를 함유하는 BL21(DE3) 균주를 다음과 같은 방법으로 배양하였다. 본배양 시 feeding은 pH stat 방법을 사용하였고, 유입 용액(Feeding solution: 포도당 600g/L, 효모 추출물 30g/L)과 염기성 용액(Alkali solution: 14~15% 암모니아)을 이용하여 pH 7.3으로 유지하였다. 배양에 이용한 용액 및 배지 조성은 표 5 및 표 6에 나타내었다.BL21 (DE3) strains containing pHex-L3-CRM or pHex-L5-CRM were cultured in the following manner. In the main culture, feeding was performed using a pH stat method, and the pH was maintained at pH 7.3 using an influx solution (Feeding solution: 600 g/L glucose, 30 g/L yeast extract) and a basic solution (Alkali solution: 14-15% ammonia). . The solution and medium composition used for the culture are shown in Table 5 and Table 6.

본 발명의 배양에 사용한 용액 및 배지 조성Solution and medium composition used for culturing the present invention 종배양 배지(/L)Culture medium (/L) 본배양 배지(/L)Main culture medium (/L) Feeding solution(/L)Feeding solution(/L) pH adjustpH adjust Casamino acidsCasamino acids 20 g20 g 20 g20 g -- Using ammonia solution (14~15%)Using ammonia solution (14~15%) Yeast extractYeast extract 10 g10 g 10 g10 g 30 g30 g (NH4)2SO4 (NH 4 ) 2 SO 4 7 g7 g 7 g7 g -- K2HPO4 K 2 HPO 4 2.5 g2.5 g 2.5 g2.5 g -- NaClNaCl 0.5 g0.5 g 0.5 g0.5 g -- Trace metal (100x)Trace metal (100x) 10 mL10 mL 10 mL10 mL -- Glutamic acidsGlutamic acids Added after auto-claveAdded after auto-clave 2 g2 g 2 g2 g -- CaCl2ㆍ2H2OCaCl 2 ㆍ2H 2 O 10 mg10 mg 10 mg10 mg -- GlucoseGlucose 15 g15 g 15 g15 g 600 g600 g MgSO4ㆍ7H2OMgSO 4 ㆍ7H 2 O 2.5 g2.5 g 2.5 g2.5 g -- Km50Km50 1 mL1 mL 1 mL1 mL -- SB2121 (antifoam)SB2121 (antifoam) -- 0.1%0.1% -- pH adjust 7.3
(using 1 ~ 4M NaOH)
pH adjust 7.3
(using 1 ~ 4M NaOH)

본 발명의 배양에 사용한 trace metal 조성Trace metal composition used in the culture of the present invention Trace metal(100x, /L)Trace metal (100x, /L) EDTAEDTA 840 mg840 mg CoCl2ㆍ6H2OCoCl 2 ㆍ6H 2 O 250 mg250 mg MnCl2ㆍ4H2OMnCl 2 ㆍ4H 2 O 1.5 g1.5 g CuCl2ㆍ2H2OCuCl 2 ㆍ2H 2 O 150 mg150 mg H3BO3 H 3 BO 3 300 mg300 mg Na2MoO4ㆍ2H2ONa 2 MoO 4 ㆍ2H 2 O 250 mg250 mg Zn(CH3COO)2ㆍ2H2OZn(CH 3 COO) 2 ㆍ2H 2 O 1.3 g1.3 g Fe(Ⅲ)citrateFe(Ⅲ)citrate 10 g10 g

수정된 LB 한천 배지[Modified Luria-Bertani(LB) 아가: soytone 10g/L, 효모 추출물 5g/L, 염화나트륨 10g/L, 아가 15g/L, 카나마이신 50mg/L]에서 형성된 단일 콜로니를 종배양 배지에 접종하여, 30℃에서 18시간 동안 배양하였다. 이 종배양을 다시 본배양 배지(3L/5L 발효조)에 1%(v/v)의 비율로 접종하고 30℃에서 배양하였다. 본배양 배지는 종배양 배지에 추가적으로 멸균된 거품억제제를 0.1% 첨가하였다. 배양액의 흡광도가 30~40의 값을 가진 이후, 온도를 25℃로 낮추었다. 다음으로 IPTG 10mM을 첨가하였으며, 배양액의 흡광도가 100~120이 된 이후 배양을 종료하였다.A single colony formed from modified LB agar medium [Modified Luria-Bertani (LB) agar: 10 g/L of soytone, 5 g/L of yeast extract, 10 g/L of sodium chloride, 15 g/L of agar, 50 mg/L of kanamycin] was added to the seed culture medium. Inoculated, and cultured at 30 ℃ for 18 hours. This seed culture was inoculated again in the main culture medium (3L/5L fermenter) at a rate of 1% (v/v) and cultured at 30°C. In the main culture medium, 0.1% of an additional sterilized foam inhibitor was added to the seed culture medium. After the absorbance of the culture broth had a value of 30-40, the temperature was lowered to 25°C. Next, 10 mM of IPTG was added, and the culture was terminated after the absorbance of the culture solution reached 100-120.

pHex-L3-CRM를 함유하는 대장균 BL21(DE3)를 5L 발효조에서 배양 양상은 도 9, pHex-L5-CRM를 함유하는 대장균 BL21(DE3)의 배양 양상은 도 10에 나타내었다. 5L 발효조에서 발효시, 발현되는 CRM197의 발현 양상은 도 11과 같으며, 발현 수율은 L3 fusion의 경우 1.1~1.2g/L, L5 fusion의 경우 3.0~3.7g/L이었다. CRM197의 정량은 SDS-PAGE/Coomassie straining 후 densitometer(GS-900™, Bio-rad laboratories Ins., Hercules, California)를 사용하여 reference CRM197과의 상대량(relative quantity)을 비교하여 정량하였다.The culture pattern of E. coli BL21 (DE3) containing pHex-L3-CRM in 5L fermenter is shown in FIG. 9, and the culture pattern of E. coli BL21 (DE3) containing pHex-L5-CRM in FIG. 10. When fermented in a 5L fermenter, the expression pattern of CRM197 expressed is as shown in FIG. 11, and the expression yield was 1.1 to 1.2 g/L for L3 fusion and 3.0 to 3.7 g/L for L5 fusion. Quantification of CRM197 was performed by comparing the relative quantity with reference CRM197 using densitometer (GS-900™, Bio-rad laboratories Ins., Hercules, California) after SDS-PAGE/Coomassie straining.

실시예Example 4: 단백질 정제 4: protein purification

실시예Example 4.1: 세포 배양액으로부터 4.1: From cell culture periplasmicperiplasmic fractionfraction 제조 Produce

5L 발효조에서 배양한 세포로부터 periplasmic fraction을 회수하는 과정은 다음과 같다. 세포 배양액을 4℃, 4,000 x g에서 15분간 원심분리하여 세포를 침전시켰다. 세포 침전물은 흡광도 100을 기준으로 수정된 단백질의 원형질막 유도 완충용액(표 7)에 재현탁하여 상온에서 0.5~1시간 동안 교반하였다.The process of recovering the periplasmic fraction from cells cultured in a 5L fermenter is as follows. The cells were precipitated by centrifuging the cell culture solution at 4°C and 4,000 x g for 15 minutes. The cell precipitate was resuspended in a plasma membrane-derived buffer solution (Table 7) of the modified protein based on absorbance 100, and stirred at room temperature for 0.5 to 1 hour.

본 발명의 periplasmic fraction 제조에 사용한 완충용액 조성Composition of buffer solution used in the preparation of periplasmic fraction of the present invention Periplasting bufferPeriplasting buffer Shock buffer(cold)Shock buffer(cold) Tris-HCl(pH 8.0)Tris-HCl (pH 8.0) 30 mM30 mM 30 mM30 mM SucroseSucrose 20 %20% -- EDTAEDTA 10 mM10 mM -- PMSFPMSF 1 mM1 mM --

이후 4,000 x g에서 15분간 원심분리하여 세포를 취하고, 동일한 양의 4℃ 이하의 차가운 30mM Tris-HCl[pH 8.0]을 첨가하여 상온에서 0.5~1시간 교반하였다. 이후 4,000 x g에서 15분간 원심분리하여 상등액을 취하고, MF를 이용하여 불순물을 제거하였다. 위의 과정을 통한 pHex-L3-CRM를 함유하는 대장균 BL21(DE3)에서 회수된 periplasmic fraction의 SDS-PAGE 분석은 도 12(A), pHex-L5-CRM를 함유하는 대장균 BL21(DE3)에서 회수된 periplasmic fraction의 SDS-PAGE 분석은 도 12(B)에 나타내었다. periplasmic fraction에 존재하는 CRM197 단백질의 양은 L3 균주는 1.2g/L, L5 균주는 2.3g/L인 것으로 확인되었다(표 8).Thereafter, cells were collected by centrifugation at 4,000 x g for 15 minutes, and the same amount of cold 30 mM Tris-HCl [pH 8.0] of 4° C. or less was added and stirred at room temperature for 0.5 to 1 hour. Thereafter, the supernatant was collected by centrifugation at 4,000 x g for 15 minutes, and impurities were removed using MF. SDS-PAGE analysis of the periplasmic fraction recovered from E. coli BL21 (DE3) containing pHex-L3-CRM through the above procedure is shown in Figure 12(A), E. coli BL21 (DE3) containing pHex-L5-CRM SDS-PAGE analysis of the periplasmic fraction was shown in Figure 12 (B). The amount of CRM197 protein present in the periplasmic fraction was found to be 1.2 g/L for the L3 strain and 2.3 g/L for the L5 strain (Table 8).

본 발명의 배양을 통하여 얻어진 CRM197 단백질의 양The amount of CRM197 protein obtained through the culture of the present invention L3L3 L5L5 PeriplasmPeriplasm batch #1batch #1 batch #2batch #2 batch #1batch #1 batch #2batch #2 batch #3batch #3 L3_#2L3_#2 L5_#1L5_#1 최종 OD600 Final OD 600 109.4109.4 118118 119.8119.8 107107 112112 100100 100100 Total CRM(g/L)Total CRM (g/L) 1.181.18 1.061.06 3.743.74 2.952.95 3.743.74 1.181.18 2.302.30

실시예Example 4.2: 4.2: CRM197CRM197 단백질의 정제 Purification of protein

pHex-L3-CRM 배양액의 periplasmic fraction을 취하여 TFF system을 이용하여 10kDa cut-off membrane으로 2배 농축하고 10배 부피의 10mM sodium phosphate 용매(pH 7.2)로 한외여과를 실시하였다. AKTA pure(GE Helthcare) system을 이용하여 두 가지의 컬럼 공정을 거쳐 정제를 완료하였다. 첫 번째 컬럼 공정은 Anion exchange chromatography(Diethyl aminoetyl Separose Fast Flow resin, DEAE)이며 핵산 및 불순물 단백질을 제거하는 목적으로 사용하였다. DEAE Resin은 (-) 전하를 띄고 있어 (+) 전하의 단백질이 결합하게 된다. 한외여과를 거친 시료를 DEAE Chromatography를 거쳐 결합되지 않은 단백질 및 불순물이 1차적으로 빠져 나와 제거되고, 연이은 washing 공정을 거쳐 salt 농도에 따라 CRM197을 제외한 결합력이 낮은 불순물 단백질을 제거하였다. 이후 salt 농도를 증가시켜 CRM197만을 용출하였다. DEAE Chromatography를 이용해 정제하는 과정 중의 시료에 대해 SDS-PAGE 분석을 진행하였고, 그 결과를 도 13(A)에 나타내었다. DEAE Chromatography를 거친 시료를 Hydroxyapatite(HA) chromatography를 이용해 1차적으로 결합되지 않은 불순물 및 단백질을 flow-through로 제거하고, 최종 100mM Potassium phosphate, 100mM NaCl 용매로 CRM197을 용출시켰다. 용출된 CRM197의 SDS-PAGE 결과를 도 13(B)에 나타내었다.The periplasmic fraction of the pHex-L3-CRM culture was taken and concentrated twice with a 10 kDa cut-off membrane using a TFF system, and ultrafiltration was performed with 10 times the volume of 10 mM sodium phosphate solvent (pH 7.2). Purification was completed through two column processes using an AKTA pure (GE Helthcare) system. The first column process is anion exchange chromatography (Diethyl aminoetyl Separose Fast Flow resin, DEAE) and was used for the purpose of removing nucleic acid and impurity proteins. DEAE Resin has a (-) charge, so a protein with a (+) charge is bound. Untreated proteins and impurities are firstly removed through DEAE Chromatography and removed from the samples subjected to ultrafiltration, followed by a subsequent washing process to remove impurity proteins with low binding power except CRM197 according to the salt concentration. Then, the salt concentration was increased to elute only CRM197. SDS-PAGE analysis was performed on the sample during the purification process using DEAE Chromatography, and the results are shown in FIG. 13(A). The samples subjected to DEAE Chromatography were firstly removed through flow-through of unbound impurities and proteins using Hydroxyapatite (HA) chromatography, and CRM197 was eluted with a final 100 mM Potassium phosphate and 100 mM NaCl solvent. The result of SDS-PAGE of the eluted CRM197 is shown in Fig. 13(B).

실시예Example 5: 5: 코리네박테리움Corynebacterium 생산 production CRM197과의With CRM197 비교 compare

최종 정제한 CRM197에 대해 품질 및 특성을 분석하였다. SEC-HPLC로 분석한 결과 순도는 99% 이상임을 확인하였다(도 14). SDS-PAGE와 Western blot 분석을 통해 코리네박테리움 생산 CRM197과 동일한 위치에 밴드가 나타남을 확인하였다(도 15).Quality and characteristics of the final purified CRM197 were analyzed. As a result of analysis by SEC-HPLC, it was confirmed that the purity was 99% or more (FIG. 14). Through SDS-PAGE and Western blot analysis, it was confirmed that a band appeared at the same position as CRM197 produced by Corynebacterium (FIG. 15).

또한 CRM197을 구성하는 아미노산 535개의 전체 서열을 확인하여 100% 일치함을 확인하였고, 분자량 측정 결과 58,409Da의 주 피크가 확인되어 이론적 분자량 값과 일치하였다(도 16). Circular dichroism(CD) 분석을 통해 고차구조를 확인하였고, 코리네박테리움 생산 CRM197과 고차구조에 차이가 없음을 확인하였다(도 17). 형광스펙트럼 분석결과 최대 방출파장이 338nm으로 코리네박테리움 생산 CRM197과 동일하였다(도 18).In addition, it was confirmed that the total sequence of 535 amino acids constituting CRM197 was 100% identical, and as a result of measuring the molecular weight, a main peak of 58,409 Da was confirmed, which was consistent with the theoretical molecular weight value (FIG. 16). Through the circular dichroism (CD) analysis, the higher order structure was confirmed, and there was no difference between the higher order structure and CRM197 produced by Corynebacterium (FIG. 17). As a result of fluorescence spectrum analysis, the maximum emission wavelength was 338 nm, which was the same as that of Corynebacterium production CRM197 (Fig. 18).

