KR102008998B1 - Hexanoic acid-producing recombinant microorganism and method of producing hexanoic acid using the same - Google Patents

Hexanoic acid-producing recombinant microorganism and method of producing hexanoic acid using the same Download PDF

Info

Publication number
KR102008998B1
KR102008998B1 KR1020180048483A KR20180048483A KR102008998B1 KR 102008998 B1 KR102008998 B1 KR 102008998B1 KR 1020180048483 A KR1020180048483 A KR 1020180048483A KR 20180048483 A KR20180048483 A KR 20180048483A KR 102008998 B1 KR102008998 B1 KR 102008998B1
Authority
KR
South Korea
Prior art keywords
hexanoic acid
atob
coa
recombinant
producing
Prior art date
Application number
KR1020180048483A
Other languages
Korean (ko)
Inventor
김성경
장성호
전병승
상병인
정규열
Original Assignee
포항공과대학교 산학협력단
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항공과대학교 산학협력단, 한양대학교 산학협력단 filed Critical 포항공과대학교 산학협력단
Priority to KR1020180048483A priority Critical patent/KR102008998B1/en
Application granted granted Critical
Publication of KR102008998B1 publication Critical patent/KR102008998B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12Y203/01009Acetyl-CoA C-acetyltransferase (2.3.1.9)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12Y203/01016Acetyl-CoA C-acyltransferase (2.3.1.16)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y208/00Transferases transferring sulfur-containing groups (2.8)
    • C12Y208/03CoA-transferases (2.8.3)
    • C12Y208/03008Acetate CoA-transferase (2.8.3.8)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The present invention relates to a recombinant microorganism producing hexanoic acid and a method for producing hexanoic acid using the same. More specifically, the present invention relates to a recombinant microorganism for hexanoic acid production having improved productivity of hexanoic acid by controlling atoB expression, and a method for producing hexanoic acid using the same. The recombinant microorganism for hexanoic acid production according to the present invention has precisely regulated the expression level of the atoB gene, which is a homologous gene, through 5′ UTR redesign. As a result, it is possible to optimally redistribute precursors in hexanoic acid metabolic pathways and to significantly increase hexanoic acid production, and thus the recombinant microorganism can be widely applied in various industrial fields in which hexanoic acid is utilized.

Description

헥사노익산을 생산하는 재조합 미생물 및 이를 이용한 헥사노익산의 생산 방법{HEXANOIC ACID-PRODUCING RECOMBINANT MICROORGANISM AND METHOD OF PRODUCING HEXANOIC ACID USING THE SAME}HEXANOIC ACID-PRODUCING RECOMBINANT MICROORGANISM AND METHOD OF PRODUCING HEXANOIC ACID USING THE SAME

본 발명은 헥사노익산을 생산하는 재조합 미생물 및 이를 이용한 헥사노익산의 생산방법에 관한 것으로서, 보다 구체적으로 atoB 발현량 조절을 통해 헥사노익산의 생산성을 향상시킨 헥사노익산 생산용 재조합 미생물 및 이를 이용한 헥사노익산의 생산방법에 관한 것이다.The present invention relates to a recombinant microorganism producing hexanoic acid and a method for producing hexanoic acid using the same, more specifically, a recombinant microorganism for hexanoic acid production which improves the productivity of hexanoic acid by controlling atoB expression, and the same It relates to a method for producing hexanoic acid used.

헥사노익산(Hexanoic acid)은 6개의 탄소를 가지는 포화 카르복실산으로 플랫폼 케미컬(platform chemical)로서 높은 경제적 잠재력을 가진다. 미생물 발효를 이용한 헥사노익산 생산은 클로스트리듐 속(Clostridium sp .) 및 메가스파에라 속(Megasphaera sp .)과 같은 혐기성 박테리아를 이용한 분리 및 엔지니어링에 초점이 맞추어져 있다. 그러나, 이는 느린 성장속도, 혐기성 조건에 대한 요구, 한정적인 유전 도구(genetic tools) 등의 이유로 경제적인 생산 공정의 개발이 쉽지 않다.Hexanoic acid is a saturated carboxylic acid with six carbons and has high economic potential as a platform chemical. Hexanoate acid production using microbial fermentation has focused on separating and engineering by the anaerobic bacteria such as Clostridium genus (Clostridium sp.) And Mega Spa in Riviera (Megasphaera sp.). However, it is not easy to develop an economical production process due to slow growth rate, demand for anaerobic conditions, limited genetic tools and the like.

헥사노익산 대사경로에서, 최종 단계는 대장균에서 동종 유래 또는 이종 유래(heterologous)의 티오에스테라제(thioesterase)에 의해 촉매화되어 아실-CoA 중간체가 가수분해된다. 상기 단계에 사용되는 효소의 선택은 카르복실산의 농도(titer), 생산성(productivity) 및 수율(yield)에 중요한 영향을 미친다. 예를 들어, 재조합 대장균 균주로부터의 상이한 동종 유래 티오에스테라제 유전자의 녹아웃(knockout)은 다양한 사슬 길이를 갖는 카르복실산 생성물의 비율을 실질적으로 변화시킨다(Kim et al., 2015; Volker et al., 2014). 또 다른 연구에서는 대장균에서 생쥐(Mus musculus) 유래 아실-CoA 가수분해 효소를 발현시켜 헥사노익산을 생산하였는데, 이는 상기 효소가 더 긴 아실-CoA 중간체를 선호하는 특성에 기인한다(Machado et al., 2012). 이러한 결과는 최종 단계를 촉매하는 적절한 효소의 사용이 대장균에서의 헥사노익산 생산을 향상시킬 수 있음을 종합적으로 나타낸다.In the hexanoic acid metabolic pathway, the final step is catalyzed by homologous or heterologous thioesterase in E. coli to hydrolyze the acyl-CoA intermediate. The choice of enzyme used in this step has a significant impact on the titer, productivity and yield of the carboxylic acid. For example, knockout of different homologous thioesterase genes from recombinant E. coli strains substantially alters the proportion of carboxylic acid products having various chain lengths (Kim et al., 2015; Volker et al. ., 2014). In another study in mice, E. coli (Mus musculus ) -derived acyl-CoA hydrolase was expressed to produce hexanoic acid, which is due to the property that the enzyme favors longer acyl-CoA intermediates (Machado et al., 2012). These results collectively indicate that the use of appropriate enzymes to catalyze the final step can improve hexanoic acid production in E. coli.

효소의 발현 수준을 미세하게 조정하는 것도 헥사노익산 생산에 필수적이다. 헥사노익산 대사경로의 C6 기질인 3-케토헥사노일-CoA는 아세틸-CoA(C2)와 부티릴-CoA(C4)가 동일 몰비로 축합되어 합성되기 때문에 두 전구체의 균형적인 공급이 필수적이다. 그러나, 부티릴-CoA가 아세틸-CoA로부터 합성되기 때문에 효소의 단순한 과발현은 전구체 간의 심각한 불균형을 야기한다. 따라서, 대사경로를 매개하는 각 촉매의 정교한 발현량 조절이 필요하다. Fine tuning of the expression level of the enzyme is also essential for hexanoic acid production. 3-ketohexanoyl-CoA, a C6 substrate of hexanoic acid metabolic pathway, is synthesized by condensation of acetyl-CoA (C2) and butyryl-CoA (C4) in the same molar ratio, so a balanced supply of the two precursors is essential. However, because butyryl-CoA is synthesized from acetyl-CoA, simple overexpression of the enzyme causes severe imbalance between the precursors. Therefore, it is necessary to control the expression level of each catalyst that mediates metabolic pathways.

한편, atoB는 헥사노익산 생산 경로의 첫번째 단계를 촉매하며, 헥사노익산대사경로에서 전구체의 비율을 결정한다. 이전 연구에서는, atoB를 단순히 과발현시켜 아세틸-CoA로부터 부티릴-CoA로의 대사경로를 증폭시켰으나(Lim et al., 2013a, 2013b; Shen et al., 2011), 이와 같은 atoB의 과발현은 아세틸-CoA 및 부티릴-CoA의 세포 내 불균형을 야기하여 헥사노익산 생산성을 저해한다. 또한, atoB가 과발현되면 부티릴-CoA로의 대사경로는 다운스트림(downstream) 대사경로를 촉매하는 효소들의(hbd, crtter) 활성 한계까지 증폭되는 한편, 다운스트림 경로 활성에 불균형이 생겨 중간체의 축적 및 atoB의 강한 아세토아세틸-CoA 절단반응 선호로 인한 아세토아세틸-CoA의 아세틸-CoA로의 가수분해가 야기된다. AtoB , on the other hand, catalyzes the first stage of the hexanoic acid production pathway and determines the proportion of precursors in the hexanoic acid metabolic pathway. In previous studies, atoB was simply overexpressed to amplify the metabolic pathway from acetyl-CoA to butyryl-CoA (Lim et al., 2013a, 2013b; Shen et al., 2011), but such overexpression of atoB is acetyl-CoA And intracellular imbalances of butyryl-CoA to inhibit hexanoic acid productivity. In addition, overexpression of atoB amplifies the metabolic pathway to butyryl-CoA up to the limit of the activity of the enzymes that catalyze downstream metabolic pathways ( hbd , crt and ter ), while imbalances downstream pathway activity results in the Accumulation and atoB 's strong acetoacetyl-CoA cleavage preferences result in hydrolysis of acetoacetyl-CoA to acetyl-CoA.

이에, 본 발명자들은 헥사노익산 대사경로의 아세틸-CoA 노드(node)에서 atoB의 발현 수준이 헥사노익산 생산에 상당한 영향을 미침을 확인하여, atoB 유전자의 정교한 발현량 조절을 통한 대사 흐름의 재분배(metabolic flux rebalancing)로 헥사노익산 생산량을 향상시킨 재조합 미생물을 제조함으로써 본 발명을 완성하였다.Accordingly, the present inventors confirmed that the expression level of atoB at the acetyl-CoA node of the hexanoic acid metabolic pathway significantly influences the production of hexanoic acid, thereby redistributing the metabolic flow through precise expression control of the atoB gene. The present invention was completed by preparing a recombinant microorganism having improved hexanoic acid production by metabolic flux rebalancing.

본 발명의 목적은 합성 5' UTR(untranslated region) 및 아세틸-CoA 아세틸전이효소 (acetyl-CoA acetyltransferase)를 코딩하는 atoB 유전자를 포함하는 제1 재조합 벡터를 제공하는데 있다.It is an object of the present invention to provide a first recombinant vector comprising atoB gene encoding a synthetic 5 'UTR (untranslated region) and acetyl-CoA acetyltransferase.

또한, 본 발명의 다른 목적은 상기 제1 재조합 벡터가 도입된 헥사노익산(hexanoic acid) 생산용 재조합 미생물을 제공하는데 있다.Another object of the present invention is to provide a recombinant microorganism for producing hexanoic acid into which the first recombinant vector is introduced.

또한, 본 발명의 또 다른 목적은 상기 제1 재조합 벡터를 도입하는 단계; 를 포함하는 헥사노익산 생산용 재조합 미생물의 제조방법을 제공하는데 있다.In addition, another object of the present invention is to introduce the first recombinant vector; It is to provide a method for producing a recombinant microorganism for hexanoic acid production comprising a.

또한, 본 발명의 또 다른 목적은 상기 재조합 미생물을 배양하는 단계; 를 포함하는 헥사노익산의 생산방법을 제공하는데 있다.In addition, another object of the present invention is the step of culturing the recombinant microorganism; To provide a method for producing hexanoic acid comprising a.

상기와 같은 목적을 달성하기 위해서, 본 발명은 합성 5' UTR(untranslated region) 및 아세틸-CoA 아세틸전이효소 (acetyl-CoA acetyltransferase)를 코딩하는 atoB 유전자를 포함하는 제1 재조합 벡터를 제공한다.In order to achieve the above object, the present invention provides a first recombinant vector comprising atoB gene encoding a synthetic 5 'UTR (untranslated region) and acetyl-CoA acetyltransferase (acetyl-CoA).

또한, 본 발명은 상기 제1 재조합 벡터가 도입된 헥사노익산(hexanoic acid) 생산용 재조합 미생물을 제공한다.The present invention also provides a recombinant microorganism for producing hexanoic acid into which the first recombinant vector is introduced.

또한, 본 발명은 상기 제1 재조합 벡터를 도입하는 단계; 를 포함하는 헥사노익산 생산용 재조합 미생물의 제조방법을 제공한다.In addition, the present invention comprises the steps of introducing the first recombinant vector; It provides a method for producing a recombinant microorganism for hexanoic acid production comprising a.

또한, 본 발명은 상기 재조합 미생물을 배양하는 단계; 를 포함하는 헥사노익산의 생산방법을 제공한다.In addition, the present invention comprises the steps of culturing the recombinant microorganism; It provides a method for producing hexanoic acid comprising a.

본 발명에 따른 헥사노익산 생산용 재조합 미생물은 5' UTR 재설계를 통해 동종 유래 유전자인 atoB 유전자의 발현량을 정교하게 조절한 것으로, 그에 따라 헥사노익산 대사경로에서 전구체를 최적으로 재분배하고 헥사노익산 생산량을 현저하게 증가시킬 수 있는바, 헥사노익산이 활용되는 다양한 산업분야에서 광범위하게 적용할 수 있다. The recombinant microorganism for hexanoic acid production according to the present invention is a 5 'UTR redesign to precisely control the expression level of the atoB gene, which is a homologous gene, thereby optimizing the redistribution of precursors in the hexanoic acid metabolic pathway and hexa As the production of noic acid can be increased significantly, it can be widely applied in various industries where hexanoic acid is utilized.

도 1은 atoB 발현량을 조절함에 따른 전구체 밸런싱 과정을 나타낸 모식도로, (a)는 헥사노익산 생산량을 증가시키기 위한 atoB 발현량 조절에 따른 전구체 밸런싱 방법을 나타낸 도이고, (b)는 5' UTR 재설계를 통해 atoB 발현량을 각각 다른 세기로 조절한 각 균주(SGK104, SGK105, SGK106 및 SGK107)의 atoB, hbd, crtter 활성을 측정한 결과를 나타낸 도이다.
도 2는 5' UTR 재설계를 통해 atoB 발현량을 각각 다른 세기로 조절한 각 균주(SGK104, SGK105, SGK106 및 SGK107)의 카복시산 농도(titer) 및 세포 내 CoA 중간체의 양을 나타낸 도이다. 구체적으로, (a)-(c)는 재설계된 atoB 5' UTR을 도입한 재조합 균주를 TB 배지에서 36시간 동안 배양하고, 이로부터 카복시산 농도를 측정한 결과를 나타낸 도이다. (d)-(f)는 상기 균주들에서 세포 내 아세틸-CoA, 부티릴-CoA 및 헥사노일-CoA 양을 측정한 결과를 나타낸 도이다.
1 is a schematic diagram showing a precursor balancing process by adjusting atoB expression, (a) is a diagram showing a precursor balancing method according to atoB expression control to increase the hexanoic acid production, (b) is 5 ' a diagram showing a result of measuring the atoB, hbd, crt, and ter activity of each strain one atoB control the expression level in each of different intensity (SGK104, SGK105, SGK106 and SGK107) through UTR redesign.
2 is a diagram showing the amount of the carboxylic acid concentration (titer) and the intracellular CoA intermediates of each strain (SGK104, SGK105, SGK106 and SGK107) was adjusted to different atoB expression level through the 5 'UTR redesign each century. Specifically, (a)-(c) is a diagram showing the results of measuring the carboxylic acid concentration from the recombinant strain in which the redesigned atoB 5 'UTR was introduced for 36 hours in TB medium. (d)-(f) is a diagram showing the results of measuring the amount of acetyl-CoA, butyryl-CoA and hexanoyl-CoA in the cells in the above strains.

이하, 본 발명에 대해 상세히 설명한다. Hereinafter, the present invention will be described in detail.

본 명세서에서 달리 정의되지 않은 용어들은 본 발명이 속하는 기술 분야에서 통상적으로 사용되는 의미를 갖는 것이다.Terms not defined otherwise in this specification are intended to have the meanings commonly used in the art.

본 발명에 있어서, "유전자"는 최광의의 의미로 간주되어야 하며, 구조 단백질 또는 조절 단백질을 암호화할 수 있다. 이때, 조절단백질은 전사인자, 열 충격단백질 또는 DNA/RNA 복제, 전사 및/또는 번역에 관여하는 단백질을 포함한다. 본 발명에 있어서, 발현 억제의 대상이 되는 표적 유전자는 염색체 외 구성요소로서 존재할 수 있다.In the present invention, "gene" should be considered in the broadest sense and may encode structural or regulatory proteins. At this time, the regulatory protein includes a transcription factor, a heat shock protein or a protein involved in DNA / RNA replication, transcription and / or translation. In the present invention, the target gene to be suppressed expression may exist as an extrachromosomal component.

본 발명에 있어서, "재조합 벡터"는 목적한 코딩 서열과, 특정 숙주 생물에서 작동 가능하게 연결된 코딩 서열을 발현하는데 필수적인 적정 핵산 서열을 포함하는 재조합 DNA 분자를 의미한다. 재조합 벡터는 바람직하게는 하나 이상의 선택성 마커를 포함할 수 있다. 상기 마커는 통상적으로 화학적인 방법으로 선택될 수 있는 특성을 갖는 핵산 서열로, 형질 전환된 세포를 비 형질전환 세포로부터 구별할 수 있는 모든 유전자가 이에 해당된다. 그 예로는 앰피실린(ampicilin), 카나마이신(kanamycin), G418, 블레오마이신(Bleomycin), 하이그로마이신(hygromycin), 클로람페니콜(chloramphenicol) 과 같은 항생제 내성 유전자가 있으나, 이에 한정되는 것은 아니며, 당업자에 의해 적절히 선택 가능하다.In the present invention, "recombinant vector" means a recombinant DNA molecule comprising a coding sequence of interest and a suitable nucleic acid sequence necessary for expressing a coding sequence operably linked in a particular host organism. The recombinant vector may preferably comprise one or more selectable markers. The marker is typically a nucleic acid sequence having properties that can be selected by a chemical method, which corresponds to all genes that can distinguish transformed cells from non-transformed cells. Examples include, but are not limited to, antibiotic resistance genes such as ampicilin, kanamycin, G418, bleomycin, hygromycin, and chloramphenicol, but are not limited thereto. It can select suitably.

본 발명에 있어서, “5' UTR(untranslated region)”은 mRNA의 5' 말단과 3' 말단에 있는 비번역부위로, 일반적으로 mRNA의 5' 비번역 부위(5' untranslated region: 5' UTR)는 유전자 발현 과정에서 여러 가지 기능을 수행하나 이러한 기능 중, 가장 큰 특징은 mRNA 번역 효율 조절에 관여하는 것이다. 번역개시 코돈의 인접한 상부에 존재하는 5' UTR의 염기서열은 번역 단계의 효율에 영향을 미치는 것으로 보고되어 있으며, 이러한 5' UTR의 길이는 백 베이스(base) 또는 그 이상의 뉴클레오티드로 되어 있고, 3' UTR의 길이는 그보다 더 긴 몇 킬로베이스(kilo base)로 이루어져 있다. 또한, 원핵생물에 5' UTR에 위치한 리보솜 결합부위 시퀀스로 알려진 샤인-달가노 시퀀스 (Shine-Dalgarno sequence)와 같이 정해진 위치는 아니지만 진핵생물에서도 리보솜 결합 부위 시퀀스라 할 수 있는 5’ UTR 에 속한 시퀀스들에 관한 연구 결과가 보고된 바 있다.In the present invention, the "5 'untranslated region" is an untranslated region located at the 5' and 3 'ends of the mRNA, and is generally a 5' untranslated region (5 'UTR). Performs several functions in the gene expression process, the most important of which is involved in the regulation of mRNA translation efficiency. The base sequence of the 5 'UTR in the immediate upper portion of the translation initiation codon has been reported to affect the efficiency of the translation step. The length of the 5' UTR is either back base or more nucleotides. UTRs are made up of several kilobases longer. Also, a sequence belonging to 5 'UTR, which is not a predetermined position such as a Shine-Dalgarno sequence, which is known as a ribosome binding site sequence located at 5' UTR in prokaryotes, is a ribosome binding site sequence, which is also called a ribosome binding site sequence in eukaryotes. The results of these studies have been reported.

본 발명은 합성 5' UTR(untranslated region) 및 아세틸-CoA 아세틸전이효소 (acetyl-CoA acetyltransferase)를 코딩하는 atoB 유전자를 포함하는 제1 재조합 벡터를 제공한다.The present invention provides a first recombinant vector comprising atoB gene encoding a synthetic 5 ′ untranslated region (UTR) and acetyl-CoA acetyltransferase.

본 발명에 있어서, 상기 "아세틸-CoA 아세틸전이효소"는 아세틸 CoA(Acetylcoenzyme A)에 아세틸기를 전이시켜 acetyl-CoA 두 개로부터 acetoacetyl-CoA를 생성하는 효소를 의미한다.In the present invention, the "acetyl-CoA acetyltransferase" refers to an enzyme that generates acetoacetyl-CoA from two acetyl-CoA by transferring an acetyl group to acetyl CoA (Acetylcoenzyme A).

본 발명에 있어서, 상기 합성 5' UTR은 atoB 유전자의 예측 발현량(a.u.)이 1,100 이상 300,000 이하가 되도록 설계된 합성 5' UTR일 수 있다. 본 발명의 일 실시예에서, 상기 합성 5’ UTR의 atoB 유전자의 예측 발현량이 332085.81 a.u. 인 경우(과발현, atoB-C, 서열번호 1)와 1085.74 a.u. 인 경우(저발현, atoB-DR3, 서열번호 4) 중간체(아세틸-CoA, 부티릴-CoA) 양의 불균형을 확인하였다. 또한 중간체 양이 조절됨에 따라 헥사노익산 생산량이 증가함을 확인하였다. 따라서, 상기 합성 5' UTR은 atoB 유전자의 예측 발현량이 적어도 1,100 이상 300,000 이하가 되도록 설계되는 것이 헥사노익산 생산량의 최대화에 바람직하다.In the present invention, the synthetic 5 'UTR may be a synthetic 5' UTR designed such that the predicted expression amount (au) of the atoB gene is 1,100 or more and 300,000 or less. In one embodiment of the present invention, the predicted expression of the atoB gene of the synthetic 5 'UTR is 332085.81 au (overexpression, atoB-C, SEQ ID NO: 1) and 1085.74 au (low expression, atoB-DR3, SEQ ID NO: 4) The imbalance of the amount of intermediate (acetyl-CoA, butyryl-CoA) was confirmed. It was also confirmed that hexanoic acid production increased as the amount of intermediate was adjusted. Therefore, the synthetic 5 'UTR is preferably designed to maximize the hexanoic acid production amount so that the predicted expression amount of the atoB gene is at least 1,100 or more and 300,000 or less.

보다 구체적으로, 상기 합성 5' UTR은 서열번호 2 또는 서열번호 3으로 표시되는 염기서열로 이루어진 것을 특징으로 할 수 있으나, 이는 본 발명을 예시하기 위한 것일 뿐 상기 서열에 본 발명의 내용이 한정되는 것은 아니다. 또한, 상기 합성 5' UTR은 특정 예측 발현량(a.u.)을 나타내기 위하여 설계된 것이라면 제한 없이 포함될 수 있음은 당업자에게 자명할 것이다.More specifically, the synthetic 5 'UTR may be characterized by consisting of a nucleotide sequence represented by SEQ ID NO: 2 or SEQ ID NO: 3, which is intended to illustrate the present invention is limited to the contents of the present invention to the sequence It is not. In addition, it will be apparent to those skilled in the art that the synthetic 5 ′ UTR may be included without limitation as long as it is designed to display a specific predicted expression amount (a.u.).

본 발명에 있어서, 상기 제1 재조합 벡터는 베타-케토티올라제(β-ketothiolase)를 코딩하는 bktB 유전자를 더 포함하는 것을 특징으로 할 수 있다.In the present invention, the first recombinant vector may further comprise a bktB gene encoding beta-ketothiolase (β-ketothiolase).

본 발명에 있어서, 상기 "베타-케토티올라제"는 탄소수 C2의 CoA 화합물을 중합시켜(condensation) 이를 탄소수 C4 또는 C6 등의 화합물로 생산하는 효소를 의미한다. 본 발명에서 베타-케토티올라제는 대사과정의 중간 대사물질인 부티릴-CoA에 아세틸-CoA를 추가하여 3-케토헥사노일-CoA(C6)를 생산하는 효소를 의미한다.In the present invention, the "beta-ketothiolase" refers to an enzyme that polymerizes (condensation) a CoA compound having C2 to produce a compound such as C4 or C6. In the present invention, beta-ketothiolase refers to an enzyme that produces 3-ketohexanoyl-CoA (C6) by adding acetyl-CoA to butyryl-CoA, an intermediate metabolite of metabolism.

또한, 본 발명에 있어서, 상기 bktB 유전자는 쿠프리아비두스 네카토르(Cupriavidus necator) 유래일 수 있다.In addition, in the present invention, the bktB gene may be derived from Cupriavidus necator .

또한, 본 발명은 본 발명의 제1 재조합 벡터가 도입된 헥사노익산(hexanoic acid) 생산용 재조합 미생물을 제공한다.The present invention also provides a recombinant microorganism for producing hexanoic acid into which the first recombinant vector of the present invention is introduced.

본 발명에 있어서, 상기 재조합 미생물은 형질전환 된 것을 말한다. 본 발명에서 "형질전환"은 프로모터, 또는 추가적으로 목적 단백질을 코딩하는 유전자를 포함하는 벡터를 숙주세포 내에 도입 하는 것을 의미하며, 상기 유전자의 과발현 또는 결실을 포함한다. 또한, 형질전환된 목적 단백질을 코딩하는 유전자는 숙주세포 내에 발현될 수 있기만 한다면, 숙주세포의 염색체 내에 삽입되어 위치하거나 염색체 외에 위치할 수 있다.In the present invention, the recombinant microorganism refers to the transformed. In the present invention, "transformation" means introducing a promoter or a vector containing a gene encoding a target protein into a host cell, and includes overexpression or deletion of the gene. In addition, the gene encoding the transformed target protein may be inserted into the chromosome of the host cell or located outside the chromosome as long as it can be expressed in the host cell.

모든 벡터가 본 발명의 DNA 서열을 발현하는데 모두 동등하게 기능을 발휘하지는 않으며, 마찬가지로 모든 숙주가 동일한 발현 시스템에 대해 동일하게 기능을 발휘하지는 않는다. 그러나, 당업자라면 과도한 실험적 부담 없이 본 발명의 범위를 벗어나지 않는 채로 여러 벡터, 발현 조절 서열 및 숙주 중에서 적절한 선택을 할 수 있다. 예를 들어, 벡터를 선택함에 있어서는 숙주를 고려하여야 하는데, 이는 벡터가 그 안에서 복제되어야만 하기 때문이다. 벡터의 복제 수, 복제 수를 조절할 수 있는 능력 및 당해 벡터에 의해 코딩되는 다른 단백질, 예를 들어 항생제 마커의 발현도 또한 고려되어야만 한다.Not all vectors function equally in expressing the DNA sequences of the present invention, and likewise not all hosts function equally for the same expression system. However, those skilled in the art can make appropriate choices among various vectors, expression control sequences and hosts without departing from the scope of the present invention without undue experimental burden. For example, in selecting a vector, the host must be considered, since the vector must be replicated in it. The number of copies of the vector, the ability to control the number of copies, and the expression of other proteins encoded by the vector, such as antibiotic markers, must also be considered.

본 발명에 있어서, 상기 재조합 미생물은 제1 재조합 벡터 외에 메가스파에라 속 MH(Megasphaera sp. MH)로부터 유래된 아세틸-CoA 전이효소(ACT)를 코딩하는 mhact 유전자를 포함하는 제2 재조합 벡터가 추가로 도입된 것을 특징으로 할 수 있다.In the present invention, the recombinant microorganism may further comprise a second recombinant vector comprising a mhact gene encoding acetyl-CoA transferase (ACT) derived from Megasphaera sp. MH in addition to the first recombinant vector . It may be characterized as introduced.

또한, 본 발명에 있어서, 상기 제2 재조합 벡터는 크로토네이즈(Crotonase)를 코딩하는 crt 유전자, 3-하이드록시부티릴-CoA 탈수소효소(3-hydroxybutyryl-CoA dehydrogenase)를 코딩하는 hbd 유전자 및 트랜스-이노일-CoA 환원효소(trans-enoyl-CoA reductase)를 코딩하는 ter 유전자를 더 포함하는 것을 특징으로 할 수 있다.In the present invention, the second recombinant vector is crotonate tyrosinase crt genes, 3-hydroxy-butyryl -CoA dehydrogenase (3-hydroxybutyryl-CoA dehydrogenase) and the coding hbd gene encoding the trans (Crotonase) It may be characterized in that it further comprises a ter gene encoding a trans- enoyl-CoA reductase ( trans -enoyl-CoA reductase).

본 발명에 있어서, 상기 "크로토네이즈"는 다른 표현으로는 이노일-CoA 수화효소(enoyl-CoA hydratase)로 물분자를 enoyl-CoA 화합물에 결합시키는 효소를 의미하며, 가역적으로 하이드록시 그룹을 가진 CoA 화합물에서 물분자를 분해하여 이노일-coA 화합물을 생성하는 작용도 매개하는 효소이다. 또한, 상기 "3-하이드록시부티릴-CoA 탈수소효소"는 3-하이드록시부티릴-CoA에서 수소를 이탈시키는 작용을 매개하며, 이는 일종의 산화반응으로 해석될 수 있다. 다만, 가역적인 반응으로 되려 아세토아세틸-CoA에 수소를 부착시켜 3-하이드록시부티릴-CoA를 생성하는 일종의 환원작용도 매개할 수 있다. 또한, 상기 "트랜스-이노일-CoA 환원효소"는 트랜스-이노일-CoA에 수소를 부착시켜 환원시키는 효소를 의미한다.In the present invention, the "crotonase" refers to an enzyme that binds a water molecule to an enoyl-CoA compound by another expression, enoyl-CoA hydratase, and reversibly represents a hydroxy group. It is an enzyme that also mediates the action of decomposing water molecules in the CoA compound to produce inoyl-coA compounds. In addition, the "3-hydroxybutyryl-CoA dehydrogenase" mediates the action of leaving hydrogen in 3-hydroxybutyryl-CoA, which can be interpreted as a kind of oxidation reaction. However, it is also possible to mediate a kind of reductive action to produce 3-hydroxybutyryl-CoA by attaching hydrogen to acetoacetyl-CoA to become a reversible reaction. In addition, the term " trans -inoyl-CoA reductase" refers to an enzyme that reduces hydrogen by attaching hydrogen to trans -inoyl-CoA.

상기 효소들의 서열은 공지의 데이터 베이스 등에서 얻을 수 있으나, 이에 제한되지는 않는다. 바람직하게는, 본 발명의 atoB, bktB, mhact, crt, hbd 또는 ter을 코딩하는 염기서열은 각각 서열번호 24, 서열번호 25, 서열번호 26, 서열번호 27, 서열번호 28, 서열번호 29로 표시되는 염기서열로 구성될 수 있다. 또한, 상기 염기서열의 변이체도 본 발명의 범위 내에 포함될 수 있으며, 구체적으로 상기 변이체는 서열번호 24 내지 29와 각각 70% 이상, 바람직하게는 80% 이상, 더욱 바람직하게는 90% 이상, 보다 더욱 바람직하게는 95% 이상, 더욱더 바람직하게는 98% 이상, 가장 바람직하게는 99% 이상의 서열 상동성을 가지는 염기서열을 포함할 수 있다. 여기에서 폴리뉴클레오티드에 대한 "서열 상동성의 %"는 두 개의 최적으로 배열된 서열과 비교 영역을 비교함으로써 확인되며, 비교 영역에서의 폴리뉴클레오티드 서열의 일부는 두 서열의 최적 배열에 대한 참고 서열(추가 또는 삭제를 포함하지 않음)에 비해 추가 또는 삭제(gap)를 포함할 수 있다.Sequences of the enzymes can be obtained from known databases, but are not limited thereto. Preferably, the nucleotide sequence encoding the atoB, bktB, mhact, crt, hbd or ter of the present invention is represented by the respective SEQ ID NO: 24, SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27, SEQ ID NO: 28, SEQ ID NO: 29 It may be composed of the base sequence. In addition, a variant of the nucleotide sequence may also be included within the scope of the present invention, and specifically, the variant may be 70% or more, preferably 80% or more, more preferably 90% or more, and more particularly, SEQ ID NOS: 24 to 29, respectively. Preferably at least 95%, even more preferably at least 98%, most preferably at least 99% may include a base sequence having sequence homology. Wherein the “% sequence homology” to the polynucleotide is identified by comparing the two optimally arranged sequences with the comparison region, wherein a portion of the polynucleotide sequence in the comparison region is the reference sequence for the optimal alignment of the two sequences (additional Or does not include deletion) or addition or deletion (gap).

본 발명에 있어서, 상기 crt 유전자 및 hbd 유전자는 클로스트리듐 아세토부틸리쿰(Clostridium acetobutylicum) 유래이고, Ter 유전자는 트레포네마 덴티코울러(Treponema denticola) 유래일 수 있다.In the present invention, the crt gene and hbd gene may be a Clostridium acetonitrile unit Tilikum and (Clostridium acetobutylicum) origin, Ter gene TRE Four nematic den Tycho ulreo (Treponema denticola) origin.

본 발명에 있어서, 상기 미생물은 에스케리치아 속(Escherichia sp .) 미생물일 수 있고, 바람직하게는 대장균인 것을 특징으로 할 수 있다.In the present invention, the microorganism is Escherichia sp . ) May be microorganisms, preferably E. coli.

본 발명에 있어서, 상기 미생물은 대장균을 기반으로, atoB의 활성이 내재적 활성에 비하여 약화되고, bktB, mhact, crt, hbdter 유전자 조합의 활성은 강화된 것일 수 있다.In the present invention, the micro-organisms is based on the E. coli, the activity of the atoB weakened compared with the endogenous activity, bktB, mhact, crt, hbd and ter activity of the gene combination can be enhanced.

또한, 본 발명은 본 발명의 제1 재조합 벡터를 도입하는 단계; 를 포함하는 헥사노익산 생산용 재조합 미생물의 제조방법을 제공한다.In addition, the present invention comprises the steps of introducing a first recombinant vector of the present invention; It provides a method for producing a recombinant microorganism for hexanoic acid production comprising a.

본 발명에 있어서, 목적 유전자의 미생물 도입은 미생물 염색체의 유전정보 치환을 통해 이루어지는 것이 바람직하며, 이는 당업계에 알려진 방법을 제한 없이 이용하여 수행될 수 있다. 본 발명의 일 실시예에서는 Red recombination system을 이용하였으나, 이에 제한되지 않는다.In the present invention, the microorganism introduction of the target gene is preferably made through the substitution of the genetic information of the microorganism chromosome, which can be performed using any method known in the art without limitation. In an embodiment of the present invention, the red recombination system is used, but is not limited thereto.

또한, 추가적으로 목적 유전자의 미생물 도입은 재조합 벡터의 도입을 통해 이루어질 수 있으며, 상기 재조합 벡터는 하나 또는 복수 개의 벡터로 구성될 수 있으며, 상기 하나 또는 복수 개의 벡터가 각각 미생물에 도입될 수 있고, 이에 제한되지 않는다.In addition, the microorganism of the target gene may be introduced through the introduction of a recombinant vector, the recombinant vector may be composed of one or a plurality of vectors, the one or a plurality of vectors may be introduced into each microorganism, It is not limited.

본 발명에 있어서, "벡터"는 적합한 숙주 내에서 DNA를 발현시킬 수 있는 적합한 조절 서열에 작동가능하게 연결된 DNA 서열을 함유하는 DNA 제조물을 의미한다. 벡터는 플라스미드, 파지 입자 또는 간단하게 잠재적 게놈 삽입물일 수 있다. 또한, 상기 재조합 플라스미드 벡터는 바람직하게는 pACYCDuet, pCDFDuet 등을 사용할 수 있으나 이에 제한되는 것은 아니다.In the present invention, "vector" refers to a DNA preparation containing a DNA sequence operably linked to a suitable regulatory sequence capable of expressing DNA in a suitable host. Vectors can be plasmids, phage particles or simply potential genomic inserts. In addition, the recombinant plasmid vector may preferably use pACYCDuet, pCDFDuet and the like, but is not limited thereto.

적당한 숙주로 형질전환되면, 벡터는 숙주 게놈과 무관하게 복제하고 기능할 수 있거나, 또는 일부 경우에 게놈 그 자체에 통합될 수 있다. 플라스미드가 현재 벡터의 가장 통상적으로 사용되는 형태이므로, 본 발명의 명세서에서 "플라스미드(plasmid)" 및 "벡터(vector)"는 때로 상호 교환적으로 사용된다. 본 발명의 목적상, 플라스미드 벡터를 이용하는 게 바람직하다. 이러한 목적에 사용될 수 있는 전형적인 플라스미드 벡터는 (a) 숙주세포당 수 개에서 수백 개의 플라스미드 벡터를 포함하도록 복제가 효율적으로 이루어지도록 하는 복제 개시점, (b) 플라스미드 벡터로 형질전환된 숙주세포가 선발될 수 있도록 하는 항생제 내성 유전자 및 (c) 외래 DNA 절편이 삽입될 수 있는 제한효소 절단부위를 포함하는 구조를 지니고 있다. 적절한 제한효소 절단 부위가 존재하지 않을지라도, 통상의 방법에 따른 합성 올리고뉴클레오타이드 어댑터(oligonucleotide adaptor) 또는 링커(linker)를 사용하면 벡터와 외래 DNA를 용이하게 라이게이션(ligation)할 수 있다. 라이게이션 후에, 벡터는 적절한 숙주세포로 형질전환되어야 한다. 형질전환은 칼슘 클로라이드 방법 또는 전기천공법(electroporation) 등을 사용해서 용이하게 달성될 수 있다.Once transformed into the appropriate host, the vector can replicate and function independently of the host genome, or in some cases can be integrated into the genome itself. Since plasmids are the most commonly used form of current vectors, "plasmid" and "vector" are sometimes used interchangeably in the context of the present invention. For the purposes of the present invention, it is preferred to use plasmid vectors. Typical plasmid vectors that can be used for this purpose include (a) a replication initiation point that allows for efficient replication, including several to hundreds of plasmid vectors per host cell, and (b) host cells transformed with plasmid vectors. It has a structure that includes an antibiotic resistance gene that allows it to be used and a restriction enzyme cleavage site (c) into which foreign DNA fragments can be inserted. Although no suitable restriction enzyme cleavage site is present, synthetic oligonucleotide adapters or linkers according to conventional methods can be used to facilitate ligation of the vector and foreign DNA. After ligation, the vector should be transformed into the appropriate host cell. Transformation can be easily accomplished using calcium chloride method or electroporation or the like.

당업계에 주지된 바와 같이, 숙주세포에서 형질감염 유전자의 발현 수준을 높이기 위해서는, 해당 유전자가 선택된 발현 숙주 내에서 기능을 발휘하는 전사 및 해독 발현 조절 서열에 작동 가능하도록 연결되어야만 한다. 바람직하게는 발현 조절서열 및 해당 유전자는 세균 선택 마커 및 복제 개시점을 같이 포함하고 있는 하나의 재조합 벡터 내에 포함되게 된다.As is well known in the art, to raise the expression level of a transfected gene in a host cell, the gene must be operably linked to transcriptional and translational expression control sequences that function in the selected expression host. Preferably, the expression control sequence and the gene of interest will be included in one recombinant vector containing the bacterial selection marker and the replication start point together.

또한, 본 발명에 있어서, 상기 제조방법은 메가스파에라 속 MH(Megasphaera sp. MH)로부터 유래된 아세틸-CoA 전이효소(ACT)를 코딩하는 mhact 유전자를 포함하는 제2 재조합 벡터를 도입하는 단계; 를 추가로 포함하는 것을 특징으로 할 수 있다.In addition, in the present invention, the method comprises the steps of introducing a second recombinant vector comprising a mhact gene encoding an acetyl-CoA transferase (ACT) derived from Megasphaera sp. It may be characterized in that it further comprises.

또한, 본 발명은 본 발명의 재조합 미생물을 배양하는 단계; 를 포함하는 헥사노익산의 생산방법을 제공한다.In addition, the present invention comprises the steps of culturing the recombinant microorganism of the present invention; It provides a method for producing hexanoic acid comprising a.

본 발명의 미생물의 배양에 사용되는 배지 및 기타 배양조건은 통상의 에스케리치아 속 미생물의 배양에 사용되는 배지이면 어느 것이나 사용될 수 있으나, 본 발명의 미생물의 요구 조건을 적절하게 만족시켜야 한다. 바람직하게는, 본 발명의 미생물을 적당한 탄소원, 질소원, 아미노산, 비타민 등을 함유한 통상의 배지 내에서 호기성 조건 하에서 온도, pH 등을 조절하면서 배양한다.The medium and other culture conditions used for the cultivation of the microorganism of the present invention may be any medium used for the cultivation of the microorganisms of the genus Escherichia, but the requirements of the microorganism of the present invention should be appropriately satisfied. Preferably, the microorganism of the present invention is cultured under aerobic conditions in a conventional medium containing a suitable carbon source, nitrogen source, amino acids, vitamins and the like while controlling the temperature, pH and the like.

상기 배지에는 인원으로서 인산 제1칼륨, 인산 제2칼륨 및 대응되는 소디움-함유 염이 포함될 수 있다. 무기화합물로는 염화나트륨, 염화칼슘, 염화철, 황산마그네슘, 황산철, 황산망간 및 탄산칼슘 등이 사용될 수 있으며, 그 외에 아미노산, 비타민 및 적절한 전구체 등이 포함될 수 있다. 이들 배지 또는 전구체는 배양물에 회분식 또는 연속식으로 첨가될 수 있다. 배양 중에 수산화암모늄, 수산화칼륨, 암모니아, 인산 및 황산과 같은 화합물을 배양물에 적절한 방식으로 첨가하여, 배양물의 pH를 조정할 수 있다.The medium may include, as personnel, monopotassium phosphate, dipotassium phosphate and corresponding sodium-containing salts. As the inorganic compound, sodium chloride, calcium chloride, iron chloride, magnesium sulfate, iron sulfate, manganese sulfate, calcium carbonate, and the like may be used, and other amino acids, vitamins, and appropriate precursors may be included. These media or precursors may be added batchwise or continuously to the culture. During the culture, compounds such as ammonium hydroxide, potassium hydroxide, ammonia, phosphoric acid and sulfuric acid can be added to the culture in an appropriate manner to adjust the pH of the culture.

또한, 배양 중에는 지방산 폴리글리콜 에스테르와 같은 소포제를 사용하여 기포 생성을 억제할 수 있다. 또한, 배양물의 호기 상태를 유지하기 위하여, 배양물 내로 산소 또는 산소 함유 기체를 주입하거나 혐기 및 호기 상태를 유지하기 위해 기체의 주입 없이 혹은 질소, 수소 또는 이산화탄소 가스를 주입할 수 있다. 배양물의 온도는 보통 27℃ 내지 37℃, 바람직하게는 30℃ 내지 35℃로 설정할 수 있다. 배양 기간은 원하는 유용 물질의 생성량이 수득될 때까지 계속될 수 있으며, 바람직하게는 10 내지 100 시간 동안 배양할 수 있다.In addition, during the culture, antifoaming agents such as fatty acid polyglycol esters can be used to suppress bubble generation. In addition, in order to maintain the aerobic state of the culture, oxygen or oxygen-containing gas may be injected into the culture, or nitrogen, hydrogen or carbon dioxide gas may be injected without gas injection to maintain anaerobic and aerobic conditions. The temperature of the culture can usually be set at 27 ℃ to 37 ℃, preferably 30 ℃ to 35 ℃. The incubation period can continue until the desired amount of useful substance is obtained, preferably for 10 to 100 hours.

본 발명의 상기 배양 단계에서 생산된 헥사노익산은 추가로 정제 또는 회수하는 단계를 포함할 수 있으며, 미생물 또는 배양물로부터 목적 단백질을 회수하는 방법은 당업계에 알려진 방법, 예컨대 원심분리, 여과, 음이온 교환 크로마토그래피, 결정화 및 HPLC 등이 사용될 수 있으나, 이들 예에 한정되는 것은 아니다. 상기 회수 단계는 정제 공정을 포함할 수 있으며, 당업자는 공지된 여러 정제 공정 중 필요에 따라 선택하여 활용할 수 있다.The hexanoic acid produced in the culturing step of the present invention may further comprise the step of purifying or recovering, the method for recovering the target protein from the microorganism or the culture is known in the art, such as centrifugation, filtration, Anion exchange chromatography, crystallization, HPLC and the like can be used, but are not limited to these examples. The recovery step may include a purification process, and those skilled in the art may select and utilize as needed from a variety of known purification processes.

이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail by way of examples. However, the following examples are merely to illustrate the present invention is not limited to the contents of the present invention.

재료예Material example

본 발명에서 이용한 대장균 균주 및 플라스미드는 하기 표 1에 기재한 바와 같으며, 본 발명에 사용된 올리고뉴클레오티드는 Macrogen(Daejeon, Korea)와 Cosmogenetech(Daejeon, Korea), Cosmogenetech(Daejeon, Korea)에서 합성하였고 하기 표 2에 나타내었다. 본 발명에서 이용한 모든 유전자 정보는 하기 표 3에 나타내었다.E. coli strains and plasmids used in the present invention are as shown in Table 1, oligonucleotides used in the present invention were synthesized in Macrogen (Daejeon, Korea), Cosmogenetech (Daejeon, Korea), Cosmogenetech (Daejeon, Korea) It is shown in Table 2 below. All genetic information used in the present invention is shown in Table 3 below.

관련 특성Related property 균주Strain Mach-T1R Mach-T1 R F- φ80(lacZ)ΔM15 ΔlacX74 hsdR(rK -mK +) ΔrecA1398 endA1 tonAF - φ80 ( lac Z) ΔM15 Δ lac X74 hsd R (r K - m K + ) Δ rec A1398 end A1 ton A W3110W3110 F- λ- rph-1 IN(rrnD, rrnE)1F - λ - rph-1 IN ( rrnD , rrnE ) 1 JHL58JHL58 W3110 ΔatoDA ΔadhE ΔldhA ΔpaaFGH ΔfrdABCD Δpta PatoB::BBa_J23100W3110 Δ atoDA Δ adhE Δ ldhA Δ paaFGH Δ frdABCD Δ pta P atoB :: BBa_J23100 JHL26JHL26 JHL58/pBASPJHL58 / pBASP SGK101SGK101 JHL58/pBASP/pCDF-bktBJHL58 / pBASP / pCDF-bktB SGK102SGK102 JHL58/pACYC-crt-hbd-ter-mhact/pCDF-bktBJHL58 / pACYC-crt-hbd-ter-mhact / pCDF-bktB SGK103SGK103 W3110ΔΔatoDA ΔadhE ΔldhA ΔpaaFGH ΔfrdABCD Δpta ΔatoB W3110ΔΔ atoDA Δ adhE Δ ldhA Δ paaFGH Δ frdABCD Δ pta Δ atoB SGK104SGK104 SGK103/pACYC-crt-hbd-ter-mhact/pCDF-bktB-atoB-CSGK103 / pACYC-crt-hbd-ter-mhact / pCDF-bktB-atoB-C SGK105SGK105 SGK103/pACYC-crt-hbd-ter-mhact/pCDF-bktB-atoB-DR1SGK103 / pACYC-crt-hbd-ter-mhact / pCDF-bktB-atoB-DR1 SGK106SGK106 SGK103/pACYC-crt-hbd-ter-mhact/pCDF-bktB-atoB-DR2SGK103 / pACYC-crt-hbd-ter-mhact / pCDF-bktB-atoB-DR2 SGK107SGK107 SGK103/pACYC-crt-hbd-ter-mhact/pCDF-bktB-atoB-DR3SGK103 / pACYC-crt-hbd-ter-mhact / pCDF-bktB-atoB-DR3 플라스미드Plasmid pKD46pKD46 Red recombinase expression vector, AmpR Red recombinase expression vector, Amp R pACYCDuetpACYCDuet Expression vector, CmR, p15A oriExpression vector, Cm R , p15A ori pCDFDuetpCDFDuet Expression vector, SmR, cloDF13 oriExpression vector, Sm R , cloDF13 ori pACYC-SPpACYC-SP pACYCDuet-PJ23100::crt-PJ23100::hbd-PJ23100::ter pACYCDuet-P J23100 :: crt -P J23100 :: hbd -P J23100 :: ter pBASPpBASP pACYCDuet-PJ23100::crt-PJ23100::hbd-PJ23100::ter-PJ23100::tesB pACYCDuet-P J23100 :: crt -P J23100 :: hbd -P J23100 :: ter -P J23100 :: tesB pACYC-crt-hbd-ter-mhactpACYC-crt-hbd-ter-mhact pACYCDuet-PJ23100::crt-PJ23100::hbd-PJ23100::ter-PJ23100::mhact pACYCDuet-P J23100 :: crt -P J23100 :: hbd -P J23100 :: ter -P J23100 :: mhact pCDF-bktBpCDF-bktB pCDFDuet-PJ23100::bktB pCDFDuet-P J23100 :: bktB pCDF-bktB-atoB-CpCDF-bktB-atoB-C pCDFDuet-PJ23100::bktB-PJ23108::atoB-CpCDFDuet-P J23100 :: bktB -P J23108 :: atoB -C pCDF-bktB-atoB-DR1pCDF-bktB-atoB-DR1 pCDFDuet-PJ23100::bktB-PJ23108::atoB-DR1pCDFDuet-P J23100 :: bktB -P J23108 :: atoB -DR1 pCDF-bktB-atoB-DR2pCDF-bktB-atoB-DR2 pCDFDuet-PJ23100::bktB-PJ23108::atoB-DR2pCDFDuet-P J23100 :: bktB -P J23108 :: atoB -DR2 pCDF-bktB-atoB-DR3pCDF-bktB-atoB-DR3 pCDFDuet-PJ23100::bktB-PJ23108::atoB-DR3pCDFDuet-P J23100 :: bktB -P J23108 :: atoB -DR3

명칭designation 서열 order (5′- 3')(5′-3 ') a,b,c,da, b, c, d 서열번호SEQ ID NO: atoB-del-FatoB-del-F atcccttcatattcaattagttaaataactaaatccaataatctcattctctagtgctggagcgaactgc atcccttcatattcaattagttaaataactaaatccaataatctcattct ctagtgctggagcgaactgc 55 atoB-del-RatoB-del-R cctgaccgccgccaatgcacagtgttgccagccccagcgttttatcgcgtggagtactcgcggttgactg cctgaccgccgccaatgcacagtgttgccagccccagcgttttatcgcgt ggagtactcgcggttgactg 66 ACT-F1ACT-F1 CTAGGTACAGTGCTAGCtttgcgtaactaaggagggtcacctatgtataaactgtcgcaaatcgctga CTAGGTACAGTGCTAGCtttgcgtaactaaggagggtcacct atgtataaactgtcgcaaatcgctga 77 ACT-F2ACT-F2 gaatGAGCTCTTGACGGCTAGCTCAGTCCTAGGTACAGTGCTAGCtttgcgtaactaagg gaatGAGCTC TTGACGGCTAGCTCAGTCCTAGGTACAGTGCTAGCtttgcgtaactaagg 88 ACT-RACT-R gccatcCATATGtttagtattccgtttttgaggttttcgtgccatcCATATGtttagtattccgtttttgaggttttcgt 99 bktB-F1bktB-F1 CTAGGTACAGTGCTAGCactgtaataagaaggaggggtgatatgacgcgtgaagtggtag CTAGGTACAGTGCTAGCactgtaataagaaggaggggtgat atgacgcgtgaagtggtag 1010 bktB-F2bktB-F2 gaatGCGGCCGCTTGACGGCTAGCTCAGTCCTAGGTACAGTGCTAGCactgtaataagaaggagggg gaatGCGGCCGC TTGACGGCTAGCTCAGTCCTAGGTACAGTGCTAGCactgtaataagaaggagggg 1111 bktB-RbktB-R gccatcCATATGtcagatacgctcgaagatgggccatcCATATGtcagatacgctcgaagatgg 1212 atoB-down-regulation-F1atoB-down-regulation-F1 gccatcCTCGAGCTGACAGCTAGCTCAGTCCTAGGTATAATGCTAGCccctcgggttaaaggtgcatagactatgaaaaattgtgtcatcgtcagtgcggtagccatcCTCGAG CTGACAGCTAGCTCAGTCCTAGGTATAATGCTAGCccctcgggttaaaggtgcatagact atgaaaaattgtgtcatcgtcagtgcggta 1313 atoB-down-regulation-F2atoB-down-regulation-F2 gccatcCTCGAGCTGACAGCTAGCTCAGTCCTAGGTATAATGCTAGCccctcgggttaaaggtgcatcgacgatgaaaaattgtgtcatcgtcagtgcggtagccatcCTCGAG CTGACAGCTAGCTCAGTCCTAGGTATAATGCTAGCccctcgggttaaaggtgcatcgacg atgaaaaattgtgtcatcgtcagtgcggta 1414 atoB-down-regulation-F3atoB-down-regulation-F3 gccatcCTCGAGCTGACAGCTAGCTCAGTCCTAGGTATAATGCTAGCccctcgggttaaaggtgcatagacgatgaaaaattgtgtcatcgtcagtgcggtagccatcCTCGAG CTGACAGCTAGCTCAGTCCTAGGTATAATGCTAGCccctcgggttaaaggtgcatagacg atgaaaaattgtgtcatcgtcagtgcggta 1515 atoB-down-regulation-RatoB-down-regulation-R gatggcTTAATTAAttaattcaaccgttcaatcaccatcgcaattccgatggcTTAATTAAttaattcaaccgttcaatcaccatcgcaattcc 1616 atoB-control-FatoB-control-F gccatcCTCGAGCTGACAGCTAGCTCAGTCCTAGGTATAATGCTAGCcggcacccctacaaacagaaggaatataaa gccatcCTCGAG CTGACAGCTAGCTCAGTCCTAGGTATAATGCTAGCcggcacccctacaaacagaaggaatataaa 1717 atoB-genome-check-FatoB-genome-check-F gaacccgcactgctttaatgctgggaacccgcactgctttaatgctgg 1818 atoB-genome-check-RatoB-genome-check-R ggttaccttcgccgtcgatgttcggttaccttcgccgtcgatgttc 1919 ACT-check-FACT-check-F cgtgagggtctgtactctgttaccatccgtgagggtctgtactctgttaccatc 2020 pACYC-check-FpACYC-check-F atctcgacgctctcccttatgcgactatctcgacgctctcccttatgcgact 2121 pACYC-check-RpACYC-check-R ggttatgctagttattgctcagcggtggcaggttatgctagttattgctcagcggtggca 2222 atoB-plasmid-check-FatoB-plasmid-check-F gccgccatcttcgagcgtatctgacgccgccatcttcgagcgtatctgac 2323 a: 이탤릭체는 상동재조합 부분을 나타낸다.
b: 밑줄친 소문자는 재설계된 5' UTR 서열을 나타낸다.
c: 밑줄친 대문자는 프로모터 서열을 의미한다.
d: 대문자는 제한효소 인식 서열을 나타낸다.
a: Italics indicate homologous recombination parts.
b: Lowercase, underlined indicates the redesigned 5 'UTR sequence.
c: Underlined uppercase letters indicate the promoter sequence.
d: Uppercase letters indicate restriction enzyme recognition sequences.

유전자(효소)Gene (enzyme) 유래origin 서열번호SEQ ID NO: atoB(acetyl-CoA acetyltransferase) atoB (acetyl-CoA acetyltransferase) Escherichia coli W3110 Esherichia coli W3110 2424 bktB(β-ketothiolase) bktB (β-ketothiolase) CupriavidusCupriavidus necatornecator 2525 mhact(acetyl-CoA transferase) mhact (acetyl-CoA transferase) Megasphaera sp. MH Megasphaera sp. MH 2626 crt(Crotonase) crt (Crotonase) Clostridium Clostridium acetobutylicumacetobutylicum 2727 hbd(3-hydroxybutyryl-CoA dehydrogenase) hbd (3-hydroxybutyryl-CoA dehydrogenase) Clostridium Clostridium acetobutylicumacetobutylicum 2828 ter(trans-enoyl-CoA reductase) ter (trans-enoyl-CoA reductase) TreponemaTreponema denticoladenticola 2929 tesB(thioesterase) tesB (thioesterase) Escherichia coli W3110 Esherichia coli W3110 3030

Phusion DNA 폴레머레이즈, Quick 라이게이즈 및 제한효소는 New England Biolabs(Beverly, MA, USA)에서 구매하였고, 증폭된 플라스미드는 AccuPrep Nano-Plus Plasmid Mini Extraction 키트(Bioneer, Daejeon, Korea)를 이용하였으며, 증폭된 DNA 단편들은 GeneAll Expin Gel SV 키트(GeneAll Biotechnology, Seoul, Korea)를 이용하여 정제하였다. 모든 배양액 제조를 위한 재료들은 BD Biosciences(Sparks, MD, USA) 사의 제품을 이용하였으며, 아세트산, 부틸산, 헥사노익산 및 atoB 활성 분석을 위한 시약 등의 기타 화학물질들은 모두 Sigma-Aldrich(St. Louis, MO, USA)로부터 구매하여 사용하였다.Phusion DNA polmerase, Quick ligation and restriction enzymes were purchased from New England Biolabs (Beverly, MA, USA), and the amplified plasmids were collected using AccuPrep Nano-Plus Plasmid Mini Extraction kit (Bioneer, Daejeon, Korea). The amplified DNA fragments were purified using GeneAll Expin Gel SV kit (GeneAll Biotechnology, Seoul, Korea). Materials for all cultures were prepared by BD Biosciences (Sparks, MD, USA), and other chemicals such as acetic acid, butyric acid, hexanoic acid and reagents for atoB activity analysis were all used by Sigma-Aldrich (St. Louis, MO, USA).

본 발명에서 유전자의 도입은 pACYC-SP, pCDFDuet 또는 pCDF-bktB 플라스미드를 이용하였고, 염색체상의 유전자 과발현 및 결실을 위한 유전자 조작은 pKD46 플라스미드를 이용한 Red 재조합 방법(Red recombination system)을 이용하여 수행되었으며 (Datsenko & Wanner, 2000), 이때 상기 과발현은 프로모터를 강력한 항시발현 프로모터(constitutive promoter, BBa_J23100)로 교체하고, 대장균 내 번역(translation)을 극대화할 수 있도록 재설계된 5'-UTR를 이용함으로써 이루어졌다.In the present invention, the gene was introduced using pACYC-SP, pCDFDuet or pCDF-bktB plasmid, and genetic manipulation for gene overexpression and deletion on chromosome was performed using Red recombination system using pKD46 plasmid ( Datsenko & Wanner, 2000), wherein the overexpression was accomplished by replacing the promoter with a strong constitutive promoter (BBa_J23100) and using a redesigned 5'-UTR to maximize translation in E. coli.

실시예Example

본 발명자들은 하기 실시예 1과 같이 헥사노익산 대사경로를 조절함으로써 헥사노익산을 고효율로 생산하는 재조합 대장균 균주를 제작하였다.The present inventors produced a recombinant E. coli strain producing hexanoic acid with high efficiency by adjusting the hexanoic acid metabolic pathway as in Example 1.

헥사노익산의 생산을 위해 대장균(Escherichia coli) strain W3110(ATCC27325)를 사용하였으며, 하기 실시예 1에서 제조된 발현 벡터들을 각각 대장균에 도입하여 형질전환시킨 다음 하기의 동일한 방법으로 배양하였다. Escherichia coli for the production of hexanoic acid coli ) strain W3110 (ATCC27325) was used, and the expression vectors prepared in Example 1 were introduced into E. coli and transformed, and then cultured in the same manner as follows.

재조합 대장균은 글루코스 및 항생제가 포함된 TB(Terrific Broth) 배지(리터당 12g 트립톤, 24g 이스트 추출물, 4mL 글리세롤, 2.31g KH2PO4, 12.54g K2HPO4, 20g 글루코스, 40mg 스트렙토마이신, 27mg 클로람페니콜)를 사용하여 회전식 진탕기(rotary shaker, 250 rpm)로 37℃에서 배양을 수행하였다. 먼저, 단일 콜로니를 배지에 접종하여 하룻밤 배양한 후, 포화된 배지는 멸균된 배지로 교체해주었다. 새로운 배지의 O.D600이 1.0 정도에 도달했을 때 이를 멸균된 배지 25mL가 있는 300mL 플라스크(최종 O.D600 0.5)에 접종하고, 배양액의 pH를 7.0으로 보정하기 위하여 10M NaOH를 처음 12시간 동안은 3시간 마다, 이후에는 6시간 마다 넣어주었다. 모든 실험은 3번씩 반복 수행하였다.Recombinant Escherichia coli contains TB (Terrific Broth) medium with glucose and antibiotics (12 g tryptone per liter, 24 g yeast extract, 4 mL glycerol, 2.31 g KH 2 PO 4 , 12.54 g K 2 HPO 4 , 20 g glucose, 40 mg streptomycin, 27 mg The culture was performed at 37 ° C. using a rotary shaker (250 rpm) using chloramphenicol). First, single colonies were inoculated into the medium and incubated overnight, and then the saturated medium was replaced with sterile medium. When the OD 600 of the fresh medium reached 1.0, it was inoculated into a 300 mL flask (final OD 600 0.5) with 25 mL of sterile medium and 10 hours of 10M NaOH for 3 hours for the first 12 hours to calibrate the culture to 7.0. Every 6 hours after that. All experiments were repeated three times.

세포 성장 속도를 측정하기 위해 UV-1700 분광광도계로 600nm에서 흡광도를 측정하였다. 또한, 배지에 존재하는 탄소원 및 대사산물의 양을 분석하기 위해 UltiMate 3000 analytical HPLC systems(Dionex, Sunnyvale, CA, USA)를 이용한 high-performance liquid chromatography(HPLC)방법으로 측정을 수행하였으며, 이때, 5mM H2SO4가 이동상으로 사용되었고, 유속은 0.6ml/분, 오븐의 온도는 14℃로 설정하였다. 탄소원 및 대사산물의 신호(signal)는 UV-VIS diode array detector(at 210 nm)와 RI-101 detector(Shodex, Klokkerfaldet, Denmark)를 이용하여 측정하였다.Absorbance was measured at 600 nm with a UV-1700 spectrophotometer to measure cell growth rate. In addition, in order to analyze the amount of carbon sources and metabolites present in the medium was measured by high-performance liquid chromatography (HPLC) method using UltiMate 3000 analytical HPLC systems (Dionex, Sunnyvale, CA, USA), where 5mM H 2 SO 4 was used as the mobile phase, the flow rate was set to 0.6 ml / min and the temperature of the oven to 14 ° C. Signals of carbon sources and metabolites were measured using a UV-VIS diode array detector (at 210 nm) and a RI-101 detector (Shodex, Klokkerfaldet, Denmark).

실시예Example 1.  One. 헥사노익산Hexanoic acid 생산용 재조합 벡터의 제조 Preparation of Recombinant Vectors for Production

1-1. 1-1. 헥사노익산Hexanoic acid 생산 조절을 위한 대사경로 내  In metabolic pathways to regulate production 타겟target 유전자 확인 Genetic Identification

부티릴-CoA(Butyryl-CoA)는 다음의 효소들이 촉매하는 일련의 효소 작용을 통해 합성된다: 아세틸-CoA 아세틸전이효소(acetyl-CoA acetyltransferase, atoB), 3-하이드록시부티릴-CoA 탈수소효소(3-hydroxybutyryl-CoA dehydrogenase, hbd), 크로토네이즈(Crotonase, crt) 및 트랜스-이노일-CoA 환원효소(trans-enoyl-CoA reductase, ter). 또한, 부틸산(butyric acid)은 티오에스테라제(thioesterase, tesB)에 의해 합성된다. 부틸산 생합성 경로의 효소들이 모두 C6 기질에 대한 활성을 가지고 있음을 고려하면, 헥사노익산 합성에 있어서 유일한 결핍 단계는 C6 아실-CoA 중간체인 3-케토헥사노일-CoA를 공급하기 위한 C2와 C4 아실 CoA 전구체의 축합과정이라 할 것이다. Butyryl-CoA is synthesized through a series of enzymatic actions catalyzed by the following enzymes: acetyl-CoA acetyltransferase ( atoB ), 3-hydroxybutyryl-CoA dehydrogenase (3-hydroxybutyryl-CoA dehydrogenase, hbd), crotonate tyrosinase (Crotonase, crt) and the trans-Ino one -CoA reductase (trans-enoyl-CoA reductase, ter). Butyric acid is synthesized by thioesterase ( tesB ). Given that all of the enzymes in the butyric acid biosynthetic pathway have activity on the C6 substrate, the only deficiency step in hexanoic acid synthesis is C2 and C4 to supply 3-ketohexanoyl-CoA, the C6 acyl-CoA intermediate. It will be called condensation process of acyl CoA precursor.

이에, 쿠프리아비두스 네카토르(Cupriavidus necator) 유래 bktB가 대장균에서 C6 중간체를 생산할 수 있음이 보고되어 있는 바(Dekishima et al., 2011), 쿠프리아비두스 네카토르 유래 bktB 유전자를 부틸산 생산 균주인 JHL26에 도입하여 SGK101 균주를 제작하였다. 구체적으로, bktB 유전자는 강한 프로모터(strong promoter)인 BBa_J23100를 사용하여 발현시켰고, 전사 및 번역 레벨에서 발현을 극대화할 수 있도록 UTR Designer (http://sbi.postech.ac.kr/utr_designer)를 통해 재설계된 5' UTR(Untranslated region, 5'- ACTGTAATAAGAAGGAGGGGTGAT - 3')을 사용하였다. Cupriavidus necator ) -derived bktB is capable of producing C6 intermediates in Escherichia coli (Dekishima et al., 2011), and the SGK101 strain was produced by introducing the bktB gene derived from cupriavidus nekatore into JHL26 , a butyl acid producing strain. It was. Specifically, bktB gene was expressed using a strong promoter (BBa_J23100), and through UTR Designer (http://sbi.postech.ac.kr/utr_designer) to maximize expression at transcription and translation levels. A redesigned 5 'UTR (Untranslated region, 5'-ACTGTAATAAGAAGGAGGGGTGAT-3') was used.

그 결과, SGK101 균주는 36시간만에 헥사노익산 41.3 mg/L을 생산함을 확인하였다. 그러나, 이와 동시에 상기 균주는 부틸산을 6.2 g/L 생산하기도 하였다. 이는 헥사노익산 생산에 사용될 수도 있었던 C4 전구체가 부틸산 생산에 사용되었음을 의미한다.As a result, the SGK101 strain was confirmed to produce 41.3 mg / L hexanoic acid in 36 hours. At the same time, however, the strain also produced 6.2 g / L of butyric acid. This means that C4 precursors, which could have been used for hexanoic acid production, were used for the production of butyl acid.

다음으로, 헥사노익산 대사경로의 마지막 단계에 작용하는 효소를 대체하기 위하여 SGK101 균주에 추가적인 엔지니어링을 진행하여 SGK102 균주를 제조하였다. 구체적으로, 경로의 마지막 단계를 촉매하는 E. coli 유래 tesB 유전자 또는 Megasphaera sp. MH 유래 mhact 유전자를 발현시켜 헥사노익산 생산량을 측정하였다. SGK101 균주에서 발현시킨 tesB와 유사하게, SGK102 균주에서 발현시킨 mhacttesB와 동일한 재설계된 5' UTR 및 동일한 프로모터를 사용하여 발현시켰다. SGK102 균주에서 mhact가 과발현되었을 때, SGK101과 비교하여 헥사노익산 생산량은 47%가 증가하였으며, 최대 60.9 mg/L까지 달하였다. 나아가, SGK101과 비교하여 부틸산 생산량은 SGK102에서 79%나 감소하였다. 상기 결과를 통해 최종 단계에서 사용된 효소가 카르복실산 생성물의 비율 및 생산량을 결정하는데 중요한 역할을 함을 확인하였다.Next, SGK102 strain was prepared by further engineering SGK101 strain to replace the enzyme acting in the last step of the hexanoic acid metabolic pathway. Specifically, E. coli- derived tesB gene or Megasphaera sp. Catalyzes the last step of the pathway. Hexanoic acid production was measured by expressing MH- derived mhact gene. Mhact was Similarly, expressed in SGK102 strains were expressed in the tesB SGK101 strain was expressed by using the same redesigned 5 'UTR and the same promoter and tesB. When mhact was overexpressed in SGK102 strain, hexanoic acid production increased by 47% compared to SGK101, reaching up to 60.9 mg / L. Furthermore, butyric acid production was reduced by 79% in SGK102 compared to SGK101. The results confirm that the enzyme used in the final step plays an important role in determining the ratio and yield of the carboxylic acid product.

1-2. 1-2. 헥사노익산Hexanoic acid 생산 조절을 위한 탄소 흐름 재분배 Carbon flow redistribution for production control

헥사노익산 생산 조절을 위한 대사경로 내 타겟 유전자를 확인한 것에 이어, 헥사노익산 합성을 최대화하기 위하여 탄소 흐름의 정교한 재분배를 수행하였다. 구체적으로, 아세틸-CoA 및 부티릴-CoA가 3-케토헥사노일-CoA(3-ketohexanoyl-CoA, C6)을 형성하기 위해 동몰(equimolar)로 결합되며, 부티릴-CoA는 아세틸-CoA를 전구체로 하여 합성됨에 착안하여, 전구체 공급량을 최적으로 분배하기 위하여 아세틸-CoA에서 재분배하는 경로를 설계하였으며, 이를 도 1의 (a)에 나타내었다.Following identification of target genes in metabolic pathways for hexanoic acid production regulation, sophisticated redistribution of carbon flow was performed to maximize hexanoic acid synthesis. Specifically, acetyl-CoA and butyryl-CoA are combined equimolar to form 3-ketohexanoyl-CoA (C6), butyryl-CoA precursors acetyl-CoA Focusing on the synthesis, the route for redistribution in acetyl-CoA was designed to optimally distribute the precursor feed amount, which is shown in FIG.

실시예 1-1에서 제조한 SGK102 균주의 카르복실산 생성능을 검증하기 위해 발효를 진행한 결과, SGK102 균주의 카르복실산 농도(titer)는 7.09g/L의 아세트산 및 1.27g/L의 부틸산으로 나타났으며, 이는 과도한 atoB 과발현으로부터 야기된 불균형을 의미한다. 이 때, ter 활성은 다른 효소들에 비하여 현저히 낮게 나타남을 확인하였다. 따라서, 헥사노익산 대사경로에서 ter의 과발현을 유도하기보다는 atoB를 저발현시킴으로써 전구체(아세틸-CoA 및 부티릴-CoA)를 균형적으로 공급하고 궁극적으로는 헥사노익산 생산량을 증가시킬 수 있을 것으로 생각되었다.As a result of the fermentation to verify the carboxylic acid production ability of the SGK102 strain prepared in Example 1-1, the carboxylic acid concentration (titer) of the SGK102 strain was 7.09g / L acetic acid and 1.27g / L butyl acid This indicates an imbalance resulting from excessive atoB overexpression. At this time, it was confirmed that ter activity is significantly lower than other enzymes. Thus, rather than inducing ter overexpression of hexanoic acid metabolic pathways, low expression of atoB could provide a balanced supply of precursors (acetyl-CoA and butyryl-CoA) and ultimately increase hexanoic acid production. It was thought.

1-3. 1-3. 헥사노익산Hexanoic acid 생합성 유전자 발현 시스템 구축 Biosynthetic Gene Expression System

pkD46 벡터를 이용한 Red 재조합 시스템(Datsenko and Wanner, 2000)을 통해 JHL58 균주 염색체에서 atoB를 넉아웃(knockout)시켜 SGK103 균주를 제작하였으며, JHL58 균주에서 염색체의 atoB 부위를 타겟으로 하기 위해 atoB-del-F 및 atoB-del-R 프라이머쌍으로 FRT - Kan R - FRT 를 포함하는 DNA 단편을 증폭시키고 증폭된 DNA 절편을 pkD46 벡터를 이용하여 타겟 부위에 재조합하였다.The red recombinant system (Datsenko and Wanner, 2000) using the pkD46 vector knocked out atoB on the JHL58 strain chromosome to produce SGK103 strain, and the atoB-del- to target the atoB site of the chromosome in the JHL58 strain. DNA fragments comprising FRT - Kan R - FRT were amplified with F and atoB-del-R primer pairs and the amplified DNA fragments were recombined with the target site using the pkD46 vector.

플라스미드에서 헥사노익산 대사경로를 조절하는 유전자들을 과발현시키기 위하여 합성 프로모터(BBa_J23100, http://partsregistry.org) 및 UTR Designer (Seo et al., http://sbi.postech.ac.kr/utr_designer)를 통해 재설계된 5' UTR(Untranslated region)을 사용하였다. Megasphaera sp. MH 유래 mhact 유전자는 ACT-F1/ACT-F2/ACT-R 프라이머를 사용하여 증폭되었고, SacI와 NdeI을 이용하여 이를 pACYC-SP 벡터에 삽입하여 제2 재조합벡터를 제조하였다(상기 pACYC-SP는 pACYCDuet 벡본(backbone)에 Clostridium acetobutylicum 유래 crt, hbd Treponema denticola 유래 ter 유전자가 있는 벡터). bktB 유전자는 bktB-F1/bktB-F2/bktB-R 프라이머를 사용하여 증폭되었고, 증폭된 DNA 절편은 NotI와 NdeI을 이용하여 pCDFDuet 벡터에 삽입하였다.Synthetic promoters (BBa_J23100,http://partsregistry.org) And a 5 'Untranslated region (UTR) redesigned through UTR Designer (Seo et al., Http://sbi.postech.ac.kr/utr_designer).Megasphaera sp.MH originmhact The gene was amplified using the ACT-F1 / ACT-F2 / ACT-R primers, and a second recombinant vector was prepared by inserting it into the pACYC-SP vector using SacI and NdeI. backboneClostridium acetobutylicum origincrt,hbd AndTreponema denticola originter Vector with genes).bktB Genes were amplified using bktB-F1 / bktB-F2 / bktB-R primers, and the amplified DNA fragments were inserted into pCDFDuet vectors using NotI and NdeI.

atoB의 발현량 조절은 합성프로모터(BBa_J23108) 및 재설계된 5' UTR을 사용하여 이루어졌고, atoB를 저발현시키기 위한 5' UTR 변이체들은 atoB-down-regulation-F(1-3)/atoB-down-regulation-R 프라이머 세트(atoB-DR1-3) 및 atoB-control-F/atoB-down-regulation-R 프라이머 세트(atoB-C)를 이용하여 야생형 대장균 W3110 균주의 유전체 DNA를 PCR 증폭시켜 제작하였다. 상기 증폭된 DNA 절편들은 XhoI와 PacI를 이용하여 pCDF-bktB 벡터에 삽입하여 제1 재조합벡터를 제조하였다. 구체적으로, atoB 유전자를 저발현시키기 위하여 UTR Designer를 사용하여 5' UTR을 재설계하였다. 먼저, atoB를 과발현시키는 5' UTR을 atoB-C로 명명하였다. atoB-C의 서열은 SGK102 균주에서 발현시킨 atoB의 5' UTR 염색체 유전자와 동일하다(Lim et al., 2013b). 그 다음, atoB 유전자를 서로 다른 세기로 저발현시키는 3개의 5' UTR을 각각 atoB-DR1, atoB-DR2 및 atoB-DR3으로 명명하였다. 상기 제조한 플라스미드로 대장균 균주를 형질전환(transformation)시켜 특정 수준의 atoB 활성을 나타내는 서로 다른 재조합 대장균 균주를 제작하였다(SGK104: atoB 과발현; SGK 105, 106, 107: atoB 저발현). 사용한 5' UTR 서열은 하기 표 4에 나타내었다.expression level of control of the synthetic promoter is atoB (BBa_J23108) and redesigned 5 'UTR was done by using, for 5 atoB to low expression' UTR variant are atoB-down-regulation-F ( 1-3) / atoB-down Genomic DNA of wild-type E. coli W3110 strain was PCR amplified using the -regulation-R primer set (atoB-DR1-3) and the atoB-control-F / atoB-down-regulation-R primer set (atoB-C). . The amplified DNA fragments were inserted into pCDF-bktB vector using XhoI and PacI to prepare a first recombinant vector. Specifically, 5 'UTR was redesigned using UTR Designer to low expression of atoB gene. First, it was named the 5 'UTR of overexpressing atoB to atoB-C. The sequence of atoB-C is identical to the 5 'UTR chromosome gene of atoB expressed in SGK102 strain (Lim et al., 2013b). Next, three 5 'UTRs that express the atoB gene with different intensities were named atoB-DR1, atoB-DR2 and atoB-DR3, respectively. E. coli strains were transformed with the prepared plasmids to produce different recombinant E. coli strains showing a specific level of atoB activity (SGK104: atoB overexpression; SGK 105, 106, 107: atoB low expression). The 5 'UTR sequences used are shown in Table 4 below.

유전자gene 합성 synthesis 5'UTR5'UTR 서열 (5'-3') Sequence (5'-3 ') 예상 발현량(a.u.)Expected Expression (a.u.) 실제 효소활성Actual enzyme activity
(( μmolμmol /분/mg)/ Min / mg)
서열번호SEQ ID NO:
atoB-CatoB-C cggcacccctacaaacagaaggaatataaacggcacccctacaaacagaaggaatataaa 332085.81332085.81 81.40 ±± 4.0781.40 ±± 4.07 1One atoB-DR1atoB-DR1 ccctcgggttaaaggtgcatagactccctcgggttaaaggtgcatagact 6501.416501.41 33.22 ±± 0.6733.22 ±± 0.67 22 atoB-DR2atoB-DR2 ccctcgggttaaaggtgcatcgacgccctcgggttaaaggtgcatcgacg 1248.681248.68 14.68 ±± 1.0214.68 ±± 1.02 33 atoB-DR3atoB-DR3 ccctcgggttaaaggtgcatagacgccctcgggttaaaggtgcatagacg 1085.741085.74 3.39 ±± 0.863.39 ±± 0.86 44

실시예Example 2. 각 균주의 효소 활성 분석 2. Analysis of enzyme activity of each strain

2-1. 2-1. atoBatoB 활성 분석 Activity analysis

실시예 1-3에서 제조한 각 균주의 atoB 효소 활성을 측정하기 위하여 아세토아세틸-CoA 절단을 수행하였다(Hartmanis and Gatenbeck, 1984; Stern, 1956; Shen et al., 2011). Mid-exponential phase에 있는 세포들을 사용하고, Bug Buster Master Mix(EMD Bioscience, San Diego, CA, USA)를 사용하여 세포를 파쇄하였다. 전체 단백질 농도는 BSA(Bovine Serum Albumin)를 표준물질로 하여 Bradford 분석(Bio-Rad Protein Assay Dye; Bio-Rad, Hercules, CA, USA)을 통해 측정하였으며, atoB 효소 활성은 UV-1700 spectrophotometer(Shimadzu, Kyoto, Japan)을 이용하여 303 nm 파장에서의 흡광도를 분석하여 측정하였다. 반응 혼합물은 100mM Tris-HCl(pH 8.0), 10mM MgSO4, 200μM 아세토아세틸-CoA, 200μM CoA 및 세포 파쇄물을 포함하며, 반응 혼합물에 세포 파쇄물을 첨가하여 반응을 시작하였다. Acetoacetyl-CoA cleavage was performed to measure atoB enzyme activity of each strain prepared in Examples 1-3 (Hartmanis and Gatenbeck, 1984; Stern, 1956; Shen et al., 2011). Cells in the mid-exponential phase were used and cells were disrupted using Bug Buster Master Mix (EMD Bioscience, San Diego, Calif., USA). Total protein concentration was measured by Bradford assay (Bio-Rad Protein Assay Dye; Bio-Rad, Hercules, CA, USA) using BSA (Bovine Serum Albumin) as a standard, and atoB enzyme activity was measured by UV-1700 spectrophotometer (Shimadzu). , Kyoto, Japan) was measured by analyzing the absorbance at 303 nm wavelength. The reaction mixture included 100 mM Tris-HCl (pH 8.0), 10 mM MgSO 4 , 200 μM acetoacetyl-CoA, 200 μM CoA and cell lysate, and the reaction was started by adding cell lysate to the reaction mixture.

2-2. 2-2. hbdhbd , , crtcrt , , terter 활성 분석 Activity analysis

모든 효소 활성 분석을 위한 세포 추출물은 상기 실시예 2-1의 atoB 활성 분석을 위한 세포 추출물과 동일한 방식으로 준비하였다. 먼저, 파장 340nm에서의 흡광도를 측정하여 hbd의 활성을 측정하였다. 반응 혼합물은 100mM MOPS(pH 7.0), 200μm 아세토아세틸-CoA 및 세포 추출물을 포함한다. 다음으로, 파장 263nm에서의 흡광도를 측정하여 crt의 활성을 측정하였다. 반응 혼합물은 100mM Tris-HCl(pH 7.6), 100μm 크로토닐-CoA 및 세포 추출물을 포함한다. 마지막으로, 파장 340nm에서의 흡광도를 측정하여 ter의 활성을 측정하였다. 반응 혼합물은 100mM 인산칼륨완충액(pH 6.2), 200μm NADH, 200μm 크로토닐-CoA 및 세포 추출물을 포함한다. 추출물을 첨가하여 반응을 시작하였다. Cell extracts for all enzyme activity assays were prepared in the same manner as cell extracts for atoB activity assays of Example 2-1. First, the absorbance at the wavelength of 340 nm was measured to measure the activity of hbd . The reaction mixture comprises 100 mM MOPS (pH 7.0), 200 μm acetoacetyl-CoA and cell extracts. Next, the absorbance at the wavelength of 263 nm was measured to measure the activity of crt . The reaction mixture comprises 100 mM Tris-HCl (pH 7.6), 100 μm crotonyl-CoA and cell extract. Finally, the absorbance at the wavelength of 340 nm was measured to determine the activity of ter . The reaction mixture comprises 100 mM potassium phosphate buffer (pH 6.2), 200 μm NADH, 200 μm crotonyl-CoA and cell extracts. The reaction was started by adding the extract.

상기 실시예 2-1 및 2-2에서 수행한 각 균주의 효소 활성 측정 결과를 도 1의 (b)에 나타내었다. 도 1의 (b)에 나타낸 바와 같이, 재설계한 5' UTR을 사용함에 따라 SGK104에서 atoB 활성이 가장 높고, SGK105, SGK106 및 SGK107로 갈수록 atoB 활성이 낮아짐을 확인하였다. 또한, 모든 균주에 있어서 ter 활성은 다른 효소들에 비하여 현저히 낮게 나타남을 확인하였다.Enzyme activity measurement results of each strain performed in Examples 2-1 and 2-2 are shown in Figure 1 (b). As shown in (b) of FIG. 1, it was confirmed that the atoB activity was the highest in SGK104 and the atoB activity was decreased toward SGK105, SGK106, and SGK107 by using the redesigned 5 'UTR. In addition, in all strains, ter activity was found to be significantly lower than other enzymes.

실시예Example 3. 각 균주의  3. Each strain 카르복실산Carboxylic acid 생산 프로파일 분석 Production Profile Analysis

3-1. 3-1. SGK104SGK104 , , SGK105SGK105 , , SGK106SGK106

실시예 1-3에서 제조한 각 균주의 카르복실산 생산 프로파일을 분석하고 이를 헥사노익산 전구체인 세포 내 CoA 대사산물(metabolites)의 양과 비교하였다.The carboxylic acid production profile of each strain prepared in Examples 1-3 was analyzed and compared with the amount of intracellular CoA metabolites (hexatabolites) as hexanoic acid precursors.

구체적으로, 세포 내 CoA 대사산물의 경우 fast filtration method를 이용하여 세포 내 아세틸-CoA, 부티릴-CoA 및 헥사노일-CoA를 추출한 후 LC/MS 분석을 수행하였다. 먼저, 각 균주를 배지에 접종하고 24시간 후 배양액 5ml를 채취하였다. 나일론 멤브레인 필터(0.20μm pore size; Whatman; Piscataway, NJ, USA)를 사용한 진공 여과(vacuum filtration)로 세포를 수집하였고, 이를 증류수 5ml로 상온에서 세척하였다. 세포가 흡착된 멤브레인 필터를 -20℃에서 아세토나이트릴/물(1:1로 혼합, v/v) 5ml와 혼합하여 대사산물을 추출하였다. 추가적인 대사산물의 변화를 방지하기 위해 액체 질소를 사용하여 상기 혼합물은 급속냉각 시켰으며, 상기 모든 과정은 30초 이내에 완료하였다. 냉각시킨 추출 혼합물을 얼음 위에서 녹인 후, 3분 동안 볼텍싱(vortexing)한 뒤 4℃에서 5분 동안 16,100 xg 조건으로 원심분리하고, 상층액을 수집하여 진공건조하였다.Specifically, intracellular CoA metabolites were extracted by intracellular acetyl-CoA, butyryl-CoA, and hexanoyl-CoA using a fast filtration method, followed by LC / MS analysis. First, each strain was inoculated into the medium, and after 24 hours, 5 ml of the culture was collected. Cells were collected by vacuum filtration using a nylon membrane filter (0.20 μm pore size; Whatman; Piscataway, NJ, USA), which was washed at room temperature with 5 ml of distilled water. The cell adsorbed membrane filter was mixed with 5 ml of acetonitrile / water (mixed 1: 1, v / v) at -20 ° C to extract the metabolite. The mixture was quenched using liquid nitrogen to prevent further metabolite changes, and all of the above procedures were completed within 30 seconds. The cooled extract mixture was dissolved on ice, vortexed for 3 minutes, then centrifuged at 16,100 xg for 5 minutes at 4 ° C, and the supernatant was collected and vacuum dried.

이후, 건조시킨 대사산물을 200μl 물에 재부유시키고, Ultimate 3000(Thermo SCIENTIFIC) UHPLC 및 HESI(Heated ElectroSpray Ionization) source를 사용하는 Q-Exactive mass spectrometer(Thermo Fisher Scientific)를 사용하여 상기 추출한 CoA 대사산물 분석을 수행하였다. ACQUITY UPLC HSS T3 1.8 μm 컬럼(150 mm x 2.1 mm x 1.8 μm)을 기준으로 시료 10μl를 주입하고 분리하였다. 컬럼의 온도는 35℃였으며, 이동상 A(mobile phase A)로는 10mM 트라이부틸아민 및 15mM 아세트산을 사용하였고, 이동상 B(mobile phase B)로는 메탄올을 사용하였다(유속 0.25ml/분). 농도구배는 다음과 같이 설정하여 분석하였다: 0분, 97% A 및 3% B 및 15분, 25% A 및 75% B. 그 결과를 도 2에 나타내었다.The dried metabolite was then resuspended in 200 μl water, and the extracted CoA metabolite using a Q-Exactive mass spectrometer (Thermo Fisher Scientific) using Ultimate 3000 (Thermo SCIENTIFIC) UHPLC and HESI (Heated ElectroSpray Ionization) source. The analysis was performed. 10 μl of sample was injected and separated on an ACQUITY UPLC HSS T3 1.8 μm column (150 mm × 2.1 mm × 1.8 μm). The temperature of the column was 35 ° C., 10 mM tributylamine and 15 mM acetic acid were used as mobile phase A, and methanol was used as mobile phase B (flow rate 0.25 ml / min). Concentration gradients were analyzed by setting: 0 min, 97% A and 3% B and 15 min, 25% A and 75% B. The results are shown in FIG.

도 2의 (a) 내지 (b)에 나타낸 바와 같이, atoB 발현이 감소할수록 아세트산 생산량은 감소하였고, 반면 부틸산 생산량은 증가함을 확인하였다. 또한, 도 2의 (d) 및 (e)에 나타낸 바와 같이, 상기 결과는 세포 내 전구체(아세틸-CoA 및 부티릴-CoA)의 양과 일치하였다.As shown in (a) to (b) of FIG. 2, acetic acid production decreased as atoB expression decreased, while butyl acid production increased. In addition, as shown in (d) and (e) of FIG. 2, the results were consistent with the amounts of intracellular precursors (acetyl-CoA and butyryl-CoA).

나아가, 도 2의 (c)에 나타낸 바와 같이, atoB 활성이 과도하게 높은 경우 헥사노익산 농도(titer)가 낮게 나타났으며(60mg/L, SGK104), atoB 활성이 감소하는 경우에는 현저히 증가하였다(582mg/L, SGK106). 도 2의 (f)에 나타낸 바와 같이, 상기 결과는 세포 내 헥사노일-CoA의 양과 일치하였다.Furthermore, as shown in (c) of FIG. 2, when the atoB activity was excessively high, the hexanoic acid concentration (titer) was low (60 mg / L, SGK104), and when the atoB activity was decreased, it was significantly increased. (582 mg / L, SGK106). As shown in Figure 2 (f), the results were consistent with the amount of hexanoyl-CoA in the cell.

특히, SGK106 균주는 36시간만에 헥사노익산 528mg/L을 생산하였으며, 이는 atoB 발현량을 조절하지 않은 경우의 농도와 비교하여 8.7배 증가한 것임을 확인하였다. 또한, SGK106의 헥사노익산 생산 수율은 유사한 접종량을 사용하여 발효를 수행한 이전의 연구들(Kim et al., 2015; Machado et al., 2012; Volker et al., 2014)과 비교하여 현저히 높은 14.7mg/L/H로 나타났다.In particular, the SGK106 strain produced 528 mg / L of hexanoic acid in 36 hours, which is an 8.7-fold increase compared to the concentration without atoB expression. In addition, the hexanoic acid production yield of SGK106 is significantly higher compared to previous studies (Kim et al., 2015; Machado et al., 2012; Volker et al., 2014) that performed fermentation using similar inoculum doses. 14.7 mg / L / H.

3-2. 3-2. SGK107SGK107

atoB를 보다 저발현시킬 경우 헥사노익산 생산량을 더욱 증가시킬 수 있을 것으로 생각되어, atoB를 가장 저발현시킬 수 있도록 재설계한 5' UTR인 atoB-DR3을 도입한 재조합 균주 SGK107을 이용하여 동일한 실험을 수행하였다. 그 결과를 도 2에 나타내었다. It is thought that lower expression of atoB could increase the production of hexanoic acid even more. Thus, the same experiment was carried out using the recombinant strain SGK107 introduced with atoB-DR3, a 5 'UTR, which was redesigned to give the lowest expression of atoB. Was performed. The results are shown in FIG.

도 2의 (a) 내지 (f)에 나타낸 바와 같이, 상기 균주는 SGK106 균주보다 아세트산 생산량은 감소하였고, 부틸산 생산량은 증가하였다. 그러나, 헥사노익산 생산량은 atoB를 과발현시킨 SGK104보다도 낮게 나타남을 확인하였다. 상기 결과는 atoB 발현이 적정 수준보다 낮아 아세틸-CoA가 한정적으로 공급되는 경우에는 오히려 아세틸-CoA 및 부티릴-CoA 간 불균형이 야기됨을 의미한다. 종합적으로, 상기 결과로부터 atoB는 아세틸-CoA 및 부티릴-CoA의 비율을 결정하며, atoB의 발현량을 단순히 낮추는 것이 아니라 atoB의 발현량을 정교하게 조절함에 따라 헥사노익산 생산량을 증가시킬 수 있음을 확인하였다. 구체적으로, 5' UTR은 atoB 유전자의 예측 발현량(a.u.)이 적어도 1,100 이상 300,000 이하가 되도록 설계하여야 함을 확인하였다. As shown in (a) to (f) of FIG. 2, the strain produced less acetic acid and increased butyric acid than the SGK106 strain. However, it was confirmed that hexanoic acid production was lower than SGK104 overexpressing atoB . The results indicate that atoB expression is lower than an appropriate level, so that an imbalance between acetyl-CoA and butyryl-CoA is caused when acetyl-CoA is supplied in a limited manner. All in all, that results from the atoB is possible to increase the acid yield hexanoate as the rate of acetyl -CoA and butyryl -CoA, and not simply to reduce the expression level of the atoB finely regulate the expression of atoB It was confirmed. Specifically, it was confirmed that the 5 'UTR should be designed such that the predicted expression amount (au) of the atoB gene is at least 1,100 or more and 300,000 or less.

상기 실시예를 통하여, 재조합 대장균의 정교한 atoB 발현량 조절에 따른 본 발명의 헥사노익산 생산량 조절 방법을 사용하는 경우, 헥사노익산 대사경로에서의 전구체 재분배로 헥사노익산 생산량을 현저하게 증가시킬 수 있음을 확인하였다. Example a via, in the case of using the hexanoate acid production control method of the present invention according to the sophisticated atoB expression level control of a recombinant E. coli, hexanoate as a precursor redistribution in acid metabolic pathway can be markedly increased hexanoate acid production It was confirmed that there is.

비록 본 발명이 상기에 언급된 바람직한 실시예로서 설명되었으나, 발명의 요지와 범위로부터 벗어남이 없이 다양한 수정이나 변형을 하는 것이 가능하다. 또한 첨부된 청구 범위는 본 발명의 요지에 속하는 이러한 수정이나 변형을 포함한다.Although the present invention has been described as the preferred embodiment mentioned above, it is possible to make various modifications or variations without departing from the spirit and scope of the invention. The appended claims also cover such modifications and variations as fall within the spirit of the invention.

<110> POSTECH ACADEMY-INDUSTRY FOUNDATION IUCF-HYU (Industry-University Cooperation Foundation Hanyang University) <120> HEXANOIC ACID-PRODUCING RECOMBINANT MICROORGANISM AND METHOD OF PRODUCING HEXANOIC ACID USING THE SAME <130> POSTECH1-54P <160> 30 <170> KoPatentIn 3.0 <210> 1 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> atoB-C <400> 1 cggcacccct acaaacagaa ggaatataaa 30 <210> 2 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> atoB-DR1 <400> 2 ccctcgggtt aaaggtgcat agact 25 <210> 3 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> atoB-DR2 <400> 3 ccctcgggtt aaaggtgcat cgacg 25 <210> 4 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> atoB-DR3 <400> 4 ccctcgggtt aaaggtgcat agacg 25 <210> 5 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> atoB-del-F <400> 5 atcccttcat attcaattag ttaaataact aaatccaata atctcattct ctagtgctgg 60 agcgaactgc 70 <210> 6 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> atoB-del-R <400> 6 cctgaccgcc gccaatgcac agtgttgcca gccccagcgt tttatcgcgt ggagtactcg 60 cggttgactg 70 <210> 7 <211> 68 <212> DNA <213> Artificial Sequence <220> <223> ACT-F1 <400> 7 ctaggtacag tgctagcttt gcgtaactaa ggagggtcac ctatgtataa actgtcgcaa 60 atcgctga 68 <210> 8 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> ACT-F2 <400> 8 gaatgagctc ttgacggcta gctcagtcct aggtacagtg ctagctttgc gtaactaagg 60 60 <210> 9 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> ACT-R <400> 9 gccatccata tgtttagtat tccgtttttg aggttttcgt 40 <210> 10 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> bktB-F1 <400> 10 ctaggtacag tgctagcact gtaataagaa ggaggggtga tatgacgcgt gaagtggtag 60 60 <210> 11 <211> 67 <212> DNA <213> Artificial Sequence <220> <223> bktB-F2 <400> 11 gaatgcggcc gcttgacggc tagctcagtc ctaggtacag tgctagcact gtaataagaa 60 ggagggg 67 <210> 12 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> bktB-R <400> 12 gccatccata tgtcagatac gctcgaagat gg 32 <210> 13 <211> 102 <212> DNA <213> Artificial Sequence <220> <223> atoB-down-regulation-F1 <400> 13 gccatcctcg agctgacagc tagctcagtc ctaggtataa tgctagcccc tcgggttaaa 60 ggtgcataga ctatgaaaaa ttgtgtcatc gtcagtgcgg ta 102 <210> 14 <211> 102 <212> DNA <213> Artificial Sequence <220> <223> atoB-down-regulation-F2 <400> 14 gccatcctcg agctgacagc tagctcagtc ctaggtataa tgctagcccc tcgggttaaa 60 ggtgcatcga cgatgaaaaa ttgtgtcatc gtcagtgcgg ta 102 <210> 15 <211> 102 <212> DNA <213> Artificial Sequence <220> <223> atoB-down-regulation-F3 <400> 15 gccatcctcg agctgacagc tagctcagtc ctaggtataa tgctagcccc tcgggttaaa 60 ggtgcataga cgatgaaaaa ttgtgtcatc gtcagtgcgg ta 102 <210> 16 <211> 47 <212> DNA <213> Artificial Sequence <220> <223> atoB-down-regulation-R <400> 16 gatggcttaa ttaattaatt caaccgttca atcaccatcg caattcc 47 <210> 17 <211> 77 <212> DNA <213> Artificial Sequence <220> <223> atoB-down-control-F <400> 17 gccatcctcg agctgacagc tagctcagtc ctaggtataa tgctagccgg cacccctaca 60 aacagaagga atataaa 77 <210> 18 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> atoB-genome-check-F <400> 18 gaacccgcac tgctttaatg ctgg 24 <210> 19 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> atoB-genome-check-R <400> 19 ggttaccttc gccgtcgatg ttc 23 <210> 20 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> ACT-check-F <400> 20 cgtgagggtc tgtactctgt taccatc 27 <210> 21 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> pACYC-check-F <400> 21 atctcgacgc tctcccttat gcgact 26 <210> 22 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> pACYC-check-R <400> 22 ggttatgcta gttattgctc agcggtggca 30 <210> 23 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> atoB-plasmid-check-F <400> 23 gccgccatct tcgagcgtat ctgac 25 <210> 24 <211> 1185 <212> DNA <213> Artificial Sequence <220> <223> atoB <400> 24 atgaaaaatt gtgtcatcgt cagtgcggta cgtactgcta tcggtagttt taacggttca 60 ctcgcttcca ccagcgccat cgacctgggg gcgacagtaa ttaaagccgc cattgaacgt 120 gcaaaaatcg attcacaaca cgttgatgaa gtgattatgg gtaacgtgtt acaagccggg 180 ctggggcaaa atccggcgcg tcaggcactg ttaaaaagcg ggctggcaga aacggtgtgc 240 ggattcacgg tcaataaagt atgtggttcg ggtcttaaaa gtgtggcgct tgccgcccag 300 gccattcagg caggtcaggc gcagagcatt gtggcggggg gtatggaaaa tatgagttta 360 gccccctact tactcgatgc aaaagcacgc tctggttatc gtcttggaga cggacaggtt 420 tatgacgtaa tcctgcgcga tggcctgatg tgcgccaccc atggttatca tatggggatt 480 accgccgaaa acgtggctaa agagtacgga attacccgtg aaatgcagga tgaactggcg 540 ctacattcac agcgtaaagc ggcagccgca attgagtccg gtgcttttac agccgaaatc 600 gtcccggtaa atgttgtcac tcgaaagaaa accttcgtct tcagtcaaga cgaattcccg 660 aaagcgaatt caacggctga agcgttaggt gcattgcgcc cggccttcga taaagcagga 720 acagtcaccg ctgggaacgc gtctggtatt aacgacggtg ctgccgctct ggtgattatg 780 gaagaatctg cggcgctggc agcaggcctt acccccctgg ctcgcattaa aagttatgcc 840 agcggtggcg tgccccccgc attgatgggt atggggccag tacctgccac gcaaaaagcg 900 ttacaactgg cggggctgca actggcggat attgatctca ttgaggctaa tgaagcattt 960 gctgcacagt tccttgccgt tgggaaaaac ctgggctttg attctgagaa agtgaatgtc 1020 aacggcgggg ccatcgcgct cgggcatcct atcggtgcca gtggtgctcg tattctggtc 1080 acactattac atgccatgca ggcacgcgat aaaacgctgg ggctggcaac actgtgcatt 1140 ggcggcggtc agggaattgc gatggtgatt gaacggttga attaa 1185 <210> 25 <211> 1185 <212> DNA <213> Artificial Sequence <220> <223> bktB <400> 25 atgacgcgtg aagtggtagt ggtaagcggt gtccgtaccg cgatcgggac ctttggcggc 60 agcctgaagg atgtggcacc ggcggagctg ggcgcactgg tggtgcgcga ggcgctggcg 120 cgcgcgcagg tgtcgggcga cgatgtcggc cacgtggtat tcggcaacgt gatccagacc 180 gagccgcgcg acatgtatct gggccgcgtc gcggccgtca acggcggggt gacgatcaac 240 gcccccgcgc tgaccgtgaa ccgcctgtgc ggctcgggcc tgcaggccat tgtcagcgcc 300 gcgcagacca tcctgctggg cgataccgac gtcgccatcg gcggcggcgc ggaaagcatg 360 agccgcgcac cgtacctggc gccggcagcg cgctggggcg cacgcatggg cgacgccggc 420 ctggtcgaca tgatgctggg tgcgctgcac gatcccttcc atcgcatcca catgggcgtg 480 accgccgaga atgtcgccaa ggaatacgac atctcgcgcg cgcagcagga cgaggccgcg 540 ctggaatcgc accgccgcgc ttcggcagcg atcaaggccg gctacttcaa ggaccagatc 600 gtcccggtgg tgagcaaggg ccgcaagggc gacgtgacct tcgacaccga cgagcacgtg 660 cgccatgacg ccaccatcga cgacatgacc aagctcaggc cggtcttcgt caaggaaaac 720 ggcacggtca cggccggcaa tgcctcgggc ctgaacgacg ccgccgccgc ggtggtgatg 780 atggagcgcg ccgaagccga gcgccgcggc ctgaagccgc tggcccgcct ggtgtcgtac 840 ggccatgccg gcgtggaccc gaaggccatg ggcatcggcc cggtgccggc gacgaagatc 900 gcgctggagc gcgccggcct gcaggtgtcg gacctggacg tgatcgaagc caacgaagcc 960 tttgccgcac aggcgtgcgc cgtgaccaag gcgctcggtc tggacccggc caaggttaac 1020 ccgaacggct cgggcatctc gctgggccac ccgatcggcg ccaccggtgc cctgatcacg 1080 gtgaaggcgc tgcatgagct gaaccgcgtg cagggccgct acgcgctggt gacgatgtgc 1140 attggcggcg ggcagggcat tgccgccatc ttcgagcgta tctga 1185 <210> 26 <211> 1359 <212> DNA <213> Artificial Sequence <220> <223> Mhact <400> 26 atgtataaac tgtcgcaaat cgctgaagaa tatcagaaaa aactggttac gccgcaagaa 60 gctgccgctg tcgtgaaatc gggtgaccgt gttagctatg gcctgggttg ctcggcaccg 120 tacgatacgg acaaagcgct ggccgatcat attaacaaag atggcctgaa agacgtggaa 180 attatcgatg cgaccctgat ccaggaccac ccgtttttca cctatacgga aaccgaaagc 240 aatgatcaag tccgctttgt gtctggccat tttaacggtt tcgaccgtaa aatgaataaa 300 gccggtcgct gttggtttat gccgctgctg ttcaacgaac tgccgaaata ctggagccat 360 aagaaagtgg atgttgcaat ttttcaggtt cacccgatgg acaaatgggg caacttcaat 420 ctgggtccgc aagtcgcaga tctgcgtggc attctgaaaa gtgctgacaa agtcatcgtg 480 gaagttaacc agaaaatgcc gaaagcgctg ggctatgaaa ccgaactgaa tattgccgat 540 gtggacttta tcgttgaagg ttctaacccg gatatgccga ttgtgccgaa taaaccgagt 600 acgccggttg atgacaaaat tgcgtccttc gtggttccga tgatcaaaga tggctcaacc 660 ctgcaactgg gtattggcgg tatcccgtcg gcgatcggcc ataaactggc cgaaagcgat 720 gttaaagacc tgtctggtca cacggaaatg ctggtcgatc cgtatgtgga actgtacgaa 780 gcaggcaaaa ttaccggcaa gaaaaaccgt gatcgcggca aaatcatgta tacgtttgct 840 ggcggtaccc agcgtctgta cgactttatt gatgacaatc aaatcgtgtt caacgcgccg 900 gttaattatg tcaacaatat taacgtcgtg gccagcatcg ataatttcgt cagcattaac 960 tcttgcatca atctggacct gtatggtcaa gtgtgtgcgg aaagtgccgg ctaccgccac 1020 atttccggta ccggcggtgc gctggatttt gcacagggcg cttacctgag cgaaggcggt 1080 caaggtttca tttgcgttca ttctacccgt aaactgaaag atggcagtct ggaatccctg 1140 atccgtccga cgctgacgcc gggcagcgtg gtcaccacgc cgcgctcggc agttcactat 1200 attgtcacgg aatacggcgt ggctctgctg aaaggccagt ccacctggca acgtgcagaa 1260 gctctgatta atatcgccca tccggatttt cgcgaagaac tgattaaaga agcggaaaaa 1320 atgggcatct ggacgaaaac ctcaaaaacg gaatactaa 1359 <210> 27 <211> 786 <212> DNA <213> Artificial Sequence <220> <223> Crt <400> 27 atggaactaa acaatgtcat ccttgaaaag gaaggtaaag ttgctgtagt taccattaac 60 agacctaaag cattaaatgc gttaaatagt gatacactaa aagaaatgga ttatgttata 120 ggtgaaattg aaaatgatag cgaagtactt gcagtaattt taactggagc aggagaaaaa 180 tcatttgtag caggagcaga tatttctgag atgaaggaaa tgaataccat tgaaggtaga 240 aaattcggga tacttggaaa taaagtgttt agaagattag aacttcttga aaagcctgta 300 atagcagctg ttaatggttt tgctttagga ggcggatgcg aaatagctat gtcttgtgat 360 ataagaatag cttcaagcaa cgcaagattt ggtcaaccag aagtaggtct cggaataaca 420 cctggttttg gtggtacaca aagactttca agattagttg gaatgggcat ggcaaagcag 480 cttatattta ctgcacaaaa tataaaggca gatgaagcat taagaatcgg acttgtaaat 540 aaggtagtag aacctagtga attaatgaat acagcaaaag aaattgcaaa caaaattgtg 600 agcaatgctc cagtagctgt taagttaagc aaacaggcta ttaatagagg aatgcagtgt 660 gatattgata ctgctttagc atttgaatca gaagcatttg gagaatgctt ttcaacagag 720 gatcaaaagg atgcaatgac agctttcata gagaaaagaa aaattgaagg cttcaaaaat 780 agatag 786 <210> 28 <211> 849 <212> DNA <213> Artificial Sequence <220> <223> Hbd <400> 28 atgaaaaagg tatgtgttat aggtgcaggt actatgggtt caggaattgc tcaggcattt 60 gcagctaaag gatttgaagt agtattaaga gatattaaag atgaatttgt tgatagagga 120 ttagatttta tcaataaaaa tctttctaaa ttagttaaaa aaggaaagat agaagaagct 180 actaaagttg aaatcttaac tagaatttcc ggaacagttg accttaatat ggcagctgat 240 tgcgatttag ttatagaagc agctgttgaa agaatggata ttaaaaagca gatttttgct 300 gacttagaca atatatgcaa gccagaaaca attcttgcat caaatacatc atcactttca 360 ataacagaag tggcatcagc aactaaaaga cctgataagg ttataggtat gcatttcttt 420 aatccagctc ctgttatgaa gcttgtagag gtaataagag gaatagctac atcacaagaa 480 acttttgatg cagttaaaga gacatctata gcaataggaa aagatcctgt agaagtagca 540 gaagcaccag gatttgttgt aaatagaata ttaataccaa tgattaatga agcagttggt 600 atattagcag aaggaatagc ttcagtagaa gacatagata aagctatgaa acttggagct 660 aatcacccaa tgggaccatt agaattaggt gattttatag gtcttgatat atgtcttgct 720 ataatggatg ttttatactc agaaactgga gattctaagt atagaccaca tacattactt 780 aagaagtatg taagagcagg atggcttgga agaaaatcag gaaaaggttt ctacgattat 840 tcaaaataa 849 <210> 29 <211> 1194 <212> DNA <213> Artificial Sequence <220> <223> Ter <400> 29 atgatcgtca agccaatggt gcgcaataat atctgtctga acgctcaccc gcagggttgt 60 aaaaagggtg tagaagacca gattgaatac actaagaaac gcatcaccgc agaagttaaa 120 gcaggtgcca aagcaccgaa aaacgtcctg gtgctgggct gcagcaacgg ctacggtctg 180 gcaagccgca ttacggctgc attcggttac ggcgctgcta ctattggtgt tagcttcgaa 240 aaggcgggtt ctgaaaccaa atacggcact ccaggctggt acaacaacct ggcattcgac 300 gaagcagcga agcgtgaggg tctgtactct gttaccatcg acggtgacgc gttctctgac 360 gagatcaaag ctcaggttat cgaggaagct aaaaagaaag gtatcaaatt cgacctgatt 420 gtgtactccc tggcctctcc ggttcgtacc gacccggata ccggcatcat gcacaaaagc 480 gtactgaagc cgtttggcaa aaccttcact ggtaaaaccg ttgatccttt caccggcgag 540 ctgaaggaaa tctccgccga gccagctaac gatgaggagg ctgctgcgac cgttaaagtg 600 atgggtggcg aagactggga acgttggatc aaacaactgt ccaaggaagg tctgctggag 660 gagggctgta ttactctggc atattcttac atcggcccgg aggcgactca ggcactgtat 720 cgtaagggca ccatcggtaa agcgaaagaa catctggagg ccaccgctca ccgtctgaac 780 aaggaaaacc cgagcatccg tgctttcgtg tccgttaaca agggcctggt tacgcgcgct 840 tccgcagtaa ttccggtcat tccgctgtac ctggcttccc tgtttaaagt catgaaagaa 900 aaaggcaacc acgaaggttg tatcgaacaa attactcgcc tgtatgcgga gcgcctgtac 960 cgtaaggatg gcactatccc ggttgatgaa gagaaccgca tccgcattga cgattgggaa 1020 ctggaagagg atgtacagaa agcggtttcc gcgctgatgg aaaaagtgac gggcgaaaac 1080 gcggaatccc tgacggatct ggcaggttac cgtcacgact ttctggcgtc taatggtttc 1140 gacgttgagg gtattaacta cgaggcagaa gttgaacgtt tcgatcgtat ttaa 1194 <210> 30 <211> 861 <212> DNA <213> Artificial Sequence <220> <223> tesB <400> 30 atgagtcagg cgctaaaaaa tttactgaca ttgttaaatc tggaaaaaat tgaggaagga 60 ctctttcgcg gccagagtga agatttaggt ttacgccagg tgtttggcgg ccaggtcgtg 120 ggtcaggcct tgtatgctgc aaaagagacc gtccctgaag agcggctggt acattcgttt 180 cacagctact ttcttcgccc tggcgatagt aagaagccga ttatttatga tgtcgaaacg 240 ctgcgtgacg gtaacagctt cagcgcccgc cgggttgctg ctattcaaaa cggcaaaccg 300 attttttata tgactgcctc tttccaggca ccagaagcgg gtttcgaaca tcaaaaaaca 360 atgccgtccg cgccagcgcc tgatggcctc ccttcggaaa cgcaaatcgc ccaatcgctg 420 gcgcacctgc tgccgccagt gctgaaagat aaattcatct gcgatcgtcc gctggaagtc 480 cgtccggtgg agtttcataa cccactgaaa ggtcacgtcg cagaaccaca tcgtcaggtg 540 tggatccgcg caaatggtag cgtgccggat gacctgcgcg ttcatcagta tctgctcggt 600 tacgcttctg atcttaactt cctgccggta gctctacagc cgcacggcat cggttttctc 660 gaaccgggga ttcagattgc caccattgac cattccatgt ggttccatcg cccgtttaat 720 ttgaatgaat ggctgctgta tagcgtggag agcacctcgg cgtccagcgc acgtggcttt 780 gtgcgcggtg agttttatac ccaagacggc gtactggttg cctcgaccgt tcaggaaggg 840 gtgatgcgta atcacaatta a 861 <110> POSTECH ACADEMY-INDUSTRY FOUNDATION          IUCF-HYU (Industry-University Cooperation Foundation Hanyang University) <120> HEXANOIC ACID-PRODUCING RECOMBINANT MICROORGANISM AND METHOD OF          PRODUCING HEXANOIC ACID USING THE SAME <130> POSTECH1-54P <160> 30 <170> KoPatentIn 3.0 <210> 1 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> atoB-C <400> 1 cggcacccct acaaacagaa ggaatataaa 30 <210> 2 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> atoB-DR1 <400> 2 ccctcgggtt aaaggtgcat agact 25 <210> 3 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> atoB-DR2 <400> 3 ccctcgggtt aaaggtgcat cgacg 25 <210> 4 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> atoB-DR3 <400> 4 ccctcgggtt aaaggtgcat agacg 25 <210> 5 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> atoB-del-F <400> 5 atcccttcat attcaattag ttaaataact aaatccaata atctcattct ctagtgctgg 60 agcgaactgc 70 <210> 6 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> atoB-del-R <400> 6 cctgaccgcc gccaatgcac agtgttgcca gccccagcgt tttatcgcgt ggagtactcg 60 cggttgactg 70 <210> 7 <211> 68 <212> DNA <213> Artificial Sequence <220> <223> ACT-F1 <400> 7 ctaggtacag tgctagcttt gcgtaactaa ggagggtcac ctatgtataa actgtcgcaa 60 atcgctga 68 <210> 8 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> ACT-F2 <400> 8 gaatgagctc ttgacggcta gctcagtcct aggtacagtg ctagctttgc gtaactaagg 60                                                                           60 <210> 9 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> ACT-R <400> 9 gccatccata tgtttagtat tccgtttttg aggttttcgt 40 <210> 10 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> bktB-F1 <400> 10 ctaggtacag tgctagcact gtaataagaa ggaggggtga tatgacgcgt gaagtggtag 60                                                                           60 <210> 11 <211> 67 <212> DNA <213> Artificial Sequence <220> <223> bktB-F2 <400> 11 gaatgcggcc gcttgacggc tagctcagtc ctaggtacag tgctagcact gtaataagaa 60 ggagggg 67 <210> 12 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> bktB-R <400> 12 gccatccata tgtcagatac gctcgaagat gg 32 <210> 13 <211> 102 <212> DNA <213> Artificial Sequence <220> <223> atoB-down-regulation-F1 <400> 13 gccatcctcg agctgacagc tagctcagtc ctaggtataa tgctagcccc tcgggttaaa 60 ggtgcataga ctatgaaaaa ttgtgtcatc gtcagtgcgg ta 102 <210> 14 <211> 102 <212> DNA <213> Artificial Sequence <220> <223> atoB-down-regulation-F2 <400> 14 gccatcctcg agctgacagc tagctcagtc ctaggtataa tgctagcccc tcgggttaaa 60 ggtgcatcga cgatgaaaaa ttgtgtcatc gtcagtgcgg ta 102 <210> 15 <211> 102 <212> DNA <213> Artificial Sequence <220> <223> atoB-down-regulation-F3 <400> 15 gccatcctcg agctgacagc tagctcagtc ctaggtataa tgctagcccc tcgggttaaa 60 ggtgcataga cgatgaaaaa ttgtgtcatc gtcagtgcgg ta 102 <210> 16 <211> 47 <212> DNA <213> Artificial Sequence <220> <223> atoB-down-regulation-R <400> 16 gatggcttaa ttaattaatt caaccgttca atcaccatcg caattcc 47 <210> 17 <211> 77 <212> DNA <213> Artificial Sequence <220> <223> atoB-down-control-F <400> 17 gccatcctcg agctgacagc tagctcagtc ctaggtataa tgctagccgg cacccctaca 60 aacagaagga atataaa 77 <210> 18 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> atoB-genome-check-F <400> 18 gaacccgcac tgctttaatg ctgg 24 <210> 19 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> atoB-genome-check-R <400> 19 ggttaccttc gccgtcgatg ttc 23 <210> 20 <211> 27 <212> DNA <213> Artificial Sequence <220> 223 ACT-check-F <400> 20 cgtgagggtc tgtactctgt taccatc 27 <210> 21 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> pACYC-check-F <400> 21 atctcgacgc tctcccttat gcgact 26 <210> 22 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> pACYC-check-R <400> 22 ggttatgcta gttattgctc agcggtggca 30 <210> 23 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> atoB-plasmid-check-F <400> 23 gccgccatct tcgagcgtat ctgac 25 <210> 24 <211> 1185 <212> DNA <213> Artificial Sequence <220> <223> atoB <400> 24 atgaaaaatt gtgtcatcgt cagtgcggta cgtactgcta tcggtagttt taacggttca 60 ctcgcttcca ccagcgccat cgacctgggg gcgacagtaa ttaaagccgc cattgaacgt 120 gcaaaaatcg attcacaaca cgttgatgaa gtgattatgg gtaacgtgtt acaagccggg 180 ctggggcaaa atccggcgcg tcaggcactg ttaaaaagcg ggctggcaga aacggtgtgc 240 ggattcacgg tcaataaagt atgtggttcg ggtcttaaaa gtgtggcgct tgccgcccag 300 gccattcagg caggtcaggc gcagagcatt gtggcggggg gtatggaaaa tatgagttta 360 gccccctact tactcgatgc aaaagcacgc tctggttatc gtcttggaga cggacaggtt 420 tatgacgtaa tcctgcgcga tggcctgatg tgcgccaccc atggttatca tatggggatt 480 accgccgaaa acgtggctaa agagtacgga attacccgtg aaatgcagga tgaactggcg 540 ctacattcac agcgtaaagc ggcagccgca attgagtccg gtgcttttac agccgaaatc 600 gtcccggtaa atgttgtcac tcgaaagaaa accttcgtct tcagtcaaga cgaattcccg 660 aaagcgaatt caacggctga agcgttaggt gcattgcgcc cggccttcga taaagcagga 720 acagtcaccg ctgggaacgc gtctggtatt aacgacggtg ctgccgctct ggtgattatg 780 gaagaatctg cggcgctggc agcaggcctt acccccctgg ctcgcattaa aagttatgcc 840 agcggtggcg tgccccccgc attgatgggt atggggccag tacctgccac gcaaaaagcg 900 ttacaactgg cggggctgca actggcggat attgatctca ttgaggctaa tgaagcattt 960 gctgcacagt tccttgccgt tgggaaaaac ctgggctttg attctgagaa agtgaatgtc 1020 aacggcgggg ccatcgcgct cgggcatcct atcggtgcca gtggtgctcg tattctggtc 1080 acactattac atgccatgca ggcacgcgat aaaacgctgg ggctggcaac actgtgcatt 1140 ggcggcggtc agggaattgc gatggtgatt gaacggttga attaa 1185 <210> 25 <211> 1185 <212> DNA <213> Artificial Sequence <220> <223> bktB <400> 25 atgacgcgtg aagtggtagt ggtaagcggt gtccgtaccg cgatcgggac ctttggcggc 60 agcctgaagg atgtggcacc ggcggagctg ggcgcactgg tggtgcgcga ggcgctggcg 120 cgcgcgcagg tgtcgggcga cgatgtcggc cacgtggtat tcggcaacgt gatccagacc 180 gagccgcgcg acatgtatct gggccgcgtc gcggccgtca acggcggggt gacgatcaac 240 gcccccgcgc tgaccgtgaa ccgcctgtgc ggctcgggcc tgcaggccat tgtcagcgcc 300 gcgcagacca tcctgctggg cgataccgac gtcgccatcg gcggcggcgc ggaaagcatg 360 agccgcgcac cgtacctggc gccggcagcg cgctggggcg cacgcatggg cgacgccggc 420 ctggtcgaca tgatgctggg tgcgctgcac gatcccttcc atcgcatcca catgggcgtg 480 accgccgaga atgtcgccaa ggaatacgac atctcgcgcg cgcagcagga cgaggccgcg 540 ctggaatcgc accgccgcgc ttcggcagcg atcaaggccg gctacttcaa ggaccagatc 600 gtcccggtgg tgagcaaggg ccgcaagggc gacgtgacct tcgacaccga cgagcacgtg 660 cgccatgacg ccaccatcga cgacatgacc aagctcaggc cggtcttcgt caaggaaaac 720 ggcacggtca cggccggcaa tgcctcgggc ctgaacgacg ccgccgccgc ggtggtgatg 780 atggagcgcg ccgaagccga gcgccgcggc ctgaagccgc tggcccgcct ggtgtcgtac 840 ggccatgccg gcgtggaccc gaaggccatg ggcatcggcc cggtgccggc gacgaagatc 900 gcgctggagc gcgccggcct gcaggtgtcg gacctggacg tgatcgaagc caacgaagcc 960 tttgccgcac aggcgtgcgc cgtgaccaag gcgctcggtc tggacccggc caaggttaac 1020 ccgaacggct cgggcatctc gctgggccac ccgatcggcg ccaccggtgc cctgatcacg 1080 gtgaaggcgc tgcatgagct gaaccgcgtg cagggccgct acgcgctggt gacgatgtgc 1140 attggcggcg ggcagggcat tgccgccatc ttcgagcgta tctga 1185 <210> 26 <211> 1359 <212> DNA <213> Artificial Sequence <220> <223> Mhact <400> 26 atgtataaac tgtcgcaaat cgctgaagaa tatcagaaaa aactggttac gccgcaagaa 60 gctgccgctg tcgtgaaatc gggtgaccgt gttagctatg gcctgggttg ctcggcaccg 120 tacgatacgg acaaagcgct ggccgatcat attaacaaag atggcctgaa agacgtggaa 180 attatcgatg cgaccctgat ccaggaccac ccgtttttca cctatacgga aaccgaaagc 240 aatgatcaag tccgctttgt gtctggccat tttaacggtt tcgaccgtaa aatgaataaa 300 gccggtcgct gttggtttat gccgctgctg ttcaacgaac tgccgaaata ctggagccat 360 aagaaagtgg atgttgcaat ttttcaggtt cacccgatgg acaaatgggg caacttcaat 420 ctgggtccgc aagtcgcaga tctgcgtggc attctgaaaa gtgctgacaa agtcatcgtg 480 gaagttaacc agaaaatgcc gaaagcgctg ggctatgaaa ccgaactgaa tattgccgat 540 gtggacttta tcgttgaagg ttctaacccg gatatgccga ttgtgccgaa taaaccgagt 600 acgccggttg atgacaaaat tgcgtccttc gtggttccga tgatcaaaga tggctcaacc 660 ctgcaactgg gtattggcgg tatcccgtcg gcgatcggcc ataaactggc cgaaagcgat 720 gttaaagacc tgtctggtca cacggaaatg ctggtcgatc cgtatgtgga actgtacgaa 780 gcaggcaaaa ttaccggcaa gaaaaaccgt gatcgcggca aaatcatgta tacgtttgct 840 ggcggtaccc agcgtctgta cgactttatt gatgacaatc aaatcgtgtt caacgcgccg 900 gttaattatg tcaacaatat taacgtcgtg gccagcatcg ataatttcgt cagcattaac 960 tcttgcatca atctggacct gtatggtcaa gtgtgtgcgg aaagtgccgg ctaccgccac 1020 atttccggta ccggcggtgc gctggatttt gcacagggcg cttacctgag cgaaggcggt 1080 caaggtttca tttgcgttca ttctacccgt aaactgaaag atggcagtct ggaatccctg 1140 atccgtccga cgctgacgcc gggcagcgtg gtcaccacgc cgcgctcggc agttcactat 1200 attgtcacgg aatacggcgt ggctctgctg aaaggccagt ccacctggca acgtgcagaa 1260 gctctgatta atatcgccca tccggatttt cgcgaagaac tgattaaaga agcggaaaaa 1320 atgggcatct ggacgaaaac ctcaaaaacg gaatactaa 1359 <210> 27 <211> 786 <212> DNA <213> Artificial Sequence <220> <223> Crt <400> 27 atggaactaa acaatgtcat ccttgaaaag gaaggtaaag ttgctgtagt taccattaac 60 agacctaaag cattaaatgc gttaaatagt gatacactaa aagaaatgga ttatgttata 120 ggtgaaattg aaaatgatag cgaagtactt gcagtaattt taactggagc aggagaaaaa 180 tcatttgtag caggagcaga tatttctgag atgaaggaaa tgaataccat tgaaggtaga 240 aaattcggga tacttggaaa taaagtgttt agaagattag aacttcttga aaagcctgta 300 atagcagctg ttaatggttt tgctttagga ggcggatgcg aaatagctat gtcttgtgat 360 ataagaatag cttcaagcaa cgcaagattt ggtcaaccag aagtaggtct cggaataaca 420 cctggttttg gtggtacaca aagactttca agattagttg gaatgggcat ggcaaagcag 480 cttatattta ctgcacaaaa tataaaggca gatgaagcat taagaatcgg acttgtaaat 540 aaggtagtag aacctagtga attaatgaat acagcaaaag aaattgcaaa caaaattgtg 600 agcaatgctc cagtagctgt taagttaagc aaacaggcta ttaatagagg aatgcagtgt 660 gatattgata ctgctttagc atttgaatca gaagcatttg gagaatgctt ttcaacagag 720 gatcaaaagg atgcaatgac agctttcata gagaaaagaa aaattgaagg cttcaaaaat 780 agatag 786 <210> 28 <211> 849 <212> DNA <213> Artificial Sequence <220> <223> Hbd <400> 28 atgaaaaagg tatgtgttat aggtgcaggt actatgggtt caggaattgc tcaggcattt 60 gcagctaaag gatttgaagt agtattaaga gatattaaag atgaatttgt tgatagagga 120 ttagatttta tcaataaaaa tctttctaaa ttagttaaaa aaggaaagat agaagaagct 180 actaaagttg aaatcttaac tagaatttcc ggaacagttg accttaatat ggcagctgat 240 tgcgatttag ttatagaagc agctgttgaa agaatggata ttaaaaagca gatttttgct 300 gacttagaca atatatgcaa gccagaaaca attcttgcat caaatacatc atcactttca 360 ataacagaag tggcatcagc aactaaaaga cctgataagg ttataggtat gcatttcttt 420 aatccagctc ctgttatgaa gcttgtagag gtaataagag gaatagctac atcacaagaa 480 acttttgatg cagttaaaga gacatctata gcaataggaa aagatcctgt agaagtagca 540 gaagcaccag gatttgttgt aaatagaata ttaataccaa tgattaatga agcagttggt 600 atattagcag aaggaatagc ttcagtagaa gacatagata aagctatgaa acttggagct 660 aatcacccaa tgggaccatt agaattaggt gattttatag gtcttgatat atgtcttgct 720 ataatggatg ttttatactc agaaactgga gattctaagt atagaccaca tacattactt 780 aagaagtatg taagagcagg atggcttgga agaaaatcag gaaaaggttt ctacgattat 840 tcaaaataa 849 <210> 29 <211> 1194 <212> DNA <213> Artificial Sequence <220> <223> Ter <400> 29 atgatcgtca agccaatggt gcgcaataat atctgtctga acgctcaccc gcagggttgt 60 aaaaagggtg tagaagacca gattgaatac actaagaaac gcatcaccgc agaagttaaa 120 gcaggtgcca aagcaccgaa aaacgtcctg gtgctgggct gcagcaacgg ctacggtctg 180 gcaagccgca ttacggctgc attcggttac ggcgctgcta ctattggtgt tagcttcgaa 240 aaggcgggtt ctgaaaccaa atacggcact ccaggctggt acaacaacct ggcattcgac 300 gaagcagcga agcgtgaggg tctgtactct gttaccatcg acggtgacgc gttctctgac 360 gagatcaaag ctcaggttat cgaggaagct aaaaagaaag gtatcaaatt cgacctgatt 420 gtgtactccc tggcctctcc ggttcgtacc gacccggata ccggcatcat gcacaaaagc 480 gtactgaagc cgtttggcaa aaccttcact ggtaaaaccg ttgatccttt caccggcgag 540 ctgaaggaaa tctccgccga gccagctaac gatgaggagg ctgctgcgac cgttaaagtg 600 atgggtggcg aagactggga acgttggatc aaacaactgt ccaaggaagg tctgctggag 660 gagggctgta ttactctggc atattcttac atcggcccgg aggcgactca ggcactgtat 720 cgtaagggca ccatcggtaa agcgaaagaa catctggagg ccaccgctca ccgtctgaac 780 aaggaaaacc cgagcatccg tgctttcgtg tccgttaaca agggcctggt tacgcgcgct 840 tccgcagtaa ttccggtcat tccgctgtac ctggcttccc tgtttaaagt catgaaagaa 900 aaaggcaacc acgaaggttg tatcgaacaa attactcgcc tgtatgcgga gcgcctgtac 960 cgtaaggatg gcactatccc ggttgatgaa gagaaccgca tccgcattga cgattgggaa 1020 ctggaagagg atgtacagaa agcggtttcc gcgctgatgg aaaaagtgac gggcgaaaac 1080 gcggaatccc tgacggatct ggcaggttac cgtcacgact ttctggcgtc taatggtttc 1140 gacgttgagg gtattaacta cgaggcagaa gttgaacgtt tcgatcgtat ttaa 1194 <210> 30 <211> 861 <212> DNA <213> Artificial Sequence <220> <223> tesB <400> 30 atgagtcagg cgctaaaaaa tttactgaca ttgttaaatc tggaaaaaat tgaggaagga 60 ctctttcgcg gccagagtga agatttaggt ttacgccagg tgtttggcgg ccaggtcgtg 120 ggtcaggcct tgtatgctgc aaaagagacc gtccctgaag agcggctggt acattcgttt 180 cacagctact ttcttcgccc tggcgatagt aagaagccga ttatttatga tgtcgaaacg 240 ctgcgtgacg gtaacagctt cagcgcccgc cgggttgctg ctattcaaaa cggcaaaccg 300 attttttata tgactgcctc tttccaggca ccagaagcgg gtttcgaaca tcaaaaaaca 360 atgccgtccg cgccagcgcc tgatggcctc ccttcggaaa cgcaaatcgc ccaatcgctg 420 gcgcacctgc tgccgccagt gctgaaagat aaattcatct gcgatcgtcc gctggaagtc 480 cgtccggtgg agtttcataa cccactgaaa ggtcacgtcg cagaaccaca tcgtcaggtg 540 tggatccgcg caaatggtag cgtgccggat gacctgcgcg ttcatcagta tctgctcggt 600 tacgcttctg atcttaactt cctgccggta gctctacagc cgcacggcat cggttttctc 660 gaaccgggga ttcagattgc caccattgac cattccatgt ggttccatcg cccgtttaat 720 ttgaatgaat ggctgctgta tagcgtggag agcacctcgg cgtccagcgc acgtggcttt 780 gtgcgcggtg agttttatac ccaagacggc gtactggttg cctcgaccgt tcaggaaggg 840 gtgatgcgta atcacaatta a 861

Claims (11)

서열번호 2 또는 서열번호 3으로 표시되는 염기서열로 이루어진 합성 5' UTR(untranslated region) 및 서열번호 24로 표시되는 아세틸-CoA 아세틸전이효소 (acetyl-CoA acetyltransferase)를 코딩하는 atoB 유전자를 포함하는 제1 재조합 벡터.
A synthetic 5 'UTR (untranslated region) consisting of the nucleotide sequence represented by SEQ ID NO: 2 or SEQ ID NO: 3 and an atoB gene encoding an acetyl-CoA acetyltransferase represented by SEQ ID NO: 24 1 recombinant vector.
제1항에 있어서, 상기 합성 5' UTR은 atoB 유전자의 예측 발현량(a.u.)이 1,100 이상 300,000 이하가 되도록 설계된 것을 특징으로 하는, 제1 재조합 벡터.
The first recombinant vector according to claim 1, wherein the synthetic 5 'UTR is designed such that the predicted expression amount (au) of the atoB gene is 1,100 or more and 300,000 or less.
삭제delete 제1항에 있어서, 상기 제1 재조합 벡터는 베타-케토티올라제(β-ketothiolase)를 코딩하는 bktB 유전자를 더 포함하는 것을 특징으로 하는, 제1 재조합 벡터.
The first recombinant vector of claim 1, wherein the first recombinant vector further comprises a bktB gene encoding beta-ketothiolase.
제1항, 제2항 및 제4항 중 어느 한 항의 제1 재조합 벡터가 도입된 헥사노익산(hexanoic acid) 생산용 재조합 미생물로,
상기 미생물은 대장균인 것을 특징으로 하는, 헥사노익산 생산용 재조합 미생물.
A recombinant microorganism for producing hexanoic acid into which the first recombinant vector of any one of claims 1, 2 and 4 is introduced,
The microorganism is E. coli, characterized in that the recombinant microorganism for hexanoic acid production.
제5항에 있어서, 상기 재조합 미생물은 메가스파에라 속 MH(Megasphaera sp. MH)로부터 유래된 아세틸-CoA 전이효소(ACT)를 코딩하는 mhact 유전자를 포함하는 제2 재조합 벡터가 추가로 도입된 것을 특징으로 하는, 헥사노익산 생산용 재조합 미생물.
The method of claim 5, wherein the recombinant microorganism is a second recombinant vector containing a mhact gene encoding acetyl-CoA transferase (ACT) derived from Megasphaera sp. Characterized in that, a recombinant microorganism for hexanoic acid production.
제6항에 있어서, 상기 제2 재조합 벡터는 크로토네이즈(Crotonase)를 코딩하는 crt 유전자, 3-하이드록시부티릴-CoA 탈수소효소(3-hydroxybutyryl-CoA dehydrogenase)를 코딩하는 hbd 유전자 및 트랜스-이노일-CoA 환원효소(trans-enoyl-CoA reductase)를 코딩하는 ter 유전자를 더 포함하는 것을 특징으로 하는, 헥사노익산 생산용 재조합 미생물.
The method of claim 6, wherein the second recombinant vector is crotonate tyrosinase crt gene, encoding a (Crotonase) 3- hydroxy-butyryl -CoA hbd gene encoding a dehydrogenase (3-hydroxybutyryl-CoA dehydrogenase) and trans- Recombinant microorganisms for hexanoic acid production, characterized in that it further comprises a ter gene encoding a trans- enoyl-CoA reductase.
삭제delete 제1항, 제2항 및 제4항 중 어느 한 항의 제1 재조합 벡터를 도입하는 단계; 를 포함하는 헥사노익산 생산용 재조합 미생물의 제조방법으로,
상기 미생물은 대장균인 것을 특징으로 하는, 헥사노익산 생산용 재조합 미생물의 제조방법.
Introducing a first recombinant vector of any one of claims 1, 2 and 4; As a method for producing a recombinant microorganism for hexanoic acid production, including
The microorganism is characterized in that E. coli, hexanoic acid production method for producing a recombinant microorganism.
제9항에 있어서, 상기 제조방법은 메가스파에라 속 MH(Megasphaera sp. MH)로부터 유래된 아세틸-CoA 전이효소(ACT)를 코딩하는 mhact 유전자를 포함하는 제2 재조합 벡터를 도입하는 단계; 를 추가로 포함하는 것을 특징으로 하는, 헥사노익산 생산용 재조합 미생물의 제조방법.
The method of claim 9, wherein the method comprises: introducing a second recombinant vector comprising a mhact gene encoding an acetyl-CoA transferase (ACT) derived from Megasphaera sp. Method for producing a recombinant microorganism for hexanoic acid production, characterized in that it further comprises.
제5항의 재조합 미생물을 배양하는 단계; 를 포함하는 헥사노익산의 생산방법.Culturing the recombinant microorganism of claim 5; Hexanoic acid production method comprising a.
KR1020180048483A 2018-04-26 2018-04-26 Hexanoic acid-producing recombinant microorganism and method of producing hexanoic acid using the same KR102008998B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180048483A KR102008998B1 (en) 2018-04-26 2018-04-26 Hexanoic acid-producing recombinant microorganism and method of producing hexanoic acid using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180048483A KR102008998B1 (en) 2018-04-26 2018-04-26 Hexanoic acid-producing recombinant microorganism and method of producing hexanoic acid using the same

Publications (1)

Publication Number Publication Date
KR102008998B1 true KR102008998B1 (en) 2019-08-08

Family

ID=67613311

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180048483A KR102008998B1 (en) 2018-04-26 2018-04-26 Hexanoic acid-producing recombinant microorganism and method of producing hexanoic acid using the same

Country Status (1)

Country Link
KR (1) KR102008998B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170082888A (en) * 2016-01-07 2017-07-17 포항공과대학교 산학협력단 3-hydroxypropionic acid-producing recombinant microorganism and method of producing 3-hydroxypropionic acid using the same
KR20180038404A (en) * 2016-10-06 2018-04-16 포항공과대학교 산학협력단 Recombinant microorganism with regulated glycolytic flux and method of producing compound using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170082888A (en) * 2016-01-07 2017-07-17 포항공과대학교 산학협력단 3-hydroxypropionic acid-producing recombinant microorganism and method of producing 3-hydroxypropionic acid using the same
KR20180038404A (en) * 2016-10-06 2018-04-16 포항공과대학교 산학협력단 Recombinant microorganism with regulated glycolytic flux and method of producing compound using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
황재성 등, 한국공업화학회 연구논문 초록집, Vol.2017, p.208 (2017.05.) *

Similar Documents

Publication Publication Date Title
US11098307B2 (en) Compositions and methods for rapid and dynamic flux control using synthetic metabolic valves
US10577634B2 (en) Bioconversion process for producing nylon-7, nylon-7,7 and polyesters
US9181539B2 (en) Strains for the production of flavonoids from glucose
BR112014022117B1 (en) RECOMBINANT YEAST HOST CELL FOR MALONATE PRODUCTION AND MALONATE AND ACRYLATE PRODUCTION METHODS
US20140065697A1 (en) Cells and methods for producing isobutyric acid
JP7186261B2 (en) Biotechnological production of ω-functionalized carboxylic acids and their esters
US10006060B2 (en) Selectivity of the production of vanilloids in a recombinant unicellular host
US20140364629A1 (en) Microbial production of 3,4-dihydroxybutyrate (3,4-dhba), 2,3- dihydroxybutyrate (2,3-dhba) and 3-hydroxybutyrolactone (3-hbl)
CN114616330A (en) Recombinant host cell for the production of malonate
US9353390B2 (en) Genetically engineered microbes and methods for producing 4-hydroxycoumarin
KR102008998B1 (en) Hexanoic acid-producing recombinant microorganism and method of producing hexanoic acid using the same
KR101965341B1 (en) Recombinant microorganism with regulated glycolytic flux and method of producing compound using the same
KR102027747B1 (en) Recombinant microorganism producing 5-Aminolevulinic acid and method of producing 5-Aminolevulinic acid using the same
WO2014128252A1 (en) Biosynthesis of o-methylated phenolic compounds
US20240191216A1 (en) Recombinant host cells for the production of malonate
US20230287435A1 (en) Microorganisms and methods for reducing by-products
KR101921678B1 (en) An engineered cell having improved serine biosynthesis ability

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant