JPH03206887A - Production of human pdi - Google Patents

Production of human pdi

Info

Publication number
JPH03206887A
JPH03206887A JP22874790A JP22874790A JPH03206887A JP H03206887 A JPH03206887 A JP H03206887A JP 22874790 A JP22874790 A JP 22874790A JP 22874790 A JP22874790 A JP 22874790A JP H03206887 A JPH03206887 A JP H03206887A
Authority
JP
Japan
Prior art keywords
pdi
human
bacillus brevis
dna
plasmid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22874790A
Other languages
Japanese (ja)
Inventor
Koichi Kato
光一 加藤
Hideaki Tojo
英明 東條
Tsuneo Asano
浅野 常夫
Juzo Udaka
重三 鵜高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Higeta Shoyu Co Ltd
Takeda Pharmaceutical Co Ltd
Original Assignee
Higeta Shoyu Co Ltd
Takeda Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Higeta Shoyu Co Ltd, Takeda Chemical Industries Ltd filed Critical Higeta Shoyu Co Ltd
Publication of JPH03206887A publication Critical patent/JPH03206887A/en
Pending legal-status Critical Current

Links

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PURPOSE:To obtain human PDI in high efficiency by incubating in a medium Bacillus brevis containing a specific DNA. CONSTITUTION:Firstly, Bacillus brevis H 102 strain is extracted and separated to produce (A) a DNA (e.g. plasmid pNU 200) containing, at its 3' end, a region coding signal peptide, and also containing a promoter region. Second, from human placental cDNA library, a cloning is made to produce (B) human protein disulfide isomerase(PDI). Third, a DNA coding the human PDI is bound to the 3' end of the component A to produce (C) plasmid pNU 200-PDI. Fourth, a (D) transformant produced by introducing the component C into Bacillus brevis H 102 strain is incubated in a medium containing glucose, etc., at pH5-9 at 10-42 deg.C for 10-166hr into (E) a cultured product. finally, bacteria produced by centrifugation of the component E is extracted and separated to collect the objective human PDI.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ヒトPDI[ヒトプロティン ジスルフィド
 イソメラーゼ; human  proteindi
sulfide  isomerasel製造のための
組換えDNA技術に関する。より具体的には、ヒトPD
I遺仏子を含有するDNA1該DNAを保持せしめてな
るバチルス・ブレビス(Bacillus  brev
is)形質転換体およ゛びそれらを用いるヒトPDIの
製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to human PDI [human protein disulfide isomerase;
This invention relates to recombinant DNA technology for producing sulfide isomerasel. More specifically, human PD
DNA containing Bacillus brevis (Bacillus brevis) containing the DNA
is) transformants and methods for producing human PDI using them.

従来の技術 ヒトPDIは490個のアミノ酸からなる分子量約55
,000の単純蛋白質である。PDIをコードする遺伝
子はすでにクローニングされており、全塩基配列とそれ
から推定される全アミノ酸配列とか明らかになっている
[EP公開293793号公報1゜ また、PDIは、in  vivoにおいて蛋白質のジ
スルフィド結合の形成を触媒する酵素と考えられている
[N、 J、 Bulleid  and  R,B、
 Freedman。
Conventional technology Human PDI has a molecular weight of approximately 55 and consists of 490 amino acids.
,000 simple proteins. The gene encoding PDI has already been cloned, and the entire base sequence and the entire amino acid sequence deduced from it have been revealed [EP Publication No. 293793 1]. [N, J, Bulleid and R, B,
Freedman.

Nature、Vol、335.p649 651(1
988)]。
Nature, Vol. 335. p649 651(1
988)].

近年の急速な遺伝子工学技術の進歩により真核生物の蛋
白質が大腸菌で大量に合成されるようになったが、この
ようにして作られる組換え型蛋白質は正しいジスルフィ
ド結合を欠いていたり、誤ったかかり方のジスルフィド
結合を持っていたりする[EMBOJournal、4
,775(1985);1nGenetic  Eng
ineering  Vol、  4 (Willia
mson、 R,。
Due to rapid advances in genetic engineering technology in recent years, eukaryotic proteins can now be synthesized in large quantities in Escherichia coli, but the recombinant proteins produced in this way often lack the correct disulfide bonds or contain incorrect disulfide bonds. It may have different disulfide bonds [EMBO Journal, 4
, 775 (1985); 1nGenetic Eng.
ineering Vol, 4 (William
mson, R.

ed)p、l 27(1983)]。従って、PDIの
利用価値としては大腸菌や酵母で生産される組換え型蛋
白質のりフォールディングへの適用が期待されており、
遺伝子操作による組換え型ヒトPDIの量産化が望まれ
ている。
ed) p, l 27 (1983)]. Therefore, the utility value of PDI is expected to be applied to the folding of recombinant proteins produced in E. coli and yeast.
Mass production of recombinant human PDI through genetic manipulation is desired.

今日まで多くの組み換えDNAの研究は大腸菌(E、 
coli)を用いてなされており、すでに多くの異種遺
伝子が大腸菌内で発現されている。しかし、この方法で
は、発現された遺伝子産物が菌体内に蓄積されるため、
目的とする遺伝子産物を純粋な形で取得するまでの過程
で、目的物の菌体からの抽出およびその抽出液からの精
製に多大な時間と労力とを要するだけではなく、目的と
する物質を完全な形で純粋に得ることは容易ではない。
To date, much of the recombinant DNA research has focused on Escherichia coli (E.
coli), and many heterologous genes have already been expressed in E. coli. However, with this method, the expressed gene product accumulates within the bacterial body;
In the process of obtaining the desired gene product in pure form, not only does it take a great deal of time and effort to extract the desired substance from the bacterial cells and purify it from the extract, but it also takes a lot of time and effort to extract the desired substance from the bacterial cells and purify the extract. It is not easy to obtain it in its pure form.

一方、バチルス(Bacillus)属細菌は古くから
種々の菌体外酵素の生産菌として工業的に利用されてお
り、これら菌体外酵素の遺伝子のプロモーターおよびシ
グナルペプチドをコードするDNA領域をクローニング
し、その下流に目的とする蛋白質の構造遺伝子を連結し
、これをバチルス属菌に導入すれば、目的とする蛋白質
を遺伝子産物として菌体外今分泌させることが可能にな
ると考えられる。バチルス属菌においては、分泌される
蛋白質はアミン末端側におよそ20〜30アミノ酸残基
からなるシグナルペプチドを持つ前駆体として合成され
たのち、この部分がシグナルペプチダーゼによって切断
されて、成熟した蛋白質になると考えられており、すで
にバチルス・アミロリクエ7アンエンス(Bacill
us amyloliquefaciens)のαアミ
ラーゼ遺伝子(1、Pa1vaら、 Gene、 22
 。
On the other hand, bacteria of the genus Bacillus have long been used industrially as producing bacteria for various extracellular enzymes, and the DNA regions encoding the promoters and signal peptides of the genes of these extracellular enzymes have been cloned. It is thought that by linking the structural gene of the protein of interest downstream and introducing this into a bacterium of the genus Bacillus, it becomes possible to secrete the protein of interest as a gene product outside the bacterial cell. In Bacillus bacteria, secreted proteins are synthesized as precursors with a signal peptide consisting of approximately 20 to 30 amino acid residues on the amine terminal side, and this portion is then cleaved by signal peptidase to form the mature protein. It is believed that Bacillus amylorichue7enens (Bacillus amylolique)
amyloliquefaciens) α-amylase gene (1, Pa1va et al., Gene, 22
.

229(1983))、バチルス・リケニフォルミス(
Bacillus  licheniformis)の
ベニシリナーゼ遺伝子(S、 Changら、 Mo1
ecular  Cloning  andGene 
 Regulation  in  Bacilli、
 AcademicPress、  659頁、198
2年〕、バチルス・サチルス(Bacillus  5
ubtilis)のα−アミラーゼ遺伝子(H,Yam
azakiら、 J、 Bacteriol、、上56
,327(1983))がクローン化され、これらのシ
グナルペプチドを利用した異種蛋白質の分泌が報告され
ている。
229 (1983)), Bacillus licheniformis (
Benicillinase gene of Bacillus licheniformis (S, Chang et al., Mo1
ecular Cloning and Gene
Regulation in Bacilli,
Academic Press, 659 pages, 198
2 years], Bacillus subtilis (Bacillus 5)
α-amylase gene (H, Yam
azaki et al., J. Bacteriol, supra 56
, 327 (1983)) have been cloned, and secretion of heterologous proteins using these signal peptides has been reported.

上記した異種蛋白質の分泌生産には、主にバチルス・サ
チルス(Bacillus  5ubtilis)が宿
主として用いられているが、この微生物は菌体外プロテ
アーゼを多量に生産するため、組み換えDNA技術を用
いて分泌された異種蛋白質は分解を受け、その蓄積量は
著しく減少する。
Bacillus subtilis is mainly used as a host for secretory production of the above-mentioned heterologous proteins, but since this microorganism produces large amounts of extracellular protease, recombinant DNA technology can be used to secrete the protein. The foreign protein that has been used is degraded, and its accumulated amount is significantly reduced.

これに対し、鵜高らはバチルス・ブレビス(Bacil
lus  brevis)にはプロテアーゼをほとんど
生産しない菌株か多いことを見い出し、そのl菌株バチ
ルス・ブレビス47(FERM  P−7224;特開
昭60−58074号公報、特開昭62−201583
号公報参照〕の主要菌体外蛋白質(H,Yamagat
aら、J、 Bacteriol、、 169 。
In contrast, Udaka et al.
We discovered that there are many strains of Bacillus brevis that produce almost no protease, and that one strain of Bacillus brevis 47 (FERM P-7224; JP-A-60-58074, JP-A-62-201583)
The main extracellular protein (H, Yamagat
a et al., J. Bacteriol, 169.

1239(1987)、塚越規弘9日本農芸化学会誌、
61.68(1987)および特開昭62201583
号公報にそれぞれ°’ outer  wallpro
tein  and  m1ddle  wall  
protein 、 ”菌体外主要蛋白質″および゛細
胞表層蛋白質″として記載されている。〕遺伝子のプロ
モーターおよび該主要菌体外蛋白質の一種であるMW蛋
白質(middle  wall  protein)
の′ングナルペプチドをコードする領域を用いて分泌ベ
クターを作製し、本菌株を宿主としてα−アミラーゼ〔
特開昭62−201583号公報、H,Yamagat
aら、J。
1239 (1987), Norihiro Tsukagoshi 9 Journal of the Japanese Society of Agricultural Chemistry,
61.68 (1987) and Japanese Patent Publication No. 62201583
°' outer wallpro
tein and m1ddle wall
Proteins are described as ``major extracellular proteins'' and ``cell surface proteins.'' Gene promoters and MW proteins (middle wall proteins), which are a type of major extracellular proteins.
A secretion vector was constructed using the region encoding the 1′-amylase [α-amylase] using this strain as a host.
JP-A-62-201583, H, Yamagat
a et al., J.

Bacteriol、、↓69,1239(1987)
)やブタペプシノーゲン[鵜高重三1日本農芸化学会昭
和62年度大会講演要旨集、p837−838、塚越規
弘7日本農芸化学会誌、乱土、68(1987))の分
泌生産に成功している。
Bacteriol, ↓69, 1239 (1987)
) and porcine pepsinogen [Juzo Udaka 1 Japanese Society of Agricultural Chemistry, Abstracts of the 1986 Conference, p. 837-838, Norihiro Tsukagoshi 7 Journal of the Japanese Society of Agricultural Chemistry, Rando, 68 (1987)). There is.

また、高木らはバチルス・ブレビスのプロテアーゼを生
産しない菌株バチルス・ブレビスHP D31(なお、
この菌株は本明細書における/くチルレス・プレビスH
102(FERM  BP−1087)と同一菌株であ
る。)を分離し、これを宿主として耐熱性α−アミラー
ゼの高分泌生産番こ成功している[日本農芸化学会昭和
62年度大会講演要旨集、p27]。また、鵜高らによ
り同じ<7<チルレス・プルビスH102を用いてのヒ
トEGF[ヒト上皮細胞増殖因子; human  e
pidermal  growthfactorlの分
泌生産が報告されている[特願昭63−46747号、
Proc、 NaL]、 Acad、 Sci、、 8
[3。
In addition, Takagi et al. also investigated Bacillus brevis HP D31, a strain that does not produce Bacillus brevis protease.
This strain is referred to herein as C. plebis H.
It is the same strain as 102 (FERM BP-1087). ), and using this as a host, we have succeeded in producing high secretion of thermostable α-amylase [Proceedings of the 1986 Annual Conference of the Japanese Society of Agricultural Chemistry, p. 27]. In addition, human EGF [human epidermal growth factor; human e
Secretory production of pidermal growth factor has been reported [Japanese Patent Application No. 63-46747,
Proc, NaL], Acad, Sci, 8
[3.

3589(1989)]。3589 (1989)].

発明が解決しようとする課題 前記のとおり、バチルス属細菌を宿主として用いる異種
蛋白質の分泌生産あるいは大腸菌、動物細胞を宿主とし
て用いるヒトPDIの生産について、それぞれ単独で種
々試みられているが、本発明はバチルス・ブレビスを宿
主として用いるヒトPDIの新規製造法を提供すること
にある。
Problems to be Solved by the Invention As mentioned above, various attempts have been made to secrete and produce heterologous proteins using Bacillus bacteria as hosts, and to produce human PDI using Escherichia coli and animal cells as hosts. The object of the present invention is to provide a new method for producing human PDI using Bacillus brevis as a host.

課題を解決するための手段 本発明者らは、ヒトPDIを効率よく生産させる方法を
提供すべく鋭意研究を重ねたところ、バチルス・ブレビ
スH102を宿主として用いてヒトPDI遺伝子を発現
させることにより、培養物中に著量のヒトPI)Iが生
産されることを見出した。さらに、生産菌株の育種によ
ってPDI遺伝子を安定に発現させうろことや、培養条
件によって生成・蓄積されるPDIの分解を防ぎうろこ
とを見いだし、これらの知見に基づいてさらに鋭意研究
を重ねた結果、本発明を完成するに至った。
Means for Solving the Problems The present inventors conducted intensive research to provide a method for efficiently producing human PDI, and found that by expressing the human PDI gene using Bacillus brevis H102 as a host. It was found that significant amounts of human PI)I were produced in the culture. Furthermore, by breeding production strains, we found scales that stably express the PDI gene and scales that prevent the decomposition of PDI that is produced and accumulated depending on the culture conditions.Based on these findings, we conducted further research. The present invention has now been completed.

すなわち本発明は、 (1)バチルス・ブレビス由来のプロモーター領域を含
有するDNAの3′末端にヒトPDIをコードするDN
Aを結合させたDNA。
That is, the present invention provides: (1) a DNA encoding human PDI at the 3' end of a DNA containing a promoter region derived from Bacillus brevis;
DNA bound to A.

(2) プロモーター領域を含有するDNAの3′末端
にヒトPDIをコードするDNAを結合させたDNAを
保持するバチルス・ブレビス、および(3)上記(2)
に記載のバチルス・ブレヒスを培地に培養し、培養物中
にヒ1−PDIを生成、蓄積せしめ、これを採取するこ
とを特徴とするヒトPDIの製造法である。
(2) Bacillus brevis that has DNA in which human PDI-encoding DNA is linked to the 3' end of the DNA containing the promoter region, and (3) the above (2).
This is a method for producing human PDI, which comprises culturing Bacillus brehis described in 1. in a medium, producing and accumulating human PDI in the culture, and collecting the same.

ヒトPDIをコードするDNAとしては、ヒトPDIを
コードするものであればいずれでもよく、例えば、ウシ
PDI  cDNAとの相同性よりヒト胎盤cDNAラ
イブラリーからクローン化したものが挙げられ、その具
体例としては、EP公開293793号公報などに記載
の方法に従ってクローン化されたDNA(第3図参照)
が挙げられる。
The DNA encoding human PDI may be any DNA as long as it encodes human PDI; for example, a DNA cloned from a human placenta cDNA library based on homology with bovine PDI cDNA may be mentioned; a specific example thereof is is DNA cloned according to the method described in EP Publication No. 293793 etc. (see Figure 3)
can be mentioned.

プロモーターとしては、バチルス・ブレビスで機能する
ものであればいずれでもよいが、バチルス・ブレビス由
来のプロモーターが好ましく、例えばバチルス・ブレビ
ス47あるいはバチルス・ブレビスH102の主要菌体
外蛋白質遺伝子のプロモーターなどが挙げられる。該プ
ロモーターは1種または2種以上含有されていてもよい
Any promoter may be used as long as it functions in Bacillus brevis, but promoters derived from Bacillus brevis are preferred, such as promoters of major extracellular protein genes of Bacillus brevis 47 or Bacillus brevis H102. It will be done. One or more types of promoters may be contained.

プロモーター領域を含有するDNAは、上記プロモータ
ー以外に、SD配列、翻訳開始コードンなどを有してい
ることが必要であり、さらに主要菌体外蛋白質遺伝子の
一部を有していてもよい。
The DNA containing the promoter region must contain an SD sequence, a translation initiation codon, etc. in addition to the promoter, and may further contain a part of a major extracellular protein gene.

本発明において、ヒトPDIはバチルス・ブレビスの菌
体内、菌体外のいずれに蓄積されてもよいが、ヒトPD
Iの抽出、精製を容易にし、また生産量を増大させるた
めには、菌体外にヒトPD■を蓄積させることが望まし
く、この場合、プロモーター領域を含有するDNAには
、該DNAの3′末端側にシグナルペプチドをコードす
る領域が含まれる。
In the present invention, human PDI may be accumulated either inside or outside the bacterial body of Bacillus brevis, but human PDI
In order to facilitate the extraction and purification of I and to increase the production amount, it is desirable to accumulate human PD■ outside the bacterial body.In this case, the DNA containing the promoter region has a 3' The terminal side contains a region encoding a signal peptide.

ングナルペプチドとしては、ヒトPDIをバチルス・ブ
レビスの菌体外に分泌発現させるものであればいずれで
もよく、例えばバチルス・ブレビス47あるいはバチル
ス・ブレビスH102の主要菌体外蛋白質のシグナルペ
プチドなどが挙げられるが、なかでもバチルス・ブレビ
ス47のMW蛋白質(middle  wall  p
rotein)のシグナルペプチドが好ましい。
The signal peptide may be any peptide that secretes and expresses human PDI outside the Bacillus brevis cells, such as the signal peptide of the main extracellular protein of Bacillus brevis 47 or Bacillus brevis H102. Among them, the MW protein of Bacillus brevis 47 (middle wall p
(rotein) signal peptide is preferred.

遺伝子の発現に用いる発現ベクターとしては、バチルス
・ブレビスで機能するものであればいずれでもよく、例
えば後述の参考例2で得られるプラスミドpNU200
[鵜高重三9日本農芸化学会誌、■±、669(198
7)]などが挙げられる。
Any expression vector used for gene expression may be used as long as it functions in Bacillus brevis, such as plasmid pNU200 obtained in Reference Example 2 described below.
[Juzo Udaka 9 Journal of the Japanese Society of Agricultural Chemistry, ■±, 669 (198
7)].

上記のDNAを用いて作製したヒトPDI発現プラスミ
ドとしては、バチルス・ブレビスで機能するものであれ
ばいずれでもよく、具体的には後述の実施例1で得られ
るプラスミドpNU200PDIなどが挙げられる。
The human PDI expression plasmid prepared using the above DNA may be any plasmid as long as it functions in Bacillus brevis, and specific examples include plasmid pNU200PDI obtained in Example 1 described below.

これらのプラスミドを構築する方法としては、例えばM
o1ecular  Cloning、 A  Lab
oratoryManual、Co1d  Sprin
g  Harbor   Laboratory(19
82)に記載の方法などが挙げられ、一方、プラスミド
の構築に用いる宿主として(ま、大腸菌(E、 col
i)、バチルス・サチルス(Bacillussubt
 i l is) 、バチルス・ブレビス(Bacil
lusbrevis)に属する微生物であれはl/〜ず
れでもよく、例えば大腸菌HBIOI、大腸菌DH1,
/<チル71、・ザチルスRM 141 [J、 Ba
cteriol、、 158 。
Methods for constructing these plasmids include, for example, M
o1ecular Cloning, A Lab
oratoryManual, Cold Sprin
g Harbor Laboratory (19
82), etc. On the other hand, as a host for plasmid construction (E.
i), Bacillus subt.
i l is), Bacillus brevis
Microorganisms belonging to the genus E. lusbrevis may vary from l/~, for example, E. coli HBIOI, E. coli DH1,
/<Chill 71,・Zachirus RM 141 [J, Ba
cteriol,, 158.

1054(1984)]、ノ(チルス・プレビス47(
FERM  P−7224)、ノくチルレス・プレビス
447−5(FERBP−1664,1F014698
)などが挙げられる。
1054 (1984)], No (Chills Prebis 47 (
FERM P-7224), Nokucilres Previs 447-5 (FERBP-1664, 1F014698
), etc.

遺伝子の発現に用いる宿主としては、/くチルレス・プ
レヒスであればいずれでもよく、具体的【こ(ま)くチ
ルス・プレビス47(FERM  P−7224)バチ
ルス・ブレビス447−5(FERBP1664、IF
O14698)、ノくチルレス ・ フ゛レヒスH10
2(FERM  BP−1087)なと力く挙げられ、
なかでもバチルス・ブレビスH102か好ましい。なお
、/<チルス・ブレヒ゛スH102はバチルス・ブレビ
スHPD31(日本農芸イヒ学会昭和62年度大会講演
要旨集、p27、鵜高重玉。
The host used for gene expression may be any Bacillus brevis, including Bacillus brevis 47 (FERM P-7224), Bacillus brevis 447-5 (FERBP1664, IF
O14698), Nokuchiresu・Furehisu H10
2 (FERM BP-1087),
Among them, Bacillus brevis H102 is preferred. In addition, /< Bacillus brevis H102 is Bacillus brevis HPD31 (Collection of lecture abstracts of the 1986 conference of the Japanese Society of Agricultural Sciences, p. 27, Shigetama Udaka.

日本農芸化学会誌、見上、669(1987)’lと同
一菌株である。
It is the same strain as the Journal of the Japanese Society of Agricultural Chemistry, Migami, 669 (1987)'l.

バチルス・ブレビスを形質転換する方法1ま公知の方法
であればいずれでもよく、例え(fTakahash 
iらの方法[J、 Bacteriol、、 l 56
 、1130(1983)]あるいはChangとCo
henの方法[Mo1. Gen、 Genet、、月
38. l l 1(1979)]あるいは高木らの方
法[日本農芸化学会1989年度大会講演要旨p373
1などが挙げられる。
Method 1 for transforming Bacillus brevis Any known method may be used, for example (fTakahash
The method of I et al. [J, Bacteriol,, l 56
, 1130 (1983)] or Chang and Co.
hen's method [Mo1. Gen, Genet, Month 38. l l 1 (1979)] or the method of Takagi et al. [Japan Society of Agricultural Chemistry 1989 Conference Abstracts p373
1 etc.

このようにして得られる形質転換体のPDI発現能は不
安定な場合があり、エリスロマイシンなどの抗生物質耐
性遺伝子を保持するベクターを持つ形質転換体を該抗生
物質の存在丁番こ培養しても容易にその発現能を失って
しまうこと力くある。従って、PDIを安定に発現させ
るため番こ【ま、紫外線。
The PDI expression ability of transformants obtained in this way may be unstable, and even if transformants carrying a vector carrying an antibiotic resistance gene such as erythromycin are cultured in the presence of the antibiotic, It is very easy to lose the ability to express it. Therefore, in order to stably express PDI, ultraviolet rays are used.

N−メチル−N’−二トローN−二トロ’/り’7ニジ
ン、エチルメタンスルホネートなとの自体公知の変異ぶ
を用いて形質転換体を処理しIこ後、PDIを安定に発
現する変異株を取得する必要のあることが多い。
After treating the transformant with a known mutant such as N-methyl-N'-nitroN-nitro'/ri'7nidine and ethyl methanesulfonate, PDI is stably expressed. It is often necessary to obtain mutant strains.

また、得られた安定化変異株を抗生物質の非存在下に培
養して、プラスミドを脱落させたバチルス・ブレビス変
異株を取得し、再度上述の形質転換法を用いてバチルス
・ブレビス変異株を形質転換させて安定化形質転換株を
育種、取得することか望ましい。
In addition, the obtained stabilized mutant strain was cultured in the absence of antibiotics to obtain a Bacillus brevis mutant strain in which the plasmid had been shed, and the Bacillus brevis mutant strain was obtained using the above-mentioned transformation method again. It is desirable to breed and obtain stabilized transformed strains by transformation.

得られる形質転換体の培養に用いる培地は、形質転換体
が生育して目的とする蛋白質を産生じ得るものであれば
いかなるものでもよい。
The medium used for culturing the obtained transformant may be any medium as long as the transformant can grow and produce the desired protein.

該培地に含有される炭素源としては、例えばグルコース
、シュークロース、グリセロール、でん粉。
Examples of carbon sources contained in the medium include glucose, sucrose, glycerol, and starch.

デキストリン、糖蜜、尿素、有機酸などが用いられる。Dextrin, molasses, urea, organic acids, etc. are used.

該培地に含有される窒素源としては、カゼイン、ポリペ
プトン、肉エキス、酵母エキス、カザミノ酸、グリシン
などのアミノ酸類、NZ−アミンなどの有機窒素源、硫
酸アンモニウム、塩化アンモニウム、硝酸アンモニウム
などの無機窒素源などが用いられる。その他、塩化カリ
ウム、リン酸カリウム、リン酸二カリウム、塩化ナトリ
ウム、硫酸マグネシウムなどの無機塩が必要に応して培
地に加えられる。また、糖と無機窒素源を主とする合成
培地を用いて培養してもよい。栄養要求性を示す菌株を
用いる場合には、その生育に必要な栄養物質を培地に添
加すればよい。該栄養物質としては、アミノ酸類、ビタ
ミン類、核酸塩基類などが挙げられる。
Nitrogen sources contained in the medium include casein, polypeptone, meat extract, yeast extract, amino acids such as casamino acids and glycine, organic nitrogen sources such as NZ-amine, and inorganic nitrogen sources such as ammonium sulfate, ammonium chloride, and ammonium nitrate. etc. are used. In addition, inorganic salts such as potassium chloride, potassium phosphate, dipotassium phosphate, sodium chloride, and magnesium sulfate are added to the medium as necessary. Alternatively, the culture may be performed using a synthetic medium containing mainly sugar and an inorganic nitrogen source. When using a strain that exhibits auxotrophy, nutrients necessary for its growth may be added to the medium. Examples of the nutritional substances include amino acids, vitamins, nucleobases, and the like.

また、培養に際して必要があれば、培地に抗生物質(例
、ペニシリン、エリスロマイシン、クロラムフェニコー
ル、バシトラシン、D−サイクロセリンなど)が加えら
れる。さらに必要により、消泡剤(例、大豆油、ラード
油など)を培地に加えてもよい。
Furthermore, if necessary during culture, antibiotics (eg, penicillin, erythromycin, chloramphenicol, bacitracin, D-cycloserine, etc.) are added to the medium. Further, if necessary, an antifoaming agent (eg, soybean oil, lard oil, etc.) may be added to the medium.

培養液中に生成、蓄積するPDIの濃度はこれらの培養
条件によって著しく左右されるので、最適の条件を選択
してPDIの生成、蓄積量を制御する必要がある。しか
も、培地中に1度生成、蓄積したPDIは意外にも不安
定であって、時間の経過とともに断片化(低分子化)し
、断片化は培地のpHや温度あるいは培養時間に依存し
ているので、これらの要因を厳密に制御する必要がある
Since the concentration of PDI produced and accumulated in the culture solution is significantly influenced by these culture conditions, it is necessary to select optimal conditions to control the amount of PDI produced and accumulated. Moreover, once generated and accumulated in the medium, PDI is surprisingly unstable, fragmenting (low molecular weight) over time, and fragmentation depends on the pH, temperature, and culture time of the medium. Therefore, it is necessary to strictly control these factors.

また、PDIの分解を防ぐためには培地としてT3培地
を用いるのが望ましい。
Furthermore, in order to prevent the decomposition of PDI, it is desirable to use T3 medium as the medium.

本発明で用いられる培地の初発pHは5.0〜9゜0で
あり、さらに好ましくは6.5〜7.5である。
The initial pH of the culture medium used in the present invention is 5.0-9.0, more preferably 6.5-7.5.

培養温度は通常10°C〜42°C1好ましくは15°
C〜37°C1さらに好ましくは20°C〜30°Cで
あり、培養時間は通常10〜166時間、好ましくは1
5〜96時間、さらに好ましくは15〜20時間である
Culture temperature is usually 10°C to 42°C, preferably 15°C.
C to 37°C1, more preferably 20°C to 30°C, and the culture time is usually 10 to 166 hours, preferably 1
It is 5 to 96 hours, more preferably 15 to 20 hours.

培養終了後、それ自体公知の方法、例えば遠心分離、ろ
過などで菌体と上清とを分離する。菌体内に産生された
ヒ1−PDIは、当分野における通常の方法、例えば超
音波破砕法、フレンチプレスなどを利用した破砕法、摩
砕などの機械的破砕法、細胞壁溶解酵素による破砕法な
どにより菌体を破砕し、さらに必要ならば、トリトン−
X100、デオキシコーレートなどの界面活性剤を加え
ることによって抽出される。このようにして得られた培
養上清、あるいは抽出液中に含まれるヒトPD■は通常
の蛋白質精製法、例えば塩析、等電点沈澱、ゲルろ過、
イオン交換クロマトグラフィーハイドロキシアパタイト
、高速液体クロマトグラフィー(H,PLC,FPLC
等)などにしたがって精製され、目的とするヒトPDI
を得ることができる。
After completion of the culture, the bacterial cells and the supernatant are separated by a method known per se, such as centrifugation or filtration. Hi-1-PDI produced within the bacterial cells can be processed using conventional methods in the art, such as ultrasonic disruption, disruption using a French press, mechanical disruption such as grinding, and disruption using cell wall lytic enzymes. Crush the bacterial cells, and if necessary, add Triton-
It is extracted by adding surfactants such as X100 and deoxycholate. The human PD contained in the culture supernatant or extract thus obtained can be purified using conventional protein purification methods such as salting out, isoelectric precipitation, gel filtration,
Ion exchange chromatography hydroxyapatite, high performance liquid chromatography (H, PLC, FPLC
etc.), and the target human PDI is purified according to
can be obtained.

なお、上記で得られるヒトPD■は、誤ったジスルフィ
ド結合の形成されているために酵素活性を持たないリボ
ヌクレアーゼ(スクランブル型リボヌクレアーゼ)の賦
活化を指標として、その活性を定量することができる[
 Hillson、 D、 A、 etal、、 Me
thods in Enzymolog”/、  10
7 + 281(+984)、Kalnitsky、 
G、 et al、、 J、 Biol。
The activity of human PD■ obtained above can be quantified using the activation of ribonuclease (scrambled ribonuclease), which does not have enzymatic activity due to incorrect disulfide bond formation [
Hillson, D. A. etal, Me.
thods in Enzymolog”/, 10
7 + 281 (+984), Kalnitsky,
G. et al., J. Biol.

Chem、、234,1512(1959)]。Chem, 234, 1512 (1959)].

作   用 本発明のヒトPDIの製造法によれば、ヒトPDrをよ
り効率よく量産化することができ、しかもヒトPDI遺
伝子が形質転換体内で安定に保持される。量産化された
ヒトPDIは、正常なジスルフィド結合が形成されてい
ない不活性型蛋白質のリフォールディングへの利用が期
待される。またSH/SS交換反応による代謝調節機能
や蛋白質の構造と機能の関係を明確にすることにも役立
つものと考えられる。
Effects According to the method for producing human PDI of the present invention, human PDr can be mass-produced more efficiently, and the human PDI gene is stably retained in transformants. Mass-produced human PDI is expected to be used for refolding inactive proteins in which normal disulfide bonds are not formed. It is also thought to be useful in clarifying the metabolic regulation function of the SH/SS exchange reaction and the relationship between protein structure and function.

実施例 以下に参考例および実施例を挙げて本発明を更に詳しく
説明するが、本発明はこれらに限定されるべきものでは
ない。
EXAMPLES The present invention will be explained in more detail by referring to Reference Examples and Examples below, but the present invention should not be limited thereto.

なお、実施例1で開示するバチルス・ブレビスH102
([3本農芸化学会昭和62年度大会講演要旨集、p、
27、鵜高重三1日本農芸化学会誌。
In addition, Bacillus brevis H102 disclosed in Example 1
([3 Books Abstracts of the 1986 Conference of the Agricultural Chemistry Society, p.
27, Shigezo Udaka 1 Journal of the Japanese Society of Agricultural Chemistry.

61.669(1987)に記載のバチルス・ブレヒス
HPD31と同一菌株)は、通商産業省工業技術院微生
物工業技術研究所(FRI)に昭和61年6月24日か
ら受託番号FERM  BP−1087として寄託され
ている。実施例1に開示するエンエリヒア・コリK12
  DH5α/pT3BP−3は財団法人発酵研究所(
IFO)に受託番号  IFO14610として、また
FRIに受託番号FERM  BP−1841(FER
MP−9386より移管)として寄託されている。
61.669 (1987)) has been deposited with the Microbial Research Institute (FRI), Agency of Industrial Science and Technology, Ministry of International Trade and Industry under the accession number FERM BP-1087 since June 24, 1986. has been done. Enerichia coli K12 disclosed in Example 1
DH5α/pT3BP-3 is provided by Fermentation Research Institute (
IFO) with accession number IFO14610, and FRI with accession number FERM BP-1841 (FER
Transferred from MP-9386).

一方、実施例Iに開示するバチルス・ブレビスH102
/pNU200−PDI−10−1はIFOに平成元年
8月22日から受託番号I FOl 4927として、
またFRIに平成元年8月28日から受託番号FERM
  BP−2566て寄託されている。また、実施例6
に開示するバチルス・ブレビスH102−TI/pNU
200−PDIは財団法人発酵研究所(IFO)に平成
元年8月22日から受託番号IFO14926として、
またFRIに平成元年8月28日から受託番号FERM
  BP−2567として寄託されている。
On the other hand, Bacillus brevis H102 disclosed in Example I
/pNU200-PDI-10-1 has been deposited with IFO as accession number IFOl 4927 since August 22, 1989.
In addition, since August 28, 1989, FRI has received the accession number FERM.
It has been deposited as BP-2566. In addition, Example 6
Bacillus brevis H102-TI/pNU disclosed in
200-PDI has been deposited with the Fermentation Research Institute (IFO) since August 22, 1989, under the accession number IFO14926.
In addition, since August 28, 1989, FRI has received the accession number FERM.
It has been deposited as BP-2567.

本明細書および図面において、アミノ酸、その他に関し
略号で表示する場合、それらはIUPAC−I U B
 (Commission  on  Biochem
icalNomenc Iature)による略号ある
いは当該分野における慣用略号に基づくものであり、そ
の例を第1表にあげる。また、アミノ酸などに関し光学
異性体がありうる場合は、特に明示しなければL体を示
すものとする。
In this specification and drawings, when amino acids and others are indicated by abbreviations, they are IUPAC-IUB
(Commission on Biochem
icalNomenc Nature) or the abbreviations commonly used in the field, examples of which are listed in Table 1. Furthermore, when an amino acid or the like can have optical isomers, the L-isomer is indicated unless otherwise specified.

第1表 DNA  :デオキシリポ核酸 cDNA  :相補的デオキシ1ノボ核酸A  :アデ
ニン T  :チミン G  ・グアニン C:シトシン SDS  ニドデシル硫酸ナトリウム EDTA  :エチレンジアミン四酢酸DTT  ニジ
チオスレイトール GSH:還元型グルタチオン G55G  :酸化型グルタチオン Gly  ニゲリシン Ala  :アラニン Val  :バリン Leu  :ロイシン 11e:インロイシン Ser  :セリン Thr  :スレオニン Met  :メチオニン Glu  :グルタミン酸 Asp  :アスパラギン酸 Lys  :リジン Arg・:アルギニン His  :ヒスチジン Phe  :フェニルアラニン Tyr  :チロシン Trpニトリブトファン Pro  ニブロリン Asn  :アスパラギン Gln  :グルタミン 参考例1 プラスミドpBR−ANの構築 プラスミドpBR322を制限酵素BamHIとNru
lで切断し、3 、8 kbのDNA断片を単離した。
Table 1 DNA: Deoxyliponucleic acid cDNA: Complementary deoxy 1 novonucleic acid A: Adenine T: Thymine G/Guanine C: Cytosine SDS Sodium nidodecyl sulfate EDTA: Ethylenediaminetetraacetic acid DTT Nidithiothreitol GSH: Reduced glutathione G55G: Oxidized form Glutathione Gly Nigericin Ala: Alanine Val: Valine Leu: Leucine 11e: Inleucine Ser: Serine Thr: Threonine Met: Methionine Glu: Glutamic acid Asp: Aspartic acid Lys: Lysine Arg・: Arginine His: Histidine Phe: Phenylalanine Tyr: Tyr Shin Trp Nitori Butofan Pro Nibroline Asn: Asparagine Gln: Glutamine Reference Example 1 Construction of Plasmid pBR-AN Plasmid pBR322 was used with restriction enzymes BamHI and Nru.
A 3.8 kb DNA fragment was isolated.

この断片に、 5’ AGTGCACTCGCACTTACTGTTG
CTCCCATGGCTTTCGCTGCAG3’ 、
5’ GATCCTGCAGCGAAAGCCATGG
GAGCAACAGTAAGTGCGAGTGCACT
3’からなる合成りNAをリン酸化後加え、T4DNA
リガーゼを作用させたものを、大腸菌HBIOIに導入
し、プラスミドpBR−ANを得た。
In this fragment, 5' AGTGCACTCGCACTTACTGTTG
CTCCCATGGCTTTCGCTGCAG3',
5' GATCCTGCAGCGAAAGCCATGG
GAGCAACAGTAAGTGCGAGTGCACT
Synthetic DNA consisting of 3' is added after phosphorylation, and T4 DNA
The ligase-treated product was introduced into Escherichia coli HBIOI to obtain plasmid pBR-AN.

参考例2 プラスミドpNU200の構築 一方、プラスミドpCWP l(7,5kb)[Yam
agataら、 J、 Bacteriol、、 16
9 、 l 239(1987)、塚越規弘2日本農芸
化学会誌、旦土。
Reference Example 2 Construction of plasmid pNU200 On the other hand, plasmid pCWP l (7.5 kb) [Yam
Agata et al., J. Bacteriol, 16
9, l 239 (1987), Norihiro Tsukagoshi 2 Journal of the Japanese Society of Agricultural Chemistry, Dan-Sat.

68(1987)、特開昭62−201583号公報]
ヨリ、バチルス・ブレビス47の主要菌体外蛋白質遺伝
子のプロモーターおよびMW蛋白質のシグナルペプチド
と成熟蛋白のN末端側の一部をコードする領域を含む6
00bp A(2u I断片を単離した。次に本断片に
T4DNAリガーゼでBamHlリンカ−を結合させた
のち、BamHIで処y:して600bp BamHI
断片を得た。
68 (1987), Japanese Unexamined Patent Publication No. 62-201583]
Contains the promoter of the major extracellular protein gene of Bacillus brevis 47 and the region encoding the signal peptide of the MW protein and part of the N-terminal side of the mature protein6.
A 00bp A (2u I fragment was isolated. Next, this fragment was ligated with a BamHl linker using T4 DNA ligase, and then treated with BamHI to obtain a 600bp BamHI fragment.
Got a piece.

方、プラスミドpHT−1(5,6kb)[特開昭60
−58074号公報、(cf、FERM  P7226
)]をBamHIと BgllIで切断し、その大きい
断片と上記の600bp BamHI断片とをT4DN
Aリガーゼで連結させた反応液を用いてバチルス・ブレ
ビス47(FERM  P−7224)の形質を換を行
った。エリスロマイシン耐性の形質転換体の中からプラ
スミドを単離し、これをpNU 100(4,5kb)
[塚越規弘1日本農芸化学会誌、61.68(1987
)]と命名した。プラスミドpNU100を制限酵素E
coRIで部分分解したのち、Klenowフラグメン
ト(Large  Fragmentof  E、 c
oli  D N A  Polymerase)で処
理し、T4DNAリガーゼで閉環することにより、Ec
oR1部位の1箇所が除去された分泌ベクターpNU2
00(4,5kb)[鵜高重三3日本農芸化学会誌、6
1.669(1987)]を得た。
However, plasmid pHT-1 (5,6 kb) [JP-A-60
-58074 publication, (cf, FERM P7226
)] was cut with BamHI and BgllI, and the large fragment and the above 600bp BamHI fragment were inserted into T4DN.
Bacillus brevis 47 (FERM P-7224) was transformed using the reaction solution ligated with A ligase. A plasmid was isolated from the erythromycin-resistant transformants and transformed into pNU 100 (4.5 kb).
[Norihiro Tsukagoshi 1 Journal of the Japanese Society of Agricultural Chemistry, 61.68 (1987
)]. Plasmid pNU100 with restriction enzyme E
After partial digestion with coRI, the Klenow fragment (Large Fragment of E, c
oli DNA Polymerase) and closed with T4 DNA ligase.
Secretion vector pNU2 with one oR1 site removed
00 (4,5kb) [Juzo Udaka 3 Journal of the Japanese Society of Agricultural Chemistry, 6
1.669 (1987)] was obtained.

実施例1 EP公開293793号公報に記載されている方法に従
って、ヒトPDIをコードするDNA断片を含むプラス
ミドpT 38 P−3を得た[プラスミドpT38P
−3を保持する E、coliK12  DH5α/ 
p T 3 B P −3は、IFOに受託番号IFO
14610として寄託され、またFRIに受託番号FE
RM  BP−1841(FERM  P−9386よ
り移管)として寄託されている]。後述するように、参
考例■で得られたpBR−ANを用いてバチルス・ブレ
ビスのMW蛋白質シグナル配列とPDIをコードするD
NA領域の5′末端を接続し、それをpBR−ANより
分離する際に制限酵素、 ApaLIとBamHIとが
用いられる。PDIをコードするDNA領域内には、B
amH1部位は存在しないがApaL1部位が1か所存
布する。従って、この分離の際にPDIをコードするD
NA領域が分断されることになり、その後の操作の複雑
化や、バチルス・ブレビスの形質転換の頻度の低下をも
たらすと予想された。そこで、次のようにして、アミノ
酸を変えることなくPDIをコードするDNA領域中の
ApaL1部位を消去した。
Example 1 Plasmid pT38P-3 containing a DNA fragment encoding human PDI was obtained according to the method described in EP Publication No. 293793 [Plasmid pT38P
-3 retained E, coli K12 DH5α/
p T 3 B P -3 has been given accession number IFO to IFO.
14610 and also with FRI under accession number FE.
Deposited as RM BP-1841 (transferred from FERM P-9386)]. As described later, using pBR-AN obtained in Reference Example ①, D encoding the Bacillus brevis MW protein signal sequence and PDI
Restriction enzymes ApaLI and BamHI are used to connect the 5' end of the NA region and separate it from pBR-AN. Within the DNA region encoding PDI, B
There is no amH1 site, but there is one ApaL1 site. Therefore, during this separation, D
It was predicted that the NA region would be fragmented, which would complicate subsequent operations and reduce the frequency of transformation of Bacillus brevis. Therefore, the ApaL1 site in the DNA region encoding PDI was deleted without changing the amino acid as follows.

すなわち、pT 3 B P −3から消去すべきAp
aL1部位を含むDNA断片、(Pst I −Bam
H11、3kbp断片)を分離し、これをM13mp1
9のマルチプルクローニングサイトの中に連結し、01
igonucLeotide−directed  i
n  vitr。
That is, Ap to be deleted from pT 3 B P -3
DNA fragment containing the aL1 site, (Pst I-Bam
H11, 3kbp fragment) was isolated and this was transformed into M13mp1.
9 multiple cloning sites, 01
igonucLeotide-directed i
n vitr.

Mutagenesis  System(アマジャム
社製)を用いて、それが翻訳された場合のアミノ酸配列
を変化させることなくApaLI部位を消去した。
The ApaLI site was deleted using the Mutagenesis System (manufactured by AmaJam) without changing the amino acid sequence when it was translated.

一方、バチルス・ブレビスのMW蛋白質シグナル配列C
末端付近のNco1部位より下流と、PDI構造遺伝子
中のアミノ末端と推定されるAlaをコードする箇所よ
りその4bp下流のAva■部位までのDNA配列を連
結した配列のDNAを合成しく第1図参照)、これとp
T 38 P −3の0,85kbp  A va I
断片をT4リガーゼで連結したのち、1’sLIとNc
olで切断し、0.37kbpのNcoIPstl断片
を得た。これはMW蛋白質シグナル配列C末端部分とヒ
トPDIのN末端部分をコードするDNAとを直接連結
した形のものである。
On the other hand, Bacillus brevis MW protein signal sequence C
Synthesize a DNA sequence that connects the DNA sequence downstream from the Nco1 site near the end and the Ava■ site 4 bp downstream from the Ala-encoding site, which is presumed to be the amino terminus in the PDI structural gene.See Figure 1. ), this and p
0,85kbp Ava I of T38P-3
After ligating the fragments with T4 ligase, 1'sLI and Nc
A 0.37 kbp NcoIPstl fragment was obtained. This is a form in which the C-terminal part of the MW protein signal sequence and the DNA encoding the N-terminal part of human PDI are directly linked.

この断片と、ApaLI部位を消去したのPstl−B
amHI  1.3kbp断片と、pBR−ANのNc
ol−BamHI  3.8kbp断片とを、T4リガ
ーゼで連結し、E、 coli HB I Olを形質
転換してプラスミドpBR−AN−PDIを単離した。
This fragment and Pstl-B with the ApaLI site deleted
amHI 1.3kbp fragment and Nc of pBR-AN
ol-BamHI 3.8 kbp fragment was ligated with T4 ligase, and E. coli HB I Ol was transformed to isolate plasmid pBR-AN-PDI.

このプラスミドの1.7kbp  ApaLI −Ba
mHI断片と、pNU200の4.3kbp  Apa
L I −BamHI断片をT4リガーゼで連結して、
pNU200−PDIを得た。
The 1.7kbp ApaLI-Ba of this plasmid
mHI fragment and 4.3kbp Apa of pNU200
The LI-BamHI fragments were ligated with T4 ligase,
pNU200-PDI was obtained.

上記で得られたヒトPDI発現プラスミドpNU200
−PDIを用いて、高木らの方法[日本農芸化学会19
89年度大会講演要旨集p273 。
Human PDI expression plasmid pNU200 obtained above
- Using PDI, the method of Takagi et al. [Japan Society of Agricultural Chemistry 19]
Collection of abstracts from the 1989 conference, p273.

日本農芸化学会誌63,693(1989月によりバチ
ルス・ブレビスH102(FERM  BP1087:
日本農芸化学会昭和62年度大会講演要旨集、p27、
鵜高重三、日本農芸化学会誌61.669(1987)
に記載のバチルス・ブレビスHPD31と同一菌株)の
形質転換を行ない2株の形質転換体バチルス・ブレビス
H102/pNU200−PDI−4およびバチルス・
ブレビスH102/pNU200−PD I −10を
得Iこ。
Journal of the Japanese Society of Agricultural Chemistry 63,693 (1989 Bacillus brevis H102 (FERM BP1087:
Japanese Society of Agricultural Chemistry 1985 Conference Abstracts, p27,
Shigezo Udaka, Journal of the Japanese Society of Agricultural Chemistry 61.669 (1987)
The same strain as Bacillus brevis HPD31 described in 1.
Brevis H102/pNU200-PD I-10 was obtained.

実施例2 バチルス・ブレビスHl 02/pNIJ200PDI
−10を、5−のT2培地に植菌し、37°Cで一晩振
盪培養した培養液を、上記と同様の培地に1%植菌し上
記と同様に培養した。この操作を、培養上清中にPDI
がウェスタンプロット法で確認できなくなるまで繰り返
した。PDIの産生の認められなくなった培養液を希釈
して、T2寒天培地に塗布し、37°Cで1日培養しコ
ロニを作らせた。ニトロセルロース膜をこの寒天培地上
にのせて、コロニー周辺に存在する蛋白質を移し、抗ヒ
トPDIウサギ血清を反応させて発色させ、PDIを産
生じている株を数珠単離した。これらの株の中から、再
現性良<PDIを産生ずる株を選び、バチルス・ブレビ
スH102/pNU200−1o−1と命名した。
Example 2 Bacillus brevis Hl 02/pNIJ200PDI
-10 was inoculated into the T2 medium of 5- and cultured with shaking overnight at 37°C. The culture solution was inoculated at 1% into the same medium as above and cultured in the same manner as above. This operation was performed to add PDI to the culture supernatant.
This was repeated until it could no longer be confirmed by Western blotting. The culture fluid in which PDI production was no longer observed was diluted, applied to a T2 agar medium, and cultured at 37°C for 1 day to form colonies. A nitrocellulose membrane was placed on the agar medium to transfer the proteins present around the colonies, and the cells were reacted with anti-human PDI rabbit serum to develop color, and strains producing PDI were isolated. Among these strains, a strain that produced PDI with good reproducibility was selected and named Bacillus brevis H102/pNU200-1o-1.

実施例3 形質転換体の培養およびヒトPDIの生産実施例2で得
られた形質転換体バチルス・ブレビスH102/pNU
200−PDI−10−1およびその対照となるバチル
ス・ブレビスHIO2をポリペプトン1%、肉エキス0
.5%、酵母エキス0.2%、グルコース1%(pH7
)からなる培地(T2培地)中で37°C124時間振
盪培養した。
Example 3 Culture of transformant and production of human PDI Transformant Bacillus brevis H102/pNU obtained in Example 2
200-PDI-10-1 and its control Bacillus brevis HIO2 with 1% polypeptone and 0 meat extract.
.. 5%, yeast extract 0.2%, glucose 1% (pH 7
) in a medium (T2 medium) at 37°C for 124 hours with shaking.

上記の培養液を遠心分離し、その上清について、5DS
−ポリアクリルアミドゲル電気泳動を行ない、抗ヒトP
DIウサギ血清を用いてウェスタンブロッティング法に
より抗原性のあるバンドを検出した。第2図にその結果
を示す。第2図中、レーンlは標準蛋白質(クマシーブ
リリアントブルー染色)、レーン2はバチルス・ブレビ
スHIO2/pNU200−PDI−10−1の培養上
清の5DS−ポリアクリルアミドゲル電気泳動図を示す
。PDIの産生量は、培養液上清IQ当たり約10mg
と算出された。
The above culture solution was centrifuged, and the supernatant was collected using 5DS.
-Perform polyacrylamide gel electrophoresis and perform anti-human P
Antigenic bands were detected by Western blotting using DI rabbit serum. Figure 2 shows the results. In FIG. 2, lane 1 shows a standard protein (Coomassie brilliant blue staining), and lane 2 shows a 5DS-polyacrylamide gel electropherogram of the culture supernatant of Bacillus brevis HIO2/pNU200-PDI-10-1. The amount of PDI produced is approximately 10 mg per culture supernatant IQ.
It was calculated that

実施例4 PDI発現発現安定化前種 実施例1で得られた形質転換体はPD、Iの発現が不安
定で、そのままでは大量培養を行なうことができないた
め、安定化株の育種を行なった。
Example 4 PDI expression Stabilized strain The transformant obtained in Example 1 has unstable expression of PD and I, and cannot be cultured in large quantities as it is, so a stabilized strain was bred. .

バチルス・ブレビスHl 02/pNU200PDI−
4およびバチルス・ブレビスH102/pNU200−
PDI−1oをそれぞれ、変異誘起剤、N−メチル−N
′−二トローN−二トロングアニジンで処理し、液体培
養による植え継ぎによってPDI発現形質の欠落しない
株をコロニイムノア7セイ法およびウェスタン・プロッ
ティング法により、スクリーニングした。
Bacillus brevis Hl 02/pNU200PDI-
4 and Bacillus brevis H102/pNU200-
PDI-1o was treated with mutagen, N-methyl-N
The cells were treated with '-N-N-N-T-L-N-T-L-L-L-L-L-L-L-N-L-L-L-L-N-L, and subcultured in liquid culture to screen for strains that did not lack the PDI expression trait using the colony immunoassay method and the Western blotting method.

安定化株は、PDI構造遺伝子上に変異が入っている可
能性があるため、選択圧のかかっていない培地で繰り返
し培養することによりプラスミドを消去し、プラスミド
pNU200−PDIを用いて再度形質転換してバチル
ス・ブレビスHIO2−Tl/pNU200−PDIを
取得した。
Since the stabilized strain may contain mutations in the PDI structural gene, the plasmid was erased by repeated culturing in a medium without selective pressure, and the strain was transformed again using plasmid pNU200-PDI. Bacillus brevis HIO2-Tl/pNU200-PDI was obtained.

実施例5 PDIの分解の少ない培養条件の設定 実施例3で用いた条件下にバチルス・ブレビスH102
/pNU200−PDI−1o−1を培養した場合、培
地中に生成蓄積するPDIの分解が著しいため、PDI
の分解の少ない培養条件を種々検討した。培地組成、培
養温度、培養時間の3要素を変化させて種々検討した結
果、ポリペプトン2%Jffiエキス0.4%、肉エキ
ス0.5%。
Example 5 Setting culture conditions that cause less degradation of PDI Bacillus brevis H102 was grown under the conditions used in Example 3.
/pNU200-PDI-1o-1, the decomposition of PDI produced and accumulated in the medium was significant;
We investigated various culture conditions that would reduce the amount of decomposition. As a result of various studies by changing the three elements of medium composition, culture temperature, and culture time, we found that polypeptone 2%, Jffi extract 0.4%, and meat extract 0.5%.

グルコース1%、MgC0,2・6Hz0 0.1%(
pH7,0)から成る培地(T3培地)を用いて、28
℃において16時間培養する条件が最適であることを見
出した。第4図に実施例3の条件下に培養した上溝(レ
ーンl)と本実施例で設定されたPDIの分解の少ない
条件下に培養した上溝(レーン2)の5DS−ポリアク
リルアミドゲル電気泳動像(ウェスタンブロッティング
法)を示す。
Glucose 1%, MgC0,2・6Hz0 0.1% (
Using a medium (T3 medium) consisting of pH 7.0,
It was found that the conditions of culturing at ℃ for 16 hours were optimal. Figure 4 shows 5DS-polyacrylamide gel electrophoresis images of the upper groove (lane 1) cultured under the conditions of Example 3 and the upper groove (lane 2) cultured under the conditions set in this example where PDI is less degraded. (Western blotting method).

実施例6 PDI発現発現安定化前のヒトPDIの精製実施例4で
得られたPDI発現安定化株バチルス・ブレビスH10
2−TI/pNU200PDIを、実施例5の条件で培
養して得られた培養上清を出発材料として、硫安分画(
55%飽和以上の画分を採取)後、 Phenyl−S
epharose  CL −4Bカラムクロマトグラ
フイー(ファルマシア社製)、D E A E −To
yopearl  650 Mカラムクロマトグラフィ
ー(東ソー社製)、T S Kgel  G 30oo
swc凍ツー社製)を用いるHPLC法によりPDIの
精製を行なった。精製標品は5DS−ポリアクリルアミ
ドゲル電気泳動で単一のバンドを示し、ゲルろ過クロマ
トグラフィーで単一のピークを示した(第5図)。得ら
れた標品の分子量は5DS−ポリアクリルアミドゲル電
気泳動法では、還元条件下および非還元条件下でいずれ
も57゜CIQCIと算出された。また、ゲルろ過クロ
マトグラフィーでは、122,000と算出された。
Example 6 PDI expression Purification of human PDI before expression stabilization PDI expression stabilized strain Bacillus brevis H10 obtained in Example 4
Ammonium sulfate fraction (
After collecting the fraction with 55% saturation or higher, Phenyl-S
epharose CL-4B column chromatography (manufactured by Pharmacia), DEAE-To
yopearl 650 M column chromatography (manufactured by Tosoh Corporation), T S Kgel G 30oo
PDI was purified by the HPLC method using swc (manufactured by Freezetsu Co., Ltd.). The purified sample showed a single band in 5DS-polyacrylamide gel electrophoresis and a single peak in gel filtration chromatography (Figure 5). The molecular weight of the obtained sample was calculated to be 57° CIQCI under both reducing and non-reducing conditions by 5DS-polyacrylamide gel electrophoresis. Further, in gel filtration chromatography, it was calculated to be 122,000.

実施例7 ヒトPDrの諸性質 実施例6で得られたヒ1−PDIの諸性質を以下に示す
Example 7 Properties of human PDr The properties of human 1-PDI obtained in Example 6 are shown below.

(1)等電点 等電点ゲル電気泳動法によって求めたヒ)PDIの等電
点け5.0であった。
(1) Isoelectric point The isoelectric point of H) PDI determined by isoelectric focusing gel electrophoresis was 5.0.

(2)反応の至適温度 pH7,5,3μM  DTT存在下におけるスクラン
ブル型リボヌクレアーゼのりフォールディング反応の至
適温度は、20°Cであった。
(2) Optimal reaction temperature The optimal temperature for the scrambled ribonuclease folding reaction in the presence of pH 7, 5, and 3 μM DTT was 20°C.

(3)反応の至適pH 20°C23μM  DTT存在下におけるスクランブ
ル型リボヌクレアーゼのり7オ一ルデイング反応の至適
pHは7.5であった。
(3) Optimal pH of the reaction The optimal pH of the scrambled ribonuclease 7-oldering reaction at 20°C and in the presence of 23 μM DTT was 7.5.

(4)反応の至適DTT濃度 20°O,pH7,5におけるスクランブル型リボヌク
レアーゼのりフォールディング反応におけるDTTの至
適濃度は、3μMであった。
(4) Optimal DTT concentration for reaction The optimal concentration of DTT in the scrambled ribonuclease glue folding reaction at 20°O and pH 7.5 was 3 μM.

(5)反応の至適グルタチオン濃度 20℃、pH7、5におけるスクランブル型リボヌクレ
アーゼのりフォールディング反応におけるグルタチオン
の至適濃度は、GSH: 0.6mM。
(5) Optimal Glutathione Concentration for Reaction The optimal concentration of glutathione for the scrambled ribonuclease glue folding reaction at 20°C and pH 7.5 is GSH: 0.6 mM.

G55G : 0.06mM(混合物)であツタ。G55G: 0.06mM (mixture) ivy.

(6)蛋白化学 実施例6で得られI;ヒトPDI、約1nmolを用い
て、そのアミン末端アミノ酸配列を、気相プロテインシ
ークエンサー(アプライド バイオシステムズ社製)に
より分析した。N末端のシグナル配列は、cDNAより
予想される箇所で切断されていることが明らかとなった
(第2表)。
(6) Protein Chemistry Using approximately 1 nmol of human PDI I obtained in Example 6, its amine-terminal amino acid sequence was analyzed using a gas phase protein sequencer (manufactured by Applied Biosystems). It was revealed that the N-terminal signal sequence was cleaved at the location expected from the cDNA (Table 2).

また、このヒトPDIのアミノ酸組成分析を、Pico
−TAGoアミノ酸分析酸分中機−ターズ社製)により
分析した。その組成値はcDNA配列より予想される組
成値とほぼ一致した(第3表)。
In addition, the amino acid composition analysis of this human PDI was performed using Pico
-TAGo amino acid analysis acid analyzer (manufactured by TARS Inc.). The composition value almost coincided with the composition value predicted from the cDNA sequence (Table 3).

(以下余白) 第2表 第 3表 Glu/Gin er ly is rg hr 1a Pr。(Margin below) Table 2 No. 3 tables Glu/Gin er ly is rg hr 1a Pr.

yr a1 et −Cys 1e eu he rp ■3.9 4.6 5.3 1.8 2.6 5.0 9.0 4.5 2.8 6.4 0.6 1.1 4.7 9.4 6.9 1.3 実施例8 ヒトPDIによるスクランブル型リボヌクレアーゼのす
7オールディング 実施例6で得たヒ)PDI精製標品を用いてスクランブ
ル型リボヌクレアーゼのりフォールディング活性を測定
した(第6図)。
yr a1 et -Cys 1e eu he rp ■3.9 4.6 5.3 1.8 2.6 5.0 9.0 4.5 2.8 6.4 0.6 1.1 4.7 9 .4 6.9 1.3 Example 8 Folding activity of scrambled ribonuclease using human PDI was measured using the PDI purified preparation obtained in Example 6 (Fig. 6). ).

(1)材料− スクランブル型リボヌクレアーゼ(SRNase)はH
illsonらの方法[Methods  in  E
nzymology107.281−294(1984
))に従って、ラン膵臓リボヌクレアーゼAを用いて調
製した。
(1) Materials - Scrambled ribonuclease (SRNase) is H
Methods in E.
nzymology 107.281-294 (1984
)) using orchid pancreatic ribonuclease A.

(2)方法 10mMのED’TAを含む100mMリン酸ナトリウ
ム緩衝液(pH7,5)中で、スクランブル型リボヌク
レアーゼ(50μg/−)にPDI(8,8μg/ml
;△)、DTT(3μM:・)、グルタチオン(GSH
0,6mM、G55G  0.06mM;■)、PDI
(8,8μg/−)とDTT(3μM)(○)、または
PDI(8,8μg/ml)とグルタチオン(GSH0
,6mM、G55G  O,06mMX口)を加え20
°Cでそれぞれ、15分、30分、1時間、2時間加温
した。反応液量は全体で200μαになるように調整し
た。加温後、0.2M酢酸ナトリウム緩衝液を800μ
Q添加して反応を停止させた。
(2) Method In 100mM sodium phosphate buffer (pH 7.5) containing 10mM ED'TA, scrambled ribonuclease (50μg/-) was mixed with PDI (8.8μg/ml).
;△), DTT (3μM:・), glutathione (GSH
0.6mM, G55G 0.06mM; ■), PDI
(8,8μg/-) and DTT (3μM) (○), or PDI (8,8μg/ml) and glutathione (GSH0
, 6mM, G55G O, 06mMX) and 20
It was heated at °C for 15 minutes, 30 minutes, 1 hour, and 2 hours, respectively. The total amount of reaction solution was adjusted to 200 μα. After warming, add 800μ of 0.2M sodium acetate buffer.
The reaction was stopped by adding Q.

この反応液中のRNase活性を[alniskYらの
方法(J、Biol、Chem、、234.1512 
1516(1959))に従って測定した。
The RNase activity in this reaction solution was determined by the method of Alnisk Y et al. (J, Biol, Chem, 234.1512).
1516 (1959)).

すなわち、上記反応液200μQを遠心チューブに入れ
、37°Cで5分間予備加温した。1%になるように酵
母RNAを0.1M酢酸ナトリウム緩衝液(pH5,0
)に溶解した基質溶液も37℃で5分間予備加温した。
That is, 200 μQ of the above reaction solution was placed in a centrifuge tube and preheated at 37° C. for 5 minutes. Yeast RNA was added to 0.1M sodium acetate buffer (pH 5.0) to a concentration of 1%.
) was also prewarmed at 37°C for 5 minutes.

予備加温後、反応液に200μQの基質溶液を加え、3
7°Cで4分間反応させたのち、0.75%酢酸ウラニ
ウムを含む25%過塩素酸溶液200μQを添加した。
After prewarming, add 200 μQ of substrate solution to the reaction solution and incubate for 3
After reacting at 7°C for 4 minutes, 200 μQ of a 25% perchloric acid solution containing 0.75% uranium acetate was added.

添加後、遠心チューブを5分間氷冷し、16000rp
mで5分間遠心したのち、その上清を蒸留水で3倍に希
釈して、波長260nmにおける吸光度を測定した。
After addition, cool the centrifuge tube on ice for 5 minutes and spin at 16,000 rpm.
After centrifugation for 5 minutes at m, the supernatant was diluted 3 times with distilled water, and the absorbance at a wavelength of 260 nm was measured.

(3)結果 PDI、DT、T、グルタチオンをそれぞれ単独に添加
した条件と比較して、PDIとDTTあるいはPDIと
グルタチオンを添加した条件下では、効率良くスクラン
ブル型リボヌクレアーゼのり7オールデイングが進行し
た。
(3) Results Compared to the conditions in which PDI, DT, T, and glutathione were each added alone, the scrambled ribonuclease 7-olding progressed more efficiently under the conditions in which PDI and DTT or PDI and glutathione were added.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例Iで得られたヒ1−PDI発現プラスミ
ドpNU200−PDIの構築図を示す。 第2図は実施例3で得られた5DS−ポリアクリルアミ
ドゲル電気泳動の結果を示す。 第3図は実施例1で得られたpT 38 P −3中に
クローニングされたヒトPDIのcDNA塩基配列およ
びその配列より推測されるアミノ酸配列を示す。 第4図は実施例5で得られた5DS−ポリアクリルアミ
ドゲル電気泳動の結果を示す。 @5図は実施例6で得られたヒトPDIのゲルろ過クロ
マトグラフィーのパターンを示す。 第6図はスクランブル型リボヌクレアーゼのPDIによ
る賦活化の時間経過を示す(実施例8参照)。 令手1 97.400 □ 66.200      □ 42.700□− 31,000/ ゝN1
FIG. 1 shows a construction diagram of the human 1-PDI expression plasmid pNU200-PDI obtained in Example I. FIG. 2 shows the results of 5DS-polyacrylamide gel electrophoresis obtained in Example 3. FIG. 3 shows the cDNA base sequence of human PDI cloned into pT 38 P-3 obtained in Example 1 and the amino acid sequence deduced from that sequence. FIG. 4 shows the results of 5DS-polyacrylamide gel electrophoresis obtained in Example 5. Figure @5 shows the gel filtration chromatography pattern of human PDI obtained in Example 6. FIG. 6 shows the time course of activation of scrambled ribonuclease by PDI (see Example 8). Rei Te 1 97.400 □ 66.200 □ 42.700□- 31,000/ ゝN1

Claims (3)

【特許請求の範囲】[Claims] (1)バチルス・ブレビス由来のプロモーター領域を含
有するDNAの3′末端にヒトPDIをコードするDN
Aを結合させたDNA。
(1) DNA encoding human PDI at the 3' end of DNA containing the promoter region derived from Bacillus brevis
DNA bound to A.
(2)プロモーター領域を含有するDNAの3′末端に
ヒトPDIをコードするDNAを結合させたDNAを保
持するバチルス・ブレビス。
(2) Bacillus brevis harboring DNA in which human PDI-encoding DNA is linked to the 3' end of the DNA containing the promoter region.
(3)請求項2記載のバチルス・ブレビスを培地に培養
し、培養物中にヒトPDIを生成、蓄積せしめ、これを
採取することを特徴とするヒトPDIの製造法。
(3) A method for producing human PDI, which comprises culturing Bacillus brevis according to claim 2 in a medium, producing and accumulating human PDI in the culture, and collecting the human PDI.
JP22874790A 1989-08-30 1990-08-29 Production of human pdi Pending JPH03206887A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP22624889 1989-08-30
JP1-226248 1989-08-30
JP1-274310 1989-10-20

Publications (1)

Publication Number Publication Date
JPH03206887A true JPH03206887A (en) 1991-09-10

Family

ID=16842216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22874790A Pending JPH03206887A (en) 1989-08-30 1990-08-29 Production of human pdi

Country Status (1)

Country Link
JP (1) JPH03206887A (en)

Similar Documents

Publication Publication Date Title
US5691169A (en) Process for preparing a desired protein
US4375514A (en) Preparation and use of recombinant plasmids containing genes for alkaline phosphatases
US5232841A (en) Expression vectors containing a bacillus brevis signal sequence
HU205386B (en) Process for expressing cloned lysostaphin gene and for producing dna fragment containing the gene, expression vector and transformed host cell
JP2787585B2 (en) Method for producing human EGF
JPH07106157B2 (en) Hirudin derivative, method for obtaining the same, recombinant DNA and recombinant vector
JP2727391B2 (en) High expression vector, microorganism carrying the high expression vector, and method for producing useful substance using the microorganism
JP3433807B2 (en) Method for producing a useful substance using Bacillus brevis incorporating an expression vector carrying a novel amino acid sequence and a DNA encoding the amino acid sequence
JPH04278091A (en) Highly expressing vector, microorganism holding the same highly expressing vector and production of useful substance using the same microorganism
US4828988A (en) Hybrid polypeptides comprising somatocrinine and alpha1 -antitrypsin, method for their production from bacterial clones and use thereof for the production of somatocrinine
US5015574A (en) DNA sequence involved in gene expression and protein secretion, expression-secretion vector including the DNA sequence and the method of producing proteins by using the expression-secretion vector
Bellini et al. Production processes of recombinant IL-1β from Bacillus subtilis: comparison between intracellular and exocellular expression
WO2000060103A2 (en) Dna construct comprising a cyanophage of cyanobacteria promoter and its use
EP0208706A1 (en) Dna sequence useful for the production and secretion from yeast of peptides and proteins
KR102142255B1 (en) Expression Method of CRM197 Protein
JPH03206887A (en) Production of human pdi
WO1994019474A1 (en) Process for producing human growth hormone
WO1995014096A1 (en) Dna sequences encoding porcine pancreatic carboxypeptidase b
US6071718A (en) Methods of producing a recombinant protein
KR20010109348A (en) Production of pancreatic procarboxy-peptidase B, isoforms and muteins thereof, and their use
JP2005229807A (en) Method for producing transglutaminase
KR20070009029A (en) Method for extracellular production of target proteins by co-expression of ompf and target proteins
JPH09505989A (en) .ALPHA.-1,4-Glucan lyase from fungi, its purification, gene cloning and microbial expression
JPH02257876A (en) Mutant of bacillus brevis and use thereof
JP2003079379A (en) Dna for achieving high expression of growth hormone and use thereof