상기 결과를 통해 대장균 pHex-L3 균주를 사용하여 생산한 CRM197은 코리네박테리움 생산 CRM197과 물리화학적, 면역학적으로 동일한 단백질임을 확인하였다.Through the above results, it was confirmed that CRM197 produced using the E. coli pHex-L3 strain is the same protein as physicochemical and immunologically with CRM197 produced by Corynebacterium.

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.Since specific parts of the present invention have been described in detail above, it will be apparent to those skilled in the art that this specific technique is only a preferred embodiment, and the scope of the present invention is not limited thereby. will be. Accordingly, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

<110> GENOFOCUS CO., LTD. Eubiologics.Co.,LTD <120> Expression Method of CRM197 Protein <130> P19-B342 <160> 56 <170> KoPatentIn 3.0 <210> 1 <211> 1226 <212> DNA <213> Artificial Sequence <220> <223> TPB1Tv1.3 <400> 1 tactgagcta ataacaggcc tgctggtaat cgcaggcctt tttatttctg gctcaccttc 60 gggtgggcct ttctgcgttt acggttctgg caaatattct gaaatgagct gttgacaatt 120 aatcatccgg ctcgtataat gtgtggaatt gtgagcggat aacaatttac tgctctttaa 180 caatttatca gatccaattg gaggaacaat atgggagacc acgcgcgcga ggtctcatct 240 gcggcggcag cagggggatc gatgagcaaa ggtgaagagc tgtttaccgg tgtggtgccg 300 attctggttg aactggatgg cgacgttaac ggccataaat tcagcgtcag cggcgagggc 360 gaaggggatg ccacctacgg taaactgacc ctgaagttta tttgcaccac cggcaaatta 420 ccggttccgt ggccgacgct ggtgacgacc tttagctatg gcgtgcagtg cttttcccgt 480 tatccggacc atatgaaaca gcatgatttt tttaaaagcg cgatgccgga aggctatgtt 540 caggaacgta ccattttctt taaggatgac ggcaattaca aaacccgcgc ggaagtgaaa 600 tttgaaggtg ataccctggt caaccgcatt gaactgaaag gcattgattt caaagaagat 660 ggtaatattc tcggtcataa gctggaatat aactacaaca gccataacgt ttatatcatg 720 gcggataaac aaaaaaacgg tattaaagtg aactttaaaa ttcgccataa tatcgaagat 780 ggtagcgtgc aactggcgga tcattatcag cagaacaccc caattggcga tggcccggtg 840 ttgctgccgg ataaccacta tctgagcacc cagtcggcgc tgagtaaaga tccgaacgaa 900 aaacgcgatc acatggtgct gctggagttt gtcaccgccg ccggtatcac ccacggcatg 960 gatgaactgt ataaataatg atttaaagcg gatatcaaat aaaacgaaag gctcagtcga 1020 aagactgggc ctttcgtttt atctgttgtt tgtcggtgaa cgctctcctg agtaggacaa 1080 atccgccggg agcggatttg aacgttgcga agcaacggcc cggagggtgg cgggcaggac 1140 gcccgccata aactgccagg catcaaatta agcagaaggc catcctgacg gatggccttt 1200 ttgcgtttct acaaactctt tttgtt 1226 <210> 2 <211> 1625 <212> DNA <213> Artificial Sequence <220> <223> CRM197ec <400> 2 gaagacacgg cgctgacgat gttgttgaca gcagcaagag ctttgttatg gagaatttca 60 gcagctatca cggcaccaaa ccgggctatg ttgacagcat tcagaaaggc atccaaaagc 120 cgaaaagcgg tacccagggc aactacgacg atgactggaa agagttttat agcaccgata 180 acaagtacga cgcggcgggc tatagcgttg ataacgaaaa cccgctgagc ggtaaagcgg 240 gtggcgtggt taaggtgacc tacccgggtc tgaccaaagt gctggcgctg aaggttgaca 300 acgcggaaac catcaagaaa gagctgggcc tgagcctgac cgaaccgctg atggagcagg 360 ttggtaccga ggaattcatt aagcgttttg gtgatggtgc gagccgtgtg gttctgagcc 420 tgccgttcgc ggaaggtagc agcagcgtgg agtacatcaa caactgggaa caagcgaaag 480 cgctgagcgt ggagctggaa attaacttcg aaacccgtgg caagcgtggc caggatgcga 540 tgtacgaata tatggcgcaa gcgtgcgcgg gtaaccgtgt gcgtcgtagc gttggtagca 600 gcctgagctg cattaacctg gattgggacg ttatccgtga caagaccaaa accaagatcg 660 aaagcctgaa agagcacggt ccgattaaaa acaagatgag cgagagcccg aacaagaccg 720 tgagcgagga aaaagcgaag cagtacctgg aggaatttca ccaaaccgcg ctggagcacc 780 cggaactgag cgagctgaaa accgtgaccg gcaccaaccc ggttttcgcg ggtgcgaact 840 atgcggcgtg ggcggtgaac gttgcgcagg tgatcgatag cgaaaccgcg gacaacctgg 900 aaaagaccac cgcggcgctg agcatcctgc cgggtattgg cagcgtgatg ggcatcgcgg 960 atggtgcggt tcaccacaac accgaggaaa tcgtggcgca gagcattgcg ctgagcagcc 1020 tgatggttgc gcaagcgatc ccgctggttg gtgagctggt tgacattggt ttcgcggcgt 1080 acaactttgt ggaaagcatc attaacctgt tccaggtggt tcacaacagc tacaaccgtc 1140 cggcgtatag cccgggccac aaaacccaac cgtttctgca cgatggttat gcggtgagct 1200 ggaacaccgt tgaggacagc atcattcgta ccggtttcca gggcgagagc ggtcacgata 1260 tcaagattac cgcggaaaac accccgctgc cgattgcggg cgttctgctg ccgaccattc 1320 cgggtaaact ggacgttaac aaaagcaaga cccacattag cgtgaacggc cgtaagatcc 1380 gtatgcgttg ccgtgcgatt gatggtgacg tgaccttttg ccgtccgaaa agcccggtgt 1440 acgttggtaa cggcgtgcac gcgaacctgc acgttgcgtt ccaccgtagc agcagcgaga 1500 agatccacag caacgaaatt agcagcgaca gcatcggcgt tctgggttat caaaaaaccg 1560 tggatcatac caaagtgaat agcaagctga gcctgttctt cgagattaaa agctctgagg 1620 tcttc 1625 <210> 3 <211> 535 <212> PRT <213> Artificial Sequence <220> <223> CRM197 <400> 3 Gly Ala Asp Asp Val Val Asp Ser Ser Lys Ser Phe Val Met Glu Asn 1 5 10 15 Phe Ser Ser Tyr His Gly Thr Lys Pro Gly Tyr Val Asp Ser Ile Gln 20 25 30 Lys Gly Ile Gln Lys Pro Lys Ser Gly Thr Gln Gly Asn Tyr Asp Asp 35 40 45 Asp Trp Lys Glu Phe Tyr Ser Thr Asp Asn Lys Tyr Asp Ala Ala Gly 50 55 60 Tyr Ser Val Asp Asn Glu Asn Pro Leu Ser Gly Lys Ala Gly Gly Val 65 70 75 80 Val Lys Val Thr Tyr Pro Gly Leu Thr Lys Val Leu Ala Leu Lys Val 85 90 95 Asp Asn Ala Glu Thr Ile Lys Lys Glu Leu Gly Leu Ser Leu Thr Glu 100 105 110 Pro Leu Met Glu Gln Val Gly Thr Glu Glu Phe Ile Lys Arg Phe Gly 115 120 125 Asp Gly Ala Ser Arg Val Val Leu Ser Leu Pro Phe Ala Glu Gly Ser 130 135 140 Ser Ser Val Glu Tyr Ile Asn Asn Trp Glu Gln Ala Lys Ala Leu Ser 145 150 155 160 Val Glu Leu Glu Ile Asn Phe Glu Thr Arg Gly Lys Arg Gly Gln Asp 165 170 175 Ala Met Tyr Glu Tyr Met Ala Gln Ala Cys Ala Gly Asn Arg Val Arg 180 185 190 Arg Ser Val Gly Ser Ser Leu Ser Cys Ile Asn Leu Asp Trp Asp Val 195 200 205 Ile Arg Asp Lys Thr Lys Thr Lys Ile Glu Ser Leu Lys Glu His Gly 210 215 220 Pro Ile Lys Asn Lys Met Ser Glu Ser Pro Asn Lys Thr Val Ser Glu 225 230 235 240 Glu Lys Ala Lys Gln Tyr Leu Glu Glu Phe His Gln Thr Ala Leu Glu 245 250 255 His Pro Glu Leu Ser Glu Leu Lys Thr Val Thr Gly Thr Asn Pro Val 260 265 270 Phe Ala Gly Ala Asn Tyr Ala Ala Trp Ala Val Asn Val Ala Gln Val 275 280 285 Ile Asp Ser Glu Thr Ala Asp Asn Leu Glu Lys Thr Thr Ala Ala Leu 290 295 300 Ser Ile Leu Pro Gly Ile Gly Ser Val Met Gly Ile Ala Asp Gly Ala 305 310 315 320 Val His His Asn Thr Glu Glu Ile Val Ala Gln Ser Ile Ala Leu Ser 325 330 335 Ser Leu Met Val Ala Gln Ala Ile Pro Leu Val Gly Glu Leu Val Asp 340 345 350 Ile Gly Phe Ala Ala Tyr Asn Phe Val Glu Ser Ile Ile Asn Leu Phe 355 360 365 Gln Val Val His Asn Ser Tyr Asn Arg Pro Ala Tyr Ser Pro Gly His 370 375 380 Lys Thr Gln Pro Phe Leu His Asp Gly Tyr Ala Val Ser Trp Asn Thr 385 390 395 400 Val Glu Asp Ser Ile Ile Arg Thr Gly Phe Gln Gly Glu Ser Gly His 405 410 415 Asp Ile Lys Ile Thr Ala Glu Asn Thr Pro Leu Pro Ile Ala Gly Val 420 425 430 Leu Leu Pro Thr Ile Pro Gly Lys Leu Asp Val Asn Lys Ser Lys Thr 435 440 445 His Ile Ser Val Asn Gly Arg Lys Ile Arg Met Arg Cys Arg Ala Ile 450 455 460 Asp Gly Asp Val Thr Phe Cys Arg Pro Lys Ser Pro Val Tyr Val Gly 465 470 475 480 Asn Gly Val His Ala Asn Leu His Val Ala Phe His Arg Ser Ser Ser 485 490 495 Glu Lys Ile His Ser Asn Glu Ile Ser Ser Asp Ser Ile Gly Val Leu 500 505 510 Gly Tyr Gln Lys Thr Val Asp His Thr Lys Val Asn Ser Lys Leu Ser 515 520 525 Leu Phe Phe Glu Ile Lys Ser 530 535 <210> 4 <211> 85 <212> DNA <213> Artificial Sequence <220> <223> PelB (L1) <400> 4 ggtctcatat gaaatatctg ttaccgaccg ccgctgccgg actgctgtta ctggcggcgc 60 agccggcgat ggcgggcgag agacc 85 <210> 5 <211> 88 <212> DNA <213> Artificial Sequence <220> <223> G8 (L2) <400> 5 ggtctcatat gaaaaaaagc ctggttctga aagcgtctgt tgcggtggcg acgctggtgc 60 cgatgctgtc gtttgccggc gagagacc 88 <210> 6 <211> 73 <212> DNA <213> Artificial Sequence <220> <223> Wp (L3) <400> 6 ggtctcatat gcgttctgtg attgttgcct tcctgtttgc ctgtagcttt tgcgtgagcg 60 ccggcgagag acc 73 <210> 7 <211> 79 <212> DNA <213> Artificial Sequence <220> <223> OmpT (L4) <400> 7 ggtctcatat gcgtgcgaaa ctgctcggca ttgttctgac caccccgatt gccatttcca 60 gctttgccgg cgagagacc 79 <210> 8 <211> 82 <212> DNA <213> Artificial Sequence <220> <223> OmpA (L5) <400> 8 ggtctcatat gaaaaaaacc gccatcgcca ttgccgttgc cctcgctggc tttgccaccg 60 tggcgcaggc gggcgagaga cc 82 <210> 9 <211> 82 <212> DNA <213> Artificial Sequence <220> <223> G4 (L6) <400> 9 ggtctcatat gaaactgctg aacgtgatca actttgtttt cctgatgttt gtcagcagca 60 gtagttttgc cggcgagaga cc 82 <210> 10 <211> 73 <212> DNA <213> Artificial Sequence <220> <223> G3 (L7) <400> 10 ggtctcatat gaaaaaactg ctgtttgcca ttccgctggt tgtaccgttt tacagccaca 60 gcggcgagag acc 73 <210> 11 <211> 79 <212> DNA <213> Artificial Sequence <220> <223> Lpp (L8) <400> 11 ggtctcatat gaaagcgacg aaactggtgc tgggtgctgt gattctgggc agcacgctgc 60 tggcgggcgg cgagagacc 79 <210> 12 <211> 88 <212> DNA <213> Artificial Sequence <220> <223> Gsp (L9) <400> 12 ggtctcatat gaaaggtctg aataaaatta cctgctgttt actggcggcg ctgctgatgc 60 cgtgcgcggg tcatgcgggc gagagacc 88 <210> 13 <211> 22 <212> PRT <213> Artificial Sequence <220> <223> PelB (L1) <400> 13 Met Lys Tyr Leu Leu Pro Thr Ala Ala Ala Gly Leu Leu Leu Leu Ala 1 5 10 15 Ala Gln Pro Ala Met Ala 20 <210> 14 <211> 23 <212> PRT <213> Artificial Sequence <220> <223> G8 (L2) <400> 14 Met Lys Lys Ser Leu Val Leu Lys Ala Ser Val Ala Val Ala Thr Leu 1 5 10 15 Val Pro Met Leu Ser Phe Ala 20 <210> 15 <211> 18 <212> PRT <213> Artificial Sequence <220> <223> Wp (L3) <400> 15 Met Arg Ser Val Ile Val Ala Phe Leu Phe Ala Cys Ser Phe Cys Val 1 5 10 15 Ser Ala <210> 16 <211> 20 <212> PRT <213> Artificial Sequence <220> <223> OmpT (L4) <400> 16 Met Arg Ala Lys Leu Leu Gly Ile Val Leu Thr Thr Pro Ile Ala Ile 1 5 10 15 Ser Ser Phe Ala 20 <210> 17 <211> 21 <212> PRT <213> Artificial Sequence <220> <223> OmpA (L5) <400> 17 Met Lys Lys Thr Ala Ile Ala Ile Ala Val Ala Leu Ala Gly Phe Ala 1 5 10 15 Thr Val Ala Gln Ala 20 <210> 18 <211> 21 <212> PRT <213> Artificial Sequence <220> <223> G4 (L6) <400> 18 Met Lys Leu Leu Asn Val Ile Asn Phe Val Phe Leu Met Phe Val Ser 1 5 10 15 Ser Ser Ser Phe Ala 20 <210> 19 <211> 18 <212> PRT <213> Artificial Sequence <220> <223> G3 (L7) <400> 19 Met Lys Lys Leu Leu Phe Ala Ile Pro Leu Val Val Pro Phe Tyr Ser 1 5 10 15 His Ser <210> 20 <211> 20 <212> PRT <213> Artificial Sequence <220> <223> Lpp (L8) <400> 20 Met Lys Ala Thr Lys Leu Val Leu Gly Ala Val Ile Leu Gly Ser Thr 1 5 10 15 Leu Leu Ala Gly 20 <210> 21 <211> 23 <212> PRT <213> Artificial Sequence <220> <223> Gsp (L9) <400> 21 Met Lys Gly Leu Asn Lys Ile Thr Cys Cys Leu Leu Ala Ala Leu Leu 1 5 10 15 Met Pro Cys Ala Gly His Ala 20 <210> 22 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 22 gcggatccaa gagacaggat gaggatcgtt tcgc 34 <210> 23 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 23 cggatatcaa gcttggaaat gttgaatact catactcttc 40 <210> 24 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 24 gagatccgga gcttatactg agctaataac 30 <210> 25 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 25 gaaaaataaa caaaaacaaa aagagtttg 29 <210> 26 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 26 tacaaactct ttttgttttt gtttattttt c 31 <210> 27 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 27 cctgttatta gctcagtata agctccggat ctcg 34 <210> 28 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 28 aattggagga acaatatgaa atatct 26 <210> 29 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 29 aacatcgtca gcgcccgcca tcgccggct 29 <210> 30 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 30 ttggaggaac aatatgaaaa aaagcct 27 <210> 31 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 31 aacatcgtca gcgccggcaa acgacagcat 30 <210> 32 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 32 ttggaggaac aatatgcgtt ctgtga 26 <210> 33 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 33 aacatcgtca gcgccggcgc tcacgcaa 28 <210> 34 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 34 ttggaggaac aatatgcgtg cgaaact 27 <210> 35 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 35 aacatcgtca gcgccggcaa agctggaaat 30 <210> 36 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 36 ttggaggaac aatatgaaaa aaacc 25 <210> 37 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 37 aacatcgtca gcgcccgcct gcgccacggt 30 <210> 38 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 38 ttggaggaac aatatgaaac tgctga 26 <210> 39 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 39 aacatcgtca gcgccggcaa aactactgct 30 <210> 40 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 40 ttggaggaac aatatgaaaa aactg 25 <210> 41 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 41 acatcgtcag cgccgctgtg gctgtaaaa 29 <210> 42 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 42 ttggaggaac aatatgaaag cgacgaaa 28 <210> 43 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 43 aacatcgtca gcgccgcccg ccagcagcgt 30 <210> 44 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 44 ttggaggaac aatatgaaag gtctgaa 27 <210> 45 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 45 aacatcgtca gcgcccgcat gacccgcgca 30 <210> 46 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 46 agccggcgat ggcgggcgct gacgatg 27 <210> 47 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 47 atgctgtcgt ttgccggcgc tgacgatg 28 <210> 48 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 48 ttgcgtgagc gccggcgctg acgatg 26 <210> 49 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 49 tttccagctt tgccggcgct gacgatg 27 <210> 50 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 50 accgtggcgc aggcgggcgc tgacgatg 28 <210> 51 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 51 agcagtagtt ttgccggcgc tgacgatg 28 <210> 52 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 52 ttttacagcc acagcggcgc tgacgatg 28 <210> 53 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 53 tgctggcggg cggcgctgac gatg 24 <210> 54 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 54 cgcgggtcat gcgggcgctg acgatg 26 <210> 55 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 55 gatatccgct tttcattagc ttttaatctc gaagaa 36 <210> 56 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 56 ggcgcaagcg tgcgcgggta accgtgtgcg 30 <110> GENOFOCUS CO., LTD. Eubiologics.Co.,LTD <120> Expression Method of CRM197 Protein <130> P19-B342 <160> 56 <170> KoPatentIn 3.0 <210> 1 <211> 1226 <212> DNA <213> Artificial Sequence <220> <223> TPB1Tv1.3 <400> 1 tactgagcta ataacaggcc tgctggtaat cgcaggcctt tttatttctg gctcaccttc 60 gggtgggcct ttctgcgttt acggttctgg caaatattct gaaatgagct gttgacaatt 120 aatcatccgg ctcgtataat gtgtggaatt gtgagcggat aacaatttac tgctctttaa 180 caatttatca gatccaattg gaggaacaat atgggagacc acgcgcgcga ggtctcatct 240 gcggcggcag cagggggatc gatgagcaaa ggtgaagagc tgtttaccgg tgtggtgccg 300 attctggttg aactggatgg cgacgttaac ggccataaat tcagcgtcag cggcgagggc 360 gaaggggatg ccacctacgg taaactgacc ctgaagttta tttgcaccac cggcaaatta 420 ccggttccgt ggccgacgct ggtgacgacc tttagctatg gcgtgcagtg cttttcccgt 480 tatccggacc atatgaaaca gcatgatttt tttaaaagcg cgatgccgga aggctatgtt 540 caggaacgta ccattttctt taaggatgac ggcaattaca aaacccgcgc ggaagtgaaa 600 tttgaaggtg ataccctggt caaccgcatt gaactgaaag gcattgattt caaagaagat 660 ggtaatattc tcggtcataa gctggaatat aactacaaca gccataacgt ttatatcatg 720 gcggataaac aaaaaaacgg tattaaagtg aactttaaaa ttcgccataa tatcgaagat 780 ggtagcgtgc aactggcgga tcattatcag cagaacaccc caattggcga tggcccggtg 840 ttgctgccgg ataaccacta tctgagcacc cagtcggcgc tgagtaaaga tccgaacgaa 900 aaacgcgatc acatggtgct gctggagttt gtcaccgccg ccggtatcac ccacggcatg 960 gatgaactgt ataaataatg atttaaagcg gatatcaaat aaaacgaaag gctcagtcga 1020 aagactgggc ctttcgtttt atctgttgtt tgtcggtgaa cgctctcctg agtaggacaa 1080 atccgccggg agcggatttg aacgttgcga agcaacggcc cggagggtgg cgggcaggac 1140 gcccgccata aactgccagg catcaaatta agcagaaggc catcctgacg gatggccttt 1200 ttgcgtttct acaaactctt tttgtt 1226 <210> 2 <211> 1625 <212> DNA <213> Artificial Sequence <220> <223> CRM197ec <400> 2 gaagacacgg cgctgacgat gttgttgaca gcagcaagag ctttgttatg gagaatttca 60 gcagctatca cggcaccaaa ccgggctatg ttgacagcat tcagaaaggc atccaaaagc 120 cgaaaagcgg tacccagggc aactacgacg atgactggaa agagttttat agcaccgata 180 acaagtacga cgcggcgggc tatagcgttg ataacgaaaa cccgctgagc ggtaaagcgg 240 gtggcgtggt taaggtgacc tacccgggtc tgaccaaagt gctggcgctg aaggttgaca 300 acgcggaaac catcaagaaa gagctgggcc tgagcctgac cgaaccgctg atggagcagg 360 ttggtaccga ggaattcatt aagcgttttg gtgatggtgc gagccgtgtg gttctgagcc 420 tgccgttcgc ggaaggtagc agcagcgtgg agtacatcaa caactgggaa caagcgaaag 480 cgctgagcgt ggagctggaa attaacttcg aaacccgtgg caagcgtggc caggatgcga 540 tgtacgaata tatggcgcaa gcgtgcgcgg gtaaccgtgt gcgtcgtagc gttggtagca 600 gcctgagctg cattaacctg gattgggacg ttatccgtga caagaccaaa accaagatcg 660 aaagcctgaa agagcacggt ccgattaaaa acaagatgag cgagagcccg aacaagaccg 720 tgagcgagga aaaagcgaag cagtacctgg aggaatttca ccaaaccgcg ctggagcacc 780 cggaactgag cgagctgaaa accgtgaccg gcaccaaccc ggttttcgcg ggtgcgaact 840 atgcggcgtg ggcggtgaac gttgcgcagg tgatcgatag cgaaaccgcg gacaacctgg 900 aaaagaccac cgcggcgctg agcatcctgc cgggtattgg cagcgtgatg ggcatcgcgg 960 atggtgcggt tcaccacaac accgaggaaa tcgtggcgca gagcattgcg ctgagcagcc 1020 tgatggttgc gcaagcgatc ccgctggttg gtgagctggt tgacattggt ttcgcggcgt 1080 acaactttgt ggaaagcatc attaacctgt tccaggtggt tcacaacagc tacaaccgtc 1140 cggcgtatag cccgggccac aaaacccaac cgtttctgca cgatggttat gcggtgagct 1200 ggaacaccgt tgaggacagc atcattcgta ccggtttcca gggcgagagc ggtcacgata 1260 tcaagattac cgcggaaaac accccgctgc cgattgcggg cgttctgctg ccgaccattc 1320 cgggtaaact ggacgttaac aaaagcaaga cccacattag cgtgaacggc cgtaagatcc 1380 gtatgcgttg ccgtgcgatt gatggtgacg tgaccttttg ccgtccgaaa agcccggtgt 1440 acgttggtaa cggcgtgcac gcgaacctgc acgttgcgtt ccaccgtagc agcagcgaga 1500 agatccacag caacgaaatt agcagcgaca gcatcggcgt tctgggttat caaaaaaccg 1560 tggatcatac caaagtgaat agcaagctga gcctgttctt cgagattaaa agctctgagg 1620 tcttc 1625 <210> 3 <211> 535 <212> PRT <213> Artificial Sequence <220> <223> CRM197 <400> 3 Gly Ala Asp Asp Val Val Asp Ser Ser Lys Ser Phe Val Met Glu Asn 1 5 10 15 Phe Ser Ser Tyr His Gly Thr Lys Pro Gly Tyr Val Asp Ser Ile Gln 20 25 30 Lys Gly Ile Gln Lys Pro Lys Ser Gly Thr Gln Gly Asn Tyr Asp Asp 35 40 45 Asp Trp Lys Glu Phe Tyr Ser Thr Asp Asn Lys Tyr Asp Ala Ala Gly 50 55 60 Tyr Ser Val Asp Asn Glu Asn Pro Leu Ser Gly Lys Ala Gly Gly Val 65 70 75 80 Val Lys Val Thr Tyr Pro Gly Leu Thr Lys Val Leu Ala Leu Lys Val 85 90 95 Asp Asn Ala Glu Thr Ile Lys Lys Glu Leu Gly Leu Ser Leu Thr Glu 100 105 110 Pro Leu Met Glu Gln Val Gly Thr Glu Glu Phe Ile Lys Arg Phe Gly 115 120 125 Asp Gly Ala Ser Arg Val Val Leu Ser Leu Pro Phe Ala Glu Gly Ser 130 135 140 Ser Ser Val Glu Tyr Ile Asn Asn Trp Glu Gln Ala Lys Ala Leu Ser 145 150 155 160 Val Glu Leu Glu Ile Asn Phe Glu Thr Arg Gly Lys Arg Gly Gln Asp 165 170 175 Ala Met Tyr Glu Tyr Met Ala Gln Ala Cys Ala Gly Asn Arg Val Arg 180 185 190 Arg Ser Val Gly Ser Ser Leu Ser Cys Ile Asn Leu Asp Trp Asp Val 195 200 205 Ile Arg Asp Lys Thr Lys Thr Lys Ile Glu Ser Leu Lys Glu His Gly 210 215 220 Pro Ile Lys Asn Lys Met Ser Glu Ser Pro Asn Lys Thr Val Ser Glu 225 230 235 240 Glu Lys Ala Lys Gln Tyr Leu Glu Glu Phe His Gln Thr Ala Leu Glu 245 250 255 His Pro Glu Leu Ser Glu Leu Lys Thr Val Thr Gly Thr Asn Pro Val 260 265 270 Phe Ala Gly Ala Asn Tyr Ala Ala Trp Ala Val Asn Val Ala Gln Val 275 280 285 Ile Asp Ser Glu Thr Ala Asp Asn Leu Glu Lys Thr Thr Ala Ala Leu 290 295 300 Ser Ile Leu Pro Gly Ile Gly Ser Val Met Gly Ile Ala Asp Gly Ala 305 310 315 320 Val His His Asn Thr Glu Glu Ile Val Ala Gln Ser Ile Ala Leu Ser 325 330 335 Ser Leu Met Val Ala Gln Ala Ile Pro Leu Val Gly Glu Leu Val Asp 340 345 350 Ile Gly Phe Ala Ala Tyr Asn Phe Val Glu Ser Ile Ile Asn Leu Phe 355 360 365 Gln Val Val His Asn Ser Tyr Asn Arg Pro Ala Tyr Ser Pro Gly His 370 375 380 Lys Thr Gln Pro Phe Leu His Asp Gly Tyr Ala Val Ser Trp Asn Thr 385 390 395 400 Val Glu Asp Ser Ile Ile Arg Thr Gly Phe Gln Gly Glu Ser Gly His 405 410 415 Asp Ile Lys Ile Thr Ala Glu Asn Thr Pro Leu Pro Ile Ala Gly Val 420 425 430 Leu Leu Pro Thr Ile Pro Gly Lys Leu Asp Val Asn Lys Ser Lys Thr 435 440 445 His Ile Ser Val Asn Gly Arg Lys Ile Arg Met Arg Cys Arg Ala Ile 450 455 460 Asp Gly Asp Val Thr Phe Cys Arg Pro Lys Ser Pro Val Tyr Val Gly 465 470 475 480 Asn Gly Val His Ala Asn Leu His Val Ala Phe His Arg Ser Ser Ser 485 490 495 Glu Lys Ile His Ser Asn Glu Ile Ser Ser Asp Ser Ile Gly Val Leu 500 505 510 Gly Tyr Gln Lys Thr Val Asp His Thr Lys Val Asn Ser Lys Leu Ser 515 520 525 Leu Phe Phe Glu Ile Lys Ser 530 535 <210> 4 <211> 85 <212> DNA <213> Artificial Sequence <220> <223> PelB (L1) <400> 4 ggtctcatat gaaatatctg ttaccgaccg ccgctgccgg actgctgtta ctggcggcgc 60 agccggcgat ggcgggcgag agacc 85 <210> 5 <211> 88 <212> DNA <213> Artificial Sequence <220> <223> G8 (L2) <400> 5 ggtctcatat gaaaaaaagc ctggttctga aagcgtctgt tgcggtggcg acgctggtgc 60 cgatgctgtc gtttgccggc gagagacc 88 <210> 6 <211> 73 <212> DNA <213> Artificial Sequence <220> <223> Wp (L3) <400> 6 ggtctcatat gcgttctgtg attgttgcct tcctgtttgc ctgtagcttt tgcgtgagcg 60 ccggcgagag acc 73 <210> 7 <211> 79 <212> DNA <213> Artificial Sequence <220> <223> OmpT (L4) <400> 7 ggtctcatat gcgtgcgaaa ctgctcggca ttgttctgac caccccgatt gccatttcca 60 gctttgccgg cgagagacc 79 <210> 8 <211> 82 <212> DNA <213> Artificial Sequence <220> <223> OmpA (L5) <400> 8 ggtctcatat gaaaaaaacc gccatcgcca ttgccgttgc cctcgctggc tttgccaccg 60 tggcgcaggc gggcgagaga cc 82 <210> 9 <211> 82 <212> DNA <213> Artificial Sequence <220> <223> G4 (L6) <400> 9 ggtctcatat gaaactgctg aacgtgatca actttgtttt cctgatgttt gtcagcagca 60 gtagttttgc cggcgagaga cc 82 <210> 10 <211> 73 <212> DNA <213> Artificial Sequence <220> <223> G3 (L7) <400> 10 ggtctcatat gaaaaaactg ctgtttgcca ttccgctggt tgtaccgttt tacagccaca 60 gcggcgagag acc 73 <210> 11 <211> 79 <212> DNA <213> Artificial Sequence <220> <223> Lpp (L8) <400> 11 ggtctcatat gaaagcgacg aaactggtgc tgggtgctgt gattctgggc agcacgctgc 60 tggcgggcgg cgagagacc 79 <210> 12 <211> 88 <212> DNA <213> Artificial Sequence <220> <223> Gsp (L9) <400> 12 ggtctcatat gaaaggtctg aataaaatta cctgctgttt actggcggcg ctgctgatgc 60 cgtgcgcggg tcatgcgggc gagagacc 88 <210> 13 <211> 22 <212> PRT <213> Artificial Sequence <220> <223> PelB (L1) <400> 13 Met Lys Tyr Leu Leu Pro Thr Ala Ala Ala Gly Leu Leu Leu Leu Ala 1 5 10 15 Ala Gln Pro Ala Met Ala 20 <210> 14 <211> 23 <212> PRT <213> Artificial Sequence <220> <223> G8 (L2) <400> 14 Met Lys Lys Ser Leu Val Leu Lys Ala Ser Val Ala Val Ala Thr Leu 1 5 10 15 Val Pro Met Leu Ser Phe Ala 20 <210> 15 <211> 18 <212> PRT <213> Artificial Sequence <220> <223> Wp (L3) <400> 15 Met Arg Ser Val Ile Val Ala Phe Leu Phe Ala Cys Ser Phe Cys Val 1 5 10 15 Ser Ala <210> 16 <211> 20 <212> PRT <213> Artificial Sequence <220> <223> OmpT (L4) <400> 16 Met Arg Ala Lys Leu Leu Gly Ile Val Leu Thr Thr Pro Ile Ala Ile 1 5 10 15 Ser Ser Phe Ala 20 <210> 17 <211> 21 <212> PRT <213> Artificial Sequence <220> <223> OmpA (L5) <400> 17 Met Lys Lys Thr Ala Ile Ala Ile Ala Val Ala Leu Ala Gly Phe Ala 1 5 10 15 Thr Val Ala Gln Ala 20 <210> 18 <211> 21 <212> PRT <213> Artificial Sequence <220> <223> G4 (L6) <400> 18 Met Lys Leu Leu Asn Val Ile Asn Phe Val Phe Leu Met Phe Val Ser 1 5 10 15 Ser Ser Ser Phe Ala 20 <210> 19 <211> 18 <212> PRT <213> Artificial Sequence <220> <223> G3 (L7) <400> 19 Met Lys Lys Leu Leu Phe Ala Ile Pro Leu Val Val Pro Phe Tyr Ser 1 5 10 15 His Ser <210> 20 <211> 20 <212> PRT <213> Artificial Sequence <220> <223> Lpp (L8) <400> 20 Met Lys Ala Thr Lys Leu Val Leu Gly Ala Val Ile Leu Gly Ser Thr 1 5 10 15 Leu Leu Ala Gly 20 <210> 21 <211> 23 <212> PRT <213> Artificial Sequence <220> <223> Gsp (L9) <400> 21 Met Lys Gly Leu Asn Lys Ile Thr Cys Cys Leu Leu Ala Ala Leu Leu 1 5 10 15 Met Pro Cys Ala Gly His Ala 20 <210> 22 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 22 gcggatccaa gagacaggat gaggatcgtt tcgc 34 <210> 23 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 23 cggatatcaa gcttggaaat gttgaatact catactcttc 40 <210> 24 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 24 gagatccgga gcttatactg agctaataac 30 <210> 25 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 25 gaaaaataaa caaaaacaaa aagagtttg 29 <210> 26 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 26 tacaaactct ttttgttttt gtttattttt c 31 <210> 27 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 27 cctgttatta gctcagtata agctccggat ctcg 34 <210> 28 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 28 aattggagga acaatatgaa atatct 26 <210> 29 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 29 aacatcgtca gcgcccgcca tcgccggct 29 <210> 30 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 30 ttggaggaac aatatgaaaa aaagcct 27 <210> 31 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 31 aacatcgtca gcgccggcaa acgacagcat 30 <210> 32 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 32 ttggaggaac aatatgcgtt ctgtga 26 <210> 33 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 33 aacatcgtca gcgccggcgc tcacgcaa 28 <210> 34 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 34 ttggaggaac aatatgcgtg cgaaact 27 <210> 35 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 35 aacatcgtca gcgccggcaa agctggaaat 30 <210> 36 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 36 ttggaggaac aatatgaaaa aaacc 25 <210> 37 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 37 aacatcgtca gcgcccgcct gcgccacggt 30 <210> 38 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 38 ttggaggaac aatatgaaac tgctga 26 <210> 39 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 39 aacatcgtca gcgccggcaa aactactgct 30 <210> 40 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 40 ttggaggaac aatatgaaaa aactg 25 <210> 41 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 41 acatcgtcag cgccgctgtg gctgtaaaa 29 <210> 42 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 42 ttggaggaac aatatgaaag cgacgaaa 28 <210> 43 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 43 aacatcgtca gcgccgcccg ccagcagcgt 30 <210> 44 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 44 ttggaggaac aatatgaaag gtctgaa 27 <210> 45 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 45 aacatcgtca gcgcccgcat gacccgcgca 30 <210> 46 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 46 agccggcgat ggcgggcgct gacgatg 27 <210> 47 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 47 atgctgtcgt ttgccggcgc tgacgatg 28 <210> 48 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 48 ttgcgtgagc gccggcgctg acgatg 26 <210> 49 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 49 tttccagctt tgccggcgct gacgatg 27 <210> 50 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 50 accgtggcgc aggcgggcgc tgacgatg 28 <210> 51 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 51 agcagtagtt ttgccggcgc tgacgatg 28 <210> 52 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 52 ttttacagcc acagcggcgc tgacgatg 28 <210> 53 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 53 tgctggcggg cggcgctgac gatg 24 <210> 54 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 54 cgcgggtcat gcgggcgctg acgatg 26 <210> 55 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 55 gatatccgct tttcattagc ttttaatctc gaagaa 36 <210> 56 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 56 ggcgcaagcg tgcgcgggta accgtgtgcg 30

Claims (10)

CRM197 단백질 발현용 신호 펩티드를 코딩하는 핵산으로, 상기 핵산은 서열번호 6의 염기서열로 표시되는 것을 특징으로 하는 핵산.
A nucleic acid encoding a signal peptide for CRM197 protein expression, wherein the nucleic acid is represented by the nucleotide sequence of SEQ ID NO: 6.
제1항의 핵산 및 CRM197 단백질의 유전자를 포함하는 핵산 구조체.
A nucleic acid construct comprising the gene of claim 1 and the gene of CRM197 protein.
제2항에 있어서, 상기 CRM197 단백질의 유전자는 서열번호 2의 염기서열로 표시되는 것을 특징으로 하는 핵산 구조체.
According to claim 2, wherein the gene of the CRM197 protein is a nucleic acid structure, characterized in that represented by the nucleotide sequence of SEQ ID NO: 2.
제1항의 핵산 및 CRM197 단백질의 유전자를 포함하는 발현벡터.
An expression vector comprising the nucleic acid of claim 1 and a gene of CRM197 protein.
제4항에 있어서, 상기 CRM197 단백질의 유전자는 서열번호 2의 염기서열로 표시되는 것을 특징으로 하는 발현벡터.
5. The expression vector of claim 4, wherein the gene of CRM197 protein is represented by the nucleotide sequence of SEQ ID NO: 2.
제4항에 있어서, Trc 프로모터를 추가로 포함하는 것을 특징으로 하는 발현벡터.
The expression vector according to claim 4, further comprising a Trc promoter.
제2항의 핵산 구조체 또는 제4항의 발현벡터가 도입되어 있는 재조합미생물.
A recombinant microorganism into which the nucleic acid construct of claim 2 or the expression vector of claim 4 is introduced.
제7항에 있어서, 대장균(Escherichia coli)인 것을 특징으로 하는 재조합미생물.
8. The recombinant microorganism according to claim 7, which is Escherichia coli .
다음 단계를 포함하는 CRM197 단백질의 제조방법:
(a) 제7항의 재조합미생물을 배양하여 CRM197 단백질을 생성하는 단계; 및
(b) 상기 생성된 CRM197 단백질을 분리하는 단계.
Method of preparing a CRM197 protein comprising the following steps:
(a) culturing the recombinant microorganism of claim 7 to generate CRM197 protein; And
(B) separating the generated CRM197 protein.
제9항에 있어서, 상기 (b) 단계는 주변세포질(periplasm)에 분비된 CRM197 단백질을 분리하는 것을 특징으로 하는 제조방법.10. The method of claim 9, wherein step (b) is characterized in that the separation of the CRM197 protein secreted in the periplasm (periplasm).
KR1020190160771A 2019-12-05 2019-12-05 Expression Method of CRM197 Protein KR102142255B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190160771A KR102142255B1 (en) 2019-12-05 2019-12-05 Expression Method of CRM197 Protein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190160771A KR102142255B1 (en) 2019-12-05 2019-12-05 Expression Method of CRM197 Protein

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020190108892A Division KR102099342B1 (en) 2019-09-03 2019-09-03 Expression Method of CRM197 Protein

Publications (1)

Publication Number Publication Date
KR102142255B1 true KR102142255B1 (en) 2020-08-07

Family

ID=72050166

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190160771A KR102142255B1 (en) 2019-12-05 2019-12-05 Expression Method of CRM197 Protein

Country Status (1)

Country Link
KR (1) KR102142255B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023128639A1 (en) * 2021-12-30 2023-07-06 (주)셀트리온 Method for expressing target protein

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050029251A (en) * 2003-09-20 2005-03-24 이형주 Novel secretion signal isolated from the lactic acid bacteria
KR20070009029A (en) * 2005-07-15 2007-01-18 한국과학기술원 Method for extracellular production of target proteins by co-expression of ompf and target proteins
US20170073379A1 (en) * 2014-03-03 2017-03-16 Scarab Genomics, Llc Enhanced Production of Recombinant CRM197 in E. coli
US20170306302A1 (en) * 2014-11-20 2017-10-26 Biological E Limited Codon optimized polynucleotide for high level expression of crm197

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050029251A (en) * 2003-09-20 2005-03-24 이형주 Novel secretion signal isolated from the lactic acid bacteria
KR20070009029A (en) * 2005-07-15 2007-01-18 한국과학기술원 Method for extracellular production of target proteins by co-expression of ompf and target proteins
US20170073379A1 (en) * 2014-03-03 2017-03-16 Scarab Genomics, Llc Enhanced Production of Recombinant CRM197 in E. coli
US20170306302A1 (en) * 2014-11-20 2017-10-26 Biological E Limited Codon optimized polynucleotide for high level expression of crm197

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Appl. Microbiol. Biotechnol., Vol. 64, pp. 625-635(2004) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023128639A1 (en) * 2021-12-30 2023-07-06 (주)셀트리온 Method for expressing target protein

Similar Documents

Publication Publication Date Title
AU679427B2 (en) DNA sequences encoding gelonin polypeptide
JPH05501360A (en) Enzymatic cleavage method for recombinant proteins using IgA protease
KR102142255B1 (en) Expression Method of CRM197 Protein
JP7449000B2 (en) Production of soluble recombinant proteins
KR102099342B1 (en) Expression Method of CRM197 Protein
KR101373297B1 (en) Expression Vector Comprising Gene coding for E. coli Phosphoglycerate kinase As a Novel Fusion Partner
RU2803949C1 (en) Method for crm197 protein expression
KR101841264B1 (en) Recombinant Vector Including Gene of Autopahgy Activation Protein and Crystallizing Method for Recombinant Protein Using Thereof
TW201111505A (en) Fermentation process
US11060123B2 (en) Production of soluble recombinant protein without n-terminal methionine
RU2502803C2 (en) PLASMID FOR EXPRESSION IN CELLS OF BACTERIUM BELONGING TO Escherichia CLASS, NON-ACTIVE PREDECESSOR OF DNase I OF HUMAN OR ITS MUTEINS; BACTERIUM BELONGING TO Escherichia CLASS, - PRODUCER OF NON-ACTIVE PREDECESSOR OF RECOMBINANT DNase I OF HUMAN OR ITS MUTEIN; PREDECESSOR OF RECOMBINANT DNase I OF HUMAN OR ITS MUTEIN; METHOD FOR OBTAINING RECOMBINANT DNase I OF HUMAN OR ITS MUTEIN; METHOD FOR OBTAINING CONJUGATES OF POLYETHYLENE GLYCOL AND RECOMBINANT MUTEIN OF HUMAN DNase I, FERMENTATIVE ACTIVE CONJUGATE OF MUTEIN OF RECOMBINANT DNase I OF HUMAN
KR101658081B1 (en) Method for Preparing Recombinant Protein Using CysQ as a Fusion Expression Partner
KR20230102682A (en) Method for Expressing Target Protein
JP3060019B2 (en) Plasmid containing maltotetraose synthase gene, microorganism having the plasmid, and method for producing maltotetraose synthase using the microorganism
RU2435863C2 (en) Method for producing protein
JPH0213381A (en) Vector for expressing plural proteins and preparation of proteins using the same vector
US20210348174A1 (en) Production of Soluble Recombinant Proteins without N-Terminal Methionine in E-Coli
JP2023065708A (en) Methods for producing exogenous proteins using escherichia coli
US20230242961A1 (en) Production of Soluble Recombinant Protein
JPH04117284A (en) Dihydrofolate reductase-antiallergic pentapeptide fused protein
JPH0779781A (en) Protein-exhaustion gene
JPH04295499A (en) Antiviral protein
JPH04126083A (en) Protease inhibitor gene, microorganism containing the gene and production of protease inhibitor using the microorganism
JPH03206887A (en) Production of human pdi
JPH01277497A (en) Production of peptide

Legal Events

Date Code Title Description
A302 Request for accelerated examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant