KR102064476B1 - Microorganism for producing muconic acid precursor and method for manufacturing thereof - Google Patents

Microorganism for producing muconic acid precursor and method for manufacturing thereof Download PDF

Info

Publication number
KR102064476B1
KR102064476B1 KR1020170012858A KR20170012858A KR102064476B1 KR 102064476 B1 KR102064476 B1 KR 102064476B1 KR 1020170012858 A KR1020170012858 A KR 1020170012858A KR 20170012858 A KR20170012858 A KR 20170012858A KR 102064476 B1 KR102064476 B1 KR 102064476B1
Authority
KR
South Korea
Prior art keywords
coli
dhs
tyrr
gene
cis
Prior art date
Application number
KR1020170012858A
Other languages
Korean (ko)
Other versions
KR20180088145A (en
Inventor
이상종
박선옥
서성열
조용한
김민주
김응수
최시선
이한나
이보람
전계택
이도훈
김상용
Original Assignee
(주)에스티알바이오텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)에스티알바이오텍 filed Critical (주)에스티알바이오텍
Priority to KR1020170012858A priority Critical patent/KR102064476B1/en
Publication of KR20180088145A publication Critical patent/KR20180088145A/en
Application granted granted Critical
Publication of KR102064476B1 publication Critical patent/KR102064476B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/24Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
    • C07K14/245Escherichia (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1205Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/42Hydroxy-carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/44Polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01025Shikimate dehydrogenase (1.1.1.25)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/01Phosphotransferases with an alcohol group as acceptor (2.7.1)
    • C12Y207/0104Pyruvate kinase (2.7.1.40)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

본 발명은 높은 DHS(3-dehydroshikimate) 생산능을 보유함으로써, 궁극적으로 바이오 유래의 TPA 또는 아디프산의 전구체인 뮤코닉산을 효과적으로 생산할 수 있는 유전자재조합 미생물을 개시한다. 구체적으로, 본 발명은 대장균의 방향족 아미노산 생합성경로를 뮤코닉산 전구체인 DHS 생합성을 증가시키기 위하여 재설계함으로써, 상기 형질전환된 대장균은 형질전환전의 대장균보다 우수한 DHS 및 뮤코닉산 생산능을 가질 수 있다.The present invention discloses a genetically modified microorganism capable of effectively producing muconic acid, which is ultimately a precursor of bio-derived TPA or adipic acid, by possessing high 3-dehydroshikimate (DHS) production capacity. Specifically, the present invention redesigned the aromatic amino acid biosynthetic pathway of Escherichia coli to increase the DHS biosynthesis of the muconic acid precursor, the transformed Escherichia coli can have superior DHS and muconic acid production capacity than E. coli before transformation have.

Description

뮤코닉산 전구체 생산용 미생물 및 그 제조방법{Microorganism for producing muconic acid precursor and method for manufacturing thereof}Microorganisms for producing muconic acid precursors and method for manufacturing

본 발명은 뮤코닉산 전구체 생산능을 갖는 신규한 재조합벡터, 이를 포함하는 미생물 및 그 제조방법에 관한 것이다.The present invention relates to a novel recombinant vector having a muconic acid precursor production ability, a microorganism comprising the same and a method for producing the same.

에너지 및 화학물질의 원재료로 사용되는 화석연료는 지속적인 유가상승 및 자원고갈과 함께 지구온난화를 포함한 각종 환경-경제적 문제에 직면하고 있으며, 이를 보완하기 위한 친환경적이고 재생 가능한 대체물질을 찾는 노력이 계속되고 있다. 그 중에서도 미생물을 이용한 생합성 전략이 활발하게 연구되고 있으며, 특히 특정 대사경로가 유전공학적으로 재설계된 재조합미생물을 이용한 다양한 화학물질, 바이오연료, 아미노산 및 식물체의 2차 대사산물 등을 생합성 하는 것이 가능해 졌다.Fossil fuels used as raw materials for energy and chemicals are facing various environmental and economic problems, including global warming, along with continuous oil price rise and resource depletion. have. Among them, biosynthesis strategies using microorganisms are being actively studied, and in particular, it is possible to biosynthesize various chemicals, biofuels, amino acids and secondary metabolites of plants using recombinant microorganisms whose specific metabolic pathways have been genetically redesigned. .

현재 세계 고분자시장은 바이오 유래의 환경친화적 원료의 사용을 요구받고 있으며 이에 따라 코카콜라, 펩시와 같은 거대 음료회사들이 100% 식물 유래의 PET(폴리에틸렌테레프탈레이트) 개발에 총력을 기울이고 있다. 한편, PET와 유사한 구조를 가지면서도 독특한 특성을 갖는 PTT(폴리트리메틸렌테레프탈레이트) 역시 잠재력 높은 시장규모를 가질 뿐만 아니라, 연평균 17%의 고성장을 진행 중에 있다. 따라서 PET와 같이 PTT 역시 바이오 유래의 환경친화적 고분자합성이 필요한 시점이다. 현재 PTT는 석유 유래의 TPA(terephthalic acid)와 바이오 유래의 1,3-PDO(1,3-프로판디올)와의 축합반응에 의한 합성을 통해 생산이 이루어지고 있다. 한편, 바이오 유래의 1,3-PDO에 대한 연구가 활발히 진행된 것에 비해 바이오 유래의 TPA 연구는 전 세계적으로 매우 미비한 형편이다. 특히 대부분의 TPA(terephthalic acid)에 관한 연구가 석유화학물질을 출발점으로 하고 있기 때문에 바이오 유래의 친환경적인 TPA 생산공정의 개발 필요성이 대두되고 있다. 그러나 생물공정을 이용하여 바이오 유래의 탄소원으로부터 직접적으로 TPA를 생합성하는 공정은 아직까지 개발되지 못하고 있다. 따라서 환경친화적인 TPA 생산을 위해 먼저 생물공정을 통해 바이오 유래의 TPA 전구체를 생산하고, 생물공정을 통해 생산된 TPA 전구체를 화학합성공정을 통하여 TPA로 전환시키는 융합생산공정의 개발이 필요하다. Currently, the global polymer market is required to use bio-derived eco-friendly raw materials. Accordingly, large beverage companies such as Coca-Cola and Pepsi are focusing on the development of 100% plant-derived polyethylene terephthalate (PET). Meanwhile, PTT (polytrimethylene terephthalate), which has a structure similar to that of PET but has unique characteristics, has a high potential market size and is growing at an average annual growth rate of 17%. Therefore, like PET, PTT is a time point for bio-friendly polymer synthesis. Currently, PTT is produced through a condensation reaction between terephthalic acid (TPA) derived from petroleum and 1,3-PDO (1,3-propanediol) derived from biotechnology. On the other hand, bio-derived research on 1,3-PDO derived from bio, TPA derived from biotechnology is very poor worldwide. In particular, since most of the research on terephthalic acid (TPA) starts with petrochemicals, there is a need for development of bio-friendly TPA production process. However, a process for biosynthesizing TPA directly from a bio-derived carbon source using a bioprocess has not been developed yet. Therefore, in order to produce environmentally friendly TPA, it is necessary to first develop a bio-derived TPA precursor through a bioprocess, and to develop a fusion production process that converts the TPA precursor produced through the bioprocess into TPA through a chemical synthesis process.

시스,시스-뮤코닉산(cis,cis-muconic acid, CCM)은 합성수지와 생분해성 고분자를 합성하는 물질로, TPA 합성을 위한 바이오 유래의 전구체로서의 용도 외에도 아디프산의 전구체로도 잘 알려져 있다. 아디프산(adipic acid)은 나일론, 윤활유, 플라스틱, 가소제 등의 다양한 물질의 전구체 역할을 함으로써 전 세계적으로 연간 2 X 109 ㎏ 정도의 많은 양이 소비되고 있다. 하지만 현재 아디프산이 합성될 때 사용되는 벤젠 유래의 사이클로헥산은 산화되는 과정에서 지구온난화를 야기하는 N2O를 발생시키는 문제를 가지고 있다. 또한 각 단계별 다양한 중간화학물질은 인체에 유해할 뿐만 아니라 발암물질로도 알려져 있다. 이러한 문제를 해결하기 위해 바이오 유래의 재생 가능한 원료를 이용한 아디프산 생산공정의 개발이 필요하다. Cis, cis-muconic acid (cis) is a compound that synthesizes synthetic resins and biodegradable polymers, and is well known as a precursor of adipic acid in addition to its use as a bio-derived precursor for TPA synthesis. . Adipic acid is used as a precursor to various materials such as nylon, lubricants, plastics and plasticizers, and consumes a large amount of 2 x 10 9 kg per year worldwide. However, cyclohexane derived from benzene, which is currently used when adipic acid is synthesized, has a problem of generating N 2 O which causes global warming during oxidation. In addition, various intermediate chemicals in each step are known as carcinogens as well as harmful to the human body. To solve this problem, development of adipic acid production process using bio-derived renewable raw materials is necessary.

대한민국 공개특허공보 제10-2015-0120236호 (2015. 10. 27 공개)Republic of Korea Patent Application Publication No. 10-2015-0120236 (2015. 10. 27 published)

Alper, H., Miyaoku, K., & Stephanopoulos, G. (2005). Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets. Nature Biotechnology, (23), 612-616. Alper, H., Miyaoku, K., & Stephanopoulos, G. (2005). Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets. Nature Biotechnology, (23), 612-616. Atsumi, S., Hanai, T., & Liao, J. C. (2008). Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature, (451), 86-89. Atsumi, S., Hanai, T., & Liao, J. C. (2008). Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature, (451), 86-89. Berry, A. (1996). Improving production of aromatic compounds in escherichia coli by metabolic engineering. Trends in Biotechnology, 14(7), 250-256. Berry, A. (1996). Improving production of aromatic compounds in escherichia coli by metabolic engineering. Trends in Biotechnology, 14 (7), 250-256. Bui, V., Coudray, L., & Frost, J. (2012). Process for preparing hexamethylenediamine and polyamides therefrom. (WO Patent 2012141993 A1 ed.) Bui, V., Coudray, L., & Frost, J. (2012). Process for preparing hexamethylenediamine and polyamides therefrom. (WO Patent 2012141993 A1 ed.) Bui, V., Lau, M., MacRae, D., & Schweitzer, D. (2013). Methods for producing isomers of muconic acid and muconate salts. (US Patent 20130030215 A1 ed.) Bui, V., Lau, M., MacRae, D., & Schweitzer, D. (2013). Methods for producing isomers of muconic acid and muconate salts. (US Patent 20130030215 A1 ed.) Burk, M., Osterhout, R., & Sun, J. Semi-synthetic terephthalic acid via microorganisms that produce muconic acid. (US Patent 20110124911 A1 ed.) Burk, M., Osterhout, R., & Sun, J. Semi-synthetic terephthalic acid via microorganisms that produce muconic acid. (US Patent 20110124911 A1 ed.) Chen, S. P., Jaffee, M., Glick, M., & Forschirm, A. (1992). Muconic acid grafted polyolefin compatibilizers. (EP Patent 0489584 A2 ed.) Chen, S. P., Jaffee, M., Glick, M., & Forschirm, A. (1992). Muconic acid grafted polyolefin compatibilizers. (EP Patent 0489584 A2 ed.) Fink, J. (2005). Reactive polymers fundamentals and applications: A concise guide to industrial polymers. (pp. 573-573) William Andrew. Fink, J. (2005). Reactive polymers fundamentals and applications: A concise guide to industrial polymers. (pp. 573-573) William Andrew. Frost, J., & Draths, K. (1995). Biocatalytic syntheses of aromatics from D-glucose: Renewable microbial sources of aromatic compounds. .Annual Review of Microbiology, (49), 557-579. Frost, J., & Draths, K. (1995). Biocatalytic syntheses of aromatics from D-glucose: Renewable microbial sources of aromatic compounds. .Annual Review of Microbiology, (49), 557-579. Frost, J., Miermont, A., Schweitzer, D., Bui, V., Paschke, E., & Wicks, D. (2013). Biobased polyesters. (US Patent 8415496 B2 ed.) Frost, J., Miermont, A., Schweitzer, D., Bui, V., Paschke, E., & Wicks, D. (2013). Biobased polyesters. (US Patent 8415496 B2 ed.) Frost, J., Miermont, A., Schweitzer, D., Bui, V., & Wicks, D. (2013). Cyclohexane 1,4-carboxylates. (US Patent 8367859 B2 ed.) Frost, J., Miermont, A., Schweitzer, D., Bui, V., & Wicks, D. (2013). Cyclohexane 1,4-carboxylates. (US Patent 8367859 B2 ed.) Frost, J., Miermont, A., Schweitzer, D., Bui, V., & Wicks, D. (2013). Novel terephthalic and trimellitic based acids and carboxylate derivatives thereof. (US Patent 8367858 B2 ed.)Frost, J., Miermont, A., Schweitzer, D., Bui, V., & Wicks, D. (2013). Novel terephthalic and trimellitic based acids and carboxylate derivatives (US Patent 8367858 B2 ed.) Frost, J., Millis, J., & Tang, Z. (2010). Methods for producing dodecanedioic acid and derivatives thereof. (WO Patent 2010085712A3 ed.) Frost, J., Millis, J., & Tang, Z. (2010). Methods for producing dodecanedioic acid and derivatives (WO Patent 2010085712A3 ed.) Lin, Y., & Yan, Y. (2012). Biosynthesis of caffeic acid in escherichia coli using its endogenous hydroxylase complex. Microbial Cell Factories, 11(42) Lin, Y., & Yan, Y. (2012). Biosynthesis of caffeic acid in escherichia coli using its endogenous hydroxylase complex. Microbial Cell Factories, 11 (42) Lin, Y., & Blaschek, H. P. (1983). Butanol production by a butanol-tolerant strain of clostridium acetobutylicum in extruded corn broth. Applied and Environmental Microbiology, (45), 966-973. Lin, Y., & Blaschek, H. P. (1983). Butanol production by a butanol-tolerant strain of clostridium acetobutylicum in extruded corn broth. Applied and Environmental Microbiology, (45), 966-973. Pandell, A. (1976). Enzymic-like aromatic oxidations. metal-catalyzed peracetic acid oxidation of phenol and catechol to cis, cis-muconic acid. The Journal of Organic Chemistry, 41, 3992-3996. Pandell, A. (1976). Enzymic-like aromatic oxidations. metal-catalyzed peracetic acid oxidation of phenol and catechol to cis, cis-muconic acid. The Journal of Organic Chemistry, 41, 3992-3996. Polen, T., Spelberg, M., & Bott, M. (2013). Toward biotechnological production of adipic acid and precursors from biorenewables. Journal of Biotechnology, 167(2), 75-84. Polen, T., Spelberg, M., & Bott, M. (2013). Toward biotechnological production of adipic acid and precursors from biorenewables. Journal of Biotechnology, 167 (2), 75-84. Sambrook, J., Fritsch, E. F., & Maniaitis, T. (1989). Molecular cloning : A laboratory manual (2nd ed.). New York: Cold Spring Harbor Laboratory. Sambrook, J., Fritsch, E. F., & Maniaitis, T. (1989). Molecular cloning: A laboratory manual (2nd ed.). New York: Cold Spring Harbor Laboratory. Schafer, A., Kalinowski, J., Simon, R., Seep-Feldhaus, A. H., & Puhler, A. (1990). High-frequency conjugal plasmid transfer from gram-Negative escherichia coli to various gram-positive coryneform bacteria. Journal of Biotechnology, 172(3), 1663-1666. Schafer, A., Kalinowski, J., Simon, R., Seep-Feldhaus, A. H., & Puhler, A. (1990). High-frequency conjugal plasmid transfer from gram-Negative escherichia coli to various gram-positive coryneform bacteria. Journal of Biotechnology, 172 (3), 1663-1666. Schweitzer, D. (2012). Continuous dehydrogenation of 1,4-carboxylate substituted cyclohexenes. (WO Patent 2012082725 A1 ed.) Schweitzer, D. (2012). Continuous dehydrogenation of 1,4-carboxylate substituted cyclohexenes. (WO Patent 2012082725 A1 ed.) Weber, C., Bruckner, C., Weinreb, S., Lehr, C., Essl, C., & Boles, E. (2012). Biosynthesis of cis,cis-muconic acid and its aromatic precursors, catechol and protocatechuic acid, from renewable feedstocks by saccharomyces cerevisiae. Applied and Environmental Microbiology, 78(23), 8421-8430.Weber, C., Bruckner, C., Weinreb, S., Lehr, C., Essl, C., & Boles, E. (2012). Biosynthesis of cis, cis-muconic acid and its aromatic precursors, catechol and protocatechuic acid, from renewable feedstocks by saccharomyces cerevisiae. Applied and Environmental Microbiology, 78 (23), 8421-8430. Lee, S.J., Lee, D.Y., Kim, T.Y., Kim, B.H., Lee, J.W., Lee, S.Y. (2005). Metabolic engineering of Escherichia coli for enhanced production of succinic acid, based on genome comparison and in silico gene knockout simulation, Appl. Environ. Microbiol. 71(12):7880. Lee, S.J., Lee, D.Y., Kim, T.Y., Kim, B.H., Lee, J.W., Lee, S.Y. (2005). Metabolic engineering of Escherichia coli for enhanced production of succinic acid, based on genome comparison and in silico gene knockout simulation, Appl. Environ. Microbiol. 71 (12): 7880. Gosset, G., J, Yong-Xiao, A, Berry. (1996). A direct comparison of approaches for increasing carbon flow to aromatic biosynthesis in Escherichia coli. Journal of Industrial Microbiology. 17, 47-52. Gosset, G., J, Yong-Xiao, A, Berry. (1996). A direct comparison of approaches for increasing carbon flow to aromatic biosynthesis in Escherichia coli. Journal of Industrial Microbiology. 17, 47-52. Pittard, J., Camakaris, H., Yang, J. (2005) The tyrR regulon. Mol microbiol. 55(1):16-26Pittard, J., Camakaris, H., Yang, J. (2005) The tyr regulon. Mol microbiol. 55 (1): 16-26 Munoz, A.J., Hernandez-Chavez, G,. Anda, R.de., Martinez, A., Bolivar, F. (2014). Metabolic engineering of Escherichia coli for improving shikimate synthesis from glucose. Bioresource Technology. 166, 64-71Munoz, A. J., Hernandez-Chavez, G ,. Anda, R.de., Martinez, A., Bolivar, F. (2014). Metabolic engineering of Escherichia coli for improving shikimate synthesis from glucose. Bioresource Technology. 166, 64-71

본 발명은 뮤코닉산의 전구체 생산을 위한 방향족 아미노산 생합성경로의 재설계를 통한 높은 DHS(3-dehydroshikimate) 및 뮤코닉산 생산능을 보유한 대장균 및 그 제조방법을 제공하는 것을 목적으로 한다.An object of the present invention is to provide an E. coli having a high DHS (3-dehydroshikimate) and muconic acid production ability through the redesign of the aromatic amino acid biosynthesis pathway for the production of precursors of muconic acid and a method for producing the same.

상기 목적을 달성하기 위하여, 본 발명의 일 실시예는 aroE 유전자; 및 tyrR, ptsG , pykApykF 유전자 중 하나 이상의 유전자가 불활성화된 유전자재조합 대장균 및 이의 배양물을 제공한다.In order to achieve the above object, an embodiment of the present invention is aroE gene; And a recombinant E. coli and culture thereof in which one or more genes of the tyrR , ptsG , pykA and pykF genes are inactivated.

또한, 본 발명의 일 실시예는 상기 유전자재조합 대장균을 배양하는 단계를 포함하는 DHS(3-dehydroshikimate) 생산방법을 제공한다.In addition, an embodiment of the present invention provides a DHS (3-dehydroshikimate) production method comprising the step of culturing the recombinant E. coli.

본 발명의 다른 일 실시예는 aroE 유전자; 및 tyrR, ptsG , pykApykF 유전자 중 하나 이상의 유전자가 불활성화되고, asbF opt 를 코딩하는 폴리뉴클레오티드, aroY opt 를 코딩하는 폴리뉴클레오티드 및 catA opt 를 코딩하는 폴리뉴클레오티드를 포함하고, 상기 세 폴리뉴클레오티드의 각 업스트림(upstream)에 대장균 유래의 리보솜 결합 부위(ribosome binding site, rbs)를 포함하며, 상기 세 폴리뉴클레오티드 중 첫 번째 전사되는 폴리뉴클레오티드의 리보솜 결합부위(rbs)의 업스트림(upstream)에 프로모터(promoter)를 포함하는 재조합벡터로 더 형질전환된, 유전자재조합 대장균, 및 이의 배양물을 제공한다.Another embodiment of the present invention is aroE gene; And tyrR, ptsG, polynucleotides and to one or more of the genes pykA and pykF gene inactivation and, encoding the polynucleotides, encoding the aroY opt opt asbF a polynucleotide encoding catA opt , an upstream of each of the three polynucleotides comprises a ribosome binding site (rbs) derived from E. coli, and a first transcribed polynucleotide of the three polynucleotides A recombinant E. coli, and a culture thereof, further transformed with a recombinant vector comprising a promoter upstream of the ribosomal binding site (rbs) of the present invention.

또한, 본 발명의 일 실시예는 상기 유전자재조합 대장균을 배양하는 단계를 포함하는 시스,시스-뮤코닉산 생산방법을 제공한다.In addition, an embodiment of the present invention provides a cis, cis-muconic acid production method comprising culturing the recombinant E. coli.

본 발명에 의한 재조합벡터로 형질전환된 대장균은 높은 DHS(3-dehydroshikimate) 생산능을 보유함으로써, 궁극적으로 바이오 유래의 TPA 또는 아디프산의 전구체인 뮤코닉산을 효과적으로 생산할 수 있다. 구체적으로, 대장균의 방향족 아미노산 생합성경로를 뮤코닉산 전구체인 DHS 생합성을 증가시키기 위하여 재설계함으로써, 상기 aroE 유전자의 불활성화에 추가하여 tyrR, ptsG , pykApykF 유전자 중 하나 이상이 불활성화된 대장균은 aroE 유전자만 결손된 대장균보다 약 10배 이상의 높은 DHS 생산능을 가질 수 있다. Escherichia coli transformed with the recombinant vector according to the present invention possesses high DHS (3-dehydroshikimate) production capacity, thereby effectively producing muconic acid, which is ultimately a precursor of bio-derived TPA or adipic acid. Specifically, the aroE by redesigning the aromatic amino acid biosynthetic pathway of E. coli to increase the DHS biosynthesis of muconic acid precursors, In addition to inactivation of genes Escherichia coli with one or more of the tyrR , ptsG , pykA and pykF genes inactivated Only genes can have about 10 times higher DHS production capacity than E. coli that is missing.

도 1은 대장균내 방향족 아미노산 및 시스,시스-뮤코닉산의 생합성경로 및 조절경로를 나타낸 것으로, 도 1에 기재된 축약어는 다음과 같다: E4P(erythrose-4-phosphate), PEP(phosphoenolpyruvate), DAHP(3-deoxy-d-arabinoheptulosonate-7-phosphate), DHQ(dehydroquinate), DHS(3-dehydroshikimate), SA(Shikimate), PCA(Protocatechuic acid), CA(Catechol), CCM(cis,cis-muconic acid).
도 2는 aroE를 결손시킨 E. coli AB2834 aroE(△E) 및 추가로 tyrR를 결손시킨 E. coli AB2834 aroE tyrR(△E△R)을 각각 배양하여 각 DHS 생산량을 비교한 결과를 나타낸 도이다.
도 3은 다양한 유전자를 불활성화시킨 유전자재조합 미생물들을 플라스크(flask)에서 배양하여 각 DHS 생산량을 비교한 결과를 나타낸 도이다.
도 4는 다양한 유전자를 불활성화시킨 유전자재조합 미생물들의 5L 배양기 배양에서의 각 성장곡선을 나타낸 도이다.
도 5는 다양한 유전자를 불활성화시킨 유전자재조합 미생물들의 5L 배양기 배양에서의 DHS 생산성을 나타낸 도이다.
도 6은 다양한 유전자를 불활성화시킨 유전자재조합 미생물에 뮤코닉산을 생산하는데 필요한 세 외래유전자를 도입한 균주의 5L 배양기 배양에서의 뮤코닉산 생산성을 나타낸 도이다.
도 7은 대장균이 뮤코닉산을 생산하는데 필요한 세 외래유전자인 asbF opt 를 코딩하는 폴리뉴클레오티드, aroY opt 를 코딩하는 폴리뉴클레오티드 및 catA opt 를 코딩하는 폴리뉴클레오티드가 포함된 하나의 오페론(operon)을 개략적으로 도시한 도이다.
1 shows biosynthetic pathways and regulatory pathways of aromatic amino acids and cis, cis-muconic acids in Escherichia coli, and abbreviations described in FIG. 1 are as follows: erythrose-4-phosphate (E4P), phosphoenolpyruvate (PEP), DAHP (3-deoxy-d-arabinoheptulosonate-7-phosphate), DHQ (dehydroquinate), DHS (3-dehydroshikimate), SA (Shikimate), PCA (Protocatechuic acid), CA (Catechol), CCM (cis, cis-muconic acid ).
2 shows E. coli lacking aroE AB2834 Δ aroE ( ΔE ) and E. coli further lacking tyrR Respectively culturing the aroE AB2834 tyrR (△ △ R E) is a diagram showing a result of comparing each DHS production.
Figure 3 is a diagram showing the results of comparing the respective DHS production by incubating the recombinant microorganisms inactivated various genes in a flask (flask).
Figure 4 is a diagram showing each growth curve in 5L incubator culture of the recombinant microorganisms inactivating various genes.
Figure 5 is a diagram showing the DHS productivity in 5L incubator culture of the recombinant microorganisms inactivating various genes.
Figure 6 is a diagram showing the production of muconic acid in the culture of 5L incubator of the strain introduced three foreign genes necessary for producing muconic acid in the recombinant microorganisms inactivated various genes.
7 is a polynucleotide encoding asbF opt which is three foreign genes required for producing muconic acid by E. coli , a polynucleotide encoding aroY opt , and Figure schematically shows one operon containing a polynucleotide encoding catA opt .

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

DHS(3-dehydroshikimate)는 방향족 화합물을 생산하기 위해 필요한 중요한 대사 중간 생성물이다. 상기 DHS는 잠재적인 항산화물질임과 동시에 시스,시스-뮤코닉산(cis,cis-muconic acid, CCM), 아디프산, 방향족 아미노산과 같이 산업적으로 중요한 여러 화합물을 생산하기 위한 공급원료로 사용되는 유용한 출발 화합물이다. 특히, DHS로부터 만들어지는 시스,시스-뮤코닉산은 나일론, 플라스틱, 코팅제, PTT(polytrimethylene terephthalateT), 수지 등을 합성하기 위해 전구물질로 사용되고 있는 중요한 플랫폼 화학물질이다. 생분해성 중간물질, 테레프탈산과 같이 시스,시스-뮤코닉산의 구조이성질체들은 다양한 제품에 적용 될 수 있다. 상기 시스,시스-뮤코닉산은 주로 석유 기반의 벤젠으로부터 고농도 중금속 촉매를 이용해 합성되고 있기 때문에 심각한 환경적 문제와 경제적 문제에 부딪치고 있다. 따라서 이런 문제점들을 보완하고자 친환경적이고 지속적으로 재생 가능한 시스,시스-뮤코닉산 생합성 방법들이 연구되고 있다. 3-dehydroshikimate (DHS) is an important metabolic intermediate required to produce aromatic compounds. The DHS is a potential antioxidant and used as a feedstock for the production of many industrially important compounds such as cis, cis-muconic acid (CCM), adipic acid and aromatic amino acids. Useful starting compound. In particular, cis, cis-muconic acid made from DHS is an important platform chemical that is used as a precursor to synthesize nylon, plastics, coatings, polytrimethylene terephthalate (PTT), resins, and the like. Structural isomers of cis and cis-muconic acid, such as biodegradable intermediates and terephthalic acid, can be applied to various products. Since the cis, cis-muconic acid is mainly synthesized from petroleum-based benzene by using a high concentration of heavy metal catalysts, serious environmental and economic problems are encountered. Therefore, environmentally and continuously renewable cis, cis-muconic acid biosynthesis methods have been studied to supplement these problems.

본 발명의 일 실시예로서 사용되는 대장균(Escherichia coli)은 그람 음성 호기성 세균으로 독성이 없으며, 성장이 매우 빠르고 실험실과 산업현장에서 쉽고 저렴하게 키울 수 있다는 장점을 가지고 있다. 그러나 대장균 내에는 뮤코닉산을 합성할 수 있는 유전자들이 존재하지 않기 때문에, 뮤코닉산을 생산하기 위하여는 외래유전자의 도입이 필요하다. 본 발명자는 이미 대한민국 공개특허공보 제10-2015-0120236호에서 시스,시스-뮤코닉산의 합성을 위하여 대장균 내에 3개의 외래유전자를 도입함으로써 방향족 아미노산 생합성경로의 중간물질인 DHS로부터 시스,시스-뮤코닉산이 생합성 되는 것을 확인한 바 있으며, 상기 특허문헌은 그 전체가 본 명세서에 참고로서 통합된다. Escherichia coli used as an embodiment of the present invention coli ) is a gram-negative aerobic bacterium that is non-toxic and has the advantage of being very fast and easy and inexpensive to grow in laboratories and industrial sites. However, since there are no genes capable of synthesizing muconic acid in Escherichia coli, it is necessary to introduce a foreign gene to produce muconic acid. The present inventors have already introduced cis, cis- from DHS, an intermediate of the aromatic amino acid biosynthetic pathway, by introducing three foreign genes into Escherichia coli for the synthesis of cis, cis-muconic acid in Korean Patent Publication No. 10-2015-0120236. It has been confirmed that muconic acid is biosynthesized, and the patent document is incorporated herein by reference in its entirety.

본 발명자는 상기 연구에서 나아가, 시스,시스-뮤코닉산을 보다 높은 수율로 생산할 수 있는 미생물을 제조하기 위하여 방향족 아미노산 생합성경로의 최적화를 통해 우선적으로 DHS의 생산량을 증가시키고자 본 발명을 발명하였다.  The present inventors have invented the present invention to increase the production of DHS preferentially by optimizing the aromatic amino acid biosynthetic pathway in order to produce microorganisms capable of producing cis, cis-muconic acid in higher yield. .

티로신, 트립토판 및 페닐아닐린을 포함하는 미생물과 식물 유래의 방향족 아미노산 생합성은, 글루코스 신생합성 & 해당작용 과정에서 글루코스로부터 생성되는 포스포에놀피루브산(PEP)과 펜토스포스페이트과정에서 생성되는 D-에리트로스-4-포스페이트(E4P)의 축합반응을 기반으로 DHS(3-dehydroshikimate), 시킴산, 코리스미산을 거쳐 생합성이 이루어지는 것으로 알려져 있다. 따라서 본 발명은 시스 , 시스-뮤코닉산(CCM)의 생산량을 높이기 위해, 대사공학적인 관점에서 CCM의 전구물질인 DHS가 대장균 내에 다량 축적된 뮤턴트(mutant) 만들기 위해 DHS을 생합성 하는데 관여하는 유전자를 재조합하여 관련 대사경로를 최적화하였다. Aromatic amino acid biosynthesis from plant-derived microorganisms, including tyrosine, tryptophan, and phenylaniline, is a D-erythrate produced by phosphoenolpyruvic acid (PEP) and pentophosphate, produced from glucose during glucose neosynthesis and glycolysis Based on the condensation reaction of los-4-phosphate (E4P), biosynthesis is known to occur through 3-dehydroshikimate (DHS), shikimic acid and chorismic acid. Therefore, the present invention is a gene involved in biosynthesis of DHS in order to increase the production of cis , cis -muconic acid (CCM), mutant accumulated in the Escherichia coli DHS, a precursor of CCM from the metabolic point of view Was recombined to optimize the relevant metabolic pathways.

도 1은 대장균 내에서의 방향족 아미노산 생합성경로와 이를 이용한 CCM 생합성경로에 관한 모식도를 나타낸 도이다. 도 1에서 굵은 글씨로 나타낸 유전자는 글루코스로부터 CCM의 전구체인 DHS를 합성하는데 관여하는 수많은 유전자들 중에서, 최종적으로 CCM 생합성에 중요한 역할을 할 것이라 예상되는 유전자이다. 1 is a diagram showing a schematic diagram of the aromatic amino acid biosynthetic pathway in Escherichia coli and the CCM biosynthetic pathway using the same. The genes shown in bold in FIG. 1 are among genes involved in synthesizing DHS, a precursor of CCM from glucose, and are expected to play an important role in CCM biosynthesis.

이에 본 발명의 일 실시예는 도 1의 방향족 아미노산 생합성경로에서 DHS를 합성하는데 필요한 경로를 제외한 다른 경쟁경로들을 제거하기 위하여, aroE 유전자의 불활성화에 추가하여, tyrR, ptsG , pykApykF 유전자 중 하나 이상의 유전자가 불활성화된 유전자재조합 대장균을 제공한다. 또한, 본 발명의 일 실시예는 aroE 유전자의 불활성화에 추가하여 tyrR, ptsG , pykApykF 유전자가 순차적으로 불활성화된 유전자재조합 대장균을 제공할 수 있다. 구체적으로, 상기 대장균은 aroE 유전자; 및 tyrRptsG,유전자, tyrR, ptsG pykA 유전자, 또는 tyrR, ptsG , pykApykF 유전자가 불활성화된 것일 수 있다. 상기 유전자재조합 대장균은 상기 유전자들의 불활성화로 DHS(3-dehydroshikimate) 생합성이 증가된 것일 수 있다. 상기 네 유전자의 불활성화 순서는 상기 유전자가 기재된 순서로 한정되지 않는다. Therefore, an embodiment of the present invention, in order to remove other competitive pathways except for the pathway required for synthesizing DHS in the aromatic amino acid biosynthetic pathway of Figure 1, aroE In addition to inactivation of the gene, one or more of the tyrR , ptsG , pykA and pykF genes are inactivated Provides recombinant E. coli. In addition, an embodiment of the present invention aroE In addition to inactivation of genes, it is possible to provide recombinant E. coli in which the tyrR , ptsG , pykA and pykF genes are sequentially inactivated. Specifically, the E. coli aroE gene; And tyrR and ptsG, gene, tyrR , ptsG And pykA gene or tyrR , ptsG , pykA and pykF genes are inactivated It may be. The recombinant E. coli may be an increase in DHS (3-dehydroshikimate) biosynthesis by inactivation of the genes. The order of inactivation of the four genes is not limited to the order in which the genes are described.

본 명세서에서 상기 용어 "불활성화"는 특정 유전자의 일부 또는 전부를 제거(deletion)하거나 특정 유전자안에 다른 서열을 첨가(addition)하거나 특정 유전자를 다른 유전자로 치환(substitution)하는 것을 모두 포함한다. 일 실시예로서, 상기 유전자의 불활성화는 상기 대장균에서 상기 유전자가 결손(deletion)에 의한 것일 수 있다.As used herein, the term "inactivation" includes both the removal of some or all of a specific gene, the addition of another sequence within a specific gene, or the substitution of a specific gene with another gene. In one embodiment, the inactivation of the gene may be due to deletion of the gene in E. coli.

일 실시예로서, 상기 대장균으로부터 tyrR, ptsG , pykA pykF 유전자 중 하나 이상의 결손 방법은 구체적으로 결손을 위한 플라스미드 제작단계, 형질전환단계, 단일 재조합(single recombination) 유도 단계 및 이중 재조합(double recombination)을 포함할 수 있다.In one embodiment, tyrR , ptsG , pykA and pykF from E. coli Deletion methods of one or more of the genes may specifically include plasmid construction, transformation, single recombination induction and double recombination for deletion.

구체적으로, 상기 결손을 위한 플라스미드 제작단계는 결손시키고자 하는 유전자의 상부(up region)과 하부(down region)를 대장균 자살벡터(suicide vector)에 클로닝(cloning)하고 이를 증류수에 녹인 순수한 DNA를 준비하는 단계를 포함할 수 있다. 상기 형질전환 단계는 상기 제조된 결손을 위한 플라스미드, 즉 결손 플라스미드(deletion plasmid)를 원하는 균주에 도입하기 위해 균주에 전기천공법을 사용하여 상기 결손 플라스미드를 삽입하는 단계를 포함할 수 있다. 상기 단일 재조합 유도 단계는 상기 결손 플라스미드가 삽입된 형질전환체에서 단일 재조합을 유도하기 위해서 온도를 30-45℃로 올려준 후 클로람페니콜이 첨가된 LB 배지(broth)에 배양한 후, 클로람페니콜이 첨가된 LB 플레이트에 도말하고 30-45℃에서 배양하여 크로모좀에 단일 재조합되지 않은 균주들을 제거하는 단계를 포함할 수 있다. 상기 이중 재조합 유도단계는 상기 단일 재조합된 균주를 항생제가 첨가되지 않은 LB 배지에 30-45℃의 온도에서 배양하여 이중 재조합, 즉 유전자의 결손을 유도하고, 상기 배양된 균주들을 10% 수크로스가 들어간 LB 플레이트에 도말하여 플라스미드가 제거되고 유전자가 결손된 균주를 선별하는 단계를 포함할 수 있다.Specifically, the plasmid preparation step for the deletion is cloning (up region) and the lower region (down region) of the gene to be deleted in the E. coli suicide vector (suicide vector) to prepare pure DNA dissolved in distilled water It may include the step. The transformation step may include inserting the deletion plasmid using electroporation into the strain to introduce the prepared plasmid, that is, the deletion plasmid into the desired strain. The single recombination induction step is to raise the temperature to 30-45 ℃ in order to induce a single recombination in the transformed plasmid inserted into the chloroamphenicol-added broth (broth), and then added chloramphenicol Plating on LB plates and incubating at 30-45 ° C. may include removing a single non-recombinant strain to the chromosome. In the dual recombination induction step, the single recombined strain is cultured in LB medium without antibiotics at a temperature of 30-45 ° C. to induce double recombination, ie, gene deletion, and the cultured strains contain 10% sucrose. Plating onto the entered LB plate may comprise selecting strains from which the plasmid has been removed and the gene has been deleted.

일 실시예로서 상기 tyrR 유전자는 아미노산 생합성경로 중에서 DHAP 생성효소(2-dehydro-3-deooxy-phosphoheptonate-aldolase)를 코딩하고 있는 aroG 유전자를 조절한다. 상기 tyrR 유전자가 코딩하고 있는 TyrR 이라는 단백질은 티로신 억제제로, 티로신이 배지 내에 존재할 때 aroG 유전자의 발현을 억제하는 기능을 가지며 이는 이후의 대사경로에 영향을 미치게 된다. 따라서 tyrR 유전자를 불활성화시킬 경우, 티로신의 유무와 상관없이 aroG 유전자는 계속 발현될 것이므로, DHS를 지속적으로 생합성할 수 있다. 일 실시예로서 상기 tyrR 를 코딩하는 폴리뉴클레오티드는 서열번호 1로 표시되는 염기서열을 포함할 수 있다.In one embodiment, the tyrR gene modulates the aroG gene encoding DHAP synthase (2-dehydro-3-deooxy-phosphoheptonate-aldolase) in the amino acid biosynthetic pathway. The TyrR protein encoded by the tyrR gene is a tyrosine inhibitor, and has a function of inhibiting the expression of the aroG gene when tyrosine is present in the medium, which affects subsequent metabolic pathways. Therefore, when inactivating the tyrR gene, the aroG gene will continue to be expressed with or without tyrosine, thereby enabling continuous biosynthesis of DHS. In one embodiment, the polynucleotide encoding the tyrR may include a nucleotide sequence represented by SEQ ID NO: 1.

일 실시예로서 상기 ptsG 유전자는 세포 밖에 존재하는 글루코스를 세포 내로 이동시키는데 관여한다. 상기 유전자에 의해 코딩되는 글루코스 포스포트란스페라아제 IIBC(Glc); 글루코스 퍼미아제는 세포 밖에 존재하는 글루코스를 세포 내로 이동시키면서 DHS의 전구체인 PEP를 피루베이트로 전환시켜 세포 내의 DHS 축적량을 감소시킬 수 있다. ptsG 유전자를 불활성화 시킨다 하여도, 글루코스를 글루코스-6P (G6P)로 전환시켜주는 또 다른 유전자들 (galM 유전자, glk 유전자 등)이 대장균 내에 존재하므로 글루코스 소모량에는 큰 영향이 없을 것이다. 본 발명의 일 실시예는 ptsG 유전자 양쪽에 상동 아르마딜로(homologue arm)을 PCR을 통해 확보한 후 상동 재조합 방법을 이용하여 aroE 유전자와 tyrR 유전자가 불활성화된 균주에서 ptsG 유전자의 불활성화를 진행할 수 있다. 이때, 일 실시예로서 상기 ptsG 를 코딩하는 폴리뉴클레오티드는 서열번호 2로 표시되는 염기서열을 포함할 수 있다.In one embodiment, the ptsG gene is involved in moving glucose present outside the cell into the cell. Glucose phosphotransferase IIBC (Glc) encoded by the gene; Glucose permease can reduce PHS accumulation in cells by converting PEP, a precursor of DHS, to pyruvate while transferring glucose present in the cell into the cell. Even if the ptsG gene is inactivated, other genes that convert glucose to glucose-6P (G6P) ( galM gene, glk gene, etc.) are present in Escherichia coli, so there will be no significant effect on glucose consumption. One embodiment of the present invention After homologous armadillo (homologue arm) on both sides of the ptsG gene through PCR, homologous recombination can be used to inactivate the ptsG gene in strains in which the aroE and tyrR genes are inactivated. At this time, as an example, the polynucleotide encoding the ptsG may include a nucleotide sequence represented by SEQ ID NO: 2.

일 실시예로서 상기 pykApykF유전자는 상기 ptsG 유전자와 마찬가지로 DHS의 전구체인 PEP를 피루베이트로 전환시키는데 관여한다. 상기 pykA 유전자가 코딩하는 피루베이트 키나아제Ⅱ pykF 유전자가 코딩하는 피루베이트 키나아제Ⅰ는 각각 PEP를 피루베이트로 전환시켜 탄소원이 TCA(trichloroacetic acid) 사이클에 들어가서 에너지를 만드는데 관여한다. 상기 두 유전자를 불활성화할 경우 DHS의 전구체인 PEP를 소모하는 면에서 유리하다. 일 실시예로서 상기 pykA 를 코딩하는 폴리뉴클레오티드는 서열번호 3으로 표시되는 염기서열을 포함할 수 있다. 일 실시예로서 상기 pykF 를 코딩하는 폴리뉴클레오티드는 서열번호 4로 표시되는 염기서열을 포함할 수 있다. In one embodiment, the pykA and pykF genes, like the ptsG gene, are involved in converting PEP, a precursor of DHS, to pyruvate. PykA Gene Pyruvate Kinase II Coding With pykF Gene Each of the coding pyruvate kinases I converts PEP to pyruvate, which is involved in the production of energy by entering the carbon cycle into the trichloroacetic acid (TCA) cycle. Inactivating the two genes is advantageous in terms of consuming PEP, a precursor of DHS. In one embodiment, the polynucleotide encoding pykA may include a nucleotide sequence represented by SEQ ID NO: 3. As an example, the polynucleotide encoding the pykF may include a nucleotide sequence represented by SEQ ID NO: 4.

본 발명의 일 실시예에 따른 상기 대장균은 aroE 유전자가 결손되어, Aro E 효소 활성이 상실된 대장균일 수 있다. 일 실시예로서 상기 aroE를 코딩하는 폴리뉴클레오티드는 서열번호 5로 표시되는 염기서열을 포함할 수 있다. 상기 Aro E 효소 활성이 상실된 대장균으로는 예를 들어 E. coli AB2834(구입기관: E. coli Genetic Stock Center)를 사용할 수 있다. 상기 aro E유전자는 DHS(3-dehydroshikimic acid)를 SA(shikimic acid)로 전환시키는 DHS 탈수효소를 코딩하는 유전자로 aroE 유전자가 결손되면 DHS가 SA로 전환되는 것을 차단하여 DHS가 방향족 아미노산 생합성에 이용되는 것을 차단함으로써 대사 흐름을 뮤코닉산 생합성 쪽으로 바꾸어 줄 수 있어 상기 aroE 유전자가 결손된 대장균을 사용하면 뮤코닉산의 생합성 효율을 더욱 증가시킬 수 있다. 또한 방향족 아미노산의 생합성이 차단되면 대사경로 초기물질인 PEP(phosphoenolpyruvate)와 E4P(erythrose-4-phosphate)가 DAHP로의 전환에 대한 피드백 억제(feedback inhibition)의 해제(저해)가 일어나 뮤코닉산 생합성으로의 대사흐름이 원활해진다. 다만 aroE 유전자의 결손으로 방향족 아미노산이 합성되지 않으므로 배양배지에 방향족 아미노산을 첨가해 주어야 하는데 이때 과량의 방향족 아미노산을 첨가해 주면 다시 피드백 억제(feedback inhibition)가 일어나므로 세심한 주의가 필요하다. The E. coli according to an embodiment of the present invention may be E. coli, which is deficient in the aroE gene, and has lost Aro E enzyme activity. In one embodiment, the polynucleotide encoding the aroE may include a nucleotide sequence represented by SEQ ID NO: 5. For example, E. coli AB2834 ( E. coli Genetic Stock Center) may be used as E. coli that has lost the A ro E enzyme activity. Aro the E gene DHS (3-dehydroshikimic acid) in the gene encoding DHS dehydratase that converts to a SA (shikimic acid) aroE When the gene is deleted, the DHS can be converted to SA to block metabolic flow toward muconic acid biosynthesis by blocking DHS from being used for aromatic amino acid biosynthesis. Biosynthetic efficiency can be further increased. In addition, when biosynthesis of aromatic amino acids is blocked, phosphoenolpyruvate (PEP) and erythrose-4-phosphate (E4P), which are early metabolic pathways, release (inhibition) of feedback inhibition of the conversion to DAHP, resulting in muconic acid biosynthesis. The metabolic flow is smooth. However, since the aromatic amino acid is not synthesized due to the deletion of the aroE gene, the aromatic amino acid should be added to the culture medium. At this time, if the excess aromatic amino acid is added, feedback inhibition occurs again.

본 발명은 일 실시예로서 상기와 같은 유전자재조합 대장균의 배양물을 제공할 수 있다. 일 실시예로서 상기 유전자재조합 대장균은 aroE 유전자가 불활성화되고, 추가적으로 tyrR, ptsG , pykA pykF 유전자 중 하나 이상이 더 불활성화되어 있으므로, 상기 배양물은 DHS(3-dehydroshikimate)를 포함할 수 있다. 구체적으로 상기 배양물은 DHS를 10 내지 80g/L의 농도로 포함할 수 있으나, 상기 배양물이 포함하는 DHS의 농도는 이에 제한되지 않는다. The present invention can provide a culture of E. coli as described above as an example. In one embodiment, the recombinant E. coli is inactivated aroE gene, additionally tyrR , ptsG , pykA and pykF Since at least one of the genes is more inactivated, the culture may comprise 3-dehydroshikimate (DHS). Specifically, the culture may include DHS at a concentration of 10 to 80 g / L, but the concentration of DHS included in the culture is not limited thereto.

또한, 본 발명의 일 실시예는 aroE 유전자; 및 tyrR, ptsG , pykApykF 유전자 중 하나 이상의 유전자가 불활성화된 유전자재조합 대장균을 배양하는 단계를 포함하는 DHS(3-dehydroshikimate) 생산방법을 제공할 수 있다.In addition, an embodiment of the present invention aroE gene; And One or more of tyrR , ptsG , pykA and pykF genes can provide a method for producing DHS (3-dehydroshikimate) comprising culturing a recombinant E. coli inactivated.

상기 DHS 생산방법은, 구체적으로 포도당을 포함하는 LB배지에 E.coli 단일 콜로니를 접종하여 하루동안 배양하는 것을 포함하는 E. coli 생산균주의 1차 성장배양단계; 포도당을 포함하는 LB배지에 상기 1차 성장배양액을 접종하여 4-8시간 진탕배양시키는 것을 포함하는 2차 성장배양 단계; 및 생산배지에 상기 2차 성장배양액을 접종 및 배양하는 DHS를 생산하는 배양단계를 포함할 수 있다. 보다 구체적으로는, 10g/L 포도당을 포함하는 LB배지(tryptone 10 g/L, Yeast extract 5 g/L, NaCl 5 g/L, Glucose 10 g/L) 5ml에 E.coli 단일콜로니를 접종하여 37℃, 220rpm으로 회전진탕기에서 하루동안 오버나이트 배양하는 것을 포함하는 E. coli 생산균주의 1차 성장배양단계; 10g/L 포도당을 포함하는 LB배지 50ml을 250ml 배플플라스크에 첨가하고 상기 1차 성장배양액 1%를 접종하여 220rpm, 30℃에서 6시간 진탕배양시키는 것을 포함하는 2차 성장배양 단계; 및 생산배지 50ml을 250ml 배플플라스크에 첨가하고 상기 2차 성장배양액을 1% 접종하여 220rpm, 30℃에서 진탕배양하여 DHS를 생산하는 배양단계를 포함할 수 있다. The DHS production method, specifically, the primary growth culture step of E. coli production strain comprising inoculating E. coli single colony to LB medium containing glucose and cultured for one day; A secondary growth culture step of inoculating the primary growth culture solution with LB medium containing glucose and shaking culture for 4-8 hours; And a culturing step of producing DHS inoculating and culturing the second growth culture solution in the production medium. More specifically, inoculating E. coli monocolon in 5 ml of LB medium containing 10 g / L glucose (tryptone 10 g / L, Yeast extract 5 g / L, NaCl 5 g / L, Glucose 10 g / L) Primary growth culture step of E. coli production strain comprising overnight culture in a rotary shaker at 37 ℃, 220rpm; A second growth culture step comprising adding 50 ml of LB medium containing 10 g / L glucose to a 250 ml baffle flask and inoculating 1% of the first growth culture solution and shaking culture at 220 rpm for 30 hours at 30 ° C .; And 50 ml of the production medium may be added to a 250 ml baffle flask and inoculated with 1% of the secondary growth culture solution, followed by culturing at 220 rpm and 30 ° C. to produce DHS.

본 발명의 다른 일 실시예는 aroE 유전자; 및 tyrR, ptsG , pykApykF 유전자 중 하나 이상의 유전자를 불활성화시킨 후, 시스,시스-뮤코닉산(cis,cis-muconic acid) 생산용 유전자재조합 대장균을 제공하기 위하여, DHS로부터 뮤코닉산을 생합성하는데 있어서 필요한 유전자로서, asbF , aroY catA를 각각 코딩하는 유전자를 도입한 유전자재조합 대장균을 제공할 수 있다. Another embodiment of the present invention is aroE gene; And After inactivating one or more of the tyrR , ptsG , pykA and pykF genes , biosynthesis of muconic acid from DHS to provide a recombinant E. coli for the production of cis, cis-muconic acid As genes needed to do this, asbF , aroY And E. coli introduced with genes encoding catA , respectively.

구체적으로, aroE 유전자; 및 상기 tyrR, ptsG , pykApykF 중 하나 이상을 코딩하는 폴리뉴클레오티드를 결손시킨 유전자재조합 대장균을, asbF opt 를 코딩하는 폴리뉴클레오티드, aroY opt 를 코딩하는 폴리뉴클레오티드 및 catA opt 를 코딩하는 폴리뉴클레오티드를 포함하고 상기 세 폴리뉴클레오티드의 각 업스트림(upstream)에 대장균 유래의 리보솜 결합 부위(ribosome binding site, rbs)를 포함하며, 상기 세 폴리뉴클레오티드 중 첫 번째 전사되는 폴리뉴클레오티드의 리보솜 결합부위(rbs)의 업스트림(upstream)에 프로모터(promoter)를 포함하는 재조합벡터로 더 형질전환한 유전자재조합 대장균을 제공할 수 있다.Specifically, aroE gene; And polynucleotides encoding the recombinant Escherichia coli having a defective polynucleotide encoding at least one of the tyrR, ptsG, pykA and pykF, asbF opt polynucleotide, encoding the aroY opt and a polynucleotide encoding catA opt and upstream of each of the three polynucleotides comprises a ribosome binding site (rbs) derived from E. coli, the first transcribed polynucleotide of the three polynucleotides It is possible to provide a recombinant E. coli further transformed with a recombinant vector comprising a promoter upstream of the ribosomal binding site (rbs).

일 실시예로서 상기 세 폴리뉴클레오티드 중 첫 번째 전사되는 폴리뉴클레오티드는 asbF opt 를 코딩하는 폴리뉴클레오티드, aroY opt 를 코딩하는 폴리뉴클레오티드 및 catA opt 를 코딩하는 폴리뉴클레오티드 중에서 선택되는 어느 하나이며, 상기 세 유전자의 배열 순서는 상기 유전자가 기재된 순서로 한정되지 않는다. 예를 들면, 세 유전자는 뮤코닉산 생산용 재조합벡터내에 aroY opt 를 코딩하는 폴리뉴클레오티드, asbF opt 를 코딩하는 폴리뉴클레오티드 및 catA opt 를 코딩하는 폴리뉴클레오티드 순으로 배열될 수 있다. 또는, catA opt 를 코딩하는 폴리뉴클레오티드, aroY opt 를 코딩하는 폴리뉴클레오티드 및 asbF opt 를 코딩하는 폴리뉴클레오티드 순으로 배열될 수 있다.In one embodiment the polynucleotide is the first transfer of the three polynucleotides is any one selected from a polynucleotide encoding the polynucleotide and catA opt encoding polynucleotides, aroY opt encoding asbF opt, of the three genes The arrangement order is not limited to the order in which the genes are described. For example, the three genes are polynucleotides encoding the polynucleotides, encoding the aroY asbF opt opt in a recombinant vector for the production of MU-conic acid and The polynucleotides encoding catA opt may be arranged in order. Or, it may be arranged in a polynucleotide, the polynucleotide encoding order of the polynucleotide and coding for the aroY asbF opt opt encoding a catA opt.

도 1을 참고로 하면, 대장균의 탄수화물 대사경로 중에는 방향족 아미노산인 페닐알라닌(Phenylalanine,Phe), 타이로신(Tyrosine,Tyr), 트립토판(Tryptophan,Try)을 생합성하는 경로가 있다. 이 때 중간물질인 DHS (3-dehydroshikimate)로부터 뮤코닉산을 생산하기 위하여는 일 실시예로서 대장균에 세 종류의 외래유전자를 도입할 수 있다. 구체적으로, DHS 탈수효소(DHS dehydratase)를 코딩하는 asbF, PCA 탈카르복실화효소(protocatechuic acid decarboxylase)를 코딩하는 aroY, 카테콜 1,2-산소화효소(catechol 1,2-dioxygenase)를 코딩하는 catA이다. 이러한 3종의 외래유전자의 도입으로 DHS로부터 PCA, 카테콜을 거쳐 뮤코닉산을 합성할 수 있게 된다.Referring to FIG. 1, a carbohydrate metabolic pathway of Escherichia coli includes a pathway for biosynthesizing aromatic amino acids phenylalanine (Phenylalanine, Phe), tyrosine (Tyros), and tryptophan (Tryptophan, Try). In this case, in order to produce muconic acid from DHS (3-dehydroshikimate), which is an intermediate, three kinds of foreign genes may be introduced into E. coli. Specifically, DHS dehydratase (DHS dehydratase) for encoding the coding asbF, PCA decarboxylation enzyme (protocatechuic acid decarboxylase) which aroY, catechol 1,2-oxygenated enzyme (catechol 1,2-dioxygenase) encoding the catA . With the introduction of these three foreign genes, it is possible to synthesize muconic acid from DHS via PCA and catechol.

보다 구체적으로, 본 발명의 실시예는 상기 세 종류의 외래유전자를 대장균에 도입함에 있어서 대장균에서의 발현율을 증가시킴으로써 뮤코닉산 생산능을 향상시키기 위하여, 상기 asbF , aroY catA를 대장균 코돈으로 변형한 염기서열인 asbF opt 를 코딩하는 폴리뉴클레오티드, aroY opt 를 코딩하는 폴리뉴클레오티드 및 catA opt 를 코딩하는 폴리뉴클레오티드를 합성할 수 있다. 그리고 상기 세 폴리뉴클레오티드와, 상기 세 폴리뉴클레오티드의 각 업스트림(upstream)에 대장균 유래의 리보솜 결합 부위(ribosome binding site)를 포함하고, 상기 세 폴리뉴클레오티드 중 첫 번째 전사되는 폴리뉴클레오티드의 리보솜 결합부위(rbs)의 업스트림에 프로모터(promoter)를 포함하는 재조합벡터로 제조할 수 있다. 일 실시예로서, 상기 asbF opt 를 코딩하는 폴리뉴클레오티드는 서열번호 6을 포함하고, 상기 aroY op 를 코딩하는 폴리뉴클레오티드는 서열번호 7을 포함하며, 상기 catA op 를 코딩하는 폴리뉴클레오티드는 서열번호 8을 포함할 수 있다. 상기 리보솜 결합 부위는 서열번호 9를 포함할 수 있다. 일 실시예는 상기와 같이 제조한 재조합벡터로 형질전환된 숙주세포를 제공하며, 상기 숙주세포를 포함하는 대장균을 제공한다.More specifically, the embodiment of the present invention, in order to improve the muconic acid production capacity by increasing the expression rate in E. coli in introducing the three kinds of foreign genes in E. coli, the asbF , aroY And a catA can synthesize poly coding for one of asbF opt nucleotide sequence transformed into the E. coli codon oligonucleotide, a polynucleotide encoding the polynucleotide and coding for the aroY catA opt opt. And ribosomal binding sites of the first polynucleotide to be transcribed, including the three polynucleotides and a ribosome binding site derived from E. coli upstream of each of the three polynucleotides. It can be prepared as a recombinant vector comprising a promoter (upstream) upstream of the). In one embodiment, the polynucleotide encoding the asbF opt comprises SEQ ID NO: 6, the polynucleotide encoding the aroY op comprises SEQ ID NO: 7, the polynucleotide encoding the catA op is SEQ ID NO: 8 It may include. The ribosomal binding site may comprise SEQ ID NO: 9. One embodiment provides a host cell transformed with the recombinant vector prepared as described above, and provides E. coli comprising the host cell.

이로써 상기와 같은 asbF opt , aroY opt catA opt 를 포함하는 본 발명의 일 실시예에 따른 대장균은 상기 세 외래유전자 각각을 단일 오페론 구조로 포함함으로써, 상기 asbF opt , aroY opt catA opt 를 코딩하는 각 폴리뉴클레오티드의 전사량이 0.9~1.1 : 0.9~1.1 : 0.9~1.1로 구현될 수 있다. This leads to asbF opt , aroY opt and E. coli according to an embodiment of the present invention comprising catA opt includes each of the three foreign genes as a single operon structure, thereby asbF opt , aroY opt and Transcription amount of each polynucleotide encoding catA opt can be implemented as 0.9 ~ 1.1: 0.9 ~ 1.1: 0.9 ~ 1.1.

상기 세 종류의 폴리뉴클레오티드는 각각의 해당 효소인 DHS 탈수효소(DHS dehydratase), PCA 탈카르복실화효소(protocatechuic acid decarboxylase), 카테콜 1,2-산소화효소(catechol 1,2-dioxygenase)를 효율적으로 발현시켜준다. The three types of polynucleotides efficiently utilize the corresponding enzymes, DHS dehydratase, PCA decarboxylase, and catechol 1,2-dioxygenase. To express.

일 실시예로서 상기 세 폴리뉴클레오티드 중 첫 번째 전사되는 폴리뉴클레오티드는 asbF opt 를 코딩하는 폴리뉴클레오티드, aroY opt 를 코딩하는 폴리뉴클레오티드 및 catA opt 를 코딩하는 폴리뉴클레오티드 중에서 선택되는 어느 하나이며, 상기 세 폴리뉴클레오티드의 삽입 및 배열 순서는 상기 유전자가 기재된 순서로 한정되지 않는다. 예를 들면, 세 유전자는 뮤코닉산 생산용 재조합벡터내에 aroY opt 를 코딩하는 폴리뉴클레오티드, asbF opt 를 코딩하는 폴리뉴클레오티드 및 catA opt 를 코딩하는 폴리뉴클레오티드 순으로 배열될 수 있다. 또는, catA opt 를 코딩하는 폴리뉴클레오티드, aroY opt 를 코딩하는 폴리뉴클레오티드 및 asbF opt 를 코딩하는 폴리뉴클레오티드 순으로 배열될 수 있다.In one embodiment the polynucleotide is the first transfer of the three polynucleotides is any one selected from a polynucleotide encoding the polynucleotide and catA opt encoding polynucleotides, aroY opt encoding asbF opt, the three polynucleotide The order of insertion and arrangement of is not limited to the order in which the genes are described. For example, the three genes are polynucleotides encoding the polynucleotides, encoding the aroY asbF opt opt in a recombinant vector for the production of MU-conic acid and The polynucleotides encoding catA opt may be arranged in order. Or, it may be arranged in a polynucleotide, the polynucleotide encoding order of the polynucleotide and coding for the aroY asbF opt opt encoding a catA opt.

일 실시예로서 상기 대장균은 기탁번호가 KCCM11922P인 유전자재조합 대장균(E.coli AB2834 aroEtyrRptsGpykApykF) 또는 기탁번호가 KCCM11882P인 유전자재조합 대장균(E.coli AB2834 aroEtyrRptsGpykApykF/Plac aroZOPT, aroYOPT, catAOPT)일 수 있다. In one embodiment, the E. coli is the accession number KCCM11922P be a genetically modified Escherichia coli (E.coli AB2834 aroEtyrRptsGpykApykF) or a genetically modified Escherichia coli (E.coli AB2834 aroEtyrRptsGpykApykF / Plac aroZ OPT , aroY OPT, catA OPT) Accession number KCCM11882P have.

본 발명은 일 실시예로서 상기와 같은 유전자재조합 대장균의 배양물을 제공할 수 있다. 일 실시예로서 상기 유전자재조합 대장균은 aroE 유전자; 및 tyrR, ptsG, pykApykF 유전자 중 하나 이상의 유전자가 불활성화되거나, 또는 aroE 유전자; 및 tyrRptsG 유전자, tyrR, ptsG pykA 유전자, 또는 tyrR, ptsG , pykApykF 유전자가 불활성화되어 있으며, DHS로부터 뮤코닉산을 생합성 하는데 있어서 필요한 유전자로서, asbF , aroY catA를 각각 코딩하는 유전자가 도입되어 있으므로, 상기 배양물은 시스,시스-뮤코닉산을 포함할 수 있다. 구체적으로 상기 배양물은 시스,시스-뮤코닉산을 10 내지 60g/L로 포함할 수 있으나, 상기 농도는 이에 제한되지 않는다. The present invention can provide a culture of E. coli as described above as an example. In one embodiment the recombinant E. coli aroE gene; And one or more of the tyrR , ptsG, pykA and pykF genes are inactivated, or an aroE gene; And tyrR and ptsG Gene, tyrR , ptsG And pykA gene or tyrR , ptsG , pykA and pykF genes are inactivated and required for biosynthesis of muconic acid from DHS, asbF , aroY And a gene encoding catA , respectively, has been introduced, the culture may comprise cis, cis-muconic acid. Specifically, the culture may include cis, cis-muconic acid at 10 to 60 g / L, but the concentration is not limited thereto.

또한, 본 발명의 일 실시예는 aroE 유전자; 및 tyrR, ptsG , pykApykF 유전자 중 하나 이상의 유전자가 불활성화되어 있으며, DHS로부터 뮤코닉산을 생합성 하는데 있어서 필요한 유전자로서, asbF , aroY catA를 각각 코딩하는 유전자가 도입된 유전자재조합 대장균을 배양하는 단계를 포함하는 시스,시스-뮤코닉산 생산방법을 제공할 수 있다.In addition, an embodiment of the present invention aroE gene; And tyrR, ptsG, and one or more genes pykA and pykF genes are non-active, a gene required for the biosynthesis in the mu-conic acid from DHS, asbF, aroY And it can provide a cis, cis-muconic acid production method comprising the step of culturing the recombinant E. coli introduced genes encoding catA respectively.

상기 시스,시스-뮤코닉산 생산방법은, 구체적으로 앰피실린(Ampicillin) 및 포도당을 포함하는 LB배지에 E. coli 단일콜로니를 접종하여 하루동안 배양하는 E.coli 생산균주의 1차 성장배양 단계; 앰피실린 및 포도당을 포함하는 LB배지에 상기 1차 성장배양액을 접종하여 4-8시간 진탕배양시키는 2차 성장배양 단계; 및 생산배지에 상기 2차 성장배양액을 접종 및 배양하여 뮤코닉산을 생산하는 단계를 포함할 수 있다. 보다 구체적으로는, 앰피실린(Ampicillin) 100 mg/L 및 10g/L 포도당을 포함하는 LB배지(tryptone 10 g/L, Yeast extract 5 g/L, NaCl 5 g/L, Glucose 10 g/L) 5ml에 E. coli 단일콜로니를 접종하여 37℃, 220rpm으로 회전진탕기에서 하루동안 오버나이트 배양하는 E. coli 생산균주의 1차 성장배양 단계; 앰피실린 100 mg/L 및 10g/L 포도당을 포함하는 LB배지 50ml을 250ml 배플플라스크에 첨가하고 상기 1차 성장배양액 1%를 접종하여 220rpm, 30℃에서 6시간 진탕배양시키는 2차 성장배양 단계; 및 생산배지 50ml을 250ml 배플플라스크에 첨가하고 상기 2차 성장배양액을 1% 접종하여 220rpm, 30℃에서 진탕배양하여 뮤코닉산을 생산하는 단계를 포함할 수 있다.The cis, cis-mu conic acid production method, E. coli 1 primary growth phase culture of E.coli production strain is cultured for one day single colonies was inoculated on LB medium containing ampicillin (Ampicillin) and glucose in detail ; A second growth culture step of inoculating the primary growth culture solution with LB medium containing ampicillin and glucose and shaking culture for 4-8 hours; And inoculating and culturing the secondary growth culture solution on the production medium to produce muconic acid. More specifically, LB medium containing 100 mg / L Ampicillin and 10 g / L glucose (tryptone 10 g / L, Yeast extract 5 g / L, NaCl 5 g / L, Glucose 10 g / L) Inoculate 5 ml of E. coli single colony and the primary growth culture step of E. coli production strain cultured overnight overnight in a rotary shaker at 37 ℃, 220rpm; A second growth culture step of adding 50 ml of LB medium containing ampicillin 100 mg / L and 10 g / L glucose to a 250 ml baffle flask and inoculating 1% of the first growth culture solution with shaking culture at 220 rpm for 30 hours at 30 ° C .; And adding 50 ml of the production medium to a 250 ml baffle flask and inoculating 1% of the secondary growth culture solution at 220 rpm and shaking at 30 ° C. to produce muconic acid.

이하, 본 발명의 제조예 및 시험예를 참조하여 본 발명을 상세히 설명한다. 이들은 오로지 본 발명을 보다 구체적으로 설명하기 위해 예시적으로 제시한 것일 뿐, 본 발명의 범위가 이 제조예 및 시험예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가지는 자에 있어서 자명할 것이다.Hereinafter, the present invention will be described in detail with reference to production examples and test examples of the present invention. These are only presented by way of example only to more specifically describe the present invention, it will be apparent to those of ordinary skill in the art that the scope of the present invention is not limited by these preparation and test examples. .

[제조예][Production example]

본 발명의 일 실시예에 따른 재조합대장균 미생물을 하기의 방법에 따라 제조하였다.Recombinant Escherichia coli microorganism according to an embodiment of the present invention was prepared according to the following method.

배지 및 배양조건Medium and culture conditions

세포 증식, 접종 준비 및 결손 플라스미드 제조를 위하여, 모든 대장균 균주들을 LB(Luria-Bertani) 배지 또는 아가플레이트에서 37℃에서 성장시켰다. 상기 LB 배지는 1L 기준 트립톤 10 g, NaCl 5 g, 효모추출물 5 g을 포함한다. 다양한 농도의 적절한 항생제 또는 수크로스(sucrose), 구체적으로 100 μg/ml의 앰피실린(ampicillin), 25 μg/ml의 클로람페니콜(chloramphenicol) 및 10% 수크로스를 더 포함하는 LB 배지에서 플라스미드가 제거된 콜로니(colony)를 선택하였다.For cell proliferation, inoculation preparation and deletion plasmid preparation, all E. coli strains were grown at 37 ° C. in LB (Luria-Bertani) medium or agar plates. The LB medium comprises 10 g of tryptone 1 L, 5 g of NaCl, and 5 g of yeast extract. Plasmid removed in LB medium further comprising various concentrations of appropriate antibiotics or sucrose, specifically 100 μg / ml ampicillin, 25 μg / ml chloramphenicol and 10% sucrose Colonies were selected.

박테리아 균주 및 플라스미드Bacterial Strains and Plasmids

E. coli 유전자 스톡으로부터 E. coli AB2834 균주를 얻었다. 대장균 E. coli DH5α(구입처: TaKaRa)를 재조합 플라스미드 제조 시 호스트로 사용하였다. 플라스미드 pUC19(구입처: Addgene)를 유전자 결손을 위한 중간 벡터로 사용하였다. 플라스미드 pKOV(구입처: Addgene)을 제한효소(업스트립 절편: BamHI & XbaI, 다운스트림 절편: XbaI & SalI)의 사용에 의한 결손 벡터로서 사용하였다. 유전자 과발현 및 발현이 활성화된 플라스미드 pUC18는 Addgene에서 구입하였다. 제조된 플라스미드는 시퀀싱 및 제한효소분석에 의해 확인하였다. 본 실험에서 사용되거나 제조된 모든 균주들 및 플라스미드들을 하기 표 1 및 표 2에 나열하였다. 하기 표 2에서 용어 "UP & DOWN"은 타겟 유전자들을 결손(deletion)시키기 위한 플라스미드의 제조시 결손되는 유전자의 위쪽 유전자 단편인 up region(up steam, left region, forward region) 및 유전자 아래쪽 단편인 down region(down steam, right region)을 의미한다. E. coli E. coli AB2834 strain was obtained from the genetic stock. E. coli DH5α (purchased from TaKaRa) was used as a host in the production of recombinant plasmids. Plasmid pUC19 (Addgene) was used as an intermediate vector for gene deletion. Plasmid pKOV (Addgene) was used as a deletion vector by the use of restriction enzymes (upstrip fragments: BamHI & XbaI , downstream fragments: XbaI & SalI ). Plasmid pUC18 with activated gene overexpression and expression was purchased from Addgene. The prepared plasmids were confirmed by sequencing and restriction enzyme analysis. All strains and plasmids used or prepared in this experiment are listed in Table 1 and Table 2 below. In Table 2 below, the term “UP & DOWN” refers to an up region (up steam, left region, forward region) and a down gene fragment, which are the upper gene fragments of a gene that is deleted during preparation of a plasmid for deleting target genes. Represents a region (down steam, right region).

본 실험에서, 표준 프로토콜이 중합효소연쇄반응(polymerase chain reactions, PCR) 증폭, DNA 정제, 플라스미드 추출, 효소 절단(restriction) 및 라이게이션(ligation) 반응을 위해 사용되었다. 본 실험에 사용된 프라이머들은 하기 표 3에 나열하였다.In this experiment, standard protocols were used for polymerase chain reactions (PCR) amplification, DNA purification, plasmid extraction, enzyme restriction and ligation reactions. Primers used in this experiment are listed in Table 3 below.

미생물(E. Microorganisms (E. colicoli )) 관련 특성Related property Ref.Ref. E. coli DH5α E. coli DH5α lacZ M15 hsdR recA lacZ M15 hsdR recA TaKaRaTaKaRa E. coli AB2834△E E. coli AB2834 ΔE aroE353 (aroE 결손 E. coli) aroE 353 ( aroE- deficient E. coli ) -- △ER△ ER AB2834 aroE tyrR AB2834 aroE tyrR This workThis work △ERG△ ERG AB2834 aroE tyrR ptsGrR AB2834 aroE tyrR ptsGrR This workThis work ERGAERGA AB2834 aroE tyrR ptsGrR pykA AB2834 aroE tyrR ptsGrR pykA This workThis work ERGAFERGAF AB2834 aroE tyrR ptsGrR pykA pykF AB2834 aroE tyrR ptsGrR pykA pykF This workThis work ERGAF /pM1 ERGAF / pM1 AB2834 aroE tyrR ptsGrR pykA pykF / pMESK1AB2834 aroE tyrR ptsGrR pykA pykF / pMESK1 This workThis work

플라스미드(벡터)Plasmid (vector) 관련 특성Related property pUC19pUC19 AmpR, lacZα, f1 ori, lac promoter(multiple cloning site)Amp R , lacZ α, f1 ori, lac promoter (multiple cloning site) pKOVpKOV CmR, sacB, Rep101, f1 oriCm R , sacB , Rep101, f1 ori pUC18_01pUC18_01 lacZ M15 hsdR recA lacZ M15 hsdR recA pMESK01pMESK01 aroZ Eopt , aroY Eopt and catA Eopt 함유 pUC18_01 aroZ Eopt , aroY Eopt and catA Eopt Containing pUC18_01 pKOV- tyrR pKOV- tyrR tyrR UP & DOWN 함유 pKOVpKOV with tyrR UP & DOWN pKOV- ptsG pKOV- ptsG ptsG UP & DOWN 함유 pKOV pKOG with ptsG UP & DOWN pKOV- pykA pKOV- pykA pykA UP & DOWN 함유 pKOV pKOV with pykA UP & DOWN pKOV- pykF pKOV- pykF pykF UP & DOWN 함유 pKOV pKOV with pykF UP & DOWN

프라이머primer 서열번호SEQ ID NO: Sequence (5'→3')Sequence (5 '→ 3') TargetTarget ptsG_UP_F ptsG _UP_F 1010 TTACATATGCGGGATCCGGTAGGCGAACGTTTACATATGCGGGATCCGGTAGGCGAACGT AB2834AB2834 ptsG_UP_R ptsG _UP_R 1111 CATGGTTTTAACCATCTAGACATAGGCAACAACTCGAGCCAGCGCGGATACATGGTTTTAACCATCTAGACATAGGCAACAACTCGAGCCAGCGCGGATA AB2834AB2834 ptsG_DOWN_F ptsG _DOWN_F 1212 TCCACGCGATTCTAGAAGGCCTGGCATTCCCAAGCTTTATTCTTCTGGGGTCCACGCGATTCTAGAAGGCCTGGCATTCCCAAGCTTTATTCTTCTGGGG AB2834AB2834 ptsG_DOWN_R ptsG _DOWN_R 1313 GTCGACCTACGCCAGCTATAGTCGACCTACGCCAGCTATA AB2834AB2834 tyrR_UP_F tyrR _UP_F 1414 CAGGTGATGGATGTCGACAAACCACTACCGCAGGTGATGGATGTCGACAAACCACTACCG AB2834AB2834 tyrR_UP_R tyrR _UP_R 1515 TCGACAGAGAGCAAAGCTTCAGGCAACGCCTCGACAGAGAGCAAAGCTTCAGGCAACGCC AB2834AB2834 tyrR_DOWN_F tyrR _DOWN_F 1616 ACTGACACAACTCGAGGGTTCTGAGCTGCGACTGACACAACTCGAGGGTTCTGAGCTGCG AB2834AB2834 tyrR_DOWN_R tyrR _DOWN_R 1717 GCATCGCAACGCCTGGATCCGCCAATAGCTGCATCGCAACGCCTGGATCCGCCAATAGCT AB2834AB2834 pykA_UP_F pykA _UP_F 1818 CGTTTCTAGACACCGTCTCGAGGTTCAGTTCGACCGTTTCTAGACACCGTCTCGAGGTTCAGTTCGAC AB2834AB2834 pykA_UP_R pykA _UP_R 1919 CCGCCAAGGATCCGTGATCCCATTCTCCGCCAAGGATCCGTGATCCCATTCT AB2834AB2834 pykA_DOWN_F pykA _DOWN_F 2020 CAACCGCGCCGTCGACTTGCTCCAACCGCGCCGTCGACTTGCTC AB2834AB2834 pykA_DOWN_R pykA _DOWN_R 2121 CAAACGGCTTCTAGACGTTCAAGCTTGGCAACAACAAACGGCTTCTAGACGTTCAAGCTTGGCAACAA AB2834AB2834 pykF_UP_F pykF _UP_F 2222 GAATATCAGGATCCAGCTTACCGCCTCATCCTGAATATCAGGATCCAGCTTACCGCCTCATCCT AB2834AB2834 pykF_UP_R pykF _UP_R 2323 GCAACAAAGTCTAGACCTTGTTCGCAACCAGCAACAAAGTCTAGACCTTGTTCGCAACCA AB2834AB2834 pykF_DOWN_F pykF _DOWN_F 2424 GAACAGCCGTCACTAGTTCAACAATGACAACGAACAGCCGTCACTAGTTCAACAATGACAAC AB2834AB2834 pykF_DOWN_R pykF _DOWN_R 2525 ACAGCGTCGACTTGCGCGTCAGTTCAACAGCGTCGACTTGCGCGTCAGTTCA AB2834AB2834

유전자재조합Genetic recombination

유전자 불활성화가 상동 재조합 시스템에 사용되었다. 먼저, 전기천공법에 의해 결손벡터를 수용 균주에 삽입하고, 단일 재조합을 PCR 증폭에 의해 확인하였다. 이중(double) 재조합 균주들을 25 mg/L의 클로람페니콜 및 10 % 수크로스를 포함하는 LB 플레이트에 선택하고, PCR 증폭을 통해 확인하였다. 모든 제조된 플라스미드들은 시퀸싱 및 제한효소 분석에 의해 확인하였다.Gene inactivation was used in homologous recombination systems. First, the deletion vector was inserted into the receiving strain by electroporation, and single recombination was confirmed by PCR amplification. Double recombinant strains were selected on LB plates containing 25 mg / L chloramphenicol and 10% sucrose and confirmed by PCR amplification. All prepared plasmids were confirmed by sequencing and restriction enzyme analysis.

플라스크 배양 조건Flask Culture Conditions

뮤턴트 균주들을 스톡으로부터 분리하여 적절한 항생제들을 함유한 LB 배지에 넣고 37℃에서 배양하였다. 1차 성장 배양(1st seed culture)은 단일 콜로니와 함께 3 ml의 LB 배지에서 30℃에서 220 rpm으로 12시간 동안 배양함으로써 이루어졌다. 2차 성장 배양(2nd seed culture)은 5ml의 LB 배지에서 30℃에서 220 rpm으로 6시간 동안 배양함으로써 이루어졌다. 이후 본배양(main culture)은 50ml의 대장균 생산배지에서 30℃에서 220 rpm으로 24시간 동안 배양함으로써 이루어졌으며, 인덕션 용액 (15g/l 글리세롤, 10g/l 락토오스) 또는 비인덕션용액(no induction solution; 15g/l 글리세롤)이 첨가되었다.Mutant strains were isolated from stock and placed in LB medium containing appropriate antibiotics and incubated at 37 ° C. Primary growth culture (1 st seed culture) was made by incubating for 12 hours at 30 ℃ 220 rpm in 3 ml of LB medium with a single colony. Second growth culture (2 nd seed culture) was done by incubating for 6 hours at 30 ℃ 220 rpm in 5ml LB medium. Since the main culture (main culture) was made by incubation for 24 hours at 30 ℃ 220 rpm in 50ml E. coli production medium, induction solution (15g / l glycerol, 10g / l lactose) or non-induction solution (no induction solution; 15 g / l glycerol) was added.

상기 실험에서 상기 수용균주에 결손벡터를 삽입하여 타겟유전자를 결손시키는 방법은 하기와 같다. In the experiment, a method of deleting a target gene by inserting a deletion vector into the receiving strain is as follows.

-결손 벡터(플라스미드) 제작단계: 결손하고자 하는 유전자(tyrR, ptsG, pykA 및 pykF)의 up region과 down region을 대장균 자살벡터인 pKO V vector에 클로닝하고, 상기 유전자를 플라스미트 프렙 키트(plasmid prep kit)를 이용하여 3차 증류수에 녹인 순수한 DNA를 준비한다.Deletion vector (plasmid) production step: Cloning up and down regions of the genes (tyrR, ptsG, pykA and pykF) to be deleted in the pKO V vector, an E. coli suicide vector, and copying the gene into a plasmid prep kit kit) to prepare pure DNA dissolved in tertiary distilled water.

-형질전환 단계: 준비한 결손 벡터를 원하는 균주에 도입하기 위해 균주를 OD600에서 0.8과 1사이의 균주를 취하여 10% 글리세롤를 이용하여 배지를 제거한다. 10% 글리세롤에 현탁한 세포 50μl에 준비한 결손 벡터 DNA 2μl를 섞어서 BioRad Micro Pulsar의 기계와 2mm 간격의 큐벳(Cuvette)을 이용해 전기천공법을 수행한다. 상기 세포에 LB 배지를 1ml을 첨가한 후 30℃에서 한시간 배양하고, 이를 클로람페니콜이 첨가된 LB 플레이트에 도말한 후 30℃에서 배양한 후 형질전환체를 선별한다.Transformation Step: In order to introduce the prepared deletion vector into the desired strain, the strain is taken between OD 600 and 0.8 and 1, and the medium is removed using 10% glycerol. 50 μl of cells suspended in 10% glycerol were mixed with 2 μl of the defective vector DNA, and electroporation was performed using a BioRad Micro Pulsar machine and a cuvet of 2 mm intervals. After 1 ml of LB medium was added to the cells, the cells were incubated at 30 ° C. for one hour, plated on LB plates containing chloramphenicol, and then cultured at 30 ° C., and transformants were selected.

-단일 재조합(single recombination) 유도 단계: 형질전환체에서 단일 재조합을 유도하기 위해서 37℃로 온도를 올려준 후 클로람페니콜이 첨가된 LB 배지에 배양한 후 클로람페니콜이 첨가된 LB 플레이트에 도말한 후 37℃에서 키워 크로모좀에 단일 재조합되지 않은 균주들을 제거한다.Single recombination induction step: To induce single recombination in transformants, the temperature was raised to 37 ° C., incubated in chloramphenicol-added LB medium, and then plated on chloramphenicol-added LB plates, followed by 37 ° C. Remove single unrecombinant strains on chromosomes grown in.

-이중 재조합(Double recombination) 유도 단계: 단일 재조합된 균주를 항생제가 첨가되지 않은 LB 배지 37℃에서 배양하여 이중 재조합, 즉 유전자의 결손을 유도한다. 배양된 균주들을 10% 수크로스가 들어간 LB 플레이트에 도말하여 플레이트가 제거되고 유전자가 결손된 균주를 선별한다.Double recombination induction step: A single recombinant strain is incubated in 37 ° C. LB medium without antibiotics to induce double recombination, ie gene deletion. The cultured strains are plated on LB plates containing 10% sucrose to select strains from which the plates are removed and whose genes are missing.

[시험예 1] [Test Example 1]

상기 제조예에서 제조한 재조합대장균들의 생산곡선 및 대사산물인 DHS 생산량을 분석하였다.The production curve and the metabolite DHS production of the recombinant E. coli prepared in Preparation Example were analyzed.

구체적으로, 채취한 배양액 1㎖을 6,000xg로 5분 원심분리하여 세포를 분리하여 상등액을 0.2㎛ 멤브레인 필터에 여과하였다. 세포성장은 600nm에서 흡광도(OD600)를 측정하여 모니터링하였으며, 배양배지는 탈이온수로 희석하였다(1:10). 생합성된 DHS는 HPLC(고속액체크로마토그래피)로 분리-분석되었으며, 사용한 컬럼은 Aminex HPX-87H(300 x 7.8 mm; 9 mm Bio-rad), 이동상은 5mM H2SO4, 분석온도는 65℃에서 수행되었으며, 상기 컬럼은 0.6ml/min의 유속으로 등용매용리되었다. 상기와 같은 조건에서, UV 검출은 DHS (236 nm), PCA (259 nm) 및 CCM (262 nm)에서 수행하였다. 정량분석을 위해 사용한 표준(standard) (DHS, PCA, Catechol, CCM: Sigma)는 각각 증류수에 녹여 0.25㎛ 멤브레인에 여과하여 사용하였다.Specifically, the cells were separated by centrifuging 1 ml of the collected culture solution at 6,000 × g for 5 minutes and the supernatant was filtered through a 0.2 μm membrane filter. Cell growth was monitored by measuring absorbance (OD 600 ) at 600 nm, and the culture medium was diluted with deionized water (1:10). Biosynthesized DHS was separated and analyzed by HPLC (High Performance Liquid Chromatography), the column used was Aminex HPX-87H (300 x 7.8 mm; 9 mm Bio-rad), the mobile phase was 5 mM H 2 SO 4 , the analytical temperature was 65 ° C. The column was subjected to isocratic elution at a flow rate of 0.6 ml / min. Under these conditions, UV detection was performed in DHS (236 nm), PCA (259 nm) and CCM (262 nm). Standards used for quantitative analysis (DHS, PCA, Catechol, CCM: Sigma) were each dissolved in distilled water and filtered through a 0.25 μm membrane.

E. coli AB2834에서 tyrR 유전자를 제거한 대장균은 E. coli AB2834Δ aroEtyrR 유전자 양쪽에 상동 아르마딜로(homologue arm)을 PCR을 통해 확보한 후 상동 재조합 방법을 이용하여 aroE 유전자와 tyrR 유전자가 불활성화된 균주인 AB2834△aroE△tyrR (△ER ) mutant를 제조하였다. 이를 E. coli AB2834 aroE 와 비교하였을 때, DHS 생산량이 약 4배 정도 증가하여 약 4.0 g/L가 생합성됨을 확인할 수 있었다(도 2). 이는 대사경로의 최적화가 DHS를 고생산하는 것에 영향을 줄 수 있음을 의미한다.E. coli tyrR remove the genes in E. coli AB2834 is E. coli AB2834 Δ on either side of tyrR gene of the aroE it was prepared homologous armadillo (homologue arm) then obtained by PCR using the homologous recombination method aroE gene tyrR gene in the inactivated strain AB2834 △ aroE △ tyrR (△ ER ) mutant. This is E. coli AB2834 aroE Compared with, it was confirmed that the DHS production increased by about 4 times about 4.0 g / L biosynthesis (Fig. 2). This means that optimization of metabolic pathways can affect high production of DHS.

상기 AB2834 aroE tyrR (△ER) 재조합 균주에서 ptsG 유전자를 불활성화한 결과, AB2834 aroE tyrR (△ER) 재조합 균주보다 ptsG 유전자가 불활성화된 AB2834△aroE△tyrR△ptsG mutant가 약 1.6배 DHS의 생산량이 증가하여 6.3 g/L가 생합성 되는 것을 확인할 수 있었다(도 3). 또한, aroE 유전자 결손에 추가하여 총 4개의 유전자들을 불활성화시킨 AB2834 aroE tyrR ptsG pykA pykF ( ERGAF) 재조합 균주는 기존 균주인 AB2834에 비해 DHS 생산량이 약 5배 가량 증가한 것을 확인할 수 있었다(도 3). 이는 앞서 방향족 아미노산 생합성경로를 분석하여 예측한 대로 DHS로 가는 경로 외에 다른 경로에 관여하는 유전자들의 활성을 불활성시킴으로서 미생물 내에 DHS를 더 많이 축적할 수 있음을 의미한다. The AB2834 aroE tyrR (△ ER) After a inactivate the ptsG gene in the recombinant strain, AB2834 △ aroE △ tyrR (△ ER) AB2834 ΔaroEΔtyrRΔptsG mutant, in which ptsG gene was inactivated than recombinant strain, increased about 1.6 times the amount of DHS and biosynthesis was achieved (FIG. 3). Also, aroE In addition to gene defects AB2834 aroE tyrR ptsG pykA pykF ( ERGAF ) Recombinant strain was confirmed that the DHS production increased about 5 times compared to the existing strain AB2834 (Fig. 3). This means that more DHS can be accumulated in microorganisms by inactivating the activities of genes involved in pathways other than the pathway to DHS as predicted by analyzing the aromatic amino acid biosynthetic pathway.

또한, 상기 결과들을 종합하여, 5L 발효기에서의 배양에서 기본 균주인 AB2834에서 유전자들이 차례대로 제거될수록 세포 성장에 어떠한 영향을 주는지를 알 수 있는 각 재조합 균주들의 균체량(dry cell weight)을 도 4에 도시하였고, 도 5는 시간에 따른 뮤턴트들의 DHS 생산량을 나타내었다. In addition, the results are summarized in Figure 4 shows the dry cell weight of each of the recombinant strains that can be seen how the effect on the cell growth as the genes are sequentially removed from the AB2834, the primary strain in culture in a 5L fermenter 5 shows the DHS production of mutants over time.

E. coli AB2834 aroE tyrR 균주로 PB4-MD5배지에서 초기당을 모두 소모한 시간인 배양 17시간부터 feeding medium (글루코스, 무기질, 질소원인 효모 추출물)을 공급하였다. 그 결과 OD 값은 63, 건조 세포 중량(dry cell weight)은 42 g/L를 나타냈다. 또한 유기산은 생성되지 않았으며, DHS는 72시간에 최대 45g/L가 생산되었다(도 4 및 도 5 참조). E. coli AB2834 aroE tyrR strain was supplied with a feeding medium (glucose, mineral, nitrogen source yeast extract) from 17 hours of incubation, the time spent all the initial sugar in PB4-MD5 medium. As a result, the OD value was 63 and the dry cell weight was 42 g / L. In addition, no organic acid was produced, and DHS produced up to 45 g / L at 72 hours (see FIGS. 4 and 5).

E. coli AB2834 aroE tyrR ptsG 균주로 PB4-MD5배지에서 초기당을 모두 소모한 시간인 배양 26시간부터 feeding medium (글루코스, 무기질, 질소원인 효모 추출물)을 공급하였다. 그 결과 OD 값은 51, 건조 세포 중량(dry cell weight)은 37 g/L를 나타냈다. 또한 유기산은 생성되지 않았으며, DHS는 120 시간에 최대 74 g/L가 생산되었다(도 4 및 도 5 참조). E. coli AB2834 aroE tyrR ptsG strain was fed to the feeding medium (glucose, minerals, nitrogen source yeast extract) from 26 hours of incubation of the initial sugar consumption in PB4-MD5 medium. As a result, the OD value was 51 and the dry cell weight was 37 g / L. In addition, no organic acid was produced, and DHS produced up to 74 g / L in 120 hours (see FIGS. 4 and 5).

E. coli AB2834 aroE tyrR ptsG pykA 균주로 PB4-MD5배지에서 초기당을 모두 소모한 시간인 배양 26 시간부터 feeding medium (글루코스, 무기질, 질소원인 효모 추출물)을 공급하였다. 그 결과 OD 값은 46, 건조 세포 중량(dry cell weight)은 36 g/L를 나타냈다. 또한 유기산은 생성되지 않았으며, DHS는 120 시간에 최대 81 g/L가 생산되었다(도 4 및 도 5 참조). E. coli AB2834 aroE tyrR ptsG pykA strain was fed to the feeding medium (glucose, minerals, nitrogen source yeast extract) from 26 hours of incubation time of the initial sugar consumption in PB4-MD5 medium. As a result, the OD value was 46 and the dry cell weight was 36 g / L. In addition, no organic acid was produced, and DHS produced up to 81 g / L at 120 hours (see FIGS. 4 and 5).

E. coli AB2834 aroE tyrR ptsG pykA pykF 균주로 PB4-MD5배지 medium에서 초기당을 모두 소모한 시간인 배양 26 시간부터 feeding medium (글루코스, 무기질, 질소원인 효모 추출물)을 공급하였다. 그 결과 OD 값은 40, 건조 세포 중량(dry cell weight)은 32 g/L를 나타냈다. 또한 유기산은 생성되지 않았으며, DHS는 96 시간에 최대 74 g/L가 생산되었다(도 4 및 도 5 참조). E. coli AB2834 aroE tyrR ptsG pykA pykF strain was supplied with a feeding medium ( yield glucose, minerals, nitrogen source yeast extract) from 26 hours of incubation of the initial sugar consumption in PB4-MD5 medium medium. As a result, the OD value was 40 and the dry cell weight was 32 g / L. In addition, no organic acid was produced, and DHS produced up to 74 g / L in 96 hours (see FIGS. 4 and 5).

종합적으로 관찰해 보았을 때 상기 재조합 균주들에서 유전자가 하나씩 불활성화 될수록 균체량이 낮아지는 경향을 보이며, DHS 생산에 있어서는 유전자 결손이 가장 적은 AB2834 aroE tyrR 균주의 DHS 생산량이 대략 45g/L로 가장 낮았으며 추가적으로 ptsG , △ pykA , △ pykF 유전자가 차례대로 불활성화된 균주의 DHS의 생산량이 대략 2배 정도 향상되어 74 ~ 81 g/L의 DHS를 생산하는 것을 확인할 수 있었다. Overall, when the genes are inactivated one by one in the recombinant strains, the cell weight tends to be lower, and in DHS production, the DHS production of AB2834 Δ aroE tyrR strain, which has the least gene defect, is approximately 45 g / L. In addition , the production of DHS of the strains in which the ptsG , △ pykA , and △ pykF genes were sequentially inactivated was approximately doubled to produce 74-81 g / L of DHS.

[시험예 2] [Test Example 2]

상기 제조예에서 제조한 재조합대장균들의 생산곡선 및 대사산물인 시스,시스-뮤코닉산 생산량을 상기 [시험예 1]과 동일한 방법으로 분석하였다. 이때, 상기 일 실시예인 AB2834 aroE tyrR ptsG pykA pykF( ERGAF) 재조합 균주에 CCM을 생산하기 위해 대장균 코돈에 맞춰서 합성된 3개의 외래유전자를 도입한(pMESK01) 유전자재조합 대장균을 배양하였다. 구체적으로, 각각의 3개의 외래유전자 앞에 RBS를 각각 따로 달아주어 단백질이 발현되기 좀 더 수월하게 해주었고, 첫번째 외래유전자의 RBS 앞에 lac promoter을 이용하여 하나의 오페론 시스템으로 구축하였다. 3개의 외래유전자를 하나의 프로모터를 이용해 AB2834 aroE tyrR ptsG △pykA△pykF(△ERGAF) 재조합 균주에 도입하였다. 상기 제조예에서 제조한 재조합대장균(AB2834aroEtyrRptsGpykApykF/pMESK1(ERGAF/pM1)mutant)을 발효기에서 배양하여 균주의 배양특성 및 뮤코닉산 생산량을 분석하였다. The production curve of the recombinant Escherichia coli prepared in the preparation example and the production of cis, cis-muconic acid, which are metabolites, were analyzed in the same manner as in [Test Example 1]. At this time, AB2834 aroE tyrR ptsG pykA pykF ( ERGAF ) In order to produce CCM in recombinant strains, the recombinant E. coli (pMESK01), which introduced three foreign genes synthesized according to the E. coli codon, was cultured. Specifically, RBS was added to each of the three foreign genes separately to make it easier to express the protein, and a single operon system was constructed using the lac promoter in front of the RBS of the first foreign gene. Three foreign genes using one promoter AB2834 aroE tyrR ptsG △ pykA △ pykF ( △ ERGAF ) It was introduced into the recombinant strain. Recombinant Escherichia coli (AB2834 aroEtyrRptsGpykApykF / pMESK1 ( ERGAF / pM1 ) mutant) prepared in the above preparation was cultured in a fermenter to analyze the culture characteristics and muconic acid production of the strain.

구체적으로, 발효기배양의 1차 성장배양으로서 스톡(stock)으로부터 분리하여 앰피실린(Ampicillin) 100 mg/L 및 10g/L 포도당을 포함하는 LB배지(트립톤 10 g/L, 효모 추출물 5 g/L, NaCl 5 g/L, 글루코스 10 g/L) 5ml에 생산균주의 단일 콜로니를 접종하여 37℃, 220rpm으로 회전진탕기에서 하루 동안(24hr) 배양하였다. 그 다음, 앰피실린 100 mg/L 및 10g/L 포도당을 포함하는 LB배지 50ml을 250ml 배플플라스크에 첨가하고 상기 1차 성장배양액 1%를 접종하여 220rpm, 30℃에서 6시간 진탕배양시켜 2차 성장배양을 실시하였다. 뮤코닉산 생산을 위한 5L 발효기 본배양으로는 앰피실린 100 mg/L이 포함된 생산배지 3L를 준비하여 발효기에 첨가하고 상기 2차 성장배양액을 1% 접종하여 450~950rpm, 1vvm, 30℃에서 E.coli 생산균주를 배양하여 뮤코닉산을 생산하였다. 배양시작 후 배지의 글루코스를 모두 소모하는 시점에서 0.1mM IPTG로 인덕션(induction)을 하여 뮤코닉산이 생산되도록 하였으며, 초기 생산배지에 첨가된 글루코스의 농도가 5g/L 이하로 떨어지는 시점에서 피딩(feeding) 배지를 공급하고, 공급되는 글루코스의 농도가 일정한 농도(2~5g/L)로 유지되도록 유입 펌프를 이용하여 지속적으로 공급해 주었다. Specifically, LB medium containing 100 mg / L Ampicillin and 10 g / L glucose, isolated from stock as the primary growth culture of fermenter culture (Tryptone 10 g / L, yeast extract 5 g / L, NaCl 5 g / L, glucose 10 g / L) was inoculated with a single colony of the production strain was incubated for one day (24hr) in a rotary shaker at 37 ℃, 220rpm. Then, 50 ml of LB medium containing 100 mg / L ampicillin and 10 g / L glucose was added to a 250 ml baffle flask and inoculated with 1% of the first growth culture medium, followed by shaking culture at 220 rpm for 30 hours at 30 ° C. for 2 nd growth. The culture was carried out. 5L fermenter for producing muconic acid As a main culture, prepare 3L of production medium containing 100 mg / L of ampicillin, add it to the fermenter, and inoculate 1% of the secondary growth culture solution at 450 ~ 950rpm, 1vvm, and 30 ℃. E. coli production strains were cultured to produce muconic acid. After incubation, the glucose in the medium was consumed to induce muconic acid by induction with 0.1mM IPTG, and feeding was performed when the concentration of glucose added to the initial production medium dropped below 5 g / L. ) The medium was supplied and continuously supplied using an inflow pump so that the concentration of glucose supplied was maintained at a constant concentration (2-5 g / L).

그 결과, 도 6에 나타난 바와 같이, E. coli AB2834 aroE tyrR ptsG △pykA△pykF/M1 균주로 PB4-MD5배지 에서 초기당을 모두 소모한 시간인 배양 26 시간부터 feeding medium (글루코스, 무기질, 질소원인 효무 추출물)을 공급함과 동시에 0.1 mM IPTG를 인덕션한 결과, OD 값은 33, 건조 세포 중량(dry cell weight)은 25 g/L를 나타냈다. 또한 유기산은 생성되지 않았으며, 중간대사산물인 DHS, PCA, 카테콜(catechol)도 쌓이지 않았다. 뮤코닉산은 120 시간에 최대 42.2 g/L가 생산되었다.As a result, as shown in Figure 6, E. coli AB2834 aroE tyrR ptsG △ pykA △ pykF / M1 strain 0.1 mM at the same time supplying the feeding medium (glucose, minerals, nitrogen source yeast extract) from 26 hours of incubation of the initial sugar consumption in PB4-MD5 medium Induction of IPTG showed an OD value of 33 and a dry cell weight of 25 g / L. In addition, no organic acid was produced and no intermediate metabolites DHS, PCA, and catechol were accumulated. Muconic acid produced up to 42.2 g / L in 120 hours.

한국미생물보존센터(국외)Korea Microorganism Conservation Center (overseas) KCCM11922PKCCM11922P 2016102820161028 한국미생물보존센터(국외)Korea Microorganism Conservation Center (overseas) KCCM11882PKCCM11882P 2016090120160901

<110> STR biotech <120> Microorganism for producing muconic acid precursor and method for manufacturing thereof <130> 13p556ind <160> 25 <170> KopatentIn 2.0 <210> 1 <211> 1542 <212> DNA <213> Artificial Sequence <220> <223> tyrR coding DNA <400> 1 atgcgtctgg aagtcttttg tgaagaccga ctcggtctga cccgcgaatt actcgatcta 60 ctcgtgctaa gaggcattga tttacgcggt attgagattg atcccattgg gcgaatctac 120 ctcaattttg ctgaactgga gtttgagagt ttcagcagtc tgatggccga aatacgccgt 180 attgcgggtg ttaccgatgt gcgtactgtc ccgtggatgc cttccgaacg tgagcatctg 240 gcgttgagcg cgttactgga ggcgttgcct gaacctgtgc tctctgtcga tatgaaaagc 300 aaagtggata tggcgaaccc ggcgagctgt cagctttttg ggcaaaaatt ggatcgcctg 360 cgcaaccata ccgccgcaca attgattaac ggctttaatt ttttacgttg gctggaaagc 420 gaaccgcaag attcgcataa cgagcatgtc gttattaatg ggcagaattt cctgatggag 480 attacgcctg tttatcttca ggatgaaaat gatcaacacg tcctgaccgg tgcggtggtg 540 atgttgcgat caacgattcg tatgggccgc cagttgcaaa atgtcgccgc ccaggacgtc 600 agcgccttca gtcaaattgt cgccgtcagc ccgaaaatga agcatgttgt cgaacaggcg 660 cagaaactgg cgatgctaag cgcgccgctg ctgattacgg gtgacacagg tacaggtaaa 720 gatctctttg cctacgcctg ccatcaggca agccccagag cgggcaaacc ttacctggcg 780 ctgaactgtg cgtctatacc ggaagatgcg gtcgagagtg aactgtttgg tcatgctccg 840 gaagggaaga aaggattctt tgagcaggcg aacggtggtt cggtgctgtt ggatgaaata 900 ggggaaatgt caccacggat gcaggcgaaa ttactgcgtt tccttaatga tggcactttc 960 cgtcgggttg gcgaagacca tgaggtgcat gtcgatgtgc gggtgatttg cgctacgcag 1020 aagaatctgg tcgaactggt gcaaaaaggc atgttccgtg aagatctcta ttatcgtctg 1080 aacgtgttga cgctcaatct gccgccgcta cgtgactgtc cgcaggacat catgccgtta 1140 actgagctgt tcgtcgcccg ctttgccgac gagcagggcg tgccgcgtcc gaaactggcc 1200 gctgacctga atactgtact tacgcgttat gcgtggccgg gaaatgtgcg gcagttaaag 1260 aacgctatct atcgcgcact gacacaactg gacggttatg agctgcgtcc acaggatatt 1320 ttgttgccgg attatgacgc cgcaacggta gccgtgggcg aagatgcgat ggaaggttcg 1380 ctggacgaaa tcaccagccg ttttgaacgc tcggtattaa cccagcttta tcgcaattat 1440 cccagcacgc gcaaactggc aaaacgtctc ggcgtttcac ataccgcgat tgccaataag 1500 ttgcgggaat atggtctgag tcagaagaag aacgaagagt aa 1542 <210> 2 <211> 1434 <212> DNA <213> Artificial Sequence <220> <223> ptsG coding DNA <400> 2 atgtttaaga atgcatttgc taacctgcaa aaggtcggta aatcgctgat gctgccggta 60 tccgtactgc ctatcgcagg tattctgctg ggcgtcggtt ccgcgaattt cagctggctg 120 cccgccgttg tatcgcatgt tatggcagaa gcaggcggtt ccgtctttgc aaacatgcca 180 ctgatttttg cgatcggtgt cgccctcggc tttaccaata acgatggcgt atccgcgctg 240 gccgcagttg ttgcctatgg catcatggtt aaaaccatgg ccgtggttgc gccactggta 300 ctgcatttac ctgctgaaga aatcgcctct aaacacctgg cggatactgg cgtactcgga 360 gggattatct ccggtgcgat cgcagcgtac atgtttaacc gtttctaccg tattaagctg 420 cctgagtatc ttggcttctt tgccggtaaa cgctttgtgc cgatcatttc tggcctggct 480 gccatcttta ctggcgttgt gctgtccttc atttggccgc cgattggttc tgcaatccag 540 accttctctc agtgggctgc ttaccagaac ccggtagttg cgtttggcat ttacggtttc 600 atcgaacgtt gcctggtacc gtttggtctg caccacatct ggaacgtacc tttccagatg 660 cagattggtg aatacaccaa cgcagcaggt caggttttcc acggcgacat tccgcgttat 720 atggcgggtg acccgactgc gggtaaactg tctggtggct tcctgttcaa aatgtacggt 780 ctgccagctg ccgcaattgc tatctggcac tctgctaaac cagaaaaccg cgcgaaagtg 840 ggcggtatta tgatctccgc ggcgctgacc tcgttcctga ccggtatcac cgagccgatc 900 gagttctcct tcatgttcgt tgcgccgatc ctgtacatca tccacgcgat tctggcaggc 960 ctggcattcc caatctgtat tcttctgggg atgcgtgacg gtacgtcgtt ctcgcacggt 1020 ctgatcgact tcatcgttct gtctggtaac agcagcaaac tgtggctgtt cccgatcgtc 1080 ggtatcggtt atgcgattgt ttactacacc atcttccgcg tgctgattaa agcactggat 1140 ctgaaaacgc cgggtcgtga agacgcgact gaagatgcaa aagcgacagg taccagcgaa 1200 atggcaccgg ctctggttgc tgcatttggt ggtaaagaaa acattactaa cctcgacgca 1260 tgtattaccc gtctgcgcgt cagcgttgct gatgtgtcta aagtggatca ggccggcctg 1320 aagaaactgg gcgcagcggg cgtagtggtt gctggttctg gtgttcaggc gattttcggt 1380 actaaatccg ataacctgaa aaccgagatg gatgagtaca tccgtaacca ctaa 1434 <210> 3 <211> 1443 <212> DNA <213> Artificial Sequence <220> <223> pykA coding DNA <400> 3 atgtccagaa ggcttcgcag aacaaaaatc gttaccacgt taggcccagc aacagatcgc 60 gataataatc ttgaaaaagt tatcgcggcg ggtgccaacg ttgtacgtat gaacttttct 120 cacggctcgc ctgaagatca caaaatgcgc gcggataaag ttcgtgagat tgccgcaaaa 180 ctggggcgtc atgtggctat tctgggtgac ctccaggggc ccaaaatccg tgtatccacc 240 tttaaagaag gcaaagtttt cctcaatatt ggggataaat tcctgctcga cgccaacctg 300 ggtaaaggtg aaggcgacaa agaaaaagtc ggtatcgact acaaaggcct gcctgctgac 360 gtcgtgcctg gtgacatcct gctgctggac gatggtcgcg tccagttaaa agtactggaa 420 gttcagggca tgaaagtgtt caccgaagtc accgtcggtg gtcccctctc caacaataaa 480 ggtatcaaca aacttggcgg cggtttgtcg gctgaagcgc tgaccgaaaa agacaaagca 540 gacattaaga ctgcggcgtt gattggcgta gattacctgg ctgtctcctt cccacgctgt 600 ggcgaagatc tgaactatgc ccgtcgcctg gcacgcgatg caggatgtga tgcgaaaatt 660 gttgccaagg ttgaacgtgc ggaagccgtt tgcagccagg atgcaatgga tgacatcatc 720 ctcgcctctg acgtggtaat ggttgcacgt ggcgacctcg gtgtggaaat tggcgacccg 780 gaactggtcg gcattcagaa agcgttgatc cgtcgtgcgc gtcagctaaa ccgagcggta 840 atcacggcga cccagatgat ggagtcaatg attactaacc cgatgccgac gcgtgcagaa 900 gtcatggacg tagcaaacgc cgttctggat ggtactgacg ctgtgatgct gtctgcagaa 960 actgccgctg ggcagtatcc gtcagaaacc gttgcagcca tggcgcgcgt ttgcctgggt 1020 gcggaaaaaa tcccgagcat caacgtttct aaacaccgtc tggacgttca gttcgacaat 1080 gtggaagaag ctattgccat gtcagcaatg tacgcagcta accacctgaa aggcgttacg 1140 gcgatcatca ccatgaccga atcgggtcgt accgcgctga tgacctcccg tatcagctct 1200 ggtctgccaa ttttcgccat gtcgcgccat gaacgtacgc tgaacctgac tgctctctat 1260 cgtggcgtta cgccggtgca ctttgatagc gctaatgacg gcgtagcagc tgccagcgaa 1320 gcggttaatc tgctgcgcga taaaggttac ttgatgtctg gtgacctggt gattgtcacc 1380 cagggcgacg tgatgagtac cgtgggttct actaatacca cgcgtatttt aacggtagag 1440 taa 1443 <210> 4 <211> 1413 <212> DNA <213> Artificial Sequence <220> <223> pykF coding DNA <400> 4 atgaaaaaga ccaaaattgt ttgcaccatc ggaccgaaaa ccgaatctga agagatgtta 60 gctaaaatgc tggacgctgg catgaacgtt atgcgtctga acttctctca tggtgactat 120 gcagaacacg gtcagcgcat tcagaatctg cgcaacgtga tgagcaaaac tggtaaaacc 180 gccgctatcc tgcttgatac caaaggtccg gaaatccgca ccatgaaact ggaaggcggt 240 aacgacgttt ctctgaaagc tggtcagacc tttactttca ccactgataa atctgttatc 300 ggcaacagcg aaatggttgc ggtaacgtat gaaggtttca ctactgacct gtctgttggc 360 aacaccgtac tggttgacga tggtctgatc ggtatggaag ttaccgccat tgaaggtaac 420 aaagttatct gtaaagtgct gaacaacggt gacctgggcg aaaacaaagg tgtgaacctg 480 cctggcgttt ccattgctct gccagcactg gctgaaaaag acaaacagga cctgatcttt 540 ggttgcgaac aaggcgtaga ctttgttgct gcttccttta ttcgtaagcg ttctgacgtt 600 atcgaaatcc gtgagcacct gaaagcgcac ggcggcgaaa acatccacat catctccaaa 660 atcgaaaacc aggaaggcct caacaacttc gacgaaatcc tcgaagcctc tgacggcatc 720 atggttgcgc gtggcgacct gggtgtagaa atcccggtag aagaagttat cttcgcccag 780 aagatgatga tcgaaaaatg tatccgtgca cgtaaagtcg ttatcactgc gacccagatg 840 ctggattcca tgatcaaaaa cccacgcccg actcgcgcag aagccggtga cgttgcaaac 900 gccatcctcg acggtactga cgcagtgatg ctgtctggtg aatccgcaaa aggtaaatac 960 ccgctggaag cggtttctat catggcgacc atctgcgaac gtaccgaccg cgtgatgaac 1020 agccgtctcg agttcaacaa tgacaaccgt aaactgcgca ttaccgaagc ggtatgccgt 1080 ggtgccgttg aaactgctga aaaactggat gctccgctga tcgtggttgc tactcagggc 1140 ggtaaatctg ctcgcgcagt acgtaaatac ttcccggatg ccaccatcct ggcactgacc 1200 accaacgaaa aaacggctca tcagttggta ctgagcaaag gcgttgtgcc gcagcttgtt 1260 aaagagatca cttctactga tgatttctac cgtctgggta aagaactggc tctgcagagc 1320 ggtctggcac acaaaggtga cgttgtagtt atggtttctg gtgcactggt accgagcggc 1380 actactaaca ccgcatctgt tcacgtcctg taa 1413 <210> 5 <211> 819 <212> DNA <213> Artificial Sequence <220> <223> aroE coding DNA <400> 5 atggaaacct atgctgtttt tggtaatccg atagcccaca gcaaatcgcc attcattcat 60 cagcaatttg ctcagcaact gaatattgaa catccctatg ggcgcgtgtt ggcacccatc 120 aatgatttca tcaacacact gaacgctttc tttagtgctg gtggtaaagg tgcgaatgtg 180 acggtgcctt ttaaagaaga ggcttttgcc agagcggatg agcttactga acgggcagcg 240 ttggctggtg ctgttaatac cctcatgcgg ttagaagatg gacgcctgct gggtgacaat 300 accgatggtg taggcttgtt aagcgatctg gaacgtctgt cttttatccg ccctggttta 360 cgtattctgc ttatcggcgc tggtggagca tctcgcggcg tactactgcc actcctttcc 420 ctggactgtg cggtgacaat aactaatcgg acggtatccc gcgcggaaga gttggctaaa 480 ttgtttgcgc acactggcag tattcaggcg ttgagtatgg acgaactgga aggtcatgag 540 tttgatctca ttattaatgc aacatccagt ggcatcagtg gtgatattcc ggcgatcccg 600 tcatcgctca ttcatccagg catttattgc tatgacatgt tctatcagaa aggaaaaact 660 ccttttctgg catggtgtga gcagcgaggc tcaaagcgta atgctgatgg tttaggaatg 720 ctggtggcac aggcggctca tgcctttctt ctctggcacg gtgttctgcc tgacgtagaa 780 ccagttataa agcaattgca ggaggaattg tccgcgtga 819 <210> 6 <211> 843 <212> DNA <213> Artificial Sequence <220> <223> optimized asbF coding DNA <400> 6 atgaaatact ccctgtgcac tattagcttc cgtcatcaac tgatttcttt cactgacatc 60 gttcagttcg cgtacgaaaa cggttttgaa ggcatcgagc tgtggggtac tcatgcccag 120 aacctgtaca tgcaggagcg tgaaaccacc gagcgtgagc tgaacttcct gaaagataag 180 aacctggaaa tcaccatgat ctctgactac ctggatattt ccctgtccgc cgacttcgag 240 aaaaccattg aaaaatccga acagctggtg gtgctggcaa actggttcaa caccaacaag 300 atccgtacct ttgcgggcca gaaaggtagc aaggactttt ctgaacagga acgtaaagag 360 tacgtaaagc gcatccgtaa aatctgcgac gtttttgcac agcataacat gtacgtcctg 420 ctggaaactc atccgaacac cctgaccgac actctgccta gcaccattga actgctggaa 480 gaagtgaacc atccaaacct gaaaatcaac ctggatttcc tgcatatttg ggaaagcggc 540 gcgaatccaa tcgactcttt ccatcgcctg aaaccgtgga ctctgcacta ccatttcaaa 600 aacatctcct ccgcggatta cctgcacgtg ttcgaaccga ataacgtcta cgccgctgca 660 ggctcccgta ttggtatggt tccactgttt gagggcatcg ttaactacga cgaaatcatt 720 caagaagttc gtggcaccga cctgtttgct tctctggaat ggttcggcca caactctaaa 780 gagatcctga aggaagaaat gaaagtgctg atcaaccgta aactggaagt ggtgacgagc 840 tga 843 <210> 7 <211> 1509 <212> DNA <213> Artificial Sequence <220> <223> optimized aroY coding DNA <400> 7 atgactgcac caatccagga cctgcgcgac gcaatcgctc tgctgcaaca gcacgataac 60 cagtatctgg aaaccgatca cccagttgac ccgaatgcgg agctggcagg cgtctaccgt 120 catattggtg ccggtggcac tgttaaacgc ccgacccgca tcggcccagc aatgatgttt 180 aacaacatca aaggctaccc gcacagccgc atcctggtag gcatgcacgc ttctcgtcaa 240 cgtgcggcac tgctgctggg ctgtgaagca tctcagctgg ctctggaggt gggcaaggcc 300 gtcaaaaagc cggtggcgcc ggttgttgtt ccggcatctt ccgctccttg ccaggaacag 360 attttcctgg ccgatgatcc ggacttcgac ctgcgtacgc tgctgccggc tcacacgaac 420 actccgatcg acgcgggtcc gtttttctgc ctgggtctgg ctctggcgtc tgacccggtg 480 gatgcgagcc tgaccgacgt gaccatccac cgcctgtgcg ttcagggtcg tgacgaactg 540 agcatgttcc tggcagcagg tcgtcacatt gaagtattcc gccaaaaagc ggaagccgcc 600 ggtaaaccgc tgcctattac catcaacatg ggtctggacc cggcgatcta catcggcgct 660 tgctttgaag cacctacgac tccgttcggt tacaacgaac tgggtgtagc cggtgctctg 720 cgccagcgtc cggtggaact ggtacagggc gtgagcgtcc cagaaaaagc catcgcacgc 780 gctgaaatcg taatcgaagg cgaactgctg ccgggcgtcc gcgttcgtga agaccagcac 840 accaacagcg gtcacgcaat gcctgaattc ccgggctact gtggcggtgc caacccgtcc 900 ctgccggtta ttaaggttaa agctgttact atgcgtaaca acgcgattct gcagactctg 960 gtcggtccgg gtgaggaaca cacgaccctg gcgggcctgc cgactgaagc ctctatttgg 1020 aatgcggttg aagcagccat cccgggcttc ctgcagaatg tttacgctca taccgcgggt 1080 ggcggtaaat tcctgggtat cctgcaggtt aaaaagcgcc agccggcaga tgaaggtcgc 1140 caaggtcagg ctgccctgct ggcgctggct acctactctg aactgaaaaa catcattctg 1200 gttgacgaag atgtcgatat ctttgattcc gacgacatcc tgtgggctat gacgactcgt 1260 atgcagggcg atgtttctat caccaccatc ccgggcatcc gtggtcacca gctggacccg 1320 tcccagactc cggaatattc cccgagcatc cgcggcaacg gcatctcctg taaaaccatt 1380 ttcgactgca ccgttccgtg ggctctgaaa tcccacttcg agcgtgcgcc gtttgcggac 1440 gttgatccgc gtccgttcgc accggagtat ttcgctcgtc tggagaaaaa tcagggttcc 1500 gcgaaataa 1509 <210> 8 <211> 923 <212> DNA <213> Artificial Sequence <220> <223> optimized catA coding DNA <400> 8 atgaaccgtc agcagatcga cgcgctggtt aaacagatga acgtggatac cgctaagggc 60 gaagttgacg ctcgcgtaca gcagattgta gtacgtctgc tgggtgacct gttccaggca 120 atcgaagatc tggatattca gccgtctgaa gtgtggaaag gtctggagta tttcaccgat 180 gctggtcagg cgaacgaact gggtctgctg gcggccggtc tgggcctgga gcactatctg 240 gacctgcgtg cggatgaagc agatgcaaaa gcaggtgtga ccggtggtac tccgcgtacc 300 attgaaggtc cgctgtatgt tgcaggtgct ccggaaagcg ttggtttcgc gcgtatggat 360 gacggtactg aatctggtaa aatcgatact ctgatcattg aaggcaccgt caccgacacc 420 gacggtaata tcatcgaaaa cgctaaagta gaggtttggc acgcgaactc tctgggcaac 480 tattctttct ttgataaatc ccagtccgac ttcaacctgc gtcgtaccat tctgaccgat 540 gcggacggta aatatgttgc gctgacgacg atgccagtag gctatggctg tccgccggaa 600 ggtaccaccc aagcgctgct gaacaaactg ggtcgccacg gtaaccgtcc ttctcacgta 660 cactatttcg tgtctgctcc gggctaccgt aaactgacga cccaattcaa tatcgagggt 720 gacgaatacc tgtgggatga tttcgctttt gctacccgtg atggtctggt ggcgaccgcg 780 gtagacgtga ccgatccagc tgaaatccag cgtcgcggcc tggatcacgc ttttaaacac 840 atcaccttca acattgaact ggttaaagat gcagccgcgg cacctagcac tgaggtagaa 900 cgccgtcgtg cgtccgctta att 923 <210> 9 <211> 6 <212> DNA <213> Artificial Sequence <220> <223> ribosome binding site <400> 9 gaagga 6 <210> 10 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> ptsG_UP Forward primer <400> 10 ttacatatgc gggatccggt aggcgaacgt 30 <210> 11 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> ptsG_UP Reverse primer <400> 11 catggtttta accatctaga cataggcaac aactcgagcc agcgcggata 50 <210> 12 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> ptsG_DOWN_Forward primer <400> 12 tccacgcgat tctagaaggc ctggcattcc caagctttat tcttctgggg 50 <210> 13 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> ptsG_DOWN_Reverse primer <400> 13 gtcgacctac gccagctata 20 <210> 14 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> tyrR_UP_Forward primer <400> 14 caggtgatgg atgtcgacaa accactaccg 30 <210> 15 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> tyrR_UP_Reverse primer <400> 15 tcgacagaga gcaaagcttc aggcaacgcc 30 <210> 16 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> tyrR_Down_Forward primer <400> 16 actgacacaa ctcgagggtt ctgagctgcg 30 <210> 17 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> tyrR_Down_Reverse primer <400> 17 gcatcgcaac gcctggatcc gccaatagct 30 <210> 18 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> pykA_UP_Forward primer <400> 18 cgtttctaga caccgtctcg aggttcagtt cgac 34 <210> 19 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> pykA_UP_Reverse primer <400> 19 ccgccaagga tccgtgatcc cattct 26 <210> 20 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> pykA_Down_Forward primer <400> 20 caaccgcgcc gtcgacttgc tc 22 <210> 21 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> pykA_Down_Reverse primer <400> 21 caaacggctt ctagacgttc aagcttggca acaa 34 <210> 22 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> pykF_UP_Forward primer <400> 22 gaatatcagg atccagctta ccgcctcatc ct 32 <210> 23 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> pykF_UP_Reverse primer <400> 23 gcaacaaagt ctagaccttg ttcgcaacca 30 <210> 24 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> pykF_Down_Forward primer <400> 24 gaacagccgt cactagttca acaatgacaa c 31 <210> 25 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> pykF_Down_Reverse primer <400> 25 acagcgtcga cttgcgcgtc agttca 26 <110> STR biotech <120> Microorganism for producing muconic acid precursor and method for          manufacturing <130> 13p556ind <160> 25 <170> KopatentIn 2.0 <210> 1 <211> 1542 <212> DNA <213> Artificial Sequence <220> <223> tyrR coding DNA <400> 1 atgcgtctgg aagtcttttg tgaagaccga ctcggtctga cccgcgaatt actcgatcta 60 ctcgtgctaa gaggcattga tttacgcggt attgagattg atcccattgg gcgaatctac 120 ctcaattttg ctgaactgga gtttgagagt ttcagcagtc tgatggccga aatacgccgt 180 attgcgggtg ttaccgatgt gcgtactgtc ccgtggatgc cttccgaacg tgagcatctg 240 gcgttgagcg cgttactgga ggcgttgcct gaacctgtgc tctctgtcga tatgaaaagc 300 aaagtggata tggcgaaccc ggcgagctgt cagctttttg ggcaaaaatt ggatcgcctg 360 cgcaaccata ccgccgcaca attgattaac ggctttaatt ttttacgttg gctggaaagc 420 gaaccgcaag attcgcataa cgagcatgtc gttattaatg ggcagaattt cctgatggag 480 attacgcctg tttatcttca ggatgaaaat gatcaacacg tcctgaccgg tgcggtggtg 540 atgttgcgat caacgattcg tatgggccgc cagttgcaaa atgtcgccgc ccaggacgtc 600 agcgccttca gtcaaattgt cgccgtcagc ccgaaaatga agcatgttgt cgaacaggcg 660 cagaaactgg cgatgctaag cgcgccgctg ctgattacgg gtgacacagg tacaggtaaa 720 gatctctttg cctacgcctg ccatcaggca agccccagag cgggcaaacc ttacctggcg 780 ctgaactgtg cgtctatacc ggaagatgcg gtcgagagtg aactgtttgg tcatgctccg 840 gaagggaaga aaggattctt tgagcaggcg aacggtggtt cggtgctgtt ggatgaaata 900 ggggaaatgt caccacggat gcaggcgaaa ttactgcgtt tccttaatga tggcactttc 960 cgtcgggttg gcgaagacca tgaggtgcat gtcgatgtgc gggtgatttg cgctacgcag 1020 aagaatctgg tcgaactggt gcaaaaaggc atgttccgtg aagatctcta ttatcgtctg 1080 aacgtgttga cgctcaatct gccgccgcta cgtgactgtc cgcaggacat catgccgtta 1140 actgagctgt tcgtcgcccg ctttgccgac gagcagggcg tgccgcgtcc gaaactggcc 1200 gctgacctga atactgtact tacgcgttat gcgtggccgg gaaatgtgcg gcagttaaag 1260 aacgctatct atcgcgcact gacacaactg gacggttatg agctgcgtcc acaggatatt 1320 ttgttgccgg attatgacgc cgcaacggta gccgtgggcg aagatgcgat ggaaggttcg 1380 ctggacgaaa tcaccagccg ttttgaacgc tcggtattaa cccagcttta tcgcaattat 1440 cccagcacgc gcaaactggc aaaacgtctc ggcgtttcac ataccgcgat tgccaataag 1500 ttgcgggaat atggtctgag tcagaagaag aacgaagagt aa 1542 <210> 2 <211> 1434 <212> DNA <213> Artificial Sequence <220> P223G coding DNA <400> 2 atgtttaaga atgcatttgc taacctgcaa aaggtcggta aatcgctgat gctgccggta 60 tccgtactgc ctatcgcagg tattctgctg ggcgtcggtt ccgcgaattt cagctggctg 120 cccgccgttg tatcgcatgt tatggcagaa gcaggcggtt ccgtctttgc aaacatgcca 180 ctgatttttg cgatcggtgt cgccctcggc tttaccaata acgatggcgt atccgcgctg 240 gccgcagttg ttgcctatgg catcatggtt aaaaccatgg ccgtggttgc gccactggta 300 ctgcatttac ctgctgaaga aatcgcctct aaacacctgg cggatactgg cgtactcgga 360 gggattatct ccggtgcgat cgcagcgtac atgtttaacc gtttctaccg tattaagctg 420 cctgagtatc ttggcttctt tgccggtaaa cgctttgtgc cgatcatttc tggcctggct 480 gccatcttta ctggcgttgt gctgtccttc atttggccgc cgattggttc tgcaatccag 540 accttctctc agtgggctgc ttaccagaac ccggtagttg cgtttggcat ttacggtttc 600 atcgaacgtt gcctggtacc gtttggtctg caccacatct ggaacgtacc tttccagatg 660 cagattggtg aatacaccaa cgcagcaggt caggttttcc acggcgacat tccgcgttat 720 atggcgggtg acccgactgc gggtaaactg tctggtggct tcctgttcaa aatgtacggt 780 ctgccagctg ccgcaattgc tatctggcac tctgctaaac cagaaaaccg cgcgaaagtg 840 ggcggtatta tgatctccgc ggcgctgacc tcgttcctga ccggtatcac cgagccgatc 900 gagttctcct tcatgttcgt tgcgccgatc ctgtacatca tccacgcgat tctggcaggc 960 ctggcattcc caatctgtat tcttctgggg atgcgtgacg gtacgtcgtt ctcgcacggt 1020 ctgatcgact tcatcgttct gtctggtaac agcagcaaac tgtggctgtt cccgatcgtc 1080 ggtatcggtt atgcgattgt ttactacacc atcttccgcg tgctgattaa agcactggat 1140 ctgaaaacgc cgggtcgtga agacgcgact gaagatgcaa aagcgacagg taccagcgaa 1200 atggcaccgg ctctggttgc tgcatttggt ggtaaagaaa acattactaa cctcgacgca 1260 tgtattaccc gtctgcgcgt cagcgttgct gatgtgtcta aagtggatca ggccggcctg 1320 aagaaactgg gcgcagcggg cgtagtggtt gctggttctg gtgttcaggc gattttcggt 1380 actaaatccg ataacctgaa aaccgagatg gatgagtaca tccgtaacca ctaa 1434 <210> 3 <211> 1443 <212> DNA <213> Artificial Sequence <220> <223> pykA coding DNA <400> 3 atgtccagaa ggcttcgcag aacaaaaatc gttaccacgt taggcccagc aacagatcgc 60 gataataatc ttgaaaaagt tatcgcggcg ggtgccaacg ttgtacgtat gaacttttct 120 cacggctcgc ctgaagatca caaaatgcgc gcggataaag ttcgtgagat tgccgcaaaa 180 ctggggcgtc atgtggctat tctgggtgac ctccaggggc ccaaaatccg tgtatccacc 240 tttaaagaag gcaaagtttt cctcaatatt ggggataaat tcctgctcga cgccaacctg 300 ggtaaaggtg aaggcgacaa agaaaaagtc ggtatcgact acaaaggcct gcctgctgac 360 gtcgtgcctg gtgacatcct gctgctggac gatggtcgcg tccagttaaa agtactggaa 420 gttcagggca tgaaagtgtt caccgaagtc accgtcggtg gtcccctctc caacaataaa 480 ggtatcaaca aacttggcgg cggtttgtcg gctgaagcgc tgaccgaaaa agacaaagca 540 gacattaaga ctgcggcgtt gattggcgta gattacctgg ctgtctcctt cccacgctgt 600 ggcgaagatc tgaactatgc ccgtcgcctg gcacgcgatg caggatgtga tgcgaaaatt 660 gttgccaagg ttgaacgtgc ggaagccgtt tgcagccagg atgcaatgga tgacatcatc 720 ctcgcctctg acgtggtaat ggttgcacgt ggcgacctcg gtgtggaaat tggcgacccg 780 gaactggtcg gcattcagaa agcgttgatc cgtcgtgcgc gtcagctaaa ccgagcggta 840 atcacggcga cccagatgat ggagtcaatg attactaacc cgatgccgac gcgtgcagaa 900 gtcatggacg tagcaaacgc cgttctggat ggtactgacg ctgtgatgct gtctgcagaa 960 actgccgctg ggcagtatcc gtcagaaacc gttgcagcca tggcgcgcgt ttgcctgggt 1020 gcggaaaaaa tcccgagcat caacgtttct aaacaccgtc tggacgttca gttcgacaat 1080 gtggaagaag ctattgccat gtcagcaatg tacgcagcta accacctgaa aggcgttacg 1140 gcgatcatca ccatgaccga atcgggtcgt accgcgctga tgacctcccg tatcagctct 1200 ggtctgccaa ttttcgccat gtcgcgccat gaacgtacgc tgaacctgac tgctctctat 1260 cgtggcgtta cgccggtgca ctttgatagc gctaatgacg gcgtagcagc tgccagcgaa 1320 gcggttaatc tgctgcgcga taaaggttac ttgatgtctg gtgacctggt gattgtcacc 1380 cagggcgacg tgatgagtac cgtgggttct actaatacca cgcgtatttt aacggtagag 1440 taa 1443 <210> 4 <211> 1413 <212> DNA <213> Artificial Sequence <220> <223> pykF coding DNA <400> 4 atgaaaaaga ccaaaattgt ttgcaccatc ggaccgaaaa ccgaatctga agagatgtta 60 gctaaaatgc tggacgctgg catgaacgtt atgcgtctga acttctctca tggtgactat 120 gcagaacacg gtcagcgcat tcagaatctg cgcaacgtga tgagcaaaac tggtaaaacc 180 gccgctatcc tgcttgatac caaaggtccg gaaatccgca ccatgaaact ggaaggcggt 240 aacgacgttt ctctgaaagc tggtcagacc tttactttca ccactgataa atctgttatc 300 ggcaacagcg aaatggttgc ggtaacgtat gaaggtttca ctactgacct gtctgttggc 360 aacaccgtac tggttgacga tggtctgatc ggtatggaag ttaccgccat tgaaggtaac 420 aaagttatct gtaaagtgct gaacaacggt gacctgggcg aaaacaaagg tgtgaacctg 480 cctggcgttt ccattgctct gccagcactg gctgaaaaag acaaacagga cctgatcttt 540 ggttgcgaac aaggcgtaga ctttgttgct gcttccttta ttcgtaagcg ttctgacgtt 600 atcgaaatcc gtgagcacct gaaagcgcac ggcggcgaaa acatccacat catctccaaa 660 atcgaaaacc aggaaggcct caacaacttc gacgaaatcc tcgaagcctc tgacggcatc 720 atggttgcgc gtggcgacct gggtgtagaa atcccggtag aagaagttat cttcgcccag 780 aagatgatga tcgaaaaatg tatccgtgca cgtaaagtcg ttatcactgc gacccagatg 840 ctggattcca tgatcaaaaa cccacgcccg actcgcgcag aagccggtga cgttgcaaac 900 gccatcctcg acggtactga cgcagtgatg ctgtctggtg aatccgcaaa aggtaaatac 960 ccgctggaag cggtttctat catggcgacc atctgcgaac gtaccgaccg cgtgatgaac 1020 agccgtctcg agttcaacaa tgacaaccgt aaactgcgca ttaccgaagc ggtatgccgt 1080 ggtgccgttg aaactgctga aaaactggat gctccgctga tcgtggttgc tactcagggc 1140 ggtaaatctg ctcgcgcagt acgtaaatac ttcccggatg ccaccatcct ggcactgacc 1200 accaacgaaa aaacggctca tcagttggta ctgagcaaag gcgttgtgcc gcagcttgtt 1260 aaagagatca cttctactga tgatttctac cgtctgggta aagaactggc tctgcagagc 1320 ggtctggcac acaaaggtga cgttgtagtt atggtttctg gtgcactggt accgagcggc 1380 actactaaca ccgcatctgt tcacgtcctg taa 1413 <210> 5 <211> 819 <212> DNA <213> Artificial Sequence <220> <223> aroE coding DNA <400> 5 atggaaacct atgctgtttt tggtaatccg atagcccaca gcaaatcgcc attcattcat 60 cagcaatttg ctcagcaact gaatattgaa catccctatg ggcgcgtgtt ggcacccatc 120 aatgatttca tcaacacact gaacgctttc tttagtgctg gtggtaaagg tgcgaatgtg 180 acggtgcctt ttaaagaaga ggcttttgcc agagcggatg agcttactga acgggcagcg 240 ttggctggtg ctgttaatac cctcatgcgg ttagaagatg gacgcctgct gggtgacaat 300 accgatggtg taggcttgtt aagcgatctg gaacgtctgt cttttatccg ccctggttta 360 cgtattctgc ttatcggcgc tggtggagca tctcgcggcg tactactgcc actcctttcc 420 ctggactgtg cggtgacaat aactaatcgg acggtatccc gcgcggaaga gttggctaaa 480 ttgtttgcgc acactggcag tattcaggcg ttgagtatgg acgaactgga aggtcatgag 540 tttgatctca ttattaatgc aacatccagt ggcatcagtg gtgatattcc ggcgatcccg 600 tcatcgctca ttcatccagg catttattgc tatgacatgt tctatcagaa aggaaaaact 660 ccttttctgg catggtgtga gcagcgaggc tcaaagcgta atgctgatgg tttaggaatg 720 ctggtggcac aggcggctca tgcctttctt ctctggcacg gtgttctgcc tgacgtagaa 780 ccagttataa agcaattgca ggaggaattg tccgcgtga 819 <210> 6 <211> 843 <212> DNA <213> Artificial Sequence <220> <223> optimized asbF coding DNA <400> 6 atgaaatact ccctgtgcac tattagcttc cgtcatcaac tgatttcttt cactgacatc 60 gttcagttcg cgtacgaaaa cggttttgaa ggcatcgagc tgtggggtac tcatgcccag 120 aacctgtaca tgcaggagcg tgaaaccacc gagcgtgagc tgaacttcct gaaagataag 180 aacctggaaa tcaccatgat ctctgactac ctggatattt ccctgtccgc cgacttcgag 240 aaaaccattg aaaaatccga acagctggtg gtgctggcaa actggttcaa caccaacaag 300 atccgtacct ttgcgggcca gaaaggtagc aaggactttt ctgaacagga acgtaaagag 360 tacgtaaagc gcatccgtaa aatctgcgac gtttttgcac agcataacat gtacgtcctg 420 ctggaaactc atccgaacac cctgaccgac actctgccta gcaccattga actgctggaa 480 gaagtgaacc atccaaacct gaaaatcaac ctggatttcc tgcatatttg ggaaagcggc 540 gcgaatccaa tcgactcttt ccatcgcctg aaaccgtgga ctctgcacta ccatttcaaa 600 aacatctcct ccgcggatta cctgcacgtg ttcgaaccga ataacgtcta cgccgctgca 660 ggctcccgta ttggtatggt tccactgttt gagggcatcg ttaactacga cgaaatcatt 720 caagaagttc gtggcaccga cctgtttgct tctctggaat ggttcggcca caactctaaa 780 gagatcctga aggaagaaat gaaagtgctg atcaaccgta aactggaagt ggtgacgagc 840 tga 843 <210> 7 <211> 1509 <212> DNA <213> Artificial Sequence <220> <223> optimized aroY coding DNA <400> 7 atgactgcac caatccagga cctgcgcgac gcaatcgctc tgctgcaaca gcacgataac 60 cagtatctgg aaaccgatca cccagttgac ccgaatgcgg agctggcagg cgtctaccgt 120 catattggtg ccggtggcac tgttaaacgc ccgacccgca tcggcccagc aatgatgttt 180 aacaacatca aaggctaccc gcacagccgc atcctggtag gcatgcacgc ttctcgtcaa 240 cgtgcggcac tgctgctggg ctgtgaagca tctcagctgg ctctggaggt gggcaaggcc 300 gtcaaaaagc cggtggcgcc ggttgttgtt ccggcatctt ccgctccttg ccaggaacag 360 attttcctgg ccgatgatcc ggacttcgac ctgcgtacgc tgctgccggc tcacacgaac 420 actccgatcg acgcgggtcc gtttttctgc ctgggtctgg ctctggcgtc tgacccggtg 480 gatgcgagcc tgaccgacgt gaccatccac cgcctgtgcg ttcagggtcg tgacgaactg 540 agcatgttcc tggcagcagg tcgtcacatt gaagtattcc gccaaaaagc ggaagccgcc 600 ggtaaaccgc tgcctattac catcaacatg ggtctggacc cggcgatcta catcggcgct 660 tgctttgaag cacctacgac tccgttcggt tacaacgaac tgggtgtagc cggtgctctg 720 cgccagcgtc cggtggaact ggtacagggc gtgagcgtcc cagaaaaagc catcgcacgc 780 gctgaaatcg taatcgaagg cgaactgctg ccgggcgtcc gcgttcgtga agaccagcac 840 accaacagcg gtcacgcaat gcctgaattc ccgggctact gtggcggtgc caacccgtcc 900 ctgccggtta ttaaggttaa agctgttact atgcgtaaca acgcgattct gcagactctg 960 gtcggtccgg gtgaggaaca cacgaccctg gcgggcctgc cgactgaagc ctctatttgg 1020 aatgcggttg aagcagccat cccgggcttc ctgcagaatg tttacgctca taccgcgggt 1080 ggcggtaaat tcctgggtat cctgcaggtt aaaaagcgcc agccggcaga tgaaggtcgc 1140 caaggtcagg ctgccctgct ggcgctggct acctactctg aactgaaaaa catcattctg 1200 gttgacgaag atgtcgatat ctttgattcc gacgacatcc tgtgggctat gacgactcgt 1260 atgcagggcg atgtttctat caccaccatc ccgggcatcc gtggtcacca gctggacccg 1320 tcccagactc cggaatattc cccgagcatc cgcggcaacg gcatctcctg taaaaccatt 1380 ttcgactgca ccgttccgtg ggctctgaaa tcccacttcg agcgtgcgcc gtttgcggac 1440 gttgatccgc gtccgttcgc accggagtat ttcgctcgtc tggagaaaaa tcagggttcc 1500 gcgaaataa 1509 <210> 8 <211> 923 <212> DNA <213> Artificial Sequence <220> <223> optimized catA coding DNA <400> 8 atgaaccgtc agcagatcga cgcgctggtt aaacagatga acgtggatac cgctaagggc 60 gaagttgacg ctcgcgtaca gcagattgta gtacgtctgc tgggtgacct gttccaggca 120 atcgaagatc tggatattca gccgtctgaa gtgtggaaag gtctggagta tttcaccgat 180 gctggtcagg cgaacgaact gggtctgctg gcggccggtc tgggcctgga gcactatctg 240 gacctgcgtg cggatgaagc agatgcaaaa gcaggtgtga ccggtggtac tccgcgtacc 300 attgaaggtc cgctgtatgt tgcaggtgct ccggaaagcg ttggtttcgc gcgtatggat 360 gacggtactg aatctggtaa aatcgatact ctgatcattg aaggcaccgt caccgacacc 420 gacggtaata tcatcgaaaa cgctaaagta gaggtttggc acgcgaactc tctgggcaac 480 tattctttct ttgataaatc ccagtccgac ttcaacctgc gtcgtaccat tctgaccgat 540 gcggacggta aatatgttgc gctgacgacg atgccagtag gctatggctg tccgccggaa 600 ggtaccaccc aagcgctgct gaacaaactg ggtcgccacg gtaaccgtcc ttctcacgta 660 cactatttcg tgtctgctcc gggctaccgt aaactgacga cccaattcaa tatcgagggt 720 gacgaatacc tgtgggatga tttcgctttt gctacccgtg atggtctggt ggcgaccgcg 780 gtagacgtga ccgatccagc tgaaatccag cgtcgcggcc tggatcacgc ttttaaacac 840 atcaccttca acattgaact ggttaaagat gcagccgcgg cacctagcac tgaggtagaa 900 cgccgtcgtg cgtccgctta att 923 <210> 9 <211> 6 <212> DNA <213> Artificial Sequence <220> <223> ribosome binding site <400> 9 gaagga 6 <210> 10 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> ptsG_UP Forward primer <400> 10 ttacatatgc gggatccggt aggcgaacgt 30 <210> 11 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> ptsG_UP Reverse primer <400> 11 catggtttta accatctaga cataggcaac aactcgagcc agcgcggata 50 <210> 12 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> ptsG_DOWN_Forward primer <400> 12 tccacgcgat tctagaaggc ctggcattcc caagctttat tcttctgggg 50 <210> 13 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> ptsG_DOWN_Reverse primer <400> 13 gtcgacctac gccagctata 20 <210> 14 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> tyrR_UP_Forward primer <400> 14 caggtgatgg atgtcgacaa accactaccg 30 <210> 15 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> tyrR_UP_Reverse primer <400> 15 tcgacagaga gcaaagcttc aggcaacgcc 30 <210> 16 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> tyrR_Down_Forward primer <400> 16 actgacacaa ctcgagggtt ctgagctgcg 30 <210> 17 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> tyrR_Down_Reverse primer <400> 17 gcatcgcaac gcctggatcc gccaatagct 30 <210> 18 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> pykA_UP_Forward primer <400> 18 cgtttctaga caccgtctcg aggttcagtt cgac 34 <210> 19 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> pykA_UP_Reverse primer <400> 19 ccgccaagga tccgtgatcc cattct 26 <210> 20 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> pykA_Down_Forward primer <400> 20 caaccgcgcc gtcgacttgc tc 22 <210> 21 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> pykA_Down_Reverse primer <400> 21 caaacggctt ctagacgttc aagcttggca acaa 34 <210> 22 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> pykF_UP_Forward primer <400> 22 gaatatcagg atccagctta ccgcctcatc ct 32 <210> 23 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> pykF_UP_Reverse primer <400> 23 gcaacaaagt ctagaccttg ttcgcaacca 30 <210> 24 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> pykF_Down_Forward primer <400> 24 gaacagccgt cactagttca acaatgacaa c 31 <210> 25 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> pykF_Down_Reverse primer <400> 25 acagcgtcga cttgcgcgtc agttca 26

Claims (11)

aroE, tyrR ptsG 유전자;
aroE, tyrR, ptsG pykA 유전자;
aroE, tyrR, ptsG pykF 유전자; 또는
aroE, tyrR, ptsG, pykApykF 유전자;가 불활성화된 유전자재조합 대장균.
aroE , tyrR and ptsG genes;
aroE , tyrR, ptsG and pykA genes;
aroE , tyrR, ptsG and pykF genes; or
AroE , tyrR , ptsG , pykA and pykF genes; genetically modified E. coli.
삭제delete 제1항에 있어서, 상기 유전자의 불활성화는 상기 대장균에서 상기 유전자가 결손(deletion)된 것인, 유전자재조합 대장균.The recombinant E. coli of claim 1, wherein the inactivation of the gene is deletion of the gene in the E. coli. 제1항 또는 제3항에 있어서, 상기 유전자재조합 대장균은 DHS(3-dehydroshikimate) 생합성이 증가된 대장균인, 유전자재조합 대장균.The genetically engineered Escherichia coli according to claim 1 or 3, wherein the recombinant Escherichia coli is Escherichia coli having increased DHS (3-dehydroshikimate) biosynthesis. 제1항 또는 제3항에 있어서, 상기 대장균은 asbFopt 를 코딩하는 폴리뉴클레오티드, aroYopt 를 코딩하는 폴리뉴클레오티드 및 catAopt 를 코딩하는 폴리뉴클레오티드를 포함하고, 상기 세 폴리뉴클레오티드의 각 업스트림(upstream)에 대장균 유래의 리보솜 결합 부위(ribosome binding site, rbs)를 포함하며, 상기 세 폴리뉴클레오티드 중 첫 번째 전사되는 폴리뉴클레오티드의 리보솜 결합부위(rbs)의 업스트림(upstream)에 프로모터(promoter)를 포함하는 재조합벡터로 더 형질전환한 것인, 유전자재조합 대장균.3. A method according to claim 1 or 3, wherein the E. coli is asbF opt polynucleotide, aroY opt polynucleotides and catA opt including the polynucleotide, and each upstream (upstream) of the three polynucleotides encoding the encoding the encoding the Recombination comprising a ribosome binding site (rbs) derived from E. coli, and a promoter upstream of the ribosome binding site (rbs) of the first transcribed polynucleotide of the three polynucleotides It is further transformed with a vector, recombinant E. coli. 제5항에 있어서, 상기 대장균은 시스,시스-뮤코닉산(cis,cis-muconic acid) 생산용 유전자재조합 대장균.The E. coli of claim 5, wherein the E. coli is produced for cis, cis-muconic acid. 제1항 또는 제3항의 유전자재조합 대장균의 배양물.A culture of the recombinant E. coli of claim 1 or 3. 제5항의 유전자재조합 대장균의 배양물.Culture of the genetically modified Escherichia coli of claim 5. 제8항에 있어서, 상기 배양물은 시스,시스-뮤코닉산을 포함하는, 배양물.The culture of claim 8, wherein the culture comprises cis, cis-muconic acid. 제1항 또는 제3항의 유전자재조합 대장균을 배양하는 단계를 포함하는 DHS(3-dehydroshikimate) 생산방법.A method for producing 3-dehydroshikimate (DHS) comprising culturing the recombinant E. coli of claim 1 or claim 3. 제5항의 유전자재조합 대장균을 배양하는 단계를 포함하는 시스,시스-뮤코닉산(cis,cis-muconic acid) 생산방법.A method for producing cis, cis-muconic acid, comprising culturing the recombinant E. coli of claim 5.
KR1020170012858A 2017-01-26 2017-01-26 Microorganism for producing muconic acid precursor and method for manufacturing thereof KR102064476B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170012858A KR102064476B1 (en) 2017-01-26 2017-01-26 Microorganism for producing muconic acid precursor and method for manufacturing thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170012858A KR102064476B1 (en) 2017-01-26 2017-01-26 Microorganism for producing muconic acid precursor and method for manufacturing thereof

Publications (2)

Publication Number Publication Date
KR20180088145A KR20180088145A (en) 2018-08-03
KR102064476B1 true KR102064476B1 (en) 2020-01-10

Family

ID=63250298

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170012858A KR102064476B1 (en) 2017-01-26 2017-01-26 Microorganism for producing muconic acid precursor and method for manufacturing thereof

Country Status (1)

Country Link
KR (1) KR102064476B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102676309B1 (en) 2019-11-22 2024-06-19 (주)에스티알바이오텍 Microorganism for producing shikimic acid and method for producing shikimic acid using the microorganism

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117004547B (en) * 2023-09-27 2023-12-22 北京化工大学 Genetically engineered bacterium for synthesizing cis, cis-muconic acid from glucose as substrate and application thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102064475B1 (en) 2014-04-17 2020-01-10 (주)에스티알바이오텍 Microorganism for producing muconic acid and method for manufacturing the strain

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102676309B1 (en) 2019-11-22 2024-06-19 (주)에스티알바이오텍 Microorganism for producing shikimic acid and method for producing shikimic acid using the microorganism

Also Published As

Publication number Publication date
KR20180088145A (en) 2018-08-03

Similar Documents

Publication Publication Date Title
Kohlstedt et al. From lignin to nylon: cascaded chemical and biochemical conversion using metabolically engineered Pseudomonas putida
US11685938B2 (en) Muconic acid production from genetically engineered microorganisms
EP3312267B1 (en) Production of muconic acid from genetically engineered microorganisms
KR100780324B1 (en) Novel engineered microorganism producing homo-succinic acid and method for preparing succinic acid using the same
US10975400B2 (en) 5-aminolevulinic acid high-yield bacterial strain, preparation method and use thereof
Thompson et al. Muconic acid production via alternative pathways and a synthetic “metabolic funnel”
EP2391708B1 (en) A method for producing succinic acid using a yeast belonging to the genus yarrowia
Riaz et al. Metabolic engineered biocatalyst: a solution for PLA based problems
CN109415418B (en) Method for producing a molecule of interest by microbial fermentation comprising a gene encoding a sugar phosphotransferase system (PTS)
Licona-Cassani et al. Inactivation of pyruvate kinase or the phosphoenolpyruvate: sugar phosphotransferase system increases shikimic and dehydroshikimic acid yields from glucose in Bacillus subtilis
CA3030762A1 (en) Use of bacteriocin-producing ethanologens in biofuel production
US20160326554A1 (en) Recombinant microorganisms for producing organic acids
KR101103839B1 (en) Homo-Succinic Acid Producing Microorganism Variant and Process for Preparing Succinic Acid Using the Same
KR102064476B1 (en) Microorganism for producing muconic acid precursor and method for manufacturing thereof
WO2016207403A1 (en) Method of producing muconic acid
EP3102675B1 (en) Improved microorganisms for succinic acid production
Xiang-Lei et al. Enhanced production of shikimic acid using a multi-gene co-expression system in Escherichia coli
CN113840909A (en) Fermentative production of 2-phenylethyl alcohol from gaseous substrates
US20240026393A1 (en) Efficient production of cis, cis-muconic acid from mixed substrates of glucose, d-xylose and l-arabinose
CN111893083A (en) Modified Klebsiella bacteria and application thereof in producing 2, 3-dihydroxy isovaleric acid
Bosma Isolation, characterization and engineering of Bacillus smithii: a novel thermophilic platform organism for green chemical production

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant