KR102129094B1 - Battery modules for electric vehicles - Google Patents

Battery modules for electric vehicles Download PDF

Info

Publication number
KR102129094B1
KR102129094B1 KR1020180075192A KR20180075192A KR102129094B1 KR 102129094 B1 KR102129094 B1 KR 102129094B1 KR 1020180075192 A KR1020180075192 A KR 1020180075192A KR 20180075192 A KR20180075192 A KR 20180075192A KR 102129094 B1 KR102129094 B1 KR 102129094B1
Authority
KR
South Korea
Prior art keywords
cooling channel
channel member
heat transfer
transfer pad
laminated
Prior art date
Application number
KR1020180075192A
Other languages
Korean (ko)
Other versions
KR20200002091A (en
Inventor
임종대
김정민
권택만
김민우
유수현
김수길
이찬희
김강석
Original Assignee
인지컨트롤스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인지컨트롤스 주식회사 filed Critical 인지컨트롤스 주식회사
Priority to KR1020180075192A priority Critical patent/KR102129094B1/en
Publication of KR20200002091A publication Critical patent/KR20200002091A/en
Application granted granted Critical
Publication of KR102129094B1 publication Critical patent/KR102129094B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • H01M2/1077
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/258Modular batteries; Casings provided with means for assembling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Abstract

본 발명은 전기차량용 배터리 모듈에 관한 것으로, 복수의 전지셀와, 상기 전지셀들 사이에 개재된 복수의 냉각채널부재와, 상기 전지셀의 테두리를 지지하도록 적층된 복수의 지지프레임 및 상기 전지셀과 마주하는 상기 냉각채널부재의 표면에 라미네이트되는 열전달 패드를 포함하고, 상기 냉각채널부재는 상기 열전달 패드와 마주하는 표면에 상기 열전달 패드가 라미네이트 될 때 공기를 빼내는 복수의 공기빼기 홈이 형성되고, 상기 공기빼기 홈은 상기 열전달 패드가 냉각채널부재에 라미네이트 될 때 접합이 진행되는 방향으로 갈수록 단면적이 증가하는 형상을 갖는 것을 특징으로 하는 전기차량용 배터리 모듈가 개시된다.The present invention relates to a battery module for an electric vehicle, a plurality of battery cells, a plurality of cooling channel members interposed between the battery cells, a plurality of support frames stacked to support the rim of the battery cells, and the battery cells And a heat transfer pad laminated on the surface of the cooling channel member facing each other, wherein the cooling channel member is formed with a plurality of air bleed grooves for drawing out air when the heat transfer pad is laminated on the surface facing the heat transfer pad, and the Disclosed is a battery module for an electric vehicle, wherein the venting groove has a shape in which a cross-sectional area increases as the heat transfer pad is laminated to the cooling channel member in a direction in which bonding proceeds.

Description

전기차량용 배터리 모듈{Battery modules for electric vehicles}Battery modules for electric vehicles

본 발명은 전기차량용 배터리 모듈에 관한 것으로, 더욱 상세하게는 열전달 패드가 냉각채널부재의 표면에 라미네이트될 때 열전달 패드와 냉각채널부재의 표면 사이에 공기층이 형성되지 않도록 하여 전지셀을 신속하게 냉각할 수 있는 전기차량용 배터리 모듈에 관한 것이다.The present invention relates to a battery module for an electric vehicle, and more particularly, when the heat transfer pad is laminated to the surface of the cooling channel member, the air cell is not formed between the heat transfer pad and the surface of the cooling channel member to rapidly cool the battery cell. It relates to a battery module for an electric vehicle.

전기차량(Electric vehicle: EV)은 장래의 자동차 공해 및 에너지 문제를 해결할 수 있는 가장 높은 대안이라는 점에서 연구가 활발하게 진행되고 있다.Electric vehicles (EVs) are actively being studied in that they are the highest alternative to solving future vehicle pollution and energy problems.

전기차량은 주로 배터리에 충전된 전원을 이용하여 AC 또는 DC 모터를 구동하여 동력을 얻는 2차 전지로 이루어진 배터리를 주 동력원으로 사용하고 있다.The electric vehicle mainly uses a battery made of a secondary battery that obtains power by driving an AC or DC motor using a power source charged in the battery, as a main power source.

이러한 전기차량용 배터리는 도 1에 도시된 바와 같이, 전원을 제공하는 전지셀(1)들이 적층된 상태로 직렬 연결되어 차량에 전원을 공급한다.As shown in FIG. 1, the battery for an electric vehicle is connected in series with stacked battery cells 1 providing power to supply power to the vehicle.

전기차량용 배터리(100)는 전지셀(1)들이 충전과 방전을 하는 동안에 열이 발생됨에 따라 온도가 상승하게 되면 전해질 분해가 일어나 성능이 떨어지고 수명이 현저하게 단축되기 때문에 수명이 현저하게 단축된다.The battery 100 for an electric vehicle has a significantly shortened life span because the electrolyte decomposes when the temperature rises as the battery cells 1 are charged and discharged, and the performance deteriorates and the life span is significantly shortened.

따라서, 전기차량용 배터리(100)는 도 1과 같이 전지셀(1)들의 사이에 방열판(2)이 개재되어 전지셀(1)에서 발생하는 열을 방열하며, 냉각관로(미도시)가 방열판(2)에 밀착된 상태로 마련되어 냉매가 냉각관로를 통과하면서 방열판(2)을 냉각시키고, 방열판(2)이 전지셀(1)을 냉각시키도록 구성된다.Therefore, the battery 100 for an electric vehicle is interposed between the battery cells 1 as shown in FIG. 1 to dissipate heat generated from the battery cell 1, and a cooling conduit (not shown) radiates the heat sink ( 2) is provided in close contact with the refrigerant passing through the cooling channel to cool the heat sink 2, and the heat sink 2 is configured to cool the battery cell 1.

하지만, 종래의 전기자동차용 배터리(100)는 냉각관로가 방열판(2)을 매개로 전지셀(1)을 간접적으로 냉각시키는 구조로 이루어지므로, 전지셀(1)에 대한 냉각효율이 극히 저하되고, 이로 인해 온도 상승에 따른 전해질 분해에 의한 그 성능 저하, 수명 단축 등의 문제점이 여전히 뒤따르는 단점이 있다.However, in the conventional battery 100 for an electric vehicle, since the cooling conduit is configured to indirectly cool the battery cell 1 via the heat sink 2, the cooling efficiency of the battery cell 1 is extremely reduced. , Due to this, there is a disadvantage that problems such as deterioration of the performance due to the decomposition of the electrolyte due to an increase in temperature and shortening of a life are still followed.

이러한 문제를 해결하기 위한 선행기술로 한국 등록특허 제10-1631458호의 "전기자동차용 배터리"가 개시되어 있다. 선행기술은 적층된 전지셀들 사이에 냉각채널부재를 개재시켜 냉각채널부재가 전지셀과 직접 접촉하게 하여 개별 전지셀에 대한 냉각효율을 향상시키게 된다.As a prior art for solving this problem, Korean Patent No. 10-1631458 “Electric Vehicle Battery” is disclosed. In the prior art, a cooling channel member is interposed between the stacked battery cells so that the cooling channel member directly contacts the battery cell, thereby improving cooling efficiency for individual battery cells.

그러나, 상기와 같은 선행기술은 냉각채널부재와 전지셀이 마주하는 면이 완벽하게 면 접촉해야 하지만 냉각채널부재 및 전지셀의 평탄도 오차와 조립에 따른 오차 등으로 인해 냉각채널부재의 표면과 전지셀의 표면에 들뜸이 발생하게 되고, 이로부터 열전달 효율이 감소되는 문제가 있다.However, in the prior art as described above, the surface facing the cooling channel member and the battery cell must be in perfect surface contact, but due to the flatness error of the cooling channel member and the battery cell and errors due to assembly, the surface of the cooling channel member and the battery Lifting occurs on the surface of the cell, and there is a problem in that the heat transfer efficiency is reduced.

따라서, 냉각채널부재의 표면과 전지셀의 표면에 들뜸이 발생하지 않도록 도 2에 도시된 바와 같이 열전달 패드(4)를 냉각채널부재(3)의 표면에 라미네이트하여 전지셀에서 발생한 열이 열전달 패드(4)를 통해 냉각채널부재(3)에 전달됨으로써 전지셀을 냉각시키게 된다.Accordingly, as shown in FIG. 2, the heat transfer pad 4 is laminated to the surface of the cooling channel member 3 so that heat does not occur on the surface of the cooling channel member and the surface of the battery cell. The battery cells are cooled by being transferred to the cooling channel member 3 through (4).

그러나, 상기와 같은 열전달 패드(4)를 냉각채널부재(3)의 표면에 라미네이트하는 과정에서 열전달 패드(4)와 냉각채널부재(3) 사이에 공기층(5)이 형성되고, 이러한 공기층(5)의 형성은 냉각채널부재(3)와 전지셀의 열전달을 방해하기 때문에 전지셀을 신속하게 냉각시킬 수 없는 문제가 있다.However, in the process of laminating the heat transfer pad 4 as described above on the surface of the cooling channel member 3, the air layer 5 is formed between the heat transfer pad 4 and the cooling channel member 3, and this air layer 5 ), the formation of the cooling channel member 3 and the battery cell interferes with heat transfer, so there is a problem that the battery cell cannot be rapidly cooled.

KR 10-1386673 B1 (2014.04.18)KR 10-1386673 B1 (2014.04.18) KR 10-1631458 B1 (2016.06.13)KR 10-1631458 B1 (2016.06.13)

본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 냉각채널부재의 표면에 열전달 패드가 라미네이트 될 때 냉각채널부재와 열전달 패드 사이에 공기층이 형성되지 않도록 하여 전지셀과 냉각채널부재의 열전달을 원활하게 할 수 있고 이로부터 전지셀을 신속하게 냉각시키는 전기차량용 배터리 모듈을 제공하는데 그 목적이 있다.The present invention is to solve the above problems, and when the heat transfer pad is laminated on the surface of the cooling channel member, an air layer is not formed between the cooling channel member and the heat transfer pad to smoothly transfer heat between the battery cell and the cooling channel member. An object of the present invention is to provide a battery module for an electric vehicle that can rapidly cool a battery cell therefrom.

상기와 같은 목적을 달성하기 위한 본 발명의 기술적 사상으로는, 복수의 전지셀와, 상기 전지셀들 사이에 개재된 복수의 냉각채널부재와, 상기 전지셀의 테두리를 지지하도록 적층된 복수의 지지프레임 및 상기 전지셀과 마주하는 상기 냉각채널부재의 표면에 라미네이트되는 열전달 패드를 포함하고, 상기 냉각채널부재는 상기 열전달 패드와 마주하는 표면에 상기 열전달 패드가 라미네이트 될 때 공기를 빼내는 복수의 공기빼기 홈이 형성되고, 상기 공기빼기 홈은 상기 열전달 패드가 냉각채널부재에 라미네이트 될 때 접합이 진행되는 방향으로 갈수록 단면적이 증가하는 형상을 갖는 것을 특징으로 하는 전기차량용 배터리 모듈에 의해 달성된다.In order to achieve the above object, the technical idea of the present invention includes a plurality of battery cells, a plurality of cooling channel members interposed between the battery cells, and a plurality of support frames stacked to support the edges of the battery cells. And a heat transfer pad laminated on a surface of the cooling channel member facing the battery cell, wherein the cooling channel member has a plurality of air bleed grooves that draw air out when the heat transfer pad is laminated on a surface facing the heat transfer pad. This is formed, the air vent groove is achieved by a battery module for an electric vehicle, characterized in that the cross-sectional area increases toward the direction in which bonding proceeds when the heat transfer pad is laminated to the cooling channel member.

여기서, 상기 공기빼기 홈은 상기 열전달 패드가 냉각채널부재에 라미네이트 될 때 접합이 진행되는 방향으로 갈수록 공기빼기 홈의 깊이가 깊어지는 것이 바람직하다.Here, it is preferable that the depth of the air bleed groove becomes deeper in the direction in which bonding proceeds when the heat transfer pad is laminated to the cooling channel member.

또한, 상기 공기빼기 홈은 상기 열전달 패드가 냉각채널부재에 라미네이트 될 때 접합이 진행되는 방향으로 갈수록 공기빼기 홈의 폭이 넓어지는 것이 바람직하다.In addition, it is preferable that the width of the air bleed groove becomes wider as the heat transfer pad is laminated to the cooling channel member in the direction in which bonding proceeds.

또한, 상기 공기빼기 홈은 상기 열전달 패드가 냉각채널부재에 라미네이트 될 때 접합이 진행되는 방향으로 갈수록 공기빼기 홈의 단면적 형상이 삼각형에서 사다리꼴의 형태를 갖는 것이 바람직하다.In addition, it is preferable that the bleeding groove has a trapezoidal shape in which the cross-sectional shape of the bleeding groove is triangular toward the direction in which bonding proceeds when the heat transfer pad is laminated to the cooling channel member.

그리고, 상기 공기빼기 홈은 상기 냉각채널부재의 표면에 서로 교차하여 형성되는 것이 바람직하다.In addition, it is preferable that the air vent grooves are formed to cross each other on the surface of the cooling channel member.

또한, 상기 공기빼기 홈은 상기 열전달 패드가 냉각채널부재에 라미네이트 될 때 접합이 진행되는 방향으로 연장되는 제1벤트 홈 및 상기 제1벤트 홈에서 분기되어 상기 열전달 패드가 냉각채널부재에 라미네이트 될 때 접합이 진행되는 방향으로 연장되는 제2벤트 홈을 포함하는 것이 바람직하다.In addition, the air vent groove is branched from the first vent groove and the first vent groove extending in a direction in which bonding proceeds when the heat transfer pad is laminated to the cooling channel member, and when the heat transfer pad is laminated to the cooling channel member It is preferable to include a second vent groove extending in the direction in which the bonding proceeds.

본 발명에 따른 전기차량용 배터리 모듈에 의하면, 열전달 패드와 마주하는 냉각채널부재의 표면에 공기빼기 홈이 형성되어 열전달 패드가 냉각채널부재의 표면에 라미네이트 될 때 공기층을 형성하지 않아 전지셀과 냉각채널부재 간의 열전달을 신속히 하며, 따라서 전지셀에 대한 냉각효율을 대폭 향상시키게 된다.According to the battery module for an electric vehicle according to the present invention, an air bleed groove is formed on the surface of the cooling channel member facing the heat transfer pad so that when the heat transfer pad is laminated on the surface of the cooling channel member, an air layer is not formed to form a battery cell and a cooling channel. The heat transfer between the members is quickened, and thus the cooling efficiency for the battery cells is greatly improved.

도 1은 종래의 전기차량용 배터리 모듈을 나타낸 사시도이다.
도 2는 열전달 패드가 냉각채널부재에 라미네이트될 때 공기층의 형성을 나타낸 사시도이다.
도 3은 본 발명에 따른 전기차량용 배터리 모듈을 나타낸 단면도이다.
도 4는 본 발명에 따른 전기차량용 배터리 모듈 중 냉각채널부재에 형성된 공기빼기 홈을 확대하여 나타낸 사시도이다.
도 5는 본 발명에 따른 전기차량용 배터리 모듈 중 냉각채널부재에 형성된 공기빼기 홈을 확대하여 나타낸 측단면도이다.
도 6은 본 발명에 따른 전기차량용 배터리 모듈 중 냉각채널부재에 형성되는 공기빼기 홈의 다른 실시예를 나타낸 도면이다.
도 7 및 도 8은 본 발명에 따른 전기차량용 배터리 모듈 중 냉각체널부재에 형성되는 공기빼기 홈의 또 다른 실시예를 나타낸 도면이다.
1 is a perspective view showing a battery module for a conventional electric vehicle.
2 is a perspective view showing the formation of an air layer when the heat transfer pad is laminated to the cooling channel member.
3 is a cross-sectional view showing a battery module for an electric vehicle according to the present invention.
4 is an enlarged perspective view showing an air vent groove formed in a cooling channel member among battery modules for an electric vehicle according to the present invention.
Figure 5 is a side cross-sectional view showing an enlarged air vent groove formed in the cooling channel member of the battery module for an electric vehicle according to the present invention.
6 is a view showing another embodiment of the air vent groove formed in the cooling channel member of the battery module for an electric vehicle according to the present invention.
7 and 8 is a view showing another embodiment of the air vent groove formed in the cooling channel member of the battery module for an electric vehicle according to the present invention.

본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms or words used in the present specification and claims should not be interpreted as being limited to ordinary or dictionary meanings, and the inventor can appropriately define the concept of terms in order to best describe his or her invention. Based on the principles, it should be interpreted as meanings and concepts consistent with the technical spirit of the present invention.

이하 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 3은 본 발명에 따른 전기차량용 배터리 모듈을 나타낸 단면도이고, 도 4는 본 발명에 따른 전기차량용 배터리 모듈 중 냉각채널부재에 형성된 공기빼기 홈을 확대하여 나타낸 사시도이며, 도 5는 본 발명에 따른 전기차량용 배터리 모듈 중 냉각채널부재에 형성된 공기빼기 홈을 확대하여 나타낸 측단면도이다.Figure 3 is a cross-sectional view showing a battery module for an electric vehicle according to the present invention, Figure 4 is a perspective view showing an enlarged air vent groove formed in the cooling channel member of the battery module for an electric vehicle according to the present invention, Figure 5 is a view according to the invention It is a side cross-sectional view showing an enlarged air vent groove formed in a cooling channel member among battery modules for an electric vehicle.

도면을 참조하여 설명하면, 본 발명에 따른 전기차량용 배터리 모듈은 상하방향으로 적층된 복수의 전지셀(10)과, 적어도 일부의 전지셀(10)들 사이에 개재된 복수의 냉각채널부재(15)와, 전지셀(10)의 테두리를 지지하도록 적층된 복수의 지지프레임(11)(12)을 포함한다.Referring to the drawings, the battery module for an electric vehicle according to the present invention includes a plurality of battery cells 10 stacked in the vertical direction, and a plurality of cooling channel members 15 interposed between at least some of the battery cells 10 ) And a plurality of support frames 11 and 12 stacked to support the rim of the battery cell 10.

특히, 본 발명은 전지셀(10)과 마주하는 냉각채널부재(15)의 표면에 라미네이트되는 열전달 패드(20)를 포함하게 되는데, 냉각채널부재(15)는 열전달 패드(20)와 마주하는 표면에 열전달 패드(20)가 라미네이트 될 때 공기를 빼내는 복수의 공기빼기 홈(21)이 형성되어 열전달 패드(20)가 냉각채널부재(15)의 표면에 라미네이트 될 때 공기층을 형성하지 않아 전지셀(10)과 냉각채널부재(15) 간의 열전달을 신속하게 한다.In particular, the present invention includes a heat transfer pad 20 laminated on the surface of the cooling channel member 15 facing the battery cell 10, the cooling channel member 15 facing the heat transfer pad 20 When the heat transfer pad 20 is laminated, a plurality of air bleed grooves 21 for extracting air are formed so that the air cell does not form an air layer when the heat transfer pad 20 is laminated on the surface of the cooling channel member 15. 10) and heat transfer between the cooling channel member (15) quickly.

또한, 냉각채널부재(15)의 표면에 형성되는 공기빼기 홈(21)은 열전달 패드(20)가 냉각채널부재(15)에 라미네이트 될 때 접합이 진행되는 방향으로 갈수록 단면적이 증가하는 형상으로 이루어져 열전달 패드(20)가 냉각채널부재(15)의 표면에 접합되는 것에 따라 열전달 패드(20)와 냉각채널부재(15) 사이의 공기가 원활하게 냉각채널부재(15)의 외부로 배기되면서 열전달 패드(20)가 냉각채널부재(15)에 밀착된다.In addition, the air bleed groove 21 formed on the surface of the cooling channel member 15 is formed in a shape in which the cross-sectional area increases as the heat transfer pad 20 is laminated to the cooling channel member 15 in the direction in which bonding proceeds. As the heat transfer pad 20 is joined to the surface of the cooling channel member 15, air between the heat transfer pad 20 and the cooling channel member 15 is smoothly exhausted to the outside of the cooling channel member 15, and the heat transfer pad (20) is in close contact with the cooling channel member (15).

부연하자면, 전지셀(10)은 차량의 전원을 제공하는 구성요소로서 본 발명이 속하는 업계에 널리 알려진 통상의 전지셀로 구성될 수 있으며, 도 3에 도시된 바와 같이 상하방향으로 적층된 상태로 서로 접속되어 차량에 전원을 공급하도록 구성된다.In other words, the battery cell 10 is a component that provides power for a vehicle, and may be composed of a conventional battery cell well known in the industry to which the present invention pertains, and is stacked vertically as shown in FIG. 3. It is configured to be connected to each other to supply power to the vehicle.

전지셀(10)은 그 외측 가장자리에서 외측으로 돌출된 테두리(10a)를 가지고, 전지셀(10)의 테두리(10a)는 도 3에 도시된 바와 같이 복수의 지지프레임(11)(12)들 사이에 개재됨으로써 복수의 전지셀(10)은 그 상하방향의 적층 상태가 안정되게 이루어진다.The battery cell 10 has an edge 10a protruding outward from its outer edge, and the edge 10a of the battery cell 10 has a plurality of support frames 11 and 12 as shown in FIG. 3. Interposed between the plurality of battery cells 10, the stacking state in the vertical direction is made stable.

복수의 지지프레임(11)(12)은 전지셀(10)의 테두리를 지지하도록 외곽을 따라 마련되어 상하방향으로 적층된다. 특히, 각 지지프레임(11)(12)의 외측 모서리 부분에는 복수의 장착러그(미도시)가 형성되고, 복수의 장착러그를 관통하여 장볼트(13)가 체결됨으로써 복수의 지지프레임(11)(12)은 상하방향으로 안정되게 적층된 상태를 유지하게 된다.The plurality of support frames 11 and 12 are provided along the outer edge to support the edge of the battery cell 10 and are stacked in the vertical direction. In particular, a plurality of mounting lugs (not shown) are formed at the outer edge portions of each support frame 11 and 12, and the long bolts 13 are fastened through the plurality of mounting lugs to fasten the plurality of support frames 11 (12) maintains a stacked state stably in the vertical direction.

그리고, 지지프레임(11)(12)들의 최상단은 상부플레이트(14a)가 배치되고, 지지플레임(11)(12)들의 최하단은 하부플레이트(14b)가 배치된다. 이러한 상부플레이트(14a) 및 하부플레이트(14b)는 복수의 장볼트(13)에 의해 지지프레임(11)(12)들과 함께 상하방향으로 결합되고, 이를 통해 복수의 전지셀(10)은 안정된 적층상태를 유지하게 된다.In addition, the upper end of the support frames 11 and 12 are arranged with the upper plate 14a, and the lower end of the support frames 11 and 12 are arranged with the lower plate 14b. The upper plate 14a and the lower plate 14b are coupled in the vertical direction together with the support frames 11 and 12 by a plurality of long bolts 13, so that the plurality of battery cells 10 are stable The lamination state is maintained.

복수의 냉각채널부재(15)는 상하방향으로 적층되는 복수의 전지셀(10)들 중에서 적어도 일부의 전지셀(10)들 사이에 개별적으로 개재되고, 이에 냉각채널부재(15)는 인접한 전지셀(10)과 열전달 패드를 매개로 접촉하도록 구성된다.The plurality of cooling channel members 15 are individually interposed between at least some of the battery cells 10 among the plurality of battery cells 10 stacked in the vertical direction, whereby the cooling channel members 15 are adjacent battery cells. It is configured to contact with the heat transfer pad (10).

이와 같이, 본 발명은 복수의 냉각채널부재(15)가 상하방향으로 적층되는 일부의 전지셀(10)들 사이에 개재되고, 이를 통해 냉각채널부재(15)와 전지셀(10)이 열전달 패드(20)를 매개로 접촉하게 됨으로써 전지셀(10)에 대한 냉각효율을 대폭 향상시키게 된다.As described above, the present invention is interposed between some of the battery cells 10 in which a plurality of cooling channel members 15 are stacked in the vertical direction, through which the cooling channel members 15 and the battery cells 10 are heat transfer pads. By contacting (20) as a medium, the cooling efficiency of the battery cell 10 is greatly improved.

또한, 각 냉각채널부재(15)는 그 내부에 하나 이상의 채널(16)을 가지고, 특히 각 냉각채널부재(15)는 균일한 간격으로 구획되게 형성된 복수의 채널(16)을 가질 수 있다.In addition, each cooling channel member 15 may have one or more channels 16 therein, and in particular, each cooling channel member 15 may have a plurality of channels 16 formed to be divided at uniform intervals.

이와 같이, 복수의 채널(16)이 각 냉각채널부재(15)에 마련됨으로써 복수의 채널(16)을 통해 냉매를 균일하게 관류시킬 수 있으므로, 냉매에 의한 전지셀(10)의 냉각성능을 향상시키게 된다.As described above, since the plurality of channels 16 are provided in each cooling channel member 15, the refrigerant can be uniformly flowed through the plurality of channels 16, thereby improving the cooling performance of the battery cell 10 by the refrigerant. Is ordered.

또한, 채널(16)의 내면에는 도 3의 원안에 확대된 바와 같이, 복수의 미세돌기(16a)가 형성됨으로써 전지셀(10)에 대한 냉각효율을 대폭 항샹시키게 된다.In addition, a plurality of fine protrusions 16a are formed on the inner surface of the channel 16 as shown in the circle of FIG. 3, thereby greatly enhancing the cooling efficiency of the battery cell 10.

한편, 냉각채널부재(15)의 표면에 형성되는 공기빼기 홈(21)은 도 4 및 도 5에 도시된 바와 같이, 열전달 패드(20)가 냉각채널부재(15)에 라미네이트 될 때 접합이 진행되는 방향으로 갈수록 단면적이 증가하는 형상을 갖게 된다.On the other hand, the air vent groove 21 formed on the surface of the cooling channel member 15, as shown in FIGS. 4 and 5, the bonding proceeds when the heat transfer pad 20 is laminated to the cooling channel member 15 It has a shape in which the cross-sectional area increases as it goes in the direction.

이러한 열전달 패드(20)가 냉각채널부재(15)에 라미네이트 될 때 접합이 진행되는 방향으로 갈수록 공기빼기 홈(21)의 단면적이 증가하는 형상은 예를 들어, 도 4 및 도 5에 도시된 바와 같이 열전달 패드(20)가 냉각채널부재(15)에 라미네이트 될 때 접합이 진행되는 방향으로 갈수록 공기빼기 홈(21)의 깊이가 깊어지게 형성될 수 있다.When the heat transfer pad 20 is laminated to the cooling channel member 15, the shape in which the cross-sectional area of the air bleed groove 21 increases toward the direction in which the bonding proceeds, for example, as shown in FIGS. 4 and 5 Likewise, when the heat transfer pad 20 is laminated to the cooling channel member 15, the depth of the air bleed groove 21 may be deeper as the bonding progresses.

즉, 도 4에서는 열전달 패드(20)의 중앙이 냉각채널부재(15)의 중앙에서 외측을 향해 접합이 진행되고, 이에 따라 공기빼기 홈(21)의 단면적은 도 4의 (A)에 도시된 바와 같이 냉각채널부재(15)의 중앙에 해당하는 부분에서 도 4의 (B)에 도시된 바와 같이 냉각채널부재(15)의 외측으로 갈수록 그 깊이가 증가하게 되어 공기빼기 홈(21)의 단면적이 증가하는 형상을 갖게 된다.That is, in FIG. 4, the center of the heat transfer pad 20 is joined from the center of the cooling channel member 15 toward the outside, and accordingly, the cross-sectional area of the air vent groove 21 is shown in FIG. 4(A). As shown in FIG. 4(B) in the portion corresponding to the center of the cooling channel member 15, the depth increases as it goes outward of the cooling channel member 15, and thus the cross-sectional area of the air vent groove 21 is increased. It will have an increasing shape.

이와는 다르게 열전달 패드(20)가 냉각채널부재(15)의 일측에서 타측으로 접합이 진행될 수 있으며 이때, 공기빼기 홈(21)의 단면적은 냉각채널부재(15)의 일측에서 타측으로 갈수록 깊이가 증가하게 되어 공기빼기 홈(21)의 단면적이 증가하는 형상을 갖게 된다.Unlike this, the heat transfer pad 20 may be joined from one side of the cooling channel member 15 to the other side, wherein the cross-sectional area of the air vent groove 21 increases from one side of the cooling channel member 15 to the other side. By doing so, the cross-sectional area of the air vent groove 21 increases.

이와 같이, 공기빼기 홈(21)의 단면적이 열전달 패드(20)가 냉각채널부재(15)에 라미네이트 될 때 접합이 진행되는 방향으로 갈수록 증가하는 형상을 갖게 되는 것에 따라 열전달 패드(20)와 냉각채널부재(15) 사이의 공기를 냉각채널부재(15)의 외부로 원활하게 배출하게 되면서 열전달 패드(20)와 냉각채널부재(15) 사이에 공기가 빠져나가지 못해 형성되는 공기층의 발생을 방지하여 전지셀(10)과 냉각채널부재(15) 간의 열전달을 신속하게 하여 전지셀(10)의 냉각성능을 향상시키게 된다.As described above, when the cross-sectional area of the air bleed groove 21 has a shape that increases in a direction in which bonding proceeds when the heat transfer pad 20 is laminated to the cooling channel member 15, the heat transfer pad 20 and the cooling As the air between the channel members 15 is smoothly discharged to the outside of the cooling channel member 15, the generation of an air layer formed by preventing air from escaping between the heat transfer pad 20 and the cooling channel member 15 is prevented. By rapidly transferring heat between the battery cell 10 and the cooling channel member 15, the cooling performance of the battery cell 10 is improved.

또한, 냉각채널부재(15)에 형성되는 공기빼기 홈(21)의 단면적은 열전달 패드(20)가 냉각채널부재(15)에 라미네이트 될 때 접합이 진행되는 방향으로 갈수록 폭이 넓어지는 형상으로 이루어질 수 있다.In addition, the cross-sectional area of the air bleed groove 21 formed in the cooling channel member 15 is formed in a shape that becomes wider toward the direction in which bonding proceeds when the heat transfer pad 20 is laminated to the cooling channel member 15. Can.

이러한 열전달 패드(20)가 냉각채널부재(15)에 라미네이트 될 때 접합이 진행되는 방향으로 갈수록 공기빼기 홈(21)의 폭이 넓어지는 형상은 예를 들어, 도 6의 (A)에 도시된 바와 같이 냉각채널부재(15)의 중앙에 해당하는 부분은 역삼각형의 형상을 이루다가 도 6의 (B)에 도시된 바와 같이 냉각채널부재(15)의 외측으로 갈수록 사다리꼴의 형태를 갖도록 함으로써, 공기빼기 홈(21)의 폭이 넓어지는 형상을 갖게 되어 공기빼기 홈(21)의 단면적이 증가하게 되고, 열전달 패드(20)가 냉각채널부재(15)에 라미네이트 될 때 공기층이 형성되지 않게 된다.When the heat transfer pad 20 is laminated to the cooling channel member 15, the shape in which the width of the air bleed groove 21 widens toward the direction in which the bonding proceeds is illustrated in, for example, FIG. 6(A). As shown in (B) of FIG. 6, the portion corresponding to the center of the cooling channel member 15 forms an inverted triangle, and thus has a trapezoidal shape toward the outside of the cooling channel member 15, Since the width of the air bleed groove 21 has a shape that increases, the cross-sectional area of the air bleed groove 21 increases, and an air layer is not formed when the heat transfer pad 20 is laminated to the cooling channel member 15. .

한편, 냉각채널부재(15)에 형성되는 공기빼기 홈(21)은 도 4에 도시된 바와 같이 직선의 형태를 갖을 수도 있지만 도 7에 도시된 바와 같이 냉각채널부재(15)의 표면에 다수의 공기빼기 홈(21)이 서로 교차하여 형성될 수도 있다.On the other hand, the air bleed groove 21 formed in the cooling channel member 15 may have a straight shape as shown in FIG. 4, but as shown in FIG. 7, a plurality of surfaces are formed on the surface of the cooling channel member 15. The air vent grooves 21 may be formed to cross each other.

이와 같이, 공기빼기 홈(21)이 서로 교차하여 형성되는 경우 어느 하나의 공기빼기 홈(21)에 이물질이 고착되어 공기가 빠져나가는 유로가 막혔을 때 교차한 다른 공기빼기 홈(21)으로 공기가 우회하여 빠져나가게 되고 따라서 공기층의 발생을 방지하게 된다.As described above, when the air bleed groove 21 is formed to cross each other, air is transferred to the other air bleed groove 21 that is crossed when foreign matter is fixed to any one air bleed groove 21 and the flow path through which the air escapes is blocked. It bypasses and escapes, thus preventing the generation of air layers.

또한, 도 8에 도시된 바와 같이 냉각채널부재(15)에 형성되는 공기빼기 홈(21)은 가지의 형태로 이루어질 수 있다. 이러한 가지의 형태를 갖는 공기빼기 홈(21)은 열전달 패드(20)가 냉각채널부재(15)에 라미네이트 될 때 접합이 진행되는 방향으로 연장되는 제1벤트 홈(21a) 및 상기 제1벤트 홈(21a)에서 분기되어 열전달 패드(20)가 냉각채널부재(15)에 라미네이트 될 때 접합이 진행되는 방향으로 연장되는 제2벤트 홈(21b)으로 이루어진다.In addition, as illustrated in FIG. 8, the air bleed groove 21 formed in the cooling channel member 15 may be formed in the form of a branch. The air vent groove 21 having such a branch shape includes a first vent groove 21a and a first vent groove extending in a direction in which bonding proceeds when the heat transfer pad 20 is laminated to the cooling channel member 15. Branched at (21a) is made of a second vent groove (21b) that extends in the direction in which bonding proceeds when the heat transfer pad (20) is laminated to the cooling channel member (15).

이와 같이, 공기빼기 홈(21)이 가지의 형태로 냉각채널부재(15)에 형성되면 열전달 패드(20)가 냉각채널부재(15)에 라미네이트될 때 제1벤트 홈(21a)을 통해 배기되는 공기의 일부가 제2벤트 홈(21b)을 통해 냉각채널부재(15)의 외측으로 안내되어 신속하게 공기를 배기시킬 수 있다.As described above, when the air vent groove 21 is formed in the cooling channel member 15 in the form of a branch, when the heat transfer pad 20 is laminated to the cooling channel member 15, it is exhausted through the first vent groove 21a. A portion of the air is guided to the outside of the cooling channel member 15 through the second vent groove 21b to quickly exhaust the air.

상기와 같은 본 발명에 따른 전기차량용 배터리 모듈에 의하면, 열전달 패드(20)와 마주하는 냉각채널부재(15)의 표면에 공기빼기 홈(21)이 형성되어 열전달 패드(20)가 냉각채널부재(15)의 표면에 라미네이트 될 때 공기층을 형성하지 않아 전지셀(10)과 냉각채널부재(15) 간의 열전달을 신속히 하며, 따라서 전지셀(10)에 대한 냉각효율을 대폭 향상시키게 된다.According to the battery module for an electric vehicle according to the present invention as described above, an air bleed groove 21 is formed on the surface of the cooling channel member 15 facing the heat transfer pad 20 so that the heat transfer pad 20 has a cooling channel member ( When laminating on the surface of 15), an air layer is not formed, thereby rapidly transferring heat between the battery cell 10 and the cooling channel member 15, thus greatly improving the cooling efficiency of the battery cell 10.

한편, 본 발명은 앞서 설명한 실시예로 한정되는 것이 아니라 본 발명의 요지를 벗어나지 않는 범위 내에서 수정 및 변형하여 실시할 수 있고, 그러한 수정 및 변형이 가해진 것도 본 발명의 기술적 사상에 속하는 것으로 보아야 한다.On the other hand, the present invention is not limited to the above-described embodiments, but can be modified and modified within a range not departing from the gist of the present invention, and such modifications and modifications should be regarded as belonging to the technical spirit of the present invention. .

10 : 전지셀 11, 12 : 지지프레임
15 : 냉각채널부재 20 : 열전달 패드
21 : 공기빼기 홈 21a : 제1벤트 홈
21b : 제2벤트 홈
10: battery cell 11, 12: support frame
15: cooling channel member 20: heat transfer pad
21: vent groove 21a: first vent groove
21b: second vent home

Claims (4)

복수의 전지셀;
상기 전지셀들 사이에 개재된 복수의 냉각채널부재;
상기 전지셀의 테두리를 지지하도록 적층된 복수의 지지프레임; 및
상기 전지셀과 마주하는 상기 냉각채널부재의 표면에 라미네이트되는 열전달 패드;를 포함하고,
상기 냉각채널부재는
상기 열전달 패드와 마주하는 표면에 상기 열전달 패드가 라미네이트 될 때 공기를 빼내는 복수의 공기빼기 홈이 형성되고,
상기 공기빼기 홈은
상기 열전달 패드가 냉각채널부재에 라미네이트 될 때 접합이 진행되는 방향으로 갈수록 단면적이 증가하는 형상을 갖고,
상기 공기빼기 홈은
상기 열전달 패드가 냉각채널부재에 라미네이트 될 때 접합이 진행되는 방향으로 갈수록 공기빼기 홈의 깊이가 깊어지고,
상기 공기빼기 홈은
상기 열전달 패드가 냉각채널부재에 라미네이트 될 때 접합이 진행되는 방향으로 갈수록 공기빼기 홈의 폭이 넓어지며,
상기 공기빼기 홈은
상기 열전달 패드가 냉각채널부재에 라미네이트 될 때 접합이 진행되는 방향으로 갈수록 공기빼기 홈의 단면적 형상이 삼각형에서 사다리꼴의 형태를 갖고,
상기 공기빼기 홈은 상기 냉각채널부재의 표면에 서로 교차하여 형성되는 것을 특징으로 하는 전기차량용 배터리 모듈.
A plurality of battery cells;
A plurality of cooling channel members interposed between the battery cells;
A plurality of support frames stacked to support the rim of the battery cell; And
It includes; a heat transfer pad laminated to the surface of the cooling channel member facing the battery cell;
The cooling channel member
When the heat transfer pad is laminated on a surface facing the heat transfer pad, a plurality of air bleed grooves for drawing air are formed,
The air vent groove
When the heat transfer pad is laminated to the cooling channel member, it has a shape in which the cross-sectional area increases toward the direction in which bonding proceeds,
The air vent groove
When the heat transfer pad is laminated to the cooling channel member, the depth of the air bleed groove becomes deeper as the bonding progresses.
The air vent groove
When the heat transfer pad is laminated to the cooling channel member, the width of the air bleed groove becomes wider as the bonding progresses.
The air vent groove
When the heat transfer pad is laminated to the cooling channel member, the cross-sectional shape of the air bleed groove has a trapezoidal shape in a triangle toward the direction in which the bonding proceeds.
The air vent groove is formed on the surface of the cooling channel member to cross each other, the battery module for an electric vehicle.
복수의 전지셀;
상기 전지셀들 사이에 개재된 복수의 냉각채널부재;
상기 전지셀의 테두리를 지지하도록 적층된 복수의 지지프레임; 및
상기 전지셀과 마주하는 상기 냉각채널부재의 표면에 라미네이트되는 열전달 패드;를 포함하고,
상기 냉각채널부재는
상기 열전달 패드와 마주하는 표면에 상기 열전달 패드가 라미네이트 될 때 공기를 빼내는 복수의 공기빼기 홈이 형성되고,
상기 공기빼기 홈은
상기 열전달 패드가 냉각채널부재에 라미네이트 될 때 접합이 진행되는 방향으로 갈수록 단면적이 증가하는 형상을 갖고,
상기 공기빼기 홈은
상기 열전달 패드가 냉각채널부재에 라미네이트 될 때 접합이 진행되는 방향으로 갈수록 공기빼기 홈의 깊이가 깊어지고,
상기 공기빼기 홈은
상기 열전달 패드가 냉각채널부재에 라미네이트 될 때 접합이 진행되는 방향으로 갈수록 공기빼기 홈의 폭이 넓어지며,
상기 공기빼기 홈은
상기 열전달 패드가 냉각채널부재에 라미네이트 될 때 접합이 진행되는 방향으로 갈수록 공기빼기 홈의 단면적 형상이 삼각형에서 사다리꼴의 형태를 갖고,
상기 공기빼기 홈은 가지의 형태를 갖도록
상기 열전달 패드가 냉각채널부재에 라미네이트 될 때 접합이 진행되는 방향으로 연장되는 제1벤트 홈; 및
상기 제1벤트 홈에서 분기되어 상기 열전달 패드가 냉각채널부재에 라미네이트 될 때 접합이 진행되는 방향으로 연장되는 제2벤트 홈;을 포함하는 것을 특징으로 하는 전기차량용 배터리 모듈.
A plurality of battery cells;
A plurality of cooling channel members interposed between the battery cells;
A plurality of support frames stacked to support the rim of the battery cell; And
It includes; a heat transfer pad laminated to the surface of the cooling channel member facing the battery cell;
The cooling channel member
When the heat transfer pad is laminated on a surface facing the heat transfer pad, a plurality of air bleed grooves for drawing air are formed,
The air vent groove
When the heat transfer pad is laminated to the cooling channel member, it has a shape in which the cross-sectional area increases toward the direction in which bonding proceeds,
The air vent groove
When the heat transfer pad is laminated to the cooling channel member, the depth of the air bleed groove becomes deeper as the bonding progresses.
The air vent groove
When the heat transfer pad is laminated to the cooling channel member, the width of the air bleed groove becomes wider as the bonding progresses.
The air vent groove
When the heat transfer pad is laminated to the cooling channel member, the cross-sectional shape of the air bleed groove has a trapezoidal shape in a triangle toward the direction in which the bonding proceeds.
The air bleed groove to have the shape of a branch
A first vent groove extending in a direction in which bonding proceeds when the heat transfer pad is laminated to the cooling channel member; And
And a second vent groove branched from the first vent groove and extending in a direction in which bonding proceeds when the heat transfer pad is laminated to the cooling channel member.
삭제delete 삭제delete
KR1020180075192A 2018-06-29 2018-06-29 Battery modules for electric vehicles KR102129094B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180075192A KR102129094B1 (en) 2018-06-29 2018-06-29 Battery modules for electric vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180075192A KR102129094B1 (en) 2018-06-29 2018-06-29 Battery modules for electric vehicles

Publications (2)

Publication Number Publication Date
KR20200002091A KR20200002091A (en) 2020-01-08
KR102129094B1 true KR102129094B1 (en) 2020-07-01

Family

ID=69154524

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180075192A KR102129094B1 (en) 2018-06-29 2018-06-29 Battery modules for electric vehicles

Country Status (1)

Country Link
KR (1) KR102129094B1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2416438B1 (en) * 2009-04-01 2015-02-25 LG Chem, Ltd. Battery module having improved safety
KR101386673B1 (en) 2012-04-06 2014-04-18 인지컨트롤스 주식회사 Battery for electric vehichle
KR101545166B1 (en) * 2012-07-02 2015-08-18 주식회사 엘지화학 Cooling Member for Battery Cell
KR20140064418A (en) * 2012-11-20 2014-05-28 에스케이이노베이션 주식회사 Secondary battery module
KR101631458B1 (en) * 2014-08-29 2016-06-20 인지컨트롤스 주식회사 Battery for electric vehicle
KR101777335B1 (en) * 2015-04-01 2017-09-11 주식회사 엘지화학 Battery Module

Also Published As

Publication number Publication date
KR20200002091A (en) 2020-01-08

Similar Documents

Publication Publication Date Title
US10381694B2 (en) Cooling device for battery cell and battery module comprising the same
KR101071537B1 (en) Battery Module Having Heat Dissipation Member of Novel Structure and Battery Pack Employed with the Same
JP6162938B2 (en) battery pack
JP5625115B2 (en) A small-sized battery module having excellent heat radiation characteristics, and a medium- or large-sized battery pack using the battery module
KR101095346B1 (en) Battery Module Having Excellent Heat Dissipation Ability and Battery Pack Employed with the Same
KR101145719B1 (en) Battery Module Having Excellent Heat Dissipation Ability and Battery Pack Employed with the Same
US9455478B2 (en) EV battery pack with battery cooling assembly and method
US20190089026A1 (en) Battery module for secondary battery and battery pack including the same
US20120088135A1 (en) Battery module having temperature sensor and battery pack employed with the same
US20170237130A1 (en) Battery module including cooling structure in which coolant channel is minimally bent
JP2004362879A (en) Collective battery
US20120177965A1 (en) Battery module with excellent cooling efficiency and compact structure and middle or large-sized battery pack
KR102288543B1 (en) Battery pack
JP2014500592A (en) Battery pack with excellent cooling efficiency
US9484607B2 (en) Battery module
KR20150131759A (en) Battery Module Having Thermoelectric Element
KR101631458B1 (en) Battery for electric vehicle
KR20180062501A (en) Battery water cooling system
KR102129094B1 (en) Battery modules for electric vehicles
US10305152B2 (en) Water cooling system for a battery
CN113067052A (en) Power battery cooling system and vehicle
US20230110119A1 (en) Battery Module
EP3534454B1 (en) Integrated battery cooling system
KR101620165B1 (en) Battery module with intergrated heat sink member
JP2013171698A (en) Battery pack

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant