KR102142118B1 - Ionomer supramolecular network thermo-reversible crosslinked elastomer having high mechanical properties and low compression set and Producing method of dynamic crosslinked thermoplastic elastomer using the same - Google Patents

Ionomer supramolecular network thermo-reversible crosslinked elastomer having high mechanical properties and low compression set and Producing method of dynamic crosslinked thermoplastic elastomer using the same Download PDF

Info

Publication number
KR102142118B1
KR102142118B1 KR1020190047654A KR20190047654A KR102142118B1 KR 102142118 B1 KR102142118 B1 KR 102142118B1 KR 1020190047654 A KR1020190047654 A KR 1020190047654A KR 20190047654 A KR20190047654 A KR 20190047654A KR 102142118 B1 KR102142118 B1 KR 102142118B1
Authority
KR
South Korea
Prior art keywords
weight
parts
carboxylic acid
rubber
ionomer
Prior art date
Application number
KR1020190047654A
Other languages
Korean (ko)
Inventor
배종우
김정수
배성국
Original Assignee
한국신발피혁연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국신발피혁연구원 filed Critical 한국신발피혁연구원
Priority to KR1020190047654A priority Critical patent/KR102142118B1/en
Application granted granted Critical
Publication of KR102142118B1 publication Critical patent/KR102142118B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/32Mixing; Kneading continuous, with mechanical mixing or kneading devices with non-movable mixing or kneading devices
    • B29B7/325Static mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/01Processes of polymerisation characterised by special features of the polymerisation apparatus used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/46Reaction with unsaturated dicarboxylic acids or anhydrides thereof, e.g. maleinisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers

Abstract

The present invention relates to an ionomer-based supramolecular thermoreversible crosslinked elastomer composition having an excellent permanent compression deformation rate and a method for preparing a dynamic crosslinked thermoplastic elastomer by using the same and, more specifically, to an ionomer-based supramolecular thermoreversible crosslinked elastomer composition having an excellent permanent compression deformation rate and a method for preparing a dynamic crosslinked thermoplastic elastomer by using the same, in which it is possible to realize a reuse and a low permanent compression deformation rate even repeated reuse by using metal salts such as chloride, nitrate, and hydroxide that can be ionized in an ethylene-propylene rubber compound grafted with carboxylic acid in combination to form an intermolecular ionic interaction, and it is also possible to obtain eco-friendly properties in terms of resource recycling in such a way that, when heat is applied to previously used rubber or synthetic resin, the rubber or synthetic resin is melted again and can be revulcanized, so as to enable continuous process and production through reuse with general thermoplastic plastic or rubber processing equipment such as extruders, injection machines, calenders, etc.

Description

영구압축변형률이 우수한 아이오노머계 초분자 열가역성 가교형 탄성체 조성물 및 이를 이용한 동적가교형 열가소성 탄성체의 제조 방법{Ionomer supramolecular network thermo-reversible crosslinked elastomer having high mechanical properties and low compression set and Producing method of dynamic crosslinked thermoplastic elastomer using the same}Ionomer supramolecular network thermo-reversible crosslinked elastomer having high mechanical properties and low compression set and Producing method of dynamic crosslinked thermoplastic elastomer using the same}

본 발명은 카르복실산이 그라프트된 에틸렌-프로필렌 고무 화합물에 이온화가 가능한 금속염들을 복합으로 사용하여 분자간 이온 결합(Ionic interaction)을 형성함으로써, 낮은 영구압축변형률을 갖는 것을 특징으로 하는,영구압축변형률이 우수한 아이오노머계 초분자 열가역성 가교형 탄성체 조성물 및 이를 이용한 동적가교형 열가소성 탄성체의 제조 방법에 관한 것이다.The present invention is characterized in that it has a low permanent compression set by forming an intermolecular ionic bond (Ionic interaction) using a complex of ionizable metal salts in the ethylene-propylene rubber compound grafted with carboxylic acid, the permanent compression set An excellent ionomer-based supramolecular thermoreversible crosslinked elastomer composition and a method for manufacturing a dynamic crosslinkable thermoplastic elastomer using the same.

일반적으로 고무는 외력에 의해 모양과 부피가 변형된 후 힘을 제거하였을 때 본래의 상태로 되돌아가려는 탄성을 가지는데, 고무의 탄성은 힘을 점차 크게 가하면 어느 단계 이상에서는 외력을 제거하더라도 변형이 그대로 남는 영구변형을 일으킨다.In general, rubber has the elasticity to return to its original state when the force is removed after the shape and volume are deformed by external force, and the elasticity of rubber gradually deforms even if the external force is removed at any stage if the force is gradually increased. Causes residual permanent deformation.

따라서, 상기와 같은 영구변형의 한계 및 기계적 물성을 향상시키기 위하여 고무 조성물에 황이나 유기과산화물 등의 가교제를 사용하여 망상 구조의 가교를 형성시킨다. Therefore, in order to improve the limits of the permanent deformation and mechanical properties, a crosslinking agent such as sulfur or organic peroxide is used in the rubber composition to form a crosslink of a network structure.

그러나 상기 가교된 고무 조성물은 열경화성(Thermosetting)을 나타내어 재활용이 불가능한 단점을 지니게 된다. 즉, 가교 고무 특성상 고무 화합물의 분자 구조를 망상화하여 경화시킨 고무가 다시 용융되지 않기 때문에 새롭게 용융시켜 신생고무와 같이 다시 가황하여 재활용할 수가 없게 된다.However, the crosslinked rubber composition exhibits thermosetting and thus has a disadvantage that recycling is impossible. That is, due to the nature of the crosslinked rubber, the rubber structure cured by reticularizing the molecular structure of the rubber compound is not melted again, so that it is newly melted and vulcanized again like a new rubber, and cannot be recycled.

따라서, 종래에는 고무를 재활용하기 위해, 기 사용하였던 고무를 잘게 분쇄하여 분말로 만든 다음 단순히 신생 고무에 섞어서 사용하는 정도로만 재활용되었다.Therefore, in order to recycle rubber, in the past, the previously used rubber was finely pulverized into a powder, and then recycled to the extent that it was simply mixed with the new rubber and used.

한편, 상기와 같은 고무 조성물의 단점을 극복하기 위하여 상온에서는 경질 세그멘트의 물리적 응집에 의해 고무의 특성인 탄성을 가지고 고온에서는 물리적 응집이 용융되어 열가소성(Thermoplastic)을 가져 재활용이 가능한 열가소성 탄성체(Thermoplastic elastomer; TPE)가 개발되어 고무 적용 분야에 사용되고 있으며 최근에는 환경 문제가 사회 및 산업 전반에 걸쳐 가장 부각되고 있는 가운데 고무를 TPE 소재로 대체하기 위한 연구 개발이 활발히 진행되어 적용 분야가 점차 확대되는 추세이다. On the other hand, in order to overcome the disadvantages of the rubber composition as described above, at room temperature, it has elasticity, which is a property of rubber by physical agglomeration of hard segments, and at high temperature, physical agglomeration is melted to bring thermoplastic and recyclable thermoplastic elastomers. ; TPE) has been developed and used in the field of rubber application, and in recent years, environmental issues have been highlighted most in society and industry, and research and development to replace rubber with TPE material has been actively conducted, and the field of application is gradually expanding. .

상기 열가소성 탄성체는 열가소성으로 인해 까다로운 가교공정이 없어 생산성이 높고 기존의 플라스틱 가공기기를 개조 없이 사용할 수 있는 장점을 가지는 반면, 화학적인 가교구조를 갖는 기존의 가교 고무에 비해 상대적으로 내열성, 내구성, 영구압축변형률, 탄성복원력, 내스크래치성 등이 떨어지며 잔류변형이 커서 응력 완화나 크리이프(Creep)현상이 나타나는 단점도 가진다. The thermoplastic elastomer has the advantage of high productivity due to the absence of a difficult crosslinking process due to thermoplasticity and the ability to use existing plastic processing equipment without modification, while being relatively heat resistant, durable, and permanent compared to conventional crosslinked rubber having a chemical crosslinking structure. Compressive strain rate, elastic restoring force, scratch resistance, etc. are inferior, and the residual strain is large, which also has the disadvantages of stress relaxation or creep.

이러한 단점을 보완하기 위해 개발된 열가소성 가황고무(Thermoplastic vulcanizates; TPV)는 연질의 고무와 경질의 플라스틱의 블렌드이지만 연질 고무 부분이 가교되어 있어 기존의 열경화성 고무와 유사한 탄성을 나타내는 소재이나, 경질 플라스틱부에 주로 사용되는 폴리프로필렌(PP)나 폴리에틸렌(PE)에 의하여 가소성이 부여되기 때문에 충진제의 충진율이 일반 플라스틱과 유사하게 낮아 30중량%이상 고충진하기가 어려우며, 특히 가교된 고무 조성물에 비해 영구압축변형률이 나쁜 단점을 가지고 있다.Thermoplastic vulcanizates (TPV), developed to compensate for these shortcomings, are blends of soft rubber and hard plastic, but the soft rubber part is cross-linked to show elasticity similar to that of conventional thermosetting rubber, or hard plastic parts. Since plasticity is imparted by polypropylene (PP) or polyethylene (PE), which is mainly used for fillers, the filling rate of fillers is similar to that of ordinary plastics, making it difficult to fill more than 30% by weight, especially permanent compression compared to crosslinked rubber compositions. It has the disadvantage of poor strain.

따라서 상기와 같은 문제점을 해결하기 위한 방안으로, 개발되고 있는 것이 고무 분자 간에 초분자 네크워크 제어기술을 이용하여 수소결합 혹은 이온결합, 또는 두 가지 결합을 동시에 형성하여 상온에서는 가교 고무과 유사한 특성을 나타내며 일정 가공 온도 이상에서는 열가소성을 나타내어 재가공이 가능한, 초분자 열가역성 가교고무이며, 이와 같은 열가역성 가교고무에 대해서 일부 특허가 출원되어 있다.Therefore, as a method for solving the above problems, the developed one forms hydrogen bonds or ionic bonds or two bonds at the same time by using a supramolecular network control technology between rubber molecules, and exhibits properties similar to crosslinked rubber at room temperature and performs certain processing. Above the temperature, it is a supramolecular thermoreversible crosslinked rubber that exhibits thermoplasticity and can be reprocessed. Some patents have been applied for such a thermoreversible crosslinked rubber.

상기와 같이 연구 개발된 기술 내용들을 살펴보면, 대한민국 공개특허 제10-1997-0027193호에 "EPDM 또는 컨쥬게이팅된 디엔 고무 및 이소부틸렌 고무로부터 얻어지는 열가소성 가황고무"에 대한 기술을 제안하고 있지만, 상기 열가소성 가황고무는 부분적으로 가교 결합된 고무배합물을 약 10~90 중량부 함유하며 이를 통해 열가소성을 가지면서 가황 고무와 유사한 모듈러스를 발현하고자 하였으나 뛰어난 성능에도 불구하고 부분 가교 결합상의 고무 조성으로 인해 탄성 회복력이 떨어지는 문제점이 있다. Looking at the contents of the research and development as described above, in the Republic of Korea Patent Publication No. 10-1997-0027193 proposes a technique for "thermoplastic vulcanized rubber obtained from EPDM or conjugated diene rubber and isobutylene rubber", The thermoplastic vulcanized rubber contains about 10 to 90 parts by weight of the partially crosslinked rubber compound, and through this, attempts to express a modulus similar to that of the vulcanized rubber with thermoplastic properties, but despite its excellent performance, elastic recovery due to the rubber composition of the partially crosslinked phase There is this falling issue.

또한, 대한민국 공개특허 제10-2002-0033732호에 "최적 탄성 회복을 위해 정해진 모폴로지를 가지는 열가소성 가황고무"에 대한 기술을 제안하고 있으며, 상기 기술은 인접하게 놓여진 가교된 고무 입자 사이의 연속 가소성 물질의 조절 기술을 통해 두 인접 인자간의 거리를 조절하여 탄성 회복력을 가지도록 하였으나 탄성회복력을 높이기 위해 가소성의 경질 플라스틱 재료를 줄일 경우 기계적 물성이 상대적으로 떨어지며 이를 증량할 경우 탄성이 감소하여 플라스틱과 같은 감성을 나타내는 문제점이 있었다. In addition, Korean Patent Publication No. 10-2002-0033732 proposes a technique for "thermoplastic vulcanized rubber having a defined morphology for optimal elastic recovery", which is a continuous plastic material between adjacently crosslinked rubber particles. The distance between two adjacent factors is adjusted to have elastic recovery power through the adjustment technology of .However, to reduce the elastic plastic material to increase the elastic recovery force, the mechanical properties are relatively reduced. There was a problem indicating.

또한, The Yokohama rubber Co., LTD에서 출원한 미국특허 US 6,746,562 B2에서는 합성고무에 질소를 포함하는 헤테로 고리화합물을 이용하여 수소 결합을 형성시키는 열가역성 탄성체 및 그 제조 방법에 대한 기술을 제안하고 있으나 수소 결합 형성에 의한 방식으로 인해 탄성 회복력이 떨어지고 모듈러스가 낮은 단점을 가진다. In addition, US Patent No. 6,746,562 B2, filed by The Yokohama rubber Co., LTD, proposes a technology for a thermoreversible elastic body that forms hydrogen bonds using a heterocyclic compound containing nitrogen in synthetic rubber and a method for manufacturing the same. Due to the method by forming hydrogen bonds, the elastic recovery force is poor and the modulus is low.

또한, Ciba Specialty chemicals Corp.에서 출원한 미국특허 US 6,900,268 B2에서는 에틸렌 화합물에 하이드록실아민 에스테르(Hydroxylamine ester)를 이용하여 불포화 카르복실산 그라프트 화합물 유도체에 대한 기술을 제안하고 있는데, 상기 특허는 불포화 카르복실산을 기재 고분자 재료 대비 0.5에서 20wt% 함유하는 고분자 재료 제조기술로써 수소 결합에 의한 열가역성을 형성하여 탄성회복력 및 모듈러스가 낮은 단점을 가진다. In addition, US Patent No. 6,900,268 B2, filed by Ciba Specialty chemicals Corp., proposes a technique for unsaturated carboxylic acid graft compound derivatives using a hydroxylamine ester in an ethylene compound. It is a polymer material manufacturing technology that contains 0.5 to 20 wt% of carboxylic acid compared to the base polymer material. It has the disadvantage of low elastic recovery and low modulus by forming thermal reversibility by hydrogen bonding.

한편, 본 출원의 출원인에 의해 기출원되어 공개된 공개특허 제10-2011-0067361호에 합성고무 또는 올레핀계 수지에 말레익 안하이드라이드(Maleic anhydride; MA)를 사용하여 그라프팅화시킨 화합물을 단독 기재로 사용하거나 또는 상기 그라프팅화시킨 화합물에 기타 수지를 혼합한 혼합 조성물을 기재로 사용하고, 이 기재에 첨가한 반응성 아민 화합물, 금속 산화물들이 고무 또는 올레핀계 분자 사이에서 수소 결합(Hydrogen bonding) 및 이온 결합(Ionic interaction)을 형성하는 것을 특징으로 하는 열가역성 가교형 탄성체 조성물 및 이를 이용한 탄성체의 제조 방법에 대한 기술을 제안하였으나, 상기 특허의 가교 결합 구조는 수소결합과 이온클러스터에 의한 이온간력(ionic interaction)으로 나누어지며, 아민화합물에 의한 수소결합이 가교 고무가 나타내는 공유결합보다는 결합력이 약하지만 이온간력은 수소결합보다 상대적으로 강력한 물리결합을 나타내므로 가교 고무와 유사한 기계적 물성을 구현할 수 있으나 말레익 안하이드라이드와 같이 반응성이 높은 불포화 산 무수물을 채용한 그라프트 화합물은 그라프트율이 2.0% 미만이므로 이를 기재로 하여 상기 가교 구조를 갖도록 형성된 열가역성 가교 조성물로는 가교 고무 수준의 영구압축변형률을 획득하기 어렵다. On the other hand, the compound grafted using maleic anhydride (MA) in synthetic rubber or olefin-based resin in published patent application No. 10-2011-0067361 previously published and published by the applicant of the present application alone Reactive amine compounds, metal oxides added to the substrate or mixed with a mixture of other resins and the grafted compound as a substrate, are used as a substrate for hydrogen bonding (Hydrogen bonding) between rubber or olefin-based molecules, and A technique for producing a thermally reversible crosslinked elastomer composition characterized by forming an ionic bond and a method for manufacturing the elastic body using the same is proposed, but the crosslinked structure of the patent has hydrogen bonding and ionic force due to ion cluster ( ionic interaction), and the hydrogen bond by the amine compound is weaker than the covalent bond represented by the cross-linked rubber, but the ionic force is relatively stronger than the hydrogen bond, so it can realize mechanical properties similar to that of the cross-linked rubber, but male The graft compound employing a highly reactive unsaturated acid anhydride such as ionic anhydride has a graft rate of less than 2.0%, thereby obtaining a permanent compressive strain of the level of crosslinked rubber as a thermally reversible crosslinked composition formed to have the crosslinked structure based on this. It is difficult to do.

또한 말레익 안하이드라이드와 같은 불포화 산 무수물을 사용하는 반응 압출 방식으로 제조한 화합물은 고무의 점도가 높아 그라프트시 발열이 심하게 발생하며 반복 재가공시 영구압축변형률 상승이 두드러지게 나타나 반복 재사용이 어렵게 되는 문제점이 있었다.In addition, compounds produced by reaction extrusion using an unsaturated acid anhydride such as maleic anhydride have high viscosity of rubber, which causes severe heat generation during grafting, and repetitive re-use is difficult due to remarkable increase in permanent compression strain. There was a problem.

특허문헌 1 : 대한민국 공개특허공보 제10-1997-0027193호 "EPDM 또는 컨쥬게이팅된 디엔 고무 및 이소부틸렌 고무로부터 얻어지는 열가소성 가황고무"Patent Document 1: Republic of Korea Patent Publication No. 10-1997-0027193 "The thermoplastic vulcanized rubber obtained from EPDM or conjugated diene rubber and isobutylene rubber" 특허문헌 2 : 대한민국 공개특허공보 제10-2002-0033732호 "최적 탄성 회복을 위해 정해진 모폴로지를 가지는 열가소성 가황고무"Patent Document 2: Republic of Korea Patent Publication No. 10-2002-0033732 "The thermoplastic vulcanized rubber having a morphology determined for optimal elasticity recovery" 특허문헌 3 : 미국 등록특허공보 제6,746,562호 "METHODS OF MAKING AND RECYCLING RUBBER BODIES BONDED WITH A THERMO-REVERSIBLE, CROSSLINKABLE ELASTOMER"Patent Literature 3: US Registered Patent Publication No. 6,746,562 "METHODS OF MAKING AND RECYCLING RUBBER BODIES BONDED WITH A THERMO-REVERSIBLE, CROSSLINKABLE ELASTOMER" 특허문헌 4 : 미국 등록특허공보 제6,900,268호 "METHODS OF GRAFTING ETHYLENICALLY UNSATURATED CARBOXYLIC ACID DERIVATIVES ONTO THERMOPLASTIC USING HYDROXYLAMINE ESTERS"Patent Literature 4: US Registered Patent Publication No. 6,900,268 "METHODS OF GRAFTING ETHYLENICALLY UNSATURATED CARBOXYLIC ACID DERIVATIVES ONTO THERMOPLASTIC USING HYDROXYLAMINE ESTERS" 특허문헌 5 : 대한민국 공개특허공보 제10-2011-0067361호 "열가역성 가교형 탄성체 조성물 및 이를 이용한 탄성체의 제조 방법"Patent Literature 5: Republic of Korea Patent Publication No. 10-2011-0067361 "Thereversible crosslinkable elastic composition and a method for manufacturing the elastic body using the same"

본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 카르복실산이 그라프트된 에틸렌-프로필렌 고무 화합물에 이온화가 가능한 클로라이드, 나이트레이트 및 하이드록사이드 등의 금속염들을 복합으로 사용하여 분자간 이온 결합(Ionic interaction)을 형성시킴으로써, 재사용이 가능할 뿐만 아니라 반복 재사용시에도 낮은 영구압축변형률을 구현할 수 있는 아이오노머계 초분자 열가역성 가교형 탄성체 조성물 및 이를 이용한 동적가교형 열가소성 탄성체의 제조 방법을 제공함을 과제로 한다.The present invention is to solve the above problems, the ionic ionic bond (Ionic interaction) using a complex of metal salts such as chloride, nitrate and hydroxide ionizable to the ethylene-propylene rubber compound grafted with carboxylic acid It is an object of the present invention to provide an ionomer-based supramolecular thermally reversible crosslinkable elastomer composition capable of realizing a low permanent compression strain even during repeated reuse by forming a ), and a method for manufacturing a dynamic crosslinkable thermoplastic elastomer using the same.

또한, 본 발명은 기 사용하였던 고무 또는 합성수지에 열을 가할 경우 다시 용융되면서 재가황이 가능하여 압출기, 사출기, 카렌더 등과 같은 일반적인 열가소성 플라스틱 또는 고무 가공설비를 이용한 재사용으로 연속적인 가공 및 생산이 가능함에 따라 자원의 재활용이라는 차원에서 친환경적 특성을 갖는, 아이오노머계 초분자 열가역성 가교형 탄성체 조성물 및 이를 이용한 동적가교형 열가소성 탄성체의 제조 방법을 제공함을 다른 과제로 한다.In addition, the present invention can be re-vulcanized while being melted again when heat is applied to previously used rubber or synthetic resin, so that it can be continuously processed and produced by reuse using general thermoplastic or rubber processing equipment such as extruders, injection machines, and calendars. Another object is to provide an ionomer-based supramolecular thermally reversible crosslinked elastomer composition and a method for manufacturing a dynamic crosslinkable thermoplastic elastomer using the same, having eco-friendly characteristics in terms of recycling of resources.

본 발명은 아이오노머계 초분자 열가역성 가교형 탄성체 조성물에 있어서, 카르복실산 그라프트 에틸렌-프로필렌 고무 기재 100 중량부에 대하여, 금속염 0.2 ~ 20.0 중량부 및 산화방지제 0.1 ~ 1.0 중량부를 혼입하여 이루어지되, 상기 금속염은, 클로라이드(Chloride), 나이트레이트(Nitrate) 및 하이드록사이드(hydroxide)를 1 : 0.5 ~ 1.5 : 0.8 ~ 1.2의 중량비로 혼합하여 사용하는 것을 특징으로 하는, 영구압축변형률이 우수한 아이오노머계 초분자 열가역성 가교형 탄성체 조성물을 과제의 해결 수단으로 한다.In the present invention, the ionomer-based supramolecular thermoreversible crosslinkable elastomer composition is made by mixing 0.2 to 20.0 parts by weight of a metal salt and 0.1 to 1.0 parts by weight of an antioxidant with respect to 100 parts by weight of a carboxylic acid graft ethylene-propylene rubber substrate. , The metal salt is a mixture of chloride (Chloride), nitrate (Nitrate) and hydroxide (hydroxide) in a weight ratio of 1: 0.5 to 1.5: 0.8 to 1.2, characterized in that used by mixing, excellent permanent compression set The ionomer-based supramolecular thermoreversible crosslinked elastomer composition is used as a solution to the problem.

여기서 상기 카르복실산 그라프트 에틸렌-프로필렌 고무는, 에틸렌-프로필렌 고무 100 중량부에 대하여, 불포화 카르복실산 0.15 ~ 25 중량부, 과산화물 0.01 ~ 0.3 중량부, 산화방지제 0.01 ~ 1.0 중량부를 첨가하여 카르복실산이 0.1 ~ 15.0% 그라프트된 것을 사용하는 것이 바람직하다.Here, the carboxylic acid graft ethylene-propylene rubber is added with 0.15 to 25 parts by weight of unsaturated carboxylic acid, 0.01 to 0.3 parts by weight of peroxide, and 0.01 to 1.0 parts by weight of antioxidant to 100 parts by weight of ethylene-propylene rubber. It is preferred to use grafted 0.1 to 15.0% carboxylic acid.

한편, 본 발명은 아이오노머계 초분자 열가역성 가교형 탄성체 조성물을 이용한 동적가교형 열가소성 탄성체의 제조 방법에 있어서, 에틸렌-프로필렌 고무 기재 100 중량부에 대하여, 불포화 카르복실산 0.15 ~ 25 중량부, 과산화물 0.01 ~ 0.3 중량부, 산화방지제 0.1 ~ 1.0 중량부를 이축 압출기(Twin extruder)를 이용하여 100 ~ 200℃ 온도 조건에서 30 ~ 150 rpm의 속도로 3 ~ 15분간 압출하여 카르복실산이 0.1 ~ 15.0% 그라프트된 에틸렌-프로필렌 고무를 제조하는 제 1 혼합 단계(S1); 및 상기 카르복실산 그라프트 에틸렌-프로필렌 고무 기재 100에 대하여, 금속염 0.2 ~ 20.0 중량부, 산화방지제 0.1 ~ 1.0 중량부를 반바리 믹서 또는 니이더를 이용하여 150 ~ 200℃의 온도에서 30 ~ 90 rpm의 속도로 3 ~ 20분간 혼합하는 제 2 혼합 단계(S2);를 포함하여 제조되되, 상기 금속염은, 클로라이드(Chloride), 나이트레이트(Nitrate) 및 하이드록사이드(hydroxide)를 1 : 0.5 ~ 1.5 : 0.8 ~ 1.2의 중량비로 혼합하여 사용하는 것을 특징으로 하는, 영구압축변형률이 우수한 아이오노머계 초분자 열가역성 가교형 탄성체 조성물을 이용한 동적가교형 열가소성 탄성체의 제조방법을 과제의 다른 해결 수단으로 한다.On the other hand, the present invention is a method for producing a dynamic crosslinkable thermoplastic elastomer using an ionomer supramolecular thermoreversible crosslinkable elastomer composition, with respect to 100 parts by weight of an ethylene-propylene rubber substrate, 0.15 to 25 parts by weight of an unsaturated carboxylic acid, peroxide 0.01 ~ 0.3 parts by weight, 0.1 ~ 1.0 parts by weight of the antioxidant is extruded for 3 ~ 15 minutes at a speed of 30 ~ 150 rpm at 100 ~ 200 ℃ temperature condition using a twin extruder (Twin extruder) 0.1 ~ 15.0% carboxylic acid graph A first mixing step (S1) of preparing ethylene-propylene rubber; And with respect to the carboxylic acid graft ethylene-propylene rubber base 100, 0.2 ~ 20.0 parts by weight of metal salt, 0.1 ~ 1.0 parts by weight of antioxidant 30 ~ 90 rpm at a temperature of 150 ~ 200 ℃ using a Banbari mixer or kneader The second mixing step (S2) for mixing for 3 to 20 minutes at the rate of; is prepared, including, the metal salt, chloride (Chloride), nitrate (Nitrate) and hydroxide (hydroxide) 1: 0.5 ~ 1.5 : A method of manufacturing a dynamic crosslinkable thermoplastic elastomer using an ionomer-based supramolecular thermoreversible crosslinkable elastomer composition having excellent permanent compression set, characterized in that it is used by mixing in a weight ratio of 0.8 to 1.2, as another solution to the problem.

본 발명은 카르복실산이 그라프트된 그라프팅 에틸렌-프로필렌 고무 화합물에 이온화가 가능한 금속염들을 복합으로 사용하여 분자간 이온 결합을 형성시킴으로써, 재사용이 가능할 뿐만 아니라 반복 재사용시에도 낮은 영구압축변형률을 구현할 수 있는 효과가 있다.The present invention is to form an intermolecular ionic bond by using a metal salt capable of ionizing a grafted ethylene-propylene rubber compound in which the carboxylic acid is grafted, so that it is not only reusable but also capable of realizing a low permanent compression strain even after repeated reuse. It works.

또한, 기 사용하였던 고무 조성물에 열을 가할 경우 다시 용융되면서 재가황이 가능하여 압출기, 사출기, 카렌더 등과 같은 일반적인 열가소성 플라스틱 또는 고무 가공설비를 이용한 재사용으로 연속적인 가공 및 생산이 가능하여 자원의 재활용이라는 차원에서 친환경적 특성을 갖는 효과가 있다.In addition, when heat is applied to the previously used rubber composition, it can be re-vulcanized while being melted again, so that it can be continuously processed and produced through reuse using common thermoplastics or rubber processing equipment such as extruders, injection machines, and calendars. It has the effect of having eco-friendly characteristics.

도 1은 본 발명의 일 실시예에 따른 아이오노머계 초분자 열가역성 가교형 탄성체 조성물을 이용한 동적가교형 열가소성 탄성체의 제조 방법을 나타낸 흐름도1 is a flow chart showing a method of manufacturing a dynamic crosslinkable thermoplastic elastomer using an ionomer-based supramolecular thermoreversible crosslinked elastomer composition according to an embodiment of the present invention

상기의 효과를 달성하기 위한 본 발명은 영구압축변형률이 우수한 아이오노머계 초분자 열가역성 가교형 탄성체 조성물 및 이를 이용한 동적가교형 열가소성 탄성체의 제조 방법에 관한 것으로서, 본 발명의 기술적 구성을 이해하는데 필요한 부분만이 설명되며 그 이외 부분의 설명은 본 발명의 요지를 흩트리지 않도록 생략될 것이라는 것을 유의하여야 한다.The present invention for achieving the above effects relates to an ionomer-based supramolecular thermoreversible crosslinkable elastomer composition having excellent permanent compression set and a method for manufacturing a dynamic crosslinkable thermoplastic elastomer using the same, which is necessary for understanding the technical configuration of the present invention It should be noted that only the description is made, and descriptions of other parts will be omitted so as not to obscure the subject matter of the present invention.

먼저, 본 발명에 따른 영구압축변형률이 우수한 아이오노머계 초분자 열가역성 가교형 탄성체 조성물을 상세히 설명하면 다음과 같다.First, the ionomer-based supramolecular thermoreversible crosslinkable elastomer composition excellent in permanent compression set according to the present invention will be described in detail as follows.

본 발명은 카르복실산 그라프트 에틸렌-프로필렌 고무 기재 100 중량부에 대하여, 금속염 0.2 ~ 20.0 중량부 및 산화방지제 0.1 ~ 1.0 중량부를 혼입하여 제조하되, 상기 금속염은, 클로라이드(Chloride), 나이트레이트(Nitrate) 및 하이드록사이드(hydroxide)를 1 : 0.5 ~ 1.5 : 0.8 ~ 1.2의 중량비로 혼합하여 사용하는 것을 특징으로 한다.The present invention is prepared by mixing 0.2 to 20.0 parts by weight of a metal salt and 0.1 to 1.0 parts by weight of an antioxidant with respect to 100 parts by weight of a carboxylic acid graft ethylene-propylene rubber base material, wherein the metal salt is chloride, nitrate ( Nitrate) and hydroxide (hydroxide) is characterized in that it is used by mixing in a weight ratio of 1: 0.5 ~ 1.5: 0.8 ~ 1.2.

상기 본 발명에서 사용되는 카르복실산 그라프트 에틸렌-프로필렌 고무는, 에틸렌-프로필렌 고무 100 중량부에 대하여, 불포화 산 무수물(Unsaturated acid anhydride)에 비해 반응 안정성이 높은, 아래 (화학식 1)과 같은 불포화 카르복실산(Unsaturated carboxylic acid) 0.15~25 중량부와, 과산화물 0.01~0.3 중량부, 산화방지제 0.01~1.0 중량부를 첨가하여 카르복실산이 0.1~15.0% 그라프트 된 것을 사용한다.The carboxylic acid graft ethylene-propylene rubber used in the present invention has a high reaction stability compared to an unsaturated acid anhydride with respect to 100 parts by weight of ethylene-propylene rubber, and is unsaturated as shown in (Formula 1) below. 0.15 to 25 parts by weight of carboxylic acid, 0.01 to 0.3 parts by weight of peroxide, and 0.01 to 1.0 parts by weight of antioxidant are added to use grafted 0.1 to 15.0% carboxylic acid.

한편, 상기 불포화 카르복실 산의 함량이 0.15 중량부 미만에서는 그라프트율이 낮아 분자 간의 초분자 결합 구조를 형성하기 어려우며, 25 중량부를 초과할 경우에는 그라프트 반응이 지나치게 일어나 그라프트 합성고무의 가공성이 저하되는 현상이 나타난다. On the other hand, when the content of the unsaturated carboxylic acid is less than 0.15 parts by weight, the graft rate is low, so it is difficult to form a supramolecular bond structure between molecules, and when it exceeds 25 parts by weight, the graft reaction occurs excessively, and the processability of the graft synthetic rubber decreases. Symptoms appear.

또한, 상기 과산화물의 함량이 0.01 중량부 미만에서는 그라프트 반응의 개시가 잘 일어나지 않아 그라프트율이 낮아지는 결과를 나타내며, 0.3 중량부를 초과할 경우, 과산화물이 고무 분자와 라디칼 반응하여 겔화(Gelation)되는 현상을 나타낸다. In addition, when the content of the peroxide is less than 0.01 part by weight, the initiation of the graft reaction does not occur well, resulting in a low graft rate, and when it exceeds 0.3 parts by weight, the peroxide undergoes radical reaction with a rubber molecule to gel. Indicates.

아울러, 산화방지제를 투입하지 않을 경우, 과산화물에 의한 개시 반응 빠르게 유도하여 그라프트 반응을 진행할 수 있으나 과산화물 함량이 증가될 경우 겔화를 일으킬 수 있으므로 과산화물이 0.15 중량부 이상 사용될 경우에는 산화방지제를 투입하는 것이 바람직하며, 상기 산화방지제의 함량이 0.01 중량부 미만일 경우, 상기 기능을 구현하지 못할 우려가 있으며, 1.0 중량부를 초과할 경우에는 산화방지제가 과산화물의 개시반응을 저하시킬 우려가 있다. In addition, if the antioxidant is not added, the initiation reaction by the peroxide can be quickly induced to proceed with the grafting reaction, but if the peroxide content is increased, it may cause gelation. Therefore, when the peroxide is used in an amount of 0.15 parts by weight or more, the antioxidant is added. It is preferable, if the content of the antioxidant is less than 0.01 parts by weight, there is a fear that the function may not be implemented, and if it exceeds 1.0 parts by weight, there is a fear that the antioxidant lowers the initiation reaction of the peroxide.

(화학식 1)(Formula 1)

Figure 112019042067788-pat00001
Figure 112019042067788-pat00001

상기 화학식 1에서, In Chemical Formula 1,

R은 CH3-CH=CH-, HOOC-CH=CH-, HOOC=CH-, HOOC-CH2-CCH- 등의 이중결합을 포함한 탄화수소 유도체임.R is a hydrocarbon derivative containing a double bond such as CH 3 -CH=CH-, HOOC-CH=CH-, HOOC=CH-, HOOC-CH 2 -CCH-.

본 발명에서 사용되는 금속염은 상기 카르복실산 그라프트 에틸렌-프로필렌 고무의 기재가 초분자 열가역성 가교형 탄성체 조성물의 특성을 나타내도록 하기 위한 것으로, 상술한 바와 같이, 클로라이드(Chloride), 나이트레이트(Nitrate) 및 하이드록사이드(hydroxide)를 1 : 0.5 ~ 1.5 : 0.8 ~ 1.2의 중량비로 복합하여 사용한다.The metal salt used in the present invention is for the substrate of the carboxylic acid graft ethylene-propylene rubber to exhibit the properties of a supramolecular thermoreversible crosslinked elastomer composition, as described above, chloride, nitrate ) And hydroxide in a weight ratio of 1: 0.5 to 1.5: 0.8 to 1.2.

한편, 상기 금속염은 상기 카르복실산 그라프트 에틸렌-프로필렌 고무 기재 100 중량부에 대하여, 0.2 ~ 20.0 중량부를 사용하는데, 상기 금속염의 첨가량이 0.2 중량부 미만일 경우에는 카르복실산 그라프트 에틸렌-프로필렌 고무 기재에 이온 클러스터(Ioic cluster) 형성에 의한 영구압축변형률 저감을 기대하기 어려우며, 20 중량부를 초과할 경우에는 카르복실산 그라프트 에틸렌-프로필렌 고무 기재와의 과도한 금속 이온 반응으로 인해 반복 가공시 급격히 기계적 물성이 저하되는 현상을 나타낸다.Meanwhile, the metal salt is used in an amount of 0.2 to 20.0 parts by weight based on 100 parts by weight of the carboxylic acid graft ethylene-propylene rubber substrate. When the amount of the metal salt added is less than 0.2 parts by weight, carboxylic acid graft ethylene-propylene rubber It is difficult to expect a reduction in the permanent compression strain due to the formation of an ion cluster on the substrate, and when it exceeds 20 parts by weight, it is rapidly mechanical during repeated processing due to excessive metal ion reaction with the carboxylic acid graft ethylene-propylene rubber substrate. It shows a phenomenon in which the physical properties decrease.

아울러, 본 발명에서 초분자 열가역성 가교형 탄성체 조성물을 구성하기 위해 금속염 외에 산화방지제가 첨가되며, 본 발명에서 사용하는 산화방지제는 Pentaerythrityl-tetrakis[3-(3,5-di-t-butyl-4-hydroxy phenyl)-propionate], Octadecyl 3-(3,5-di-t-butyl-4-hydroxy phenyl)-propionate, 4,4'-Bis(alpha,alpha-dimethylbenzyl)di -phenylamine, polymerized 1,2-dihydro-2,2,4-trimethyl quinoline, 2,5-di-t-butyl-4-methylphenol, Hydroquinoline, N,N'-diphenyl-p-phenylenediamine, Tri(nonylatedphenyl)phosphite, 2-Mercaptobenziaidazole, N-Cyclohexy thiophthal ilnide로 이루어진 군에서 선택, 병용하여 사용할 수 있다.In addition, an antioxidant is added in addition to the metal salt to construct the supramolecular thermoreversible crosslinked elastomer composition in the present invention, and the antioxidant used in the present invention is Pentaerythrityl-tetrakis[3-(3,5-di-t-butyl-4). -hydroxy phenyl)-propionate], Octadecyl 3-(3,5-di-t-butyl-4-hydroxy phenyl)-propionate, 4,4'-Bis(alpha,alpha-dimethylbenzyl)di -phenylamine, polymerized 1, 2-dihydro-2,2,4-trimethyl quinoline, 2,5-di-t-butyl-4-methylphenol, Hydroquinoline, N,N'-diphenyl-p-phenylenediamine, Tri(nonylatedphenyl)phosphite, 2-Mercaptobenziaidazole, N-Cyclohexy thiophthal ilnide is selected from the group consisting of can be used in combination.

한편, 상기 산화방지제는 카르복실산 그라프트 에틸렌-프로필렌 고무 기재 100 중량부에 대하여, 0.1~1.0 중량부가 사용되는데, 산화방지제의 첨가량이 0.1 중량부 미만이 될 경우에는 가공 중 열화되는 경향을 나타낼 수 있으며, 1.0 중량부를 초과할 경우에는 제품에 블루밍이 발생하거나, 신장률이 증가하고 인장강도가 저하도리 우려가 있다.Meanwhile, the antioxidant is used in an amount of 0.1 to 1.0 part by weight based on 100 parts by weight of the carboxylic acid graft ethylene-propylene rubber substrate, and when the amount of the antioxidant added is less than 0.1 part by weight, it indicates a tendency to deteriorate during processing. If it exceeds 1.0 part by weight, blooming may occur in the product, elongation may increase, and tensile strength may decrease.

이하, 도 1을 참조하여 본 발명에 따른 아이오노머계 초분자 열가역성 가교형 탄성체 조성물을 이용한 동적가교형 열가소성 탄성체의 제조 방법을 설명하면 다음과 같다.Hereinafter, a method of manufacturing a dynamic crosslinkable thermoplastic elastomer using the ionomer-based supramolecular thermoreversible crosslinkable elastomer composition according to the present invention will be described with reference to FIG. 1.

본 발명은 아이오노머계 초분자 열가역성 가교형 탄성체 조성물을 이용한 동적가교형 열가소성 탄성체의 제조 방법에 있어서, 에틸렌-프로필렌 고무 기재 100 중량부에 대하여, 불포화 카르복실산 0.15 ~ 25 중량부, 과산화물 0.01 ~ 0.3 중량부, 산화방지제 0.1 ~ 1.0 중량부를 이축 압출기(Twin extruder)를 이용하여 100 ~ 200℃ 온도 조건에서 30 ~ 150 rpm의 속도로 3 ~ 15분간 압출하여 카르복실산이 0.1 ~ 15.0% 그라프트된 에틸렌-프로필렌 고무를 제조하는 제 1 혼합 단계(S1) 및, 상기 카르복실산 그라프트 에틸렌-프로필렌 고무 기재 100에 대하여, 금속염 0.2 ~ 20.0 중량부, 산화방지제 0.1 ~ 1.0 중량부를 반바리 믹서 또는 니이더를 이용하여 150 ~ 200℃의 온도에서 30 ~ 90 rpm의 속도로 3 ~ 20분간 혼합하는 제 2 혼합 단계(S2);를 포함하여 제조되되, 상기 금속염은, 클로라이드(Chloride), 나이트레이트(Nitrate) 및 하이드록사이드(hydroxide)를 1 : 0.5 ~ 1.5 : 0.8 ~ 1.2의 중량비로 혼합하여 사용하는 것을 특징으로 한다.The present invention is a method for producing a dynamic crosslinkable thermoplastic elastomer using an ionomer-based supramolecular thermoreversible crosslinkable elastomer composition, with respect to 100 parts by weight of an ethylene-propylene rubber substrate, 0.15 to 25 parts by weight of an unsaturated carboxylic acid, and 0.01 to peroxide. 0.3 parts by weight and 0.1 to 1.0 parts by weight of the antioxidant were extruded for 3 to 15 minutes at a speed of 30 to 150 rpm at a temperature of 100 to 200°C using a twin extruder, and carboxylic acids were grafted 0.1 to 15.0%. A first mixing step (S1) for producing ethylene-propylene rubber and 0.2 to 20.0 parts by weight of a metal salt and 0.1 to 1.0 parts by weight of an antioxidant with respect to the carboxylic acid graft ethylene-propylene rubber base 100, a half-bar mixer or knee It is prepared using a second mixing step (S2) for 3 to 20 minutes at a speed of 30 to 90 rpm at a temperature of 150 to 200°C using more; but, the metal salt is chloride (Chloride), nitrate ( Nitrate) and hydroxide (hydroxide) is characterized in that it is used by mixing in a weight ratio of 1: 0.5 ~ 1.5: 0.8 ~ 1.2.

본 발명에서 사용되는 상기 고무 기재 및 각종 첨가제에 관한 구체적인 조성비 등은 상기에서 이미 설명하였으므로 여기서는 생략한다.Specific composition ratios, etc. for the rubber substrate and various additives used in the present invention have already been described above, and thus are omitted here.

한편, 상기 제 1 혼합 단계(S1)에서 압출 조건이 상기 범위 미만일 경우, 과산화물의 개시반응이 활성화 되지 않아 그라프트 반응률이 저하되어 그라프트율이 0.1% 이하로 낮아지는 경향이 나타나며, 상기 범위를 초과할 경우, 기재 합성고무 및 불포화 카르복실 산(Unsaturated carboxylic acid)이 열화 및 겔화되는 현상이 나타나는 문제점이 있다.On the other hand, when the extrusion conditions in the first mixing step (S1) is less than the above range, the initiation reaction of the peroxide is not activated and thus the graft reaction rate is lowered, and a tendency for the graft rate to be lowered to 0.1% or less appears, exceeding the above range. In this case, there is a problem in that the base synthetic rubber and the unsaturated carboxylic acid are deteriorated and gelled.

아울러, 상기 제 2 혼합 단계(S2)에서 상기 혼합 조건이 상기 범위 미만일 경우, 금속염의 이온화가 잘 반응하지 않아 분자간 이온 클러스터 형성이 어려워 물성이 저하되는 현상을 나타내고, 상기 범위를 초과할 경우, 과반응되어 기재 고무 일부가 열화되거나 겔화되는 현상이 나타나는 문제점이 있다.In addition, in the second mixing step (S2), when the mixing condition is less than the above range, the ionization of the metal salt does not react well, and thus it is difficult to form an intermolecular ion cluster, resulting in deterioration in physical properties. There is a problem that a part of the base rubber is deteriorated or gelled.

한편, 상기와 같이 제조된 아이오노머계 초분자 열가역성 탄성체 조성물의 경우 기존의 고무 조성물과 비교하여 재활용이 가능하며 기존의 고무 사출기와 플라스틱 사출기에서 성형할 수 있게 된다.On the other hand, in the case of the ionomer-based supramolecular thermoreversible elastomer composition prepared as described above, it can be recycled as compared with the existing rubber composition and can be molded in an existing rubber injection machine and a plastic injection machine.

이하 본 발명을 [표 1]의 구성으로 제조한 실시예에 의거하여 더욱 상세히 설명하겠는바 본 발명이 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail based on examples prepared with the configuration of [Table 1], but the present invention is not limited by the examples.

1. 열가역성 탄성체 조성물의 제조1. Preparation of a thermoreversible elastic composition

(실시예 1)(Example 1)

에틸렌-프로필렌 고무 100 중량부에 불포화 카르복실산을 0.15 중량부, 과산화물과 산화방지제를 각각 0.01 중량부 혼합하여 180℃ 조건에서 압출 속도 100rpm으로 반응 압출하여 그라프트율 0.1%인 카르복실산 그라프트 에틸렌-프로필렌 고무를 제조하고, 상기 카르복실산 그라프트 에틸렌-프로필렌 고무 100 중량부에 대하여 금속염(클로라이드, 나이트레이트 및 하이드록사이드를 1 : 1 : 1의 중량비로 혼합) 0.5 중량부, 산화방지제 0.5 중량부를 혼입하여 180℃에서 10분간 니더를 이용하여 분산시킨 과정을 거쳐 초분자 열가역성 탄성체 조성물을 제조하였다. 100 parts by weight of ethylene-propylene rubber, 0.15 parts by weight of unsaturated carboxylic acid, and 0.01 parts by weight of peroxide and antioxidant, respectively, are reacted and extruded at 180°C at an extrusion rate of 100 rpm to obtain carboxylic acid graft ethylene with a graft rate of 0.1%. Prepared propylene rubber, 0.5 parts by weight of metal salt (mixing chloride, nitrate and hydroxide in a weight ratio of 1:1 to 1) by weight based on 100 parts by weight of the carboxylic acid graft ethylene-propylene rubber, 0.5 weight by antioxidant A supermolecular thermoreversible elastomer composition was prepared through a process in which parts were mixed and dispersed using a kneader at 180°C for 10 minutes.

(실시예 2)(Example 2)

에틸렌-프로필렌 고무 100 중량부에 불포화 카르복실산을 0.15 중량부, 과산화물과 산화방지제를 각각 0.01 중량부 혼합하여 180℃ 조건에서 압출 속도 100rpm으로 반응 압출하여 그라프트율 0.1%인 카르복실산 그라프트 에틸렌-프로필렌 고무를 제조하고, 상기 카르복실산 그라프트 에틸렌-프로필렌 고무 100 중량부에 대하여 금속염(클로라이드, 나이트레이트 및 하이드록사이드를 1 : 1 : 1의 중량비로 혼합) 15 중량부 및 산화방지제 0.5 중량부를 혼입하여 180℃에서 10분간 니더를 이용하여 분산시킨 과정을 거쳐 초분자 열가역성 탄성체 조성물을 제조하였다. 100 parts by weight of ethylene-propylene rubber, 0.15 parts by weight of unsaturated carboxylic acid, and 0.01 parts by weight of peroxide and antioxidant, respectively, are reacted and extruded at 180°C at an extrusion rate of 100 rpm to obtain carboxylic acid graft ethylene with a graft rate of 0.1%. A propylene rubber is prepared, and 15 parts by weight of a metal salt (mixed with chloride, nitrate and hydroxide in a weight ratio of 1:1 to 1) by weight based on 100 parts by weight of the carboxylic acid graft ethylene-propylene rubber and 0.5 parts by weight of an antioxidant A supermolecular thermoreversible elastomer composition was prepared through a process in which parts were mixed and dispersed using a kneader at 180°C for 10 minutes.

(실시예 3)(Example 3)

에틸렌-프로필렌 고무 100 중량부에 불포화 카르복실산 25.0 중량부, 과산화물과 산화방지제를 각각 0.3 중량부, 0.01 중량부 혼합하여 180℃ 조건에서 압출 속도 150rpm으로 반응 압출하여 그라프트율 15.0%인 카르복실산 그라프트 에틸렌-프로필렌 고무를 제조하고, 상기 카르복실산 그라프트 에틸렌-프로필렌 고무 100 중량부에 대하여 금속염(클로라이드, 나이트레이트 및 하이드록사이드를 1 : 1 : 1의 중량비로 혼합) 0.5 중량부, 산화방지제 0.5 중량부를 혼입하여 180℃에서 10분간 니더를 이용하여 분산시킨 과정을 거쳐 초분자 열가역성 탄성체 조성물을 제조하였다. 100 parts by weight of ethylene-propylene rubber, 25.0 parts by weight of unsaturated carboxylic acid, 0.3 parts by weight of peroxide and antioxidant, and 0.01 parts by weight, respectively, and reacted and extruded at 180°C at an extrusion rate of 150 rpm to obtain a carboxylic acid graph having a graft ratio of 15.0%. Preparation of ethylene-propylene rubber, 0.5 parts by weight of metal salt (mixing chloride, nitrate and hydroxide in a weight ratio of 1:1 to 1) with respect to 100 parts by weight of the carboxylic acid graft ethylene-propylene rubber, oxidation A supermolecular thermoreversible elastomer composition was prepared by mixing 0.5 parts by weight of an inhibitor and dispersing it using a kneader at 180°C for 10 minutes.

(실시예 4)(Example 4)

에틸렌-프로필렌 고무 100 중량부에 불포화 카르복실산 25.0 중량부, 과산화물과 산화방지제를 각각 0.3 중량부, 0.01 중량부 혼합하여 180℃ 조건에서 압출 속도 150rpm으로 반응 압출하여 그라프트율 15.0%인 카르복실산 그라프트 에틸렌-프로필렌 고무를 제조하고, 상기 카르복실산 그라프트 에틸렌-프로필렌 고무 100 중량부에 대하여 금속염(클로라이드, 나이트레이트 및 하이드록사이드를 1 : 0.5 : 0.8의 중량비로 혼합) 15.0 중량부, 산화방지제 0.5 중량부를 혼입하여 180℃에서 10분간 니더를 이용하여 분산시킨 과정을 거쳐 초분자 열가역성 탄성체 조성물을 제조하였다. 100 parts by weight of ethylene-propylene rubber, 25.0 parts by weight of unsaturated carboxylic acid, 0.3 parts by weight of peroxide and antioxidant, and 0.01 parts by weight, respectively, and reacted and extruded at 180°C at an extrusion rate of 150 rpm to obtain a carboxylic acid graph having a graft ratio of 15.0%. Ethylene-propylene rubber, 15.0 parts by weight of a metal salt (mixing chloride, nitrate and hydroxide in a weight ratio of 1:0.5:0.8) to 1 part by weight of carboxylic acid graft ethylene-propylene rubber, oxidation A supermolecular thermoreversible elastomer composition was prepared by mixing 0.5 parts by weight of an inhibitor and dispersing it using a kneader at 180°C for 10 minutes.

(실시예 5)(Example 5)

에틸렌-프로필렌 고무 100 중량부에 불포화 카르복실산 25.0 중량부, 과산화물과 산화방지제를 각각 0.3 중량부, 0.01 중량부 혼합하여 180℃ 조건에서 압출 속도 150rpm으로 반응 압출하여 그라프트율 15.0%인 카르복실산 그라프트 에틸렌-프로필렌 고무를 제조하고, 상기 카르복실산 그라프트 에틸렌-프로필렌 고무 100 중량부에 대하여, 금속염(클로라이드, 나이트레이트 및 하이드록사이드를 1 : 1.5 : 1.2의 중량비로 혼합) 15.0 중량부, 유기산 금속염 5.0 중량부, 산화방지제 0.5 중량부를 혼입하여 180℃에서 10분간 니더를 이용하여 분산시킨 과정을 거쳐 초분자 열가역성 탄성체 조성물을 제조하였다. 100 parts by weight of ethylene-propylene rubber, 25.0 parts by weight of unsaturated carboxylic acid, 0.3 parts by weight of peroxide and antioxidant, and 0.01 parts by weight, respectively, and reacted and extruded at 180°C at an extrusion rate of 150 rpm to obtain a carboxylic acid graph having a graft ratio of 15.0%. Preparation of ethylene-propylene rubber, 15.0 parts by weight of metal salt (chloride, nitrate and hydroxide in a weight ratio of 1: 1.5: 1.2) with respect to 100 parts by weight of the carboxylic acid graft ethylene-propylene rubber, A supermolecular thermoreversible elastomer composition was prepared by mixing 5.0 parts by weight of an organic acid metal salt and 0.5 parts by weight of an antioxidant and dispersing it using a kneader at 180°C for 10 minutes.

(비교예 1)(Comparative Example 1)

에틸렌-프로필렌 고무 100 중량부에 대하여 지방산 금속염 5.0 중량부, 산화방지제 0.5 중량부를 혼입하여 180℃에서 10분간 니더를 이용하여 분산시킨 과정을 거쳐 열가역성 탄성체 조성물을 제조하였다.A thermally reversible elastomer composition was prepared by mixing 5.0 parts by weight of a fatty acid metal salt and 0.5 parts by weight of an antioxidant with respect to 100 parts by weight of ethylene-propylene rubber and dispersing it using a kneader at 180°C for 10 minutes.

(비교예 2)(Comparative Example 2)

에틸렌-프로필렌 고무 100 중량부에 대하여, 산화아연 5.0 중량부, 스테아린산 1.0 중량부, 산화방지제 0.5 중량부 및 황 1.0 중량부, 가황촉진제 2.5 중량부를 혼입하여 분산시킨 후 프레스 과정을 거쳐 가교된 탄성체 조성물을 제조하였다.With respect to 100 parts by weight of ethylene-propylene rubber, 5.0 parts by weight of zinc oxide, 1.0 parts by weight of stearic acid, 0.5 parts by weight of antioxidant and 1.0 parts by weight of sulfur, and 2.5 parts by weight of vulcanization accelerator are mixed and dispersed, followed by crosslinking through an pressing process. Was prepared.

(비교예 3)(Comparative Example 3)

그라프트율이 1.0%인 말레익 안하이드라이드 그라프트 에틸렌-프로필렌 고무 100 중량부에 대하여, 지방산 금속염 0.5 중량부, 산화방지제 0.5 중량부를 혼입하여 180℃에서 10분간 니더를 이용하여 분산시킨 과정을 거쳐 초분자 열가역성 고무 조성물을 제조하였다. 100 parts by weight of maleic anhydride graft ethylene-propylene rubber having a graft ratio of 1.0%, 0.5 parts by weight of a fatty acid metal salt and 0.5 parts by weight of an antioxidant were mixed and dispersed using a kneader at 180° C. for 10 minutes to conduct supramolecules. A thermoreversible rubber composition was prepared.

(비교예 4)(Comparative Example 4)

그라프트율이 1.0%인 말레익 안하이드라이드 그라프트 에틸렌-프로필렌 고무 100 중량부에 대하여, 지방산 금속염 15.0 중량부, 산화방지제 0.5 중량부를 혼입하여 180℃에서 10분간 니더를 이용하여 분산시킨 과정을 거쳐 초분자 열가역성 고무 조성물을 제조하였다. 100 parts by weight of maleic anhydride graft ethylene-propylene rubber having a graft ratio of 1.0%, 15.0 parts by weight of a fatty acid metal salt and 0.5 parts by weight of an antioxidant were mixed and dispersed using a kneader at 180° C. for 10 minutes, followed by supramolecular molecules A thermoreversible rubber composition was prepared.

(비교예 5)(Comparative Example 5)

열가소성 가황고무인 L2K70N(TPV) 100 중량부에 대하여, 산화방지제 0.5 중량부를 혼입하여 180℃에서 10분간 니더를 이용하여 분산시킨 후 탄성체 조성물을 제조하였다.With respect to 100 parts by weight of the thermoplastic vulcanized rubber L2K70N (TPV), 0.5 parts by weight of an antioxidant was mixed and dispersed using a kneader at 180°C for 10 minutes to prepare an elastic composition.

2. 열가역성 탄성체 조성물의 평가2. Evaluation of the thermoreversible elastic composition

상기 실시예 1 ~ 5 및 비교예 1 ~ 5에 의해 제조된 탄성체 조성물은 다음과 같은 방법으로 특성 시험하여 조성물의 기계적 물성을 평가하였으며 그 결과를 아래 [표 1]에 나타내었다.The elastic composition prepared in Examples 1 to 5 and Comparative Examples 1 to 5 was tested for properties in the following manner to evaluate the mechanical properties of the composition, and the results are shown in [Table 1] below.

1) 반복 가공에 따른 재사용(Recycling) 특성: 반응 압출 및 혼련 가공을 거쳐 제작된 초기 시험편을 150℃ 온도로 5~10분간 니더(Kneader)로 재가공하여 2 내지 5회 재가공시 시험편의 인장강도를 측정하여 물성 저하율을 측정하였다.1) Recycling characteristics following repetitive processing: The initial test piece produced through reaction extrusion and kneading is reworked with a kneader at a temperature of 150°C for 5 to 10 minutes to increase the tensile strength of the test piece for 2 to 5 times. By measuring, the rate of decrease in physical properties was measured.

2) 영구압축변형률: 인열시험은 KS M6518에 따라 측정을 하였으며, 측정조건은 70℃에서 22시간동안 25% 압축하였으며 이러한 조건에서의 영구압축변형률을 측정하였다. 2) Permanent compression strain: The tear test was measured according to KS M6518, and the measurement conditions were 25% compressed at 70°C for 22 hours, and the permanent compression strain was measured under these conditions.


구분

division
실시예Example 비교예Comparative example
1One 22 33 44 55 1One 22 33 44 55 재사용 특성
(%)
Reusable properties
(%)
2회Episode 2 55 66 77 88 99 3030 ** 1010 1414 1515
3회3rd time 77 77 99 1010 1414 4040 ** 1515 1515 2020 4회Episode 4 1010 1111 1111 1111 1616 5050 ** 2020 2929 2323 5회Episode 5 1212 1313 1212 1212 1717 5555 ** 2727 3333 3030 영구압축
변형률(%)
Permanent compression
Strain (%)

42

42

42

42

40

40

40

40

36

36

98

98

30

30

78

78

71

71

86

86

* 재가공 불가능

* Reprocessing impossible

상기 [표 1]에서와 같이, 본 발명에 따른 실시예 1 ~ 5는 비교예 1 ~ 5에 비하여 전반적으로 낮은 영구압축변형률을 가질 뿐만 아니라 재가공에 따른 재활용성이 우수함을 확인할 수 있다.As shown in [Table 1], Examples 1 to 5 according to the present invention, as well as having a low permanent compression set as a whole compared to Comparative Examples 1 to 5, it can be seen that excellent recyclability due to rework.

상술한 바와 같은, 본 발명의 바람직한 실시예에 따른 영구압축변형률이 우수한 아이오노머계 초분자 열가역성 가교형 탄성체 조성물 및 이를 이용한 동적가교형 열가소성 탄성체의 제조 방법을 상기한 설명 및 도면에 따라 설명하였지만 이는 예를 들어 설명한 것에 불과하며 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 변화 및 변경이 가능하다는 것을 이 분야의 통상적인 기술자들은 잘 이해할 수 있을 것이다.As described above, the ionomer-based supramolecular thermoreversible crosslinkable elastomer composition having an excellent permanent compression set according to a preferred embodiment of the present invention and a method for manufacturing a dynamic crosslinkable thermoplastic elastomer using the same were described according to the above description and drawings. For example, it is only described, and those skilled in the art will understand that various changes and modifications are possible without departing from the technical spirit of the present invention.

S1 : 제 1 혼합 단계
S2 : 제 2 혼합 단계
S1: first mixing step
S2: second mixing step

Claims (3)

아이오노머계 초분자 열가역성 가교형 탄성체 조성물에 있어서,
카르복실산 그라프트 에틸렌-프로필렌 고무 기재 100 중량부에 대하여, 금속염 0.2 ~ 20.0 중량부 및 산화방지제 0.1 ~ 1.0 중량부를 혼입하여 이루어지되,
상기 금속염은, 클로라이드(Chloride), 나이트레이트(Nitrate) 및 하이드록사이드(hydroxide)를 1 : 0.5 ~ 1.5 : 0.8 ~ 1.2의 중량비로 혼합하여 사용하고,
상기 카르복실산 그라프트 에틸렌-프로필렌 고무는 에틸렌-프로필렌 고무 100 중량부에 대하여, 아래 (화학식 1)과 같은 불포화 카르복실산 0.15 ~ 25 중량부, 과산화물 0.01 ~ 0.3 중량부, 산화방지제 0.01 ~ 1.0 중량부를 첨가하여 카르복실산이 0.1 ~ 15.0% 그라프트된 것을 특징으로 하는, 영구압축변형률이 우수한 아이오노머계 초분자 열가역성 가교형 탄성체 조성물.

(화학식 1)
Figure 112020034027642-pat00003

상기 화학식 1에서,
R은 CH3-CH=CH-, HOOC-CH=CH-, HOOC=CH-, HOOC-CH2-CCH- 을 포함한 탄화수소 유도체임.
In the ionomer-based supramolecular thermoreversible crosslinked elastomer composition,
It is made by mixing 0.2 to 20.0 parts by weight of a metal salt and 0.1 to 1.0 parts by weight of an antioxidant with respect to 100 parts by weight of the carboxylic acid graft ethylene-propylene rubber substrate,
The metal salt is used by mixing chloride (Chloride), nitrate (Nitrate) and hydroxide (hydroxide) in a weight ratio of 1: 0.5 ~ 1.5: 0.8 ~ 1.2,
The carboxylic acid graft ethylene-propylene rubber is, based on 100 parts by weight of ethylene-propylene rubber, 0.15 to 25 parts by weight of unsaturated carboxylic acid as shown in the following (Formula 1), 0.01 to 0.3 parts by weight of peroxide, and 0.01 to 1.0 of antioxidant. Ionomer-based supramolecular thermoreversible crosslinked elastomer composition excellent in permanent compression set, characterized in that the carboxylic acid is grafted by 0.1 to 15.0% by adding parts by weight.

(Formula 1)
Figure 112020034027642-pat00003

In Chemical Formula 1,
R is a hydrocarbon derivative including CH 3 -CH=CH-, HOOC-CH=CH-, HOOC=CH-, HOOC-CH 2 -CCH-.
삭제delete 아이오노머계 초분자 열가역성 가교형 탄성체 조성물을 이용한 동적가교형 열가소성 탄성체의 제조 방법에 있어서,
에틸렌-프로필렌 고무 기재 100 중량부에 대하여, 아래 (화학식 1)과 같은 불포화 카르복실산 0.15 ~ 25 중량부, 과산화물 0.01 ~ 0.3 중량부, 산화방지제 0.1 ~ 1.0 중량부를 이축 압출기(Twin extruder)를 이용하여 100 ~ 200℃ 온도 조건에서 30 ~ 150 rpm의 속도로 3 ~ 15분간 압출하여 카르복실산이 0.1 ~ 15.0% 그라프트된 에틸렌-프로필렌 고무를 제조하는 제 1 혼합 단계(S1); 및
상기 카르복실산 그라프트 에틸렌-프로필렌 고무 기재 100에 대하여, 금속염 0.2 ~ 20.0 중량부, 산화방지제 0.1 ~ 1.0 중량부를 반바리 믹서 또는 니이더를 이용하여 150 ~ 200℃의 온도에서 30 ~ 90 rpm의 속도로 3 ~ 20분간 혼합하는 제 2 혼합 단계(S2);를 포함하여 제조되되,
상기 금속염은, 클로라이드(Chloride), 나이트레이트(Nitrate) 및 하이드록사이드(hydroxide)를 1 : 0.5 ~ 1.5 : 0.8 ~ 1.2의 중량비로 혼합하여 사용하는 것을 특징으로 하는, 영구압축변형률이 우수한 아이오노머계 초분자 열가역성 가교형 탄성체 조성물을 이용한 동적가교형 열가소성 탄성체의 제조방법.

(화학식 1)
Figure 112020034027642-pat00004

상기 화학식 1에서,
R은 CH3-CH=CH-, HOOC-CH=CH-, HOOC=CH-, HOOC-CH2-CCH- 을 포함한 탄화수소 유도체임.
In the method of manufacturing a dynamic crosslinking thermoplastic elastomer using an ionomer-based supramolecular thermoreversible crosslinked elastomer composition,
With respect to 100 parts by weight of the ethylene-propylene rubber substrate, 0.15 to 25 parts by weight of unsaturated carboxylic acid as shown in (Formula 1), 0.01 to 0.3 parts by weight of peroxide, and 0.1 to 1.0 parts by weight of antioxidant are used as twin extruders. A first mixing step (S1) of extruding at a temperature of 100 to 200° C. for 3 to 15 minutes at a speed of 30 to 150 rpm to prepare ethylene-propylene rubber with 0.1 to 15.0% carboxylic acid grafted; And
With respect to the carboxylic acid graft ethylene-propylene rubber base 100, 0.2 to 20.0 parts by weight of a metal salt and 0.1 to 1.0 parts by weight of an antioxidant of 30 to 90 rpm at a temperature of 150 to 200°C using a Banbari mixer or a kneader The second mixing step (S2) for mixing for 3 to 20 minutes at a speed;
The metal salt, chloride (Chloride), nitrate (Nitrate) and hydroxide (hydroxide) is characterized in that it is used by mixing in a weight ratio of 1: 0.5 ~ 1.5: 0.8 ~ 1.2, an ionomer having excellent permanent compression set Method for manufacturing a dynamic crosslinkable thermoplastic elastomer using a supramolecular thermoreversible crosslinkable elastomer composition.

(Formula 1)
Figure 112020034027642-pat00004

In Chemical Formula 1,
R is a hydrocarbon derivative including CH 3 -CH=CH-, HOOC-CH=CH-, HOOC=CH-, HOOC-CH 2 -CCH-.
KR1020190047654A 2019-04-24 2019-04-24 Ionomer supramolecular network thermo-reversible crosslinked elastomer having high mechanical properties and low compression set and Producing method of dynamic crosslinked thermoplastic elastomer using the same KR102142118B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190047654A KR102142118B1 (en) 2019-04-24 2019-04-24 Ionomer supramolecular network thermo-reversible crosslinked elastomer having high mechanical properties and low compression set and Producing method of dynamic crosslinked thermoplastic elastomer using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190047654A KR102142118B1 (en) 2019-04-24 2019-04-24 Ionomer supramolecular network thermo-reversible crosslinked elastomer having high mechanical properties and low compression set and Producing method of dynamic crosslinked thermoplastic elastomer using the same

Publications (1)

Publication Number Publication Date
KR102142118B1 true KR102142118B1 (en) 2020-08-06

Family

ID=72040350

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190047654A KR102142118B1 (en) 2019-04-24 2019-04-24 Ionomer supramolecular network thermo-reversible crosslinked elastomer having high mechanical properties and low compression set and Producing method of dynamic crosslinked thermoplastic elastomer using the same

Country Status (1)

Country Link
KR (1) KR102142118B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220147999A (en) 2021-04-28 2022-11-04 주식회사 영폴리머 Matte coating composition with excellent abrasion resistance and slip properties for automotive weather strips, and the manufacture method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970027193A (en) 1995-11-13 1997-06-24 칼루자 마이클 이. Thermoplastic Vulcanized Rubber Obtained from EPDM or Conjugated Diene Rubber and Isobutylene Rubber
KR20020033732A (en) 1999-07-16 2002-05-07 마이클 이. 카루짜 Thermoplastic vulcanizate with defined morphology for optimum elastic recovery
KR100889620B1 (en) * 2008-09-17 2009-03-20 주식회사 폴리사이언텍 Polypropylene-ionomer alloy by reactive extrusion and a method of manufacturing the same
KR20110067361A (en) 2009-12-14 2011-06-22 이창성 Thermo-reversible crosslinked elastomer and method producing thereof
KR20110109302A (en) * 2010-03-31 2011-10-06 대원케미칼주식회사 Polyolefin complex material composition
KR20120115035A (en) * 2011-04-08 2012-10-17 한국신발피혁연구소 Supramolecular network thermo-reversible crosslinked elastomer having high mechanical properties and low compression set and method producing thereof
KR20170046897A (en) * 2015-10-22 2017-05-04 한국신발피혁연구원 Supramolecular network thermo-reversible crosslinked elastomer having high mechanical properties and low compression set and Method producing thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970027193A (en) 1995-11-13 1997-06-24 칼루자 마이클 이. Thermoplastic Vulcanized Rubber Obtained from EPDM or Conjugated Diene Rubber and Isobutylene Rubber
KR20020033732A (en) 1999-07-16 2002-05-07 마이클 이. 카루짜 Thermoplastic vulcanizate with defined morphology for optimum elastic recovery
KR100889620B1 (en) * 2008-09-17 2009-03-20 주식회사 폴리사이언텍 Polypropylene-ionomer alloy by reactive extrusion and a method of manufacturing the same
KR20110067361A (en) 2009-12-14 2011-06-22 이창성 Thermo-reversible crosslinked elastomer and method producing thereof
KR20110109302A (en) * 2010-03-31 2011-10-06 대원케미칼주식회사 Polyolefin complex material composition
KR20120115035A (en) * 2011-04-08 2012-10-17 한국신발피혁연구소 Supramolecular network thermo-reversible crosslinked elastomer having high mechanical properties and low compression set and method producing thereof
KR20170046897A (en) * 2015-10-22 2017-05-04 한국신발피혁연구원 Supramolecular network thermo-reversible crosslinked elastomer having high mechanical properties and low compression set and Method producing thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
특허문헌 3 : 미국 등록특허공보 제6,746,562호 "METHODS OF MAKING AND RECYCLING RUBBER BODIES BONDED WITH A THERMO-REVERSIBLE, CROSSLINKABLE ELASTOMER"
특허문헌 4 : 미국 등록특허공보 제6,900,268호 "METHODS OF GRAFTING ETHYLENICALLY UNSATURATED CARBOXYLIC ACID DERIVATIVES ONTO THERMOPLASTIC USING HYDROXYLAMINE ESTERS"

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220147999A (en) 2021-04-28 2022-11-04 주식회사 영폴리머 Matte coating composition with excellent abrasion resistance and slip properties for automotive weather strips, and the manufacture method thereof
KR102492819B1 (en) 2021-04-28 2023-01-27 (주)영폴리머 Matte coating composition with excellent abrasion resistance and slip properties for automotive weather strips, and the manufacture method thereof

Similar Documents

Publication Publication Date Title
KR101270545B1 (en) Supramolecular network thermo-reversible crosslinked elastomer having high mechanical properties and low compression set and Method producing thereof
KR101155869B1 (en) Thermo-reversible Crosslinked elastomer and Method producing thereof
EP2810986B1 (en) Thermoplastic elastomer compound and its use
JP2658222B2 (en) Thermoplastic elastomer composition and method for producing the same
KR102142118B1 (en) Ionomer supramolecular network thermo-reversible crosslinked elastomer having high mechanical properties and low compression set and Producing method of dynamic crosslinked thermoplastic elastomer using the same
CN102304252B (en) Thermoplastic polyolefin elastomer, and preparation method and application thereof
JP5830611B2 (en) Silane crosslinkable ethylene-propylene copolymer and cross-linked product thereof
KR101946945B1 (en) Polypropylene compounds for an electric power cable
CN107541004B (en) Load-resistant and fatigue-resistant TPE (thermoplastic elastomer) and preparation method thereof
KR102249833B1 (en) Tpv composition for weather strip joint having low compression set and manufacturing method for thereof
KR101833087B1 (en) Acetylene black semiconducting shield material with improved processing
KR20170046897A (en) Supramolecular network thermo-reversible crosslinked elastomer having high mechanical properties and low compression set and Method producing thereof
KR101302570B1 (en) Supramolecular network thermo-reversible crosslinked elastomer having high mechanical properties and low compression set and Method producing thereof
KR101296679B1 (en) Supramolecular network thermo-reversible crosslinked elastomer having high mechanical properties and low compression set and Method producing thereof
KR101527563B1 (en) Supramolecular network thermo-reversible crosslinked elastomer having heat-resistant, chemical-resistance, high mechanical properties
KR102150247B1 (en) Rubber composition of fuel cell cooling hose and cooling hose using the same
KR101397138B1 (en) Thermoplastic elastomer enhanced abrasion resistance and marking preventing function
US10696835B2 (en) Polymer composition for insulation layer of power cable, insulation layer including the same and power cable including the same
KR20200065558A (en) Thermoplastic elastomer composition for air intake hose, and air intake hose for vehicles
KR101426939B1 (en) Supramolecular network thermo-reversible crosslinked elastomer having high mechanical properties, low compression set and flame-retardant and Method producing thereof
JPH07330991A (en) Crosslinked rubber composition and molded its product
JP7443439B2 (en) Soft polyolefin resin composition for power cables with excellent insulation properties and molded products made from the same
KR101442130B1 (en) thermo-reversible crosslinked elastomer through ionic interaction having high mechanical properties and low compression set and Method producing thereof
KR20180017684A (en) Supramolecular network thermo-reversible crosslinked elastomer having high mechanical properties and low compression set and Method producing thereof
CN114437427B (en) Thermoplastic vulcanized rubber composition, thermoplastic vulcanized rubber, and preparation method and application thereof

Legal Events

Date Code Title Description
GRNT Written decision to grant