KR102086617B1 - Method for the production of biomass of aerobic microorganisms - Google Patents

Method for the production of biomass of aerobic microorganisms Download PDF

Info

Publication number
KR102086617B1
KR102086617B1 KR1020190100430A KR20190100430A KR102086617B1 KR 102086617 B1 KR102086617 B1 KR 102086617B1 KR 1020190100430 A KR1020190100430 A KR 1020190100430A KR 20190100430 A KR20190100430 A KR 20190100430A KR 102086617 B1 KR102086617 B1 KR 102086617B1
Authority
KR
South Korea
Prior art keywords
nutrient medium
biomass
gaseous hydrocarbons
microorganisms
culture
Prior art date
Application number
KR1020190100430A
Other languages
Korean (ko)
Inventor
조윤경
세르게이 알렉산드로비치 글루히흐
안드레이 페트로비치 템류코브
아르카디이 세르게예비치 글루히흐
베로니카 안드레예브나 템류코바
Original Assignee
주식회사 바이오프린
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 바이오프린 filed Critical 주식회사 바이오프린
Priority to KR1020190100430A priority Critical patent/KR102086617B1/en
Application granted granted Critical
Publication of KR102086617B1 publication Critical patent/KR102086617B1/en
Priority to PCT/KR2020/010107 priority patent/WO2021033950A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/02Preparation of hydrocarbons or halogenated hydrocarbons acyclic
    • C12P5/023Methane
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • C12M27/18Flow directing inserts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/06Nozzles; Sprayers; Spargers; Diffusers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Abstract

The present invention relates to a method for producing biomass in aerobic microorganisms. More specifically, the present invention relates to a method for producing biomass in aerobic microorganisms, to be used for feed, food, and other purposes via biosynthesis methods of methane specifically different from natural gas in the field of microbiology. To this end, the method includes a process of culturing mixed microorganisms by continuously saturating gaseous hydrocarbons and initiators when removing accumulated biomass while supplying a nutrient medium under conditions of continuous chemostat biosynthesis.

Description

호기성 미생물의 바이오매스 생산방법{Method for the production of biomass of aerobic microorganisms}Method for the production of aerobic microorganisms {Method for the production of biomass of aerobic microorganisms}

본 발명은 호기성 미생물의 바이오매스 생산방법에 관한 것으로서, 보다 상세하게는 미생물학 분야에서 특히 천연가스와 다른 메탄의 생합성 방법에 의한 사료, 식품 및 기타 목적으로 위한 호기성 미생물의 바이오매스 생산방법과 관련이 있다.The present invention relates to a method for producing biomass of aerobic microorganisms, and more particularly, to a method for producing biomass of aerobic microorganisms for feed, food and other purposes by the biosynthesis method of natural gas and other methane in the field of microbiology. have.

현재 메탄 영양체 단백질의 생산은 미국 캘리포니아의 Calysta사와 덴마크의 UniBio의 두 회사에서만 생산되는 것으로 보고 되어 있다. 이 두 곳을 제외하면 세계적으로 메탄 영양체 단백질의 활발한 생산이 이루어지지 않고 있으며, 단지 실험적인 기술만이 보고되고 있다.Currently, the production of methane nutrient proteins is reportedly produced by two companies, Calysta, California, USA and UniBio, Denmark. Except for these two, there is no active production of methane nutrient proteins worldwide, and only experimental techniques have been reported.

또한, 이들은 1985년부터 1994년까지 작동했던 스베틀리 야르(Sbetly Yar)에서 연간 1만톤의 단백질을 생산할 수 있는 파일럿 산업장비의 U-회로를 이용하여 CH4와 O2가스 혼합물을 재순환시키는데 사용하였다.They were also used to recycle CH4 and O2 gas mixtures using a U-circuit in a pilot industrial machine capable of producing 10,000 tonnes of protein per year in Sbetly Yar, which operated from 1985 to 1994.

이러한 기술은 두 회사들의 노하우로 알려져 있는데, 유일한 차이점은 그들이 이 회로를 따라 배양액을 재활용하고 동시에 가스를 주입한다는 것이다.This technique is known as the know-how of the two companies, with the only difference being that they recycle the culture along the circuit and inject gas at the same time.

즉, 배양액의 재순환과 혼합은 고속 믹서기와 펌프를 사용하여 수행되는데, 이를 통해 배양액이 지속적으로 순환되도록 이루어지는 바, 여기서 생산되는 미생물은 스트레스, 억제 및 심지어 비활성화되는 문제점이 있으며, 이러한 기술은 에너지가 집약적이지 못하고 불안정한 형태의 문제점이 있었다.In other words, the recycling and mixing of the culture medium is carried out using a high speed mixer and pump, through which the culture medium is continuously circulated, and the microorganisms produced there are problems of stress, suppression and even deactivation. There was a problem of unintensive and unstable forms.

한편, 단백질 메탄 미생물의 생산에 대한 많은 선행기술이 있는데, 아래와 같다.On the other hand, there are many prior art for the production of protein methane microorganisms, as follows.

1. WO2010069313A2 / 2010.06.24 공개 / U-형상 또는 노즐 U-루프 발효조와 발효의 방법1. WO2010069313A2 / 2010.06.24 Publication / U-shaped or nozzle U-loop fermenter and method of fermentation

2. EP0306466A2 / 1989.03..08 공개 / 미생물 생산을 위한 방법 및 수단2. EP0306466A2 / 1989.03.08 Publication / Methods and means for microbial production

3. DE2308087A1 / 1974.08.22 공개 / 발효 절차3.DE2308087A1 / August 22, 1974 Publication / entry into force

4. EP0808910A2 / 1997.11.26 공개 / 박테리아에 의해 생성되는 철 이온의 생성 및 사용을 위한 장치 및 방법4. EP0808910A2 / 1997.11.26 Publication / Apparatus and method for the production and use of iron ions produced by bacteria

5. EP0829534A2 / 1998.03.18 공개 / 가스 추진 발효 시스템5.EP0829534A2 / 1998.03.18 Public / gas-propelled fermentation system

6. US7579163 / 2011.03.02 등록 / 발효 방법6.US7579163 / 2011.03.02 Registration / Fermentation method

7. US20100035330 / 2010.02.11 공개 / 바이오 리액터7.US20100035330 / 2010.02.11 Disclosure / Bioreactor

8. WO2003016460A1 / 2003.02.27 공개 / 발효 방법8. WO2003016460A1 / 2003.02.27 Disclosure / fermentation method

9. WO2014060778A1 / 2014.04.24 공개 / 발효 장치와 단백질 생산을 위한 발효의 방법9. WO2014060778A1 / 2014.04.24 Publication / Fermentation apparatus and method of fermentation for protein production

또한, 다른 알려진 기술로는 "미생물학적 합성 과정을 위한 발효 장치(저자 : A.Yu. Vinarov, L.S. Gordeev, A.A. Kukarenko, V.I. Panfilov.)"라는 서적에 기재되어 있으며, 아래과 같다.Further known techniques are described in the book "Fermentation Devices for Microbiological Synthesis Processes (Author: A. Yu. Vinarov, L. S. Gordeev, A. A. Kukarenko, V. I. Panfilov.).

이 기술은 고압에서 작동할 수 있는 용기에 미생물의 필수 활성에 필요한 미네랄 염 및 미량의 기체 기질 (천연, 액화 가스)을 흡수 할 수 있는 미생물의 배양물을 함유하는 배양액을 부어 넣는다.This technique pours a culture medium containing a culture of microorganisms capable of absorbing mineral salts and trace gaseous substrates (natural, liquefied gas) required for the essential activity of the microorganisms in a vessel that can operate at high pressure.

이후 순환펌프는 폐쇄 회로를 통해 배양액의 연속적인 순환을 제공하는 것으로, 그 순서는 탱크에서 펌프로 이후 산소와 천연가스의 혼합가스를 흡입하는 액체 분사 배출기로, 마지막으로 다음 탱크로 순환하도록 한다.The circulation pump then provides a continuous circulation of the culture through a closed circuit, the sequence being circulated from the tank to the pump and then to a liquid jet ejector that sucks the mixed gas of oxygen and natural gas and finally to the next tank.

여기서, 이젝터의 흡입 노즐은 탱크의 상부에 부착되어 천연가스와 산고의 혼합물을 수회 재순환시킬 수 있도록 하며, 특정 비율로 혼합된 깨끗한 정량의 천연가스와 산소도 이젝터의 흡입구로 공급되도록 한다.Here, the suction nozzle of the ejector is attached to the upper portion of the tank to recycle the mixture of natural gas and acid several times, and the clean quantity of natural gas and oxygen mixed in a certain ratio is also supplied to the inlet of the ejector.

이때, 천연가스와 산소의 비율은 폭발위험성을 배제하도록 한다.At this time, the ratio of natural gas and oxygen should exclude the risk of explosion.

이후, 탱크 내부에서 배양약을 집중적이고 지속적으로 순환시켜 액체 분사 장치에서 배양액과 함께 약제를 배출하여 순수한 산소와 가스 혼합물을 연속적으로 접촉시키도록 한다.Thereafter, the culture medium is intensively and continuously circulated in the tank to discharge the medicine together with the culture solution from the liquid injector to continuously contact the pure oxygen and gas mixture.

그러나, 이러한 장치는 1972년 Nart-Kala시의 생화학 공장에 설치되었지만, 폭발 위험이 높고 기술이 부족하기 때문에 실제로 작동되지 못한 문제점이 있다.However, such a device was installed in a biochemical plant in Nart-Kala city in 1972, but there was a problem in that it could not be actually operated due to the high risk of explosion and lack of technology.

한편, 미생물을 재배하는 방법과 그 실행을 위한 설비에 대한 기술이 러시아 특허 2021353호에 게재되어 있으며, 이 방법은 미생물에 가스 공급과 도입 된 가스의 소비를 위해 두 구역 사이를 순환하는 수분 미네랄 영양 배지에서 미생물을 배양하는 것을 포함한다.On the other hand, a description of the method of growing microorganisms and the equipment for their execution is disclosed in Russian Patent No. 2021353, which is a water mineral nutrition that circulates between two zones for gas supply to microorganisms and consumption of introduced gases. Culturing the microorganisms in the medium.

이때, 공급 가스의 도입은 각 공급 가스의 분압을 변화시킴으로써 미생물의 성장 속도에 따라 가스의 도입 속도를 조절하면서 확산막의 표면을 통해 수행되며, 가스의 도입은 다수의 멤브레인의 표면을 통해 개별적으로 수행 될 수 있다.At this time, the introduction of the feed gas is performed through the surface of the diffusion membrane while adjusting the rate of introduction of the gas in accordance with the growth rate of the microorganism by changing the partial pressure of each feed gas, the introduction of the gas is carried out individually through the surface of the plurality of membranes Can be.

이러한 방법을 수행하기 위한 장치는 배양 유닛 및 가스 전달 유닛을 포함하며, 후자는 가스 공급원과 통신하는 그들의 열 사이에 공동을 형성하는 소수성 멤브레인 요소 그룹으로 이루어진다.The apparatus for carrying out this method comprises a culture unit and a gas delivery unit, the latter consisting of a group of hydrophobic membrane elements which form a cavity between their rows in communication with the gas source.

한편, 바이오매스를 생산하는 알려진 방법으로는 구소련의 단백질 물질 생합성 연구소 및 미생물 과학 기술 연구소(GDR)에서 발표한 방법이 있으며, 이 기술은 미생물 배양 과정에서 영양 배지의 요소들 중 하나의 일정한 농도를 유지하면서 탄소원으로 질소, 인, 무기 염 및 메탄의 공급원을 함유하는 영양 배지를 비멸균 조건하에서 메탄 산화균 박테리아의 배양을 포함하며, 배양 과정에서 구리 이온의 농도를 0.05 내지 2mg/ℓ로 유지하는 기술이 있다.On the other hand, known methods of producing biomass include methods published by the Soviet Union for the study of protein material biosynthesis and the Institute of Microbiological Science and Technology (GDR), which produce a constant concentration of one of the elements of the nutrient medium during microbial cultivation. Nutrient medium containing a source of nitrogen, phosphorus, inorganic salts and methane as the carbon source, while culturing the methane oxidizing bacteria under non-sterile conditions, and maintaining the concentration of copper ions at 0.05 to 2 mg / l There is a technique.

또한, 호기성 미생물 바이오매스의 생산을 위한 방법으로, 러시아 특허공고 제2322488호(2008.04.20 공개)가 있다.Further, as a method for the production of aerobic microbial biomass, there is Russian Patent Publication No. 232488 (published on April 20, 2008).

이 방법은 미네랄 영양 배지를 공급하고 축적 된 바이오 매스를 제거 할 때 폐쇄 회로 내에서 배양액을 연속적으로 순환시키고 기체 탄화수소 및 폭 기제로 연속적으로 분리 포화시키는 조건에서 미생물을 배양하는 단계를 포함한다.The method includes culturing the microorganisms under conditions of continuously circulating the culture in a closed circuit and continuously separating and saturating with gaseous hydrocarbons and aeration agents when feeding the mineral nutrient medium and removing the accumulated biomass.

여기서 폭 기제는 에어레이션제이며, 한번 배양액과 접촉시킨 후 제거하여 포화상태를 유지하도록 한다.Here, the aeration agent is an aeration agent, and once removed from contact with the culture solution to maintain the saturation state.

또한, 기체 탄화수소의 포화는 완전히 용해 될 때까지 폐루프에서 기체 탄화수소의 재순환으로 인해 배양액과 반복적으로 접촉하면서 수행되는 것으로, 이러한 방법으로 바이오매스를 생산하면 생산을 위한 에너지 소비를 줄이고, 생산성을 향상시킬 수 있다.In addition, saturation of gaseous hydrocarbons is carried out by repeated contact with the culture due to the recycling of gaseous hydrocarbons in the closed loop until complete dissolution.By producing biomass in this way, energy consumption for production is reduced and productivity is improved. You can.

이와 같은 종래의 미생물 바이오매스 생산방법을 도 1을 참조하여 보다 자세히 설명하도록 한다.This conventional microbial biomass production method will be described in more detail with reference to FIG. 1.

도 1에서 보는 바와 같이, 먼저 고압에서 작동할 수 있는 용기에 가스상태의 기질을 흡수할 수 있는 미생물의 배양액 및 미생물의 생명활동에 필요한 미네랄 염 및 첨가제를 함유하는 배양액을 넣는다.As shown in FIG. 1, first, a culture medium containing microorganisms capable of absorbing gaseous substrates and mineral salts and additives necessary for the biological activity of the microorganisms is placed in a container capable of operating at high pressure.

이후, 순환 펌프는 탱크에서 펌프, 액체분사이젝터까지 배양액을 닫힌 루프로 연속 순환시켜 산소와 천연가스의 가스혼합물을 흡입한 다음 탱크로 연속 순환시키도록 한다.Thereafter, the circulation pump continuously circulates the culture solution from the tank to the pump and the liquid ejector in a closed loop to inhale a gas mixture of oxygen and natural gas and then continuously circulate into the tank.

이때, 이젝터의 흡입 노즐은 탱크의 상부에 부착되어 천연가스와 산소의 혼합물을 여러번 재순환시키도록 하며, 특정 비율로 혼합된 깨끗한 정량의 천연가스와 산소도 이젝터의 흡입구로 공급되도록 한다.At this time, the suction nozzle of the ejector is attached to the upper portion of the tank to recycle the mixture of natural gas and oxygen several times, and the clean quantity of natural gas and oxygen mixed in a specific ratio is also supplied to the inlet of the ejector.

이때, 천연가스와 산소의 비율은 폭발위험성을 배제하도록 한다.At this time, the ratio of natural gas and oxygen should exclude the risk of explosion.

이후, 탱크 내부의 배양액을 집중적이고 지속적으로 순환시켜 액체 분사 장치에서 배양액과 함께 약제를 배출하여 순수한 산소와 가스 혼합물을 연속적으로 접촉시키도록 하고, 여기서 배양액은 산소와 천연가스를 소비하고 이산화탄소와 생물학적 열을 방출하도록 이루어진다.Thereafter, the culture medium in the tank is intensively and continuously circulated to discharge the medicament along with the culture medium from the liquid injector to continuously contact the pure oxygen and gas mixture, where the culture medium consumes oxygen and natural gas, and the carbon dioxide and biological Is made to release heat.

또한, 폭기제 중 산소 및 천연가스의 함량이 일정값으로 감소되고 장치가 천연가스 및 산소를 최대 90~95%까지 소비하는 경우 폭기제는 탱크에서 방출되도록 한다.In addition, the content of oxygen and natural gas in the aeration agent is reduced to a certain value and the aeration agent is released from the tank when the device consumes up to 90-95% of the natural gas and oxygen.

이러한 공정은 배양액을 탱크에 일정하게 공급하고, 축척된 미생물의 바이오매스로 배양액을 제거하여, 사용된 폭기제 및 열을 일정하게 배출하면서 연속적으로 수행된다.This process is carried out continuously with constant supply of the culture to the tank and removal of the culture with the biomass of the accumulated microorganisms, with a constant discharge of the used aeration agent and heat.

그러나, 이러한 방법의 알려진 단점은 다음과 같다.However, the known disadvantages of this method are as follows.

1. 장비에 대한 설계의 복잡성과 많은 장비 부품으로 인해 작동 신뢰성을 저하시키고 작업이 중단되는 위험이 발생된다.1. The complexity of the design of the equipment and the many equipment components create operational reliability and risk of downtime.

2. 장비의 운영 및 유지보수 비용이 높다.2. The operation and maintenance cost of the equipment is high.

3. 배양액의 연속적이고 지속적인 펌핑은 일반적인 버블링 혼합 방법과 마찬가지고 미생물에 스트레스를 유발하므로, 효율이 감소된다.3. Continuous and continuous pumping of the culture is similar to the usual bubbling mixing method and causes stress on the microorganisms, thus reducing efficiency.

4. 높은 에너지비용이 든다.4. High energy costs.

5. 이산화탄소를 포함한 대사 산물과 미사용된 공기가 그대로 대기로 방출되어 환경오염을 유발할 수 있다.5. Metabolites, including carbon dioxide, and unused air can be released into the atmosphere, causing environmental pollution.

이러한 문제점들로 인해 친환경적인 바이오매스를 생산하는 방법의 필요성이 강조되고 있는 실정이다.Due to these problems, the need for a method of producing environmentally friendly biomass is being emphasized.

본 발명은 상술한 문제점을 해결하기 위한 것으로, 본 발명의 목적은 바이오매스 생합성 과정에서 기체 및 부산물을 최대한으로 이용하고 이를 냉각시스템과 공기정화를 통해 친환경적인 발효기를 통한 호기성 미생물의 바이오매스 생산방법을 제공하는 것이다.The present invention is to solve the above problems, an object of the present invention is to maximize the use of gas and by-products in the biomass biosynthesis process and biomass production method of aerobic microorganisms through eco-friendly fermenter through cooling system and air purification To provide.

본 발명이 해결하고자 하는 과제들은 이상에서 언급된 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.Problems to be solved by the present invention are not limited to the above-mentioned problems, and other problems not mentioned will be clearly understood by those skilled in the art from the following description.

상술한 문제점을 해결하기 위해 본 발명에 따른 호기성 미생물의 바이오매스 생산방법은, 호기성 미생물의 바이오매스 생산방법으로서, 연속 케모스타트 생합성 조건에서 영양 배지를 공급하고 축적된 바이오매스를 제거할 때 기체탄화수소 및 기폭제를 연속적으로 포화시켜 혼합된 미생물을 배양하는 방법을 포함하며, 혼합 에어레이션 헤드에 의해 기체탄화수소로 혼합, 폭기 및 포화가 수행되는 것을 특징으로 한다.Biomass production method of aerobic microorganism according to the present invention to solve the above problems, a biomass production method of aerobic microorganisms, gaseous hydrocarbon when supplying a nutrient medium under continuous chemostat biosynthesis conditions and remove the accumulated biomass And a method of culturing the mixed microorganisms by continuously saturating the initiator, and characterized in that mixing, aeration and saturation with gaseous hydrocarbons are performed by the mixing aeration head.

이때, 상기 혼합 에어레이션 헤드는 영양 배지의 주입 에너지를 이용하여 발효기 내에서 자체축을 중심으로 회전 및 상승하는 와류 흐름을 생성하는 구조를 갖는 것을 특징으로 한다.At this time, the mixing aeration head is characterized in that it has a structure for generating a vortex flow that rotates and rises around its own axis in the fermenter using the injection energy of the nutrient medium.

또한, 기체탄화수소 및 기폭제를 연속적으로 포화시켜 혼합된 영양 배지는 2가지 단계(영양 배지의 제조단계 및 생합성 공정단계)에 수행되는 것을 특징으로 한다.In addition, the nutrient medium mixed by continuously saturating the gaseous hydrocarbons and the initiator is characterized in that it is carried out in two stages (manufacturing and biosynthesis process step of the nutrient medium).

이때, 영양 배지를 제조하는 단계에서 기체탄화수소 및 기폭제가 포화되었을 때, 영양 배지가 냉각되는 것을 특징으로 한다.In this case, when the gaseous hydrocarbon and the initiator are saturated in the step of preparing the nutrient medium, the nutrient medium is cooled.

또한, 기체탄화수소 및 기폭제로 포화되어 냉각된 영양 배지가 생합성 공정단계에서 배양액의 온도를 조절하기 위한 냉각제로 사용되는 것을 특징으로 한다.In addition, the nutrient medium saturated with gaseous hydrocarbons and the initiator is cooled as a coolant for controlling the temperature of the culture in the biosynthesis process step.

또한, 혼합된 배양액은 탄소원으로서 이산화탄소를 사용하고, 배양액 중에 용해된 수소를 에너지원으로 사용하는 미생물 균주를 추가로 포함시키는 것을 특징으로 한다.In addition, the mixed culture medium is characterized in that it further comprises a microbial strain using carbon dioxide as a carbon source, using hydrogen dissolved in the culture medium as an energy source.

이때, 이산화탄소가 과잉되는 경우, 상기 이산화탄소가 청록색 스피룰리나 조류의 광합성에 사용되는 것을 특징으로 한다.At this time, when the carbon dioxide is excessive, the carbon dioxide is characterized in that it is used for photosynthesis of cyan spirulina or algae.

또한, 상기 기폭제는 공기를 포함하며, 상기 기체탄화수소는 임의의 메탄 및 메탄 동족체를 포함하는 것을 특징으로 한다.In addition, the initiator includes air, the gaseous hydrocarbon is characterized in that it comprises any methane and methane homologue.

이와 같은 본 발명에 따른 호기성 미생물의 바이오매스 생산방법은 단백질 화합물의 생합성 과정에서 에너지 집약적이며, 미생물에 대한 스트레스 없는 친환경적인 방법을 제공하는 효과가 있다.Such a biomass production method of aerobic microorganism according to the present invention is energy-intensive in the biosynthesis process of protein compounds, there is an effect to provide an environmentally friendly method without stress on the microorganisms.

또한, 생합성 과정에서 기체 및 생합성 부산물을 최대한으로 이용할 수 있도록 하며, 특히 발효 초기 단계에서 영양 배지가 발효기에 공급되기 전에 냉각되므로, 용해성이 높을 뿐만 아니라, 이를 냉각시스템의 냉매로 사용할 수 있도록 하는 장점이 있다.In addition, gas and biosynthetic by-products can be used to the maximum in the biosynthesis process, and in particular, in the early stage of fermentation, the nutrient medium is cooled before being fed to the fermentor, so that it is not only highly soluble but also can be used as a refrigerant of the cooling system. There is this.

또한, 영양 배지의 주입 에너지를 이용한 혼합 에어레이션 헤드에 의해 배양액의 상승와류를 생성하여 배양액의 효율적인 혼합 및 통기를 촉진할 수 있는 효과가 있다.In addition, the mixing aeration head using the injection energy of the nutrient medium produces an upward vortex of the culture solution, which has the effect of promoting efficient mixing and aeration of the culture solution.

본 발명의 효과들은 이상에서 언급된 효과로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.Effects of the present invention are not limited to the above-mentioned effects, and other effects not mentioned will be clearly understood by those skilled in the art from the following description.

도 1은 바이오매스 생산방법의 종래기술을 나타낸 도면,
도 2는 본 발명의 호기성 미생물의 바이오매스 생산방법에 따른 발효기 장치를 개략적으로 나타낸 도면,
도 3은 본 발명의 호기성 미생물의 바이오매스 생산방법에 따른 멀티 노즐 인젝터를 개략적으로 나타낸 도면.
1 is a view showing the prior art of the biomass production method,
2 is a view schematically showing a fermentor apparatus according to the biomass production method of aerobic microorganisms of the present invention,
Figure 3 schematically shows a multi-nozzle injector according to the method for producing biomass of aerobic microorganisms of the present invention.

본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세하게 설명하고자 한다.As the present invention allows for various changes and numerous embodiments, particular embodiments will be illustrated in the drawings and described in detail in the written description.

그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. However, this is not intended to limit the present invention to specific embodiments, it should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention. In describing the drawings, similar reference numerals are used for similar elements.

어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.When a component is said to be "connected" or "connected" to another component, it may be directly connected to or connected to that other component, but it may be understood that another component may be present in the middle. Should be. On the other hand, when a component is said to be "directly connected" or "directly connected" to another component, it should be understood that there is no other component in between.

본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting of the present invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In this application, the terms "comprise" or "have" are intended to indicate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, and one or more other features. It is to be understood that the present invention does not exclude the possibility of the presence or the addition of numbers, steps, operations, components, components, or a combination thereof.

이하, 첨부한 도면들을 참조하여, 본 발명의 바람직한 실시예를 보다 상세하게 설명하고자 한다. 이하, 도면상의 동일한 구성요소에 대해서는 동일한 참조부호를 사용하고 동일한 구성요소에 대해서 중복된 설명은 생략한다. Hereinafter, with reference to the accompanying drawings, it will be described in detail a preferred embodiment of the present invention. Hereinafter, the same reference numerals are used for the same components in the drawings, and duplicate descriptions of the same components are omitted.

이하, 첨부된 도면을 참조하여, 본 발명의 실시예들을 설명하기로 한다. 각 도면에 제시된 동일한 부호는 동일한 부재를 나타낸다. 본 발명을 설명함에 있어, 관련된 공지 기능 혹은 구성에 관한 구체적인 설명은 본 발명의 요지를 모호하지 않게 하기 위하여 생략한다.Hereinafter, with reference to the accompanying drawings, it will be described embodiments of the present invention. Like reference numerals in the drawings denote like elements. In describing the present invention, detailed descriptions of related well-known functions or configurations are omitted in order not to obscure the subject matter of the present invention.

도 2는 본 발명의 호기성 미생물의 바이오매스 생산방법에 따른 발효기 장치를 개략적으로 나타낸 도면, 도 3은 본 발명의 호기성 미생물의 바이오매스 생산방법에 따른 멀티 노즐 인젝터를 개략적으로 나타낸 도면이다.2 is a view schematically showing a fermentor apparatus according to the biomass production method of aerobic microorganisms of the present invention, Figure 3 is a view schematically showing a multi-nozzle injector according to the biomass production method of aerobic microorganisms of the present invention.

상술한 도 2 내지 도 3에서 보는 바와 같이, 본 발명에 따른 호기성 미생물의 바이오매스 생산방법은, 호기성 미생물의 바이오매스 생산방법으로서, 연속 케모스타트 생합성 조건에서 영양 배지를 공급하고 축적된 바이오매스를 제거할 때 기체탄화수소 및 기폭제를 연속적으로 포화시켜 혼합된 미생물을 배양하는 방법을 포함하며, 혼합 에어레이션 헤드에 의해 기체탄화수소로 혼합, 폭기 및 포화가 수행되는 것을 특징으로 한다.2 to 3, the biomass production method of aerobic microorganism according to the present invention is a biomass production method of aerobic microorganisms, supplying a nutrient medium under continuous chemostat biosynthesis conditions and accumulates the biomass accumulated The method includes culturing the mixed microorganisms by continuously saturating the gaseous hydrocarbons and the initiator upon removal, and characterized in that mixing, aeration and saturation are performed with the gaseous hydrocarbons by the mixing aeration head.

이때, 상기 영양 배지는 미생물을 위한 자양물로써, 성장에 필요한 요소, 미량 원소, 비타민 및 성장촉진제를 포함할 수 있다.At this time, the nutrient medium is a nutrient for microorganisms, and may include elements necessary for growth, trace elements, vitamins and growth promoters.

이때, 상기 영양 배지를 공급하는 속도는 발효기로부터의 배양액의 선출속도에 상응하며, 탄소원으로써 이산화탄소를 사용하는 세균뿐만 아니라, 메탄 및 메탄 동족체의 세균으로 구성된 혼합 생산 배양물에 유입되는 미생물의 최적 세대수를 고려하여 결정할 수 있다.At this time, the rate of supplying the nutrient medium corresponds to the selection rate of the culture solution from the fermenter, the optimal number of generation of microorganisms introduced into the mixed production culture consisting of bacteria using carbon dioxide as a carbon source, as well as bacteria of methane and methane homologs This can be determined by considering.

또한, 발효기에는 멀티 노즐 인젝터(14)를 이용하여 메탄 및 공기를 통기시켜 배양액을 풍부하게 할 수 있다.In addition, the fermenter can be enriched with the culture liquid by venting methane and air using the multi-nozzle injector 14.

여기서, 상기 혼합 에어레이션 헤드는 통기 및 혼합을 위한 고속 교반기의 역할뿐만 아니라, 배양액의 재순환을 위한 파이프 펌프회로의 역할을 수행할 수 있다.Here, the mixing aeration head may serve as a pipe pump circuit for the recirculation of the culture as well as the role of a high speed stirrer for aeration and mixing.

이때, 상기 혼합 에어레이션 헤드는 영양 배지의 주입 에너지를 이용하여 발효기 내에서 자체축을 중심으로 회전 및 상승하는 와류 흐름을 생성하는 구조를 갖는 것을 특징으로 한다.At this time, the mixing aeration head is characterized in that it has a structure for generating a vortex flow that rotates and rises around its own axis in the fermenter using the injection energy of the nutrient medium.

또한, 기체탄화수소 및 기폭제를 연속적으로 포화시켜 혼합된 영양 배지는 2가지 단계(영양 배지의 제조단계 및 생합성 공정단계)에 수행되는 것을 특징으로 한다.In addition, the nutrient medium mixed by continuously saturating the gaseous hydrocarbons and the initiator is characterized in that it is carried out in two stages (manufacturing and biosynthesis process step of the nutrient medium).

이때, 영양 배지를 제조하는 단계에서 기체탄화수소 및 기폭제가 포화되었을 때, 영양 배지가 냉각되는 것을 특징으로 한다.In this case, when the gaseous hydrocarbon and the initiator are saturated in the step of preparing the nutrient medium, the nutrient medium is cooled.

또한, 기체탄화수소 및 기폭제로 포화되어 냉각된 영양 배지가 생합성 공정단계에서 배양액의 온도를 조절하기 위한 냉각제로 사용되는 것을 특징으로 한다.In addition, the nutrient medium saturated with gaseous hydrocarbons and the initiator is cooled as a coolant for controlling the temperature of the culture in the biosynthesis process step.

또한, 혼합된 배양액은 탄소원으로서 이산화탄소를 사용하고, 배양액 중에 용해된 수소를 에너지원으로 사용하는 미생물 균주를 추가로 포함시키는 것을 특징으로 한다.In addition, the mixed culture medium is characterized in that it further comprises a microbial strain using carbon dioxide as a carbon source, using hydrogen dissolved in the culture medium as an energy source.

이때, 이산화탄소가 과잉되는 경우, 상기 이산화탄소가 청록색 스피룰리나 조류의 광합성에 사용되는 것을 특징으로 한다.At this time, when the carbon dioxide is excessive, the carbon dioxide is characterized in that it is used for photosynthesis of cyan spirulina or algae.

또한, 상기 기폭제는 공기를 포함하며, 상기 기체탄화수소는 임의의 메탄 및 메탄 동족체를 포함하는 것을 특징으로 한다.In addition, the initiator includes air, the gaseous hydrocarbon is characterized in that it comprises any methane and methane homologue.

이에 본 발명에 따른 호기성 미생물의 바이오매스 생산방법의 공정을 설명하면 다음과 같다.When explaining the process of the biomass production method of aerobic microorganism according to the present invention.

먼저, 디스펜서(2)로부터 공급되는 미량 원소의 염으로 이루어진 영양 배지는 혼합기(4)에 공급되고, 살균기로부터 공급된 물과 함께 혼합되는 공급탱크(5)로 보내진다.First, a nutrient medium made up of salts of trace elements supplied from the dispenser 2 is supplied to the mixer 4 and sent to a supply tank 5 which is mixed with water supplied from the sterilizer.

이후, 영양 배지는 영양배지살균장치(6)로 보내지고, 영양 배지를 최종 형성하기 위한 최종형성장치(8)로 보내지는데, 상기 최종형성장치에서 영양 배지는 살균장치(7)에서 생성되는 생체인자용액과 혼합된다. 여기서 멸균된 물, 염 및 인, 질소, 칼륨 및 마그네슘 혼합용액을 기반으로 한 수용액이 준비될 수 있다.Thereafter, the nutrient medium is sent to the nutrient medium sterilization device 6, and sent to the final forming device 8 for final forming the nutrient medium, in which the nutrient medium is generated in the sterilizing device 7. It is mixed with the printing solution. Here, an aqueous solution based on sterilized water, salts and phosphorus, nitrogen, potassium and magnesium mixed solutions may be prepared.

이후, 수득된 영양 배지는 냉각 시스템으로 공급되고, 영양 배지 내에 가스필터(12)를 통해 여과된 메탄과 공기를 예비 용해시키도록 한다. The obtained nutrient medium is then fed to a cooling system to predissolve the methane and air filtered through the gas filter 12 in the nutrient medium.

이후, 영양 배지에 여과된 메탄과 공기가 공급되고, 이산화탄소의 가스와 발효기에서 사용되지 않은 메탄을 가스분리필터(13)로 분리하여 수득된 메탄도 공급된다.Thereafter, the filtered methane and air are supplied to the nutrient medium, and the methane obtained by separating the gas of carbon dioxide and the methane not used in the fermentor with the gas separation filter 13 is also supplied.

또한, 예비용해장치(10)는 냉각기의 역할을 수행할 수 있으며, 여과된 메탄 및 공기의 용해가 용이하게 수행될 수 있도록 한다.In addition, the pre-dissolving device 10 may serve as a cooler, so that the dissolution of the filtered methane and air can be easily performed.

이후, 가압펌프(11)를 이용하여 메탄 및 공기가 포화되어 냉각된 영양 배지를 발효기(1)의 하부로 공급한다. 이때, 발효기에 가스필터(12)를 통해 여과된 메탄과 공기를 공급한다.Thereafter, the methane and the air are saturated with the pressurized pump 11, and the cooled nutrient medium is supplied to the lower portion of the fermentor 1. At this time, the methane and air filtered through the gas filter 12 is supplied to the fermentor.

이때, 상기 가압펌프는 말단부에 가스 배출구가 형성되며, 전체적으로 비행기 날개의 단면과 유사한 편평한 형태로 형성되어 혼합 에어레이션 헤드로부터의 배양액의 흐름을 유지시키는 역할을 한다.At this time, the pressure pump is a gas outlet is formed in the distal end portion, is formed in a flat shape, similar to the cross section of the plane as a whole serves to maintain the flow of the culture solution from the mixing aeration head.

또한, 혼합 배양 형태로 주입되는 물은 영양 배지를 부분적으로 공급한 후, 발효기로 1회 공급되도록 한다.In addition, the water injected in the mixed culture form is to be supplied once to the fermentor after the partial feeding of the nutrient medium.

이후, 과잉 발생된 이산화탄소는 여과기필터(13)에서 분리된 후, 청록색 스피룰리나 조류를 배양하는 광합성반응기(15)에 공급되며, 분리기(16)에서 분리된 바이오매스는 건조기(17)에서 건조된 후, 타정장치(18)에서 정제하도록 한다.Thereafter, the excessively generated carbon dioxide is separated from the filter filter 13 and then supplied to the photosynthesis reactor 15 for culturing cyan spirulina or algae, and the biomass separated from the separator 16 is dried in the dryer 17. Then, the tableting device 18 to be purified.

이후, 증식된 호기성 미생물의 바이오매스는 원심분리기(19)에서 여과액과 분리되어 바이오매스건조기(21)로 보내지고, 여과액필터(20)에서 분리된 바이오매스도 바이오매스건조기(21)로 보내진다.Thereafter, the biomass of the aerobic microorganisms grown is separated from the filtrate in the centrifuge (19) and sent to the biomass dryer (21), and the biomass separated from the filtrate filter (20) is also transferred to the biomass dryer (21). Is sent.

이후, 완전히 건조된 바이오매스들은 과립기(22)로 보내져 포장되도록 한다.The completely dried biomass is then sent to granulator 22 for packaging.

마지막으로, 성분분석기(9)는 순환식 급수 시스템에서 재사용할 수 있도록 화학적 조성을 분석하고, 정화를 위해 수처리장치(3)로 보내진다.Finally, the component analyzer 9 analyzes the chemical composition for reuse in the circulating water supply system and is sent to the water treatment apparatus 3 for purification.

한편, 도 3에서 보는 바와 같이, 본 발명에 따른 멀티 노즐 인젝터(14)를 설명하면 다음과 같다.Meanwhile, as shown in FIG. 3, the multi-nozzle injector 14 according to the present invention will be described as follows.

상기 멀티 노즐 인젝터는 발효기의 벽면에 형성되며, 스트림라인을 따라 배향된 노즐은 배양액에 가스를 풍부하게 공급할 뿐만 아니라, 배양액의 와류 운동을 지원하도록 한다.The multi-nozzle injector is formed on the wall of the fermentor, and the nozzles oriented along the streamline not only supply abundant gas to the culture, but also support vortex movement of the culture.

여기서 배양액의 와류운동은 멀티 노즐 인젝터의 하부에 형성된 혼합 에어레이션 헤드에 의해 생성되는 것으로, 상기 혼합 에어레이션 헤드는 주입된 영양 배지의 20%가 발효기에 있는 배양액의 80%와 지속적으로 혼합될 수 있도록 하고, 발효기의 내벽을 따라 배양액이 자체축을 중심으로 회전 및 상승하는 와류 흐름을 생성하도록 한다.Here, the vortex movement of the culture is produced by the mixing aeration head formed at the bottom of the multi-nozzle injector, which allows 20% of the injected nutrient medium to be continuously mixed with 80% of the culture in the fermentor. In addition, the culture medium along the inner wall of the fermenter to create a vortex flow that rotates and rises about its own axis.

이와 같은 본 발명에 따른 호기성 미생물의 바이오매스 생산방법과 발효기 및 멀티 노즐 인젝터는 다음과 같은 효과를 갖는다.Such a biomass production method, fermenter and multi-nozzle injector of the aerobic microorganism according to the present invention has the following effects.

메탄과 공기에 의해 연속적으로 포화시켜 발효 전 단계와 생합성 공정단계 2가지 단계에서 냉각된 영양 배지는 배양액을 통해 미생물에 탄소 및 에너지 원을 거의 완전하게 제공할 수 있다.The nutrient medium, which is continuously saturated with methane and air and cooled at two stages before the fermentation and during the biosynthesis process, can provide a nearly complete source of carbon and energy to the microorganisms through the culture.

또한, 생합성과정에서 축적된 대사 산물을 이용하기 위해 종속 영양 세균의 균주를 포함하고, 이와 같이 구성된 혼합 배양액에 의해 발포, 고농도 및 과잉 산화 등과 관련된 많은 문제를 해결할 수 있으며, 미생물에 스트레스를 주지 않음은 물론, 폐기물이 적어 친환경적이고 안정적인 방법을 제공할 수 있다.In addition, the heterotrophic bacteria strains are used to utilize the metabolites accumulated in the biosynthesis process, and the mixed culture medium thus configured can solve many problems related to foaming, high concentration, and excessive oxidation, and does not stress microorganisms. Of course, less waste can provide an environmentally friendly and stable way.

또한, 과잉 발생되는 이산화탄소를 분리하여 청록색 스피루리나 조류의 광합성에 사용할 수 있다.In addition, excess carbon dioxide can be separated and used for photosynthesis of cyan spirulina or algae.

또한, 냉각된 영양 배지를 배양액의 온도를 모니터링하고 조절하기 위한 시스템의 냉매로 사용할 수 있다.The cooled nutrient medium can also be used as a refrigerant in the system for monitoring and controlling the temperature of the culture.

또한, 공정을 통해 수득한 단백질 농축물은 다양한 유형과 연령의 동물 및 가금류 사료에 대한 기준검사를 통과하였으며, 사료의 성분 중 단백질, 비타민, 필수 아미노산 및 미량 원소 등을 평균 20톤당 단백질 1톤의 비율로 균형을 맞출 수 있다.In addition, the protein concentrates obtained through the process passed the standard test for animal and poultry feeds of various types and ages, and the average of 1 ton of protein per 20 tons of protein, vitamins, essential amino acids and trace elements among the feed ingredients. Can be balanced by proportions.

또한, RNA 성분으로부터 세균 바이오매스를 정제한 후, 식품에 사용하기에 적합한 단백질을 수득할 수 있다.In addition, after purifying bacterial biomass from RNA components, proteins suitable for use in foods can be obtained.

또한, 바이오매스의 정제 과정에서 분리된 RNA 성분은 바이오매스의 15%를 차지하며, 제약 및 향수, 의료 및 식품 산업에서 필요한 원료이자 생산용 성분으로 적합할 수 있다.In addition, the RNA component isolated during the purification of biomass accounts for 15% of the biomass, and may be suitable as a raw material and a production ingredient required in the pharmaceutical and perfume, medical and food industries.

도면과 명세서에서 최적의 실시예들이 개시되었다. 여기서, 특정한 용어들이 사용되었으나, 이는 단지 본 발명을 설명하기 위한 목적에서 사용된 것이지 의미한정이나 특허청구범위에 기재된 본 발명의 범위를 제한하기 위하여 사용된 것은 아니다. 그러므로, 본 기술 분야의 통상의 지식을 가진자라면, 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다.The best embodiments have been disclosed in the drawings and the specification. Herein, specific terms have been used, but they are used only for the purpose of illustrating the present invention and are not intended to limit the scope of the present invention as defined in the meaning or claims. Therefore, those skilled in the art will understand that various modifications and equivalent other embodiments are possible from this. Therefore, the true technical protection scope of the present invention will be defined by the technical spirit of the appended claims.

1 ... 발효기 2 ... 디스펜서
3 ... 수처리장치 4 ... 혼합기
5 ... 공급탱크 6 ... 영양배지살균장치
7 ... 살균장치 8 ... 최종형성장치
9 ... 성분분석기 10 ... 예비용해장치
11 ... 가압펌프 12 ... 가스필터
13 ... 여과필터 14 ... 멀티 노즐 인젝터
15 ... 광합성반응기 16 ... 분리기
17 ... 건조기 18 ... 타정장치
19 ... 원심분리기 20 ... 여과액필터
21 ... 바이오매스건조기 22 ... 과립기
1 ... fermenter 2 ... dispenser
3 ... water treatment unit 4 ... mixer
5 ... supply tank 6 ... nutrient medium sterilizer
7 ... Sterilizer 8 ... Final Forming Apparatus
9 ... component analyzer 10 ... predissolution apparatus
11 ... pressurized pump 12 ... gas filter
13 ... filtration filter 14 ... multi-nozzle injector
15 ... photosynthesis reactor 16 ... separator
17 ... dryer 18 ... tableting device
19 ... centrifuge 20 ... filtrate filter
21 ... Biomass Dryer 22 ... Granulator

Claims (8)

호기성 미생물의 바이오매스 생산방법으로서, 연속 케모스타트 생합성 조건에서 영양 배지를 공급하고 축적된 바이오매스를 제거할 때 기체탄화수소 및 기폭제를 연속적으로 포화시켜 혼합된 미생물을 배양하는 방법을 포함하며, 혼합 에어레이션 헤드에 의해 기체탄화수소로 혼합, 폭기 및 포화가 수행되는 것을 특징으로 하는 호기성 미생물의 바이오매스 생산방법에 있어서,
상기 기체탄화수소 및 기폭제를 연속적으로 포화시켜 혼합된 영양 배지는 영양 배지의 제조단계 및 생합성 공정단계에 수행되도록 하며,
상기 영양 배지의 제조단계에서는 예비용해장치(10)를 통해 가스필터(12)에 의해 여과된 기체탄화수소 및 기폭제를 영양 배지 내에 예비 용해시키도록 하며, 상기 기체탄화수소 및 기폭제가 포화되었을 때, 영양 배지가 1차적으로 냉각된 상태로 발효기(1)의 하부로 공급되도록 하는 것을 특징으로 하고, 상기 생합성 공정단계에서는 배양액의 온도를 조절하기 위한 냉각제로 사용되는 것을 특징으로 하되,
혼합된 배양액은 탄소원으로서 이산화탄소를 사용하고, 배양액 중에 용해된 수소를 에너지원으로 사용하는 미생물 균주를 추가로 포함시키는 것을 특징으로 하며,
이산화탄소가 과잉되는 경우, 상기 이산화탄소가 청록색 스피룰리나 조류의 광합성에 사용되는 것을 특징으로 하는 호기성 미생물의 바이오매스 생산방법.
A method for producing biomass of aerobic microorganisms, the method comprising culturing mixed microorganisms by continuously saturating gaseous hydrocarbons and initiators when supplying a nutrient medium under continuous chemostat biosynthesis conditions and removing accumulated biomass, and mixed aeration In the biomass production method of aerobic microorganisms characterized in that mixing, aeration and saturation into gaseous hydrocarbons by the head,
The saturation of the gaseous hydrocarbons and initiators is successively saturated so that the mixed nutrient medium is carried out during the production and biosynthesis process steps of the nutrient medium,
In the manufacturing step of the nutrient medium to pre-dissolve the gaseous hydrocarbons and initiators filtered by the gas filter 12 through the pre-dissolution apparatus 10 in the nutrient medium, when the gaseous hydrocarbons and initiators are saturated, the nutrient medium It is characterized in that to be supplied to the lower portion of the fermenter (1) in the first cooled state, characterized in that used in the biosynthetic process step as a coolant for controlling the temperature of the culture,
The mixed culture medium is characterized in that it further comprises a microbial strain using carbon dioxide as a carbon source, using hydrogen dissolved in the culture medium as an energy source,
When the carbon dioxide is excessive, the carbon dioxide is a biomass production method of aerobic microorganisms, characterized in that it is used for photosynthesis of cyan spirulina or algae.
제 1항에 있어서,
상기 혼합 에어레이션 헤드는,
영양 배지의 주입 에너지를 이용하여 발효기 내에서 자체축을 중심으로 회전 및 상승하는 와류 흐름을 생성하는 구조를 갖는 것을 특징으로 하는 호기성 미생물의 바이오매스 생산방법.
The method of claim 1,
The mixing aeration head,
The biomass production method of aerobic microorganisms having a structure for generating a vortex flow that rotates and rises about its own axis in the fermenter using the energy of the nutrient medium.
삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 제 1항에 있어서,
상기 기폭제는 공기를 포함하며, 상기 기체탄화수소는 임의의 메탄 및 메탄 동족체를 포함하는 것을 특징으로 하는 호기성 미생물의 바이오매스 생산방법.
The method of claim 1,
Wherein said initiator comprises air, and said gaseous hydrocarbons comprise any methane and a methane homologue.
KR1020190100430A 2019-08-16 2019-08-16 Method for the production of biomass of aerobic microorganisms KR102086617B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020190100430A KR102086617B1 (en) 2019-08-16 2019-08-16 Method for the production of biomass of aerobic microorganisms
PCT/KR2020/010107 WO2021033950A1 (en) 2019-08-16 2020-07-31 Method for producing biomass of aerobic microorganism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190100430A KR102086617B1 (en) 2019-08-16 2019-08-16 Method for the production of biomass of aerobic microorganisms

Publications (1)

Publication Number Publication Date
KR102086617B1 true KR102086617B1 (en) 2020-03-09

Family

ID=69801964

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190100430A KR102086617B1 (en) 2019-08-16 2019-08-16 Method for the production of biomass of aerobic microorganisms

Country Status (2)

Country Link
KR (1) KR102086617B1 (en)
WO (1) WO2021033950A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021033950A1 (en) * 2019-08-16 2021-02-25 주식회사 바이오프린 Method for producing biomass of aerobic microorganism

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0306466A2 (en) * 1987-09-04 1989-03-08 Dansk Bioprotein A/S Method and means for the production of a micro-organism cell mass
KR20120052438A (en) * 2010-11-15 2012-05-24 전라남도 Device for cultivating micro algae
KR20160031839A (en) * 2014-09-15 2016-03-23 전라남도 Photoreactive Apparatus and method for culturing microalgae

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101963968B1 (en) * 2017-09-13 2019-03-29 한국해양과학기술원 Batch or continuous culture device comprising recycling loop and the culture method using thereof
KR102086617B1 (en) * 2019-08-16 2020-03-09 주식회사 바이오프린 Method for the production of biomass of aerobic microorganisms

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0306466A2 (en) * 1987-09-04 1989-03-08 Dansk Bioprotein A/S Method and means for the production of a micro-organism cell mass
KR20120052438A (en) * 2010-11-15 2012-05-24 전라남도 Device for cultivating micro algae
KR20160031839A (en) * 2014-09-15 2016-03-23 전라남도 Photoreactive Apparatus and method for culturing microalgae

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Catalysis, Vol. 8, pp. 490 (1-11) (2018.10.24.) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021033950A1 (en) * 2019-08-16 2021-02-25 주식회사 바이오프린 Method for producing biomass of aerobic microorganism

Also Published As

Publication number Publication date
WO2021033950A1 (en) 2021-02-25

Similar Documents

Publication Publication Date Title
CA2746696C (en) U-shape and/or nozzle u-loop fermenter and method of fermentation
WO2003016460A8 (en) Method of fermentation
CN103865792B (en) A kind of circulating fermentable reaction and feed liquid isolation integral equipment
JP2007312689A (en) Method for performing biological reaction, and device for performing the biological reaction
FI128860B (en) Bioreactors for growing micro-organisms
Mortezaeikia et al. Membrane-sparger vs. membrane contactor as a photobioreactors for carbon dioxide biofixation of Synechococcus elongatus in batch and semi-continuous mode
WO2018158319A1 (en) Fermentation reactor and fermentation process
CN217459384U (en) Oxygen micro-nano bubble enhanced aerobic fermentation bioreactor
KR102086617B1 (en) Method for the production of biomass of aerobic microorganisms
WO2022008478A2 (en) Process for producing single cell protein
CN114341345A (en) Method for controlling a fermentation process
KR100492432B1 (en) Method for producing high concentration carbon dioxide product
CN1384874A (en) Method for cultivating cells, membrane module, utilziation of membrane module and reaction system for cultivation of said cells
CN114806810A (en) Oxygen micro-nano bubble enhanced aerobic fermentation bioreactor and application thereof
US20220081668A1 (en) Improved loop-fermenter
JPH0343070A (en) Apparatus for practicing biocatalytic process accompanying solid phase biocatalyst
CN101649292A (en) Method for continuously fermenting and culturing acrylamide production strain by turbidostat method
CN109467191A (en) The method for handling high nitre waste water using microalgae
RU2755539C1 (en) Method for producing a biomass of methane-oxidising microorganisms and a line for production thereof
RU193750U1 (en) Advanced Loop Fermenter
WO2022167051A1 (en) Super nozzle injection fermentor
FI20200056A1 (en) Method and apparatus for the utilization of zero fiber and other side streams
Lee et al. Novel oxygenation for lipopeptide production from Bacillus sp. GB16

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant