KR102024634B1 - Oxidecatalyst composition for manufacturing eco-platic and manufacturing method thereof - Google Patents

Oxidecatalyst composition for manufacturing eco-platic and manufacturing method thereof Download PDF

Info

Publication number
KR102024634B1
KR102024634B1 KR1020170116422A KR20170116422A KR102024634B1 KR 102024634 B1 KR102024634 B1 KR 102024634B1 KR 1020170116422 A KR1020170116422 A KR 1020170116422A KR 20170116422 A KR20170116422 A KR 20170116422A KR 102024634 B1 KR102024634 B1 KR 102024634B1
Authority
KR
South Korea
Prior art keywords
oxidation catalyst
catalyst composition
silicate
weight
primary
Prior art date
Application number
KR1020170116422A
Other languages
Korean (ko)
Other versions
KR20190029177A (en
Inventor
최상만
Original Assignee
최상만
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 최상만 filed Critical 최상만
Priority to KR1020170116422A priority Critical patent/KR102024634B1/en
Publication of KR20190029177A publication Critical patent/KR20190029177A/en
Application granted granted Critical
Publication of KR102024634B1 publication Critical patent/KR102024634B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Wrappers (AREA)

Abstract

본 발명은 인체에 전혀 무해하고, 토양을 오염시키기 않으며, 작물의 성장에 악영향을 미치지 않으며, 기존 생산 설비의 보완으로 생산이 가능하며, 고분자의 폴리올레핀계 플라스틱 수지의 분자량(Mw) 수치를 감소시켜 미생물에 의해 완전히 분해가 되며, 실용성 및 시장성이 우수한 친환경포장재(EPL, Eco Plastic) 제조용 규산염 산화촉매제 조성물 및 그 제조방법에 관한 것이다.
본 발명은 친환경포장재 제조용 규산염 산화촉매제 제조방법으로서, 폴리올레핀계 플라스틱 수지 40~70 중량%와, 규산염 28~58 중량%와, 실리카겔 1~3 중량%, 및 융합제 1~2 중량%를 준비하는 단계와; 상기 폴리올레핀계 플라스틱 수지와 융합제를 혼합기에 투입하여 1차 혼합물을 생성하는 단계와; 상기 1차 혼합물을 1차 가열하여 1차 용융 및 혼합시키는 단계와; 상기 1차 용융 및 혼합된 1차 혼합물에 규산염 및 실리카겔을 투입하여 2차 혼합물을 생성하는 단계와; 상기 2차 혼합물을 2차 가열하여 2차 용융 및 혼합시켜 산화촉매제 조성물을 제조하는 단계와; 상기 제조된 산화촉매제 조성물을 냉각시키는 단계; 및 상기 냉각된 산화촉매제 조성물을 펠렛화시키는 단계를 포함하며; 상기 산화촉매제 조성물은 수냉식 냉각조에 의해 신속히 냉각되며, 상기 냉각 시 발생하게 되는 수분의 증기를 공냉식 공기 펜을 이용하여 배출시킴으로써, 상기 산화촉매제 조성물에 수분이 침투되는 것이 차단된다.
The present invention is completely harmless to the human body, does not pollute the soil, does not adversely affect the growth of crops, can be produced as a complement to the existing production equipment, by reducing the molecular weight (Mw) value of the polymer polyolefin-based plastic resin The present invention relates to a silicate oxidation catalyst composition for producing an eco-friendly packaging material (EPL, Eco Plastic), which is completely decomposed by microorganisms, and has excellent utility and marketability.
The present invention provides a method for preparing a silicate oxidation catalyst for producing environmentally friendly packaging materials, comprising preparing 40 to 70% by weight of polyolefin-based plastic resin, 28 to 58% by weight of silicate, 1 to 3% by weight of silica gel, and 1 to 2% by weight of a fusing agent. Steps; Injecting the polyolefin-based plastic resin and the fuser into a mixer to produce a primary mixture; Primary melting and mixing the primary mixture by primary heating; Adding a silicate and silica gel to the primary melted and mixed primary mixture to produce a secondary mixture; Preparing a oxidation catalyst composition by secondary heating the secondary mixture by secondary melting and mixing; Cooling the prepared oxidation catalyst composition; And pelletizing the cooled oxidation catalyst composition; The oxidation catalyst composition is rapidly cooled by a water-cooled cooling tank, and the moisture vapor generated during the cooling is discharged using an air-cooled air pen, thereby preventing water from penetrating into the oxidation catalyst composition.

Description

친환경포장재 제조용 규산염 산화촉매제 조성물 및 그 제조방법{OXIDECATALYST COMPOSITION FOR MANUFACTURING ECO-PLATIC AND MANUFACTURING METHOD THEREOF}OXIDECATALYST COMPOSITION FOR MANUFACTURING ECO-PLATIC AND MANUFACTURING METHOD THEREOF}

본 발명은 친환경포장재(EPL, Eco Plastic) 제조용 규산염 산화촉매제 조성물 및 그 제조방법에 관한 것으로, 보다 상세하게는 인체에 전혀 무해하고, 토양을 오염시키기 않으며, 작물의 성장에 악영향을 미치지 않으며, 기존 생산 설비의 보완으로 생산이 가능하며, 고분자의 폴리올레핀계 플라스틱 수지의 분자량(Mw) 수치를 감소시켜 미생물에 의해 완전히 분해가 되며, 실용성 및 시장성이 우수한 친환경포장재 제조용 규산염 산화촉매제 조성물 및 그 제조방법에 관한 것이다.The present invention relates to a silicate oxidation catalyst composition for manufacturing eco-friendly packaging material (EPL, Eco Plastic) and a method of manufacturing the same, more specifically, it is completely harmless to the human body, does not pollute the soil, does not adversely affect the growth of crops, It is possible to produce by supplementing the production equipment, reduce the molecular weight (Mw) value of the polymer polyolefin-based plastic resin is completely decomposed by microorganisms, silicate oxidation catalyst composition for manufacturing eco-friendly packaging material with excellent practicality and marketability and its manufacturing method It is about.

일반적으로, 수지 조성물은 각종 전기 제품에 사용되고 있다. 그러나 수지 조성물은 폐기 처분 시 연소하면 고열로 인해 연소로를 파손시키며, 또한 다이옥신 등 환경호르몬과 유독 가스를 발생하며, 자연 상태(흙속)에 매립하더라도 반영구적으로(50~100년간) 생분해(미생물 분해)가 되지 않기 때문에 폐기처분이 용이하지 않고, 환경문제를 야기할 수 있다는 문제가 있다.Generally, resin compositions are used for various electrical products. However, when the resin composition is burned at the time of disposal, it breaks the combustion furnace due to high heat, and also generates environmental hormones and toxic gases such as dioxin, and biodegradation (50 to 100 years) biodegradation (microbial decomposition) even when it is buried in nature (dirt). ), There is a problem that it is not easy to dispose of and may cause environmental problems.

2001년 4월부터 "사용 완료 전기 제품 리사이클법"이 시행되어, 현재, TV 등의 대형 전기 제품의 회수가 시작되고 있지만, 회수된 대형 전기 제품의 대부분은 리사이클 되는 일이 없고, 법적 규제도 없기 때문에 불연 쓰레기로서 폐기처분되고 있다. 한편, 소형 전기 제품의 경우에는 일반적으로 대형 전기 제품에 비하여 판매수가 많기 때문에, 전체적으로 다량의 불연 먼지가 발생한다. 따라서, 대형, 소형에 관계없이 전기 제품의 폐기처분은 현재 심각한 사회 문제가 되고 있다.The "Used Electric Products Recycling Act" has been in effect since April 2001. At present, the recovery of large-scale electrical appliances such as TVs has begun, but most of the large-scale electrical appliances recovered have not been recycled and there are no legal regulations. Therefore, it is disposed of as non-combustible waste. On the other hand, in the case of small electrical appliances, since the number of sales is generally larger than that of large electrical appliances, a large amount of non-combustible dust is generated as a whole. Therefore, disposal of electrical products, whether large or small, is now a serious social problem.

최근, 이러한 사회 문제를 해결하는 대책으로서 생분해성 수지가 주목받고 있다. 상기 생분해성 수지란 사용 후 저분자 화합물을 자연계에서 미생물이 섭취하여, 최종적으로는 물과 이산화탄소로 분해되는 플라스틱을 말한다.(생분해성 플라스틱 연구회, ISO/TC-207/SC3). 이러한 생분해성 수지는 지금까지 농림수산용 자재(필름, 식재포트, 낚시 실, 어망), 토목공사용 자재(보수 시트, 식물 네트 등), 포장·용기 분야(흙, 식품 등이 부착되어 리사이클이 어려운 물건) 등 주로 일회용 제품에 대하여 실용화가 진행되어 오고 있다.In recent years, biodegradable resins have attracted attention as a countermeasure for solving such social problems. The biodegradable resin refers to a plastic that is ingested by a microorganism in nature after use, and finally decomposed into water and carbon dioxide (Biodegradable Plastics Research Group, ISO / TC-207 / SC3). Such biodegradable resins have been difficult to recycle since they are attached to materials for agriculture, forestry and fisheries (film, food pot, fishing thread, fishing net), materials for civil engineering (repair sheet, plant net, etc.), packaging and container fields (soil, food, etc.). Commercialization of the disposable products, such as articles) has been in progress.

이러한 문제점을 해결하기 위해 안출된 것이 한국 등록특허 제10-1032625호이다.Korean Patent No. 10-1032625 has been devised to solve this problem.

상기 선행특허는 고분자 구조인 폴리올레핀계 플라스틱 수지에 분해제 및 SiO2 무기물을 투입하여 산화 및 생분해성 재료를 제조함으로써 산화작용이 촉진되어 폴리올레핀계 수지가 최단 시일 내에 고분자 구조에서 저분자 구조로의 변환이 이루어져 미생물에 의한 분해, 즉, 생분해가 가능한 산화 및 생분해성 재료 조성물 및 그 제조방법에 관한 것으로, SiO2 무기물을 주성분으로 하는 산화 및 생분해성 재료 조성물은 산화 및 생분해 성능이 우수하고, 분해제의 투입량을 현저히 감소시킬 수 있으며, 제조원가를 낮출 수 있고, 종래 폴리올레핀계 플라스틱 수지에 비해 산소차단성, 내열성, 내한성이 우수하고, 폐각 시 발생되는 CO2 양을 현저히 감소시킬 수 있다.The above patent discloses oxidation and biodegradable materials by adding a decomposing agent and SiO 2 inorganic material to a polyolefin-based plastic resin, which is a polymer structure, to promote oxidation, thereby converting a polyolefin-based resin from a polymer structure to a low-molecular structure in the shortest possible time. of made decomposed by microorganisms, i.e., biodegradation is possible oxidized and biodegradable material composition and relates to a method of manufacturing the same, oxidation and biodegradable material composition composed mainly of SiO 2 inorganic material is superior in oxidation, and biodegradation performance, disintegrants The input amount can be significantly reduced, manufacturing cost can be lowered, and the oxygen barrier property, heat resistance, and cold resistance are superior to conventional polyolefin-based plastic resins, and the amount of CO 2 generated at the time of closing can be significantly reduced.

그러나, 선행특허는 분해제로 지방족 카르복실산(aliphatic carboxylic acid), 케톤(ketone), 산화철(FeO) 등을 2종 이상 혼합하여 사용하여 강제 분해시키며, 이로 인해 토양오염을 유발하고, 작물의 성장에 악영향을 미치기에, 친환경 포장재로는 한계가 있다는 문제가 있으며, 분해제 투입으로 인해 제조원가가 상승하여 실용성 및 시장성이 저하된다는 문제가 있다.However, the prior patent uses a mixture of two or more aliphatic carboxylic acid (ketone), iron oxide (FeO), etc. as a decomposition agent forcibly decomposed, resulting in soil pollution, crop growth There is a problem that there is a limit to the eco-friendly packaging material because it adversely affects, there is a problem that the practical cost and marketability is lowered due to the increase in manufacturing cost due to the decomposition agent.

1. 한국 등록특허 제10-1032625호 "이산화규소 무기물을 주성분으로 하는 산화 및 생분해성 재료 조성물 및 그 제조방법" (등록일자 : 2011. 0. 26.)1. Korean Registered Patent No. 10-1032625 "Oxidation and Biodegradable Material Composition based on Silicon Dioxide Inorganic Ingredients and Manufacturing Method thereof" (Registration Date: 2011. 0. 26.)

따라서 본 발명의 목적은 상기와 같은 문제를 해결하기 위해 안출된 것으로, 인체에 전혀 무해하고, 토양을 오염시키기 않으며, 작물의 성장에 악영향을 미치지 않으며, 기존 생산 설비의 보완으로 생산이 가능하며, 고분자의 폴리올레핀계 플라스틱 수지의 분자량(Mw)의 수치를 5,000(Mw) 이하로 감소시켜 미생물에 의해 완전히 분해가 되며, 실용성 및 시장성이 우수한 친환경포장재 제조용 규산염 산화촉매제 조성물 및 그 제조방법을 제공하고자 하는 것이다.Therefore, the object of the present invention was devised to solve the above problems, it is harmless to the human body, does not pollute the soil, does not adversely affect the growth of the crop, can be produced as a supplement of the existing production equipment, To reduce the value of the molecular weight (Mw) of the polyolefin-based plastic resin of the polymer to 5,000 (Mw) or less is completely decomposed by microorganisms, to provide a silicate oxidation catalyst composition for producing eco-friendly packaging material excellent in practicality and marketability, and to provide a method will be.

삭제delete

본 발명에 따른 친환경포장재 제조용 규산염 산화촉매제 조성물 제조방법은 폴리올레핀계 플라스틱 수지 40~70 중량%와, 규산염 28~58 중량%와, 실리카겔 1~3 중량%, 및 융합제 1~2 중량%를 준비하는 단계와; 상기 폴리올레핀계 플라스틱 수지와 융합제를 혼합기에 투입하여 1차 혼합물을 생성하는 단계와; 상기 1차 혼합물을 1차 가열하여 1차 용융 및 혼합시키는 단계와; 상기 1차 용융 및 혼합된 1차 혼합물에 규산염 및 실리카겔을 투입하여 2차 혼합물을 생성하는 단계와; 상기 2차 혼합물을 2차 가열하여 2차 용융 및 혼합시켜 산화촉매제 조성물을 제조하는 단계와; 상기 제조된 산화촉매제 조성물을 냉각시키는 단계; 및 상기 냉각된 산화촉매제 조성물을 펠렛화시키는 단계를 포함하며; 상기 산화촉매제 조성물은 수냉식 냉각조에 의해 신속히 냉각되며, 상기 냉각 시 발생하게 되는 수분의 증기를 공냉식 공기 펜을 이용하여 배출시킴으로써, 상기 산화촉매제 조성물에 수분이 침투되는 것이 차단되는 것을 특징으로 한다.According to the present invention, a method for preparing a silicate oxidation catalyst composition for preparing eco-friendly packaging material includes 40 to 70 wt% of a polyolefin-based plastic resin, 28 to 58 wt% of a silicate, 1 to 3 wt% of a silica gel, and 1 to 2 wt% of a fusing agent. Making a step; Injecting the polyolefin-based plastic resin and the fuser into a mixer to produce a primary mixture; Primary melting and mixing the primary mixture by primary heating; Adding a silicate and silica gel to the primary melted and mixed primary mixture to produce a secondary mixture; Preparing a oxidation catalyst composition by secondary heating the secondary mixture by secondary melting and mixing; Cooling the prepared oxidation catalyst composition; And pelletizing the cooled oxidation catalyst composition; The oxidation catalyst composition is rapidly cooled by a water-cooled cooling tank, and by discharging the vapor of the moisture generated during the cooling by using an air-cooled air pen, characterized in that the penetration of moisture into the oxidation catalyst composition is blocked.

상술한 바와 같이, 본 발명에 따른 친환경포장재 제조용 규산염 산화촉매제 조성물 및 그 제조방법은 인체에 전혀 무해하여 안정성이 확보된다는 이점이 있다.As described above, the silicate oxidation catalyst composition for producing an eco-friendly packaging material according to the present invention and its manufacturing method are harmless to the human body and have an advantage of ensuring stability.

또한, 토양을 오염시키기 않으며, 작물의 성장에 악영향을 미치지 않는다는 이점이 있다.It also has the advantage of not polluting the soil and not adversely affecting the growth of crops.

또한, 기존 생산 설비의 보완으로 생산이 가능하여, 제조단가를 저하시킴으로써, 가격 경쟁력의 우위를 확보할 수 있다는 이점이 있다.In addition, it is possible to produce as a complement to the existing production equipment, by lowering the manufacturing cost, there is an advantage that it can secure an advantage of price competitiveness.

또한, 기존에 분해가 안 되는 폴리올레핀(Polyolefine)계 플라스틱 수지를 미생물에 의해 분해시킴으로써, 자원 순환성을 향상시킬 수 있다는 이점이 있다.In addition, by decomposing the polyolefine-based plastic resin that can not be decomposed by the microorganisms, there is an advantage that the resource circulation can be improved.

또한, 제품의 폐기단계에서 중금속과 같은 유해물질을 배출하지 않아, 환경오염을 방지할 수 있다는 이점이 있다.In addition, there is an advantage that it is possible to prevent environmental pollution by not emitting harmful substances such as heavy metals at the disposal stage of the product.

도 1은 본 발명에 따른 친환경포장재 제조용 규산염 산화촉매제 조성물 제조방법 흐름도.
도 2는 본 발명에 따른 친환경포장재의 분자량 측정 상태도.
1 is a flowchart illustrating a method for preparing a silicate oxidation catalyst composition for manufacturing an environmentally friendly packaging material according to the present invention;
Figure 2 is a molecular weight measurement state of the eco-friendly packaging according to the invention.

이하, 도면을 참조한 실시 예들의 상세한 설명을 통하여 본 발명에 따른 친환경포장재 제조용 규산염 산화촉매제 조성물 및 그 제조방법을 보다 상세히 기술하기로 한다. 본 발명을 설명함에 있어서 관련된 공지기술 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략될 것이다. 그리고, 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 클라이언트나 운용자, 사용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.Hereinafter, a silicate oxidation catalyst composition for manufacturing an eco-friendly packaging material and a method of manufacturing the same according to the present invention will be described in detail with reference to the accompanying drawings. In the following description of the present invention, detailed descriptions of related well-known technologies or configurations will be omitted if it is determined that the detailed description of the present invention may unnecessarily obscure the subject matter of the present invention. In addition, terms to be described below are terms defined in consideration of functions in the present invention, which may vary according to a client's or operator's intention or custom. Therefore, the definition should be made based on the contents throughout the specification.

도면 전체에 걸쳐 같은 참조번호는 같은 구성 요소를 가리킨다.Like reference numerals refer to like elements throughout.

도 1은 본 발명에 따른 친환경포장재 제조용 규산염 산화촉매제 조성물 제조방법 흐름도이며, 도 2는 본 발명에 따른 친환경포장재의 분자량 측정 상태도이다.1 is a flowchart illustrating a method for preparing a silicate oxidation catalyst composition for manufacturing an eco-friendly packaging material according to the present invention, and FIG. 2 is a state diagram of a molecular weight measurement of an eco-friendly packaging material according to the present invention.

먼저, 본 발명은 친환경포장재 제조용 규산염 산화촉매제의 조성물을 제조하고 상기 제조된 규산염 산화촉매제를 이용하여 산화생분해성 필름을 생산한 후, 국제공인 시험방법인 ASTM D 6954 Standard Guide for Exposing and Testing Plastics that Degradae in the Environmnet by a Combination of Oxidation and Biodegradation. Thermal and photooxidation process (Tier 1). measuring biodegradability (Tier 2). and assessing ecological impart (Tier 3) 적용하여 하기와 같은 각각의 성능 성능평가 항목이 제시된 정량적 목표를 만족하는지를 평가하였다.First, the present invention is to prepare a composition of silicate oxidation catalyst for the production of eco-friendly packaging material and to produce an oxidative biodegradable film using the prepared silicate oxidation catalyst, ASTM D 6954 Standard Guide for Exposing and Testing Plastics that Degradae in the Environmnet by a Combination of Oxidation and Biodegradation. Thermal and photooxidation process (Tier 1). measuring biodegradability (Tier 2). and assessing ecological impart (Tier 3) were applied to evaluate whether each of the following performance evaluation items satisfies the quantitative goals presented.

- 분자량: 전처리(열적 또는 광산화) 가속 환경의 선택에 따라 해당 제품의 최종 폐기 단계에서 가장 분해가 잘 일어날 수 있는 환경을 선택하고, 그 조건에는 반드시 일반적인 폐기 환경에서의 습도 또는 수분 농도를 포함하고 있어야 한다.-Molecular weight: Choose the environment that is most likely to degrade in the final disposal phase of the product, depending on the choice of accelerated pretreatment (thermal or photooxidation) environment, and the conditions must include the humidity or moisture concentration in the general disposal environment. Should be

* 적용 가능한 관련 규격* Applicable Standards

ⓐ ASTM D 883 Terminology Relating to PlasticsⒶ ASTM D 883 Terminology Relating to Plastics

ⓑ ASTM D 3826 Practice for Determination Degradation End Point in Degradable Polyethylene and Polypropylene Using a Tensile TestⒷ ASTM D 3826 Practice for Determination Degradation End Point in Degradable Polyethylene and Polypropylene Using a Tensile Test

ⓒ ASTM D 5071 Practice for Exposure of Photodegradable Plastics in a Xenon Arc ApparatusⒸ ASTM D 5071 Practice for Exposure of Photodegradable Plastics in a Xenon Arc Apparatus

ⓓ ASTM D 5208 Practice for Fluoresecent Ultraviolet(UV) Exposure of Photodegradable PlasticsⒹ ASTM D 5208 Practice for Fluoresecent Ultraviolet (UV) Exposure of Photodegradable Plastics

ⓔ ASTM D 5272 Practice for Outdoor Exposure Testing of Photodegradable PlasticsⒺ ASTM D 5272 Practice for Outdoor Exposure Testing of Photodegradable Plastics

ⓕ ASTM D 5510 Practice for Heat Aging of Oxidatively Degradable PlasticsⒻ ASTM D 5510 Practice for Heat Aging of Oxidatively Degradable Plastics

ⓖ ASTM D 5526 Test Method for Determination Anaerobi Degradation of Plastic Materials Under Accelerated Landfill ConditionsⒼ ASTM D 5526 Test Method for Determination Anaerobi Degradation of Plastic Materials Under Accelerated Landfill Conditions

- 생분해도: 전처리(생분해도) 가속 환경의 선택은 해당 제품의 최종 폐기 단계에서 가장 분해가 잘 일어날 수 있는 환경을 선택하고, 그 조건에는 반드시 일반적인 폐기 환경에서의 습도 또는 수분 농도를 포함하고 있어야 한다.-Biodegradability: The choice of accelerated pretreatment (biodegradability) environment should select the most degradable environment in the final disposal phase of the product, and the conditions must include humidity or moisture concentrations in the general disposal environment. do.

* 적용 가능한 관련 규격* Applicable Standards

ⓐ ASTM D 5338 Test Method for Degermination Aerobic Biodegradation of Plastic Materials Under Controlled Composting ConditionsⒶ ASTM D 5338 Test Method for Degermination Aerobic Biodegradation of Plastic Materials Under Controlled Composting Conditions

ⓑ ASTM D 5988 Test Method for Determination Aerobic Biodegradation in Soil of Plastic Materials or Residual Plastic Materials after CompostingⒷ ASTM D 5988 Test Method for Determination Aerobic Biodegradation in Soil of Plastic Materials or Residual Plastic Materials after Composting

ⓒ ASTM D 6002 Guide for Assessing the Compostability of Environmentally Degradable PlasticsⒸ ASTM D 6002 Guide for Assessing the Compostability of Environmentally Degradable Plastics

ⓓ ASTM D 6400 Specification for Compostable PlasticsⒹ ASTM D 6400 Specification for Compostable Plastics

- 중금속함량: Tier 2 단계까지 완료한 해당 제품은 최종 처리단계에서 매립 또는 다양한 환경 조건 하에서 노출되게 된다. 이경우, 환경의 2차 오염 여부를 판단하기 위한 중요한 성능평가 항목으로 중금속 용출 환경의 선택은 해당 제품의 최종 폐기단계에서 가장 오염 농도가 심할 것으로 예상되는 환경을 선택하고, 그 조건에는 반드시 일반적인 폐기 환경에서의 습도 또는 수분 농도를 포함하고 있어야 한다.-Heavy metal content: The product, which has been completed up to Tier 2, will be exposed to landfill or under various environmental conditions in the final treatment stage. In this case, the selection of the heavy metal leaching environment is an important performance evaluation item to determine whether the environment is secondary pollution, and select the environment that is expected to have the highest concentration of contaminants at the final disposal stage of the product. It should contain humidity or moisture concentration at.

* 적용 가능한 관련 규격* Applicable Standards

ⓐ ASTM D 3987 Test Method for Shake Extraction of Solid Waste with WaterⒶ ASTM D 3987 Test Method for Shake Extraction of Solid Waste with Water

ⓑ ASTM D 5951 Practice for Preparing Residual Solids Obtained after Biodegradability Standard Methods for Plastics in Solid Waste for Toxicity and Compost Quality TestingⒷ ASTM D 5951 Practice for Preparing Residual Solids Obtained after Biodegradability Standard Methods for Plastics in Solid Waste for Toxicity and Compost Quality Testing

한편, 산화촉매제는 산화생분해성 필름을 생산하기 위한 보조 첨가제로 사용되기에, 자체로는 그 성능을 판별하기 어렵다. 따라서, 산화촉매제의 성능을 기술적으로 판단하기 위해서는 개발한 산화촉매제를 이용하여 산화생분해성 필름을 만들고, 국제공인 시험방법인 ASTM D 6954 Standard Guide for Exposing and Testing Plastics that Degradae in the Environmnet by a Combination of Oxidation and Biodegradation. Thermal and photooxidation process (Tier 1). measuring biodegradability (Tier 2). and assessing ecological impart (Tier 3) 적용하여 하기와 같은 각각의 성능 성능평가 항목이 제시된 정량적 목표를 만족하는지를 평가한다.On the other hand, since the oxidation catalyst is used as an auxiliary additive for producing an oxidative biodegradable film, its performance is difficult to determine by itself. Therefore, in order to technically judge the performance of the oxidation catalyst, an oxidative biodegradable film is made using the developed oxidation catalyst, and ASTM D 6954 Standard Guide for Exposing and Testing Plastics that Degradae in the Environmnet by a Combination of Oxidation and Biodegradation. Thermal and photooxidation process (Tier 1). measuring biodegradability (Tier 2). and assessing ecological impart (Tier 3) to assess whether each of the following performance criteria meets the quantitative objectives presented.

- 분자량: 개발한 산화촉매제를 사용하여 제작한 고분자화합물을 산화(열 또는 자외선) 처리(Tier 1)하여 붕괴된 고분자화합물의 평균분자량(Mw)으로 산화촉매제의 성능을 평가한다.-Molecular weight: The performance of the oxidation catalyst is evaluated by the average molecular weight (Mw) of the decomposed polymer compound by oxidation (heat or ultraviolet ray) treatment (Tier 1) of the produced polymer compound using the developed oxidation catalyst.

- 생분해도: 붕괴된 고분자화합물에 포함된 유기탄소가 미생물 분해 작용으로 이화탄소로 전환되는 양(Tier 2)으로 산화촉매제의 성능을 평가한다.-Biodegradability: The performance of the oxidation catalyst is evaluated by the amount that organic carbon contained in the decomposed polymer compound is converted into carbon dioxide due to microbial decomposition (Tier 2).

- 중금속함량: 미생물 분해 작용을 마친 잔존 고분자 화합물에 포함된 중금속(Tier 3)으로 산화촉매제의 사용 후 폐기단계에서의 환경성 지표를 평가한다.-Heavy metal content: The heavy metal (Tier 3) included in the remaining polymer compound after microbial degradation is evaluated to evaluate the environmental indicators at the disposal stage of the oxidation catalyst.

본 발명에 따른 친환경포장재 제조용 규산염 산화촉매제 조성물은 폴리올레핀(Polyolefine)계 플라스틱 수지(PP, PE 수지) 40~70 중량%와, 규산염 28~58 중량%와, 실리카겔 1~3 중량%, 및 융합제 1~2 중량%가 혼합되어 제조된다.Silicate oxidation catalyst composition for eco-friendly packaging according to the present invention is 40 to 70% by weight of polyolefin-based plastic resin (PP, PE resin), 28 to 58% by weight silicate, 1 to 3% by weight of silica gel, and fusing agent It is prepared by mixing 1-2 wt%.

여기서, 상기 폴리올레핀계 플라스틱 수지는 통상의 폴리올레핀계 플라스틱 수지이면 특별히 제한되지 않으며, 본 발명에서는 주로 폴리프로필렌(polypropylene, PP), 폴리에틸렌(polyethylene, PE) 수지를 사용하는데, 상기 폴리올레핀계 플라스틱 수지가 친환경포장재 제조용 규산염 산화촉매제 조성물의 총 중량%에 대해 40~70 중량%가 포함되며, 상기 폴리올레핀계 플라스틱 수지가 40 중량% 미만이면 친환경포장재 제조용 규산염 산화촉매제 조성물의 제조에 어려움이 있고 안정성이 저하되며, 상기 폴리올레핀계 플라스틱 수지가 70 중량%를 초과하면 제조비용이 너무 높아지는 문제점이 있다. 상기 폴리올레핀계 플라스틱 수지는 가장 바람직하게는 57 중량%가 포함된다.Herein, the polyolefin-based plastic resin is not particularly limited as long as it is a conventional polyolefin-based plastic resin. In the present invention, polypropylene (PP) and polyethylene (PE) resin are mainly used, but the polyolefin-based plastic resin is environmentally friendly. 40 to 70% by weight relative to the total weight of the silicate oxidation catalyst composition for the manufacture of packaging materials, when the polyolefin-based plastic resin is less than 40% by weight is difficult to manufacture the silicate oxidation catalyst composition for environmentally friendly packaging materials and the stability is lowered, If the polyolefin-based plastic resin exceeds 70% by weight there is a problem that the manufacturing cost is too high. The polyolefin-based plastic resin is most preferably included 57% by weight.

또한, 상기 규산염은 천연규산염으로 산화를 촉진시키기 위한 촉매제이며, 상기 규산염은 친환경포장재 제조용 규산염 산화촉매제 조성물의 총중량%에 대해 28~58 중량%가 포함되며, 상기 규산염이 28 중량% 미만이면 산화촉진이 둔화되며, 상기 규산염이 58 중량%를 초과하면 성형 및 압출(compounding)의 작업성이 저하된다는 문제점이 있다. 상기 규산염은 가장 바람직하게는 40 중량%가 포함된다.In addition, the silicate is a natural silicate catalyst for promoting oxidation, the silicate is contained 28 to 58% by weight relative to the total weight of the silicate oxidation catalyst composition for manufacturing environmentally friendly packaging materials, if the silicate is less than 28% by weight to promote oxidation This slows down, and if the silicate exceeds 58% by weight, there is a problem that the workability of molding and compounding is lowered. The silicate most preferably comprises 40% by weight.

또한, 상기 실리카겔은 촉매 운반체로서 혼합시 단맛을 부가시키기에 산화를 촉진시키는 역할을 하는데, 상기 실리카겔은 친환경포장재 제조용 규산염 산화촉매제 조성물의 총중량%에 대해 1~3 중량%가 포함되며, 상기 실리카겔이 1 중량% 미만이면 그 양이 너무 적어 산화를 촉진시키지 못하며, 상기 실리카겔이 3 중량%를 초과하면 제조비용이 너무 높아지는 문제점이 있다. 상기 실리카겔은 가장 바람직하게는 2 중량%가 포함된다.In addition, the silica gel serves to promote oxidation to add a sweet taste when mixed as a catalyst carrier, the silica gel is included in the 1-3% by weight relative to the total weight of the silicate oxidation catalyst composition for manufacturing environmentally friendly packaging materials, the silica gel If it is less than 1% by weight, the amount is too small to promote oxidation, and if the silica gel exceeds 3% by weight, there is a problem in that the manufacturing cost is too high. The silica gel most preferably contains 2% by weight.

또한, 상기 융합제는 폴리올레핀계 플라스틱 수지와 규산염의 압출(compounding) 작업 시 융합이 잘 되도록 하는 역할을 하며, 상기 융합제는 폴리올레핀계 플라스틱 수지와 규산염의 융합을 해하지 않는 범위에서 당업계에서 사용하는 통상의 것을 사용할 수 있음은 물론이며, 특히 알루미네이트계 커플링제(aluminate coupling agent)를 사용하는 것이 좋다. 상기 알루미네이트계 커플링제로 지르코알루미네이트 커플링제(zirco-aluminate coupling agent)를 사용하는 것이 바람직하다. 상기 융합제는 친환경포장재 제조용 규산염 산화촉매제 조성물의 총중량%에 대해 1~2 중량%가 포함되며, 상기 융합제가 1 중량% 미만이면 융합이 불가능하며, 상기 융합제가 2 중량%를 초과하면 제조비용이 너무 높아지는 문제점이 있다. 상기 융합제는 가장 바람직하게는 1 중량%가 포함된다.In addition, the fusing agent serves to fusion during the extrusion (compounding) of the polyolefin-based plastic resin and silicate, the fusing agent is used in the art in the range that does not harm the fusion of the polyolefin-based plastic resin and silicate It is a matter of course that a conventional one can be used, and in particular, it is preferable to use an aluminate coupling agent. It is preferable to use a zirco-aluminate coupling agent as the aluminate coupling agent. The fusing agent may contain 1 to 2% by weight based on the total weight% of the silicate oxidation catalyst composition for eco-friendly packaging material, if the fusing agent is less than 1% by weight, the fusion is impossible, if the fusing agent exceeds 2% by weight manufacturing cost There is a problem that is too high. The fusing agent most preferably comprises 1% by weight.

이제, 도 1을 참조하여, 본 발명에 따른 친환경포장재 제조용 규산염 산화촉매제 조성물의 제조방법을 살펴보고자 한다.Now, with reference to Figure 1, it will be described in the manufacturing method of the silicate oxidation catalyst composition for environmentally friendly packaging material production according to the present invention.

먼저, 폴리올레핀계 플라스틱 수지 40~70 중량%와, 규산염 28~58 중량%와, 실리카겔 1~3 중량%, 및 융합제 1~2 중량%를 준비한다(S110).First, 40 to 70% by weight of polyolefin-based plastic resin, 28 to 58% by weight of silicate, 1 to 3% by weight of silica gel, and 1 to 2% by weight of a fusion agent are prepared (S110).

이후, 상기 폴리올레핀계 플라스틱 수지와 융합제를 혼합기에 투입하여 1차 혼합물을 생성한다(S120).Thereafter, the polyolefin-based plastic resin and the fuser are added to a mixer to generate a primary mixture (S120).

그 후, 상기 1차 혼합물을 1차 가열하여 1차 용융 및 혼합시킨다(S130). 이때, 1차 가열온도는 150℃~180℃인데, 상기 1차 가열온도가 150℃ 미만이면 상기 폴리올레핀계 플라스틱 수지가 완전히 용해되지 않으며, 상기 1차 가열온도가 180℃를 초과하면 상기 폴리올레핀계 플라스틱 수지가 타버리는 문제가 있다. 상기 1차 가열온도는 가장 바람직하게는 165℃이다.Thereafter, the primary mixture is first heated and primary melted and mixed (S130). At this time, the primary heating temperature is 150 ℃ ~ 180 ℃, if the primary heating temperature is less than 150 ℃ the polyolefin-based plastic resin is not completely dissolved, if the primary heating temperature exceeds 180 ℃ the polyolefin-based plastic There is a problem that the resin burns out. The primary heating temperature is most preferably 165 ℃.

이후, 상기 1차 용융 및 혼합된 1차 혼합물에 규산염 및 실리카겔을 투입하여 2차 혼합물을 생성한다(S140).Thereafter, silicate and silica gel are added to the primary melted and mixed primary mixture to generate a secondary mixture (S140).

그 후, 상기 2차 혼합물을 2차 가열하여 2차 용융 및 혼합시켜 산화촉매제 조성물을 제조한다(S150). 이때, 2차 가열온도는 210℃~230℃이며, 상기 2차 가열온도가 210℃ 미만이면 상기 규산염 및 실리카겔이 투입된 혼합물이 혼합되는데 어려움이 있으며, 상기 2차 가열온도가 230℃를 초과하면 상기 규산염 및 실리카겔이 투입된 혼합물이 타버리거나 탄화에 의해 제품의 색상이 변질되는 문제가 있다. 상기 2차 가열온도는 가장 바람직하게는 220℃이다.Thereafter, the secondary mixture is secondly heated to secondary melting and mixing to prepare an oxidation catalyst composition (S150). At this time, the secondary heating temperature is 210 ℃ ~ 230 ℃, if the secondary heating temperature is less than 210 ℃ it is difficult to mix the mixture into which the silicate and silica gel is added, if the secondary heating temperature exceeds 230 ℃ There is a problem in that the color of the product is changed by burning or carbonizing the mixture in which the silicate and silica gel is added. The secondary heating temperature is most preferably 220 ° C.

이후, 상기 제조된 산화촉매제 조성물을 냉각시킨다(S160). 이때, 상기 제조된 산화촉매제 조성물은 수냉식 냉각조에 의해 신속히 냉각시키되 상기 냉각 시 발생하게 되는 수분의 증기를 공냉식 공기 펜을 이용하여 배출시킴으로써, 상기 산화촉매제 조성물에 수분이 침투되는 것을 차단시킨다.Thereafter, the prepared oxidation catalyst composition is cooled (S160). At this time, the prepared oxidation catalyst composition is rapidly cooled by a water-cooled cooling tank, but by discharging the vapor of the moisture generated during the cooling using an air-cooled air pen, to block the penetration of water into the oxidation catalyst composition.

그 후, 상기 냉각된 산화촉매제 조성물을 적절한 길이와 모양으로 펠렛화시킨다(S170).Thereafter, the cooled oxidation catalyst composition is pelletized to an appropriate length and shape (S170).

이렇게 제조된 상기 펠렛화된 산화촉매제 조성물은 수조에 투입되어 냉각되고 물기가 제거된 후 포장되어 제품으로 출하된다.The pelletized oxidation catalyst composition thus prepared is added to a water bath, cooled, dried, packaged, and shipped to a product.

이하, 실시예 및 실험예를 통해 본 발명에 따른 친환경포장재 제조용 규산염 산화촉매제 조성물 제조방법을 보다 상세히 설명하고자 한다.Hereinafter, the silicate oxidation catalyst composition manufacturing method for eco-friendly packaging material production according to the present invention through Examples and Experimental Examples will be described in more detail.

폴리올레핀계 플라스틱 수지 57 중량%와, 규산염 40 중량%와, 실리카겔 2 중량%, 및 융합제 1 중량%를 준비하고, 상기 폴리올레핀계 플라스틱 수지와 융합제를 혼합기에 투입하여 165℃로 1차 가열한 후, 상기 혼합기에 규산염 및 실리카겔을 투입하고 220℃로 2차 가열한 후 냉각시키고 펠릿화시켜 최종 친환경포장재 제조용 규산염 산화촉매제를 제조하였다.57 wt% of polyolefin-based plastic resin, 40 wt% of silicate, 2 wt% of silica gel, and 1 wt% of fusing agent were prepared, and the polyolefin-based plastic resin and the fusing agent were added to a mixer and heated first to 165 ° C. Thereafter, silicate and silica gel were added to the mixer, secondly heated to 220 ° C., cooled, and pelletized to prepare a silicate oxidation catalyst for preparing an environmentally friendly packaging material.

폴리올레핀계 플라스틱 수지 67 중량%와, 규산염 30 중량%와, 실리카겔 2 중량%, 및 융합제 1 중량%를 사용한다는 것을 제외하곤 상기 실시예 1과 동일하게 실시하였다.It carried out similarly to Example 1 except using 67 weight% of polyolefin plastic resins, 30 weight% of silicates, 2 weight% of silica gels, and 1 weight% of a fusion agent.

비교예 1Comparative Example 1

폴리올레핀계 플라스틱 수지 100%를 사용한다는 것을 제외하곤 상기 실시예 1과 동일하게 실시하였다.Except that 100% polyolefin-based plastic resin was used in the same manner as in Example 1.

이하, 상기 실시예 1, 실시예 2. 및 비교예 1에 따라 제조된 산화촉매제에 대한 실험예는 상기 산화촉매제가 산화생분해성 필름을 생산하기 위한 보조 첨가제로 사용됨으로, 자체로는 그 성능을 판별하기 어려워 산화촉매제의 성능을 기술적으로 판단하기 위해서는 개발된 산화촉매제를 이용하여 제조된 산화생분해성 필름을 이용하여 국제공인 시험방법인 ASTM D 6954 Standard Guide for Exposing and Testing Plastics that Degradae in the Environmnet by a Combination of Oxidation and Biodegradation. Thermal and photooxidation process (Tier 1). measuring biodegradability (Tier 2). and assessing ecological impart (Tier 3) 적용한다.Hereinafter, the experimental example for the oxidation catalyst prepared according to Example 1, Example 2 and Comparative Example 1 is because the oxidation catalyst is used as an auxiliary additive for producing an oxidative biodegradable film, the performance itself In order to technically judge the performance of the oxidation catalyst, it is difficult to determine the ASTM D 6954 Standard Guide for Exposing and Testing Plastics that Degradae in the Environmnet by using the oxidative biodegradable film manufactured using the developed oxidation catalyst. a Combination of Oxidation and Biodegradation. Thermal and photooxidation process (Tier 1). measuring biodegradability (Tier 2). and assessing ecological impart (Tier 3).

실험예 1Experimental Example 1

실시예 1에 따른 규산염 산화촉매제로 제조된 친환경포장재에 대한 물성을 테스트한 결과는 아래 표 1과 같다.The results of testing the physical properties of the eco-friendly packaging material prepared by the silicate oxidation catalyst according to Example 1 are shown in Table 1 below.

Figure 112017501874399-pat00001
Figure 112017501874399-pat00001

실험예 2Experimental Example 2

실시예 2에 따른 규산염 산화촉매제로 제조된 친환경포장재에 대한 물성을 테스트한 결과는 아래 표 2와 같다.The results of testing the physical properties of the eco-friendly packaging material prepared by the silicate oxidation catalyst according to Example 2 are shown in Table 2 below.

Figure 112017501874399-pat00002
Figure 112017501874399-pat00002

실험예 3Experimental Example 3

비교예 1에 따라 제조된 포장재에 대한 물성을 테스트한 결과는 아래 표 3과 같다.Results of testing the physical properties of the packaging material prepared according to Comparative Example 1 are shown in Table 3 below.

Figure 112017501874399-pat00003
Figure 112017501874399-pat00003

상기 표 1 내지 표 3에서 알 수 있듯이, 실시예 1 및 실시예 2에 따른 규산염 산화촉매제로 제조된 친환경포장재가 비교예 1에 따른 포장재에 비해, 용융지수, 인장강도, 굴곡탄성율, 및 굴곡강도에 있어 월등함을 할 수 있다.As can be seen from Table 1 to Table 3, the eco-friendly packaging material prepared by the silicate oxidation catalyst according to Examples 1 and 2, compared to the packaging material according to Comparative Example 1, melt index, tensile strength, flexural modulus, and flexural strength It can be superior to.

또한, 표 1 및 표 2에서 알 수 있듯이, 실시예 1 및 실시예 2에 따른 규산염 산화촉매제로 제조된 친환경포장재는 실시예 1에 따라 제조된 친환경포장재가 용융지수, 인장강도, 굴곡탄성율, 및 굴곡강도에 있어서 다소 우위를 나타내나, 값비싼 폴리올레핀계 플라스틱 수지가 적게 함유된 실시예 2에 따라 제조된 친환경 포장재가 가성비 측면이나 제조단가 측면에선 훨씬 우수하다.In addition, as can be seen in Table 1 and Table 2, the eco-friendly packaging material prepared by the silicate oxidation catalyst according to Examples 1 and 2, the eco-friendly packaging material prepared according to Example 1 is melt index, tensile strength, flexural modulus, and Although somewhat superior in flexural strength, the eco-friendly packaging material prepared according to Example 2 containing less expensive polyolefin-based plastic resins is much better in terms of cost-effectiveness and cost of production.

실험예 4Experimental Example 4

실시예 2에 따른 규산염 산화촉매제로 제조된 친환경포장재에 대한 저분자화(산화)는 이하 표 4와 같다.Low molecular weight (oxidation) for the eco-friendly packaging material prepared by the silicate oxidation catalyst according to Example 2 is shown in Table 4 below.

Figure 112017501874399-pat00004
Figure 112017501874399-pat00004

상기 표 4에서 알 수 있듯이, 실시예 2에 따른 규산염 산화촉매제로 제조된 친환경포장재의 분자량이 5,000(Mw) 이하인 3,577 dalton을 나타내었음을 알 수 있다. 이는 미생물이 먹을 수 있는 한계치인 분자량 이하임을 알 수 있다(본 발명에 따른 친환경포장재가 저분자화 됨을 도시한 도 2 참조).As can be seen in Table 4, it can be seen that the molecular weight of the eco-friendly packaging material prepared by the silicate oxidation catalyst according to Example 2 represented 3,577 daltons of 5,000 (Mw) or less. It can be seen that the molecular weight is less than the limit that the microorganism can eat (see Fig. 2 showing that the environmentally friendly packaging material according to the invention is low molecular weight).

실험예 5Experimental Example 5

실시예 2에 따른 규산염 산화촉매제로 제조된 친환경포장재에 대한 누적 생분해도는 이하 표 5와 같다.Cumulative biodegradation of the eco-friendly packaging material prepared by the silicate oxidation catalyst according to Example 2 is shown in Table 5 below.

Figure 112017501874399-pat00005
Figure 112017501874399-pat00005

STM D 6954의 시험 기간은 시험물질을 접종원과 섞어 고정화한 후 퇴비화 용기에 넣고, 6개월(180일) 이하의 시험기간 동안 함수율, 온도, 산소가 조절되는 조건하에서 무기화가 일어나도록 한다.The test period for STM D 6954 is to mix and immobilize the test substance with the inoculum, place it in a composting vessel, and allow mineralization to occur under conditions of controlled moisture content, temperature, and oxygen for up to six months (180 days).

상기 표 5에서 알 수 있듯이, 실시예 2에 따른 규산염 산화촉매제로 제조된 친환경포장재의 생분해도에 대한 테스트 결과는 7일에 4.2%, 14일에 6.2%, 21일에 7.1%, 45일에 9.9%로서, 기간이 경과할 수록 생분해도가 증가하는 것을 알 수 있다.As can be seen in Table 5, the test results for the biodegradability of the eco-friendly packaging material prepared with the silicate oxidation catalyst according to Example 2 was 4.2% on day 7, 6.2% on day 14, 7.1% on day 21, 45 days As 9.9%, it can be seen that the biodegradation increases with time.

실험예 6Experimental Example 6

실시예 2에 따른 규산염 산화촉매제로 제조된 친환경포장재에 대한 미생물 분해 작용(생 분해도)을 마친 잔존 고분자 화합물에 포함된 중금속(Pb 등) 함량에 대한 시험으로 산화촉매제의 사용후 폐기단계에서의 환경성 지표를 평가하는데, 평가를 위해 국가 공인기관인 한국건설생활환경시험연구원에 산화촉매제의 사용으로 제작된 시료로 ASTM D 7959 : 2014 중금속(Pb 등) 시험을 의뢰하여 환경성 시험을 실시하였고, 그 결과는 이하 표 6과 같다.Environmental test at the disposal stage of the post-use disposal of the oxidation catalyst by a test for the content of heavy metals (Pb, etc.) contained in the remaining polymer compound after the microbial decomposition (biodegradability) of the eco-friendly packaging material prepared by the silicate oxidation catalyst according to Example 2 In order to evaluate the index, an environmental test was conducted by requesting ASTM D 7959: 2014 Heavy Metals (Pb, etc.) test with a sample produced by the use of an oxidation catalyst to the Korea Institute of Construction and Environmental Testing, a national authorized institution. It is shown in Table 6 below.

Figure 112017501874399-pat00006
Figure 112017501874399-pat00006

상기 표 6에서 알 수 있듯이, 실시예 2에 따른 규산염 산화촉매제로 제조된 친환경포장재의 중금속 함량에 대한 테스트 결과는 미생물 분해 작용을 마친 잔존 고분자 화합물에서 용출 납이 검출되지 않았으며, 초산, 물, n-헵탄, 에탄올이 기준치보다 훨씬 이하로 검출되었음을 알 수 있다.As can be seen in Table 6, the test results for the heavy metal content of the eco-friendly packaging material prepared by the silicate oxidation catalyst according to Example 2 was not detected lead leaching in the residual polymer compound after the microbial decomposition action, acetic acid, water, It can be seen that n-heptane and ethanol were detected well below the baseline.

실험예 7Experimental Example 7

실시예 2에 따른 규산염 산화촉매제로 제조된 친환경포장재에 대한 미생물 분해 작용을 마친 잔존 고분자 화합물에 포함된 유해물질에 대한 시험으로 산화촉매제의 사용후 폐기단계에서의 환경성 지표를 평가하는데, 평가를 위해 국가 공인기관인 한국건설생활환경시험연구원에 산화촉매제의 사용으로 제작된 시료로 ASTM D 7959 : 2014 염소검사 시험을 의뢰하여 환경성 시험을 실시하였고, 그 결과는 이하 표 7과 같다.In order to evaluate the environmental index in the post-use disposal step of the oxidation catalyst, the test was conducted on the harmful substances contained in the remaining macromolecular compound having completed the microbial decomposition action on the eco-friendly packaging material prepared by the silicate oxidation catalyst according to Example 2. An environmental test was conducted by requesting the ASTM D 7959: 2014 Chlorine Test Test from the Korea Institute of Construction and Environmental Testing, a national accredited institution, by using an oxidation catalyst. The results are shown in Table 7 below.

Figure 112017501874399-pat00007
Figure 112017501874399-pat00007

상기 표 7에서 알 수 있듯이, 실시예 2에 따른 규산염 산화촉매제로 제조된 친환경포장재의 염소 함량에 대한 테스트 결과는 미생물 분해 작용을 마친 잔존 고분자 화합물에서 염소가 검출되지 않았음을 알 수 있다.As can be seen in Table 7, the test results for the chlorine content of the eco-friendly packaging material prepared by the silicate oxidation catalyst according to Example 2 can be seen that the chlorine was not detected in the remaining polymer compound after the microbial decomposition action.

상기 실험예 6 및 실험예 7의 결과에 의거 친환경표지인증을 부여하는 국가공인인증기관인 한국환경산업기술원으로부터 "자원 순환성 향상", "지역 환경 오염 감소" 로 친환경표지인증서를 받았다.Based on the results of Experimental Example 6 and Experimental Example 7, the eco-labeling certificate was received from the Korea Environmental Industry and Technology Institute, which is a national accredited certification organization that grants eco-friendly labeling certification, as "enhancing resource circulation" and "reducing local environmental pollution.

전술한 바와 같이, 본 발명에 따른 친환경포장재 제조용 규산염 산화촉매제 조성물 및 그 제조방법은 인체에 전혀 무해하여 안정성이 확보될 수 있다. 또한, 토양을 오염시키기 않으며, 작물의 성장에 악영향을 미치지 않는다. 또한, 기존 생산 설비의 보완으로 생산이 가능하여, 제조단가를 저하시킴으로써, 가격 경쟁력의 우위를 확보할 수 있다. 또한, 기존에 분해가 안 되는 폴리올레핀(Polyolefine)계 플라스틱 수지를 미생물에 의해 분해시킴으로써, 자원 순환성을 향상시킬 수 있다. 또한, 제품의 폐기단계에서 중금속과 같은 유해물질을 배출하지 않아, 환경오염을 방지할 수 있다.As described above, the silicate oxidation catalyst composition for producing an eco-friendly packaging material according to the present invention and its manufacturing method are harmless to the human body to ensure stability. In addition, it does not pollute the soil and does not adversely affect the growth of crops. In addition, it is possible to produce as a complement to the existing production equipment, lowering the manufacturing cost, it is possible to secure an advantage of price competitiveness. In addition, by decomposing the polyolefin (polyolefine) -based plastic resin that can not be decomposed by the microorganism, it is possible to improve the resource circulation. In addition, it is possible to prevent environmental pollution by emitting no harmful substances such as heavy metals at the disposal stage of the product.

이상과 같이 본 발명은 양호한 실시 예에 근거하여 설명하였지만, 이러한 실시 예는 본 발명을 제한하려는 것이 아니라 예시하려는 것이므로, 본 발명이 속하는 기술분야의 숙련자라면 본 발명의 기술사상을 벗어남이 없이 위 실시 예에 대한 다양한 변화나 변경 또는 조절이 가능할 것이다. 그러므로, 본 발명의 보호 범위는 본 발명의 기술적 사상의 요지에 속하는 변화 예나 변경 예 또는 조절 예를 모두 포함하는 것으로 해석되어야 할 것이다.As described above, the present invention has been described based on the preferred embodiments, but these embodiments are intended to illustrate the present invention, not to limit the present invention, so that those skilled in the art to which the present invention pertains can perform the above without departing from the technical spirit of the present invention. Various changes, modifications or adjustments to the example will be possible. Therefore, the protection scope of the present invention should be construed as including all changes, modifications or adjustments belonging to the gist of the technical idea of the present invention.

Claims (5)

삭제delete 삭제delete 폴리올레핀계 플라스틱 수지 40~70 중량%와, 규산염 28~58 중량%와, 실리카겔 1~3 중량%, 및 융합제 1~2 중량%를 준비하는 단계(S110)와;
상기 폴리올레핀계 플라스틱 수지와 융합제를 혼합기에 투입하여 1차 혼합물을 생성하는 단계(S120)와;
상기 1차 혼합물을 1차 가열하여 1차 용융 및 혼합시키는 단계(S130)와;
상기 1차 용융 및 혼합된 1차 혼합물에 규산염 및 실리카겔을 투입하여 2차 혼합물을 생성하는 단계(S140)와;
상기 2차 혼합물을 2차 가열하여 2차 용융 및 혼합시켜 산화촉매제 조성물을 제조하는 단계(S150)와;
상기 제조된 산화촉매제 조성물을 냉각시키는 단계(S160); 및
상기 냉각된 산화촉매제 조성물을 펠렛화시키는 단계(S170)를 포함하며;
상기 산화촉매제 조성물은 수냉식 냉각조에 의해 신속히 냉각되며, 상기 냉각 시 발생하게 되는 수분의 증기를 공냉식 공기 펜을 이용하여 배출시킴으로써, 상기 산화촉매제 조성물에 수분이 침투되는 것이 차단되는 것을 특징으로 하는 친환경포장재 제조용 규산염 산화촉매제 조성물 제조방법.
40 to 70% by weight of polyolefin-based plastic resin, 28 to 58% by weight of silicate, 1 to 3% by weight of silica gel, and 1 to 2% by weight of a fusion agent (S110);
Adding a polyolefin-based plastic resin and a fusion agent to a mixer to generate a primary mixture (S120);
Primary melting and mixing the primary mixture by primary heating (S130);
Adding a silicate and silica gel to the primary melted and mixed primary mixture to produce a secondary mixture (S140);
Preparing a oxidation catalyst composition by secondary heating and secondary melting and mixing the secondary mixture (S150);
Cooling the prepared oxidation catalyst composition (S160); And
Pelletizing the cooled oxidation catalyst composition (S170);
The oxidation catalyst composition is rapidly cooled by a water-cooled cooling tank, and by discharging the steam of water generated during the cooling using an air-cooled air pen, eco-friendly packaging material, characterized in that the penetration of moisture into the oxidation catalyst composition is blocked. Method for producing silicate oxidation catalyst composition for production.
청구항 3에 있어서,
상기 S130 단계에서, 1차 가열온도는 150℃~180℃이며;
상기 S150 단계에서, 2차 가열온도는 210℃~230℃인 것을 특징으로 하는 친환경포장재 제조용 규산염 산화촉매제 조성물 제조방법.
The method according to claim 3,
In the step S130, the first heating temperature is 150 ℃ ~ 180 ℃;
In the step S150, the secondary heating temperature is 210 ℃ ~ 230 ℃ silicate oxidation catalyst composition manufacturing method for producing eco-friendly packaging material, characterized in that.
삭제delete
KR1020170116422A 2017-09-12 2017-09-12 Oxidecatalyst composition for manufacturing eco-platic and manufacturing method thereof KR102024634B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170116422A KR102024634B1 (en) 2017-09-12 2017-09-12 Oxidecatalyst composition for manufacturing eco-platic and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170116422A KR102024634B1 (en) 2017-09-12 2017-09-12 Oxidecatalyst composition for manufacturing eco-platic and manufacturing method thereof

Publications (2)

Publication Number Publication Date
KR20190029177A KR20190029177A (en) 2019-03-20
KR102024634B1 true KR102024634B1 (en) 2019-09-24

Family

ID=66036743

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170116422A KR102024634B1 (en) 2017-09-12 2017-09-12 Oxidecatalyst composition for manufacturing eco-platic and manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR102024634B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220021661A (en) 2020-08-14 2022-02-22 주식회사 우림 Eco paper platic and manufacturing method therof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101032625B1 (en) * 2010-09-10 2011-05-03 주식회사 신성에어로겔 Oxidation and biodegradable material composition with a main component of sio2 inorganic substance and method for preparing thereof
KR101075708B1 (en) 2009-04-23 2011-10-21 정철영 A environment organic agriculture biodegradable mulch material and manufactury method thereof
KR101270363B1 (en) * 2013-01-29 2013-05-31 최영재 Method of preparing naturally degradable food container using coated inorganic filler powder

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SI2013280T1 (en) * 2006-05-01 2010-02-26 Bnt Force Biodegradable Polyme Novel biodegradable polymer composition useful for the preparation of biodegradable plastic and a process for the preparation of said composition
KR100890365B1 (en) * 2007-07-30 2009-03-25 주식회사 선일팩 Silica aerogel resin based photodegradable disposable container and method for preparing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101075708B1 (en) 2009-04-23 2011-10-21 정철영 A environment organic agriculture biodegradable mulch material and manufactury method thereof
KR101032625B1 (en) * 2010-09-10 2011-05-03 주식회사 신성에어로겔 Oxidation and biodegradable material composition with a main component of sio2 inorganic substance and method for preparing thereof
KR101270363B1 (en) * 2013-01-29 2013-05-31 최영재 Method of preparing naturally degradable food container using coated inorganic filler powder

Also Published As

Publication number Publication date
KR20190029177A (en) 2019-03-20

Similar Documents

Publication Publication Date Title
Petchwattana et al. Antimicrobial food packaging prepared from poly (butylene succinate) and zinc oxide
CN101851355B (en) Degradable starch-based plastic masterbatch and preparation method thereof
Scott Photo-biodegradable plastics: their role in the protection of the environment
Scott Why degradable polymers?
Al-Salem et al. Insights into the evaluation of the abiotic and biotic degradation rate of commercial pro-oxidant filled polyethylene (PE) thin films
CN101429294B (en) Full-biodegradation plastic starch master batch, preparation and uses thereof
Ohtaki et al. Effects of temperature and inoculum on the degradability of poly-ε-caprolactone during composting
Masmoudi et al. Design and characterization of a new food packaging material by recycling blends virgin and recovered polyethylene terephthalate
Rizzarelli et al. Influence of photo-oxidation on the performance and soil degradation of oxo-and biodegradable polymer-based items for agricultural applications
Al-Salem et al. Thermal response and degressive reaction study of oxo-biodegradable plastic products exposed to various degradation media
Ratanakamnuan et al. Photobiodegradation of low‐density polyethylene/banana starch films
Nanda et al. Performance evaluation of biofibers and their hybrids as reinforcements in bioplastic composites
KR102024634B1 (en) Oxidecatalyst composition for manufacturing eco-platic and manufacturing method thereof
Parida et al. Poly (lactic acid)(PLA)-based mulch films: evaluation of mechanical, thermal, barrier properties and aerobic biodegradation characteristics in real-time environment
Panahi et al. Investigating the degradability of polyethylene using starch, oxo‐material, and polylactic acid under the different environmental conditions
Finzi‐Quintão et al. Identification of biodegradable and oxo‐biodegradable plastic bags samples composition
Subramaniam et al. Enhanced degradation properties of polypropylene integrated with iron and cobalt stearates and its synthetic application
CN103834085A (en) Environment-friendly modified high-polymer new material capable of initiating multiple degradation and preparation method thereof
El Menofy et al. Plastics biodegradation and biofragmentation
CN103865149A (en) Novel environment-friendly modified macromolecule material capable of triggering multiple-stage degradation and preparation method thereof
Ray et al. Sustainable polylactide-based blends
KR101032625B1 (en) Oxidation and biodegradable material composition with a main component of sio2 inorganic substance and method for preparing thereof
Roé‐Sosa et al. Degradation and biodegradation of polyethylene with pro‐oxidant aditives under compost conditions establishing relationships between physicochemical and rheological parameters
WO2011155814A1 (en) Method for preparing a thermoplastic polymer mixture comprising fibres, agave residues and oxo-degradable additives for preparing biodegradable plastic articles
CN107337828A (en) A kind of biodegradable additive and the polyethylene film material containing the additive

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant