KR102132795B1 - 고성능 슈퍼커패시터 전극소재용 활성탄/이산화망간 복합체 - Google Patents

고성능 슈퍼커패시터 전극소재용 활성탄/이산화망간 복합체 Download PDF

Info

Publication number
KR102132795B1
KR102132795B1 KR1020180135820A KR20180135820A KR102132795B1 KR 102132795 B1 KR102132795 B1 KR 102132795B1 KR 1020180135820 A KR1020180135820 A KR 1020180135820A KR 20180135820 A KR20180135820 A KR 20180135820A KR 102132795 B1 KR102132795 B1 KR 102132795B1
Authority
KR
South Korea
Prior art keywords
activated carbon
manganese dioxide
electrode material
high performance
dioxide composite
Prior art date
Application number
KR1020180135820A
Other languages
English (en)
Other versions
KR20200052633A (ko
Inventor
박수진
이지원
Original Assignee
인하대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인하대학교 산학협력단 filed Critical 인하대학교 산학협력단
Priority to KR1020180135820A priority Critical patent/KR102132795B1/ko
Publication of KR20200052633A publication Critical patent/KR20200052633A/ko
Application granted granted Critical
Publication of KR102132795B1 publication Critical patent/KR102132795B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

본 발명은 고성능 슈퍼커패시터 전극소재용 활성탄/이산화망간 복합체 제조방법에 관한 것으로서, 1) 활성탄을 탄화하여 준비하는 단계 및 2) 탄화한 활성탄과 이산화망간을 1:0.1 내지 1:5 질량비로 합성하여 복합체를 제조하는 단계를 포함한다.
상기와 같은 본 발명에 따르면, 고성능 슈퍼커패시터 전극소재용 활성탄/이산화망간 복합체 제조방법을 제공함으로써, 우수한 용량 및 안정성을 갖는 슈퍼커패시터용 전극소재로 유용하게 이용할 수 있는 효과가 있으며, 본 발명에 따라 제조된 고성능 슈퍼커패시터 전극소재용 활성탄/이산화망간 복합체가 적용된 전극은 잦은 충·방전에도 우수한 비축전용량을 나타내는 효과가 있다.

Description

고성능 슈퍼커패시터 전극소재용 활성탄/이산화망간 복합체{ACTIVATED CARBON / MANGANESE DIOXIDE COMPLEX FOR HIGH PERFORMANCE SUPER CAPACITOR ELECTRODE MATERIAL}
본 발명은 슈퍼커패시턴 전극소재에 관한 것으로서, 더욱 상세하게는 활성탄에 이산화망간은 도입하여 제조한 슈퍼커패시터 전극소재에 관한 것이다.
최근 신재생 에너지 저장 시스템의 안정성 및 성능 향상에 관한 연구개발이 중요해지고 있다. 태양, 풍력, 수력 전기와 같은 재생가능 에너지원을 효과적으로 활용하려면 출력 변동을 완하하기 위해 유연하고 확장 가능한 에너지 저장 솔루션이 필요하다. 전기 에너지의 저장에 대한 관심이 커지면서 높은 충전율과 방전율을 가지는 슈퍼커패시터에 집중이 커지고 있다.
이러한 슈퍼커패시터는 전기이중층커패시터 (electric double-layer capacitors, EDLC5)와 의사커패시터(pseudocapacitor)로 분류할 수 있다. 전기이중층 커패시터는 저렴한 비용과 양호한 열적 및 화학적 환경 안정성을 가지며 탄소 재료의 전기적 특성에 기초하여 전극재료로서 이용되나, 에너지 밀도가 낮은 단점을 가지고 있다. 의사커패시터는 가역적 산화 환원 반응에 사용되는 전극물질로는 전도성 금속산화물 또는 전도성 고분자등을 사용한다. 전기이중층커패시터가 가지는 단점을 개선하기 위해 전도성 금속산화물 또는 전도성 고분자를 이용한 연구가 활발히 이루어지고 있다.
이에 본 발명은 고성능 슈퍼커패시터를 목적으로 하는 전극소재 개발을 위해 우수한 전도성과 기공구조를 가지며 고효율 에너지 저장이 우수하고, 특히 반복적인 충·방전에서 안정적인 효율을 가지는 것을 특징으로 하는 고성능 슈퍼커패시터 전극소재의 제조방법을 제시하였다
등록특허 10-1561961 “전고체상 박막형 수퍼커패시터 및 그 제조 방법“
본 발명의 목적은, 용광로(furnace)를 이용하여 탄화시켜 제조한 활성탄과 이산화망간을 적절한 비율로 합성하여 복합체를 제조함으로써, 잦은 충·방전에도 우수한 비축전용량을 나타내는 고성능 슈퍼커패시터 전극소재용 활성탄/이산화망간 복합체 제조방법을 제공함에 있다.
상기 목적을 달성하기 위하여, 본 발명은 1) 활성탄을 탄화하여 준비하는 단계 및 2) 탄화한 활성탄과 이산화망간을 1:0.1 내지 1:5 질량비로 용매에 혼합하여 복합체를 제조하는 단계를 포함하는 고성능 슈퍼커패시터 전극소재용 활성탄/이산화망간 복합체 제조방법을 제공한다.
상기와 같은 본 발명에 따르면, 고성능 슈퍼커패시터 전극소재용 활성탄/이산화망간 복합체 제조방법을 제공함으로써, 우수한 용량 및 안정성을 갖는 슈퍼커패시터용 전극소재로 유용하게 이용할 수 있는 효과가 있으며, 본 발명에 따라 제조된 고성능 슈퍼커패시터 전극소재용 활성탄/이산화망간 복합체가 적용된 전극은 잦은 충·방전에도 우수한 비축전용량을 나타내는 효과가 있다.
도 1은 실시예2, 실시예5 및 실시예6에 따라 제조된 고성능 슈퍼커패시터 전극소재용 활성탄/ 이산화망간 복합체의 SEM 이미지와 EDS-mapping 이미지를 도시하였다.
도 2는 실시예5에 따라 제조된 슈퍼커패시터 전극소재용 활성탄/ 이산화망간 복합체의 Cyclic Voltammetry 곡선이다.
도 3는 실시예5에 따라 제조된 고성능 슈퍼커패시터 전극소재용 활성탄/ 이산화망간 복합체의 2000 사이클의 충·방전 데이터이다.
도 4는 실시예2 및 실시예5에 따라 제조된 고성능 슈퍼커패시터 전극소재용 활성탄/ 이산화망간 복합체의 N2 흡착 / 탈착 등온선 데이터이다.
이하, 본 발명을 상세히 설명한다.
본 발명의 일 형태에 따라 고성능 슈퍼커패시터 전극소재용 활성탄/이산화망간 복합체 제조방법 제공하며, 1) 활성탄을 탄화하여 준비하는 단계 및 2) 탄화한 활성탄과 이산화망간을 1:0.1 내지 1:5 질량비로 용매에 혼합하여 복합체를 제조하는 단계를 포함한다.
고성능 슈퍼커패시터 전극소재용 활성탄/이산화망간 복합체 제조방법 있어서 상기 복합체를 세척 및 건조하는 단계를 더 포함할 수 있다.
상기 1)단계 탄화하여 준비하는 단계는 500 내지 900 ℃ 용광로(furnace)에서 활성탄을 탄화하여 제조할 수 있으며, 바람직하게는 700 내지 900℃에서 제조할 수 있다.
상기 용광로(furnace)는 3 내지 5 ℃/분으로 승온시키는 것을 특징으로 할수 있다.
상기 용매는 증류수 또는 유기용매를 사용하여 합성할 수 있다.
상기 용매는 활성탄과 이산화망간 대비 용매를 1 : 50 내지 1: 400 질량비로 사용할 수 있다.
상기 2)단계의 활성탄과 이산화망간의 합성은 30 분 내지 24시간 동안 합성할 수 있으며, 보다 바람직하게는 6 내지 24시간 동안 합성 할 수 있다.
상기 활성탄/이산화망간 복합체는 비표면적 1000 내지 1800 m2/g 일 수 있다.
상기 세척은 에탄올 또는 증류수로 세척할 수 있으며, 아스피레이터를 이용하여 증류수와 에탄올을 번갈아 가면서 세척할 수 있고, 세척 횟수는 5 내지 30회 세척할 수 있다.
상기 건조는 진공오븐에서 0 내지 80℃에서 건조할 수 있으며, 건조 시간은 6 내지 24시간 동안 건조할 수 있다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
실시예 1.
활성탄을 용광로(furnace)를 이용하여 3℃/분으로 승온시켜 500℃에서 30분 탄화한다. 탄화한 활성탄과 이산화망간을 1 : 0.1 질량비로 혼합 후 증류수에서 교반하여 합성한다. 상기 두 과정을 통해 합성된 복합체를 아스피레이터를 이용하여 증류수와 에탄올을 번갈아 가면서 세척하고, 세척 횟수는 5 내지 30회 수행하였다. 이후 0 내지 80℃의 진공오븐에서 6 내지 24시간 동안 건조하여 활성탄/이산화망간 복합체를 제조한다.
실시예 2.
상기 실시예 1과 동일하게 과정을 수행하되, 45분 탄화한다.
실시예 3.
상기 실시예 2와 동일하게 과정을 수행하되, 700℃에서 탄화하며 활성탄/이산화망간을 1:0.25의 질량비로 합성한다.
실시예 4.
상기 실시예 3와 동일하게 과정을 수행하되, 4℃/분으로 승온시켜 60분 탄화하며 활성탄과 이산화망간을 1: 0.5의 질량비로 합성한다.
실시예 5.
상기 실시예 3과 동일하게 과정을 수행하되, 800℃에서 탄화하며 활성탄과 이산화망간을 1:1의 질량비로 합성한다.
실시예 6.
상기 실시예 5와 동일하게 과정을 수행하되, 90분 동안 탄화하며 활성탄과 이산화망간을 1:2의 질량비로 합성한다.
실시예 7.
상기 실시예 6과 동일하게 과정을 수행하되, 5℃/분으로 승온시켜 900℃에서 탄화하며 활성탄과 이산화망간을 1:3의 질량비로 합성한다.
실시예 8.
상기 실시예 7과 동일하게 과정을 수행하되, 120분 탄화하며 활성탄과 이산화망간을 1:4의 질량비로 합성한다.
비교예 9.
상기 실시예 5와 동일하게 과정을 실시하되, 이산화망간과의 합성없이 활성탄만 제조한다.
상기 실시예 1 내지 8과 비교예 1의 제조조건을 하기 표1에 도시하였다.
샘플명 탄화온도
(℃)
탄화시간
(분)
승온속도
(℃/분)
활성탄/이산화망간 질량비
실시예 1 500 30 3 1:0.1
실시예 2 500 45 3 1:0.1
실시예 3 700 45 3 1:0.5
실시예 4 700 60 4 1:0.5
실시예 5 800 60 4 1:1
실시예 6 800 90 4 1:1
실기예 7 800 60 4 1:3
실시예 8 900 90 5 1:4
실시예 9 900 120 5 1:5
비교예 1 800 60 4 1:0
측정예 1.
Scanning Electron Microscopy (SEM, SU8010, Hitach Co., LTD)를 통해 실시예 1 내지 8에서 제조한 고성능 슈퍼커패시터 전극소재용 활성탄/이산화망간 복합체의 형태 및 표면구조를 관찰하였다.
관찰결과는 도 1에 도시하였다.
도 1을 참고하면, 실시예에 따른 이산화망간 질량비가 많아짐에 따라 합성이 고르게 잘 이루어졌는지 확인할 수 있으며, 어떻게 분포되어있는지 확인할 수 있었다.
측정예 2.
cyclic voltammetry and galvanostatic charge/discharge 측정 장치 (Jvium Technologies Co.)를 통해 실시예 5에서 제조한 고성능 슈퍼커패시터 전극소재용 활성탄/이산화망간 복합체의 CV(cyclic voltammetry)를 관찰하였다.
관찰 결과는 도 2에 도시하였다.
도 2를 참고하면, 전압구간으로는 -0.2 내지 0.8 V에서 측정하였으며, 전류밀도는 1~5 A/g 실험을 진행하였다. 전류밀도 1 A/g에서 60.3 F/g의 커패시턴스 값을 나타내며, 높은 전류밀도(2~5 A/g)에서도 규칙적, 안정적으로 전류비가 감소하는 것을 확인 할 수 있었다.
측정예 3.
실시예 1내지 8에서 제조한 고성능 슈퍼커패시터 전극소재용 활성탄/이산화망간 복합체를 Polyvinylidene fluoride (PVDF, Mw= 534,000, Sigma-Aldrich Co.) 및 carbon black과 8:1:1 질량비로 제조하여, 제조한 복합체를 32 mg 당 1ml 1-methyl-2-pyrrolidone (NMP, 99.0%, TCI Co.) 용액을 넣어 초음파 및 스터러로 잘 혼합시킨다.
1×4㎝ 니켈 폼 규격화한 후, 상기 초음파 및 스터러로 잘 혼합시켜 제조된 활성탄/이산화망간 복합체를 1×4㎝ 니켈 폼의 약 1×1㎝ 정도만 적셔서 전극을 제조하였다. 제조한 전극을 작업전극으로 사용하고, Ag/AgCl을 기준 전극으로 사용하며, 상대전극으로는 Pt전극을 사용하였다. 1M Na2SO4 전해질을 제조하여 상온조건에서 충·방전 측정을 실시하였다.
상기 실시예 1 내지 실시예 8 및 비교예 1의 제조방법으로 제조된 활성탄/이산화망간 복합체의 비축전용량 값은 하기 표 2에 도시하였으며, 상기 실시예 5의 제조방법으로 제조된 활성탄/이산화방간 복합체의 충·방전 사이클 데이터 측정 결과 값은 도 3에 도시하였다.
비축전용량(F/g)
실시예 1 41.8
실시예 2 48.2
실시예 3 51.6
실시예 4 54.7
실시예 5 60.3
실시예 6 57.4
실시예 7 42.8
실시예 8 38.9
비교예 1 31.2
도 3을 참고하면, 실기예 5의 제조방법으로 제조된 활성탄/이산화망간 복합체를 이용한 2000 사이클 충·방전 테스트의 비축전용량값을 도시하였으며, 이의 데이터는 실기예 5의 제조방법으로 제조된 활성탄/이산화망간 복합체가 60.3 F/g 비축전용량을 가지며 2000 사이클 후에 초기 비유전율의 100.28 % 이상의 유지하며 안정성을 나타내고 있음을 확인할 수 있었다.
측정예 4.
Brunauer-Emmett-Teller (BET)법에 의한 질소 77 K 흡/탈착 등온선 측정을 통해 실시예 2 및 실시예 5 방법으로 제조된 활성탄/이산화망간 복합체의 비표면적을 확인하였다.
측정결과는 도 4에 도시하였다.
도 4를 참고하면 실시예 2의 제조방법으로 제조된 활성탄/이산화망간 복합체는 비표면적이 대략 1805 m2/g나타나며, 가장 좋은 성능을 나타낸 실시예 5의 제조방법으로 제조된 활성탄/이산화망간 복합체는 비표면적은 1480 m2/g 나타난다.
이상, 본 발명내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적인 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의해 정의된다고 할 것이다.

Claims (10)

1) 활성탄을 탄화하여 탄화 활성탄을 준비하는 단계 및
2) 상기 탄화한 활성탄과 이산화망간을 1:1 질량비로 용매에 혼합하여 복합체를 합성하는 단계를 포함하고,
상기 1)단계는 800 ℃ 용광로(furnace)에서 활성탄을 탄화하여 제조하고
상기 용광로(furnace)는 4 ℃/분으로 승온시키고,
상기 용매는 증류수 또는 유기용매를 사용하여 합성하고
상기 용매는 상기 탄화한 활성탄과 상기 이산화망간 대비 용매가 1 : 50 내지 1: 400 질량비인 것을 특징으로 하는 고성능 슈퍼커패시터 전극소재용 활성탄/이산화망간 복합체 제조방법.
제1항에 있어서,
상기 복합체를 세척 및 건조하는 단계를 더 포함하는 고성능 슈퍼커패시터 전극소재용 활성탄/이산화망간 복합체 제조방법.
삭제
삭제
삭제
삭제
제1항에 있어서,
상기 2)단계의 활성탄과 이산화망간의 합성은 30 분 내지 24시간 동안 합성하는 것은 특징으로 하는 고성능 슈퍼커패시터 전극소재용 활성탄/이산화망간 복합체 제조방법.
제1항에 있어서,
상기 활성탄/이산화망간 복합체는 비표면적 1000 내지 1800 m2/g 인 것을 특징으로 하는 고성능 슈퍼커패시터 전극소재용 활성탄/이산화망간 복합체 제조방법.
제2항에 있어서,
상기 세척은 에탄올 또는 증류수로 세척하고,
세척 횟수는 5 내지 30회 세척하는 것을 특징으로 하는 고성능 슈퍼커패시터 전극소재용 활성탄/이산화망간 복합체 제조방법.
제2항에 있어서,
상기 건조는 진공오븐에서 0 내지 80℃에서 건조하고,
건조 시간은 6 내지 24시간 동안 건조하는 것을 특징으로 하는 고성능 슈퍼커패시터 전극소재용 활성탄/이산화망간 복합체 제조방법.
KR1020180135820A 2018-11-07 2018-11-07 고성능 슈퍼커패시터 전극소재용 활성탄/이산화망간 복합체 KR102132795B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180135820A KR102132795B1 (ko) 2018-11-07 2018-11-07 고성능 슈퍼커패시터 전극소재용 활성탄/이산화망간 복합체

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180135820A KR102132795B1 (ko) 2018-11-07 2018-11-07 고성능 슈퍼커패시터 전극소재용 활성탄/이산화망간 복합체

Publications (2)

Publication Number Publication Date
KR20200052633A KR20200052633A (ko) 2020-05-15
KR102132795B1 true KR102132795B1 (ko) 2020-07-10

Family

ID=70679064

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180135820A KR102132795B1 (ko) 2018-11-07 2018-11-07 고성능 슈퍼커패시터 전극소재용 활성탄/이산화망간 복합체

Country Status (1)

Country Link
KR (1) KR102132795B1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112447417A (zh) * 2020-11-10 2021-03-05 同济大学 一种二氧化锰负载松果电极材料及制备方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100701627B1 (ko) * 2005-12-22 2007-03-29 한국생산기술연구원 금속산화물 함유 나노활성탄소섬유의 제조방법 및 그로부터수득되는 나노활성탄소섬유를 이용한 슈퍼 캐패시터용전극

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101561961B1 (ko) 2014-03-19 2015-10-20 고려대학교 산학협력단 전고체상 박막형 수퍼커패시터 및 그 제조 방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100701627B1 (ko) * 2005-12-22 2007-03-29 한국생산기술연구원 금속산화물 함유 나노활성탄소섬유의 제조방법 및 그로부터수득되는 나노활성탄소섬유를 이용한 슈퍼 캐패시터용전극

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
D. Deng et al., ‘Needle-like MnO2/activated carbon nanocomposites derived from human hair as versatile electrode materials for supercapacitors,‘ RSC Advances, 2015.5.81492-81498 (2015.09.17.) 1부.*
M. Doloksaribu et al., ‘The Effect of Concentration Nanoparticles MnO2 DOPED in Activated Carbon as Supercapacitor Electrodes’ International Journal of Applied Engineering Research, Vol. 12, No. 19 (2017) pp. 8625-8631 (2017.12.15.) 1부.*

Also Published As

Publication number Publication date
KR20200052633A (ko) 2020-05-15

Similar Documents

Publication Publication Date Title
Mehare et al. Preparation of porous agro-waste-derived carbon from onion peel for supercapacitor application
Mohammed et al. Green and high performance all-solid-state supercapacitors based on MnO2/Faidherbia albida fruit shell derived carbon sphere electrodes
Liu et al. Biowaste-derived 3D honeycomb-like porous carbon with binary-heteroatom doping for high-performance flexible solid-state supercapacitors
Kesavan et al. Hierarchical nanoporous activated carbon as potential electrode materials for high performance electrochemical supercapacitor
He et al. All-solid state symmetric supercapacitors based on compressible and flexible free-standing 3D carbon nanotubes (CNTs)/poly (3, 4-ethylenedioxythiophene)(PEDOT) sponge electrodes
Xiao et al. Nitrogen-doped porous carbon derived from residuary shaddock peel: a promising and sustainable anode for high energy density asymmetric supercapacitors
Senthilkumar et al. Electric double layer capacitor and its improved specific capacitance using redox additive electrolyte
Simotwo et al. Polyaniline-carbon based binder-free asymmetric supercapacitor in neutral aqueous electrolyte
Tang et al. Nitrogen/oxygen co-doped porous carbons derived from a facilely-synthesized Schiff-base polymer for high-performance supercapacitor
Li et al. Nitrogen-doped carbon mesh from pyrolysis of cotton in ammonia as binder-free electrodes of supercapacitors
He et al. Preparation of microporous activated carbon and its electrochemical performance for electric double layer capacitor
Ou et al. Hierarchical porous activated carbon produced from spinach leaves as an electrode material for an electric double layer capacitor
Gong et al. Facile synthesis of Ni 0.85 Se on Ni foam for high-performance asymmetric capacitors
Vijayakumar et al. Electrode mass ratio impact on electrochemical capacitor performance
CN105118688A (zh) 一种细菌纤维素/活性碳纤维/石墨烯膜材料的制备方法及其应用
CN111118883B (zh) 一种纤维素基碳纳米纤维复合材料及其制备和应用
Kim et al. Anchovy-derived nitrogen and sulfur co-doped porous carbon materials for high-performance supercapacitors and dye-sensitized solar cells
Liu et al. Properties of polyaniline/ordered mesoporous carbon composites as electrodes for supercapacitors
Gao et al. Synthesis and supercapacitive performance of three-dimensional cubic-ordered mesoporous carbons
Kandasamy et al. Graphene–Polyaniline Nanocomposite Treated with Microwave as a New Supercapacitor Electrode and its Structural, Electrochemical Properties Graphene–Polyaniline Nanocomposite Treated with Microwave as a New Supercapacitor Electrode and its Structural, Electrochemical Properties
Akbulut et al. Solid-state supercapacitor cell based on 3D nanostructured MnO2/CNT microelectrode array on graphite and H3PO4/PVA electrolyte
Kumar et al. Effects of microwave annealing of graphene and its impact on structural, electrochemical performance for energy storage
Kong et al. Synthesis of biomass-based porous carbon nanofibre/polyaniline composites for supercapacitor electrode materials
KR20160101811A (ko) 커피찌꺼기로부터 얻어진 에너지저장소재용 다공성 탄소나노쉬트
Murali et al. Improved supercapacitor performance based on sustainable synthesis using chemically activated porous carbon

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant