KR102122543B1 - Organic Light Emitting Display - Google Patents

Organic Light Emitting Display Download PDF

Info

Publication number
KR102122543B1
KR102122543B1 KR1020190106100A KR20190106100A KR102122543B1 KR 102122543 B1 KR102122543 B1 KR 102122543B1 KR 1020190106100 A KR1020190106100 A KR 1020190106100A KR 20190106100 A KR20190106100 A KR 20190106100A KR 102122543 B1 KR102122543 B1 KR 102122543B1
Authority
KR
South Korea
Prior art keywords
tft
driving
compensation
driving tft
gate electrode
Prior art date
Application number
KR1020190106100A
Other languages
Korean (ko)
Other versions
KR20190103131A (en
Inventor
공남용
신우섭
박권식
박청훈
정의진
Original Assignee
엘지디스플레이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지디스플레이 주식회사 filed Critical 엘지디스플레이 주식회사
Priority to KR1020190106100A priority Critical patent/KR102122543B1/en
Publication of KR20190103131A publication Critical patent/KR20190103131A/en
Application granted granted Critical
Publication of KR102122543B1 publication Critical patent/KR102122543B1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3258Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the voltage across the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • G09G2320/046Dealing with screen burn-in prevention or compensation of the effects thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)

Abstract

본 발명에 따른 유기발광 표시장치는 다수의 화소들을 포함하여 화상을 표시하는 표시패널; 및 구동 전류에 대한 센싱값에 따라 보상 전압을 다르게 출력하는 데이터 구동회로를 구비하고; 상기 화소들 각각은, 유기발광다이오드; 메인 게이트전극과 서브 게이트전극을 갖는 더블 게이트형으로 이루어진 구동 TFT; 상기 구동 전류를 결정하는 데이터전압을 상기 구동 TFT의 상기 메인 게이트전극에 인가하는 스위치 TFT; 및 상기 구동 TFT의 문턱전압 쉬프트를 보상하기 위한 상기 보상 전압을 상기 구동 TFT의 상기 서브 게이트전극에 인가하는 보상 TFT를 구비한다.An organic light emitting display device according to the present invention includes a display panel that displays an image including a plurality of pixels; And a data driving circuit that outputs the compensation voltage differently according to a sensing value for the driving current; Each of the pixels includes an organic light emitting diode; A driving TFT made of a double gate type having a main gate electrode and a sub gate electrode; A switch TFT that applies a data voltage for determining the driving current to the main gate electrode of the driving TFT; And a compensation TFT that applies the compensation voltage for compensating the threshold voltage shift of the driving TFT to the sub gate electrode of the driving TFT.

Description

유기발광 표시장치{Organic Light Emitting Display}Organic light emitting display device

본 발명은 액티브 매트릭스 타입의 유기발광 표시장치에 관한 것으로, 특히 구동 TFT의 열화를 보상할 수 있는 유기발광 표시장치에 관한 것이다.The present invention relates to an active matrix type organic light emitting display device, and more particularly, to an organic light emitting display device capable of compensating for deterioration of a driving TFT.

액티브 매트릭스 타입의 유기발광 표시장치는 스스로 발광하는 유기발광다이오드(Organic Light Emitting Diode: 이하, "OLED"라 함)를 포함하며, 응답속도가 빠르고 발광효율, 휘도 및 시야각이 큰 장점이 있다. The active matrix type organic light emitting display device includes an organic light emitting diode (hereinafter referred to as “OLED”) that emits light by itself, and has a fast response speed, high light emission efficiency, high brightness, and a wide viewing angle.

자발광 소자인 OLED는 애노드전극 및 캐소드전극과, 이들 사이에 형성된 유기 화합물층(HIL, HTL, EML, ETL, EIL)을 포함한다. 유기 화합물층은 정공주입층(Hole Injection layer, HIL), 정공수송층(Hole transport layer, HTL), 발광층(Emission layer, EML), 전자수송층(Electron transport layer, ETL) 및 전자주입층(Electron Injection layer, EIL)으로 이루어진다. 애노드전극과 캐소드전극에 구동전압이 인가되면 정공수송층(HTL)을 통과한 정공과 전자수송층(ETL)을 통과한 전자가 발광층(EML)으로 이동되어 여기자를 형성하고, 그 결과 발광층(EML)이 가시광을 발생하게 된다. The self-luminous device OLED includes an anode electrode and a cathode electrode, and an organic compound layer (HIL, HTL, EML, ETL, EIL) formed therebetween. The organic compound layer includes a hole injection layer (HIL), a hole transport layer (HTL), an emission layer (EML), an electron transport layer (ETL), and an electron injection layer (Electron Injection layer, EIL). When a driving voltage is applied to the anode electrode and the cathode electrode, holes passing through the hole transport layer (HTL) and electrons passing through the electron transport layer (ETL) are moved to the emission layer (EML) to form excitons, and as a result, the emission layer (EML) Visible light is generated.

유기발광 표시장치는 OLED를 각각 포함한 화소들을 매트릭스 형태로 배열하고 비디오 데이터의 계조에 따라 화소들의 휘도를 조절한다. 화소들 각각은 게이트-소스 간 전압에 따라 OLED에 흐르는 구동전류를 제어하는 구동 TFT(Thin Film Transistor), 구동 TFT의 게이트전위를 한 프레임 동안 일정하게 유지시키는 커패시터, 및 게이트신호에 응답하여 데이터전압을 커패시터에 저장하는 스위치 TFT를 포함한다. 화소의 휘도는 OLED에 흐르는 구동전류의 크기에 비례하게 된다.The organic light emitting display device arranges pixels including OLEDs in a matrix form and adjusts the luminance of the pixels according to the gradation of video data. Each of the pixels is a driving thin film transistor (TFT) that controls the driving current flowing through the OLED according to the voltage between the gate and the source, a capacitor that maintains the gate potential of the driving TFT constant for one frame, and a data voltage in response to the gate signal. It includes a switch TFT to store in a capacitor. The luminance of the pixel is proportional to the magnitude of the driving current flowing through the OLED.

이러한 유기발광 표시장치에서는, 공정 편차 등의 이유로 형성 위치에 따라 화소들 간 구동 TFT의 문턱전압이 달라지거나 또는, 구동시간 경과에 따른 게이트-바이어스 스트레스(Gate-Bias Stress)로 인해 구동 TFT의 전기적 특성이 열화되는 단점이 있다. 구동 TFT의 전기적 특성이 열화되면 구동 TFT의 전류 특성 커브가 쉬프트되므로 원하는 휘도 구현이 어렵고 수명이 단축된다.In such an organic light emitting display device, the threshold voltage of the driving TFT between pixels varies depending on the formation position for reasons of process variation or the like, or the electrical power of the driving TFT due to gate-bias stress as the driving time elapses. There is a disadvantage that the characteristics are deteriorated. When the electrical characteristics of the driving TFT are deteriorated, the current characteristic curve of the driving TFT is shifted, so it is difficult to realize the desired luminance and the life is shortened.

이러한 문제를 해결하기 위해, 종래 기술에서는 도 1과 같이 화소들(P) 간 구동 TFT의 전기적 특성 편차, 즉 구동 TFT의 문턱전압 편차를 드라이버 IC(DIC)에서 센싱한 후, 내부 연산을 수행하여 화상 구현을 위한 화소 데이터의 크기를 조정함으로써 문턱전압 편차에 따른 휘도 차이를 보상한다.In order to solve such a problem, in the prior art, as shown in FIG. 1, the electrical characteristic deviation of the driving TFT between pixels P, that is, the threshold voltage deviation of the driving TFT is sensed in the driver IC (DIC), and then internal calculation is performed. By adjusting the size of pixel data for image realization, luminance differences due to threshold voltage variations are compensated.

예를 들어, 도 2와 같이 구동 TFT의 게이트전극에 포지티브 스트레스가 장시간 인가되어 구동 TFT의 문턱전압이 'Vth1'에서 'Vth2'로 'φ'만큼 상승하고 구동 TFT의 전류 특성 커브가 'A'에서 'B'로 오른쪽으로 쉬프트되면, 동일한 조건하에서 구동 TFT의 드레인-소스간 흐르는 전류는 'I1'에서 'I2'로 'ΔI'만큼 낮아지게 된다. 도 2에서 'Vgs'는 구동 TFT의 게이트-소스 간 전압을 지시한다. 이러한 전류 감소를 보상하기 위해, 종래 기술은 구동 TFT의 전류 특성 커브를 열화된 'B' 상태로 유지하면서, 구동 TFT의 게이트전극에 인가되는 데이터전압을 문턱전압 상승분(φ)만큼 더 크게 변조하는 방식을 취한다. 구동 TFT의 게이트전극이 느끼는 포지티브 스트레스는 인가 시간의 길이뿐만 아니라 인가 전압의 크기에도 비례한다. 종래 기술에 따르면, 열화 보상을 위해 점점 더 큰 데이터전압(Vth2+φ)이 구동 TFT에 인가되기 때문에 도 3과 같이 보상 과정에서 구동 TFT의 열화가 가속화된다.For example, as shown in FIG. 2, a positive stress is applied to the gate electrode of the driving TFT for a long time so that the threshold voltage of the driving TFT rises by'φ' from'Vth1' to'Vth2' and the current characteristic curve of the driving TFT is'A'. When shifted to the right from'B', the current flowing between the drain and source of the driving TFT under the same condition is lowered by'ΔI' from'I1' to'I2'. In FIG. 2,'Vgs' indicates the gate-source voltage of the driving TFT. In order to compensate for this current reduction, the prior art modulates the data voltage applied to the gate electrode of the driving TFT to be greater than the threshold voltage increase (φ) while maintaining the current characteristic curve of the driving TFT in the deteriorated'B' state. Take the way. The positive stress felt by the gate electrode of the driving TFT is proportional not only to the length of the applied time but also to the magnitude of the applied voltage. According to the prior art, the deterioration of the driving TFT is accelerated in the compensation process as shown in FIG. 3 because an increasingly larger data voltage (Vth2+φ) is applied to the driving TFT to compensate for degradation.

또한, 도 4와 같이 드라이버 IC에서 출력할 수 있는 전압 범위는 그 목적에 따라 미리 정해져 있으므로, 구동 TFT의 열화가 너무 심해져 원하는 보상 전압의 크기가 드라이버 IC의 보상전압 영역(16V-12V=4V) 을 초과하는 경우에는 보상은 불가능해진다. 이러한 문제점은, 구동 TFT의 열화 특성이 어느 시점에서 세츄레이션되는 것이 아니라 지속되는 데 기인하며, 또한 구동 TFT의 열화를 보상할 수 있는 보상 전압의 크기가 한정되어 있는 데 기인한다.In addition, since the voltage range that can be output from the driver IC is pre-determined according to the purpose as shown in FIG. 4, the deterioration of the driving TFT becomes so severe that the size of the desired compensation voltage is the compensation voltage range of the driver IC (16V-12V=4V) If it exceeds, compensation becomes impossible. This problem is attributable to the fact that the deterioration characteristics of the driving TFT do not saturate at any point, but continue, and also the limitation of the magnitude of the compensation voltage capable of compensating the deterioration of the driving TFT.

종래 보상 방식은, 보상에 대한 범위가 좁고 한계가 있어 구동 TFT의 열화로 인한 휘도 불균일 및 제품의 수명 단축을 해결하기 어렵다.In the conventional compensation method, since the range for compensation is narrow and limited, it is difficult to solve luminance unevenness due to deterioration of the driving TFT and shortening the life of the product.

따라서, 본 발명의 목적은 구동 TFT의 열화를 효율적으로 보상할 수 있도록 한 유기발광 표시장치를 제공하는 데 있다.Accordingly, an object of the present invention is to provide an organic light emitting display device capable of efficiently compensating for deterioration of a driving TFT.

상기 목적을 달성하기 위하여, 본 발명의 실시예에 따른 유기발광 표시장치는 다수의 화소들을 포함하여 화상을 표시하는 표시패널; 및 구동 전류에 대한 센싱값에 따라 보상 전압을 다르게 출력하는 데이터 구동회로를 구비하고; 상기 화소들 각각은, 유기발광다이오드; 메인 게이트전극과 서브 게이트전극을 갖는 더블 게이트형으로 이루어진 구동 TFT; 상기 구동 전류를 결정하는 데이터전압을 상기 구동 TFT의 상기 메인 게이트전극에 인가하는 스위치 TFT; 및 상기 구동 TFT의 문턱전압 쉬프트를 보상하기 위한 상기 보상 전압을 상기 구동 TFT의 상기 서브 게이트전극에 인가하는 보상 TFT를 구비한다.In order to achieve the above object, an organic light emitting display device according to an embodiment of the present invention includes a display panel for displaying an image including a plurality of pixels; And a data driving circuit that outputs the compensation voltage differently according to a sensing value for the driving current; Each of the pixels includes an organic light emitting diode; A driving TFT made of a double gate type having a main gate electrode and a sub gate electrode; A switch TFT that applies a data voltage for determining the driving current to the main gate electrode of the driving TFT; And a compensation TFT that applies the compensation voltage for compensating the threshold voltage shift of the driving TFT to the sub gate electrode of the driving TFT.

본 발명은 게이트전극이 2개인 더블 게이트형 구동 TFT를 구비하고, 구동 TFT의 문턱전압 변화분에 대응되는 보상 전압을 구동 TFT의 서브 전극에 인가하여 문턱전압 쉬프트를 원래대로 회복시킨다. 이에 따라, 본 발명은 보상과정에서 열화가 가속화되고 보상 범위에 한계가 있는 종래의 문제점을 해결한다. 본 발명은 문턱전압 열화를 효율적으로 보상함으로써, 장시간 구동에 따른 구동 불량을 방지하고 신뢰성을 개선할 수 있으며, 휘도 균일도를 높여 제품의 수명을 크게 연장할 수 있다.The present invention includes a double gate type driving TFT having two gate electrodes, and a compensation voltage corresponding to a threshold voltage change of the driving TFT is applied to the sub electrode of the driving TFT to restore the threshold voltage shift. Accordingly, the present invention solves a conventional problem in which deterioration is accelerated in the compensation process and the compensation range is limited. The present invention can effectively compensate for the threshold voltage deterioration, prevent driving failure due to long-term driving, improve reliability, and increase the uniformity of luminance to significantly extend the life of the product.

도 1은 드라이브 IC와 표시패널의 접속 관계를 개략적으로 보여주는 도면.
도 2는 종래의 열화 보상 방식을 보여주는 도면.
도 3은 종래의 열화 보상 방식에서 보상에 의해 열화가 가속화되는 것을 보여주는 도면.
도 4는 드라이버 IC에서 출력할 수 있는 전압 범위를 예시적으로 보여주는 도면.
도 5는 본 발명의 실시예에 따른 유기발광 표시장치를 보여주는 도면.
도 6은 본 발명의 보상 방식을 종래의 보상 방식과 비교하여 보여주는 도면.
도 7a은 내지 도 8b는 구동 TFT에서 문턱전압이 보상되는 원리를 보여주는 도면들.
도 9는 더블 게이트형 구동 TFT의 전기적 특성을 보여주는 도면.
도 10 및 도 11은 양방향 제어가 가능한 더블 게이트형 구동 TFT의 종류를 보여주는 도면들.
도 12a 내지도 도 12c는 본 발명에 따른 문턱전압 보상 과정을 순차적으로 보여주는 도면들.
1 is a view schematically showing a connection relationship between a drive IC and a display panel.
Figure 2 is a view showing a conventional deterioration compensation scheme.
3 is a view showing that deterioration is accelerated by compensation in a conventional deterioration compensation scheme.
4 is a diagram exemplarily showing a voltage range that can be output from a driver IC.
5 is a view showing an organic light emitting display device according to an exemplary embodiment of the present invention.
6 is a view showing a compensation method of the present invention compared to a conventional compensation method.
7A to 8B are diagrams showing a principle in which a threshold voltage is compensated in a driving TFT.
9 is a view showing electrical characteristics of a double gate type driving TFT.
10 and 11 are diagrams showing types of double gate type driving TFTs capable of bidirectional control.
12A to 12C are views sequentially showing a threshold voltage compensation process according to the present invention.

이하, 도 5 내지 도 12c을 참조하여 본 발명의 바람직한 실시 예에 대하여 설명하기로 한다.Hereinafter, preferred embodiments of the present invention will be described with reference to FIGS. 5 to 12C.

도 5는 본 발명의 실시예에 따른 유기발광 표시장치를 보여준다.5 shows an organic light emitting display device according to an exemplary embodiment of the present invention.

도 5를 참조하면, 본 발명의 실시예에 따른 유기발광 표시장치는 화소(P)들이 매트릭스 형태로 배열되는 표시패널(10)과, 데이터라인(14)들을 구동시키기 위한 데이터 구동회로(12)와, 게이트라인(15)들을 구동시키기 위한 게이트 구동회로(13)와, 데이터 구동회로(12) 및 게이트 구동회로(13)의 구동 타이밍을 제어하기 위한 타이밍 콘트롤러(11)를 구비한다. Referring to FIG. 5, an organic light emitting display device according to an exemplary embodiment of the present invention includes a display panel 10 in which pixels P are arranged in a matrix form, and a data driving circuit 12 for driving the data lines 14 And a gate driving circuit 13 for driving the gate lines 15 and a timing controller 11 for controlling the driving timing of the data driving circuit 12 and the gate driving circuit 13.

표시패널(10)에는 다수의 데이터라인(14)들과 다수의 게이트라인(15)들이 교차되고, 이 교차영역마다 화소(P)들이 매트릭스 형태로 배치된다. 표시패널(10)에는 화소(P)들에 흐르는 구동전류를 센싱하기 위한 센싱전류 공급라인들(도 6의 SL)과, 화소(P)들에 보상전압을 인가하기 위한 보상전압 공급라인들(도 6의 CL)이 더 형성된다. 게이트라인(15)은 스캔신호(도 6의 SCAN)를 공급하기 위한 스캔신호 공급라인과, 센싱 제어신호(도 6의 SEN)를 공급하기 위한 센싱제어신호 공급라인과, 보상 제어신호(도 6의 CP)를 공급하기 위한 보상제어신호 공급라인을 포함한다.A plurality of data lines 14 and a plurality of gate lines 15 are intersected on the display panel 10, and pixels P are arranged in a matrix form for each intersection area. The display panel 10 includes sensing current supply lines (SL in FIG. 6) for sensing the driving current flowing through the pixels P, and compensation voltage supply lines (for applying the compensation voltage to the pixels P) ( CL of FIG. 6 is further formed. The gate line 15 includes a scan signal supply line for supplying a scan signal (SCAN in FIG. 6), a sensing control signal supply line for supplying a sensing control signal (SEN in FIG. 6), and a compensation control signal (FIG. 6). It includes a compensation control signal supply line for supplying CP.

각 화소(P)는 도 6에 도시된 바와 같이 OLED, 2개의 게이트전극들을 포함한 구동 TFT(DT), 스위치 TFT(ST), 제1 스토리지 커패시터(Cst1) 이외에 보상 TFT(T2)와 제2 스토리지 커패시터(Cst2)를 더 구비할 수 있다. 또한, 화소(P)들 중 적어도 어느 하나는 도 6의 센싱 TFT(T1)를 더 포함할 수 있다. 구동 TFT(DT)는 더블 게이트형 구조를 취하며, 구동전류를 결정하는 데이터전압이 인가되는 메인 게이트전극과, 문턱전압 보상을 위한 보상 전압이 인가되는 서브 게이트전극을 포함한다. 센싱 TFT(T1)는 구동 TFT(DT)에 흐르는 전류를 센싱하여 구동 TFT(DT)의 문턱전압 쉬프트를 감지하기 위한 것으로, 화소(P)마다 1개씩 형성되거나, 발광 면적을 넓히기 위해 적어도 2개 이상의 화소(P)들을 포함한 화소군마다 1개씩 형성되거나, 또는 화소(P)들 중 어느 하나에만 형성될 수 있다. 보상 TFT(T2)는 구동 TFT(DT)에 보상 전압(φ)을 인가하여 문턱전압 쉬프트를 원래대로 복원하기 위한 것으로 화소(P)마다 1개씩 형성될 수 있다. 제2 스토리지 커패시터(Cst2)는 보상 전압(φ)을 소정 기간 동안 유지시키기 위한 것이다. 센싱 TFT(T1)와 보상 TFT(T2)를 포함한 화소(P) 구조는 도 6에 도시된 것에 한정되지 않고 다양하게 가변될 수 있다. 다만, 편의상 이하의 설명에서는 화소(P)의 구조가 도 6과 같이 구현되는 것으로 예시한다. 각 화소(P)는 데이터라인(14), 게이트라인(15), 보상전압 공급라인(CL)에 접속되며, 경우에 따라서는 센싱전류 공급라인(SL)에 추가적으로 접속될 수 있다. 각 화소(P)는 도시하지 않은 전원발생부로부터 고전위 및 저전위 셀구동전압(VDD,VSS)을 공급받는다.Each pixel P has a compensation TFT T2 and a second storage in addition to an OLED, a driving TFT DT including two gate electrodes, a switch TFT ST, and a first storage capacitor Cst1 as shown in FIG. 6. A capacitor Cst2 may be further provided. Further, at least one of the pixels P may further include the sensing TFT T1 of FIG. 6. The driving TFT DT has a double gate type structure, and includes a main gate electrode to which a data voltage for determining a driving current is applied, and a sub-gate electrode to which a compensation voltage for threshold voltage compensation is applied. The sensing TFT (T1) is for sensing the threshold voltage shift of the driving TFT (DT) by sensing the current flowing through the driving TFT (DT). One may be formed for each pixel group including the above pixels P, or may be formed only in one of the pixels P. The compensation TFT T2 is for restoring the threshold voltage shift by applying a compensation voltage φ to the driving TFT DT, and may be formed one for each pixel P. The second storage capacitor Cst2 is for maintaining the compensation voltage φ for a predetermined period. The structure of the pixel P including the sensing TFT T1 and the compensation TFT T2 is not limited to that illustrated in FIG. 6 and may be variously changed. However, for convenience, the following description illustrates that the structure of the pixel P is implemented as shown in FIG. 6. Each pixel P is connected to the data line 14, the gate line 15, and the compensation voltage supply line CL, and in some cases, may be additionally connected to the sensing current supply line SL. Each pixel P is supplied with high and low potential cell driving voltages VDD and VSS from a power generation unit (not shown).

타이밍 콘트롤러(11)는 외부로부터 입력되는 디지털 비디오 데이터(RGB)를 표시패널(10)의 해상도에 맞게 재정렬하여 데이터 구동회로(12)에 공급한다. 또한, 타이밍 콘트롤러(11)는 수직 동기신호(Vsync), 수평 동기신호(Hsync), 도트클럭신호(DCLK) 및 데이터 인에이블신호(DE) 등의 타이밍 신호들에 기초하여 데이터 구동회로(12)의 동작 타이밍을 제어하기 위한 데이터 제어신호(DDC)와, 게이트 구동회로(13)의 동작 타이밍을 제어하기 위한 게이트 제어신호(GDC)를 발생한다. The timing controller 11 rearranges digital video data (RGB) input from the outside according to the resolution of the display panel 10 and supplies it to the data driving circuit 12. In addition, the timing controller 11 is based on timing signals such as a vertical synchronization signal (Vsync), a horizontal synchronization signal (Hsync), a dot clock signal (DCLK), and a data enable signal DE, and the data driving circuit 12 A data control signal DDC for controlling the operation timing of and a gate control signal GDC for controlling the operation timing of the gate driving circuit 13 are generated.

데이터 구동회로(12)는 데이터 제어신호(DDC)를 기반으로 타이밍 콘트롤러(11)로부터 입력되는 디지털 비디오 데이터(RGB)를 아날로그 데이터전압으로 변환하여 데이터라인(14)들에 공급한다. 데이터 구동회로(12)는 표시패널(10)로부터 입력되는 센싱 전류에 따라 보상 전압(φ)을 다르게 발생하고, 타이밍 콘트롤러(11)의 제어하에 보상 전압(φ)을 보상전압 공급라인(CL)에 공급한다. 보상 전압(φ)은 구동 TFT(DT)의 문턱전압 변화를 보상하기 위한 것으로, 센싱 전류를 통해 감지되는 구동 TFT(DT)의 문턱전압에 따라 달라진다. 데이터 구동회로는 미리 설정된 제1 룩업 테이블(문턱전압에 따른 보상전압이 저장되어 있음)을 참조하여 현재의 구동 TFT(DT)의 문턱전압에 맞는 보상 전압(φ)을 출력할 수 있다. 보상 전압(φ)은 구동 TFT(DT)의 문턱전압이 오른쪽(+)으로 쉬프트될수록 점점 증가될 수 있으며, 반대로 구동 TFT(DT)의 문턱전압이 왼쪽(-)으로 쉬프트될수록 점점 감소될 수 있다. 보상 전압(φ)에 의해 구동 TFT들의 문턱전압 쉬프트는 원래대로 복구(recovery)되므로 문턱전압 쉬프트로 인한 구동전류 감소는 보상되게 된다. The data driving circuit 12 converts digital video data RGB input from the timing controller 11 into an analog data voltage based on the data control signal DDC and supplies it to the data lines 14. The data driving circuit 12 generates the compensation voltage φ differently according to the sensing current input from the display panel 10, and compensates the compensation voltage φ under the control of the timing controller 11 to the compensation voltage supply line CL To supply. The compensation voltage φ is for compensating for a change in the threshold voltage of the driving TFT DT, and depends on the threshold voltage of the driving TFT DT sensed through the sensing current. The data driving circuit may output a compensation voltage φ suitable for the threshold voltage of the current driving TFT DT by referring to a first look-up table previously set (compensation voltage according to the threshold voltage is stored). The compensation voltage φ may gradually increase as the threshold voltage of the driving TFT DT is shifted to the right (+), and conversely, decrease as the threshold voltage of the driving TFT DT is shifted to the left (-). . Due to the compensation voltage φ, the threshold voltage shift of the driving TFTs is recovered, and the reduction of the driving current due to the threshold voltage shift is compensated.

한편, 본 발명은 각 화소(P)에 흐르는 구동 전류를 추가적으로 보상하기 위해, 미리 설정된 제2 룩업 테이블(구동전류에 따른 전류보상데이터가 저장되어 있음)을 참조하여 표시패널에서 계측된 각 화소(P)의 구동 전류량에 따라 데이터 구동회로(12)에 공급되는 디지털 비디오 데이터(RGB)를 타이밍 콘트롤러(11)에서 추가적으로 변조할 수도 있다. On the other hand, in the present invention, in order to additionally compensate for the driving current flowing through each pixel P, each pixel measured in the display panel with reference to a preset second lookup table (current compensation data according to the driving current is stored) ( The digital video data RGB supplied to the data driving circuit 12 may be additionally modulated by the timing controller 11 according to the driving current amount of P).

게이트 구동회로(13)는 게이트 제어신호(GDC)를 기반으로 스캔신호를 발생한다. 게이트 구동회로(13)는 스캔신호를 라인 순차 방식으로 스캔신호 공급라인에 공급한다. 게이트 구동회로(13)는 GIP(Gate-driver In Panel) 방식에 따라 표시패널(10) 상에 직접 형성될 수 있다. 게이트 구동회로(13)는 타이밍 콘트롤러(11)의 제어하에 센싱 TFT(T1)의 게이트전극에 공급될 센싱 제어신호(SEN)와 보상 TFT(T2)의 게이트전극에 공급될 보상 제어신호(CP)를 더 발생할 수 있다. 게이트 구동회로(13)는 센싱 제어신호(SEN)를 센싱제어신호 공급라인에 공급하고, 보상 제어신호(CP)를 보상제어신호 공급라인에 공급할 수 있다.The gate driving circuit 13 generates a scan signal based on the gate control signal GDC. The gate driving circuit 13 supplies the scan signal to the scan signal supply line in a line sequential manner. The gate driving circuit 13 may be directly formed on the display panel 10 according to a gate-driver in panel (GIP) method. The gate driving circuit 13 is a sensing control signal SEN to be supplied to the gate electrode of the sensing TFT T1 under the control of the timing controller 11 and a compensation control signal CP to be supplied to the gate electrode of the compensation TFT T2. Can cause more. The gate driving circuit 13 may supply the sensing control signal SEN to the sensing control signal supply line and the compensation control signal CP to the compensation control signal supply line.

도 6은 본 발명의 보상 방식을 종래의 보상 방식과 비교하여 보여준다.Figure 6 shows the compensation method of the present invention compared to the conventional compensation method.

도 6을 참조하면, 종래의 보상 방식은 구동 TFT(DT)에 흐르는 전류(Ids)를 센싱하여 구동 TFT(DT)의 문턱전압 쉬프트를 감지하고, 문턱전압 상승분(φ)에 대응되는 보상 전압만큼 데이터전압(Vdata)을 크게 변조한 후 그 변조전압(Vdata+φ)을 구동 TFT(DT)의 게이트전극에 인가하였다. 즉, 종래 보상 방식은, 구동 TFT(DT)의 문턱전압 상승으로 인해 구동 TFT(DT)의 전류 특성 커브가 오른쪽으로 쉬프트될 때, 그 쉬프트 상태를 유지하면서 단순히 구동 TFT(DT)의 게이트-소스 간 전압의 크기만을 높였다. 종래 기술에 따르면, 열화 보상으로 인해 구동 TFT의 문턱전압이 오히려 빨리 열화되는 문제점이 있다.Referring to FIG. 6, the conventional compensation method senses a threshold voltage shift of the driving TFT DT by sensing a current Ids flowing through the driving TFT DT, and compensates for a compensation voltage corresponding to the threshold voltage increase φ. After greatly modulating the data voltage Vdata, the modulation voltage Vdata+φ was applied to the gate electrode of the driving TFT DT. That is, in the conventional compensation method, when the current characteristic curve of the driving TFT DT is shifted to the right due to an increase in the threshold voltage of the driving TFT DT, the gate-source of the driving TFT DT is maintained while maintaining the shift state. Only the magnitude of the liver voltage was increased. According to the prior art, there is a problem that the threshold voltage of the driving TFT is deteriorated rather quickly due to deterioration compensation.

이에 반해, 본 발명의 보상 방식은 구동 TFT(DT)에 흐르는 전류(Ids)를 센싱하여 구동 TFT(DT)의 문턱전압 쉬프트를 감지하고, 문턱전압 상승분에 해당되는 보상 전압(φ)을 구동 TFT(DT)의 서브 게이트전극에 인가하여 문턱전압 쉬프트를 원래대로 회복시키는 방식을 취한다. 즉, 본 발명의 보상 방식은, 도 8a 및 도 8b에 도시된 것처럼 구동 TFT(DT)의 문턱전압 상승으로 인해 구동 TFT(DT)의 전류 특성 커브가 오른쪽으로 쉬프트될 때, 구동 TFT(DT)의 전류 특성 커브를 다시 제자리로 이동시키는 것이다.On the other hand, the compensation method of the present invention senses the threshold voltage shift of the driving TFT DT by sensing the current Ids flowing in the driving TFT DT and drives the compensation voltage φ corresponding to the threshold voltage increase. The threshold voltage shift is restored to the original state by applying to the sub gate electrode of (DT). That is, the compensation method of the present invention, when the current characteristic curve of the driving TFT (DT) is shifted to the right due to the threshold voltage increase of the driving TFT (DT) as shown in FIGS. 8A and 8B, the driving TFT (DT) Is to move the current characteristic curve back to its original position.

이를 위해, 본 발명의 화소(P)는 OLED, OLED에 흐르는 전류(Ids)를 제어하기 위해 더블 게이트형 구조를 갖는 구동 TFT(DT), 스캔신호(SCAN)에 따라 스위칭되어 구동 TFT(DT)의 메인 게이트전극에 데이터전압(Vdata)을 인가하는 스위치 TFT(ST), 구동 TFT(DT)의 메인 게이트전극과 소스전극 사이에 접속되어 데이터전압(Vdata)을 저장하는 제1 스토리지 커패시터(Cst1), 보상 제어신호(CP)에 따라 스위칭되어 구동 TFT(DT)의 서브 게이트전극에 보상 전압(φ)을 인가하는 보상 TFT(T2), 및 구동 TFT(DT)의 서브 게이트전극과 소스전극 사이에 접속되어 보상 전압(φ)을 저장하는 제2 스토리지 커패시터(Cst2)를 포함할 수 있다. 또한, 본 발명의 화소(P)는 센싱 제어신호(SEN)에 따라 스위칭되어 구동 TFT(DT)에 흐르는 전류를 센싱하고, 그 센싱 전류를 데이터 구동회로에 인가하는 센싱 TFT(T1)를 더 포함할 수 있다. To this end, the pixel P of the present invention is a driving TFT (DT) having a double gate type structure to control the current (Ids) flowing through the OLED, and is switched according to the scan signal (SCAN) to drive the TFT (DT) Switch TFT (ST) for applying a data voltage (Vdata) to the main gate electrode of the first storage capacitor (Cst1) is connected between the main gate electrode and the source electrode of the driving TFT (DT) to store the data voltage (Vdata) , A compensation TFT (T2) that is switched according to the compensation control signal (CP) to apply a compensation voltage (φ) to the sub gate electrode of the driving TFT (DT), and between the sub gate electrode and the source electrode of the driving TFT (DT). The second storage capacitor Cst2 may be connected to store the compensation voltage φ. Further, the pixel P of the present invention further includes a sensing TFT T1 that is switched according to the sensing control signal SEN to sense the current flowing in the driving TFT DT and applies the sensing current to the data driving circuit. can do.

OLED는 고전위 셀구동전압(VDD)과 저전위 셀구동전압(VSS) 사이에 접속된다. 구동 TFT(DT)의 메인 게이트전극은 제1 노드(N1)에, 구동 TFT(DT)의 서브 게이트전극은 제3 노드(N3)에, 드레인전극은 고전위 셀구동전압(VDD)에, 그리고 소스전극은 OLED의 애노드전극에 접속된다. 스위치 TFT(ST)의 게이트전극은 스캔신호 공급라인, 드레인전극은 데이터라인(14)에, 그리고 소스전극은 제1 노드(N1)에 접속된다. 보상 TFT(T2)의 게이트전극은 보상제어신호 공급라인에, 드레인전극은 보상전압 공급라인(CL)에, 그리고 소스전극은 제3 노드(N3)에 접속된다. 센싱 TFT(T1)의 게이트전극은 센싱제어신호 공급라인에, 드레인전극은 제2 노드(N2)에, 그리고 소스전극은 센싱전류 공급라인(SL)에 접속된다.The OLED is connected between the high potential cell driving voltage (VDD) and the low potential cell driving voltage (VSS). The main gate electrode of the driving TFT DT is at the first node N1, the sub gate electrode of the driving TFT DT is at the third node N3, the drain electrode is at the high potential cell driving voltage VDD, and The source electrode is connected to the anode electrode of the OLED. The gate electrode of the switch TFT ST is connected to the scan signal supply line, the drain electrode to the data line 14, and the source electrode to the first node N1. The gate electrode of the compensation TFT T2 is connected to the compensation control signal supply line, the drain electrode is connected to the compensation voltage supply line CL, and the source electrode is connected to the third node N3. The gate electrode of the sensing TFT T1 is connected to the sensing control signal supply line, the drain electrode is connected to the second node N2, and the source electrode is connected to the sensing current supply line SL.

도 7a은 내지 도 8b는 구동 TFT(DT)에서 문턱전압이 보상되는 원리를 보여준다.7A to 8B show the principle in which the threshold voltage is compensated in the driving TFT (DT).

도 7a 및 도 7b와 같이, 본 발명의 구동 TFT(DT)는 전류 채널 형성을 위한 액티브층을 사이에 두고 상하에 위치하는 메인 게이트전극(GE1)과 서브 게이트전극(GE2), 및 액티브층을 통해 서로 전기적으로 연결되는 소스전극(SE)과 드레인전극(DE)을 포함한다. 메인 게이트전극(GE1)에는 데이터전압(Vdata)이 인가되며, 메인 게이트전극(GE)과 소스전극(SE) 간 전위차에 따라 채널에 흐르는 구동전류가 결정된다. 7A and 7B, the driving TFT DT of the present invention includes a main gate electrode GE1 and a sub-gate electrode GE2 positioned above and below an active layer for forming a current channel, and an active layer. It includes a source electrode (SE) and a drain electrode (DE) that are electrically connected to each other through. The data voltage Vdata is applied to the main gate electrode GE1, and a driving current flowing through the channel is determined according to a potential difference between the main gate electrode GE and the source electrode SE.

도 7a에서와 같이 메인 게이트전극(GE1)에 포지티브 데이터전압(Vdata)을 장시간 인가하면, 메인 게이트전극(GE1)에 쌓이는 포지티브 스트레스로 인해 채널 내에 전자(-)가 몰려 채널 저항이 증가된다. 이에 따라 도 8a와 같이 구동 TFT(DT)의 문턱전압은 'Vth1'에서 'Vth2'로 'φ'만큼 쉬프트되고, 구동 TFT(DT)의 전류 특성 커브는 'A'에서 'B'로 오른쪽으로 쉬프트된다. 그 결과 동일한 조건하에서 구동 TFT(DT)의 드레인-소스간 흐르는 전류는 'I1'에서 'I2'로 'ΔI'만큼 낮아지게 된다.When a positive data voltage Vdata is applied to the main gate electrode GE1 for a long time as in FIG. 7A, electrons (-) are concentrated in the channel due to the positive stress accumulated in the main gate electrode GE1 to increase channel resistance. Accordingly, as shown in FIG. 8A, the threshold voltage of the driving TFT DT is shifted from'Vth1' to'Vth2' by'φ', and the current characteristic curve of the driving TFT DT is from'A' to'B' to the right. Shift. As a result, the current flowing between the drain and the source of the driving TFT DT under the same condition is lowered from'I1' to'I2' by'ΔI'.

이 상태에서, 도 7b와 같이 서브 게이트전극(GE2)에 'φ'에 상당하는 보상 전압을 인가하면, 채널 내에 전자(-)가 분산되어 채널 저항이 줄어들게 된다. 이에 따라 도 8b와 같이 구동 TFT(DT)의 문턱전압은 'Vth2'에서 'Vth1'가까이 회복되고 구동 TFT(DT)의 전류 특성 커브는 'B'에서 'C'로 왼쪽으로 쉬프트된다. 그 결과 동일한 조건하에서 구동 TFT(DT)의 드레인-소스간 흐르는 전류는 'I2'에서 'I1'로 'ΔI'만큼 보상되게 된다.In this state, when a compensation voltage corresponding to'φ' is applied to the sub-gate electrode GE2 as shown in FIG. 7B, electrons (-) are dispersed in the channel and channel resistance is reduced. Accordingly, as shown in FIG. 8B, the threshold voltage of the driving TFT DT is recovered from'Vth2' to'Vth1' and the current characteristic curve of the driving TFT DT is shifted from'B' to'C' to the left. As a result, the current flowing between the drain and source of the driving TFT DT under the same conditions is compensated by'ΔI' from'I2' to'I1'.

도 9는 더블 게이트형 구동 TFT(DT)의 전기적 특성을 보여준다.9 shows the electrical characteristics of the double gate type driving TFT (DT).

도 9를 참조하면, 더블 게이트형 구동 TFT(DT)에서 서브 게이트전극에 인가되는 바이어스 전압을 크게 할수록, 구동 TFT(DT)의 전기적 특성이 변하고 있음을 보여준다. 서브 게이트전극에 인가되는 바이어스 전압을 각각 -30V,-20V,-10V,0V,10V,20V,30V로 인가한 경우, 구동 TFT(DT)의 문턱전압 및 전류 특성 커브는 상기 바이어스 전압의 크기에 비례하여 점점 왼쪽으로 쉬프트되게 된다.Referring to FIG. 9, it is shown that as the bias voltage applied to the sub-gate electrode in the double gate type driving TFT (DT) is increased, electrical characteristics of the driving TFT (DT) are changing. When bias voltages applied to the sub-gate electrodes are respectively applied to -30V, -20V, -10V, 0V, 10V, 20V, and 30V, the threshold voltage and current characteristic curve of the driving TFT (DT) are determined by the magnitude of the bias voltage. It shifts to the left in proportion.

도 10 및 도 11은 양방향 제어가 가능한 더블 게이트형 구동 TFT(DT)의 종류를 보여준다.10 and 11 show the types of the double gate type driving TFT (DT) capable of bidirectional control.

본 발명의 더블 게이트형 구동 TFT(DT)는 도 10과 같이 메인 게이트전극(GE1), 소스전극(SE), 드레인전극(DE)이 모두 액티브층(ACT)의 위에 위치하는 코플라나 구조(Coplanar type)에서 액티브층(ACT) 아래에 형성된 서브 게이트전극(GE2)을 포함하여 이루어진다. 코플라나 구조로 이루어진 더블 게이트형 구동 TFT(DT)를 구체적으로 살펴보면, 기판(GLS) 상에 서브 게이트전극(GE2)이 형성되고, 서브 게이트전극(GE2)과 액티브층(ACT) 사이에는 버퍼층(BUF)이 형성된다. 그리고, 액티브층(ACT)층 상에는 게이트 절연막(GI), 메인 게이트전극(GE1), 및 층간 절연막(IL)이 순차적으로 형성되며, 층간 절연막(IL)과 게이트 절연막(GI)을 관통하여 액티브층(ACT)에 연결되는 소스전극과 드레인전극이 형성된다.In the double gate type driving TFT (DT) of the present invention, a coplanar structure (Coplanar) in which the main gate electrode GE1, the source electrode SE, and the drain electrode DE are all positioned on the active layer ACT as shown in FIG. type), including the sub gate electrode GE2 formed under the active layer ACT. Looking specifically at the double gate type driving TFT (DT) made of a coplanar structure, a sub gate electrode GE2 is formed on the substrate GLS, and a buffer layer (a) is formed between the sub gate electrode GE2 and the active layer ACT. BUF) is formed. In addition, the gate insulating film GI, the main gate electrode GE1, and the interlayer insulating film IL are sequentially formed on the active layer ACT layer, and penetrate the interlayer insulating film IL and the gate insulating film GI to pass through the active layer. A source electrode and a drain electrode connected to (ACT) are formed.

본 발명의 더블 게이트형 구동 TFT(DT)는 도 11과 같이 메인 게이트전극(GE1), 소스전극(SE), 드레인전극(DE)이 모두 액티브층(ACT)의 아래에 위치하는 역코플라나 구조(Inverted coplanar type)에서 액티브층(ACT) 위에 형성된 서브 게이트전극(GE2)을 포함하여 이루어진다. 역코플라나 구조로 이루어진 더블 게이트형 구동 TFT(DT)를 구체적으로 살펴보면, 기판(GLS) 상에 메인 게이트전극(GE1)과 게이트 절연막(GI)이 순차적으로 형성되고, 게이트 절연막(GI) 상에 액티브층(ACT)과 소스전극(SE) 및 드레인전극(DE)이 동시에 형성된다. 그리고, 액티브층(ACT)과 소스전극(SE) 및 드레인전극(DE)을 덮는 보호막(PASI)이 형성되고, 그 위에 보조 게이트전극(GE2)이 형성된다.In the double gate type driving TFT (DT) of the present invention, as shown in FIG. 11, the main gate electrode GE1, the source electrode SE, and the drain electrode DE are all located under the active layer ACT. Inverted coplanar type) includes a sub gate electrode GE2 formed on the active layer ACT. Looking specifically at the double gate type driving TFT (DT) made of an inverted coplanar structure, the main gate electrode GE1 and the gate insulating layer GI are sequentially formed on the substrate GLS, and are active on the gate insulating layer GI. The layer ACT and the source electrode SE and the drain electrode DE are formed at the same time. Then, a protective layer PASI covering the active layer ACT, the source electrode SE, and the drain electrode DE is formed, and an auxiliary gate electrode GE2 is formed thereon.

도 12a 내지도 도 12c는 본 발명에 따른 문턱전압 보상 과정을 순차적으로 보여준다. 도 12a 내지도 도 12c에서는 센싱 TFT(T1)가 더 형성된 화소의 동작을 일 예로 설명한다. 센싱 TFT(T1)가 형성되지 않은 화소에는 아래에서 설명하는 구동전류 센싱 동작만이 제외될 뿐 나머지 동작들이 그대로 적용된다. 12A to 12C sequentially show a threshold voltage compensation process according to the present invention. 12A to 12C, an operation of a pixel in which the sensing TFT T1 is further formed will be described as an example. In the pixel on which the sensing TFT T1 is not formed, only the driving current sensing operation described below is excluded, and the remaining operations are applied as it is.

본 발명은 도 12a와 같이 스위치 TFT(ST)를 턴 온 시켜 데이터전압(Vdata)을 구동 TFT(DT)의 메인 게이트전극에 접속된 제1 스토리지 커패시터(Cst1)에 인가하여 저장한다. 제1 스토리지 커패시터(Cst1)의 양단 전압 즉, 구동 TFT(DT)의 게이트-소스 간 전압에 의해 구동 TFT(DT)의 드레인-소스 간에는 도 12b와 같은 구동전류(Ids)가 흐른다. 이 상태에서, 본 발명은 센싱 TFT(T1)를 턴 온 시켜 구동 TFT(DT)에 흐르는 구동전류(Ids)를 센싱하여 데이터 구동회로에 공급한다. In the present invention, the switch TFT (ST) is turned on as shown in FIG. 12A to apply and store the data voltage (Vdata) to the first storage capacitor (Cst1) connected to the main gate electrode of the driving TFT (DT). The driving current Ids as shown in FIG. 12B flows between the drain-source of the driving TFT DT due to the voltage across the first storage capacitor Cst1, that is, the gate-source voltage of the driving TFT DT. In this state, the present invention turns on the sensing TFT T1 to sense the driving current Ids flowing in the driving TFT DT and supplies it to the data driving circuit.

본 발명은 구동전류(Ids)에 대응되는 보상 전압을 데이터 구동회로에서 생성한다. 그리고, 본 발명은 보상 TFT(T2)를 턴 온 시켜 보상 전압을 구동 TFT(DT)의 서브 게이트전극에 접속된 제2 스토리지 커패시터(Cst2)에 인가하여 저장한다. 메인 게이트전극에 인가되는 게이트 바이어스 스트레스로 인한 문턱전압 쉬프트는, 서브 게이트전극에 인가되는 보상 전압에 의해 회복된다. The present invention generates a compensation voltage corresponding to the driving current (Ids) in the data driving circuit. Then, the present invention turns on the compensation TFT (T2) to apply and store the compensation voltage to the second storage capacitor (Cst2) connected to the sub-gate electrode of the driving TFT (DT). The threshold voltage shift due to the gate bias stress applied to the main gate electrode is recovered by the compensation voltage applied to the sub gate electrode.

상술한 바와 같이, 본 발명은 게이트전극이 2개인 더블 게이트형 구동 TFT를 구비하고, 구동 TFT의 문턱전압 변화분에 대응되는 보상 전압을 구동 TFT의 서브 전극에 인가하여 문턱전압 쉬프트를 원래대로 회복시킨다. 이에 따라, 본 발명은 보상과정에서 열화가 가속화되고 보상 범위에 한계가 있는 종래의 문제점을 해결한다. 본 발명은 문턱전압 열화를 효율적으로 보상함으로써, 장시간 구동에 따른 구동 불량을 방지하고 신뢰성을 개선할 수 있으며, 휘도 균일도를 높여 제품의 수명을 크게 연장할 수 있다.As described above, the present invention includes a double gate type driving TFT having two gate electrodes, and a compensation voltage corresponding to a change in threshold voltage of the driving TFT is applied to the sub electrode of the driving TFT to restore the threshold voltage shift. Order. Accordingly, the present invention solves a conventional problem in which deterioration is accelerated in the compensation process and the compensation range is limited. The present invention can effectively compensate for the threshold voltage deterioration, prevent driving failure due to long-term driving, improve reliability, and increase the uniformity of luminance to significantly extend the life of the product.

이상 설명한 내용을 통해 당업자라면 본 발명의 기술사상을 일탈하지 아니하는 범위에서 다양한 변경 및 수정이 가능함을 알 수 있을 것이다. 따라서, 본 발명의 기술적 범위는 명세서의 상세한 설명에 기재된 내용으로 한정되는 것이 아니라 특허 청구의 범위에 의해 정하여져야만 할 것이다.Through the above description, those skilled in the art will appreciate that various changes and modifications are possible without departing from the technical idea of the present invention. Therefore, the technical scope of the present invention should not be limited to the contents described in the detailed description of the specification, but should be determined by the scope of the claims.

10 : 표시패널 11 : 타이밍 콘트롤러
12 : 데이터 구동회로 13 : 게이트 구동회로
14 : 데이터라인 15 : 게이트라인
10: display panel 11: timing controller
12: data driving circuit 13: gate driving circuit
14: data line 15: gate line

Claims (4)

다수의 화소들을 포함하여 화상을 표시하는 표시패널; 및
보상 전압을 생성하여 상기 표시패널에 공급하는 데이터 구동회로를 구비하고;
상기 화소들 각각은,
유기발광다이오드;
제1 노드에 연결된 메인 게이트전극과 제3 노드에 연결된 서브 게이트전극을 갖는 더블 게이트형으로 이루어지며, 구동 전류를 생성하는 구동 TFT;
데이터라인과 상기 제1 노드 사이에 연결되어 상기 구동 전류를 결정하기 위한 데이터전압을 상기 구동 TFT의 상기 메인 게이트전극에 인가하는 스위치 TFT;
상기 구동 TFT의 소스전극과 상기 유기발광다이오드 사이의 제2 노드와 상기 제3 노드에 연결되어 상기 보상 전압을 저장하는 스토리지 커패시터;
상기 구동 TFT의 상기 서브 게이트전극에 연결되어, 상기 구동 TFT의 문턱전압 쉬프트를 보상하기 위한 상기 보상 전압을 상기 구동 TFT의 상기 서브 게이트전극에 인가하는 보상 TFT; 및
상기 제2 노드와 센싱전류 공급라인 사이에 연결된 센싱 TFT를 구비하고,
상기 스토리지 커패시터는, 상기 보상 전압을 유지하기 위해 상기 구동 TFT의 상기 서브 게이트전극과 상기 보상 TFT에 연결된 제1 단자와, 상기 센싱 TFT와 상기 유기발광다이오드에 직접 연결된 제2 단자를 갖되,
제1 기간 동안 상기 스위치 TFT가 턴 온 되고 상기 센싱 TFT와 상기 보상 TFT가 턴 오프 되어, 상기 구동 전류가 상기 구동 TFT를 통해 흐르게 되고,
상기 제1 기간에 이은 제2 기간 동안 상기 센싱 TFT가 턴 온 되고 상기 스위치 TFT와 상기 보상 TFT가 턴 오프 되어, 상기 데이터 구동회로는 상기 센싱 TFT와 상기 센싱전류 공급라인을 통해 상기 구동 전류 중의 일부인 제1 전류를 센싱하여 상기 보상 전압을 생성하고,
상기 제2 기간에 이은 제3 기간 동안 상기 보상 TFT가 턴 온 되고 상기 스위치 TFT와 상기 센싱 TFT가 턴 오프 되어, 상기 데이터 구동회로는 상기 보상 전압을 보상전압 공급라인을 통해 상기 구동 TFT의 상기 서브 게이트전극에 인가하여 상기 구동 TFT의 문턱전압 쉬프트를 원래의 상태로 원복시키고,
상기 보상 전압의 크기는 상기 구동 TFT의 문턱전압 쉬프트량에 따라 결정되고,
상기 제2 기간 동안 상기 구동 TFT에 흐르는 구동전류는,
상기 제2 노드에서 상기 센싱 TFT로 인가되는 상기 제1 전류와, 상기 제2 노드에서 상기 유기발광다이오드로 인가되는 제2 전류로 분배되고,
상기 구동 TFT의 문턱전압 쉬프트량은 상기 제1 전류에 반영된 유기발광 표시장치.
A display panel that displays an image including a plurality of pixels; And
And a data driving circuit that generates a compensation voltage and supplies it to the display panel;
Each of the pixels,
Organic light emitting diodes;
A driving TFT formed of a double gate type having a main gate electrode connected to a first node and a sub gate electrode connected to a third node, and generating a driving current;
A switch TFT connected between a data line and the first node to apply a data voltage for determining the driving current to the main gate electrode of the driving TFT;
A storage capacitor connected to the second node and the third node between the source electrode of the driving TFT and the organic light emitting diode to store the compensation voltage;
A compensation TFT connected to the sub gate electrode of the driving TFT and applying the compensation voltage for compensating the threshold voltage shift of the driving TFT to the sub gate electrode of the driving TFT; And
And a sensing TFT connected between the second node and a sensing current supply line,
The storage capacitor has a first terminal connected to the sub-gate electrode of the driving TFT and the compensation TFT to maintain the compensation voltage, and a second terminal directly connected to the sensing TFT and the organic light emitting diode,
During the first period, the switch TFT is turned on and the sensing TFT and the compensation TFT are turned off, so that the driving current flows through the driving TFT,
During the second period following the first period, the sensing TFT is turned on and the switch TFT and the compensation TFT are turned off, so that the data driving circuit is a part of the driving current through the sensing TFT and the sensing current supply line. The first voltage is sensed to generate the compensation voltage,
During the third period following the second period, the compensation TFT is turned on and the switch TFT and the sensing TFT are turned off, so that the data driving circuit supplies the compensation voltage to the sub of the driving TFT through a compensation voltage supply line. Applied to a gate electrode to restore the threshold voltage shift of the driving TFT to its original state,
The magnitude of the compensation voltage is determined according to the threshold voltage shift amount of the driving TFT,
The driving current flowing through the driving TFT during the second period is
The first current applied from the second node to the sensing TFT and the second current applied from the second node to the organic light emitting diode are distributed.
The amount of threshold voltage shift of the driving TFT is an organic light emitting display device reflected in the first current.
삭제delete 삭제delete 제 1 항에 있어서,
상기 제1 전류는 상기 구동 TFT의 드레인-소스 사이에 흐르는 상기 구동전류 중의 일부인 유기발광 표시장치.
According to claim 1,
The first current is a part of the driving current flowing between the drain-source of the driving TFT.
KR1020190106100A 2019-08-28 2019-08-28 Organic Light Emitting Display KR102122543B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190106100A KR102122543B1 (en) 2019-08-28 2019-08-28 Organic Light Emitting Display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190106100A KR102122543B1 (en) 2019-08-28 2019-08-28 Organic Light Emitting Display

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020120147751A Division KR102122517B1 (en) 2012-12-17 2012-12-17 Organic Light Emitting Display

Publications (2)

Publication Number Publication Date
KR20190103131A KR20190103131A (en) 2019-09-04
KR102122543B1 true KR102122543B1 (en) 2020-06-26

Family

ID=67950140

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190106100A KR102122543B1 (en) 2019-08-28 2019-08-28 Organic Light Emitting Display

Country Status (1)

Country Link
KR (1) KR102122543B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210087614A (en) 2020-01-02 2021-07-13 삼성디스플레이 주식회사 Display device and method of driving the same
KR20220042843A (en) * 2020-09-28 2022-04-05 엘지디스플레이 주식회사 Display panel and display device using the same
CN114694589A (en) * 2022-05-06 2022-07-01 京东方科技集团股份有限公司 Pixel driving circuit and method and display panel

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004097782A1 (en) * 2003-05-02 2004-11-11 Koninklijke Philips Electronics N.V. Active matrix oled display device with threshold voltage drift compensation
JP5207885B2 (en) * 2008-09-03 2013-06-12 キヤノン株式会社 Pixel circuit, light emitting display device and driving method thereof
KR101117729B1 (en) * 2009-12-17 2012-03-07 삼성모바일디스플레이주식회사 Pixel circuit, and organic light emitting display and method for controlling a brightness thereof

Also Published As

Publication number Publication date
KR20190103131A (en) 2019-09-04

Similar Documents

Publication Publication Date Title
KR102122517B1 (en) Organic Light Emitting Display
TWI660337B (en) Electrolulminescent display device and driving method of the same
KR102081132B1 (en) Organic Light Emitting Display
US10354592B2 (en) AMOLED pixel driver circuit
KR101528961B1 (en) Organic Light Emitting Display And Driving Method Thereof
KR101374477B1 (en) Organic light emitting diode display device
US11075257B2 (en) Electroluminescence display and method for driving the same
US10366655B1 (en) Pixel driver circuit and driving method thereof
US9842538B2 (en) Organic light emitting display device and method for driving the same
KR102578715B1 (en) Organic light emitting diode display
KR20170003247A (en) Device And Method For Sensing Threshold Voltage Of Driving TFT included in Organic Light Emitting Display
KR20120009887A (en) Organic Light Emitting Diode Display And Driving Method Thereof
KR20150057672A (en) Organic Light Emitting Display And Threshold Voltage Compensation Method Thereof
KR102122543B1 (en) Organic Light Emitting Display
KR20180014387A (en) Organic Light Emitting Display And Driving Method Of The Same
KR20170054654A (en) Organic light emitting diode display
KR20180072905A (en) Display device and driving method therof
KR101973752B1 (en) Organic light emitting display device
KR101491152B1 (en) Organic Light Emitting Diode Display
JP2009086252A (en) Image display apparatus
KR20220067583A (en) Display device and driving method of the same
KR101887238B1 (en) Organic light emitting diode displayd
KR20190057705A (en) Organic light emitting diode display device and method for driving the same
KR102519820B1 (en) Organic Light Emitting Display and Driving Method thereof
KR20110048346A (en) Organic Light Emitting Diode Display And Driving Method Thereof

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant