KR102064475B1 - Microorganism for producing muconic acid and method for manufacturing the strain - Google Patents

Microorganism for producing muconic acid and method for manufacturing the strain Download PDF

Info

Publication number
KR102064475B1
KR102064475B1 KR1020140046251A KR20140046251A KR102064475B1 KR 102064475 B1 KR102064475 B1 KR 102064475B1 KR 1020140046251 A KR1020140046251 A KR 1020140046251A KR 20140046251 A KR20140046251 A KR 20140046251A KR 102064475 B1 KR102064475 B1 KR 102064475B1
Authority
KR
South Korea
Prior art keywords
coli
opt
muconic acid
polynucleotide
encoding
Prior art date
Application number
KR1020140046251A
Other languages
Korean (ko)
Other versions
KR20150120236A (en
Inventor
이상종
박선옥
서성열
조용한
김민주
김응수
최시선
이한나
송지수
전계택
이도훈
김상용
Original Assignee
(주)에스티알바이오텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)에스티알바이오텍 filed Critical (주)에스티알바이오텍
Priority to KR1020140046251A priority Critical patent/KR102064475B1/en
Publication of KR20150120236A publication Critical patent/KR20150120236A/en
Application granted granted Critical
Publication of KR102064475B1 publication Critical patent/KR102064475B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0069Oxidoreductases (1.) acting on single donors with incorporation of molecular oxygen, i.e. oxygenases (1.13)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/44Polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01025Shikimate dehydrogenase (1.1.1.25)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y113/00Oxidoreductases acting on single donors with incorporation of molecular oxygen (oxygenases) (1.13)
    • C12Y113/11Oxidoreductases acting on single donors with incorporation of molecular oxygen (oxygenases) (1.13) with incorporation of two atoms of oxygen (1.13.11)
    • C12Y113/11001Catechol 1,2-dioxygenase (1.13.11.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/01Carboxy-lyases (4.1.1)
    • C12Y401/01063Protocatechuate decarboxylase (4.1.1.63)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/01Hydro-lyases (4.2.1)
    • C12Y402/01018Methylglutaconyl-CoA hydratase (4.2.1.18)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

본 발명에 의한 재조합 벡터로 형질전환된 대장균은 높은 뮤코닉산 생산능을 보유함으로써, 바이오 유래의 TPA 또는 아디프산의 전구체인 뮤코닉산을 효과적으로 생산할 수 있다. 구체적으로, 본 발명에 의한 미생물은 대장균이 뮤코닉산을 생산하는데 필요한 세 외래유전자인 asbF opt 를 코딩하는 폴리뉴클레오티드, aroY opt 를 코딩하는 폴리뉴클레오티드 및 catA opt 를 코딩하는 폴리뉴클레오티드를 각각 하나의 오페론(operon) 형태로 제조한 재조합 벡터를 대장균에 도입함으로써, 상기 외래유전자를 각각 동일한 비율로 전사할 수 있다. E. coli transformed with the recombinant vector according to the present invention possesses high muconic acid production ability, thereby effectively producing muconic acid, which is a precursor of bio-derived TPA or adipic acid. Specifically, the microorganism according to the present invention is a polynucleotide, aroY opt polynucleotides and catA opt polynucleotides each one operon encoding the encoding the encoding the asbF opt three of a foreign gene required for E. coli to produce the MU-conic acid By introducing a recombinant vector prepared in the (operon) form into E. coli, the foreign genes can be transcribed at the same ratio, respectively.

Description

뮤코닉산 생산용 미생물 및 그 제조방법{Microorganism for producing muconic acid and method for manufacturing the strain}Microorganisms for producing muconic acid and method for manufacturing the strain

본 발명은 뮤코닉산 생산능을 갖는 신규한 재조합 벡터, 이를 포함하는 미생물 및 그 제조방법에 관한 것이다.The present invention relates to a novel recombinant vector having a muconic acid production capacity, a microorganism comprising the same and a method for producing the same.

에너지 및 화학물질의 원재료로 사용되는 화석연료는 지속적인 유가상승 및 자원고갈로 인하여 지구온난화를 포함한 각종 환경-경제적 문제에 직면하고 있으며, 이를 보완하기 위한 친환경적이고 재생 가능한 대체물질을 찾는 노력이 계속되고 있다. 그 중에서도 미생물을 이용한 생합성 전략이 활발하게 연구되고 있으며, 특히 특정 대사경로가 유전공학적으로 재설계된 재조합미생물을 이용한 다양한 화학물질, 바이오 연료, 아미노산 및 식물체의 2차 대사산물 등을 생합성 하는 것이 가능해졌다.Fossil fuels used as raw materials for energy and chemicals face various environmental and economic problems, including global warming, due to continuous oil price rises and resource depletion. have. Among them, biosynthetic strategies using microorganisms are being actively studied, and in particular, it is possible to biosynthesize various chemicals, biofuels, amino acids and secondary metabolites of plants using recombinant microorganisms whose specific metabolic pathways have been genetically redesigned. .

현재 세계 고분자시장은 바이오 유래의 환경친화적 원료의 사용을 요구받고 있으며 이에 따라 코카콜라, 펩시와 같은 거대 음료회사들이 100% 식물 유래의 PET(폴리에틸렌테레프탈레이트) 개발에 총력을 기울이고 있다. 한편, PET와 유사한 구조를 가지면서도 독특한 특성을 갖는 PTT(폴리트리메틸렌테레프탈레이트) 역시 잠재력 높은 시장규모를 가질 뿐만 아니라, 연평균 17%의 고성장을 진행 중에 있다. 따라서 PET와 같이 PTT 역시 바이오 유래의 환경친화적 고분자합성이 필요한 시점이다. 현재 PTT는 석유 유래의 TPA(terephthalic acid)와 바이오 유래의 1,3-PDO(1,3-프로판디올)와의 축합반응에 의한 합성을 통해 생산이 이루어지고 있다. 한편, 바이오 유래의 1,3-PDO에 대한 연구가 활발히 진행된 것에 비해 바이오 유래의 TPA 연구는 전 세계적으로 매우 미비한 형편이다. 특히 대부분의 TPA(terephthalic acid)에 관한 연구가 석유화학물질을 출발점으로 하고 있기 때문에 바이오 유래의 친환경적인 TPA 생산공정의 개발 필요성이 대두되고 있다. 그러나 생물공정을 이용하여 바이오 유래의 탄소원으로부터 직접적으로 TPA를 생합성하는 공정은 아직까지 개발되지 못하고 있다. 따라서 환경친화적인 TPA 생산을 위해 먼저 생물공정을 통해 바이오 유래의 TPA 전구체를 생산하고, 생물공정을 통해 생산된 TPA 전구체를 화학합성공정을 통하여 TPA로 전환시키는 융합생산공정의 개발이 필요하다. Currently, the global polymer market is required to use bio-derived eco-friendly raw materials. Accordingly, large beverage companies such as Coca-Cola and Pepsi are focusing on the development of 100% plant-derived polyethylene terephthalate (PET). Meanwhile, PTT (polytrimethylene terephthalate), which has a structure similar to that of PET but has unique characteristics, has a high potential market size and is growing at an average annual growth rate of 17%. Therefore, like PET, PTT is a time point for bio-friendly polymer synthesis. Currently, PTT is produced through a condensation reaction between terephthalic acid (TPA) derived from petroleum and 1,3-PDO (1,3-propanediol) derived from biotechnology. On the other hand, bio-derived research on 1,3-PDO derived from bio, TPA derived from biotechnology is very poor worldwide. In particular, since most of the research on terephthalic acid (TPA) starts with petrochemicals, there is a need for development of bio-friendly TPA production process. However, a process for biosynthesizing TPA directly from a bio-derived carbon source using a bioprocess has not been developed yet. Therefore, in order to produce environmentally friendly TPA, it is necessary to first develop a bio-derived TPA precursor through a bioprocess, and to develop a fusion production process that converts the TPA precursor produced through the bioprocess into TPA through a chemical synthesis process.

뮤코닉산은 TPA 합성을 위한 바이오 유래의 전구체로서의 용도 외에도 아디프산의 전구체로도 잘 알려져 있다. 아디프산(adipic acid)은 나일론, 윤활유, 플라스틱, 가소제 등의 다양한 물질의 전구체 역할을 함으로써 전 세계적으로 연간 2 X 109 ㎏정도의 많은 양이 소비되고 있다. 하지만 현재 아디프산이 합성될 때 사용되는 벤젠 유래의 사이클로헥산은 산화되는 과정에서 지구온난화를 야기하는 N2O를 발생시키는 문제를 가지고 있다. 또한 각 단계별 다양한 중간화학물질은 인체에 유해할 뿐만 아니라 발암물질로도 알려져 있다. 이러한 문제를 해결하기 위해 식물 유래의 재생 가능한 원료를 이용하여 아디프산을 만드는 기술, 즉 바이오 유래의 뮤코닉산의 수소화 반응을 통한 아디프산 생산공정의 개발이 필요하다.Muconic acid is well known as a precursor of adipic acid in addition to its use as a bio-derived precursor for TPA synthesis. Adipic acid is used as a precursor to various materials such as nylon, lubricants, plastics, and plasticizers, and consumes a large amount of 2 × 10 9 kg annually worldwide. However, cyclohexane derived from benzene, which is currently used when adipic acid is synthesized, has a problem of generating N 2 O which causes global warming during oxidation. In addition, various intermediate chemicals in each step are known as carcinogens as well as harmful to the human body. In order to solve this problem, it is necessary to develop adipic acid production process using renewable raw materials derived from plants, that is, adipic acid production process through hydrogenation of bio-derived muconic acid.

Alper H, Miyaoku K, Stephanopoulos G. (2005) Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets. Nature Biotechnology, 23, 612-616.Alper H, Miyaoku K, Stephanopoulos G. (2005) Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets. Nature Biotechnology, 23, 612-616. Atsumi S, Hanai T, Liao JC. (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature, 451, 86-89.Atsumi S, Hanai T, Liao JC. (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature, 451, 86-89. Azizkhan JC, Jensen DE, Pierce AJ, Wade M. (1993) Transcription from TATA-less promoters: Dihydrofolatereductase as a model. Critical Reviews in Eukaryotic Gene Expression, 3, 229-54.Azizkhan JC, Jensen DE, Pierce AJ, Wade M. (1993) Transcription from TATA-less promoters: Dihydrofolatereductase as a model. Critical Reviews in Eukaryotic Gene Expression, 3, 229-54. Berry, A. (1996) Improving production of aromatic compounds in Escherichia coli by metabolic engineering. Trends in Biotechnology, 14(7), 250-256.Berry, A. (1996) Improving production of aromatic compounds in Escherichia coli by metabolic engineering. Trends in Biotechnology, 14 (7), 250-256. Branlant C, Oster T, Branlant G. (1989) Nucleotide sequence determination of the DNA region coding for Bacillus stearothermophilus glyceraldehyde-3-phosphate dehydrogenase and of the flanking DNA regions required for its expression in Escherichia coil. Gene, 75, 145-155.Branlant C, Oster T, Branlant G. (1989) Nucleotide sequence determination of the DNA region coding for Bacillus stearothermophilus glyceraldehyde-3-phosphate dehydrogenase and of the flanking DNA regions required for its expression in Escherichia coil. Gene, 75, 145-155. Conway T, Ingram LO. (1988) Phosphoglycerate kinase gene from Zymomonasmobilis: Cloning, sequencing and localization within the gap operon. Journal of Bacteriology, 170, 1926-1933.Conway T, Ingram LO. (1988) Phosphoglycerate kinase gene from Zymomonasmobilis: Cloning, sequencing and localization within the gap operon. Journal of Bacteriology, 170, 1926-1933. Draths KM, Frost JW. (1994) Environmentally compatible synthesis of adipic acid from D-glucose. Journal of the American Chemical Society, 116, 399-400.Draths KM, Frost JW. (1994) Environmentally compatible synthesis of adipic acid from D-glucose. Journal of the American Chemical Society, 116, 399-400. Fox DT, Hotta K, Kim CY, Koppisch AT. (2008) The missing link in petrobactin biosynthesis: AsbF encodes a ()-3-dehydroshikimate dehydratase. Biochemistry, 47(47), 12251-12253.Fox DT, Hotta K, Kim CY, Koppisch AT. (2008) The missing link in petrobactin biosynthesis: AsbF encodes a () -3-dehydroshikimate dehydratase. Biochemistry, 47 (47), 12251-12253. Frost JW, Draths. KM. (1995) Biocatalytic syntheses of aromatics from D-glucose: Renewable microbial sources of aromatic compounds. Annual Review of Microbiology, 49, 557-579.Frost JW, Draths. KM. (1995) Biocatalytic syntheses of aromatics from D-glucose: Renewable microbial sources of aromatic compounds. Annual Review of Microbiology, 49, 557-579. Harris JI,Waters M. (1976) Glyceraldehyde-3-phosphate dehydrogenase. The Enzyme, 13, 1-49.Harris JI, Waters M. (1976) Glyceraldehyde-3-phosphate dehydrogenase. The Enzyme, 13, 1-49. Lin Y, Yan Y. (2012) Biosynthesis of caffeic acid inEscherichia coli using its endogenous hydroxylase complex. Microbial Cell Factories, 11, 42.Lin Y, Yan Y. (2012) Biosynthesis of caffeic acid in Escherichia coli using its endogenous hydroxylase complex. Microbial Cell Factories, 11, 42. Lin YL, Blaschek HP. (1983) Butanol production by a butanol-tolerant strain of Clostridium acetobutylicum in extruded corn broth. Applied and Environmental Microbiology, 45, 966-973.Lin YL, Blaschek HP. (1983) Butanol production by a butanol-tolerant strain of Clostridium acetobutylicum in extruded corn broth. Applied and Environmental Microbiology, 45, 966-973. Miller JH. (1972) Experiments in molecular genetics; Cold spring harbor laboratory. Planview.Miller JH. (1972) Experiments in molecular genetics; Cold spring harbor laboratory. Planview. NiuW, DrathsKM,Frost JW. (2002) Benzene-free synthesis of adipic acid. Biotechnology Progress, 18, 201-211.NiuW, Draths KM, Frost JW. (2002) Benzene-free synthesis of adipic acid. Biotechnology Progress, 18, 201-211. Pfleger BF, Kim Y, Nusca TD, Maltseva N, Lee JY, Rath CM, Scaglione JB, Janes BK, Anderson EC, Bergman NH, Hanna PC, Joachimiak A, Sherman DH.(2008) Structural and functional analysis of AsbF: Origin of the stealth 3,4-dihydroxybenzoic acid subunit for petrobactin biosynthesis. Pfleger BF, Kim Y, Nusca TD, Maltseva N, Lee JY, Rath CM, Scaglione JB, Janes BK, Anderson EC, Bergman NH, Hanna PC, Joachimiak A, Sherman DH. (2008) Structural and functional analysis of AsbF: Origin of the stealth 3,4-dihydroxybenzoic acid subunit for petrobactin biosynthesis. Proceedings of the National Academy of Sciences, 105(44), 17133-17138.Proceedings of the National Academy of Sciences, 105 (44), 17133-17138. Pittard AJ. (1996) Biosynthesis of the aromatic amino acids.in Escherichia coli and Salmonella. InNeidhart FC, Curtiss R, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (ed.). vol. 1.American Society for Microbiology.Washington, D.C.pp. 458-484.Pittard AJ. (1996) Biosynthesis of the aromatic amino acids. Escherichia coli and Salmonella. InNeidhart FC, Curtiss R, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (ed.). vol. American Society for Microbiology. Washington, D.C.pp. 458-484. Sprenger GA. (2007) From scratch to value: Engineering Escherichia coli wild type cells to the production of L-phenylalanine and other fine chemicals derived from chorismate. Applied Microbiology and Biotechnology, 75 (4), 739-749.Sprenger GA. (2007) From scratch to value: Engineering Escherichia coli wild type cells to the production of L-phenylalanine and other fine chemicals derived from chorismate. Applied Microbiology and Biotechnology, 75 (4), 739-749. Thiemens MH, Trogler WC. (1991) Nylon production: An unknown source of atmospheric nitrous oxide. Science, 251, 932-934.Thiemens MH, Trogler WC. (1991) Nylon production: An unknown source of atmospheric nitrous oxide. Science, 251, 932-934. Ulrich H. (1988) Raw materials for industrial polymers. Germany: Hanser Publishers, Munich.Ulrich H. (1988) Raw materials for industrial polymers. Germany: Hanser Publishers, Munich. Warhurst AM, Clarke KF, Hill RA,Holt RA, Fewson CA (1994) Production of catechols and muconic acids from various aromatics by the styrene-degrader Rhodococcusrhodochrous NCIMB 13259.Biotechnology Letters, 16, 513-516.Warhurst AM, Clarke KF, Hill RA, Holt RA, Fewson CA (1994) Production of catechols and muconic acids from various aromatics by the styrene-degrader Rhodococcus rhodochrous NCIMB 13259. Biotechnology Letters, 16, 513-516. Weber C, BrC, Weinreb S, Lehr C, Essl C, Boles E.(2012) Biosynthesis of cis,cis-muconic acid and its aromatic precursors, catechol and protocatechuic acid, from renewable feedstocks by Saccharomyces cerevisiae. Applied and Environmental Microbiology, 78(23), 8421.Weber C, BrC, Weinreb S, Lehr C, Essl C, Boles E. (2012) Biosynthesis of cis, cis-muconic acid and its aromatic precursors, catechol and protocatechuic acid, from renewable feedstocks by Saccharomyces cerevisiae. Applied and Environmental Microbiology, 78 (23), 8421. Wu CM, Lee TH, Lee SN Lee YA, Wu JY (2004) Microbial synthesis of cis,cis-muconic acid by Sphingobacterium sp. GCG generated from effluent of a styrene monomer (SM) production plant. Enzyme and Microbial Technology, 35, 598-604.Wu CM, Lee TH, Lee SN Lee YA, Wu JY (2004) Microbial synthesis of cis, cis-muconic acid by Sphingobacterium sp. GCG generated from effluent of a styrene monomer (SM) production plant. Enzyme and Microbial Technology, 35, 598-604. Yan Y, Chemler J, Huang L, Martens S, Koffas MA. (2005) Metabolic engineering of anthocyanin biosynthesis inEscherichia coli. Applied and Environmental Microbiology, 71, 3617-3623.Yan Y, Chemler J, Huang L, Martens S, Koffas MA. (2005) Metabolic engineering of anthocyanin biosynthesis in Escherichia coli. Applied and Environmental Microbiology, 71, 3617-3623.

본 발명은 높은 뮤코닉산 생산능을 보유한 대장균 및 그 제조방법을 제공하는 것을 목적으로 한다.An object of the present invention is to provide an Escherichia coli having a high muconic acid production capacity and a method for producing the same.

상기 목적을 달성하기 위하여, 본 발명의 일 구현예는 뮤코닉산 생산용 재조합 벡터로서, asbF opt 를 코딩하는 폴리뉴클레오티드, aroY opt 를 코딩하는 폴리뉴클레오티드 및 catA opt 를 코딩하는 폴리뉴클레오티드를 포함하고, 상기 세 폴리뉴클레오티드의 각 업스트림(upstream)에 대장균 유래의 리보솜 결합 부위(ribosome binding site, rbs)를 포함하고, 상기 세 폴리뉴클레오티드 중 첫 번째 전사되는 폴리뉴클레오티드의 리보솜 결합부위(rbs)의 업스트림(upstream)에 프로모터(promoter)를 포함하는 뮤코닉산 생산용 재조합 벡터를 제공한다.In order to achieve the above object, one embodiment of the invention is a polynucleotide as a recombinant vector for the production of MU-conic acid, encoding the polynucleotides, encoding the aroY opt and opt asbF a polynucleotide encoding a catA opt , upstream of each of the three polynucleotides, comprising a ribosomal binding site (rbs) derived from E. coli, and a first transcribed polynucleotide of the three polynucleotides It provides a recombinant vector for the production of muconic acid, including a promoter (promoter) upstream of the ribosome binding site (rbs).

또한, 본 발명의 일 구현예는 뮤코닉산 생산용 대장균을 제조하는 방법으로, 벡터에 asbF opt 를 코딩하는 폴리뉴클레오티드, aroY opt 를 코딩하는 폴리뉴클레오티드 및 catA opt 를 코딩하는 폴리뉴클레오티드를 삽입하고, 상기 세 폴리뉴클레오티드의 업스트림(upstream) 방향으로 대장균 유래의 리보솜 결합 부위(ribosome binding site, rbs)를 각각 삽입하여 재조합 벡터를 제조하는 단계, 및 상기 재조합 벡터를 대장균 모미생물에 도입하여 형질전환하는 단계를 포함하는 뮤코닉산 생산용 대장균의 제조방법을 제공한다.Further, one embodiment of the present invention are polynucleotides encoding the MU-conic acid process for preparing E. coli for production, a polynucleotide encoding a asbF opt the vector, and aroY opt preparing a recombinant vector by inserting a polynucleotide encoding catA opt and inserting a ribosome binding site (rbs) derived from E. coli in an upstream direction of the three polynucleotides, and the recombinant vector It provides a method for producing E. coli for muconic acid production comprising the step of transforming E. coli into the microorganism.

본 발명에 의한 재조합 벡터로 형질전환된 대장균은 높은 뮤코닉산 생산능을 보유함으로써, 바이오 유래의 TPA 또는 아디프산의 전구체인 뮤코닉산을 효과적으로 생산할 수 있다. 또한, 본 발명에 의한 미생물은 대장균이 뮤코닉산을 생산하는데 필요한 외래유전자를 각각 하나의 오페론(operon) 형태로 제작하여 대장균에 도입함으로써, 상기 외래 유전자가 각각 동일한 비율로 전사할 수 있다. 따라서, 제조된 미생물 자체의 구현여부를 하나의 유전자에 대한 구현여부로 판단할 수 있으므로 제조한 미생물의 성공여부를 용이하게 확인할 수 있다.E. coli transformed with the recombinant vector according to the present invention possesses a high muconic acid production capacity, thereby effectively producing muconic acid, which is a precursor of bio-derived TPA or adipic acid. In addition, the microorganism according to the present invention by producing the foreign genes necessary for producing muconic acid Escherichia coli in the form of a single operon (operon) and introduced into E. coli, the foreign genes can each be transcribed in the same ratio. Therefore, the implementation of the prepared microorganism itself can be judged as the implementation of a single gene, so it is easy to confirm the success of the manufactured microorganism.

도 1은 대장균내 방향족 아미노산 및 시스,시스-뮤코닉산의 생합성 경로 및 조절경로를 나타낸 것으로, 파선은 피드백 억압(repression)을 의미한다. 도 1에 기재된 물질명 E4P(erythrose-4-phosphate), PEP(phosphoenolpyruvate), DAHP(3-deoxy-d-arabinoheptulosonate-7-phosphate), DHQ(3-dehydroquinic acid), DHS(3-dehydroshikimic acid), SA(shikimic acid), PCA(protocatechuate)와 그리고 유전자명 aroF(DAHP synthase, l-tyr), aroG(DAHP synthase, l-phe), aroH(DAHP synthase, l-trp), aroB(DHQ synthase), aroD(DHQ dehydratase), aroE(shikimate dehydrogenase), asbF opt (dehydroshikimate dehydratase), aroY opt (protocatechuate decarboxylase) 및 catA opt (catechol 1,2-dioxygenase)은 E. coli K-12 연결지도에 따른 것이다.
도 2는 재조합 플라스미드 지도로서 (A) pUC18△lacZ 및 (B) pMESK1를 나타낸 것이다.
도 3은 (A) LB medium (B) M9 medium의 서로 다른 배지에서, AB2834/pMESK1(실시예) 및 AB2834/pUC18△lacZ(비교예)의 배양시간에 대한 시스,시스-뮤코닉산(Muconic acid)과 세포성장(Cell growth)을 측정한 결과를 나타낸 그래프이다. (◆: AB2834/pMESK1의 시스,시스-뮤코닉산 생산량, ○: AB2834/pUC18△lacZ의 세포성장, ■: AB2834/pMESK1의 세포성장)
도 4는 AB2834/pMESK1(실시예)의 시스,시스-뮤코닉산(◆), 3-DHS(□), cathecol(△) 및 PCA(○) 생산량을 나타낸 그래프이다.
도 5는 AB2834/pMESK1(실시예)의 RT-PCR 분석결과를 나타낸 것이다(M: 100bp ladder, 1: aroB, 2: aroD, 3: aroF, 4: aroH, 5: aroG, 6: asbF opt , 7: aroY opt , 8: catA opt , 9: GAPDH).
FIG. 1 shows biosynthetic pathways and regulatory pathways of aromatic amino acids and cis, cis-muconic acids in Escherichia coli, and dashed lines indicate feedback suppression. Names of substances described in Figure 1 E4P (erythrose-4-phosphate), PEP (phosphoenolpyruvate), DAHP (3-deoxy-d-arabinoheptulosonate-7-phosphate), DHQ (3-dehydroquinic acid), DHS (3-dehydroshikimic acid), SA (shikimic acid), PCA ( protocatechuate) with and gene name aroF (DAHP synthase, l-tyr ), aroG (DAHP synthase, l-phe), aroH (DAHP synthase, l-trp), aroB (DHQ synthase), aroD (DHQ dehydratase), aroE (shikimate dehydrogenase), asbF opt (dehydroshikimate dehydratase), aroY opt (protocatechuate decarboxylase) and catA opt (catechol 1,2-dioxygenase) are E. coli Follow the K-12 connection map.
2 shows (A) pUC18ΔlacZ and (B) pMESK1 as recombinant plasmid maps.
Figure 3 shows the cis, cis-muconic acid (Muconic) for the incubation time of AB2834 / pMESK1 (Example) and AB2834 / pUC18ΔlacZ (Comparative) in different media of (A) LB medium (B) M9 medium acid) and cell growth. (◆: cis, cis-muconic acid production of AB2834 / pMESK1, ○: cell growth of AB2834 / pUC18ΔlacZ, ■: cell growth of AB2834 / pMESK1)
4 is a graph showing cis, cis-muconic acid (◆), 3-DHS (□), cathecol (Δ), and PCA (○) production of AB2834 / pMESK1 (Example).
Figure 5 shows the RT-PCR analysis of AB2834 / pMESK1 (Example) (M: 100bp ladder, 1 : aroB, 2: aroD, 3: aroF, 4: aroH, 5: aroG, 6: asbF opt, 7: aroY opt , 8: catA opt , 9: GAPDH).

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

뮤코닉산(muconic acid)은 바이오 유래의 TPA(terephthalic acid) 또는 아디프산의 전구체로서, 방향족아미노산 생합성 경로의 중간물질을 통해 합성될 수 있다. 이에 본 발명은 뮤코닉산을 생산할 수 있는 미생물을 제공하기 위하여, 미생물 중 대장균(Escherichia coli)에 뮤코닉산을 합성할 수 있는 유전자들을 도입하였다. Muconic acid (muconic acid) is a precursor of bio-derived terephthalic acid (TPA) or adipic acid, can be synthesized through the intermediate of the aromatic amino acid biosynthetic pathway. Thus, the present invention, in order to provide a microorganism capable of producing muconic acid, Escherichia coli ( Esherichia) among the microorganisms coli ) genes capable of synthesizing muconic acid were introduced.

이에 본 발명의 구현예들은 뮤코닉산 생산용 재조합 벡터로서, asbF opt 를 코딩하는 폴리뉴클레오티드, aroY opt 를 코딩하는 폴리뉴클레오티드 및 catA opt 를 코딩하는 폴리뉴클레오티드를 포함하고, 상기 세 폴리뉴클레오티드의 각 업스트림(upstream)에 대장균 유래의 리보솜 결합 부위(ribosome binding site, rbs)를 포함하고, 상기 세 폴리뉴클레오티드 중 첫 번째 전사되는 폴리뉴클레오티드의 리보솜 결합부위(rbs)의 업스트림(upstream)에 프로모터(promoter)를 포함하는 뮤코닉산 생산용 재조합 벡터를 제공한다. 일 구현예로서 상기 세 폴리뉴클레오티드 중 첫 번째 전사되는 폴리뉴클레오티드는 asbF opt 를 코딩하는 폴리뉴클레오티드, aroY opt 를 코딩하는 폴리뉴클레오티드 및 catA opt 를 코딩하는 폴리뉴클레오티드 중에서 선택되는 어느 하나이며, 상기 세 유전자의 배열 순서는 상기 유전자가 기재된 순서로 한정되지 않는다. 예를 들면, 세 유전자는 뮤코닉산 생산용 재조합 벡터내에 aroY opt 를 코딩하는 폴리뉴클레오티드, asbF opt 를 코딩하는 폴리뉴클레오티드 및 catA opt 를 코딩하는 폴리뉴클레오티드 순으로 배열될 수 있다. 또는, catA opt 를 코딩하는 폴리뉴클레오티드, aroY opt 를 코딩하는 폴리뉴클레오티드 및 asbF opt 를 코딩하는 폴리뉴클레오티드 순으로 배열될 수 있다.In embodiments of the invention are mu conic acid as a recombinant vector for production, a polynucleotide encoding the polynucleotide, encoding a asbF aroY opt and opt a polynucleotide encoding a catA opt , upstream of each of the three polynucleotides, comprising a ribosomal binding site (rbs) derived from E. coli, and a first transcribed polynucleotide of the three polynucleotides It provides a recombinant vector for the production of muconic acid, including a promoter (promoter) upstream of the ribosome binding site (rbs). In one embodiment the polynucleotide is the first transfer of the three polynucleotides is any one selected from a polynucleotide encoding the polynucleotide and catA opt encoding polynucleotides, aroY opt encoding asbF opt, of the three genes The arrangement order is not limited to the order in which the genes are described. For example, the three genes may be arranged in the order of polynucleotides encoding aroY opt , polynucleotides encoding asbF opt and polynucleotides encoding catA opt in the recombinant vector for muconic acid production. Or, it may be arranged in a polynucleotide, the polynucleotide encoding order of the polynucleotide and coding for the aroY asbF opt opt encoding a catA opt.

구체적으로, 본 발명의 일 구현예로서 사용되는 대장균(Escherichia coli)은 그람 음성 호기성 세균으로 독성이 없으며, 성장이 매우 빠르고 실험실과 산업현장에서 쉽고 저렴하게 키울 수 있다는 장점을 가지고 있다. 그러나 대장균 내에는 뮤코닉산을 합성할 수 있는 유전자들이 존재하지 않기 때문에, 뮤코닉산을 생산하기 위하여는 외래유전자의 도입이 필요하다. 이에 본 발명은 대장균 대사경로 중 방향족아미노산 생합성 경로에서 3-DHS(3-dehydroshikimate)가 합성되는 것에 주목하여, 3-DHS로부터 뮤코닉산을 생합성 하는데 있어서 필요한 유전자로서, asbF, aroY catA를 각각 코딩하는 유전자를 도입하였다. 일 구현예로서, 상기 뮤코닉산은 시스-시스 뮤코닉산(cis,cis-muconic acid, CCM)이며, 상기 3-DHS에서 시스-시스 뮤코닉산으로의 대사경로는 도 1에 나타내었다. 도 1에 나타난 바와 같이, 대장균의 탄수화물 대사경로 중에는 방향족아미노산인 페닐알라닌(Phenylalanine,Phe), 타이로신(Tyrosine,Tyr), 트립토판(Tryptophan,Try)을 생합성하는 경로가 있다. 이 때 중간물질인 3-DHS (3-dehydroshikimate)가 앞서 언급한 바와 같이 뮤코닉산 전구체로서 사용될 수 있는데, 뮤코닉산 생산을 위해서는 대장균에 원래는 존재하지 않는 세 종류의 외래유전자를 도입해야만 가능하다. 즉, 3-DHS 탈수효소(3-DHS dehydratase)를 코딩하는 asbF, PCA 탈카르복실화효소(protocatechuic acid decarboxylase)를 코딩하는 aroY, 카테콜 1,2-산소화효소(catechol 1,2-dioxygenase)를 코딩하는 catA이다. 이러한 3종의 외래유전자의 도입으로 3-DHS로부터 PCA, 카테콜을 거쳐 뮤코닉산을 합성할 수 있게 된다.Specifically, Escherichia coli used as an embodiment of the present invention coli ) is a gram-negative aerobic bacterium that is non-toxic and has the advantage of being very fast and easy and inexpensive to grow in laboratories and industrial sites. However, since there are no genes capable of synthesizing muconic acid in Escherichia coli, it is necessary to introduce a foreign gene to produce muconic acid. Therefore, the present invention pays attention to the synthesis of 3-DHS (3-dehydroshikimate) in the aromatic amino acid biosynthesis pathway in the E. coli metabolic pathway, and asbF, aroY and catA , respectively , are required for biosynthesis of muconic acid from 3-DHS. The coding gene was introduced. In one embodiment, the muconic acid is cis-cis-muconic acid (cis-muconic acid, CCM), the metabolic pathway from the 3-DHS to cis-cis muconic acid is shown in FIG. As shown in Figure 1, the carbohydrate metabolic pathway of Escherichia coli has a pathway for biosynthesis of the aromatic amino acids phenylalanine (Phenylalanine, Phe), Tyrosine (Tyr), tryptophan (Tryptophan, Try). In this case, 3-DHS (3-dehydroshikimate), an intermediate, can be used as a muconic acid precursor, as mentioned above. Do. That is, 3-DHS dehydratase (3-DHS dehydratase) coding asbF, PCA decarboxylation aroY, catechol 1,2-oxygenated enzyme (catechol 1,2-dioxygenase) encoding the enzyme (protocatechuic acid decarboxylase) to the Is catA coding. With the introduction of these three foreign genes, it is possible to synthesize muconic acid from 3-DHS via PCA and catechol.

이에 본 발명의 구현예들은 상기 세 종류의 외래유전자를 대장균에 도입함에 있어서 대장균에서의 발현율을 증가시킴으로써 뮤코닉산 생산능을 향상시키기 위하여, 상기 asbF , aroY catA를 대장균 코돈으로 변형한 염기서열인 asbF opt 를 코딩하는 폴리뉴클레오티드, aroY opt 를 코딩하는 폴리뉴클레오티드 및 catA opt 를 코딩하는 폴리뉴클레오티드를 합성한다. 그리고 상기 세 폴리뉴클레오티드와, 상기 세 폴리뉴클레오티드의 각 업스트림(upstream)에 대장균 유래의 리보솜 결합 부위(ribosome binding site)를 포함하고, 상기 세 폴리뉴클레오티드 중 첫 번째 전사되는 폴리뉴클레오티드의 리보솜 결합부위(rbs)의 업스트림에 프로모터(promoter)를 포함하는 재조합 벡터로 제조할 수 있다. 일 구현예로서, 상기 asbF opt 를 코딩하는 폴리뉴클레오티드는 서열번호 1을 포함하고, 상기 aroY opt 를 코딩하는 폴리뉴클레오티드는 서열번호 2를 포함하며, 상기 catA opt 를 코딩하는 폴리뉴클레오티드는 서열번호 3을 포함할 수 있다. 상기 리보솜 결합 부위는 서열번호 4를 포함할 수 있다. 일 구현예는 상기와 같이 제조한 재조합 벡터로 형질전환된 숙주세포를 제공하며, 상기 숙주 세포를 포함하는 대장균을 제공한다.Therefore, the embodiments of the present invention, in order to improve the muconic acid production capacity by increasing the expression rate in E. coli in introducing the three kinds of foreign genes in E. coli, the asbF , aroY And a polynucleotide encoding a catA one of asbF opt nucleotide sequence transformed into the E. coli codon, the polynucleotide encoding the aroY opt and Synthesize a polynucleotide encoding catA opt . And ribosomal binding sites of the first polynucleotide to be transcribed, including the three polynucleotides and a ribosome binding site derived from E. coli upstream of each of the three polynucleotides. It can be prepared with a recombinant vector comprising a promoter upstream of). In one embodiment, the polynucleotide encoding the asbF opt comprises SEQ ID NO: 1, the polynucleotide encoding aroY opt comprises SEQ ID NO: 2, the polynucleotide encoding catA opt is SEQ ID NO: It may include. The ribosomal binding site may comprise SEQ ID NO: 4. One embodiment provides a host cell transformed with the recombinant vector prepared as described above, and provides E. coli comprising the host cell.

이로써 상기와 같은 asbF opt , aroY opt catA opt 를 포함하는 본 발명의 일 구현예에 따른 대장균은 상기 세 외래유전자 각각을 단일 오페론 구조로 포함함으로써, 상기 asbF opt , aroY opt catA opt 을 코딩하는 각 폴리뉴클레오티드의 전사량이 0.9~1.1 : 0.9~1.1 : 0.9~1.1로 구현된다. This leads to asbF opt , aroY opt and E. coli according to an embodiment of the present invention comprising catA opt includes each of the three foreign genes as a single operon structure, thereby asbF opt , aroY opt and Transcription amount of each polynucleotide encoding catA opt is implemented as 0.9-1.1: 0.9-1.1: 0.9-1.1.

상기 세 종류의 폴리뉴클레오티드는 각각의 해당 효소인 3-DHS 탈수효소(3-DHS dehydratase), PCA 탈카르복실화효소(protocatechuic acid decarboxylase), 카테콜 1,2-산소화효소(catechol 1,2-dioxygenase)를 효율적으로 발현시켜준다. 본 발명의 다른 일 구현예로서 상기 세 유전자 중 asbF 유전자는 Klebsiella pneumonia , Acinetobacter sp , Podospore anserine 또는 Bacillus thuringiensis유래의 asbF, 상기 aroY 유전자는 Klebsiella pneumonia , Sedimentibacter hydroxybenzoicus 또는 Enterobacter cloacae유래의 aroY , catA 유전자는 Burkholderia xenovorans, Acinetobacter calcoaceticus 또는 Acinetobacter calcoaceticus 유래의 catA를 사용할 수 있다.The three types of polynucleotides are 3-DHS dehydratase, PCA decarboxylase, catechol 1,2-oxygenase, 3-DHS dehydratase. dioxygenase) efficiently expressed. As another embodiment of the invention the asbF of the three genes Genes Klebsiella pneumonia , Acinetobacter sp , Podospore anserine Or asbF from Bacillus thuringiensis , aroY Genes Klebsiella pneumonia , Sedimentibacter hydroxybenzoicus or Enterobacter cloacae origin of aroY, catA Genes Burkholderia xenovorans, Acinetobacter calcoaceticus Acinetobacter calcoaceticus, or you can use the catA of origin.

또한, 본 발명의 일 구현예로서 상기 대장균은 3-DHS의 축적을 위해 aro E 유전자(서열번호 5)가 결손되어, aro E 효소활성이 상실된 대장균이며, 예를 들면 E. coli AB2834(구입기관: E. coli Genetic Stock Center, 기탁번호: AB2834)를 사용할 수 있다. 상기 areE유전자는 DHS(3-dehydroshikimic acid)를 SA(shikimic acid)로 전환시키는 3-DHS 탈수효소를 코딩하는 유전자로 aroE 유전자가 결손되면 DHS가 SA로 전환되는 것을 차단하여 DHS가 방향족아미노산 생합성에 이용되는 것을 차단함으로써 대사 흐름을 뮤코닉산 생합성 쪽으로 바꾸어 줄 수 있어 상기 areE유전자가 결손된 대장균을 사용하면 뮤코닉산의 생합성 효율을 더욱 증가시킬 수 있다. 또한 방향족 아미노산의 생합성이 차단되면 대사경로 초기물질인 PEP(phosphoenolpyruvate)와 E4P(erythrose-4-phosphate)가 DAHP로의 전환에 대한 feedback inhibition의 해제(저해)가 일어나 뮤코닉산 생합성으로의 대사흐름이 원활해진다. 다만 aroE 유전자의 결손으로 방향족아미노산이 합성되지 않으므로 배양배지에 방향족아미노산을 첨가해 주어야 하는데 이때 과량의 방향족아미노산을 첨가해 주면 다시 피드백 억제(feedback inhibition)가 일어나므로 세심한 주의가 필요하다. In addition, as an embodiment of the present invention, the E. coli is E. coli AB2834 (purchase institution), the aro E gene (SEQ ID NO: 5) is missing for the accumulation of 3-DHS, the aro E enzyme activity is lost. E. coli Genetic Stock Center, Accession No. AB2834). The areE gene is a gene encoding 3-DHS dehydratase, which converts DHS (3-dehydroshikimic acid) to SA (shikimic acid), and when the aroE gene is deleted, DHS blocks SA conversion, thereby preventing DHS from producing aromatic amino acids. By blocking the use, metabolic flow can be shifted towards muconic acid biosynthesis, so that the E. coli lacking the areE gene can further increase the biosynthesis efficiency of muconic acid. In addition, when the biosynthesis of aromatic amino acids is blocked, metabolic flow to muconic acid biosynthesis occurs due to the release of inhibition of inhibition of PEP (phosphoenolpyruvate) and E4P (erythrose-4-phosphate) conversion to DAHP. It is smooth. However, since the aromatic amino acid is not synthesized due to the deletion of the aroE gene, it is necessary to add the aromatic amino acid to the culture medium. At this time, if the excess aromatic amino acid is added, feedback inhibition occurs again.

본 발명의 다른 일 구현예는 상기와 같은 뮤코닉산 생산용 대장균을 제조하는 방법으로, 벡터에 asbF opt 를 코딩하는 폴리뉴클레오티드, aroY opt 를 코딩하는 폴리뉴클레오티드 및 catA opt 를 코딩하는 폴리뉴클레오티드를 삽입하고, 상기 세 폴리뉴클레오티드의 업스트림(upstream) 방향으로 대장균 유래의 리보솜 결합 부위(ribosome binding site, RBS)를 각각 삽입하여 재조합 벡터를 제조하는 단계, 및 상기 재조합 벡터를 대장균 모균주에 도입하여 형질전환하는 단계를 포함하는 뮤코닉산 생산용 재조합 대장균의 제조방법을 제공한다. 또한, 일 구현예로서 상기 재조합 벡터를 제조하는 단계는 상기 세 폴리뉴클레오티드 중 첫 번째로 전사되는 폴리뉴클레오티드의 리보솜 결합부위(rbs)의 업스트림(upstream)에 프로모터(promoter)를 삽입하는 것을 더 포함할 수 있다.Another embodiment of the present invention is a method for producing a polynucleotide mu conic acid production for E. coli as described above, encoding the asbF opt the vector, the polynucleotide encoding the aroY opt and preparing a recombinant vector by inserting a polynucleotide encoding catA opt and inserting a ribosomal binding site (RBS) derived from E. coli in an upstream direction of the three polynucleotides, and the recombinant vector It provides a method for producing a recombinant Escherichia coli for the production of muconic acid comprising the step of transforming by introducing into the E. coli strain strain. In one embodiment, the step of preparing the recombinant vector may further include inserting a promoter upstream of the ribosomal binding site (rbs) of the polynucleotide to be transcribed first of the three polynucleotides. Can be.

일 구현예로서 상기 세 폴리뉴클레오티드 중 첫 번째 전사되는 폴리뉴클레오티드는 asbF opt 를 코딩하는 폴리뉴클레오티드, aroY opt 를 코딩하는 폴리뉴클레오티드 및 catA opt 를 코딩하는 폴리뉴클레오티드 중에서 선택되는 어느 하나이며, 상기 세 폴리뉴클레오티드의 삽입 및 배열 순서는 상기 유전자가 기재된 순서로 한정되지 않는다. 예를 들면, 세 유전자는 뮤코닉산 생산용 재조합 벡터 내에 aroY opt 를 코딩하는 폴리뉴클레오티드, asbF opt 를 코딩하는 폴리뉴클레오티드 및 catA opt 를 코딩하는 폴리뉴클레오티드 순으로 배열될 수 있다. 또는, catA opt 를 코딩하는 폴리뉴클레오티드, aroY opt 를 코딩하는 폴리뉴클레오티드 및 asbF opt 를 코딩하는 폴리뉴클레오티드 순으로 배열될 수 있다.In one embodiment the polynucleotide to be transferred first of the three polynucleotides and polynucleotides encoding the polynucleotides, encoding the aroY opt opt asbF Any one selected from among polynucleotides encoding catA opt , and the insertion and arrangement order of the three polynucleotides is not limited to the order in which the genes are described. For example, the three genes are polynucleotides encoding the polynucleotides, encoding the aroY asbF opt opt in a recombinant vector for the production of MU-conic acid and The polynucleotides encoding catA opt may be arranged in order. Or, it may be arranged in a polynucleotide, the polynucleotide encoding order of the polynucleotide and coding for the aroY asbF opt opt encoding a catA opt.

상기와 같이 asbF opt , aroY opt catA opt 를 각각 코딩하는 폴리뉴클레오티드의 업스트림 방향으로 대장균 유래의 리보솜 결합 부위(RBS)를 추가하면, 상기 외래유전자 각각이 단일 오페론 형태로 제조되어 각 유전자의 전사량을 0.9~1.1 : 0.9~1.1 : 0.9~1.1로 동일하게 구현할 수 있다. As above, asbF opt , aroY opt and When the ribosome binding site (RBS) derived from E. coli is added in the upstream direction of each polynucleotide encoding catA opt , each of the foreign genes is prepared in the form of a single operon, thereby reducing the amount of transcription of each gene from 0.9 to 1.1: 0.9 to 1.1: The same can be achieved with 0.9 to 1.1.

일 구현예로서 상기 재조합 대장균 미생물의 제조방법의 상기 대장균 재조합 벡터를 합성하는 단계는 asbF opt 를 코딩하는 폴리뉴클레오티드에 추가된 상기 리보솜 결합 부위 앞에 XbaI 제한효소(서열번호 6), 상기 catA opt 를 코딩하는 폴리뉴클레오티드 뒤에 HindIII 제한효소(서열번호 7) 자리를 각각 추가하는 단계를 더 포함할 수 있다. 또한, 일 구현예로서 상기 벡터는 플라스미드를 사용할 수 있으며, 구체적으로 XbaI와 HindIII 제한효소 자리를 가지고 있으며 프로모터(promoter) 방향과 일치하는 플라스미드라면 그 종류에 제한없이 모두 사용할 수 있다.In one embodiment step Xba I restriction enzyme (SEQ ID NO: 6) in front of the ribosome binding site added to the polynucleotide encoding an asbF opt for synthesis of the E. coli recombinant vector of the method for producing the recombinant mutant microorganism, the catA opt The method may further include adding Hind III restriction enzyme (SEQ ID NO: 7) sites after the encoding polynucleotide. In addition, as an embodiment, the vector may be used as a plasmid, and specifically, any plasmid having Xba I and Hind III restriction enzyme sites and corresponding to the promoter direction may be used without limitation.

다른 일 구현예로서, 상기 벡터는 lac 프로모터 유래 lacZα 유전자가 제거된 벡터를 사용할 수 있다. 일 구현예로서 상기 lac 프로모터 유래 lacZα 유전자는 서열번호 8을 포함할 수 있다. 상기 lacZα 유전자가 제거된 벡터는 lacZα 유전자만 제거하고 프로모터 부분은 그대로 이용하고 있어 lac 리프레서(repressor)가 lac 오퍼레이터(operator)에 결합하는 것이 유지된다. 그러므로, asbF opt , aroY opt catA opt 가 발현되도록 하기 위해 IPTG(Isopropyl β-D-1-thiogalactopyranoside)을 도입하여 유전자 발현을 유도하는 단계가 필요로 하며, 공정 진행 중 글루코스가 고갈되거나 낮은 농도로 유지되어야 생산성이 높게 유지된다.In another embodiment, the vector may use a vector from which a lac promoter-derived lacZα gene has been removed. In one embodiment, the lac promoter-derived lacZα gene may include SEQ ID NO: 8. The vector from which the lacZα gene has been removed removes only the lacZα gene and uses the promoter portion as it is, so that the lac repressor binds to the lac operator. Therefore, in order to express asbF opt , aroY opt and catA opt , it is necessary to introduce IPTG (Isopropyl β-D-1-thiogalactopyranoside) to induce gene expression, and during the process, glucose is depleted or Maintains high productivity.

본 발명은 상기와 같은 제조방법을 통해 뮤코닉산 생산용 대장균을 제조함으로써, 궁극적으로 대장균에서 합성생물학적 뮤코닉산 생산을 위한 최적의 외래유전자군 발현-조절오페론 시스템을 구축할 수 있다.
The present invention can produce an optimal foreign gene group expression-regulated operon system for the production of synthetic biological muconic acid in E. coli, ultimately by producing E. coli for the production of muconic acid through the above production method.

이하, 본 발명의 제조예 및 시험예를 참조하여 본 발명을 상세히 설명한다. 이들은 오로지 본 발명을 보다 구체적으로 설명하기 위해 예시적으로 제시한 것일 뿐, 본 발명의 범위가 이 제조예 및 시험예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가지는 자에 있어서 자명할 것이다.
Hereinafter, the present invention will be described in detail with reference to production examples and test examples of the present invention. These are only presented by way of example only to more specifically describe the present invention, it will be apparent to those of ordinary skill in the art that the scope of the present invention is not limited by these preparation and test examples. .

[제조예][Production example]

본 발명의 일 구현예에 따른 재조합대장균 미생물을 하기의 방법에 따라 제조하였다.Recombinant Escherichia coli microorganism according to an embodiment of the present invention was prepared according to the following method.

사용 미생물, 배지 및 배양조건Microorganisms Used, Medium and Culture Conditions

뮤코닉산 합성을 위한 대장균 미생물은 E. coli AB2834로 예일대학교의 E. coli Genetic Stock Center에서 구입하였다 (하기 표 1 및 표 2 참조). Escherichia coli microorganisms for muconic acid synthesis were purchased from E. coli Genetic Stock Center of Yale University as E. coli AB2834 (see Table 1 and Table 2 below).

미생물(E. coli ) Microbe ( E. coli ) 특성characteristic AB2834AB2834 aroE 결손 E. coli aroE Defective E. coli AB2834/pUC18△lacZ (비교예)AB2834 / pUC18 △ lacZ (comparative example) pUC18△lacZ 함유 AB2834AB2834 containing pUC18 △ lacZ AB2834/pMESK1(실시예)AB2834 / pMESK1 (Example) pMESK1 함유 AB2834AB2834 with pMESK1

벡터(플라스미드)Vector (plasmid) 특성characteristic pUC18△lacZpUC18 △ lacZ lacZ α결손 pUC18 lacZ α deletion pUC18 pMESK1pMESK1 asbF opt , aroY opt , catA opt 포함 pUC18△lacpUC18 △ lac with asbF opt , aroY opt , catA opt

먼저, 대장균 E. coli DH5α(구입처: TaKaRa, 구입번호: 9057)를 재조합 플라스미드 제작 시 모미생물로 사용하였다. 모든 대장균 미생물은 37℃, 220rpm에서 진탕배양 하였으며, 1L의 LB(Luria-Bertani)액체배지(박토트립톤 10.0g, 박토효모추출물 5.0g, NaCl 10.0g 함유)와 1L의 M9 액체배지(Na2HPO4 6.8g, KH2PO4 3.0g, NaCl 0.5g, NH4Cl 1.0g를 980㎖의 1차수에 멸균 후, 멸균된 20% 글루코스 20㎖, 1M CaCl2 100㎕, 1M MgSO4 2㎖와 함께 L-try, L-phe, L-tyr 및 시킴산(shikimate)을 각각 0.04g씩 첨가)를 사용하였다. 항생제로 사용한 앰피실린(Ap)은 최종농도 50mg/L에 맞춰 배지에 넣어주었다. IPTG(Isopropyl-β-D-thiogalactopyranoside)는 0.5M 스톡(stock) 상태로 준비하였다. 프로모터를 조절하기 위해서 인덕션(induction)시에 IPTG를 사용하였으며, IPTG는 접종 후 36시간 뒤에 0.5mM로 6시간마다 인덕션해주었다. 3차 증류수에 녹인 아미노산, 시킴산, 앰피실린, IPTG, 20% 글루코스는 모두 0.25㎛ 멤브레인을 사용하여 멸균하였다.
First, E. coli DH5α (purchased from TaKaRa, purchase number: 9057) was used as the mother microorganism in the production of the recombinant plasmid. All Escherichia coli microorganisms were shaken at 37 ° C and 220rpm, and 1L LB (Luria-Bertani) liquid medium (containing 10.0g of Baktotrypton, 5.0g of Bakto yeast extract, 10.0g of NaCl) and 1L of M9 liquid medium (Na 2 6.8 g of HPO 4 , 3.0 g of KH 2 PO 4 , 0.5 g of NaCl, and 1.0 g of NH 4 Cl were sterilized in 980 ml of primary water, followed by 20 ml of sterilized 20% glucose, 100 µl of 1M CaCl 2 , and 2 ml of 1M MgSO 4. L-try, L-phe, L-tyr and shikimate were added each 0.04 g). Ampicillin (Ap) used as an antibiotic was added to the medium at a final concentration of 50 mg / L. Isopropyl-β-D-thiogalactopyranoside (IPTG) was prepared in a 0.5M stock state. IPTG was used during induction to control the promoter, and IPTG was inducted every 0.5 hours at 0.5 mM after 36 hours of inoculation. Amino acid, shikimic acid, ampicillin, IPTG, and 20% glucose dissolved in tertiary distilled water were all sterilized using a 0.25 μm membrane.

pUC18pUC18 lacZlacZ 플라스미드의 제조 Preparation of the plasmid

lacZ α유전자(서열번호 8)가 제거된 pUC18 플라스미드의 제조를 위하여 lacZ α유전자를 기준으로 반대방향의 프라이머 한 쌍(서열번호 9 및 10)을 제작하여 PCR에 사용하였다. For the preparation of the pUC18 plasmid from which the lacZ α gene (SEQ ID NO: 8) was removed, a pair of primers (SEQ ID NOs: 9 and 10) in the opposite direction based on the lacZ α gene were prepared and used for PCR.

- pUC18_lac_forward: 5’-agctgtttcctgtctagaaattgttatc-3’(서열번호 9), pUC18_lac_forward: 5'-agctgtttcctg tctaga aattgttatc-3 '(SEQ ID NO: 9),

- pUC18_lac_reverse: 5’-ttaagcttgccccgacacccgccaac-3’(서열번호 10)pUC18_lac_reverse: 5'-tt aagctt gccccgacacccgccaac-3 '(SEQ ID NO: 10)

상기 두 염기서열 중 밑줄 친 서열은 각각 XbaⅠ, HindⅢ 제한효소(서열번호 6 및 7) 자리이다. Underlined sequences of the two nucleotide sequences are Xba I and Hind III restriction enzymes (SEQ ID NOs: 6 and 7), respectively.

PCR은 최종부피를 50㎕로 맞춰 5X 퓨전(Phusion) HF 버퍼 10㎕, 0.2mM dNTPs, 0.5μM의 상기 pUC18△lacZ forward 및 pUC18△lacZ reverse 두 프라이머, 3% DMSO, 0.25㎕의 pUC18 플라스미드가 포함된 혼합물을 제작한 후, C1000 Thermal Cycler (BIO-RAD)에서 수행하였다. 이때, PCR 방법은 다음과 같다: 1단계: 98℃ 30초, 2단계: 98℃ 10초, 60℃ 30초, 72℃ 1분 30초 (30회 반복), 3단계: 72℃ 10분.PCR consisted of 10 μl of 5 × Phusion HF buffer, 0.2 mM dNTPs, 0.5 μM of the above pUC18ΔlacZ forward and pUC18ΔlacZ reverse primers, 3% DMSO, 0.25 μl of pUC18 plasmid with 50 μl final volume. The prepared mixture was carried out in a C1000 Thermal Cycler (BIO-RAD). At this time, the PCR method is as follows: Step 1: 98 ℃ 30 seconds, Step 2: 98 ℃ 10 seconds, 60 ℃ 30 seconds, 72 1 minute 30 seconds (30 repetitions), Step 3: 72 ℃ 10 minutes.

PCR 산물은 1% (w/v) 아가로스겔에 전기영동을 통해 확인 후 PCR 정제(purification) 키트를 사용하여 정제 후 T4 라가아제(Takara)를 사용하여 자가-라이게이션(self-ligation)하였다. 라이게이션된 벡터는 pUC18△lacZ sequencingprimer (5’-ttggccgattcattaatgcag-3’, 서열번호 11)를 제작 후 그 서열을 확인하였다 (Macrogen, Korea).
PCR products were identified by electrophoresis on 1% (w / v) agarose gel, and then purified using a PCR purification kit, and then self-ligation using T4 lagase (Takara). . The ligated vector was constructed after confirming the pUC18ΔlacZ sequencing primer (5'-ttggccgattcattaatgcag-3 ', SEQ ID NO: 11) (Macrogen, Korea).

AB2834AB2834 /Of pMESK1pMESK1 대장균( Escherichia coli ( 실시예Example )의 제조Manufacturing

AB2834/pMESK1 대장균(실시예)을 제조하기 위하여, 먼저 데이터베이스 검색을 통해 B. thuringiensis유래의 asbF, K. pneumonia 유래의 aroY, Acinetobacter calcoaceticus 유래의 catA를 선별하여 대장균 코돈으로 최적화하여, asbF opt (서열번호 1), aroY opt (서열번호 2) catA opt (서열번호 3)를 코딩하는 폴리뉴클레오티드를 합성하였다. 그 다음, 폴리뉴클레오티드의 각 업스트림(upstream)에 대장균 유래 리보솜 결합 부위(RBS, 서열번호 4)를 추가하여 합성 후 pUC57 플라스미드에 XbaⅠ, HindⅢ 제한효소 자리를 이용하여 클로닝하였다 (Cosmo genetech, Korea). 최종적으로 pUC18△lacZ 플라스미드에 상기 합성한 asbF opt , aroY opt catA opt 를 각각 코딩하는 상기 폴리뉴클레오티드 및 리보솜 결합 부위를 포함하는 유전자 단편을 XbaⅠ, HindⅢ 제한효소 자리에 클로닝하여(도 2 참조), pMESK1 플라스미드를 제작하였다. In order to prepare AB2834 / pMESK1 Escherichia coli (Example), asbF , K. pneumonia from B. thuringiensis were first searched through a database search. By screening by the aroY, Acinetobacter calcoaceticus derived catA of the derived optimized E. coli codon, asbF opt (SEQ ID NO: 1), aroY opt (SEQ ID NO: 2) And Polynucleotides encoding catA opt (SEQ ID NO: 3) were synthesized. Subsequently, E. coli-derived ribosomal binding sites (RBS, SEQ ID NO: 4) were added to each upstream of the polynucleotide and then cloned using Xba I and Hind III restriction sites in the pUC57 plasmid (Cosmo genetech, Korea). ). Finally, asbF opt and aroY opt synthesized in pUC18ΔlacZ plasmid. And Gene fragments containing the polynucleotide and ribosomal binding sites encoding catA opt , respectively, were cloned into Xba I, Hind III restriction site (see FIG. 2) to prepare pMESK1 plasmid.

하기의 표 3은 상기 제조된 pMESK1 플라스미드의 염기서열을 나타낸 것(서열번호 32)이다. Table 3 below shows the nucleotide sequences of the prepared pMESK1 plasmid (SEQ ID NO: 32).

Figure 112014036859549-pat00001
Figure 112014036859549-pat00001

그리고 이 플라스미드를 E. coli AB2834에 형질전환시켜, AB2834/pMESK1(실시예, 기탁번호: KCCM11505P), 즉 본 발명에 따른 뮤코닉산 생산용 대장균을 제조하였다.
This plasmid was transformed into E. coli AB2834 to prepare AB2834 / pMESK1 (Example, Accession No .: KCCM11505P), that is, Escherichia coli for muconic acid production according to the present invention.

AB2834AB2834 /Of pUC18pUC18 lacZlacZ ( ( 비교예Comparative example )의 제조Manufacturing

상기에서 제조된 pUC18△lacZ 플라스미드를 E. coli AB2834에 형질전환시켜, AB2834/pUC18△lacZ (비교예)를 제조하였다.
The pUC18ΔlacZ plasmid prepared above was transformed into E. coli AB2834 to prepare AB2834 / pUC18ΔlacZ (Comparative Example).

[시험예 1] [Test Example 1]

상기 제조예에서 제조한 재조합대장균의 생산곡선 및 대사산물(뮤코닉산 및 뮤코닉산 전구체)을 하기와 같이 분석하였다.Production curves and metabolites (muconic acid and muconic acid precursors) of the recombinant E. coli prepared in the above preparation were analyzed as follows.

먼저, 상기 비교예(AB2834/pUC18△lacZ) 및 실시예(AB2834/pMESK1)를 250㎖ 플라스크 배양한 후 50㎖ M9배지 및 LB배지 모두에서 각각 배양하고 일정시간 간격으로 샘플링을 하여 각 미생물의 생장곡선 및 대사산물의 HPLC 분석을 수행하였다.First, the Comparative Example (AB2834 / pUC18 ΔlacZ) and Example (AB2834 / pMESK1) incubated in 250ml flask and then incubated in both 50ml M9 medium and LB medium and sampled at regular intervals to grow each microorganism HPLC analysis of curves and metabolites was performed.

구체적으로, 채취한 배양액 1㎖을 13000rpm에 5분 원심분리하여 세포를 분리하여 상등액을 0.25㎛ 멤브레인 필터에 여과하여 분석에 사용되었다. 생합성된 시스,시스-뮤코닉산(CCM) 및 전구체들은HPLC(고속액체크로마토그래피)로 분리-분석되었으며, 사용한 컬럼은 Aminex HPX-87H, 이동상은 5mM H2SO4,, 유속은 0.6㎖/L, 분석온도는 65℃에서 수행되었다 (FRC-10A, SHIMADZU). UV 검출은 PCA (259㎚), 3-DHS (237㎚), 카테콜 (275㎚), CCM (262 ㎚) 에서 수행하였다. 정량분석을 위해 사용한 표준(standard) (PCA, 3-DHS, Catechol, CCM: Sigma)는 각각 증류수에 녹여 0.25㎛ 멤브레인에 여과하여 사용하였다.Specifically, 1 ml of the collected culture solution was centrifuged at 13000 rpm for 5 minutes to separate cells, and the supernatant was filtered through a 0.25 μm membrane filter and used for analysis. Biosynthesized cis, cis-muconic acid (CCM) and precursors were separated-analyzed by HPLC (High Performance Liquid Chromatography), column used was Aminex HPX-87H, mobile phase was 5 mM H 2 SO 4 , flow rate 0.6 mL / L, Assay temperature was performed at 65 ° C. (FRC-10A, SHIMADZU). UV detection was performed in PCA (259 nm), 3-DHS (237 nm), catechol (275 nm), CCM (262 nm). Standards used for quantitative analysis (PCA, 3-DHS, Catechol, CCM: Sigma) were each dissolved in distilled water and filtered through a 0.25 μm membrane.

OD600 값을 바탕으로 생장곡선을 분석한 결과, 두 종류의 배지에서 모두 공벡터만 넣은 대조군 미생물인 비교예(AB2834/pUC18△lacZ)가 실시예(AB2834/pMESK1)보다 더 빠르게 지수기에 도달하는 것을 확인하였다. 최고 OD600값은 두 미생물 모두 LB배지에서 높은 값을 보였으며 정지기에서 수행하는 0.5 mM IPTG 인덕션 시간 또한 LB배지가 더 빠른 것으로 나타났다.OD 600 As a result of analyzing the growth curve based on the values, it was confirmed that the comparative example (AB2834 / pUC18ΔlacZ), which is the control microorganism containing only the empty vector, reached the exponential phase faster than the example (AB2834 / pMESK1) in both media. It was. The highest OD 600 values were higher in both LB medium and the 0.5 mM IPTG induction time performed at stationary phase also showed faster LB medium.

그 다음, 뮤코닉산이 생산되는지 확인한 결과 실시예(AB2834/pMESK1)의 경우 LB배지에서 3.5㎎/L, M9배지에서 9.5㎎/L의 뮤코닉산이 생산되는 것을 확인하였다(도 3 참조). 또한 3L 발효조에서 뮤코닉산의 생산을 확인한 결과, 실시예(AB2834/pMESK1)의 경우 배양 72시간 후에 뮤코닉산 7.7 g/L, 3-DHS 0.3 g/L, PCA 0.2 g/L이 각각 생산되었으며 이때까지 뮤코닉산의 생성속도가 일정하게 유지되고 있어 배양을 계속할 경우 뮤코닉산의 생산량도 계속 늘어갈 것으로 예상된다 (도 4 참조).
Then, as a result of confirming that muconic acid is produced, it was confirmed that the Example (AB2834 / pMESK1) produced 9.5 mg / L of muconic acid in 3.5 mg / L in LB medium and M9 medium (see FIG. 3). In addition, as a result of confirming the production of muconic acid in a 3L fermenter, in the case of Example (AB2834 / pMESK1), 7.7 g / L of muconic acid, 0.3 g / L of 3-DHS, and 0.2 g / L of PCA were produced after 72 hours of culture, respectively. Until this time, the production rate of muconic acid is kept constant, so it is expected that the production of muconic acid will continue to increase if culture continues (see FIG. 4).

[시험예 2][Test Example 2]

본 발명의 일 구현예에 따른 상기 제조예에서 제조한 실시예 (AB2834/pMESK1)에 있어서, 도입한 3종의 외래유전자와 기존의 방향족아미노산 생합성 경로 유전자들의 발현양상, 즉 뮤코닉산 생합성 경로 유전자들의 전사 확인을 위한 RT-PCR을 하기와 같이 실시하였다. In Example (AB2834 / pMESK1) prepared in the preparation example according to an embodiment of the present invention, the expression patterns of the three foreign genes introduced and the existing aromatic amino acid biosynthetic pathway genes, that is, muconic acid biosynthetic pathway gene RT-PCR was performed as follows for confirmation of their transcription.

먼저, pMESK1 플라스미드를 형질전환 시킨 AB2834/pMESK1(실시예)를 5㎖ LB 배지에 전배양 하고50㎖ M9배지에 1/100로 접종하여 배양 23시간 뒤 0.5mM IPTG 인덕션을 하고, 3시간 후 배양액을 1300rpm에 5분 원심분리 후 세포를 RNase가 처리된 멸균된 막자사발로 파쇄하였다. RNA는 RNeasy Mini Kit (Qiagen)을 사용하여 분리하였고, cDNA 합성은 PrimeScript 1ST strand cDNA Synthesis Kit (Takara)를 사용하여 합성하였다. RT-PCR은 최종부피 20㎕로 맞춰 10X 버퍼 2㎕, 0.25mM dNTPs, 0.4μM의 각 두 쌍의 프라이머 (하기 표 4 참조), 10% DMSO, 1㎕의 합성한 cDNA를 혼합물로 제작 후 C1000 Thermal Cycler (BIO-RAD)에서 수행되었다. RT-PCR 조건은 다음과 같다: 1단계: 95℃ 15분, 2단계: 95℃ 45초, 60℃ 45초, 72℃ 40초 (30회 반복), 3단계: 72℃ 10분. PCR 산물은 2% (w/v) 아가로스겔에 전기영동을 통해 확인하였다(도 5 참조).First, AB2834 / pMESK1 (Example) transformed with pMESK1 plasmid was pre-incubated in 5 ml LB medium and inoculated at 1/100 in 50 ml M9 medium, followed by 0.5 mM IPTG induction after 23 hours, and culture medium after 3 hours. After centrifugation for 5 minutes at 1300rpm, the cells were disrupted with a RNase-treated sterilized mortar. RNA was isolated using RNeasy Mini Kit (Qiagen), cDNA synthesis was synthesized using PrimeScript 1 ST strand cDNA Synthesis Kit (Takara). RT-PCR was prepared by mixing 20 μl of final volume with 2 μl of 10 × buffer, 0.25 mM dNTPs, 0.4 μM of each pair of primers (see Table 4 below), 10% DMSO, and 1 μl of synthesized cDNA. The thermal cycler (BIO-RAD) was performed. RT-PCR conditions are as follows: Step 1: 95 ° C. 15 minutes, Step 2: 95 ° C. 45 seconds, 60 ° C. 45 seconds, 72 ° C. 40 seconds (30 repetitions), Step 3: 72 ° C. 10 minutes. PCR products were confirmed by electrophoresis on 2% (w / v) agarose gel (see Figure 5).

서열번호SEQ ID NO: 프라이머primer 염기서열(5’-> 3’)Sequence (5 '-> 3') 타겟a Target a 1111 pUC18_lac_sequencingpUC18_lac_sequencing ttggccgattcattaatgcagttggccgattcattaatgcag Plasmid pUC18_lacPlasmid pUC18_lac 1212 pUC18_lac_FpUC18_lac_F agctgtttcctgtctagaaattgttatcagctgtttcctgtctagaaattgttatc Plasmid pUC18Plasmid pUC18 1313 pUC18_lac_RpUC18_lac_R ttaagcttgccccgacacccgccaacttaagcttgccccgacacccgccaac Plasmid pUC18Plasmid pUC18 1414 aroB_RT-PCR_FaroB_RT-PCR_F TGTCGTTACTCTCGGGGAACTGTCGTTACTCTCGGGGAAC 1515 aroB_RT-PCR_RaroB_RT-PCR_R CCGCGGACCTTATCGAGATACCGCGGACCTTATCGAGATA 1616 aroD_RT-PCR_FaroD_RT-PCR_F CCGAAGAAATCATTGCCCGTCCGAAGAAATCATTGCCCGT 1717 aroD_RT-PCR_RaroD_RT-PCR_R TCACCAGCCAGACGAGAAATTCACCAGCCAGACGAGAAAT 1818 aroF_RT-PCR_FaroF_RT-PCR_F CTGAAGGCCGCTTTTCCATTCTGAAGGCCGCTTTTCCATT 1919 aroF_RT-PCR_RaroF_RT-PCR_R TTCCAGAGCAGTTTCCGGATTTCCAGAGCAGTTTCCGGAT 2020 aroG_RT-PCR_FaroG_RT-PCR_F CTGACGTTTGCCAGCAGATTCTGACGTTTGCCAGCAGATT 2121 aroG_RT-PCR_RaroG_RT-PCR_R TGACGTAACAGAGCATCGGTTGACGTAACAGAGCATCGGT 2222 aroH_RT-PCR_FaroH_RT-PCR_F AAACCACGAACTGTTGTCGGAAACCACGAACTGTTGTCGG Strain AB2834/pMESK1 cDNAStrain AB2834 / pMESK1 cDNA 2323 aroH_RT-PCR_RaroH_RT-PCR_R CCGGTCACCATATCGAGGAACCGGTCACCATATCGAGGAA Strain AB2834/pMESK1 cDNAStrain AB2834 / pMESK1 cDNA 2424 asbF_RT-PCR_FasbF_RT-PCR_F TCCTGCATATTTGGGAAAGCTCCTGCATATTTGGGAAAGC Strain AB2834/pMESK1 cDNAStrain AB2834 / pMESK1 cDNA 2525 asbF_RT-PCR_RasbF_RT-PCR_R ATGCCCTCAAACAGTGGAACATGCCCTCAAACAGTGGAAC 2626 aroY_RT-PCR_FaroY_RT-PCR_F ATCCTGTGGGCTATGACGACATCCTGTGGGCTATGACGAC 2727 aroY_RT-PCR_RaroY_RT-PCR_R GGTGCAGTCGAAAATGGTTTGGTGCAGTCGAAAATGGTTT 2828 catA_RT-PCR_FcatA_RT-PCR_F TATTTCACCGATGCTGGTCATATTTCACCGATGCTGGTCA 2929 catA_RT-PCR_RcatA_RT-PCR_R ATACAGCGGACCTTCAATGGATACAGCGGACCTTCAATGG 3030 GAPDH_RT-PCR_FGAPDH_RT-PCR_F TTTCCGTGCTGCTCAGAAACTTTCCGTGCTGCTCAGAAAC 3131 GAPDH_RT-PCR_RGAPDH_RT-PCR_R GTCAACACCAACTTCGTCCCGTCAACACCAACTTCGTCCC

전사 발현량 비교 시 대조군으로 사용한 하우스키핑(housekeeping) 유전자는 GAPDH(D-glyceraldehyde-3-phosphate dehydrogenase)로 D-글리세랄데히드-3-포스페이트(D-glyceraldehyde-3-phosphate)를 1,3-포스포글리세레이트(1,3-phosphoglycerate)로 전환시키는 효소로서, 해당과정과 글루코오스 신생합성에 관여하는 중요한 효소이다. GAPDH와 같은 하우스키핑 유전자들은 조절과정 없이 모든 세포에서 항상 발현되는 유전자이기 때문에 정량적 RT-PCR를 수행할 때 대조군 유전자로 사용된다. RT-PCR 분석 결과, 도 5에 나타난 바와 같이 고 사본수(high copy number) 벡터에 클로닝하여 도입해준 asbF opt , aroY opt , catA opt 유전자들은 GAPDH와 비교 했을 때 높은 발현량을 보이는 것을 확인할 수 있었다. 반면 방향족아미노산 생합성 경로의 유전자들 (aroB , aroD , aroF , aroG, aroH)은 상대적으로 매우 낮은 발현량을 보였다. 특히 aroD , aroG 유전자들은 2% (w/v) 아가로스겔 전기영동을 통한 발현량 관찰에서 육안으로 확인하기에 힘들 정도의 수준이었다. 이는 사용한 미생물인 E. coli AB2834이 aroE 유전자의 결손으로 인해 배양 시 배지에 넣어준 방향족아미노산인 페닐알라닌, 타이로신, 트립토판에 의해 세 종류의 DAHP 생성효소인 AroF , AroG , AroH가 피드백 억제(feedback inhibition)을 받아 유전자들이 전사수준에서 제한을 받기 때문으로 예상된다. 따라서 뮤코닉산 합성 초기단계인 DAHP synthase 유전자의 전사에 대한 제한에 의해 다음 단계인 DHQ synthase인 AroB, DHQ dehydratase인 AroD의 합성 또한 낮은 수준으로 이루어져 뮤코닉산 및 중간단계물질의 생산량에 부정적으로 작용할 것으로 예상된다. The housekeeping gene used as a control for the comparison of transcriptional expression was GAPDH (D-glyceraldehyde-3-phosphate dehydrogenase) and 1,3-D-glyceraldehyde-3-phosphate (D-glyceraldehyde-3-phosphate). It is an enzyme that converts to 1,3-phosphoglycerate and is an important enzyme involved in glycolysis and glucose neosynthesis. Housekeeping genes such as GAPDH are used as control genes when performing quantitative RT-PCR because they are always expressed in all cells without regulation. As a result of RT-PCR analysis, asbF opt , aroY opt , and catA opt genes cloned into high copy number vectors as shown in FIG. 5 showed higher expression levels when compared to GAPDH. . While the gene of the aromatic amino acid biosynthetic pathway (aroB, aroD, aroF, aroG , aroH) showed a relatively very low expression level as. Especially aroD , aroG Genes were difficult to visually identify in the expression level observed by 2% (w / v) agarose gel electrophoresis. This microorganism is E. coli AB2834 is due to the loss of the aroE gene cultured aromatic amino acid, phenylalanine gave put in a culture medium, tyrosine, the three kinds of DAHP synthase by tryptophan AroF, AroG, AroH the feedback inhibition with (feedback inhibition) The genes are expected to be restricted at the transcription level. Therefore, the synthesis of DHQ synthase AroB and DHQ dehydratase AroD , which is the next step, is also restricted due to the restriction on the transcription of the DAHP synthase gene, which is the early stage of muconic acid synthesis, and thus negatively affects the production of muconic acid and intermediates. It is expected.

대장균 코돈에 최적화된 염기서열로 합성한 3종의 외래유전자(폴리뉴클레오티드) asbF opt , aroY opt , catA opt 의 도입으로, aroE가 제거된 재조합 대장균에서 뮤코닉산이 플라스크 배양에서는 9.5mg/L과 3L 발효기 배양에서는 7.7g/L이 각각 생성되었다. 이는 3종의 외래유전자 asbF , aroY , catA를 대장균 코돈에 최적화시킨 폴리뉴틀레오티드로 합성하고 각각의 유전자 앞에 리보솜 결합 부위(RBS)를 도입하여 고사본수(high copy number) 벡터의 단일 오페론 구조로 도입함으로써, 3종의 외래유전자들을 동시에 발현시킬 수 있는 효율적인 발현시스템이 구축된 것을 의미한다. 또한 상기 3종의 외래유전자 발현 수준을 동일하게 유지할 수 있을 뿐만 아니라 3종의 외래유전자 발현을 동시에 동일하게 극대화 시킬 수 있게 되었다. 도입된 3종의 외래유전자는 각각의 해당 효소인 3-DHS 탈수효소, PCA 탈카복실화효소(protocatechuic acid decarboxylase), 카테콜 1,2-산소화효소(catechol 1,2-dioxygenase)를 효율적으로 발현시켰으며, 궁극적으로 3-DHS 축적을 위해 aroE가 제거된 재조합된 대장균에서 뮤코닉산을 효율적으로 생합성 할 수 있었다.
Three kinds of foreign genes in the nucleotide sequence of a synthetic codon optimized for E. coli (polynucleotide) asbF opt, aroY opt, the introduction of catA opt, in the mu-conic acid flask culture in recombinant E. coli has been removed the aroE 9.5mg / L and 3L Fermenter cultures produced 7.7 g / L, respectively. It synthesizes three foreign genes asbF , aroY , and catA into polynucleotides optimized for E. coli codons, and introduces ribosomal binding sites (RBS) before each gene into a single operon structure of high copy number vectors. By introducing, it means that an efficient expression system that can express three foreign genes at the same time is built. In addition, it is possible to maintain the same level of expression of the three foreign genes as well as to maximize the expression of the three foreign genes at the same time. The three introduced genes efficiently express their respective enzymes, 3-DHS dehydratase, PCA protocatechuic acid decarboxylase, and catechol 1,2-dioxygenase. Ultimately, muconic acid could be efficiently biosynthesized from recombinant E. coli with aroE removal for 3-DHS accumulation.

한국미생물보존센터(국외)Korea Microorganism Conservation Center (overseas) KCCM11505PKCCM11505P 2014011020140110

<110> STR Biotech Co.,Ltd. <120> Microorganism for producing muconic acid and method for manufacturing the strain <130> 13P555IND <160> 32 <170> KopatentIn 2.0 <210> 1 <211> 843 <212> DNA <213> Artificial Sequence <220> <223> optimized asbF(3-dehydroshikimate dehydratase) <400> 1 atgaaatact ccctgtgcac tattagcttc cgtcatcaac tgatttcttt cactgacatc 60 gttcagttcg cgtacgaaaa cggttttgaa ggcatcgagc tgtggggtac tcatgcccag 120 aacctgtaca tgcaggagcg tgaaaccacc gagcgtgagc tgaacttcct gaaagataag 180 aacctggaaa tcaccatgat ctctgactac ctggatattt ccctgtccgc cgacttcgag 240 aaaaccattg aaaaatccga acagctggtg gtgctggcaa actggttcaa caccaacaag 300 atccgtacct ttgcgggcca gaaaggtagc aaggactttt ctgaacagga acgtaaagag 360 tacgtaaagc gcatccgtaa aatctgcgac gtttttgcac agcataacat gtacgtcctg 420 ctggaaactc atccgaacac cctgaccgac actctgccta gcaccattga actgctggaa 480 gaagtgaacc atccaaacct gaaaatcaac ctggatttcc tgcatatttg ggaaagcggc 540 gcgaatccaa tcgactcttt ccatcgcctg aaaccgtgga ctctgcacta ccatttcaaa 600 aacatctcct ccgcggatta cctgcacgtg ttcgaaccga ataacgtcta cgccgctgca 660 ggctcccgta ttggtatggt tccactgttt gagggcatcg ttaactacga cgaaatcatt 720 caagaagttc gtggcaccga cctgtttgct tctctggaat ggttcggcca caactctaaa 780 gagatcctga aggaagaaat gaaagtgctg atcaaccgta aactggaagt ggtgacgagc 840 tga 843 <210> 2 <211> 1509 <212> DNA <213> Artificial Sequence <220> <223> optimized aroY(protocatechuate decarboxylase) <400> 2 atgactgcac caatccagga cctgcgcgac gcaatcgctc tgctgcaaca gcacgataac 60 cagtatctgg aaaccgatca cccagttgac ccgaatgcgg agctggcagg cgtctaccgt 120 catattggtg ccggtggcac tgttaaacgc ccgacccgca tcggcccagc aatgatgttt 180 aacaacatca aaggctaccc gcacagccgc atcctggtag gcatgcacgc ttctcgtcaa 240 cgtgcggcac tgctgctggg ctgtgaagca tctcagctgg ctctggaggt gggcaaggcc 300 gtcaaaaagc cggtggcgcc ggttgttgtt ccggcatctt ccgctccttg ccaggaacag 360 attttcctgg ccgatgatcc ggacttcgac ctgcgtacgc tgctgccggc tcacacgaac 420 actccgatcg acgcgggtcc gtttttctgc ctgggtctgg ctctggcgtc tgacccggtg 480 gatgcgagcc tgaccgacgt gaccatccac cgcctgtgcg ttcagggtcg tgacgaactg 540 agcatgttcc tggcagcagg tcgtcacatt gaagtattcc gccaaaaagc ggaagccgcc 600 ggtaaaccgc tgcctattac catcaacatg ggtctggacc cggcgatcta catcggcgct 660 tgctttgaag cacctacgac tccgttcggt tacaacgaac tgggtgtagc cggtgctctg 720 cgccagcgtc cggtggaact ggtacagggc gtgagcgtcc cagaaaaagc catcgcacgc 780 gctgaaatcg taatcgaagg cgaactgctg ccgggcgtcc gcgttcgtga agaccagcac 840 accaacagcg gtcacgcaat gcctgaattc ccgggctact gtggcggtgc caacccgtcc 900 ctgccggtta ttaaggttaa agctgttact atgcgtaaca acgcgattct gcagactctg 960 gtcggtccgg gtgaggaaca cacgaccctg gcgggcctgc cgactgaagc ctctatttgg 1020 aatgcggttg aagcagccat cccgggcttc ctgcagaatg tttacgctca taccgcgggt 1080 ggcggtaaat tcctgggtat cctgcaggtt aaaaagcgcc agccggcaga tgaaggtcgc 1140 caaggtcagg ctgccctgct ggcgctggct acctactctg aactgaaaaa catcattctg 1200 gttgacgaag atgtcgatat ctttgattcc gacgacatcc tgtgggctat gacgactcgt 1260 atgcagggcg atgtttctat caccaccatc ccgggcatcc gtggtcacca gctggacccg 1320 tcccagactc cggaatattc cccgagcatc cgcggcaacg gcatctcctg taaaaccatt 1380 ttcgactgca ccgttccgtg ggctctgaaa tcccacttcg agcgtgcgcc gtttgcggac 1440 gttgatccgc gtccgttcgc accggagtat ttcgctcgtc tggagaaaaa tcagggttcc 1500 gcgaaataa 1509 <210> 3 <211> 923 <212> DNA <213> Artificial Sequence <220> <223> optimized catA(catechol 1,2-dioxygenase) <400> 3 atgaaccgtc agcagatcga cgcgctggtt aaacagatga acgtggatac cgctaagggc 60 gaagttgacg ctcgcgtaca gcagattgta gtacgtctgc tgggtgacct gttccaggca 120 atcgaagatc tggatattca gccgtctgaa gtgtggaaag gtctggagta tttcaccgat 180 gctggtcagg cgaacgaact gggtctgctg gcggccggtc tgggcctgga gcactatctg 240 gacctgcgtg cggatgaagc agatgcaaaa gcaggtgtga ccggtggtac tccgcgtacc 300 attgaaggtc cgctgtatgt tgcaggtgct ccggaaagcg ttggtttcgc gcgtatggat 360 gacggtactg aatctggtaa aatcgatact ctgatcattg aaggcaccgt caccgacacc 420 gacggtaata tcatcgaaaa cgctaaagta gaggtttggc acgcgaactc tctgggcaac 480 tattctttct ttgataaatc ccagtccgac ttcaacctgc gtcgtaccat tctgaccgat 540 gcggacggta aatatgttgc gctgacgacg atgccagtag gctatggctg tccgccggaa 600 ggtaccaccc aagcgctgct gaacaaactg ggtcgccacg gtaaccgtcc ttctcacgta 660 cactatttcg tgtctgctcc gggctaccgt aaactgacga cccaattcaa tatcgagggt 720 gacgaatacc tgtgggatga tttcgctttt gctacccgtg atggtctggt ggcgaccgcg 780 gtagacgtga ccgatccagc tgaaatccag cgtcgcggcc tggatcacgc ttttaaacac 840 atcaccttca acattgaact ggttaaagat gcagccgcgg cacctagcac tgaggtagaa 900 cgccgtcgtg cgtccgctta att 923 <210> 4 <211> 6 <212> DNA <213> Artificial Sequence <220> <223> ribosome binding site <400> 4 gaagga 6 <210> 5 <211> 819 <212> DNA <213> aroE(shikimate dehydrogenase) <400> 5 atggaaacct atgctgtttt tggtaatccg atagcccaca gcaaatcgcc attcattcat 60 cagcaatttg ctcagcaact gaatattgaa catccctatg ggcgcgtgtt ggcacccatc 120 aatgatttca tcaacacact gaacgctttc tttagtgctg gtggtaaagg tgcgaatgtg 180 acggtgcctt ttaaagaaga ggcttttgcc agagcggatg agcttactga acgggcagcg 240 ttggctggtg ctgttaatac cctcatgcgg ttagaagatg gacgcctgct gggtgacaat 300 accgatggtg taggcttgtt aagcgatctg gaacgtctgt cttttatccg ccctggttta 360 cgtattctgc ttatcggcgc tggtggagca tctcgcggcg tactactgcc actcctttcc 420 ctggactgtg cggtgacaat aactaatcgg acggtatccc gcgcggaaga gttggctaaa 480 ttgtttgcgc acactggcag tattcaggcg ttgagtatgg acgaactgga aggtcatgag 540 tttgatctca ttattaatgc aacatccagt ggcatcagtg gtgatattcc ggcgatcccg 600 tcatcgctca ttcatccagg catttattgc tatgacatgt tctatcagaa aggaaaaact 660 ccttttctgg catggtgtga gcagcgaggc tcaaagcgta atgctgatgg tttaggaatg 720 ctggtggcac aggcggctca tgcctttctt ctctggcacg gtgttctgcc tgacgtagaa 780 ccagttataa agcaattgca ggaggaattg tccgcgtga 819 <210> 6 <211> 6 <212> DNA <213> XbaI restrction enzyme <400> 6 tctaga 6 <210> 7 <211> 6 <212> DNA <213> HindIII restriction enzyme <400> 7 aagctt 6 <210> 8 <211> 324 <212> DNA <213> Artificial Sequence <220> <223> lacZ-alpha which codes for the N-terminus fragment of beta-galactosidase <400> 8 atgaccatga ttacgaattc gagctcggta cccggggatc ctctagagtc gacctgcagg 60 catgcaagct tggcactggc cgtcgtttta caacgtcgtg actgggaaaa ccctggcgtt 120 acccaactta atcgccttgc agcacatccc cctttcgcca gctggcgtaa tagcgaagag 180 gcccgcaccg atcgcccttc ccaacagttg cgcagcctga atggcgaatg gcgcctgatg 240 cggtattttc tccttacgca tctgtgcggt atttcacacc gcatatggtg cactctcagt 300 acaatctgct ctgatgccgc atag 324 <210> 9 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> pUC18_lacZ forward primer <400> 9 agctgtttcc tgtctagaaa ttgttatc 28 <210> 10 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> pUC18_lacZ reverse primer <400> 10 ttaagcttgc cccgacaccc gccaac 26 <210> 11 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> pUC18_lacZ sequencing primer <400> 11 ttggccgatt cattaatgca g 21 <210> 12 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> pUC18_lacZ_Forward primer tageting plasmid pUC18 <400> 12 agctgtttcc tgtctagaaa ttgttatc 28 <210> 13 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> pUC18_lacZ_Reverse primer tageting plasmid pUC18 <400> 13 ttaagcttgc cccgacaccc gccaac 26 <210> 14 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroB_RT-PCR_Forward primer <400> 14 tgtcgttact ctcggggaac 20 <210> 15 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroB_RT-PCR_Reverse primer <400> 15 ccgcggacct tatcgagata 20 <210> 16 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroD_RT-PCR_Forward primer <400> 16 ccgaagaaat cattgcccgt 20 <210> 17 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroD_RT-PCR_Reverse primer <400> 17 tcaccagcca gacgagaaat 20 <210> 18 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroF_RT-PCR_Forward primer <400> 18 ctgaaggccg cttttccatt 20 <210> 19 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroF_RT-PCR_Reverse primer <400> 19 ttccagagca gtttccggat 20 <210> 20 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroG_RT-PCR_Forward primer <400> 20 ctgacgtttg ccagcagatt 20 <210> 21 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroG_RT-PCR_Reverse primer <400> 21 tgacgtaaca gagcatcggt 20 <210> 22 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroH_RT-PCR_Forward primer <400> 22 aaaccacgaa ctgttgtcgg 20 <210> 23 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroH_RT-PCR_Reverse primer <400> 23 ccggtcacca tatcgaggaa 20 <210> 24 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> asbF_RT-PCR_Forward primer <400> 24 tcctgcatat ttgggaaagc 20 <210> 25 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> asbF_RT-PCR_Reverse primer <400> 25 atgccctcaa acagtggaac 20 <210> 26 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroY_RT-PCR_Forward primer <400> 26 atcctgtggg ctatgacgac 20 <210> 27 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroY_RT-PCR_Reverse primer <400> 27 ggtgcagtcg aaaatggttt 20 <210> 28 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> catA_RT-PCR_Forward primer <400> 28 tatttcaccg atgctggtca 20 <210> 29 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> catA_RT-PCR_Reverse primer <400> 29 atacagcgga ccttcaatgg 20 <210> 30 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GAPDH_RT-PCR_Forward primer <400> 30 tttccgtgct gctcagaaac 20 <210> 31 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GAPDH_RT-PCR_Reverse primer <400> 31 gtcaacacca acttcgtccc 20 <210> 32 <211> 5732 <212> DNA <213> Artificial Sequence <220> <223> pMESK1_plasmid sequences <400> 32 gacgaaaggg cctcgtgata cgcctatttt tataggttaa tgtcatgata ataatggttt 60 cttagacgtc aggtggcact tttcggggaa atgtgcgcgg aacccctatt tgtttatttt 120 tctaaataca ttcaaatatg tatccgctca tgagacaata accctgataa atgcttcaat 180 aatattgaaa aaggaagagt atgagtattc aacatttccg tgtcgccctt attccctttt 240 ttgcggcatt ttgccttcct gtttttgctc acccagaaac gctggtgaaa gtaaaagatg 300 ctgaagatca gttgggtgca cgagtgggtt acatcgaact ggatctcaac agcggtaaga 360 tccttgagag ttttcgcccc gaagaacgtt ttccaatgat gagcactttt aaagttctgc 420 tatgtggcgc ggtattatcc cgtattgacg ccgggcaaga gcaactcggt cgccgcatac 480 actattctca gaatgacttg gttgagtact caccagtcac agaaaagcat cttacggatg 540 gcatgacagt aagagaatta tgcagtgctg ccataaccat gagtgataac actgcggcca 600 acttacttct gacaacgatc ggaggaccga aggagctaac cgcttttttg cacaacatgg 660 gggatcatgt aactcgcctt gatcgttggg aaccggagct gaatgaagcc ataccaaacg 720 acgagcgtga caccacgatg cctgtagcaa tggcaacaac gttgcgcaaa ctattaactg 780 gcgaactact tactctagct tcccggcaac aattaataga ctggatggag gcggataaag 840 ttgcaggacc acttctgcgc tcggcccttc cggctggctg gtttattgct gataaatctg 900 gagccggtga gcgtgggtct cgcggtatca ttgcagcact ggggccagat ggtaagccct 960 cccgtatcgt agttatctac acgacgggga gtcaggcaac tatggatgaa cgaaatagac 1020 agatcgctga gataggtgcc tcactgatta agcattggta actgtcagac caagtttact 1080 catatatact ttagattgat ttaaaacttc atttttaatt taaaaggatc taggtgaaga 1140 tcctttttga taatctcatg accaaaatcc cttaacgtga gttttcgttc cactgagcgt 1200 cagaccccgt agaaaagatc aaaggatctt cttgagatcc tttttttctg cgcgtaatct 1260 gctgcttgca aacaaaaaaa ccaccgctac cagcggtggt ttgtttgccg gatcaagagc 1320 taccaactct ttttccgaag gtaactggct tcagcagagc gcagatacca aatactgttc 1380 ttctagtgta gccgtagtta ggccaccact tcaagaactc tgtagcaccg cctacatacc 1440 tcgctctgct aatcctgtta ccagtggctg ctgccagtgg cgataagtcg tgtcttaccg 1500 ggttggactc aagacgatag ttaccggata aggcgcagcg gtcgggctga acggggggtt 1560 cgtgcacaca gcccagcttg gagcgaacga cctacaccga actgagatac ctacagcgtg 1620 agctttgaga aagcgccacg cttcccgaag ggagaaaggc ggacaggtat ccggtaagcg 1680 gcagggtcgg aacaggagag cgcacgaggg agcttccagg gggaaacgcc tggtatcttt 1740 atagtcctgt cgggtttcgc cacctctgac ttgagcgtcg atttttgtga tgctcgtcag 1800 gggggcggag cctatggaaa aacgccagca acgcggcctt tttacggttc ctggcctttt 1860 gctggccttt tgctcacatg ttctttcctg cgttatcccc tgattctgtg gataaccgta 1920 ttaccgcctt tgagtgagct gataccgctc gccgcagccg aacgaccgag cgcagcgagt 1980 cagtgagcga ggaagcggaa gagcgcccaa tacgcaaacc gcctctcccc gcgcgttggc 2040 cgattcatta atgcagctgg cacgacaggt ttcccgactg gaaagcgggc agtgagcgca 2100 acgcaattaa tgtgagttag ctcactcatt aggcacccca ggctttacac tttatgcttc 2160 cggctcgtat gttgtgtgga attgtgagcg gataacaatt tctagaaata attttgttta 2220 actttaagaa ggagatatac atatgaaata ctccctgtgc actattagct tccgtcatca 2280 actgatttct ttcactgaca tcgttcagtt cgcgtacgaa aacggttttg aaggcatcga 2340 gctgtggggt actcatgccc agaacctgta catgcaggag cgtgaaacca ccgagcgtga 2400 gctgaacttc ctgaaagata agaacctgga aatcaccatg atctctgact acctggatat 2460 ttccctgtcc gccgacttcg agaaaaccat tgaaaaatcc gaacagctgg tggtgctggc 2520 aaactggttc aacaccaaca agatccgtac ctttgcgggc cagaaaggta gcaaggactt 2580 ttctgaacag gaacgtaaag agtacgtaaa gcgcatccgt aaaatctgcg acgtttttgc 2640 acagcataac atgtacgtcc tgctggaaac tcatccgaac accctgaccg acactctgcc 2700 tagcaccatt gaactgctgg aagaagtgaa ccatccaaac ctgaaaatca acctggattt 2760 cctgcatatt tgggaaagcg gcgcgaatcc aatcgactct ttccatcgcc tgaaaccgtg 2820 gactctgcac taccatttca aaaacatctc ctccgcggat tacctgcacg tgttcgaacc 2880 gaataacgtc tacgccgctg caggctcccg tattggtatg gttccactgt ttgagggcat 2940 cgttaactac gacgaaatca ttcaagaagt tcgtggcacc gacctgtttg cttctctgga 3000 atggttcggc cacaactcta aagagatcct gaaggaagaa atgaaagtgc tgatcaaccg 3060 taaactggaa gtggtgacga gctgaaataa ttttgtttaa ctttaagaag gagatataca 3120 tatgactgca ccaatccagg acctgcgcga cgcaatcgct ctgctgcaac agcacgataa 3180 ccagtatctg gaaaccgatc acccagttga cccgaatgcg gagctggcag gcgtctaccg 3240 tcatattggt gccggtggca ctgttaaacg cccgacccgc atcggcccag caatgatgtt 3300 taacaacatc aaaggctacc cgcacagccg catcctggta ggcatgcacg cttctcgtca 3360 acgtgcggca ctgctgctgg gctgtgaagc atctcagctg gctctggagg tgggcaaggc 3420 cgtcaaaaag ccggtggcgc cggttgttgt tccggcatct tccgctcctt gccaggaaca 3480 gattttcctg gccgatgatc cggacttcga cctgcgtacg ctgctgccgg ctcacacgaa 3540 cactccgatc gacgcgggtc cgtttttctg cctgggtctg gctctggcgt ctgacccggt 3600 ggatgcgagc ctgaccgacg tgaccatcca ccgcctgtgc gttcagggtc gtgacgaact 3660 gagcatgttc ctggcagcag gtcgtcacat tgaagtattc cgccaaaaag cggaagccgc 3720 cggtaaaccg ctgcctatta ccatcaacat gggtctggac ccggcgatct acatcggcgc 3780 ttgctttgaa gcacctacga ctccgttcgg ttacaacgaa ctgggtgtag ccggtgctct 3840 gcgccagcgt ccggtggaac tggtacaggg cgtgagcgtc ccagaaaaag ccatcgcacg 3900 cgctgaaatc gtaatcgaag gcgaactgct gccgggcgtc cgcgttcgtg aagaccagca 3960 caccaacagc ggtcacgcaa tgcctgaatt cccgggctac tgtggcggtg ccaacccgtc 4020 cctgccggtt attaaggtta aagctgttac tatgcgtaac aacgcgattc tgcagactct 4080 ggtcggtccg ggtgaggaac acacgaccct ggcgggcctg ccgactgaag cctctatttg 4140 gaatgcggtt gaagcagcca tcccgggctt cctgcagaat gtttacgctc ataccgcggg 4200 tggcggtaaa ttcctgggta tcctgcaggt taaaaagcgc cagccggcag atgaaggtcg 4260 ccaaggtcag gctgccctgc tggcgctggc tacctactct gaactgaaaa acatcattct 4320 ggttgacgaa gatgtcgata tctttgattc cgacgacatc ctgtgggcta tgacgactcg 4380 tatgcagggc gatgtttcta tcaccaccat cccgggcatc cgtggtcacc agctggaccc 4440 gtcccagact ccggaatatt ccccgagcat ccgcggcaac ggcatctcct gtaaaaccat 4500 tttcgactgc accgttccgt gggctctgaa atcccacttc gagcgtgcgc cgtttgcgga 4560 cgttgatccg cgtccgttcg caccggagta tttcgctcgt ctggagaaaa atcagggttc 4620 cgcgaaataa aataattttg tttaacttta agaaggagat atacatatga accgtcagca 4680 gatcgacgcg ctggttaaac agatgaacgt ggataccgct aagggcgaag ttgacgctcg 4740 cgtacagcag attgtagtac gtctgctggg tgacctgttc caggcaatcg aagatctgga 4800 tattcagccg tctgaagtgt ggaaaggtct ggagtatttc accgatgctg gtcaggcgaa 4860 cgaactgggt ctgctggcgg ccggtctggg cctggagcac tatctggacc tgcgtgcgga 4920 tgaagcagat gcaaaagcag gtgtgaccgg tggtactccg cgtaccattg aaggtccgct 4980 gtatgttgca ggtgctccgg aaagcgttgg tttcgcgcgt atggatgacg gtactgaatc 5040 tggtaaaatc gatactctga tcattgaagg caccgtcacc gacaccgacg gtaatatcat 5100 cgaaaacgct aaagtagagg tttggcacgc gaactctctg ggcaactatt ctttctttga 5160 taaatcccag tccgacttca acctgcgtcg taccattctg accgatgcgg acggtaaata 5220 tgttgcgctg acgacgatgc cagtaggcta tggctgtccg ccggaaggta ccacccaagc 5280 gctgctgaac aaactgggtc gccacggtaa ccgtccttct cacgtacact atttcgtgtc 5340 tgctccgggc taccgtaaac tgacgaccca attcaatatc gagggtgacg aatacctgtg 5400 ggatgatttc gcttttgcta cccgtgatgg tctggtggcg accgcggtag acgtgaccga 5460 tccagctgaa atccagcgtc gcggcctgga tcacgctttt aaacacatca ccttcaacat 5520 tgaactggtt aaagatgcag ccgcggcacc tagcactgag gtagaacgcc gtcgtgcgtc 5580 cgcttaatta agcttgcccc gacacccgcc aacacccgct gacgcgccct gacgggcttg 5640 tctgctcccg gcatccgctt acagacaagc tgtgaccgtc tccgggagct gcatgtgtca 5700 gaggttttca ccgtcatcac cgaaacgcgc ga 5732 <110> STR Biotech Co., Ltd. <120> Microorganism for producing muconic acid and method for          manufacturing the strain <130> 13P555IND <160> 32 <170> KopatentIn 2.0 <210> 1 <211> 843 <212> DNA <213> Artificial Sequence <220> <223> optimized asbF (3-dehydroshikimate dehydratase) <400> 1 atgaaatact ccctgtgcac tattagcttc cgtcatcaac tgatttcttt cactgacatc 60 gttcagttcg cgtacgaaaa cggttttgaa ggcatcgagc tgtggggtac tcatgcccag 120 aacctgtaca tgcaggagcg tgaaaccacc gagcgtgagc tgaacttcct gaaagataag 180 aacctggaaa tcaccatgat ctctgactac ctggatattt ccctgtccgc cgacttcgag 240 aaaaccattg aaaaatccga acagctggtg gtgctggcaa actggttcaa caccaacaag 300 atccgtacct ttgcgggcca gaaaggtagc aaggactttt ctgaacagga acgtaaagag 360 tacgtaaagc gcatccgtaa aatctgcgac gtttttgcac agcataacat gtacgtcctg 420 ctggaaactc atccgaacac cctgaccgac actctgccta gcaccattga actgctggaa 480 gaagtgaacc atccaaacct gaaaatcaac ctggatttcc tgcatatttg ggaaagcggc 540 gcgaatccaa tcgactcttt ccatcgcctg aaaccgtgga ctctgcacta ccatttcaaa 600 aacatctcct ccgcggatta cctgcacgtg ttcgaaccga ataacgtcta cgccgctgca 660 ggctcccgta ttggtatggt tccactgttt gagggcatcg ttaactacga cgaaatcatt 720 caagaagttc gtggcaccga cctgtttgct tctctggaat ggttcggcca caactctaaa 780 gagatcctga aggaagaaat gaaagtgctg atcaaccgta aactggaagt ggtgacgagc 840 tga 843 <210> 2 <211> 1509 <212> DNA <213> Artificial Sequence <220> <223> optimized aroY (protocatechuate decarboxylase) <400> 2 atgactgcac caatccagga cctgcgcgac gcaatcgctc tgctgcaaca gcacgataac 60 cagtatctgg aaaccgatca cccagttgac ccgaatgcgg agctggcagg cgtctaccgt 120 catattggtg ccggtggcac tgttaaacgc ccgacccgca tcggcccagc aatgatgttt 180 aacaacatca aaggctaccc gcacagccgc atcctggtag gcatgcacgc ttctcgtcaa 240 cgtgcggcac tgctgctggg ctgtgaagca tctcagctgg ctctggaggt gggcaaggcc 300 gtcaaaaagc cggtggcgcc ggttgttgtt ccggcatctt ccgctccttg ccaggaacag 360 attttcctgg ccgatgatcc ggacttcgac ctgcgtacgc tgctgccggc tcacacgaac 420 actccgatcg acgcgggtcc gtttttctgc ctgggtctgg ctctggcgtc tgacccggtg 480 gatgcgagcc tgaccgacgt gaccatccac cgcctgtgcg ttcagggtcg tgacgaactg 540 agcatgttcc tggcagcagg tcgtcacatt gaagtattcc gccaaaaagc ggaagccgcc 600 ggtaaaccgc tgcctattac catcaacatg ggtctggacc cggcgatcta catcggcgct 660 tgctttgaag cacctacgac tccgttcggt tacaacgaac tgggtgtagc cggtgctctg 720 cgccagcgtc cggtggaact ggtacagggc gtgagcgtcc cagaaaaagc catcgcacgc 780 gctgaaatcg taatcgaagg cgaactgctg ccgggcgtcc gcgttcgtga agaccagcac 840 accaacagcg gtcacgcaat gcctgaattc ccgggctact gtggcggtgc caacccgtcc 900 ctgccggtta ttaaggttaa agctgttact atgcgtaaca acgcgattct gcagactctg 960 gtcggtccgg gtgaggaaca cacgaccctg gcgggcctgc cgactgaagc ctctatttgg 1020 aatgcggttg aagcagccat cccgggcttc ctgcagaatg tttacgctca taccgcgggt 1080 ggcggtaaat tcctgggtat cctgcaggtt aaaaagcgcc agccggcaga tgaaggtcgc 1140 caaggtcagg ctgccctgct ggcgctggct acctactctg aactgaaaaa catcattctg 1200 gttgacgaag atgtcgatat ctttgattcc gacgacatcc tgtgggctat gacgactcgt 1260 atgcagggcg atgtttctat caccaccatc ccgggcatcc gtggtcacca gctggacccg 1320 tcccagactc cggaatattc cccgagcatc cgcggcaacg gcatctcctg taaaaccatt 1380 ttcgactgca ccgttccgtg ggctctgaaa tcccacttcg agcgtgcgcc gtttgcggac 1440 gttgatccgc gtccgttcgc accggagtat ttcgctcgtc tggagaaaaa tcagggttcc 1500 gcgaaataa 1509 <210> 3 <211> 923 <212> DNA <213> Artificial Sequence <220> <223> optimized catA (catechol 1,2-dioxygenase) <400> 3 atgaaccgtc agcagatcga cgcgctggtt aaacagatga acgtggatac cgctaagggc 60 gaagttgacg ctcgcgtaca gcagattgta gtacgtctgc tgggtgacct gttccaggca 120 atcgaagatc tggatattca gccgtctgaa gtgtggaaag gtctggagta tttcaccgat 180 gctggtcagg cgaacgaact gggtctgctg gcggccggtc tgggcctgga gcactatctg 240 gacctgcgtg cggatgaagc agatgcaaaa gcaggtgtga ccggtggtac tccgcgtacc 300 attgaaggtc cgctgtatgt tgcaggtgct ccggaaagcg ttggtttcgc gcgtatggat 360 gacggtactg aatctggtaa aatcgatact ctgatcattg aaggcaccgt caccgacacc 420 gacggtaata tcatcgaaaa cgctaaagta gaggtttggc acgcgaactc tctgggcaac 480 tattctttct ttgataaatc ccagtccgac ttcaacctgc gtcgtaccat tctgaccgat 540 gcggacggta aatatgttgc gctgacgacg atgccagtag gctatggctg tccgccggaa 600 ggtaccaccc aagcgctgct gaacaaactg ggtcgccacg gtaaccgtcc ttctcacgta 660 cactatttcg tgtctgctcc gggctaccgt aaactgacga cccaattcaa tatcgagggt 720 gacgaatacc tgtgggatga tttcgctttt gctacccgtg atggtctggt ggcgaccgcg 780 gtagacgtga ccgatccagc tgaaatccag cgtcgcggcc tggatcacgc ttttaaacac 840 atcaccttca acattgaact ggttaaagat gcagccgcgg cacctagcac tgaggtagaa 900 cgccgtcgtg cgtccgctta att 923 <210> 4 <211> 6 <212> DNA <213> Artificial Sequence <220> <223> ribosome binding site <400> 4 gaagga 6 <210> 5 <211> 819 <212> DNA <213> aroE (shikimate dehydrogenase) <400> 5 atggaaacct atgctgtttt tggtaatccg atagcccaca gcaaatcgcc attcattcat 60 cagcaatttg ctcagcaact gaatattgaa catccctatg ggcgcgtgtt ggcacccatc 120 aatgatttca tcaacacact gaacgctttc tttagtgctg gtggtaaagg tgcgaatgtg 180 acggtgcctt ttaaagaaga ggcttttgcc agagcggatg agcttactga acgggcagcg 240 ttggctggtg ctgttaatac cctcatgcgg ttagaagatg gacgcctgct gggtgacaat 300 accgatggtg taggcttgtt aagcgatctg gaacgtctgt cttttatccg ccctggttta 360 cgtattctgc ttatcggcgc tggtggagca tctcgcggcg tactactgcc actcctttcc 420 ctggactgtg cggtgacaat aactaatcgg acggtatccc gcgcggaaga gttggctaaa 480 ttgtttgcgc acactggcag tattcaggcg ttgagtatgg acgaactgga aggtcatgag 540 tttgatctca ttattaatgc aacatccagt ggcatcagtg gtgatattcc ggcgatcccg 600 tcatcgctca ttcatccagg catttattgc tatgacatgt tctatcagaa aggaaaaact 660 ccttttctgg catggtgtga gcagcgaggc tcaaagcgta atgctgatgg tttaggaatg 720 ctggtggcac aggcggctca tgcctttctt ctctggcacg gtgttctgcc tgacgtagaa 780 ccagttataa agcaattgca ggaggaattg tccgcgtga 819 <210> 6 <211> 6 <212> DNA <213> XbaI restrction enzyme <400> 6 tctaga 6 <210> 7 <211> 6 <212> DNA <213> HindIII restriction enzyme <400> 7 aagctt 6 <210> 8 <211> 324 <212> DNA <213> Artificial Sequence <220> <223> lacZ-alpha which codes for the N-terminus fragment of          beta-galactosidase <400> 8 atgaccatga ttacgaattc gagctcggta cccggggatc ctctagagtc gacctgcagg 60 catgcaagct tggcactggc cgtcgtttta caacgtcgtg actgggaaaa ccctggcgtt 120 acccaactta atcgccttgc agcacatccc cctttcgcca gctggcgtaa tagcgaagag 180 gcccgcaccg atcgcccttc ccaacagttg cgcagcctga atggcgaatg gcgcctgatg 240 cggtattttc tccttacgca tctgtgcggt atttcacacc gcatatggtg cactctcagt 300 acaatctgct ctgatgccgc atag 324 <210> 9 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> pUC18_lacZ forward primer <400> 9 agctgtttcc tgtctagaaa ttgttatc 28 <210> 10 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> pUC18_lacZ reverse primer <400> 10 ttaagcttgc cccgacaccc gccaac 26 <210> 11 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> pUC18_lacZ sequencing primer <400> 11 ttggccgatt cattaatgca g 21 <210> 12 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> pUC18_lacZ_Forward primer tageting plasmid pUC18 <400> 12 agctgtttcc tgtctagaaa ttgttatc 28 <210> 13 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> pUC18_lacZ_Reverse primer tageting plasmid pUC18 <400> 13 ttaagcttgc cccgacaccc gccaac 26 <210> 14 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroB_RT-PCR_Forward primer <400> 14 tgtcgttact ctcggggaac 20 <210> 15 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroB_RT-PCR_Reverse primer <400> 15 ccgcggacct tatcgagata 20 <210> 16 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroD_RT-PCR_Forward primer <400> 16 ccgaagaaat cattgcccgt 20 <210> 17 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroD_RT-PCR_Reverse primer <400> 17 tcaccagcca gacgagaaat 20 <210> 18 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroF_RT-PCR_Forward primer <400> 18 ctgaaggccg cttttccatt 20 <210> 19 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroF_RT-PCR_Reverse primer <400> 19 ttccagagca gtttccggat 20 <210> 20 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroG_RT-PCR_Forward primer <400> 20 ctgacgtttg ccagcagatt 20 <210> 21 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroG_RT-PCR_Reverse primer <400> 21 tgacgtaaca gagcatcggt 20 <210> 22 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroH_RT-PCR_Forward primer <400> 22 aaaccacgaa ctgttgtcgg 20 <210> 23 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroH_RT-PCR_Reverse primer <400> 23 ccggtcacca tatcgaggaa 20 <210> 24 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> asbF_RT-PCR_Forward primer <400> 24 tcctgcatat ttgggaaagc 20 <210> 25 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> asbF_RT-PCR_Reverse primer <400> 25 atgccctcaa acagtggaac 20 <210> 26 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroY_RT-PCR_Forward primer <400> 26 atcctgtggg ctatgacgac 20 <210> 27 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroY_RT-PCR_Reverse primer <400> 27 ggtgcagtcg aaaatggttt 20 <210> 28 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> catA_RT-PCR_Forward primer <400> 28 tatttcaccg atgctggtca 20 <210> 29 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> catA_RT-PCR_Reverse primer <400> 29 atacagcgga ccttcaatgg 20 <210> 30 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GAPDH_RT-PCR_Forward primer <400> 30 tttccgtgct gctcagaaac 20 <210> 31 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GAPDH_RT-PCR_Reverse primer <400> 31 gtcaacacca acttcgtccc 20 <210> 32 <211> 5732 <212> DNA <213> Artificial Sequence <220> <223> pMESK1_plasmid sequences <400> 32 gacgaaaggg cctcgtgata cgcctatttt tataggttaa tgtcatgata ataatggttt 60 cttagacgtc aggtggcact tttcggggaa atgtgcgcgg aacccctatt tgtttatttt 120 tctaaataca ttcaaatatg tatccgctca tgagacaata accctgataa atgcttcaat 180 aatattgaaa aaggaagagt atgagtattc aacatttccg tgtcgccctt attccctttt 240 ttgcggcatt ttgccttcct gtttttgctc acccagaaac gctggtgaaa gtaaaagatg 300 ctgaagatca gttgggtgca cgagtgggtt acatcgaact ggatctcaac agcggtaaga 360 tccttgagag ttttcgcccc gaagaacgtt ttccaatgat gagcactttt aaagttctgc 420 tatgtggcgc ggtattatcc cgtattgacg ccgggcaaga gcaactcggt cgccgcatac 480 actattctca gaatgacttg gttgagtact caccagtcac agaaaagcat cttacggatg 540 gcatgacagt aagagaatta tgcagtgctg ccataaccat gagtgataac actgcggcca 600 acttacttct gacaacgatc ggaggaccga aggagctaac cgcttttttg cacaacatgg 660 gggatcatgt aactcgcctt gatcgttggg aaccggagct gaatgaagcc ataccaaacg 720 acgagcgtga caccacgatg cctgtagcaa tggcaacaac gttgcgcaaa ctattaactg 780 gcgaactact tactctagct tcccggcaac aattaataga ctggatggag gcggataaag 840 ttgcaggacc acttctgcgc tcggcccttc cggctggctg gtttattgct gataaatctg 900 gagccggtga gcgtgggtct cgcggtatca ttgcagcact ggggccagat ggtaagccct 960 cccgtatcgt agttatctac acgacgggga gtcaggcaac tatggatgaa cgaaatagac 1020 agatcgctga gataggtgcc tcactgatta agcattggta actgtcagac caagtttact 1080 catatatact ttagattgat ttaaaacttc atttttaatt taaaaggatc taggtgaaga 1140 tcctttttga taatctcatg accaaaatcc cttaacgtga gttttcgttc cactgagcgt 1200 cagaccccgt agaaaagatc aaaggatctt cttgagatcc tttttttctg cgcgtaatct 1260 gctgcttgca aacaaaaaaa ccaccgctac cagcggtggt ttgtttgccg gatcaagagc 1320 taccaactct ttttccgaag gtaactggct tcagcagagc gcagatacca aatactgttc 1380 ttctagtgta gccgtagtta ggccaccact tcaagaactc tgtagcaccg cctacatacc 1440 tcgctctgct aatcctgtta ccagtggctg ctgccagtgg cgataagtcg tgtcttaccg 1500 ggttggactc aagacgatag ttaccggata aggcgcagcg gtcgggctga acggggggtt 1560 cgtgcacaca gcccagcttg gagcgaacga cctacaccga actgagatac ctacagcgtg 1620 agctttgaga aagcgccacg cttcccgaag ggagaaaggc ggacaggtat ccggtaagcg 1680 gcagggtcgg aacaggagag cgcacgaggg agcttccagg gggaaacgcc tggtatcttt 1740 atagtcctgt cgggtttcgc cacctctgac ttgagcgtcg atttttgtga tgctcgtcag 1800 gggggcggag cctatggaaa aacgccagca acgcggcctt tttacggttc ctggcctttt 1860 gctggccttt tgctcacatg ttctttcctg cgttatcccc tgattctgtg gataaccgta 1920 ttaccgcctt tgagtgagct gataccgctc gccgcagccg aacgaccgag cgcagcgagt 1980 cagtgagcga ggaagcggaa gagcgcccaa tacgcaaacc gcctctcccc gcgcgttggc 2040 cgattcatta atgcagctgg cacgacaggt ttcccgactg gaaagcgggc agtgagcgca 2100 acgcaattaa tgtgagttag ctcactcatt aggcacccca ggctttacac tttatgcttc 2160 cggctcgtat gttgtgtgga attgtgagcg gataacaatt tctagaaata attttgttta 2220 actttaagaa ggagatatac atatgaaata ctccctgtgc actattagct tccgtcatca 2280 actgatttct ttcactgaca tcgttcagtt cgcgtacgaa aacggttttg aaggcatcga 2340 gctgtggggt actcatgccc agaacctgta catgcaggag cgtgaaacca ccgagcgtga 2400 gctgaacttc ctgaaagata agaacctgga aatcaccatg atctctgact acctggatat 2460 ttccctgtcc gccgacttcg agaaaaccat tgaaaaatcc gaacagctgg tggtgctggc 2520 aaactggttc aacaccaaca agatccgtac ctttgcgggc cagaaaggta gcaaggactt 2580 ttctgaacag gaacgtaaag agtacgtaaa gcgcatccgt aaaatctgcg acgtttttgc 2640 acagcataac atgtacgtcc tgctggaaac tcatccgaac accctgaccg acactctgcc 2700 tagcaccatt gaactgctgg aagaagtgaa ccatccaaac ctgaaaatca acctggattt 2760 cctgcatatt tgggaaagcg gcgcgaatcc aatcgactct ttccatcgcc tgaaaccgtg 2820 gactctgcac taccatttca aaaacatctc ctccgcggat tacctgcacg tgttcgaacc 2880 gaataacgtc tacgccgctg caggctcccg tattggtatg gttccactgt ttgagggcat 2940 cgttaactac gacgaaatca ttcaagaagt tcgtggcacc gacctgtttg cttctctgga 3000 atggttcggc cacaactcta aagagatcct gaaggaagaa atgaaagtgc tgatcaaccg 3060 taaactggaa gtggtgacga gctgaaataa ttttgtttaa ctttaagaag gagatataca 3120 tatgactgca ccaatccagg acctgcgcga cgcaatcgct ctgctgcaac agcacgataa 3180 ccagtatctg gaaaccgatc acccagttga cccgaatgcg gagctggcag gcgtctaccg 3240 tcatattggt gccggtggca ctgttaaacg cccgacccgc atcggcccag caatgatgtt 3300 taacaacatc aaaggctacc cgcacagccg catcctggta ggcatgcacg cttctcgtca 3360 acgtgcggca ctgctgctgg gctgtgaagc atctcagctg gctctggagg tgggcaaggc 3420 cgtcaaaaag ccggtggcgc cggttgttgt tccggcatct tccgctcctt gccaggaaca 3480 gattttcctg gccgatgatc cggacttcga cctgcgtacg ctgctgccgg ctcacacgaa 3540 cactccgatc gacgcgggtc cgtttttctg cctgggtctg gctctggcgt ctgacccggt 3600 ggatgcgagc ctgaccgacg tgaccatcca ccgcctgtgc gttcagggtc gtgacgaact 3660 gagcatgttc ctggcagcag gtcgtcacat tgaagtattc cgccaaaaag cggaagccgc 3720 cggtaaaccg ctgcctatta ccatcaacat gggtctggac ccggcgatct acatcggcgc 3780 ttgctttgaa gcacctacga ctccgttcgg ttacaacgaa ctgggtgtag ccggtgctct 3840 gcgccagcgt ccggtggaac tggtacaggg cgtgagcgtc ccagaaaaag ccatcgcacg 3900 cgctgaaatc gtaatcgaag gcgaactgct gccgggcgtc cgcgttcgtg aagaccagca 3960 caccaacagc ggtcacgcaa tgcctgaatt cccgggctac tgtggcggtg ccaacccgtc 4020 cctgccggtt attaaggtta aagctgttac tatgcgtaac aacgcgattc tgcagactct 4080 ggtcggtccg ggtgaggaac acacgaccct ggcgggcctg ccgactgaag cctctatttg 4140 gaatgcggtt gaagcagcca tcccgggctt cctgcagaat gtttacgctc ataccgcggg 4200 tggcggtaaa ttcctgggta tcctgcaggt taaaaagcgc cagccggcag atgaaggtcg 4260 ccaaggtcag gctgccctgc tggcgctggc tacctactct gaactgaaaa acatcattct 4320 ggttgacgaa gatgtcgata tctttgattc cgacgacatc ctgtgggcta tgacgactcg 4380 tatgcagggc gatgtttcta tcaccaccat cccgggcatc cgtggtcacc agctggaccc 4440 gtcccagact ccggaatatt ccccgagcat ccgcggcaac ggcatctcct gtaaaaccat 4500 tttcgactgc accgttccgt gggctctgaa atcccacttc gagcgtgcgc cgtttgcgga 4560 cgttgatccg cgtccgttcg caccggagta tttcgctcgt ctggagaaaa atcagggttc 4620 cgcgaaataa aataattttg tttaacttta agaaggagat atacatatga accgtcagca 4680 gatcgacgcg ctggttaaac agatgaacgt ggataccgct aagggcgaag ttgacgctcg 4740 cgtacagcag attgtagtac gtctgctggg tgacctgttc caggcaatcg aagatctgga 4800 tattcagccg tctgaagtgt ggaaaggtct ggagtatttc accgatgctg gtcaggcgaa 4860 cgaactgggt ctgctggcgg ccggtctggg cctggagcac tatctggacc tgcgtgcgga 4920 tgaagcagat gcaaaagcag gtgtgaccgg tggtactccg cgtaccattg aaggtccgct 4980 gtatgttgca ggtgctccgg aaagcgttgg tttcgcgcgt atggatgacg gtactgaatc 5040 tggtaaaatc gatactctga tcattgaagg caccgtcacc gacaccgacg gtaatatcat 5100 cgaaaacgct aaagtagagg tttggcacgc gaactctctg ggcaactatt ctttctttga 5160 taaatcccag tccgacttca acctgcgtcg taccattctg accgatgcgg acggtaaata 5220 tgttgcgctg acgacgatgc cagtaggcta tggctgtccg ccggaaggta ccacccaagc 5280 gctgctgaac aaactgggtc gccacggtaa ccgtccttct cacgtacact atttcgtgtc 5340 tgctccgggc taccgtaaac tgacgaccca attcaatatc gagggtgacg aatacctgtg 5400 ggatgatttc gcttttgcta cccgtgatgg tctggtggcg accgcggtag acgtgaccga 5460 tccagctgaa atccagcgtc gcggcctgga tcacgctttt aaacacatca ccttcaacat 5520 tgaactggtt aaagatgcag ccgcggcacc tagcactgag gtagaacgcc gtcgtgcgtc 5580 cgcttaatta agcttgcccc gacacccgcc aacacccgct gacgcgccct gacgggcttg 5640 tctgctcccg gcatccgctt acagacaagc tgtgaccgtc tccgggagct gcatgtgtca 5700 gaggttttca ccgtcatcac cgaaacgcgc ga 5732

Claims (14)

뮤코닉산 생산용 재조합 벡터로 형질전환된 뮤코닉산 생산용 대장균으로서,
상기 뮤코닉산 생산용 재조합 벡터는,
asbFopt 를 코딩하는 폴리뉴클레오티드, aroYopt 를 코딩하는 폴리뉴클레오티드 및 catAopt 를 코딩하는 폴리뉴클레오티드;
상기 세 폴리뉴클레오티드의 각 업스트림(upstream)에 위치하는 대장균 유래의 리보솜 결합 부위(ribosome binding site, rbs); 및
상기 세 폴리뉴클레오티드 중 첫 번째 전사되는 폴리뉴클레오티드의 리보솜 결합부위(rbs)의 업스트림(upstream)에 위치하는 프로모터(promoter);를 포함하고,
상기 대장균은 상기 asbFopt, aroYopt catAopt 을 코딩하는 각 폴리뉴클레오티드의 전사량이 0.9~1.1 : 0.9~1.1 : 0.9~1.1인 뮤코닉산 생산용 대장균.
As Escherichia coli transformed with a recombinant vector for producing muconic acid,
The recombinant vector for producing muconic acid,
encoding the asbF opt polynucleotide, a polynucleotide encoding the polynucleotide and coding for the aroY catA opt opt;
A ribosome binding site (rbs) derived from E. coli located upstream of each of the three polynucleotides; And
And a promoter located upstream of the ribosomal binding site (rbs) of the first transcribed polynucleotide of the three polynucleotides.
The Escherichia coli is E. coli for the production of muconic acid, the amount of transcription of each polynucleotide encoding the asbF opt , aroY opt and catA opt is 0.9 ~ 1.1: 0.9 ~ 1.1: 0.9 ~ 1.1.
제 1 항에 있어서, 상기 asbFopt 를 코딩하는 폴리뉴클레오티드는 서열번호 1을 포함하는 뮤코닉산 생산용 대장균.The E. coli for muconic acid production according to claim 1, wherein the polynucleotide encoding asbF opt comprises SEQ ID NO: 1. 제 1 항에 있어서, 상기 aroYopt 를 코딩하는 폴리뉴클레오티드는 서열번호 2를 포함하는 뮤코닉산 생산용 대장균.The E. coli for muconic acid production according to claim 1, wherein the polynucleotide encoding aroY opt comprises SEQ ID NO: 2. 제 1 항에 있어서, 상기 catAopt 를 코딩하는 폴리뉴클레오티드는 서열번호 3을 포함하는 뮤코닉산 생산용 대장균.The E. coli for muconic acid production according to claim 1, wherein the polynucleotide encoding catA opt comprises SEQ ID NO. 제 1 항에 있어서, 상기 리보솜 결합 부위는 서열번호 4를 포함하는 뮤코닉산 생산용 대장균.According to claim 1, wherein the ribosome binding site E. coli muconic acid production comprising SEQ ID NO: 4. 삭제delete 삭제delete 제 1 항에 있어서, 상기 대장균은 aroE 를 코딩하는 폴리뉴클레오티드(서열번호 5)가 결손된 대장균.The Escherichia coli of claim 1, wherein the E. coli is deficient in a polynucleotide (SEQ ID NO: 5) encoding aroE . 삭제delete 뮤코닉산 생산용 대장균을 제조하는 방법으로서,
벡터에 asbFopt 를 코딩하는 폴리뉴클레오티드, aroYopt 를 코딩하는 폴리뉴클레오티드 및 catAopt 를 코딩하는 폴리뉴클레오티드를 삽입하고, 상기 세 폴리뉴클레오티드의 업스트림(upstream) 방향으로 대장균 유래의 리보솜 결합 부위(ribosome binding site, rbs)를 각각 삽입하여 재조합 벡터를 제조하는 단계; 및
상기 재조합 벡터를 대장균 모미생물에 도입하여 형질전환하는 단계;
를 포함하며,
상기 벡터는 lac 프로모터 유래 lacZα 유전자가 제거된 벡터인 뮤코닉산 생산용 대장균의 제조방법.
As a method of producing E. coli for the production of muconic acid,
Encoding the asbF opt the vector polynucleotide, aroY insert a polynucleotide encoding the polynucleotide and catA opt encoding opt and binding ribosomes of the E. coli derived upstream (upstream) direction of the three polynucleotide region (ribosome binding site inserting rbs) to prepare recombinant vectors; And
Introducing and transforming the recombinant vector into E. coli microorganisms;
Including;
The vector is a method of producing Escherichia coli for the production of muconic acid is a vector from which the lac promoter-derived lacZα gene is removed.
제 10 항에 있어서, 상기 대장균 모미생물은 aroE 를 코딩하는 폴리뉴클레오티드(서열번호 5)가 결손된 대장균인 뮤코닉산 생산용 대장균의 제조방법.The method of claim 10, wherein the E. coli mother microorganism is E. coli lacking a polynucleotide encoding SEQ ID NO: 5 (SEQ ID NO: 5). 삭제delete 제 10 항에 있어서, 상기 벡터에서 제거된 lac 프로모터 유래 lacZα 유전자는 서열번호 8을 포함하는 뮤코닉산 생산용 대장균의 제조방법.The method of claim 10, wherein the lac promoter-derived lacZα gene removed from the vector comprises a SEQ ID NO: 8. 제 10 항에 있어서, 상기 재조합 벡터를 제조하는 단계는 상기 세 폴리뉴클레오티드 중 첫 번째로 전사되는 폴리뉴클레오티드의 리보솜 결합부위(rbs)의 업스트림(upstream)에 프로모터(promoter)를 삽입하는 것을 더 포함하는 뮤코닉산 생산용 대장균의 제조방법.The method of claim 10, wherein preparing the recombinant vector further comprises inserting a promoter upstream of the ribosomal binding site (rbs) of the polynucleotide to be transcribed first of the three polynucleotides. Method for producing E. coli for producing muconic acid.
KR1020140046251A 2014-04-17 2014-04-17 Microorganism for producing muconic acid and method for manufacturing the strain KR102064475B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140046251A KR102064475B1 (en) 2014-04-17 2014-04-17 Microorganism for producing muconic acid and method for manufacturing the strain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140046251A KR102064475B1 (en) 2014-04-17 2014-04-17 Microorganism for producing muconic acid and method for manufacturing the strain

Publications (2)

Publication Number Publication Date
KR20150120236A KR20150120236A (en) 2015-10-27
KR102064475B1 true KR102064475B1 (en) 2020-01-10

Family

ID=54428525

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140046251A KR102064475B1 (en) 2014-04-17 2014-04-17 Microorganism for producing muconic acid and method for manufacturing the strain

Country Status (1)

Country Link
KR (1) KR102064475B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102064476B1 (en) 2017-01-26 2020-01-10 (주)에스티알바이오텍 Microorganism for producing muconic acid precursor and method for manufacturing thereof
KR20210136416A (en) 2020-05-07 2021-11-17 (주)에스티알바이오텍 Microorganism for producing muconic acid precursor and method for producing muconic acid precursor using the microorganism
KR20210136417A (en) 2020-05-07 2021-11-17 (주)에스티알바이오텍 Recombinant vector for producing muconic acid, microorganism transformed with the vector, and method for producing muconic acid using the microorganism

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013116244A1 (en) * 2012-01-30 2013-08-08 Myriant Corporation Production of muconic acid from genetically engineered microorganisms

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5487987A (en) * 1993-09-16 1996-01-30 Purdue Research Foundation Synthesis of adipic acid from biomass-derived carbon sources
MX2012007944A (en) * 2010-01-08 2012-08-15 Amyris Inc Methods for producing isomers of muconic acid and muconate salts.

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013116244A1 (en) * 2012-01-30 2013-08-08 Myriant Corporation Production of muconic acid from genetically engineered microorganisms

Also Published As

Publication number Publication date
KR20150120236A (en) 2015-10-27

Similar Documents

Publication Publication Date Title
CN108949721B (en) Recombinant strain for expressing phospholipase D and application
KR20110022625A (en) Recombinant cell producing 2-hydroxyisobutyric acid
CN102146371B (en) High glyphosate resistant variant gene and improvement method and application of high glyphosate resistant variant gene
KR20130098089A (en) Novel polypeptide binding with interleukin-6
KR102064475B1 (en) Microorganism for producing muconic acid and method for manufacturing the strain
CN110268058B (en) Recombinant cell, method for producing recombinant cell, and method for producing isoprene or terpene
WO2021110993A1 (en) An efficient shuttle vector system for the expression of heterologous and homologous proteins for the genus zymomonas
CN103911334A (en) Clostridium beijerinckii with high stress resistance and application thereof
CN114317584B (en) Construction system of novel transposon mutant strain library, novel transposon mutant library and application
CN105567603B (en) A method of Clostridium beijerinckii is improved to 4- hydroxycinnamic acid resistance
CN110066801B (en) Sialic acid induced expression element in bacillus subtilis and construction method
CN107058367A (en) The construction method of the recombined bacillus subtilis of high yield Pullulanase
CN108586571B (en) Novel antimycin derivative and preparation method and application thereof
CN101157935A (en) Novel expression enzyme yeast gene engineering system
US20030119155A1 (en) Method for producing target substance
CN111118049B (en) Plasmid vector and application thereof
CN113481114B (en) Yeast cell surface display technology-based explosive visualization biosensor and preparation method and application thereof
CN111471635B (en) Method for increasing content of nucleic acid in bacillus subtilis
KR102676309B1 (en) Microorganism for producing shikimic acid and method for producing shikimic acid using the microorganism
CN109880837B (en) Method for degrading lignin in tobacco straw
CN107287145B (en) Clostridium beijerinckii for generating electricity and construction method and application thereof
KR20210063127A (en) Microorganism for producing shikimic acid and method for producing shikimic acid using the microorganism
CN108504656A (en) Promoter enhances system and its application in bacterium
KR101030547B1 (en) A plasmid shuttle vector
CN113774047B (en) Fish source protease gene and application thereof

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Publication of correction