KR20180038404A - Recombinant microorganism with regulated glycolytic flux and method of producing compound using the same - Google Patents

Recombinant microorganism with regulated glycolytic flux and method of producing compound using the same Download PDF

Info

Publication number
KR20180038404A
KR20180038404A KR1020170129180A KR20170129180A KR20180038404A KR 20180038404 A KR20180038404 A KR 20180038404A KR 1020170129180 A KR1020170129180 A KR 1020170129180A KR 20170129180 A KR20170129180 A KR 20170129180A KR 20180038404 A KR20180038404 A KR 20180038404A
Authority
KR
South Korea
Prior art keywords
ptsg
gene
utr
microorganism
butanediol
Prior art date
Application number
KR1020170129180A
Other languages
Korean (ko)
Other versions
KR101965341B1 (en
Inventor
정규열
임재형
Original Assignee
포항공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항공과대학교 산학협력단 filed Critical 포항공과대학교 산학협력단
Publication of KR20180038404A publication Critical patent/KR20180038404A/en
Application granted granted Critical
Publication of KR101965341B1 publication Critical patent/KR101965341B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/24Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
    • C07K14/245Escherichia (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/18Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic polyhydric

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention relates to a recombinant microorganism with regulated glycolytic flux and to a method for producing a compound using the same, and more specifically, to a recombinant microorganism having improved productivity of butanol, butylic acid and 2,3-butanediol by regulating a glycolytic process by regulating the expression level of the ptsG gene, and to a method for producing butanol, butylic acid and 2,3-butanediol using the same. The recombinant microorganism which regulates the expression of the ptsG gene by regulating the expression level of the ptsG gene, according to the present invention, has remarkably increased productivity of the butanol, butylic acid and 2,3-butanediol compared with a parent strain to be widely used in various industrial fields using the butanol, butylic acid and 2,3-butanediol.

Description

해당과정이 조절된 재조합 미생물 및 이를 이용한 화합물의 생산방법 {RECOMBINANT MICROORGANISM WITH REGULATED GLYCOLYTIC FLUX AND METHOD OF PRODUCING COMPOUND USING THE SAME}TECHNICAL FIELD [0001] The present invention relates to a recombinant microorganism and a method for producing the same. More particularly, the present invention relates to a recombinant microorganism,

본 발명은 해당과정이 조절된 재조합 미생물 및 이를 이용한 화합물의 생산방법에 관한 것으로, 보다 구체적으로는 ptsG 유전자의 발현량 조절을 통해 해당과정을 조절함으로써 부탄올, 부틸산 및 2,3-부탄디올의 생산성을 향상시킨 재조합 미생물 및 이를 이용한 부탄올, 부틸산 및 2,3-부탄디올의 생산방법에 관한 것이다.The present invention relates to a recombinant microorganism whose process is controlled and a method for producing the compound using the recombinant microorganism. More specifically, the present invention relates to a method for producing a recombinant microorganism, And a process for producing butanol, butyric acid and 2,3-butanediol using the recombinant microorganism.

최근 유가의 상승으로 인하여 바이오연료와 같은 대체 에너지에 대한 관심이 증가하며, 에탄올보다 가솔린 대체재로서의 물성이 더 뛰어난 부탄올에 대한 관심이 증가하고 있다. Due to the recent rise in oil prices, interest in alternative energy sources such as biofuels has increased, and interest in butanol, which is superior to gasoline as a substitute for gasoline, is increasing.

한편, 네 개의 탄소와 두 개의 하이드록시기(-OH)를 가지는 알코올의 하나(CH3CHOHCHOHCH3)인 2,3-부탄디올은 합성고무 제조 공정의 원료물질인 1,3-부타디엔(1,3-Butadiene)과 연료 첨가제 및 용매로 사용되는 메틸에틸케톤(Methyl ethyl ketone, MEK)으로 화학적 촉매 전환이 가능하다 (Ji et al., Biotechnol. Adv., 29: 351, 2011). 또한, 2,3-부탄디올은 가솔린(Gasoline)과 혼합하여 octane booster로 적용할 수 있어 산업적으로 매우 중요한 중간체이다(Celinska et al., Biotechnol. Adv., 27: 715, 2009).On the other hand, 2,3-butanediol, which is one of the alcohols having four carbon atoms and two hydroxyl groups (-OH) (CH3CHOHCHOHCH3), is a 1,3-butadiene (1,3-butadiene) (Mie et al., Biotechnol. Adv., 29: 351, 2011) can be converted into methyl ethyl ketone (MEK) as a fuel additive and solvent. In addition, 2,3-butanediol is an industrially important intermediate because it can be mixed with gasoline as an octane booster (Celinska et al., Biotechnol. Adv., 27: 715, 2009).

2,3-부탄디올은 화학적 합성 공정과 미생물 발효 공정을 통하여 생산할 수 있다. 하지만 상기 공정을 통한 2,3-부탄디올 생산 가격이 매우 높기 때문에 상업적 규모로의 2,3-부탄디올 생산은 이루어지지 않고 있다. 한편, 최근 미생물 발효 공정을 통한 2,3-부탄디올 생산 기술의 비약적인 발전과 함께, 화석원료 물질의 급격한 가격 상승과 국제적인 환경오염에 대한 규제가 강화됨에 따라 미생물 발효를 통한 바이오 기반 2,3-부탄디올 생산에 대한 관심과 연구 개발의 중요성이 증대되고 있다. 2,3-butanediol can be produced through a chemical synthesis process and a microbial fermentation process. However, since 2,3-butanediol production cost is very high, 2,3-butanediol production on a commercial scale has not been achieved. In recent years, along with the rapid development of 2,3-butanediol production technology through the microbial fermentation process, the rapid increase of the price of raw materials of fossil materials and the regulation of international environmental pollution have been strengthened, Interest in production and the importance of research and development are increasing.

이에, 본 발명자들은 ptsG 유전자의 발현량 조절을 통해 해당과정을 효과적으로 조절할 수 있음을 확인하고, 해당 유전자의 정량적 발현량 조절을 통하여 부탄올, 부틸산 및 2,3-부탄디올의 생산량을 향상시킨 재조합 미생물을 제조함으로써 본 발명을 완성하였다.The present inventors have confirmed that the process can be effectively controlled by controlling the expression level of the ptsG gene, and a recombinant microorganism having improved production of butanol, butyric acid, and 2,3-butanediol by controlling the quantitative expression level of the gene To thereby complete the present invention.

본 발명의 목적은 합성 5' UTR 서열을 포함하는 ptsG 유전자를 미생물에 도입하는 단계; 를 포함하는 부탄올 생산용 미생물의 제조 방법을 제공하는데 있다.It is an object of the present invention to provide a method for producing a 5 ' UTR sequence comprising introducing a ptsG gene comprising a synthetic 5 ' UTR sequence into a microorganism; And a method for producing a microorganism for producing butanol.

또한, 본 발명의 목적은 상기 방법을 이용하여 제조되는 것을 특징으로 하는 부탄올 생산용 재조합 미생물을 제공하는데 있다.It is another object of the present invention to provide a recombinant microorganism for producing butanol, which is produced using the above method.

또한, 본 발명의 또 다른 목적은 상기 재조합 미생물을 배양하는 단계; 를 포함하는 부탄올의 생산 방법을 제공하는데 있다.It is still another object of the present invention to provide a method for producing a recombinant microorganism, which comprises culturing the recombinant microorganism; And a method for producing butanol.

또한, 본 발명의 다른 목적은 합성 5' UTR 서열을 포함하는 ptsG 유전자를 미생물에 도입하는 단계; 를 포함하는 부틸산 또는 2,3-부탄디올 생산용 미생물의 제조 방법을 제공하는데 있다.It is another object of the present invention to provide a method for producing a 5 ' UTR sequence comprising the steps of: introducing a ptsG gene comprising a synthetic 5 ' UTR sequence into a microorganism; And a method for producing a microorganism for producing 2,3-butanediol.

또한, 본 발명의 목적은 상기 제조 방법을 이용하여 제조되는 것을 특징으로하는 부틸산 또는 2,3-부탄디올 생산용 재조합 미생물을 제공하는데 있다.Also, an object of the present invention is to provide a recombinant microorganism for producing butyric acid or 2,3-butanediol, which is produced by using the above production method.

또한, 본 발명의 또 다른 목적은 상기 재조합 미생물을 배양하는 단계; 를 포함하는 부틸산 또는 2,3-부탄디올의 생산 방법을 제공하는데 있다.It is still another object of the present invention to provide a method for producing a recombinant microorganism, which comprises culturing the recombinant microorganism; Butanediol or 2,3-butanediol.

본 발명의 목적은 합성 5' UTR 서열을 포함하는 ptsG 유전자를 미생물에 도입하는 단계; 를 포함하는 부탄올 생산용 미생물의 제조 방법을 제공하는데 있다.It is an object of the present invention to provide a method for producing a 5 ' UTR sequence comprising introducing a ptsG gene comprising a synthetic 5 ' UTR sequence into a microorganism; And a method for producing a microorganism for producing butanol.

또한, 본 발명의 목적은 상기 방법을 이용하여 제조되는 것을 특징으로 하는 부탄올 생산용 재조합 미생물을 제공하는데 있다.It is another object of the present invention to provide a recombinant microorganism for producing butanol, which is produced using the above method.

또한, 본 발명의 또 다른 목적은 상기 재조합 미생물을 배양하는 단계; 를 포함하는 부탄올의 생산 방법을 제공하는데 있다.It is still another object of the present invention to provide a method for producing a recombinant microorganism, which comprises culturing the recombinant microorganism; And a method for producing butanol.

또한, 본 발명의 다른 목적은 합성 5' UTR 서열을 포함하는 ptsG 유전자를 미생물에 도입하는 단계; 를 포함하는 부틸산 또는 2,3-부탄디올 생산용 미생물의 제조 방법을 제공하는데 있다.It is another object of the present invention to provide a method for producing a 5 ' UTR sequence comprising the steps of: introducing a ptsG gene comprising a synthetic 5 ' UTR sequence into a microorganism; And a method for producing a microorganism for producing 2,3-butanediol.

또한, 본 발명의 목적은 상기 제조 방법을 이용하여 제조되는 것을 특징으로하는 부틸산 또는 2,3-부탄디올 생산용 재조합 미생물을 제공하는데 있다.Also, an object of the present invention is to provide a recombinant microorganism for producing butyric acid or 2,3-butanediol, which is produced by using the above production method.

또한, 본 발명의 또 다른 목적은 상기 재조합 미생물을 배양하는 단계; 를 포함하는 부틸산 또는 2,3-부탄디올의 생산 방법을 제공하는데 있다.It is still another object of the present invention to provide a method for producing a recombinant microorganism, which comprises culturing the recombinant microorganism; Butanediol or 2,3-butanediol.

본 발명에 따른 ptsG 유전자의 발현량 조절을 통해 해당과정을 조절한 재조합 미생물은 부탄올, 부틸산 또는 2,3-부탄디올의 생산성이 모균주에 비해 현저하게 증가하여, 부탄올, 부틸산 또는 2,3-부탄디올이 활용되는 다양한 산업분야에서 광범위하게 적용할 수 있다.The productivity of butanol, butyl acid or 2,3-butanediol was significantly increased in the recombinant microorganisms controlling the process through the regulation of the expression level of the ptsG gene according to the present invention, - It can be widely applied in various industrial fields where butanediol is used.

도 1은 해당과정(glycolysis)과 대사 경로 사이의 동적 불균형 및 대사 밸브(metabolic valve)의 개념을 설명하는 모식도이다. 구체적으로, ptsG 발현량을 대사 밸브로써 사용하여 해당과정을 정량적으로 제어함으로써 최적화된 생산물의 생산이 가능함을 나타낸 도이다.
도 2는 야생형 대장균의 대사 경로 모식도(a), ptsG UTR 변이체들이 도입된 각 균주에 있어서 포도당 섭취속도(mmol g DCW-1 h- 1)에 따른 성장 속도(b), 아세트산(c) 및 피루브산(d)의 축적 정도를 확인한 결과를 나타낸 도이다.
도 3은 n-부탄올 대사 경로 모식도(a), ptsG UTR 변이체들이 도입된 각 균주에 있어서 바이오매스, 부탄올, 피루브산, 포도당 소비량 정도를 확인한 결과를 나타낸 도이다. 구체적으로, 포도당 소비 속도에 따른 피루브산의 축적(c) 정도를 확인하였으며, 각 균주에 있어서 n-부탄올의 수율(푸른 선) 및 생산성(붉은 선)을 확인한 결과(d)를 나타내었다.
도 4는 부틸산의 대사 경로 모식도(a), 2,3-부탄디올의 대사 경로 모식도(b), 부틸산 생산을 위하여 대사 경로를 재설계한 JHL265 균주와 추가적으로 ptsG의 과발현을 위하여 UTR5를 도입한 JHL266 균주의 부틸산 생산량 비교(c) 및 2,3-부탄디올 생산을 위하여 대사 경로를 재설계한 JHL267 균주와 추가적으로 ptsG의 과발현을 위하여 UTR5를 도입한 JHL268 균주의 2,3-부탄디올 생산량 비교(d)한 결과를 나타낸 도이다.
Figure 1 is a schematic diagram illustrating the dynamic imbalance between glycolysis and metabolic pathways and the concept of a metabolic valve. Specifically, it is possible to produce optimized products by quantitatively controlling the process using the expression amount of ptsG as a metabolic valve.
Figure 2 is a schematic diagram of a metabolic pathway of E. coli wild type (a), ptsG UTR variant are glucose uptake rate in each of the strains introduced - growth rate of the (mmol g DCW -1 h 1) (b), acetic acid (c) and pyruvic acid (d) of Fig.
FIG. 3 is a graph showing the results of confirming the degree of consumption of biomass, butanol, pyruvic acid, and glucose in each strain in which the ptsG UTR mutants were introduced (a), a schematic diagram of the n-butanol metabolic pathway. Specifically, the degree of accumulation of pyruvic acid (c) according to the glucose consumption rate was confirmed, and the yield (blue line) and productivity (red line) of n-butanol in each strain were confirmed (d).
FIG. 4 shows the metabolic pathway diagram (a) of butyric acid, the metabolic pathway diagram (b) of 2,3-butanediol, the JHL265 strain redesigned metabolic pathway for the production of butyric acid, and UTR5 for overexpression of ptsG Comparison of butyl acid production of JHL266 strain (c) and comparison of JHL267 strain redesigned for metabolism pathway for 2,3-butanediol production and 2,3-butanediol production of JHL268 strain with UTR5 for overexpression of ptsG (d ). Fig.

이하, 본 발명에 대해 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 명세서에서 달리 정의되지 않은 용어들은 본 발명이 속하는 기술 분야에서 통상적으로 사용되는 의미를 갖는 것이다.Terms not otherwise defined herein have meanings as commonly used in the art to which the present invention belongs.

본 발명자들은 해당과정을 정량적으로 조절하여 고 수율 및 고 생산성으로 부탄올, 부틸산 또는 2,3-부탄디올과 같은 대사산물을 생산할 수 있는 대장균을 제조하기 위해 연구하던 중, 상기 대사산물의 생산을 위하여 대사 경로를 재설계한 대장균 균주에서, 발현량이 조절되도록 인위적으로 재설계한 합성 5' UTR 서열과 연결한 ptsG 유전자를 도입하여, 원하는 대사산물을 효율적으로 생산할 수 있도록 한 재조합 미생물 및 상기 재조합 미생물의 제조 방법을 최초로 규명하였다.The present inventors have conducted extensive studies to produce E. coli capable of producing metabolic products such as butanol, butyric acid or 2,3-butanediol with high yield and high productivity by quantitatively controlling the corresponding processes. A recombinant microorganism capable of efficiently producing a desired metabolite by introducing a ptsG gene linked to a synthetic 5 'UTR sequence artificially redesigned to regulate the expression level in an E. coli strain that has been redesigned for metabolic pathway, and a recombinant microorganism The manufacturing method was first described.

일 양태로서, 본 발명은 합성 5' UTR 서열을 포함하는 ptsG 유전자를 미생물에 도입하는 단계; 를 포함하는 부탄올 생산용 미생물의 제조 방법을 제공한다.In one embodiment, the present invention provides a method for producing a 5 ' UTR sequence comprising: introducing a ptsG gene comprising a synthetic 5 ' UTR sequence into a microorganism; And a method for producing a microorganism for producing butanol.

본 발명에 있어서, 상기 합성 5' UTR은 포스포트랜스퍼레이스 시스템 포도당 수송체(glucose-specific transporter of the phosphotransferase system, IICBGlc)를 코딩하는 ptsG 유전자의 발현량을 조절하기 위하여 에스케리치아 콜라이(Escherichia coli) 유래 small RNA(sRNA)인 SgrS 및 ptsG 사이의 염기쌍을 기반으로 재설계된 것일 수 있다. 상기 합성 5' UTR은 야생형 5' UTR(본 발명의 일 실시예에서, UTRWT)을 기준으로 5' UTR의 상대적 활성을 순차적으로 조절하는 방식으로 구축할 수 있다.In order to control the expression level of the ptsG gene coding for the glucose-specific transporter of the phosphotransferase system (IICB Glc ), Escherichia coli (Escherichia coli) may have been redesigned based on the base pair between SgrS and ptsG, a small RNA (sRNA) from E. coli. The synthetic 5 'UTR can be constructed in a manner that sequentially regulates the relative activity of the 5' UTR relative to the wild type 5 'UTR (UTR WT in one embodiment of the invention).

본 발명에 있어서, 상기 합성 5' UTR은 서열번호 1 내지 4의 염기서열로 이루어진 군으로부터 선택되는 하나의 서열로 이루어진 합성 5' UTR일 수 있다. In the present invention, the synthetic 5 'UTR may be a synthetic 5' UTR consisting of a single sequence selected from the group consisting of the nucleotide sequences of SEQ ID NOS: 1 to 4.

또한, 본 발명에 있어서, 상기 방법은 부탄올 생산을 위한 adhE2 유전자 및 fdh1 유전자를 미생물에 도입하는 단계; 를 추가로 포함할 수 있으나, 이에 제한되지 않는다.In addition, in the present invention, the method comprises: introducing an adhE2 gene and a fdh1 gene for butanol production into a microorganism; But is not limited thereto.

본 발명에 있어서, 목적 유전자의 미생물 도입은 미생물 염색체의 유전정보 치환을 통해 이루어지는 것이 바람직하며, 이는 당업계에 알려진 방법을 제한 없이 이용하여 수행될 수 있다. 본 발명의 일 실시예에서는 Red recombination system을 이용하였으나, 이에 제한되지 않는다. In the present invention, the microorganism introduction of the target gene is preferably carried out through genetic information substitution of the microbial chromosome, and this can be carried out by using methods known in the art without limitation. In an embodiment of the present invention, a red recombination system is used, but the present invention is not limited thereto.

또한, 추가적으로 목적 유전자의 미생물 도입은 재조합 벡터의 도입을 통해 이루어질 수 있으며, 상기 재조합 벡터는 하나 또는 복수 개의 벡터로 구성될 수 있으며, 상기 하나 또는 복수 개의 벡터가 각각 미생물에 도입될 수 있고, 이에 제한되지 않는다. In addition, the introduction of the microorganism into the target gene may be accomplished through the introduction of a recombinant vector, and the recombinant vector may be composed of one or a plurality of vectors, and the one or more vectors may be introduced into the microorganism. It is not limited.

본 발명에 있어서, "유전자"는 최광의의 의미로 간주되어야 하며, 구조 단백질 또는 조절 단백질을 암호화할 수 있다. 이때, 조절단백질은 전사인자, 열 충격단백질 또는 DNA/RNA 복제, 전사 및/또는 번역에 관여하는 단백질을 포함한다. 본 발명에 있어서, 발현 억제의 대상이 되는 표적 유전자는 염색체 외 구성요소로서 존재할 수 있다.In the present invention, "gene" should be regarded as the broadest meaning, and it is possible to encode a structural or regulatory protein. Wherein the regulatory protein comprises a transcription factor, a heat shock protein or a protein involved in DNA / RNA replication, transcription and / or translation. In the present invention, the target gene to be inhibited in expression may exist as an extrachromosomal component.

본 발명에 있어서, "벡터"는 적합한 숙주 내에서 DNA를 발현시킬 수 있는 적합한 조절 서열에 작동가능하게 연결된 DNA 서열을 함유하는 DNA 제조물을 의미한다. 벡터는 플라스미드, 파지 입자 또는 간단하게 잠재적 게놈 삽입물일 수 있다. 또한, 상기 재조합 플라스미드 벡터는 바람직하게는 pCOLADuet, pCDFDuet, pETDuet 또는 pRSFDuet 등을 사용할 수 있으나 이에 제한되는 것은 아니다. In the present invention, "vector" means a DNA product containing a DNA sequence operably linked to a suitable regulatory sequence capable of expressing the DNA in an appropriate host. The vector may be a plasmid, phage particle or simply a potential genome insert. In addition, the recombinant plasmid vector may preferably be pCOLADuet, pCDFDuet, pETDuet or pRSFDuet, but is not limited thereto.

적당한 숙주로 형질전환되면, 벡터는 숙주 게놈과 무관하게 복제하고 기능할 수 있거나, 또는 일부 경우에 게놈 그 자체에 통합될 수 있다. 플라스미드가 현재 벡터의 가장 통상적으로 사용되는 형태이므로, 본 발명의 명세서에서 "플라스미드(plasmid)" 및 "벡터(vector)"는 때로 상호 교환적으로 사용된다. 본 발명의 목적상, 플라스미드 벡터를 이용하는 게 바람직하다. 이러한 목적에 사용될 수 있는 전형적인 플라스미드 벡터는 (a) 숙주세포당 수 개에서 수백 개의 플라스미드 벡터를 포함하도록 복제가 효율적으로 이루어지도록 하는 복제 개시점, (b) 플라스미드 벡터로 형질전환된 숙주세포가 선발될 수 있도록 하는 항생제 내성 유전자 및 (c) 외래 DNA 절편이 삽입될 수 있는 제한효소 절단부위를 포함하는 구조를 지니고 있다. 적절한 제한효소 절단 부위가 존재하지 않을지라도, 통상의 방법에 따른 합성 올리고뉴클레오타이드 어댑터(oligonucleotide adaptor) 또는 링커(linker)를 사용하면 벡터와 외래 DNA를 용이하게 라이게이션(ligation)할 수 있다. 라이게이션 후에, 벡터는 적절한 숙주세포로 형질전환되어야 한다. 형질전환은 칼슘 클로라이드 방법 또는 전기천공법(electroporation) 등을 사용해서 용이하게 달성될 수 있다.Once transformed into the appropriate host, the vector may replicate and function independently of the host genome, or, in some cases, integrate into the genome itself. Because the plasmid is the most commonly used form of the current vector, the terms "plasmid" and "vector" are sometimes used interchangeably in the context of the present invention. For the purpose of the present invention, it is preferable to use a plasmid vector. Typical plasmid vectors that can be used for this purpose include (a) a cloning start point that allows replication to be efficiently made to include several to several hundred plasmid vectors per host cell, (b) a host cell transformed with the plasmid vector, (C) a restriction enzyme cleavage site into which a foreign DNA fragment can be inserted. Even if an appropriate restriction enzyme cleavage site is not present, using a synthetic oligonucleotide adapter or a linker according to a conventional method can easily ligate the vector and the foreign DNA. After ligation, the vector should be transformed into the appropriate host cell. Transformation can be easily accomplished using a calcium chloride method or electroporation.

당업계에 주지된 바와 같이, 숙주세포에서 형질감염 유전자의 발현수준을 높이기 위해서는, 해당 유전자가 선택된 발현 숙주 내에서 기능을 발휘하는 전사 및 해독 발현 조절 서열에 작동 가능하도록 연결되어야만 한다. 바람직하게는 발현 조절서열 및 해당 유전자는 세균 선택 마커 및 복제 개시점을 같이 포함하고 있는 하나의 재조합 벡터 내에 포함되게 된다.As is well known in the art, in order to increase the expression level of a transfected gene in a host cell, the gene must be operably linked to a transcriptional and detoxification control regulatory sequence that functions within the selected expression host. Preferably, the expression control sequence and the gene are contained within a recombinant vector containing a bacterial selection marker and a replication origin.

본 발명에 있어서, "재조합 벡터"는 목적한 코딩 서열과, 특정 숙주 생물에서 작동 가능하게 연결된 코딩 서열을 발현하는데 필수적인 적정 핵산 서열을 포함하는 재조합 DNA 분자를 의미한다. 재조합 벡터는 바람직하게는 하나 이상의 선택성 마커를 포함할 수 있다. 상기 마커는 통상적으로 화학적인 방법으로 선택될 수 있는 특성을 갖는 핵산 서열로, 형질 전환된 세포를 비 형질전환 세포로부터 구별할 수 있는 모든 유전자가 이에 해당된다. 그 예로는 앰피실린(ampicilin), 카나마이신(kanamycin), G418, 블레오마이신(Bleomycin), 하이그로마이신(hygromycin), 클로람페니콜(chloramphenicol) 과 같은 항생제 내성 유전자가 있으나, 이에 한정되는 것은 아니며, 당업자에 의해 적절히 선택 가능하다.In the present invention, a "recombinant vector" means a recombinant DNA molecule comprising a desired coding sequence and a suitable nucleic acid sequence necessary for expressing a coding sequence operably linked to a particular host organism. The recombinant vector may preferably comprise one or more selectable markers. The marker is typically a nucleic acid sequence having a property that can be selected by a chemical method, and includes all genes capable of distinguishing a transformed cell from a non-transformed cell. Examples include, but are not limited to, antibiotic resistance genes such as ampicilin, kanamycin, G418, Bleomycin, hygromycin, chloramphenicol, It can be selected appropriately.

또한, 본 발명은 상기 방법을 이용하여 제조되는 것을 특징으로 하는 부탄올 생산용 재조합 미생물을 제공한다.Also, the present invention provides a recombinant microorganism for producing butanol, which is produced using the above method.

본 발명에 있어서, 상기 재조합 미생물은 형질전환 된 것을 말한다. 본 발명에서 "형질전환"은 프로모터, 또는 추가적으로 목적 단백질을 코딩하는 유전자를 포함하는 벡터를 숙주세포 내에 도입 하는 것을 의미하며, 상기 유전자의 과발현 또는 결실을 포함한다. 또한, 형질전환된 목적 단백질을 코딩하는 유전자는 숙주세포 내에 발현될 수 있기만 한다면, 숙주세포의 염색체 내에 삽입되어 위치하거나 염색체 외에 위치할 수 있다.In the present invention, the recombinant microorganism means transformed. In the present invention, "transformation" means introducing a vector containing a promoter or a gene encoding a desired protein into a host cell, and includes overexpression or deletion of the gene. In addition, the gene encoding the transformed target protein can be inserted into the chromosome of the host cell or located outside the chromosome as long as it can be expressed in the host cell.

모든 벡터가 본 발명의 DNA 서열을 발현하는데 모두 동등하게 기능을 발휘하지는 않으며, 마찬가지로 모든 숙주가 동일한 발현 시스템에 대해 동일하게 기능을 발휘하지는 않는다. 그러나, 당업자라면 과도한 실험적 부담 없이 본 발명의 범위를 벗어나지 않는 채로 여러 벡터, 발현 조절 서열 및 숙주 중에서 적절한 선택을 할 수 있다. 예를 들어, 벡터를 선택함에 있어서는 숙주를 고려하여야 하는데, 이는 벡터가 그 안에서 복제되어야만 하기 때문이다. 벡터의 복제 수, 복제 수를 조절할 수 있는 능력 및 당해 벡터에 의해 코딩 되는 다른 단백질, 예를 들어 항생제 마커의 발현도 또한 고려되어야만 한다.Not all vectors function equally well in expressing the DNA sequences of the present invention, and likewise all hosts do not function equally in the same expression system. However, those skilled in the art will be able to make appropriate selections among a variety of vectors, expression control sequences, and hosts without undue experimentation and without departing from the scope of the present invention. For example, in selecting a vector, the host should be considered because the vector must be replicated within it. The number of copies of the vector, the ability to control the number of copies, and the expression of other proteins encoded by the vector, such as antibiotic markers, must also be considered.

본 발명에 있어서, 상기 미생물은 박테리아, 효모, 곰팡이로 구성된 군에서 선택되는 것을 특징으로 할 수 있고, 바람직하게는 상기 박테리아는 코리네박테리움(Corynebacterium) 속 및 에스케리치아(Escherichia) 속으로 구성된 군에서 선택되는 것을 특징으로 할 수 있으며, 더욱 바람직하게는 대장균인 것을 특징으로 할 수 있다.In the present invention, the microorganism may be selected from the group consisting of bacteria, yeast and fungi. Preferably, the bacteria are selected from the group consisting of Corynebacterium and Escherichia , And more preferably E. coli.

또한, 본 발명은 본 발명의 재조합 미생물을 배양하는 단계; 를 포함하는 부탄올의 생산 방법을 제공한다.The present invention also relates to a method for producing a recombinant microorganism, which comprises culturing the recombinant microorganism of the present invention; ≪ / RTI >

본 발명의 미생물의 배양에 사용되는 배지 및 기타 배양조건은 통상의 에스케리키아 속 미생물의 배양에 사용되는 배지이면 어느 것이나 사용될 수 있으나, 본 발명의 미생물의 요구 조건을 적절하게 만족시켜야 한다. 바람직하게는, 본 발명의 미생물을 적당한 탄소원, 질소원, 아미노산, 비타민 등을 함유한 통상의 배지 내에서 호기성 조건 하에서 온도, pH 등을 조절하면서 배양한다.The medium used for culturing the microorganism of the present invention and other culture conditions may be any medium used for culturing Escherichia genus microorganisms, but the microorganisms of the present invention must satisfy the requirements of the present invention. Preferably, the microorganism of the present invention is cultured in an ordinary medium containing an appropriate carbon source, a nitrogen source, an amino acid, a vitamin, and the like under aerobic conditions while controlling temperature, pH, and the like.

상기 배지에는 인원으로서 인산 제1칼륨, 인산 제2칼륨 및 대응되는 소디움-함유 염이 포함될 수 있다. 무기화합물로는 염화나트륨, 염화칼슘, 염화철, 황산마그네슘, 황산철, 황산망간 및 탄산칼슘 등이 사용될 수 있으며, 그 외에 아미노산, 비타민 및 적절한 전구체 등이 포함될 수 있다. 이들 배지 또는 전구체는 배양물에 회분식 또는 연속식으로 첨가될 수 있다.The medium may include potassium phosphate, potassium phosphate and the corresponding sodium-containing salts as a source. Examples of the inorganic compound may include sodium chloride, calcium chloride, iron chloride, magnesium sulfate, iron sulfate, manganese sulfate, and calcium carbonate. In addition, amino acids, vitamins and suitable precursors may be included. These media or precursors may be added to the culture either batchwise or continuously.

배양 중에 수산화암모늄, 수산화칼륨, 암모니아, 인산 및 황산과 같은 화합물을 배양물에 적절한 방식으로 첨가하여, 배양물의 pH를 조정할 수 있다. 또한, 배양 중에는 지방산 폴리글리콜 에스테르와 같은 소포제를 사용하여 기포 생성을 억제할 수 있다. 또한, 배양물의 호기 상태를 유지하기 위하여, 배양물 내로 산소 또는 산소 함유 기체를 주입하거나 혐기 및 호기 상태를 유지하기 위해 기체의 주입 없이 혹은 질소, 수소 또는 이산화탄소 가스를 주입할 수 있다.During the culture, compounds such as ammonium hydroxide, potassium hydroxide, ammonia, phosphoric acid and sulfuric acid can be added to the culture in an appropriate manner to adjust the pH of the culture. In addition, foaming can be suppressed by using a defoaming agent such as fatty acid polyglycol ester during the culture. In addition, in order to maintain the aerobic state of the culture, oxygen or oxygen-containing gas may be injected into the culture, or nitrogen, hydrogen or carbon dioxide gas may be injected without injecting gas to maintain anaerobic and aerobic conditions.

배양물의 온도는 보통 27℃ 내지 37℃, 바람직하게는 30℃ 내지 35℃로 설정할 수 있다. 배양 기간은 원하는 유용 물질의 생성량이 수득될 때까지 계속될 수 있으며, 바람직하게는 10 내지 100 시간 동안 배양할 수 있다.The temperature of the culture can usually be set at 27 캜 to 37 캜, preferably at 30 캜 to 35 캜. The incubation period can be continued until the desired amount of useful substance is obtained, preferably, for 10 to 100 hours.

본 발명의 상기 배양 단계에서 생산된 부탄올은 추가로 정제 또는 회수하는 단계를 포함할 수 있으며, 미생물 또는 배양물로부터 목적 단백질을 회수하는 방법은 당업계에 알려진 방법, 예컨대 원심분리, 여과, 음이온 교환 크로마토그래피, 결정화 및 HPLC 등이 사용될 수 있으나, 이들 예에 한정되는 것은 아니다.The butanol produced in the culturing step of the present invention may further include purification or recovery, and the method for recovering the target protein from the microorganism or the culture may be performed by a method known in the art, for example, centrifugation, filtration, anion exchange Chromatography, crystallization, HPLC, and the like may be used, but the present invention is not limited to these examples.

상기 회수 단계는 정제 공정을 포함할 수 있으며, 당업자는 공지된 여러 정제 공정 중 필요에 따라 선택하여 활용할 수 있다.The recovering step may include a purification step, and a person skilled in the art can select and utilize it according to the needs of various known purification processes.

또한, 본 발명은 합성 5' UTR 서열을 포함하는 ptsG 유전자를 미생물에 도입하는 단계; 를 포함하는 부틸산 또는 2,3-부탄디올 생산용 미생물의 제조 방법을 제공한다.In addition, the present invention provides a method for producing a 5 ' UTR sequence comprising introducing a ptsG gene comprising a synthetic 5 ' UTR sequence into a microorganism; And a method for producing a microorganism for producing 2,3-butanediol.

본 발명에 있어서, 상기 합성 5' UTR은 서열번호 5로 표시되는 염기서열로 이루어진 것일 수 있다.In the present invention, the synthetic 5 'UTR may be composed of the nucleotide sequence shown in SEQ ID NO: 5.

또한, 본 발명에 있어서, 상기 방법은 부틸산 생산을 위한 crt 유전자, hbd 유전자 및 tesB 유전자를 미생물에 도입하는 단계; 를 추가로 포함할 수 있으나, 이에 제한되지 않는다.Also, in the present invention, the method comprises: introducing a crt gene, hbd gene and tesB gene for production of butyric acid into a microorganism; But is not limited thereto.

또한, 본 발명에 있어서, 상기 방법은 2,3-부탄디올 생산을 위한 budABC 오페론을 미생물에 도입하는 단계; 를 추가로 포함할 수 있으나, 이에 제한되지 않는다.In addition, in the present invention, the method comprises: introducing a budABC operon for producing 2,3-butanediol into a microorganism; But is not limited thereto.

또한, 본 발명은 상기 방법을 이용하여 제조되는 것을 특징으로 하는 부틸산 또는 2,3-부탄디올 생산용 재조합 미생물을 제공한다.In addition, the present invention provides a recombinant microorganism for producing butyric acid or 2,3-butanediol, which is produced by using the above method.

또한, 본 발명은 본 발명의 재조합 미생물을 배양하는 단계; 를 포함하는 부틸산 또는 2,3-부탄디올의 생산 방법을 제공한다. 한편, 중복되는 내용은 본 명세서의 복잡성을 고려하여 생략한다.The present invention also relates to a method for producing a recombinant microorganism, which comprises culturing the recombinant microorganism of the present invention; ≪ RTI ID = 0.0 > 2,3-butanediol < / RTI > On the other hand, redundant contents are omitted in consideration of the complexity of the present specification.

이하 본 발명의 이해를 돕기 위하여 바람직한 실시예를 통하여 구체적으로 설명한다. 그러나 하기의 실시예는 본 발명을 예시하기 위한 것일 뿐 본 발명의 내용이 한정되는 것은 아니다.Hereinafter, preferred embodiments of the present invention will be described in detail to facilitate understanding of the present invention. However, the following examples are for illustrative purposes only and are not intended to limit the scope of the invention.

실시예Example 1.  One. ptsGptsG 발현 조절을 위한 합성 5'  The synthetic 5 ' UTRUTR 재설계 Redesign

1-1. 1-1. 재료예Material example

본 발명에서 이용한 모든 대장균 균주, 플라스미드 정보 및 유전자 정보를 각각 표 1, 표 2 및 표 3에 나타내었다. 본 발명에 사용된 올리고뉴클레오티드는 Macrogen(대전, 한국)에서 합성하였고 표 4에 나타내었다. rpsL-neo 주형 DNA는 Counter-selection BAC Modification 키트(Gene Bridges, Heidelberg, 독일)를 이용하였고, Phusion polymerase 및 제한효소들은 New England Biolaps(Ipswich, MA, 미국)에서 구매하였고, T4 DNA 리가아제는 TaKaRa Bio Inc.(Shiga, 일본)에서 구매하였다. Genomic DNA와 플라스미드는 각각 GeneAll ExgeneTM Cell SV 키트 및 Accuprep Nano-Plus Plasmid Mini Extraction 키트(Bioneer, 대전, 한국)를 이용하였으며, 제한효소 처리한 DNA 산물은 GeneAll ExpinTM Gel SV kit(GeneAll Biotechnology, 서울, 한국)를 이용하여 정제하였다. 모든 배양액 제조를 위한 재료들은 모두 BD Biosciences(Sparks, MD, 미국)의 제품을 이용하였으며, 기타 화학물질들은 모두 Sigma(St.Louis, MO, 미국)에서 구매하여 사용하였다.All Escherichia coli strains, plasmid information and gene information used in the present invention are shown in Tables 1, 2 and 3, respectively. The oligonucleotides used in the present invention were synthesized in Macrogen (Daejeon, Korea) and shown in Table 4. Phusion polymerase and restriction enzymes were purchased from New England Biolaps (Ipswich, Mass., USA) and T4 DNA ligase was purchased from TaKaRa (USA). The rPSL-neo template DNA was purchased from Counter-selection BAC Modification Kit (Gene Bridges, Heidelberg, Germany) Bio Inc. (Shiga, Japan). Genomic DNA and plasmids were used for the GeneAll Exgene Cell SV kit and the Accuprep Nano-Plus Plasmid Mini Extraction kit (Bioneer, Taejon, Korea). GeneAll Expin Gel SV kit (GeneAll Biotechnology, Seoul, , Korea). All of the materials used for the culture were purchased from BD Biosciences (Sparks, MD, USA) and other chemicals were purchased from Sigma (St. Louis, Mo., USA).

균주 이름Strain name 성질Property 출처source Mach1-T1RMach1-T1R F- φ80(lacZ)ΔM15 ΔlacX74 hsdR(rK -mK +) ΔrecA1398 endA1 tonAF - φ80 (lac Z) ΔM15 Δ lac X74 hsd R (r K - m K +) Δ rec A1 end A1398 ton A InvitrogenInvitrogen W3110W3110 F- λ- rph-1 IN(rrnD, rrnE)1F - ? - rph-1 IN ( rrnD , rrnE ) 1 ATCC 27325ATCC 27325 JHL163JHL163 W3110 rpsL * A128G ( Str R ) W3110 rpsL * A128G ( Str R ) 본 실험This experiment JHL110JHL110 JHL163 ptsG :: rpsL -neo ( Str S , Kan R ) JHL163 ptsG :: rpsL- neo ( Str S , Kan R ) 본 실험This experiment JHL164JHL164 JHL163 ptsG UTR5 JHL163 ptsG UTR5 본 실험This experiment JHL165JHL165 JHL163 ptsG UTR4 JHL163 ptsG UTR4 본 실험This experiment JHL166JHL166 JHL163 ptsG UTR3JHL163 ptsG UTR3 본 실험This experiment JHL167JHL167 JHL163 ptsG UTR2 JHL163 ptsG UTR2 본 실험This experiment JHL168JHL168 JHL163 ptsG UTR1 JHL163 ptsG UTR1 본 실험This experiment JHL169JHL169 JHL163 ΔptsG JHL163 ΔptsG 본 실험This experiment JHL59JHL59 W3110 ΔatoDAΔadhE ΔldhAΔpaaFGH
ΔfrdABCD Δpta PatoB :: BBa _J23100
Plpd :: BBa _J23100 lpd ( G1060A )
PaceEF :: BBa _J23100
W3110 ΔatoDAΔadhE ΔldhAΔpaaFGH
ΔfrdABCD Δpta PatoB :: BBa _J23100
Plpd :: BBa _J23100 lpd ( G1060A )
PaceEF :: BBa _J23100
Lim et al, 2013Lim et al, 2013
JHL170JHL170 JHL59 rpsL * A128G ( Str R ) JHL59 rpsL * A128G ( Str R ) 본 실험This experiment JHL178JHL178 JHL170 / pCDF - BuOH , pCOLA -F5 JHL170 / pCDF - BuOH , pCOLA- F5 본 실험This experiment JHL179JHL179 JHL170 ptsG UTR5 / pCDF - BuOH , pCOLA -F5 JHL170 ptsG UTR5 / pCDF - BuOH , pCOLA- F5 본 실험This experiment JHL180JHL180 JHL170 ptsG UTR4 / pCDF - BuOH , pCOLA -F5 JHL170 ptsG UTR4 / pCDF - BuOH , pCOLA- F5 본 실험This experiment JHL181JHL181 JHL170 ptsG UTR3 / pCDF - BuOH , pCOLA -F5 JHL170 ptsG UTR3 / pCDF - BuOH , pCOLA- F5 본 실험This experiment JHL182JHL182 JHL170 ptsG UTR2 / pCDF - BuOH , pCOLA -F5 JHL170 ptsG UTR2 / pCDF - BuOH , pCOLA- F5 본 실험This experiment JHL183JHL183 JHL170 ptsG UTR1 / pCDF - BuOH , pCOLA -F5 JHL170 ptsG UTR1 / pCDF - BuOH , pCOLA- F5 본 실험This experiment JHL184JHL184 JHL170 ΔptsG / pCDF - BuOH , pCOLA -F5 JHL170 PptSG / pCDF - BuOH , pCOLA- F5 본 실험This experiment JHL265JHL265 JHL170 / pBASP JHL170 / pBASP 본 실험This experiment JHL266JHL266 JHL170 ptsG UTR5 / pBASP JHL170 ptsG UTR5 / pBASP 본 실험This experiment JHL267JHL267 JHL170 / pZSbudABC JHL170 / pZSbudABC 본 실험This experiment JHL268JHL268 JHL170 ptsG UTR5 / pZSbudABC JHL170 ptsG UTR5 / pZSbudABC 본 실험This experiment

플라스미드 이름Plasmid name 특징(유전형)Features (Genotype) 출처source pKD4pKD4 Template plasmid for FRT-flanked kanamycin resistance gene; AmpR, KmR Template plasmid for FRT-flanked kanamycin resistance gene; Amp R , Km R Datsenko et al, 2013Datsenko et al, 2013 pKD46pKD46 Red recombinase expression vector, AmpR Red recombinase expression vector, Amp R Datsenko et al, 2013Datsenko et al, 2013 pCP20pCP20 FLP expression vector; AmpR FLP expression vector; Amp R Datsenko et al, 2013Datsenko et al, 2013 pCR2.1-TOPOpCR2.1-TOPO Cloning vector, AmpR, KmR Cloning vector, Amp R , Km R InvitrogenInvitrogen pMD20-TpMD20-T Cloning vector, AmpR Cloning vector, Amp R TakaraTakara pGEM T-EasypGEM T-Easy Cloning vector, AmpR Cloning vector, Amp R PromegaPromega pFRT4pFRT4 From pGEM T-Easy, FRT-KanR-FRT(4)From pGEM T-Easy, FRT-Kan R -FRT (4) 본 실험This experiment pCDF-BuOHpCDF-BuOH cloDF13 ori, SmR, PJ23100::crt- PJ23100::hbdPJ23100::ter- PJ23100::adhE2cloDF13 ori, Sm R, PJ23100 crt- PJ23100 :: :: :: hbdPJ23100 ter- PJ23100 :: adhE2 Lim et al, 2013Lim et al, 2013 pCOLA-F5pCOLA-F5 ColA ori, KmR, PJ23100::F5UTR- fdh1SC ColA ori, Km R , PJ23100 :: F5UTR- fdhl SC Lim et al, 2013Lim et al, 2013 pBASPpBASP p15A ori, CmR, PJ23100::crt- PJ23100::hbdPJ23100::ter- PJ23100::tesBp15A ori, Cm R , PJ23100 :: crt- PJ23100 :: hbdPJ23100 :: ter- PJ23100 :: tesB Lim et al, 2013Lim et al, 2013 pZSbudABCpZSbudABC pSC101 ori, KmR, E. aerogenes bud ABC operon under the control of PLtetO-1pSC101 ori, Km R , E. aerogenes bud ABC operon under the control of PLtetO-1 Mazumdar et al, 2013Mazumdar et al, 2013

유전자gene 유래origin 서열번호SEQ ID NO: ptsGptsG Escherichia coli W3110 Escherichia coli W3110 77 adhE2adhE2 Clostridium Clostridium acetobutylicumacetobutylicum 88 fdh1fdh1 SaccharomycesSaccharomyces cerevisiaecerevisiae 99 crtcrt Clostridium acetobutylicum(ATCC824) Clostridium acetobutylicum (ATCC824) 1010 hbdhbd Clostridium acetobutylicum(ATCC824) Clostridium acetobutylicum (ATCC824) 1111 tersweat TreponemaTreponema denticoladenticola 1212 tesBtesB Escherichia coli W3110 Escherichia coli W3110 1313 budABC operonbudABC operon Enterobacter aerogenes KCTC2190 Enterobacter aerogenes KCTC2190 1414

이름name 서열 (5'-3')The sequence (5'-3 ') 서열번호SEQ ID NO: FRT4_FFRT4_F ctagtgctggagcgaactgcgaagttcctatactttctagagaataggaacttcggaataggaacttcaagatcccctcacgctgccgc ctagtgctggagcgaactgcg aagttcctatactttctagagaataggaacttcggaataggaacttcaagatcccctcacgctgccgc 1515 FRT4_RFRT4_R ggagtactcgcggttgactgagttcctattccgaagttcctattctctagaaagtataggaacttcagagcgcttttgaagctggggtg ggagtactcgcggttgactg agttcctattccgaagttcctattctctagaaagtataggaacttcagagcgcttttgaagctggggtg 1616 ptsG_del4_FptsG_del4_F cgttgtatcgcatgttatggcagaagcaggcggttccgtctttgcaaacactagtgctggagcgaactgc cgttgtatcgcatgttatggcagaagcaggcggttccgtctttgcaaaca ctagtgctggagcgaactgc 1717 ptsG_del4_RptsG_del4_R aacgctgacgcgcagacgggtaatacatgcgtcgaggttagtaatgttttggagtactcgcggttgactg aacgctgacgcgcagacgggtaatacatgcgtcgaggttagtaatgtttt ggagtactcgcggttgactg 1818 rpsL-A128G-oligorpsL-A128G-oligo cgttagtcagacgaacacggcatactttacgcagcgcggagttcggttttctaggagtggtagtatatacacgagtacatacgccacgtttttgcgggcatcgttagtcagacgaacacggcatactttacgcagcgcggagttcggttttctaggagtggtagtatatacacgagtacatacgccacgtttttgcgggcat 1919 ptsG_rpsLneo_FptsG_rpsLneo_F acacggcgaggctctccccccttgccacgcgtgagaacgtaaaaaaagcaggcctggtgatgatggcgggacacggcgaggctctccccccttgccacgcgtgagaacgtaaaaaaagcaggcctggtgatgatggcggg 2020 ptsG_rpsLneo_RptsG_rpsLneo_R atcagcgatttaccgaccttttgcaggttagcaaatgcattcttaaacattcagaagaactcgtcaagaaggcgatagaagatcagcgatttaccgaccttttgcaggttagcaaatgcattcttaaacattcagaagaactcgtcaagaaggcgatagaag 2121 ptsG_UTR1_oligoptsG_UTR1_oligo acacggcgaggctctccccccttgccacgcgtgagaacgtaaaaaaagcaATATTGAG
AAGGACATCTCCTCGATAatgtttaagaatgcatttgctaacctgcaaaaggtcgg
taaatcgctgat
acacggcgaggctctccccccttgccacgcgtgagaacgtaaaaaaagca ATATTGAG
AAGGACATCTCCTCGATA atgtttaagaatgcatttgctaacctgcaaaaggtcgg
taaatcgctgat
2222
ptsG_UTR2_oligoptsG_UTR2_oligo acacggcgaggctctccccccttgccacgcgtgagaacgtaaaaaaagcaATATTGAG
AAGGAGATATCTCAATAatgtttaagaatgcatttgctaacctgcaaaaggtcggta
aatcgctgat
acacggcgaggctctccccccttgccacgcgtgagaacgtaaaaaaagca ATATTGAG
AAGGAGATATCTCAATA atgtttaagaatgcatttgctaacctgcaaaaggtcggta
aatcgctgat
2323
ptsG_UTR3_oligoptsG_UTR3_oligo acacggcgaggctctccccccttgccacgcgtgagaacgtaaaaaaagcaATATTGAG
AAGGAGTTATCTCGATAatgtttaagaatgcatttgctaacctgcaaaaggtcggta
aatcgctgat
acacggcgaggctctccccccttgccacgcgtgagaacgtaaaaaaagca ATATTGAG
AAGGAGTTATCTCGATA atgtttaagaatgcatttgctaacctgcaaaaggtcggta
aatcgctgat
2424
ptsG_UTR4_oligoptsG_UTR4_oligo acacggcgaggctctccccccttgccacgcgtgagaacgtaaaaaaagcaATAACGAG
TAGGAGTTTCTCGATAatgtttaagaatgcatttgctaacctgcaaaaggtcggtaa
atcgctgat
acacggcgaggctctccccccttgccacgcgtgagaacgtaaaaaaagca ATAACGAG
TAGGAGTTTCTCGATA atgtttaagaatgcatttgctaacctgcaaaaggtcggtaa
atcgctgat
2525
ptsG_UTR5_oligoptsG_UTR5_oligo acacggcgaggctctccccccttgccacgcgtgagaacgtaaaaaaagcaACATTCAC
AAGGAGACGTCAACAATCatgtttaagaatgcatttgctaacctgcaaaaggtcg
gtaaatcgctgat
acacggcgaggctctccccccttgccacgcgtgagaacgtaaaaaaagca ACATTCAC
AAGGAGACGTCAACAATC atgtttaagaatgcatttgctaacctgcaaaaggtcg
gtaaatcgctgat
2626
C-ptsG_UTR-FC-ptsG_UTR-F catatgttttgtcaaaatgtgcaacttctccaatgatcatatgttttgtcaaaatgtgcaacttctccaatgat 2727 C-ptsG_UTR-RC-ptsG_UTR-R ttttaaccatgatgccataggcaacaactgcttttaaccatgatgccataggcaacaactgc 2828 C-ptsG_del-FC-ptsG_del-F cggtaaatcgctgatgctgccggtacggtaaatcgctgatgctgccggta 2929 C-ptsG_del-RC-ptsG_del-R gtggttacggatgtactcatccatctcggtggttacggatgtactcatccatctcg 3030 -이름이 “C”로 시작하는 프라이머는 상동 재조합 결과를 확인하기 위해 디자인한 것이다.
-밑줄 친 부분은 상동 재조합 효율을 증가시키기 위해 설계한 서로 다른 프라이밍 서열(priming site)을 나타낸다.
-볼드체로 표시한 부분은 각각의 유전자를 극대화하기 위해 재설계한 5' UTR 염기서열이다.
- Primers whose names start with "C" are designed to confirm homologous recombination results.
- The underlined parts represent different priming sites designed to increase homologous recombination efficiency.
- The bolded portion is a 5 'UTR base sequence that has been redesigned to maximize each gene.

1-2. 합성 5' 1-2. Synthesis 5 ' UTRUTR 재설계 Redesign

포도당 수송체(glucose transporter)를 코딩하는 ptsG 유전자(GenBank: BAA35908.1)의 발현을 조절하기 위하여 염색체 상에서 5' UTR(Untranslated region)을 재설계하였다. 구체적으로, ptsG의 UTR engineering은 Red recombination 시스템을 통한 대장균 염색체의 유전정보(5′-UTR 영역) 치환을 통해 수행하였고, ptsG의 넉-아웃(knock-out) 돌연변이는 pKD46 및 pCP20 플라스미드를 이용한 red combination 시스템을 통해 제작하였다. 또한, 상동 재조합(homologous recombination) 효율을 증가시키기 위하여 서로 다른 프라이밍 영역(priming site)을 가지는 플라스미드(pFRT 4)를 사용하였다.To control the expression of the ptsG gene (GenBank: BAA35908.1) encoding the glucose transporter, the 5 'UTR (Untranslated region) was redesigned on the chromosome. Specifically, the UTR engineering of ptsG was performed by substituting the genetic information (5'-UTR region) of the E. coli chromosome through the red recombination system, and the knock-out mutation of ptsG was performed using pKD46 and pCP20 plasmid combination system. In addition, plasmids (pFRT4) having different priming sites were used to increase homologous recombination efficiency.

ptsG 유전자를 과발현 또는 저발현시키기 위하여 ptsG 유전자의 야생형 5'UTR은 rpsL-neo counter-selection system을 이용한 scar-less 재조합 방법을 통해 재설계하였다. 스트렙토마이신 저항성 표현형을 부여하는 rpsL 유전자와 관련한 돌연변이는 rpsL-A128G-oligo를 이용하여 도입되었고, 형질전환된 균주는 JHL163으로 명명하였다. 이후, UTR Designer (http://sbi.postech.ac.kr/utr_designer)를 통해 재설계된 서로 다른 서열을 가지는 ptsG_UTR(1 to 5)_oligo 재조합을 통하여 ptsG 5'UTR 변이체 5종을 구축하고 이를 UTR 1 내지 5로 명명하였다. In order to overexpress or under-express the ptsG gene, the wild-type 5'UTR of the ptsG gene was redesigned through a scar-less recombination method using the rpsL-neo counter-selection system. A mutation associated with the rpsL gene that confers a streptomycin resistance phenotype was introduced using rpsL-A128G-oligo, and the transformed strain was named JHL163. Then, we construct five kinds of ptsG 5'UTR variants through pTSG_UTR (1 to 5) _oligo recombination with different sequences redesigned through UTR Designer (http://sbi.postech.ac.kr/utr_designer) 1 to 5 < / RTI >

ptsG 유전자의 과발현 또는 저발현을 위한 ptsG의 야생형 UTR(WT) 및 UTR 1 내지 5의 서열을 표 5에 나타내었다. The wild-type UTR (WT) and UTR 1-5 sequences of ptsG for over- or under-expression of the ptsG gene are shown in Table 5.

유전자명Gene name 합성 5'UTR 서열 (5'-3')The synthetic 5'UTR sequence (5'-3 ') 서열번호SEQ ID NO: UTR1UTR1

Figure pat00001
Figure pat00001
1One UTR2UTR2
Figure pat00002
Figure pat00002
22
UTR3UTR3
Figure pat00003
Figure pat00003
33
UTR4UTR4
Figure pat00004
Figure pat00004
44
UTR5UTR5
Figure pat00005
Figure pat00005
55
WTWT
Figure pat00006
Figure pat00006
66
-* 표시는 ptsG mRNA의 번역 억제에 필요한 예측된 염기쌍 형성 영역을 나타낸 것이다. 특히, 볼드체로 표시한 부분은 SgrS의 효과적인 ptsG 번역 억제 활성을 위한 최소 염기쌍을 나타낸다.
-이탤릭체로 표시한 부분은 샤인-달가노(Shine-Dalgarno, SD) 서열 및 ptsG의 개시 코돈을 나타낸다.
-밑줄 친 부분은 야생형 ptsG UTR로부터 염기서열이 달라진 부분을 표시한 것이다.
- * indicates the predicted base pairing region required to inhibit translation of ptsG mRNA. In particular, the bolded portion represents the minimal base pair for the effective ptsG translation inhibition activity of SgrS.
- The italicized parts indicate the Shine-Dalgarno (SD) sequence and the initiation codon of ptsG.
- The underlined part indicates the part of nucleotide sequence changed from wild type ptsG UTR.

실시예Example 2. 재조합 대장균 균주의 제조 및 배양 조건 2. Preparation and Culture Conditions of Recombinant Escherichia coli

2-1. 재조합 대장균 균주의 제조2-1. Production of recombinant E. coli strain

부탄올 합성 경로가 되는 adhE2 유전자(서열번호 8)를 증폭시키고, crt-hbd-ter 유전자(서열번호 10, 11, 12) 단편을 도입하여 부탄올 생산을 위한 재조합 벡터 pCDF-BuOH을 제작하였다. 또한, 맞춤 제작한 5'UTR 서열로 발현량이 조절된 fdh1 유전자(서열번호 9)를 증폭시킨 재조합 벡터 pCOLA-F5를 제작하였다. 상기 벡터를 JHL170 균주에 도입하여 부탄올 생산 균주인 JHL178 균주를 제조하였다. 상기 JHL178 균주에서 포도당 수송체를 코딩하는 ptsG 유전자(서열번호 7)의 발현량의 조절이 가능하도록 재설계한 다섯 가지 5'UTR 서열과 각각 연결하여 대장균 내로 도입함으로써 고 수율 및 고 생산성으로 부탄올을 생성할 수 있는 대장균 균주 JHL179 내지 183을 제조하였다.The recombinant vector pCDF-BuOH for the production of butanol was prepared by amplifying the adhE2 gene (SEQ ID NO: 8) which is a butanol synthesis pathway and introducing the crt-hbd-ter gene (SEQ ID NOS: 10, 11 and 12). In addition, a recombinant vector pCOLA-F5 was constructed by amplifying the fdh1 gene (SEQ ID NO: 9) whose expression level was regulated with a tailor-made 5'UTR sequence. The vector was introduced into strain JHL170 to prepare strain JHL178, which is a butanol-producing strain. The 5 'UTR sequence was redesigned to allow the regulation of the expression level of the ptsG gene (SEQ ID NO: 7) encoding the glucose transporter in the JHL178 strain, and introduced into E. coli, thereby achieving high yield and high productivity of butanol E. coli strains JHL179 to 183 that can be produced were prepared.

다음으로, 부틸산 합성 경로가 되는 crt 및 hbd 유전자를 도입시키고, W3110 genomic DNA로부터 tesB 유전자(서열번호 13)를 증폭시켜 부틸산 생산을 위한 재조합 벡터 pBASP를 제작하고, 이를 상기 JHL170 균주에 도입하여 JHL265 균주를 제조하였다. 또한, ptsG 유전자를 과발현시키기 위하여 설계한 UTR5를 연결하여 추가적으로 도입함으로써 부틸산 생산 균주인 JHL266 균주를 제작하였다.Next, the crt and hbd genes serving as the butyric acid synthesis pathway were introduced, and the tesB gene (SEQ ID NO: 13) was amplified from the W3110 genomic DNA to prepare a recombinant vector pBASP for production of butyl acid. The resulting recombinant vector was introduced into the JHL170 strain JHL265 strain. In addition, UTR5, designed to overexpress the ptsG gene, was ligated and further introduced to produce a strain of JHL266, a butyric acid producing strain.

마지막으로, budABC 오페론(서열번호 14)을 증폭시켜 2,3-부탄디올 생산을 위한 재조합 벡터 pZSbudABC를 제작하고, 이를 상기 JHL170 균주에 도입하여 JHL267 균주를 제조하였다. 또한, ptsG 유전자를 과발현시키기 위하여 설계한 UTR5를 연결하여 도입함으로써 2,3-부탄디올 생산 균주인 JHL268 균주를 제작하였다.Finally, a recombinant vector pZSbudABC for producing 2,3-butanediol was prepared by amplifying the budABC operon (SEQ ID NO: 14) and introduced into the JHL170 strain to prepare a JHL267 strain. In addition, UTR5 designed to overexpress the ptsG gene was ligated and introduced to produce a strain, JHL268, which is a 2,3-butanediol producing strain.

2-2. 야생형 균주의 배양2-2. Culture of wild type strain

야생형 균주 W3110 및 포도당 소비 속도 비교를 위한 실험 균주(JHL163, JHL110, JHL164 내지 JHL169) 의 배양은 M9 미디엄(리터 당 6.78 g의 Na2HPO4, 3 g의 KH2PO4, 1 g의 NH4Cl, 0.5 g의 NaCl, 2 mL의 1 M MgSO4, 및 0.1 mL의 1 M CaCl2)에 40g/L 포도당을 첨가하여 진행하였다. 스트렙토마이신(25 μg/mL)을 이용하여 rpsL*A128G 유전형을 확인 및 유지하였다. LB에서 밤새 키운 W3110 배양액의 약 1%를 M9 미디엄에 접종하고 OD600이 ~0.8 정도 될 때까지 배양하였다. 이후, 상기 배양액을 300ml 플라스크에 담긴 25 ml M9 미디엄에 최종 OD600가 ~0.05가 되도록 접종하여 37 ℃ 및 250 rpm 조건에서 배양하였다. Cultures of the wild-type strain W3110 and the experimental strains (JHL163, JHL110, JHL164 to JHL169) for glucose consumption rate were prepared using medium M9 medium (6.78 g Na 2 HPO 4 , 3 g KH 2 PO 4 , 1 g NH 4 Cl, was performed by the addition of 40g / L glucose 0.5 g of NaCl, in 2 mL 1 M MgSO 4, and 0.1 mL of 1 M CaCl 2). Streptomycin (25 μg / mL) was used to identify and maintain the rpsL * A128G genotype. Approximately 1% of the W3110 medium grown overnight in LB was inoculated into medium M9 and cultured until an OD 600 of ~0.8. Then, the culture was inoculated into 25 ml M9 medium containing 300 ml flask so as to have a final OD 600 of ~0.05, and cultured at 37 ° C and 250 rpm.

2-3. n-부탄올 생산 균주의 배양2-3. Culture of n-butanol producing strain

n-부탄올 생산 균주(JHL59, JHL170, JHL178 내지 184)의 배양은 Teffific Broth(TB; 리터 당 12 g의 트립톤, 24 g의 효모 추출액, 2.31 g의 KH2PO4, 12.54 g의 K2HPO4 및 4 mL의 글리세롤)에 25g/L 포도당을 첨가하여 진행하였다. 복수의 플라스미드 (pCDF-BuOH 및 pCOLA-F5) 유지를 위하여 25 μg/mL 스펙티노마이신(spectinomycin)과 15 μg/mL 카나마이신(kanamycin) 항생제를 이용하였다. 혐기 조건을 유지하기 위하여 혐기 챔버(Coy Laboratories, Ann Arbor, MI, 미국) 내부에서 60 ml 세럼병을 고무 마개로 봉인하여 실험을 진행하였다. LB에서 밤새 키운 배양액을 20ml TB에 최종 OD600이 ~0.05가 되도록 접종하여 37 ℃ 및 250 rpm 조건에서 혐기 조건으로 배양하였다.n- butanol production strain (JHL59, JHL170, JHL178 to 184) of the culture was Teffific Broth (TB; yeast extract solution of tryptone, 24 g of 12 g per liter, 2.31 g of KH 2 PO 4, of 12.54 g K 2 HPO 4 and 4 mL of glycerol) was carried out by adding 25 g / L glucose. 25 μg / mL spectinomycin and 15 μg / mL kanamycin antibiotics were used to maintain multiple plasmids (pCDF-BuOH and pCOLA-F5). In order to maintain the anaerobic condition, a 60 ml serum bottle was sealed with a rubber stopper inside the anaerobic chamber (Coy Laboratories, Ann Arbor, MI, USA). The overnight culture was inoculated in 20 ml of TB to a final OD 600 of ~0.05 and cultured under anaerobic conditions at 37 ° C and 250 rpm.

2-4. 부틸산 생산 균주의 배양2-4. Culture of Butyl Acid Production Strain

부틸산 생산 균주(JHL265 및 JHL266)의 배양은 Terrific Broth(TB; 리터 당 12 g의 트립톤, 24 g의 효모 추출액, 2.31 g of KH2PO4, 12.54 g의 K2HPO4, 글리세롤 제외)에 10g/L 포도당을 첨가하고, 플라스미드 pBASP를 유지하기 위해 34 μg/mL의 클로람페니콜(chloramphenicol)을 첨가하였다. 혐기 조건을 유지하기 위하여 혐기 챔버(Coy Laboratories, Ann Arbor, MI, 미국) 내부에서 60 ml 세럼병을 고무 마개로 봉인하여 실험을 진행하였다. LB에서 밤새 키운 배양액을 20ml TB에 최종 OD600이 ~0.05가 되도록 접종하여 37 ℃ 및 250 rpm 조건에서 혐기 조건으로 배양하였다.Culture of the butyric acid producing strains (JHL265 and JHL266) was carried out using Terrific Broth (TB: 12 g of tryptone per liter, 24 g of yeast extract, 2.31 g of KH 2 PO 4 , 12.54 g of K 2 HPO 4 , Was added 10 g / L glucose and 34 [mu] g / mL chloramphenicol was added to maintain the plasmid pBASP. In order to maintain the anaerobic condition, a 60 ml serum bottle was sealed with a rubber stopper inside the anaerobic chamber (Coy Laboratories, Ann Arbor, MI, USA). The overnight culture was inoculated in 20 ml of TB to a final OD 600 of ~0.05 and cultured under anaerobic conditions at 37 ° C and 250 rpm.

2-5. 2,3-2-5. 2,3- 부탄디올Butanediol 생산 균주의 배양 Cultivation of production strain

2,3-부탄디올 생산 균주(JHL267 및 JHL268)의 배양은 M9 배지(리터 당 6.78 g의 Na2HPO4, 3 g의 KH2PO4, 1 g의 NH4Cl, 0.5 g의 NaCl, 2 mL의 1 M MgSO4 및 0.1 mL의 1 M CaCl2)에 40g/L 포도당 및 5g/L 효모 추출물을 첨가하고, 플라스미드 pZSbudABC를 유지하기 위해 30 μg/mL의 카나마이신 항생제를 첨가하였다. 해당 배지에서 밤새 키운 배양액을 M9 배지 100ml에 최종 OD600이 ~0.05가 되도록 접종하여 37 ℃, 180 rpm에서 부분 혐기적으로 배양 진행하였다. 발현 유도 물질인 안하이드로테트라사이클린(Anhydrotetracycline)은 OD600이 ~0.5에 가까워졌을 때 최종 농도가 100 ng/ml이 되도록 첨가해주었다.The culture of the 2,3-butanediol producing strains (JHL267 and JHL268) was carried out in M9 medium (6.78 g Na 2 HPO 4 , 3 g KH 2 PO 4 , 1 g NH 4 Cl, 0.5 g NaCl, 2 mL Of 1 M MgSO 4 and 0.1 mL of 1 M CaCl 2 ), 40 g / L glucose and 5 g / L yeast extract were added and 30 μg / mL kanamycin antibiotics were added to maintain the plasmid pZSbudABC. The culture medium that had been grown overnight in the medium was inoculated in 100 ml of M9 medium to a final OD 600 of ~0.05, followed by partial anaerobic culture at 37 ° C and 180 rpm. Anhydrotetracycline, an inducing agent, was added to a final concentration of 100 ng / ml when the OD 600 reached ~ 0.5.

실시예Example 3. 배지에 존재하는  3. The presence in the medium 대사산물Metabolite 분석 방법 Analysis method

배지 내부의 포도당, 유기산, 및 알코올의 농도는 Aminex HPX-87H Column (Bio-Rad Laboratories, Richmond, CA, 미국)을 이용한 고성능액체크로마토그래피(UltiMate 3000 Analytical HPLC System; Dionex, Sunnyvale, CA, 미국) 방법으로 측정하였다. 이 때, 이동상은 5 mM H2SO4로 하였다. 2,3-부탄디올 생산 균주의 경우, 컬럼 온도 65℃ 에서 이동상을 0.5 mL/분으로 흘려주었고, 나머지의 경우 14 ℃ 및 0.6 mL/분에서 분석을 진행하였다. 신호는 UV-VIS diode array detector(210 nm)와 Shodex RI-101 detector (Shodex, Klokkerfaldet, 덴마크)를 이용하여 측정하였다.The concentration of glucose, organic acid, and alcohol in the medium was determined by high performance liquid chromatography (UltiMate 3000 Analytical HPLC System; Dionex, Sunnyvale, Calif., USA) using an Aminex HPX-87H column (Bio-Rad Laboratories, . At this time, the mobile phase was 5 mM H 2 SO 4 . For 2,3-butanediol producing strains, the mobile phase was flowed at 0.5 mL / min at a column temperature of 65 ° C, and the remainder was analyzed at 14 ° C and 0.6 mL / min. The signals were measured using a UV-VIS diode array detector (210 nm) and a Shodex RI-101 detector (Shodex, Klokkerfaldet, Denmark).

실시예Example 4.  4. ptsGptsG 유전자의 5'  The 5 ' UTRUTR 재설계에 따른 포도당 소비 속도 분석 Analysis of glucose consumption rate by redesign

본 발명의 ptsG 유전자의 발현량 조절을 통한 대장균에서의 부탄올(butanol), 부틸산(butyric acid) 및 2,3-부탄디올(2,3-butanediol)의 생산을 위하여, 5'UTR 서열이 조절된 ptsG 유전자를 대장균 균주 내로 도입하여 형질전환시켰다. 형질전환된 균주를 JHL164 내지 JHL168로 명명하였다. 야생형 5'UTR(UTRWT)이 도입된 균주를 양성 대조군으로(JHL110), ΔptsG가 도입된 균주(JHL169)를 음성 대조군으로 설정하고, 대조군 및 ptsG UTR 변이체들이 도입된 균주들의 포도당 소비 속도를 각각 측정하였다. 그 결과를 도 2에 나타내었다.For the production of butanol, butyric acid and 2,3-butanediol in E. coli by controlling the expression level of the ptsG gene of the present invention, the 5'UTR sequence was regulated The ptsG gene was introduced into Escherichia coli strain and transformed. The transformed strains were named JHL164 to JHL168. The introduced wild-type strain 5'UTR (WT UTR) as a positive control (JHL110), ΔptsG sets the introduced strain (JHL169) as a negative control, each of the glucose consumption rate of the control group and ptsG UTR variant are introduced strain Respectively. The results are shown in Fig.

도 2의 b에 나타낸 바와 같이, ΔptsG, UTRWT 및 UTR 1 내지 5가 도입된 균주들은 각각 다양한 포도당 소비 속도(specific glucose uptake rate)를 나타내며, 이러한 결과는 성장 속도(specific growth rate)와 매우 연관되어있음을 확인하였다 (R2 = 0.89). 또한, 도 2의 a, c 및 d에 나타낸 바와 같이, 포도당 소비 속도는 야생형 균주(UTRWT) 대사 과정의 부산물로써 발생하는 아세트산(R2 = 0.88) 및 피루브산(R2 = 0.77) 축적과 밀접함을 확인하였다. 상기 결과를 통해 ptsG를 타겟으로 한 UTR engineering이 해당과정 속도를 조절하기에 적합함을 확인하였다.As shown in FIG. 2 (b), strains into which ΔptsG , UTR WT, and UTR 1 to 5 were introduced exhibited different glucose uptake rates, respectively, and these results are highly related to the specific growth rate (R 2 = 0.89). Furthermore, as, glucose consumption rate is closely and ethyl (R 2 = 0.88) and pyruvic acid (R 2 = 0.77) accumulation occurring as a by-product of the wild type strain (UTR WT) metabolic processes shown in a, c and d 2 Respectively. From the above results, it is confirmed that UTR engineering targeting ptsG is suitable for controlling the process speed.

구체적으로, 도 2의 b 내지 d에 나타낸 바와 같이, ptsG 유전자 영역의 UTR을 재설계해 줌에 따라 모균주와 대비하여 포도당 소비 속도는 20.8% 증가하였고, 포도당 소비 속도의 증가는 성장 속도의 증가(+7.3%), 아세트산(+13.9%) 및 피루브산(+11.0%)로 이어짐을 확인하였다. 상기 결과를 통해, ptsG에 의해 코딩되는 글루코오스 수송체가 해당과정에 있어서 1차적인 속도 결정 단계로 작용하며, 해당과정을 증폭시킬 수 있음을 확인하였다.Specifically, as shown in b to d of FIG. 2, as the UTR of the ptsG gene region was redesigned, the glucose consumption rate was increased by 20.8% as compared with the parent strain, and the increase of the glucose consumption rate was accompanied by the increase of the growth rate (+ 7.3%), acetic acid (+ 13.9%) and pyruvic acid (+ 11.0%). From the above results, it was confirmed that the glucose transporter coded by ptsG acts as a primary rate determining step in the process and can amplify the process.

실시예Example 5. 부탄올 생산을 위한 대사경로 재설계 5. Metabolic path redesign for butanol production

해당과정이 생산 경로보다 우세한 경우, 도 3의 a에 나타낸 바와 같이 해당과정을 줄여줌으로써 과도한 탄소원의 유입을 막고 부산물이 생기는 것을 방지할 수 있다. 이러한 사례로 부탄올 생산 시스템을 들 수 있다. 이전 연구에서 부탄올 생산 경로를 최적화 하고자 하는 많은 시도들이 있었지만 여전히 상당한 양의 피루브산이 부산물로써 발생하였다(Lim et al., 2013a; Nielsen et al., 2009; Shen et al., 2011). 이에, 본 발명에서는 부탄올 생산 균주인 JHL59를 모균주로 이용하여, 앞서 테스트한 ΔptsG, UTRWT 및 다섯 가지 ptsG UTR 변이체를 대장균 균주 내로 도입하여 형질전환시키고 각각 JHL184, JHL178 및 JHL179 내지 JHL183으로 명명하였다. 24시간 배양 후에 각각의 균주들이 생산한 바이오매스, 부탄올, 피루브산, 포도당 소비량 정도를 분석하였고 그 결과를 도 3에 나타내었다.If the process is dominant over the production route, as shown in FIG. 3 (a), by reducing the process, excess carbon source can be prevented from flowing and byproducts can be prevented. An example of this is the butanol production system. Previous studies have attempted to optimize the butanol production pathway, but still considerable amounts of pyruvic acid have emerged as by-products (Lim et al., 2013a; Nielsen et al., 2009; Shen et al., 2011). Thus, in the present invention, the previously tested ΔptsG , UTR WT, and five ptsG UTR mutants were introduced into E. coli strains using JHL59, a butanol production strain, as a parent strain, and transformed into JHL184, JHL178 and JHL179 to JHL183 . The amount of biomass, butanol, pyruvic acid, and glucose consumed by each strain after 24 hours of culture was analyzed. The results are shown in FIG.

도 3의 b에 나타낸 바와 같이, 포도당 소비 속도가 감소함에 따라 주요 부산물인 피루브산은 99% 정도 저감됨을 확인하였다(UTR5가 도입된 JHL179에서 43.92 mM, ΔptsG가 도입된 JHL184에서 0.50 mM으로 감소). 도 3의 c에 나타낸 바와 같이, 이러한 피루브산 생산량의 감소는 포도당 소비 속도와 매우 밀접한 연관 관계가 있음을 확인하였다(R2 = 0.98). 또한, 도 3의 b에 나타낸 바와 같이, n-부탄올 생산량의 경우 UTRWT가 도입된 JHL178에서 69.88 mM으로 나타났으나 ΔptsG가 도입된 JHL184에서는 54.54 mM으로 감소함을 확인하였다.As shown in Figure 3 b, it was confirmed that the major by-product of pyruvate is reduced approximately 99% as the glucose consumption rate is reduced (in the UTR5 introduced JHL179 43.92 mM, reduced to 0.50 mM in the ΔptsG introduced JHL184). As shown in FIG. 3 (c), it was confirmed that the decrease in the production of pyruvic acid was closely related to the glucose consumption rate (R 2 = 0.98). In Fig., In the case of n- butanol yields the WT UTR is introduced JHL178 is displayed nateu or ΔptsG with 69.88 mM introduced in JHL184 as shown in 3 b was confirmed that reduction in 54.54 mM.

한편, 도 3의 d에 나타낸 바와 같이, 각 UTR 변이체가 도입된 균주들의 부탄올 생산 정도를 세포 공장의 주요 변수인 수율 및 생산성 측면에서 비교 분석하였을 때, 부탄올 수율은 해당과정의 속도 감소에 따라 증가했지만 생산성은 큰 영향을 받지 않음을 확인하였다.Meanwhile, as shown in Fig. 3 (d), when the degree of butanol production of the strains into which each UTR variant was introduced was compared and analyzed in terms of yield and productivity, which are main parameters of the cell plant, the butanol yield was increased However, productivity was not significantly affected.

구체적으로, 도 3의 c 및 d에 나타낸 바와 같이, UTR3이 도입된 JHL181 균주의 경우 야생형 균주 대비 수율이 약 20% 증가한 0.84 mol 부탄올/mol glucose를 나타냈으며, 생산성에서는 두 균주 간 큰 차이를 보이지 않았다(UTR3이 도입된 JHL181에서 2.90 mM 부탄올 L-1 h-1, UTRWT가 도입된 JHL178에서 2.91 mM 부탄올 L-1 h-1). 그러나, UTR3 이하의 포도당 소비 속도에서는 부탄올 생산성이 포도당 소비 속도 감소에 따라 감소함을 확인하였다. 상기 결과를 통해, UTR3 이하에서는 해당과정이 그 자체로 부탄올 생산을 위한 속도 결정 단계로 작용함을 확인하였다. 한편, UTR5가 도입된 JHL179 균주는 수율 및 생산성에서 현저한 감소가 나타났는데, 이는 도 3의 c에 나타낸 바와 같이, 피루브산의 축적으로 인한 pH 감소에 기인하는 것으로 판단되었다. 종합적으로, UTR3이 도입된 JHL181 균주는 부탄올 생산량 및 수율 모두가 최적화된 것으로, 야생형에 비해 우수한 부탄올 생산능을 나타냄을 확인하였다. Specifically, as shown in FIGS. 3C and 3D, the JHL181 strain into which UTR3 was introduced exhibited a yield of about 0.84 mol / mol glucose relative to the wild-type strain, and there was a large difference in productivity between the two strains (2.91 mM butanol L- 1 h -1 in JHL181 with UTR3, 2.91 mM butanol L- 1 h -1 in JHL178 with UTR WT introduced). However, it was confirmed that the butanol productivity decreased with decreasing the glucose consumption rate at the glucose consumption rate lower than UTR3. From the above results, it was confirmed that the process itself serves as a rate determining step for butanol production under UTR3. On the other hand, the strain JHL179 into which UTR5 was introduced showed a remarkable decrease in yield and productivity, as shown in Fig. 3 (c), which was judged to be caused by pH decrease due to accumulation of pyruvic acid. Overall, the JHL181 strain introduced with UTR3 had optimized butanol yield and yield, indicating excellent butanol productivity compared to the wild type strain.

상기 결과를 통해, ptsG 발현량 조절을 통한 해당과정 최적화를 이용하여 부탄올 생산에 있어서 최대의 생산성을 유지함과 동시에 수율도 최대화시킬 수 있음을 확인하였다.From the above results, it was confirmed that maximum productivity in butanol production can be maintained and the yield can be maximized using the optimization of the process through the regulation of ptsG expression level.

실시예Example 6. 부틸산 및 2,3- 6. Butyl acid and 2,3- 부탄디올Butanediol 생산을 위한 대사경로 재설계 Metabolic path redesign for production

실시예 5와 다르게, 경쟁적 대사 경로 제거 등에 의해 수율이 극대화 되는 이유로 생산 경로가 해당과정보다 우세한 경우, 생산성을 그 이상으로 증가시키는 것은 매우 어렵다. 도 4의 a에 나타낸 바와 같이, 부틸산은 혐기조건에서 생성되는 발효산물로, 이론적으로 JHL265 균주는 최대 83.4%의 생산수율을 보일 것으로 예상되었다. 그러나, 도 4의 b에 나타낸 바와 같이, 산소 존재 하에서 피루브산의 2,3-부탄디올로의 전환이 최대로 되어, 탄소원의 일부는 이산화탄소로 전환됨으로써 에너지를 생성하도록 소비되어야 한다. 이러한 경우 해당과정을 증폭해주는 것이 필요할 것으로 추론하였고, 이를 확인하기 위하여 부틸산 및 2,3-부탄디올을 모델 시스템으로 이용하였다. 부틸산 생산을 위하여 대사경로가 재설계한 JHL265 균주 및 추가적으로 UTR5를 도입한 JHL266 균주에서 부틸산의 예상 수율 및 생산량을 분석한 결과를 도 4의 c에 나타내었다. 또한, 2,3-부탄디올 생산을 위하여 대사경로를 재설계한 JHL267 균주 및 추가적으로 UTR5를 도입한 JHL268 균주에서 2,3-부탄디올 예상 수율 및 생산량을 분석한 결과를 도 4의 d에 나타내었다.Unlike Example 5, it is very difficult to increase the productivity beyond that when the production path is dominant because the yield is maximized by eliminating the competitive metabolic pathway or the like. As shown in Fig. 4 (a), butyric acid is a fermentation product produced under anaerobic conditions. In theory, the JHL265 strain was expected to exhibit a maximum yield of 83.4%. However, as shown in Fig. 4 (b), the conversion of pyruvic acid to 2,3-butanediol in the presence of oxygen is maximized, and some of the carbon source must be consumed to generate energy by conversion to carbon dioxide. In this case, it was deduced that it would be necessary to amplify the process. To confirm this, butyl acid and 2,3-butanediol were used as a model system. The expected yield and yield of butyric acid in the JHL265 strain redesigned for metabolic pathway production and the JHL266 strain introduced with UTR5 are shown in FIG. 4c. Also, the predicted yield and yield of 2,3-butanediol in the JHL267 strain, which has been redesigned for the production of 2,3-butanediol, and the JHL268 strain, which is further supplemented with UTR5, are shown in FIG.

도 4의 c에 나타낸 바와 같이, JHL266 균주는 해당과정으로의 탄소원 유입의 증가로 JHL265 대비 7% 증가된 부틸산 생산성(1.45 mmol 부틸산 L-1 h- 1)을 나타냄을 확인하였다. 또한, 도 4의 d에 나타낸 바와 같이, JHL268 균주는 JHL267 대비 12.45% 증가된 2,3-부탄디올 생산성(2.38 mmol 2,3-부탄디올 L-1 h- 1)을 나타냄을 확인하였다. JHL266 및 JHL268 균주에서 부틸산 및 2,3-부탄디올의 수율은 각각 모균주와 유사하게 나타남을 확인하였다. 상기 결과를 통해, 부틸산 및 2,3-부탄디올의 생산성을 극대화시키기 위해서는 해당과정의 증폭이 필수적이며, UTR5가 도입된 JHL266 및 JHL268 균주는 부틸산 및 2,3-부탄디올의 생산에 최적화된 균주임을 확인하였다.As shown in FIG. 4 (c), the JHL266 strain showed a 7% increase in butyl acid productivity (1.45 mmol of butyl acid L - 1h - 1 ) compared to JHL265 due to an increase in carbon source introduction into the process. Also, as shown in Fig. 4 (d), the strain JHL268 showed 2.3-butanediol productivity (2.38 mmol 2,3-butanediol L - h - 1 ) increased by 12.45% compared to JHL267. The yields of butyric acid and 2,3-butanediol in JHL266 and JHL268 strains were similar to those of parent strains, respectively. From the above results, it is essential to amplify the corresponding process to maximize the productivity of butyric acid and 2,3-butanediol. The strains JHL266 and JHL268 to which UTR5 is introduced are strains optimized for the production of butyric acid and 2,3-butanediol Respectively.

비록 본 발명이 상기에 언급된 바람직한 실시예로서 설명되었으나, 발명의 요지와 범위로부터 벗어남이 없이 다양한 수정이나 변형을 하는 것이 가능하다. 또한 첨부된 청구 범위는 본 발명의 요지에 속하는 이러한 수정이나 변형을 포함한다.Although the present invention has been described in terms of the preferred embodiments mentioned above, it is possible to make various modifications and variations without departing from the spirit and scope of the invention. It is also to be understood that the appended claims are intended to cover such modifications and changes as fall within the scope of the invention.

<110> POSTECH ACADEMY-INDUSTRY FOUNDATION <120> RECOMBINANT MICROORGANISM WITH REGULATED GLYCOLYTIC FLUX AND METHOD OF PRODUCING COMPOUND USING THE SAME <130> POSTECH1-34P-1 <150> KR 10-2016-0128973 <151> 2016-10-06 <160> 30 <170> KoPatentIn 3.0 <210> 1 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> UTR1(redesigned 5'UTR for ptsG) <400> 1 atattgagaa ggacatctcc tcgataatg 29 <210> 2 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> UTR2(redesigned 5'UTR for ptsG) <400> 2 atattgagaa ggagatatct caataatg 28 <210> 3 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> UTR3(redesigned 5'UTR for ptsG) <400> 3 atattgagaa ggagttatct cgataatg 28 <210> 4 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> UTR4(redesigned 5'UTR for ptsG) <400> 4 ataacgagta ggagtttctc gataatg 27 <210> 5 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> UTR5(redesigned 5'UTR for ptsG) <400> 5 acattcacaa ggagacgtca acaatcatg 29 <210> 6 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> wild-type sequence of the ptsG UTR <400> 6 cccatactca ggagcactct caattatg 28 <210> 7 <211> 1434 <212> DNA <213> Artificial Sequence <220> <223> ptsG gene from Escherichia coli W3110 <400> 7 atgtttaaga atgcatttgc taacctgcaa aaggtcggta aatcgctgat gctgccggta 60 tccgtactgc ctatcgcagg tattctgctg ggcgtcggtt ccgcgaattt cagctggctg 120 cccgccgttg tatcgcatgt tatggcagaa gcaggcggtt ccgtctttgc aaacatgcca 180 ctgatttttg cgatcggtgt cgccctcggc tttaccaata acgatggcgt atccgcgctg 240 gccgcagttg ttgcctatgg catcatggtt aaaaccatgg ccgtggttgc gccactggta 300 ctgcatttac ctgctgaaga aatcgcctct aaacacctgg cggatactgg cgtactcgga 360 gggattatct ccggtgcgat cgcagcgtac atgtttaacc gtttctaccg tattaagctg 420 cctgagtatc ttggcttctt tgccggtaaa cgctttgtgc cgatcatttc tggcctggct 480 gccatcttta ctggcgttgt gctgtccttc atttggccgc cgattggttc tgcaatccag 540 accttctctc agtgggctgc ttaccagaac ccggtagttg cgtttggcat ttacggtttc 600 atcgaacgtt gcctggtacc gtttggtctg caccacatct ggaacgtacc tttccagatg 660 cagattggtg aatacaccaa cgcagcaggt caggttttcc acggcgacat tccgcgttat 720 atggcgggtg acccgactgc gggtaaactg tctggtggct tcctgttcaa aatgtacggt 780 ctgccagctg ccgcaattgc tatctggcac tctgctaaac cagaaaaccg cgcgaaagtg 840 ggcggtatta tgatctccgc ggcgctgacc tcgttcctga ccggtatcac cgagccgatc 900 gagttctcct tcatgttcgt tgcgccgatc ctgtacatca tccacgcgat tctggcaggc 960 ctggcattcc caatctgtat tcttctgggg atgcgtgacg gtacgtcgtt ctcgcacggt 1020 ctgatcgact tcatcgttct gtctggtaac agcagcaaac tgtggctgtt cccgatcgtc 1080 ggtatcggtt atgcgattgt ttactacacc atcttccgcg tgctgattaa agcactggat 1140 ctgaaaacgc cgggtcgtga agacgcgact gaagatgcaa aagcgacagg taccagcgaa 1200 atggcaccgg ctctggttgc tgcatttggt ggtaaagaaa acattactaa cctcgacgca 1260 tgtattaccc gtctgcgcgt cagcgttgct gatgtgtcta aagtggatca ggccggcctg 1320 aagaaactgg gcgcagcggg cgtagtggtt gctggttctg gtgttcaggc gattttcggt 1380 actaaatccg ataacctgaa aaccgagatg gatgagtaca tccgtaacca ctaa 1434 <210> 8 <211> 2577 <212> DNA <213> Artificial Sequence <220> <223> adhE2 gene from Clostridium acetobutylicum <400> 8 atgaaagtta caaatcaaaa agaactaaaa caaaagctaa atgaattgag agaagcgcaa 60 aagaagtttg caacctatac tcaagagcaa gttgataaaa tttttaaaca atgtgccata 120 gccgcagcta aagaaagaat aaacttagct aaattagcag tagaagaaac aggaataggt 180 cttgtagaag ataaaattat aaaaaatcat tttgcagcag aatatatata caataaatat 240 aaaaatgaaa aaacttgtgg cataatagac catgacgatt ctttaggcat aacaaaggtt 300 gctgaaccaa ttggaattgt tgcagccata gttcctacta ctaatccaac ttccacagca 360 attttcaaat cattaatttc tttaaaaaca agaaacgcaa tattcttttc accacatcca 420 cgtgcaaaaa aatctacaat tgctgcagca aaattaattt tagatgcagc tgttaaagca 480 ggagcaccta aaaatataat aggctggata gatgagccat caatagaact ttctcaagat 540 ttgatgagtg aagctgatat aatattagca acaggaggtc cttcaatggt taaagcggcc 600 tattcatctg gaaaacctgc aattggtgtt ggagcaggaa atacaccagc aataatagat 660 gagagtgcag atatagatat ggcagtaagc tccataattt tatcaaagac ttatgacaat 720 ggagtaatat gcgcttctga acaatcaata ttagttatga attcaatata cgaaaaagtt 780 aaagaggaat ttgtaaaacg aggatcatat atactcaatc aaaatgaaat agctaaaata 840 aaagaaacta tgtttaaaaa tggagctatt aatgctgaca tagttggaaa atctgcttat 900 ataattgcta aaatggcagg aattgaagtt cctcaaacta caaagatact tataggcgaa 960 gtacaatctg ttgaaaaaag cgagctgttc tcacatgaaa aactatcacc agtacttgca 1020 atgtataaag ttaaggattt tgatgaagct ctaaaaaagg cacaaaggct aatagaatta 1080 ggtggaagtg gacacacgtc atctttatat atagattcac aaaacaataa ggataaagtt 1140 aaagaatttg gattagcaat gaaaacttca aggacattta ttaacatgcc ttcttcacag 1200 ggagcaagcg gagatttata caattttgcg atagcaccat catttactct tggatgcggc 1260 acttggggag gaaactctgt atcgcaaaat gtagagccta aacatttatt aaatattaaa 1320 agtgttgctg aaagaaggga aaatatgctt tggtttaaag tgccacaaaa aatatatttt 1380 aaatatggat gtcttagatt tgcattaaaa gaattaaaag atatgaataa gaaaagagcc 1440 tttatagtaa cagataaaga tctttttaaa cttggatatg ttaataaaat aacaaaggta 1500 ctagatgaga tagatattaa atacagtata tttacagata ttaaatctga tccaactatt 1560 gattcagtaa aaaaaggtgc taaagaaatg cttaactttg aacctgatac tataatctct 1620 attggtggtg gatcgccaat ggatgcagca aaggttatgc acttgttata tgaatatcca 1680 gaagcagaaa ttgaaaatct agctataaac tttatggata taagaaagag aatatgcaat 1740 ttccctaaat taggtacaaa ggcgatttca gtagctattc ctacaactgc tggcaccggt 1800 tcagaggcaa caccttttgc agttataact aatgatgaaa caggaatgaa atacccttta 1860 acttcttatg aattgacccc aaacatggca ataatagata ctgaattaat gttaaatatg 1920 cctagaaaat taacagcagc aactggaata gatgcattag ttcatgctat agaagcatat 1980 gtttcggtta tggctacgga ttatactgat gaattagcct taagagcaat aaaaatgata 2040 tttaaatatt tgcctagagc ctataaaaat gggactaacg acattgaagc aagagaaaaa 2100 atggcacatg cctctaatat tgcggggatg gcatttgcaa atgctttctt aggtgtatgc 2160 cattcaatgg ctcataaact tggggcaatg catcacgttc cacatggaat tgcttgtgct 2220 gtattaatag aagaagttat taaatataac gctacagact gtccaacaaa gcaaacagca 2280 ttccctcaat ataaatctcc taatgctaag agaaaatatg ctgaaattgc agagtatttg 2340 aatttaaagg gtactagcga taccgaaaag gtaacagcct taatagaagc tatttcaaag 2400 ttaaagatag atttgagtat tccacaaaat ataagtgccg ctggaataaa taaaaaagat 2460 ttttataata cgctagataa aatgtcagag cttgcttttg atgaccaatg tacaacagct 2520 aatcctaggt atccacttat aagtgaactt aaggatatct atataaaatc attttaa 2577 <210> 9 <211> 1131 <212> DNA <213> Artificial Sequence <220> <223> fdh1 gene from Saccharomyces cerevisiae <400> 9 atgtcgaagg gaaaggtttt gctggttctt tacgaaggtg gtaagcatgc tgaagagcag 60 gaaaagttat tggggtgtat tgaaaatgaa cttggtatca gaaatttcat tgaagaacag 120 ggatacgagt tggttactac cattgacaag gaccctgagc caacctcaac ggtagacagg 180 gagttgaaag acgctgaaat tgtcattact acgccctttt tccccgccta catctcgaga 240 aacaggattg cagaagctcc taacctgaag ctctgtgtaa ccgctggcgt cggttcagac 300 catgtcgatt tagaagctgc aaatgaacgg aaaatcacgg tcaccgaagt tactggttct 360 aacgtcgttt ctgtcgcaga gcacgttatg gccacaattt tggttttgat aagaaactat 420 aatggtggtc accaacaagc aattaatggt gagtgggata ttgccggcgt ggctaaaaat 480 gagtatgatc tggaagacaa aataatttca acggtaggtg ccggtagaat tggatatagg 540 gttctggaaa gattggtcgc atttaatccg aagaagttac tgtactacga ctaccaggaa 600 ctacctgcgg aagcaatcaa tagattgaac gaggccagca agcttttcaa tggcagaggt 660 gatattgttc agagagtaga aaaattggag gatatggttg ctcagtcaga tgttgttacc 720 atcaactgtc cattgcacaa ggactcaagg gggttattca ataaaaagct tatttcccac 780 atgaaagatg gtgcatactt ggtgaatacc gctagaggtg ctatttgtgt cgcagaagat 840 gttgccgagg cagtcaagtc tggtaaattg gctggctatg gtggtgatgt ctgggataag 900 caaccagcac caaaagacca tccctggagg actatggaca ataaggacca cgtgggaaac 960 gcaatgactg ttcatatcag tggcacatct ctggatgctc aaaagaggta cgctcaggga 1020 gtaaagaaca tcctaaatag ttacttttcc aaaaagtttg attaccgtcc acaggatatt 1080 attgtgcaga atggttctta tgccaccaga gcttatggac agaagaaata a 1131 <210> 10 <211> 789 <212> DNA <213> Artificial Sequence <220> <223> crt gene from Clostridium acetobutylicum ATCC824 <400> 10 atggaactaa acaatgtcat ccttgaaaag gaaggtaaag ttgctgtagt taccattaac 60 agacctaaag cattaaatgc gttaaatagt gatacactaa aagaaatgga ttatgttata 120 ggtgaaattg aaaatgatag cgaagtactt gcagtaattt taactggagc aggagaaaaa 180 tcatttgtag caggagcaga tatttctgag atgaaggaaa tgaataccat tgaaggtaga 240 aaattcggga tacttggaaa taaagtgttt agaagattag aacttcttga aaagcctgta 300 atagcagctg ttaatggttt tgctttagga ggcggatgcg aaatagctat gtcttgtgat 360 ataagaatag cttcaagcaa cgcaagattt ggtcaaccag aagtaggtct cggaataaca 420 cctggttttg gtggtacaca aagactttca agattagttg gaatgggcat ggcaaagcag 480 cttatattta ctgcacaaaa tataaaggca gatgaagcat taagaatcgg acttgtaaat 540 aaggtagtag aacctagtga attaatgaat acagcaaaag aaattgcaaa caaaattgtg 600 agcaatgctc cagtagctgt taagttaagc aaacaggcta ttaatagagg aatgcagtgt 660 gatattgata ctgctttagc atttgaatca gaagcatttg gagaatgctt ttcaacagag 720 gatcaaaagg atgcaatgac agctttcata gagaaaagaa aaattgaagg cttcaaaaat 780 agatagtga 789 <210> 11 <211> 849 <212> DNA <213> Artificial Sequence <220> <223> hbd gene from Clostridium acetobutylicum(ATCC824) <400> 11 atgaaaaagg tatgtgttat aggtgcaggt actatgggtt caggaattgc tcaggcattt 60 gcagctaaag gatttgaagt agtattaaga gatattaaag atgaatttgt tgatagagga 120 ttagatttta tcaataaaaa tctttctaaa ttagttaaaa aaggaaagat agaagaagct 180 actaaagttg aaatcttaac tagaatttcc ggaacagttg accttaatat ggcagctgat 240 tgcgatttag ttatagaagc agctgttgaa agaatggata ttaaaaagca gatttttgct 300 gacttagaca atatatgcaa gccagaaaca attcttgcat caaatacatc atcactttca 360 ataacagaag tggcatcagc aactaaaaga cctgataagg ttataggtat gcatttcttt 420 aatccagctc ctgttatgaa gcttgtagag gtaataagag gaatagctac atcacaagaa 480 acttttgatg cagttaaaga gacatctata gcaataggaa aagatcctgt agaagtagca 540 gaagcaccag gatttgttgt aaatagaata ttaataccaa tgattaatga agcagttggt 600 atattagcag aaggaatagc ttcagtagaa gacatagata aagctatgaa acttggagct 660 aatcacccaa tgggaccatt agaattaggt gattttatag gtcttgatat atgtcttgct 720 ataatggatg ttttatactc agaaactgga gattctaagt atagaccaca tacattactt 780 aagaagtatg taagagcagg atggcttgga agaaaatcag gaaaaggttt ctacgattat 840 tcaaaataa 849 <210> 12 <211> 1194 <212> DNA <213> Artificial Sequence <220> <223> codon-optimized ter gene from Treponema denticola <400> 12 atgatcgtca agccaatggt gcgcaataat atctgtctga acgctcaccc gcagggttgt 60 aaaaagggtg tagaagacca gattgaatac actaagaaac gcatcaccgc agaagttaaa 120 gcaggtgcca aagcaccgaa aaacgtcctg gtgctgggct gcagcaacgg ctacggtctg 180 gcaagccgca ttacggctgc attcggttac ggcgctgcta ctattggtgt tagcttcgaa 240 aaggcgggtt ctgaaaccaa atacggcact ccaggctggt acaacaacct ggcattcgac 300 gaagcagcga agcgtgaggg tctgtactct gttaccatcg acggtgacgc gttctctgac 360 gagatcaaag ctcaggttat cgaggaagct aaaaagaaag gtatcaaatt cgacctgatt 420 gtgtactccc tggcctctcc ggttcgtacc gacccggata ccggcatcat gcacaaaagc 480 gtactgaagc cgtttggcaa aaccttcact ggtaaaaccg ttgatccttt caccggcgag 540 ctgaaggaaa tctccgccga gccagctaac gatgaggagg ctgctgcgac cgttaaagtg 600 atgggtggcg aagactggga acgttggatc aaacaactgt ccaaggaagg tctgctggag 660 gagggctgta ttactctggc atattcttac atcggcccgg aggcgactca ggcactgtat 720 cgtaagggca ccatcggtaa agcgaaagaa catctggagg ccaccgctca ccgtctgaac 780 aaggaaaacc cgagcatccg tgctttcgtg tccgttaaca agggcctggt tacgcgcgct 840 tccgcagtaa ttccggtcat tccgctgtac ctggcttccc tgtttaaagt catgaaagaa 900 aaaggcaacc acgaaggttg tatcgaacaa attactcgcc tgtatgcgga gcgcctgtac 960 cgtaaggatg gcactatccc ggttgatgaa gagaaccgca tccgcattga cgattgggaa 1020 ctggaagagg atgtacagaa agcggtttcc gcgctgatgg aaaaagtgac gggcgaaaac 1080 gcggaatccc tgacggatct ggcaggttac cgtcacgact ttctggcgtc taatggtttc 1140 gacgttgagg gtattaacta cgaggcagaa gttgaacgtt tcgatcgtat ttaa 1194 <210> 13 <211> 861 <212> DNA <213> Artificial Sequence <220> <223> tesB gene from Escherichia coli W3110 <400> 13 atgagtcagg cgctaaaaaa tttactgaca ttgttaaatc tggaaaaaat tgaggaagga 60 ctctttcgcg gccagagtga agatttaggt ttacgccagg tgtttggcgg ccaggtcgtg 120 ggtcaggcct tgtatgctgc aaaagagacc gtccctgaag agcggctggt acattcgttt 180 cacagctact ttcttcgccc tggcgatagt aagaagccga ttatttatga tgtcgaaacg 240 ctgcgtgacg gtaacagctt cagcgcccgc cgggttgctg ctattcaaaa cggcaaaccg 300 attttttata tgactgcctc tttccaggca ccagaagcgg gtttcgaaca tcaaaaaaca 360 atgccgtccg cgccagcgcc tgatggcctc ccttcggaaa cgcaaatcgc ccaatcgctg 420 gcgcacctgc tgccgccagt gctgaaagat aaattcatct gcgatcgtcc gctggaagtc 480 cgtccggtgg agtttcataa cccactgaaa ggtcacgtcg cagaaccaca tcgtcaggtg 540 tggatccgcg caaatggtag cgtgccggat gacctgcgcg ttcatcagta tctgctcggt 600 tacgcttctg atcttaactt cctgccggta gctctacagc cgcacggcat cggttttctc 660 gaaccgggga ttcagattgc caccattgac cattccatgt ggttccatcg cccgtttaat 720 ttgaatgaat ggctgctgta tagcgtggag agcacctcgg cgtccagcgc acgtggcttt 780 gtgcgcggtg agttttatac ccaagacggc gtactggttg cctcgaccgt tcaggaaggg 840 gtgatgcgta atcacaatta a 861 <210> 14 <211> 3262 <212> DNA <213> Artificial Sequence <220> <223> budABC operon from Enterobacter aerogenes KCTC2190 <400> 14 atgaatcatg cttcagattg cacctgtgaa gagagtctgt gtgaaacgct acgcgcgttt 60 tccgctcagc atcccgatag cgtgctgtat caaacttcgc tgatgagcgc cctgctcagc 120 ggcgtctacg aaggtaccac caccattgcg gacctgctga agcacggtga tttcgggctc 180 ggcactttta atgaactcga cggcgagctg atcgcgttta gcagccaggt ttatcaactg 240 cgtgccgacg gcagcgcgcg taaagcgcgt ccggaacaga aaacgccgtt tgcggtgatg 300 acctggtttc agccgcagta ccgtaaaacc tttgaccatc cggtcagccg ccagcagctg 360 catgaggtta ttgaccagca aattccttcc gacaatctgt tctgcgcgct gcgaatcgat 420 ggtcatttcc gccacgccca tacccgcacc gtgcctcgtc agacgccgcc ctaccgggcg 480 atgaccgacg tgctcgacga tcagccggtt ttccgcttta accagcgtga cggcgtactg 540 gtcggttttc gtaccccgca gcatatgcag ggaattaacg tcgccggcta tcacgaacac 600 ttcattaccg atgaccgcca gggcggcggc cacctgctgg actaccagct cgaccatggg 660 gtattgacct tcggcgaaat tcataagctg atgatcgacc ttcccgccga cagcgcgttc 720 ctgcaggcca atttgcatcc cgataatctc gatgccgcca tccgttcagt agaaagttag 780 gaggttcaca tggacaaaca gtatccgcag cgccagtggg cgcacggcgc cgatctggtc 840 gtcagccaac tggaagcgca aggcgtacgg caggtcttcg ggatccccgg cgctaaaatc 900 gataaggttt tcgactcgtt gctggactcc tcaatccgca ttattccggt acgtcacgag 960 gccaacgccg cctttatggc cgccgcggtc gggcgcatta ccggcaaagc gggcgtcgcg 1020 ctggtgacct ccggacccgg ttgttccaac ctgataaccg ggatggccac cgccaatagc 1080 gaaggcgacc cggtggtggc gctgggcggc gcggtcaaac gcgcggataa agccaaacag 1140 gtacaccaga gtatggacac ggtggcgatg ttcagcccgg tcaccaaata cgcggtagaa 1200 gtgacctcgc cggatgcgct ggcggaagtg gtttctaacg cttttcgcgc cgccgagcag 1260 ggtcgcccgg gcagcgcctt cgtcagtctg ccgcaggatg tggtcgatgg tccggtgacc 1320 ggcaaagtcc tgcccgccag cagcgcgccg cagatgggcg ccgcgcctga cgaggcaatc 1380 aatcaggttg cgaagttgat tgcccaggcg aagaatccgg tgttcctgct tggattaatg 1440 gccagccaga cggaaaacag cgccgcgctg catcgtttgc tggaaaccag ccatattccg 1500 gtcaccagca cctatcaggc cgccggggcg gtcaatcagg ataacttctc gcgcttcgcc 1560 gggcgcgtcg ggctgtttaa caatcaggcc ggtgaccgct tattgcaact ggccgacctg 1620 gttatctgca tcggctatag cccggtggaa tacgaaccgg cgatgtggaa cagcggcaac 1680 gcgacgctgg tacatatcga cgtactgccc gcctatgaag agcgtaacta cacgccggat 1740 gtcgagctgg tgggcgacat cgccggcacg ctgaacaagc tggcgcaaaa tatcgatcat 1800 cggctggtgc tctcgccgca ggctgctgaa atcctccacg accgccagca tcagcgggaa 1860 ctgcttgacc gccgcggagc gcagttgaat cagtttgccc tgcacccgct gcgtatcgtt 1920 cgcgccatgc aggatatcgt caacagcgac gtcacgctga cggtcgatat ggggagcttc 1980 catatctgga tcgcccgcta tctctacagc ttccgcgccc gtcaggtgat gatctccaac 2040 ggtcagcaga ccatgggcgt cgccctgccg tgggccatcg gggcctggct ggtcaatccg 2100 cagcgcaaag tggtctcggt ctccggcgat ggcggttttc tgcaatccag catggagctg 2160 gaaacggcgg tccgcctgaa agccaacatc ctgcatctta tctgggtcga taacggctac 2220 aacatggtcg ccatccagga agagaaaaaa tatcaacgcc tgtccggcgt cgagttcggt 2280 cctatggatt ttaaagccta tgccgaatcc ttcggcgcga aagggtttgc ggtggaaagc 2340 gctgaggcgc tggagccgac gctacgcgcg gcgatggacg tcgacggccc ggcggtggtc 2400 gccatccccg tggattaccg tgataacccg ctgctgatgg gccagctaca cctgagtcaa 2460 attctttaag tcatcacaaa aggaaatgga aatgaaaaaa gtcgcacttg tcaccggcgc 2520 cggtcagggc attggtaaag ctatcgcgtt acgcctcgtg aaggacggtt ttgccgtggc 2580 gatcgccgat tacaatgacg tcacagcgaa agccgtggcg gatgaaatca accagcacgg 2640 cggccgggca atcgcggtca aagtcgatgt ttccgaccgt gagcaggtgt ttgccgccgt 2700 cgaacaggcg cgaaaaacgc tgggcggatt caacgtcatc gtcaataacg ccggggtcgc 2760 gccatcaacg cctatcgaat ccattacgcc ggagattgtc gacaaggtct acaacatcaa 2820 cgttaaaggg gtgatctggg ggattcaggc ggcagtcgag gcctttaaaa aagaggggca 2880 cggcggcaaa atcatcaacg cctgttcgca ggccggacac gtcggcaacc cggaactggc 2940 ggtctacagc tcgagcaaat tcgccgtacg cggtttaacg caaaccgccg ctcgcgacct 3000 ggcgccgctg ggtattaccg ttaacggcta ctgcccgggg attgtgaaaa cgccgatgtg 3060 ggccgagatc gatcgtcagg tatccgaagc ggcgggtaaa cctctgggct acgggacagc 3120 cgaattcgcc aaacgcatca ccctcggccg cctgtctgag ccagaagatg tcgccgcctg 3180 cgtctcttat ctcgccagcc cggattccga ttatatgacc ggtcaatcgc tgctgatcga 3240 tggcgggatg gtattcaatt aa 3262 <210> 15 <211> 89 <212> DNA <213> Artificial Sequence <220> <223> forward primer of FRT4 <400> 15 ctagtgctgg agcgaactgc gaagttccta tactttctag agaataggaa cttcggaata 60 ggaacttcaa gatcccctca cgctgccgc 89 <210> 16 <211> 89 <212> DNA <213> Artificial Sequence <220> <223> reverse primer of FRT4 <400> 16 ggagtactcg cggttgactg agttcctatt ccgaagttcc tattctctag aaagtatagg 60 aacttcagag cgcttttgaa gctggggtg 89 <210> 17 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> forward primer of ptsG_del4 <400> 17 cgttgtatcg catgttatgg cagaagcagg cggttccgtc tttgcaaaca ctagtgctgg 60 agcgaactgc 70 <210> 18 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> reverse primer of ptsG_del4 <400> 18 aacgctgacg cgcagacggg taatacatgc gtcgaggtta gtaatgtttt ggagtactcg 60 cggttgactg 70 <210> 19 <211> 101 <212> DNA <213> Artificial Sequence <220> <223> rpsL-A128G-oligo <400> 19 cgttagtcag acgaacacgg catactttac gcagcgcgga gttcggtttt ctaggagtgg 60 tagtatatac acgagtacat acgccacgtt tttgcgggca t 101 <210> 20 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> forward primer of ptsG_rpsLneo <400> 20 acacggcgag gctctccccc cttgccacgc gtgagaacgt aaaaaaagca ggcctggtga 60 tgatggcggg 70 <210> 21 <211> 81 <212> DNA <213> Artificial Sequence <220> <223> reverse primer of ptsG_rpsLneo <400> 21 atcagcgatt taccgacctt ttgcaggtta gcaaatgcat tcttaaacat tcagaagaac 60 tcgtcaagaa ggcgatagaa g 81 <210> 22 <211> 126 <212> DNA <213> Artificial Sequence <220> <223> ptsG_UTR1_oligo <400> 22 acacggcgag gctctccccc cttgccacgc gtgagaacgt aaaaaaagca atattgagaa 60 ggacatctcc tcgataatgt ttaagaatgc atttgctaac ctgcaaaagg tcggtaaatc 120 gctgat 126 <210> 23 <211> 125 <212> DNA <213> Artificial Sequence <220> <223> ptsG_UTR2_oligo <400> 23 acacggcgag gctctccccc cttgccacgc gtgagaacgt aaaaaaagca atattgagaa 60 ggagatatct caataatgtt taagaatgca tttgctaacc tgcaaaaggt cggtaaatcg 120 ctgat 125 <210> 24 <211> 125 <212> DNA <213> Artificial Sequence <220> <223> ptsG_UTR3_oligo <400> 24 acacggcgag gctctccccc cttgccacgc gtgagaacgt aaaaaaagca atattgagaa 60 ggagttatct cgataatgtt taagaatgca tttgctaacc tgcaaaaggt cggtaaatcg 120 ctgat 125 <210> 25 <211> 124 <212> DNA <213> Artificial Sequence <220> <223> ptsG_UTR4_oligo <400> 25 acacggcgag gctctccccc cttgccacgc gtgagaacgt aaaaaaagca ataacgagta 60 ggagtttctc gataatgttt aagaatgcat ttgctaacct gcaaaaggtc ggtaaatcgc 120 tgat 124 <210> 26 <211> 126 <212> DNA <213> Artificial Sequence <220> <223> ptsG_UTR5_oligo <400> 26 acacggcgag gctctccccc cttgccacgc gtgagaacgt aaaaaaagca acattcacaa 60 ggagacgtca acaatcatgt ttaagaatgc atttgctaac ctgcaaaagg tcggtaaatc 120 gctgat 126 <210> 27 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> forward primer of C-ptsG_UTR <400> 27 catatgtttt gtcaaaatgt gcaacttctc caatgat 37 <210> 28 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> reverse primer of C-ptsG_UTR <400> 28 ttttaaccat gatgccatag gcaacaactg c 31 <210> 29 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> forward primer of C-ptsG_del <400> 29 cggtaaatcg ctgatgctgc cggta 25 <210> 30 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> reverse primer of C-ptsG_del <400> 30 gtggttacgg atgtactcat ccatctcg 28 <110> POSTECH ACADEMY-INDUSTRY FOUNDATION <120> RECOMBINANT MICROORGANISM WITH REGULATED GLYCOLYTIC FLUX AND          METHOD OF PRODUCING COMPOUND USING THE SAME <130> POSTECH1-34P-1 <150> KR 10-2016-0128973 <151> 2016-10-06 <160> 30 <170> KoPatentin 3.0 <210> 1 <211> 29 <212> DNA <213> Artificial Sequence <220> UTR1 (redesigned 5'UTR for ptsG) <400> 1 atattgagaa ggacatctcc tcgataatg 29 <210> 2 <211> 28 <212> DNA <213> Artificial Sequence <220> &Lt; 223 > UTR2 (redesigned 5'UTR for ptsG) <400> 2 atattgagaa ggagatatct caataatg 28 <210> 3 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> UTR3 (redesigned 5'UTR for ptsG) <400> 3 atattgagaa ggagttatct cgataatg 28 <210> 4 <211> 27 <212> DNA <213> Artificial Sequence <220> UTR4 (redesigned 5'UTR for ptsG) <400> 4 ataacgagta ggagtttctc gataatg 27 <210> 5 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> UTR5 (redesigned 5'UTR for ptsG) <400> 5 acattcacaa ggagacgtca acaatcatg 29 <210> 6 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> wild-type sequence of the ptsG UTR <400> 6 cccatactca ggagcactct caattatg 28 <210> 7 <211> 1434 <212> DNA <213> Artificial Sequence <220> <223> ptsG gene from Escherichia coli W3110 <400> 7 atgtttaaga atgcatttgc taacctgcaa aaggtcggta aatcgctgat gctgccggta 60 tccgtactgc ctatcgcagg tattctgctg ggcgtcggtt ccgcgaattt cagctggctg 120 cccgccgttg tatcgcatgt tatggcagaa gcaggcggtt ccgtctttgc aaacatgcca 180 ctgatttttg cgatcggtgt cgccctcggc tttaccaata acgatggcgt atccgcgctg 240 gccgcagttg ttgcctatgg catcatggtt aaaaccatgg ccgtggttgc gccactggta 300 ctgcatttac ctgctgaaga aatcgcctct aaacacctgg cggatactgg cgtactcgga 360 gggattatct ccggtgcgat cgcagcgtac atgtttaacc gtttctaccg tattaagctg 420 cctgagtatc ttggcttctt tgccggtaaa cgctttgtgc cgatcatttc tggcctggct 480 gccatcttta ctggcgttgt gctgtccttc atttggccgc cgattggttc tgcaatccag 540 accttctctc agtgggctgc ttaccagaac ccggtagttg cgtttggcat ttacggtttc 600 atcgaacgtt gcctggtacc gtttggtctg caccacatct ggaacgtacc tttccagatg 660 cagattggtg aatacaccaa cgcagcaggt caggttttcc acggcgacat tccgcgttat 720 atggcgggtg acccgactgc gggtaaactg tctggtggct tcctgttcaa aatgtacggt 780 ctgccagctg ccgcaattgc tatctggcac tctgctaaac cagaaaaccg cgcgaaagtg 840 ggcggtatta tgatctccgc ggcgctgacc tcgttcctga ccggtatcac cgagccgatc 900 gagttctcct tcatgttcgt tgcgccgatc ctgtacatca tccacgcgat tctggcaggc 960 ctggcattcc caatctgtat tcttctgggg atgcgtgacg gtacgtcgtt ctcgcacggt 1020 ctgatcgact tcatcgttct gtctggtaac agcagcaaac tgtggctgtt cccgatcgtc 1080 ggtatcggtt atgcgattgt ttactacacc atcttccgcg tgctgattaa agcactggat 1140 ctgaaaacgc cgggtcgtga agacgcgact gaagatgcaa aagcgacagg taccagcgaa 1200 atggcaccgg ctctggttgc tgcatttggt ggtaaagaaa acattactaa cctcgacgca 1260 tgtattaccc gtctgcgcgt cagcgttgct gatgtgtcta aagtggatca ggccggcctg 1320 aagaaactgg gcgcagcggg cgtagtggtt gctggttctg gtgttcaggc gattttcggt 1380 actaaatccg ataacctgaa aaccgagatg gatgagtaca tccgtaacca ctaa 1434 <210> 8 <211> 2577 <212> DNA <213> Artificial Sequence <220> <223> adhE2 gene from Clostridium acetobutylicum <400> 8 atgaaagtta caaatcaaaa agaactaaaa caaaagctaa atgaattgag agaagcgcaa 60 aagaagtttg caacctatac tcaagagcaa gttgataaaa tttttaaaca atgtgccata 120 gccgcagcta aagaaagaat aaacttagct aaattagcag tagaagaaac aggaataggt 180 cttgtagaag ataaaattat aaaaaatcat tttgcagcag aatatatata caataaatat 240 aaaaatgaaa aaacttgtgg cataatagac catgacgatt ctttaggcat aacaaaggtt 300 gctgaaccaa ttggaattgt tgcagccata gttcctacta ctaatccaac ttccacagca 360 attttcaaat cattaatttc tttaaaaaca agaaacgcaa tattcttttc accacatcca 420 cgtgcaaaaa aatctacaat tgctgcagca aaattaattt tagatgcagc tgttaaagca 480 ggagcaccta aaaatataat aggctggata gatgagccat caatagaact ttctcaagat 540 ttgatgagtg aagctgatat aatattagca acaggaggtc cttcaatggt taaagcggcc 600 tattcatctg gaaaacctgc aattggtgtt ggagcaggaa atacaccagc aataatagat 660 gagagtgcag atatagatat ggcagtaagc tccataattt tatcaaagac ttatgacaat 720 ggagtaatat gcgcttctga acaatcaata ttagttatga attcaatata cgaaaaagtt 780 aaagaggaat ttgtaaaacg aggatcatat atactcaatc aaaatgaaat agctaaaata 840 aaagaaacta tgtttaaaaa tggagctatt aatgctgaca tagttggaaa atctgcttat 900 ataattgcta aaatggcagg aattgaagtt cctcaaacta caaagatact tataggcgaa 960 gtacaatctg ttgaaaaaag cgagctgttc tcacatgaaa aactatcacc agtacttgca 1020 atgtataaag ttaaggattt tgatgaagct ctaaaaaagg cacaaaggct aatagaatta 1080 ggtggaagtg gacacacgtc atctttatat atagattcac aaaacaataa ggataaagtt 1140 aaagaatttg gattagcaat gaaaacttca aggacattta ttaacatgcc ttcttcacag 1200 ggagcaagcg gagatttata caattttgcg atagcaccat catttactct tggatgcggc 1260 acttggggag gaaactctgt atcgcaaaat gtagagccta aacatttatt aaatattaaa 1320 agtgttgctg aaagaaggga aaatatgctt tggtttaaag tgccacaaaa aatatatttt 1380 aaatatggat gtcttagatt tgcattaaaa gaattaaaag atatgaataa gaaaagagcc 1440 tttatagtaa cagataaaga tttttttaaa cttggatatg ttaataaaat aacaaaggta 1500 ctagatgaga tagatattaa atacagtata tttacagata ttaaatctga tccaactatt 1560 gattcagtaa aaaaaggtgc taaagaaatg cttaactttg aacctgatac tataatctct 1620 attggtggtg gatcgccaat ggatgcagca aaggttatgc acttgttata tgaatatcca 1680 gaagcagaaa ttgaaaatct agctataaac tttatggata taagaaagag aatatgcaat 1740 ttccctaaat taggtacaaa ggcgatttca gtagctattc ctacaactgc tggcaccggt 1800 tcagaggcaa caccttttgc agttataact aatgatgaaa caggaatgaa atacccttta 1860 acttcttatg aattaccccc aaacatggca ataatagata ctgaattaat gttaaatatg 1920 cctagaaaat taacagcagc aactggaata gatgcattag ttcatgctat agaagcatat 1980 gtttcggtta tggctacgga ttatactgat gaattagcct taagagcaat aaaaatgata 2040 tttaaatatt tgcctagagc ctataaaaat gggactaacg acattgaagc aagagaaaaa 2100 atggcacatg cctctaatat tgcggggatg gcatttgcaa atgctttctt aggtgtatgc 2160 cattcaatgg ctcataaact tggggcaatg catcacgttc cacatggaat tgcttgtgct 2220 gtattaatag aagaagttat taaatataac gctacagact gtccaacaaa gcaaacagca 2280 ttccctcaat ataaatctcc taatgctaag agaaaatatg ctgaaattgc agagtatttg 2340 aatttaaagg gtactagcga taccgaaaag gtaacagcct taatagaagc tatttcaaag 2400 ttaaagatag atttgagtat tccacaaaat ataagtgccg ctggaataaa taaaaaagat 2460 ttttataata cgctagataa aatgtcagag cttgcttttg atgaccaatg tacaacagct 2520 aatcctaggt atccacttat aagtgaactt aaggatatct atataaaatc attttaa 2577 <210> 9 <211> 1131 <212> DNA <213> Artificial Sequence <220> <223> fdh1 gene from Saccharomyces cerevisiae <400> 9 atgtcgaagg gaaaggtttt gctggttctt tacgaaggtg gtaagcatgc tgaagagcag 60 gaaaagttat tggggtgtat tgaaaatgaa cttggtatca gaaatttcat tgaagaacag 120 ggatacgagt tggttactac cattgacaag gaccctgagc caacctcaac ggtagacagg 180 gagttgaaag acgctgaaat tgtcattact acgccctttt tccccgccta catctcgaga 240 aacaggattg cagaagctcc taacctgaag ctctgtgtaa ccgctggcgt cggttcagac 300 catgtcgatt tagaagctgc aaatgaacgg aaaatcacgg tcaccgaagt tactggttct 360 aacgtcgttt ctgtcgcaga gcacgttatg gccacaattt tggttttgat aagaaactat 420 aatggtggtc accaacaagc aattaatggt gagtgggata ttgccggcgt ggctaaaaat 480 gagtatgatc tggaagacaa aataatttca acggtaggtg ccggtagaat tggatatagg 540 gttctggaaa gattggtcgc atttaatccg aagaagttac tgtactacga ctaccaggaa 600 ctacctgcgg aagcaatcaa tagattgaac gaggccagca agcttttcaa tggcagaggt 660 gatattgttc agagagtaga aaaattggag gatatggttg ctcagtcaga tgttgttacc 720 atcaactgtc cattgcacaa ggactcaagg gggttattca ataaaaagct tatttcccac 780 atgaaagatg gtgcatactt ggtgaatacc gctagaggtg ctatttgtgt cgcagaagat 840 gttgccgagg cagtcaagtc tggtaaattg gctggctatg gtggtgatgt ctgggataag 900 caaccagcac caaaagacca tccctggagg actatggaca ataaggacca cgtgggaaac 960 gcaatgactg ttcatatcag tggcacatct ctggatgctc aaaagaggta cgctcaggga 1020 gtaaagaaca tcctaaatag ttacttttcc aaaaagtttg attaccgtcc acaggatatt 1080 attgtgcaga atggttctta tgccaccaga gcttatggac agaagaaata a 1131 <210> 10 <211> 789 <212> DNA <213> Artificial Sequence <220> <223> crt gene from Clostridium acetobutylicum ATCC824 <400> 10 atggaactaa acaatgtcat ccttgaaaag gaaggtaaag ttgctgtagt taccattaac 60 agacctaaag cattaaatgc gttaaatagt gatacactaa aagaaatgga ttatgttata 120 ggtgaaattg aaaatgatag cgaagtactt gcagtaattt taactggagc aggagaaaaa 180 tcatttgtag caggagcaga tatttctgag atgaaggaaa tgaataccat tgaaggtaga 240 aaattcggga tacttggaaa taaagtgttt agaagattag aacttcttga aaagcctgta 300 atagcagctg ttaatggttt tgctttagga ggcggatgcg aaatagctat gtcttgtgat 360 ataagaatag cttcaagcaa cgcaagattt ggtcaaccag aagtaggtct cggaataaca 420 cctggttttg gtggtacaca aagactttca agattagttg gaatgggcat ggcaaagcag 480 cttatattta ctgcacaaaa tataaaggca gatgaagcat taagaatcgg acttgtaaat 540 aaggtagtag aacctagtga attaatgaat acagcaaaag aaattgcaaa caaaattgtg 600 agcaatgctc cagtagctgt taagttaagc aaacaggcta ttaatagagg aatgcagtgt 660 gatattgata ctgctttagc atttgaatca gaagcatttg gagaatgctt ttcaacagag 720 gatcaaaagg atgcaatgac agctttcata gagaaaagaa aaattgaagg cttcaaaaat 780 agatagtga 789 <210> 11 <211> 849 <212> DNA <213> Artificial Sequence <220> <223> hbd gene from Clostridium acetobutylicum (ATCC824) <400> 11 atgaaaaagg tatgtgttat aggtgcaggt actatgggtt caggaattgc tcaggcattt 60 gcagctaaag gatttgaagt agtattaaga gatattaaag atgaatttgt tgatagagga 120 ttagatttta tcaataaaaa tctttctaaa ttagttaaaa aaggaaagat agaagaagct 180 actaaagttg aaatcttaac tagaatttcc ggaacagttg accttaatat ggcagctgat 240 tgcgatttag ttatagaagc agctgttgaa agaatggata ttaaaaagca gatttttgct 300 gacttagaca atatatgcaa gccagaaaca attcttgcat caaatacatc atcactttca 360 ataacagaag tggcatcagc aactaaaaga cctgataagg ttataggtat gcatttcttt 420 aatccagctc ctgttatgaa gcttgtagag gtaataagag gaatagctac atcacaagaa 480 acttttgatg cagttaaaga gacatctata gcaataggaa aagatcctgt agaagtagca 540 gaagcaccag gatttgttgt aaatagaata ttaataccaa tgattaatga agcagttggt 600 atattagcag aaggaatagc ttcagtagaa gacatagata aagctatgaa acttggagct 660 aatcacccaa tgggaccatt agaattaggt gattttatag gtcttgatat atgtcttgct 720 ataatggatg ttttatactc agaaactgga gattctaagt atagaccaca tacattactt 780 aagaagtatg taagagcagg atggcttgga agaaaatcag gaaaaggttt ctacgattat 840 tcaaaataa 849 <210> 12 <211> 1194 <212> DNA <213> Artificial Sequence <220> <223> codon-optimized ter gene from Treponema denticola <400> 12 atgatcgtca agccaatggt gcgcaataat atctgtctga acgctcaccc gcagggttgt 60 aaaaagggtg tagaagacca gattgaatac actaagaaac gcatcaccgc agaagttaaa 120 gcaggtgcca aagcaccgaa aaacgtcctg gtgctgggct gcagcaacgg ctacggtctg 180 gcaagccgca ttacggctgc attcggttac ggcgctgcta ctattggtgt tagcttcgaa 240 aaggcgggtt ctgaaaccaa atacggcact ccaggctggt acaacaacct ggcattcgac 300 gaagcagcga agcgtgaggg tctgtactct gttaccatcg acggtgacgc gttctctgac 360 gagatcaaag ctcaggttat cgaggaagct aaaaagaaag gtatcaaatt cgacctgatt 420 gtgtactccc tggcctctcc ggttcgtacc gacccggata ccggcatcat gcacaaaagc 480 gtactgaagc cgtttggcaa aaccttcact ggtaaaaccg ttgatccttt caccggcgag 540 ctgaaggaaa tctccgccga gccagctaac gatgaggagg ctgctgcgac cgttaaagtg 600 atgggtggcg aagactggga acgttggatc aaacaactgt ccaaggaagg tctgctggag 660 ggggctgta ttactctggc atattcttac atcggcccgg aggcgactca ggcactgtat 720 cgtaagggca ccatcggtaa agcgaaagaa catctggagg ccaccgctca ccgtctgaac 780 aaggaaaacc cgagcatccg tgctttcgtg tccgttaaca agggcctggt tacgcgcgct 840 tccgcagtaa ttccggtcat tccgctgtac ctggcttccc tgtttaaagt catgaaagaa 900 aaaggcaacc acgaaggttg tatcgaacaa attactcgcc tgtatgcgga gcgcctgtac 960 cgtaaggatg gcactatccc ggttgatgaa gagaaccgca tccgcattga cgattgggaa 1020 ctggaagagg atgtacagaa agcggtttcc gcgctgatgg aaaaagtgac gggcgaaaac 1080 gcggaatccc tgacggatct ggcaggttac cgtcacgact ttctggcgtc taatggtttc 1140 gacgttgagg gtattaacta cgaggcagaa gttgaacgtt tcgatcgtat ttaa 1194 <210> 13 <211> 861 <212> DNA <213> Artificial Sequence <220> <223> tesB gene from Escherichia coli W3110 <400> 13 atgagtcagg cgctaaaaaa tttactgaca ttgttaaatc tggaaaaaat tgaggaagga 60 ctctttcgcg gccagagtga agatttaggt ttacgccagg tgtttggcgg ccaggtcgtg 120 ggtcaggcct tgtatgctgc aaaagagacc gtccctgaag agcggctggt acattcgttt 180 cacagctact ttcttcgccc tggcgatagt aagaagccga ttatttatga tgtcgaaacg 240 ctgcgtgacg gtaacagctt cagcgcccgc cgggttgctg ctattcaaaa cggcaaaccg 300 attttttata tgactgcctc tttccaggca ccagaagcgg gtttcgaaca tcaaaaaaca 360 atgccgtccg cgccagcgcc tgatggcctc ccttcggaaa cgcaaatcgc ccaatcgctg 420 gcgcacctgc tgccgccagt gctgaaagat aaattcatct gcgatcgtcc gctggaagtc 480 cgtccggtgg agtttcataa cccactgaaa ggtcacgtcg cagaaccaca tcgtcaggtg 540 tggatccgcg caaatggtag cgtgccggat gacctgcgcg ttcatcagta tctgctcggt 600 tacgcttctg atcttaactt cctgccggta gctctacagc cgcacggcat cggttttctc 660 gaaccgggga ttcagattgc caccattgac cattccatgt ggttccatcg cccgtttaat 720 ttgaatgaat ggctgctgta tagcgtggag agcacctcgg cgtccagcgc acgtggcttt 780 gtgcgcggtg agttttatac ccaagacggc gtactggttg cctcgaccgt tcaggaaggg 840 gtgatgcgta atcacaatta a 861 <210> 14 <211> 3262 <212> DNA <213> Artificial Sequence <220> <223> budABC operon from Enterobacter aerogenes KCTC2190 <400> 14 atgaatcatg cttcagattg cacctgtgaa gagagtctgt gtgaaacgct acgcgcgttt 60 tccgctcagc atcccgatag cgtgctgtat caaacttcgc tgatgagcgc cctgctcagc 120 ggcgtctacg aaggtaccac caccattgcg gacctgctga agcacggtga tttcgggctc 180 ggcactttta atgaactcga cggcgagctg atcgcgttta gcagccaggt ttatcaactg 240 cgtgccgacg gcagcgcgcg taaagcgcgt ccggaacaga aaacgccgtt tgcggtgatg 300 acctggtttc agccgcagta ccgtaaaacc tttgaccatc cggtcagccg ccagcagctg 360 gcgaatcgat 420 ggtcatttcc gccacgccca tacccgcacc gtgcctcgtc agacgccgcc ctaccgggcg 480 atgaccgacg tgctcgacga tcagccggtt ttccgcttta accagcgtga cggcgtactg 540 gtcggttttc gtaccccgca gcatatgcag ggaattaacg tcgccggcta tcacgaacac 600 ttcattaccg atgaccgcca gggcggcggc cacctgctgg actaccagct cgaccatggg 660 gtattgacct tcggcgaaat tcataagctg atgatcgacc ttcccgccga cagcgcgttc 720 ctgcaggcca atttgcatcc cgataatctc gatgccgcca tccgttcagt agaaagttag 780 gaggttcaca tggacaaaca gtatccgcag cgccagtggg cgcacggcgc cgatctggtc 840 gtcagccaac tggaagcgca aggcgtacgg caggtcttcg ggatccccgg cgctaaaatc 900 gataaggttt tcgactcgtt gctggactcc tcaatccgca ttattccggt acgtcacgag 960 gccaacgccg cctttatggc cgccgcggtc gggcgcatta ccggcaaagc gggcgtcgcg 1020 ctggtgacct ccggacccgg ttgttccaac ctgataaccg ggatggccac cgccaatagc 1080 gaaggcgacc cggtggtggc gctgggcggc gcggtcaaac gcgcggataa agccaaacag 1140 gtacaccaga gtatggacac ggtggcgatg ttcagcccgg tcaccaaata cgcggtagaa 1200 gtgacctcgc cggatgcgct ggcggaagtg gtttctaacg cttttcgcgc cgccgagcag 1260 ggtcgcccgg gcagcgcctt cgtcagtctg ccgcaggatg tggtcgatgg tccggtgacc 1320 ggcaaagtcc tgcccgccag cagcgcgccg cagatgggcg ccgcgcctga cgaggcaatc 1380 aatcaggttg cgaagttgat tgcccaggcg aagaatccgg tgttcctgct tggattaatg 1440 gccagccaga cggaaaacag cgccgcgctg catcgtttgc tggaaaccag ccatattccg 1500 gtcaccagca cctatcaggc cgccggggcg gtcaatcagg ataacttctc gcgcttcgcc 1560 gggcgcgtcg ggctgtttaa caatcaggcc ggtgaccgct tattgcaact ggccgacctg 1620 gttatctgca tcggctatag cccggtggaa tacgaaccgg cgatgtggaa cagcggcaac 1680 gcgacgctgg tacatatcga cgtactgccc gcctatgaag agcgtaacta cacgccggat 1740 gtcgagctgg tgggcgacat cgccggcacg ctgaacaagc tggcgcaaaa tatcgatcat 1800 cggctggtgc tctcgccgca ggctgctgaa atcctccacg accgccagca tcagcgggaa 1860 ctgcttgacc gccgcggagc gcagttgaat cagtttgccc tgcacccgct gcgtatcgtt 1920 cgcgccatgc aggatatcgt caacagcgac gtcacgctga cggtcgatat ggggagcttc 1980 catatctgga tcgcccgcta tctctacagc ttccgcgccc gtcaggtgat gatctccaac 2040 ggtcagcaga ccatgggcgt cgccctgccg tgggccatcg gggcctggct ggtcaatccg 2100 cgcgcaaag tggtctcggt ctccggcgat ggcggttttc tgcaatccag catggagctg 2160 gaaacggcgg tccgcctgaa agccaacatc ctgcatctta tctgggtcga taacggctac 2220 aacatggtcg ccatccagga agagaaaaaa tatcaacgcc tgtccggcgt cgagttcggt 2280 cctatggatt ttaaagccta tgccgaatcc ttcggcgcga aagggtttgc ggtggaaagc 2340 gctgaggcgc tggagccgac gctacgcgcg gcgatggacg tcgacggccc ggcggtggtc 2400 gccatccccg tggattaccg tgataacccg ctgctgatgg gccagctaca cctgagtcaa 2460 attctttaag tcatcacaaa aggaaatgga aatgaaaaaa gtcgcacttg tcaccggcgc 2520 cggtcagggc attggtaaag ctatcgcgtt acgcctcgtg aaggacggtt ttgccgtggc 2580 gatcgccgat tacaatgacg tcacagcgaa agccgtggcg gatgaaatca accagcacgg 2640 cggccgggca atcgcggtca aagtcgatgt ttccgaccgt gagcaggtgt ttgccgccgt 2700 cgaacaggcg cgaaaaacgc tgggcggatt caacgtcatc gtcaataacg ccggggtcgc 2760 gccatcaacg cctatcgaat ccattacgcc ggagattgtc gacaaggtct acaacatcaa 2820 cgttaaaggg gtgatctggg ggattcaggc ggcagtcgag gcctttaaaa aagaggggca 2880 cggcggcaaa atcatcaacg cctgttcgca ggccggacac gtcggcaacc cggaactggc 2940 ggtctacagc tcgagcaaat tcgccgtacg cggtttaacg caaaccgccg ctcgcgacct 3000 ggcgccgctg ggtattaccg ttaacggcta ctgcccgggg attgtgaaaa cgccgatgtg 3060 ggccgagatc gatcgtcagg tatccgaagc ggcgggtaaa cctctgggct acgggacagc 3120 cgaattcgcc aaacgcatca ccctcggccg cctgtctgag ccagaagatg tcgccgcctg 3180 cgtctcttat ctcgccagcc cggattccga ttatatgacc ggtcaatcgc tgctgatcga 3240 tggcgggatg gtattcaatt aa 3262 <210> 15 <211> 89 <212> DNA <213> Artificial Sequence <220> <223> forward primer of FRT4 <400> 15 ctagtgctgg agcgaactgc gaagttccta tactttctag agaataggaa cttcggaata 60 ggaacttcaa gatcccctca cgctgccgc 89 <210> 16 <211> 89 <212> DNA <213> Artificial Sequence <220> <223> reverse primer of FRT4 <400> 16 ggagtactcg cggttgactg agttcctatt ccgaagttcc tattctctag aaagtatagg 60 aacttcagag cgcttttgaa gctggggtg 89 <210> 17 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> forward primer of ptsG_del4 <400> 17 cgttgtatcg catgttatgg cagaagcagg cggttccgtc tttgcaaaca ctagtgctgg 60 agcgaactgc 70 <210> 18 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> reverse primer of ptsG_del4 <400> 18 aacgctgacg cgcagacggg taatacatgc gtcgaggtta gtaatgtttt ggagtactcg 60 cggttgactg 70 <210> 19 <211> 101 <212> DNA <213> Artificial Sequence <220> RpsL-A128G-oligo <400> 19 cgttagtcag acgaacacgg catactttac gcagcgcgga gttcggtttt ctaggagtgg 60 tagtatatac acgagtacat acgccacgtt tttgcgggca t 101 <210> 20 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> forward primer of ptsG_rpsLneo <400> 20 acacggcgag gctctccccc cttgccacgc gtgagaacgt aaaaaaagca ggcctggtga 60 tgatggcggg 70 <210> 21 <211> 81 <212> DNA <213> Artificial Sequence <220> <223> reverse primer of ptsG_rpsLneo <400> 21 atcagcgatt taccgacctt ttgcaggtta gcaaatgcat tcttaaacat tcagaagaac 60 tcgtcaagaa ggcgatagaa g 81 <210> 22 <211> 126 <212> DNA <213> Artificial Sequence <220> <223> ptsG_UTR1_oligo <400> 22 acacggcgag gctctccccc cttgccacgc gtgagaacgt aaaaaaagca atattgagaa 60 ggacatctcc tcgataatgt ttaagaatgc atttgctaac ctgcaaaagg tcggtaaatc 120 gctgat 126 <210> 23 <211> 125 <212> DNA <213> Artificial Sequence <220> <223> ptsG_UTR2_oligo <400> 23 acacggcgag gctctccccc cttgccacgc gtgagaacgt aaaaaaagca atattgagaa 60 ggagatatct caataatgtt taagaatgca tttgctaacc tgcaaaaggt cggtaaatcg 120 ctgat 125 <210> 24 <211> 125 <212> DNA <213> Artificial Sequence <220> <223> ptsG_UTR3_oligo <400> 24 acacggcgag gctctccccc cttgccacgc gtgagaacgt aaaaaaagca atattgagaa 60 ggagttatct cgataatgtt taagaatgca tttgctaacc tgcaaaaggt cggtaaatcg 120 ctgat 125 <210> 25 <211> 124 <212> DNA <213> Artificial Sequence <220> <223> ptsG_UTR4_oligo <400> 25 acacggcgag gctctccccc cttgccacgc gtgagaacgt aaaaaaagca ataacgagta 60 ggagtttctc gataatgttt aagaatgcat ttgctaacct gcaaaaggtc ggtaaatcgc 120 tgat 124 <210> 26 <211> 126 <212> DNA <213> Artificial Sequence <220> <223> ptsG_UTR5_oligo <400> 26 acacggcgag gctctccccc cttgccacgc gtgagaacgt aaaaaaagca acattcacaa 60 ggagacgtca acaatcatgt ttaagaatgc atttgctaac ctgcaaaagg tcggtaaatc 120 gctgat 126 <210> 27 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> forward primer of C-ptsG_UTR <400> 27 catatgtttt gtcaaaatgt gcaacttctc caatgat 37 <210> 28 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> reverse primer of C-ptsG_UTR <400> 28 ttttaaccat gatgccatag gcaacaactg c 31 <210> 29 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> forward primer of C-ptsG_del <400> 29 cggtaaatcg ctgatgctgc cggta 25 <210> 30 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> reverse primer of C-ptsG_del <400> 30 gtggttacgg atgtactcat ccatctcg 28

Claims (15)

합성 5' UTR 서열을 포함하는 ptsG 유전자를 미생물에 도입하는 단계; 를 포함하는 부탄올 생산용 미생물의 제조 방법.
Introducing a ptsG gene comprising a synthetic 5 ' UTR sequence into a microorganism; &Lt; / RTI &gt;
제1항에 있어서, 상기 합성 5' UTR은 서열번호 1 내지 4의 염기서열로 이루어진 군으로부터 선택되는 하나의 서열로 이루어진 것을 특징으로 하는, 방법.
4. The method of claim 1, wherein the synthetic 5 'UTR comprises a sequence selected from the group consisting of the nucleotide sequences of SEQ ID NOS: 1-4.
제1항에 있어서, 상기 방법은 부탄올 생산을 위한 adhE2 유전자 및 fdh1 유전자를 미생물에 도입하는 단계; 를 추가로 포함하는 것을 특징으로 하는, 방법.
2. The method of claim 1, wherein the method comprises: introducing an adhE2 gene and a fdhl gene for butanol production into a microorganism; &Lt; / RTI &gt;
제1항 내지 제3항 중 어느 한 항에 따른 방법을 이용하여 제조되는 것을 특징으로 하는 부탄올 생산용 재조합 미생물.
A recombinant microorganism for producing butanol, which is produced using the method according to any one of claims 1 to 3.
제4항의 재조합 미생물을 배양하는 단계; 를 포함하는 부탄올의 생산 방법.
Culturing the recombinant microorganism of claim 4; &Lt; / RTI &gt;
합성 5' UTR 서열을 포함하는 ptsG 유전자를 미생물에 도입하는 단계; 를 포함하는 부틸산 생산용 미생물의 제조 방법.
Introducing a ptsG gene comprising a synthetic 5 ' UTR sequence into a microorganism; &Lt; / RTI &gt;
제6항에 있어서, 상기 합성 5' UTR은 서열번호 5로 표시되는 염기서열로 이루어진 것을 특징으로 하는, 방법.
7. The method of claim 6, wherein the synthetic 5 'UTR comprises the nucleotide sequence of SEQ ID NO: 5.
제6항에 있어서, 상기 방법은 부틸산 생산을 위한 crt 유전자, hbd 유전자 및 tesB 유전자를 미생물에 도입하는 단계; 를 추가로 포함하는 것을 특징으로 하는, 방법.
7. The method of claim 6, wherein the method further comprises: introducing a crt gene, hbd gene, and tesB gene for production of butyric acid into a microorganism; &Lt; / RTI &gt;
제6항 내지 제8항 중 어느 한 항에 따른 방법을 이용하여 제조되는 것을 특징으로 하는 부틸산 생산용 재조합 미생물.
A recombinant microorganism for producing butyric acid, which is produced using the method according to any one of claims 6 to 8.
제9항의 재조합 미생물을 배양하는 단계; 를 포함하는 부틸산의 생산 방법.
Culturing the recombinant microorganism of claim 9; &Lt; / RTI &gt;
합성 5' UTR 서열을 포함하는 ptsG 유전자를 미생물에 도입하는 단계; 를 포함하는 2,3-부탄디올 생산용 미생물의 제조 방법.
Introducing a ptsG gene comprising a synthetic 5 ' UTR sequence into a microorganism; Wherein the microorganism is a microorganism capable of producing 2,3-butanediol.
제11항에 있어서, 상기 합성 5' UTR은 서열번호 5로 표시되는 염기서열로 이루어진 것을 특징으로 하는, 방법.
12. The method of claim 11, wherein the synthetic 5 'UTR comprises the nucleotide sequence of SEQ ID NO: 5.
제11항에 있어서, 상기 방법은 2,3-부탄디올 생산을 위한 budABC 오페론을 미생물에 도입하는 단계; 를 추가로 포함하는 것을 특징으로 하는, 방법.
12. The method of claim 11, wherein the method comprises: introducing a budABC operon for 2,3-butanediol production into a microorganism; &Lt; / RTI &gt;
제11항 내지 제13항 중 어느 한 항에 따른 방법을 이용하여 제조되는 것을 특징으로 하는 2,3-부탄디올 생산용 재조합 미생물.
A recombinant microorganism for producing 2,3-butanediol, which is produced by using the method according to any one of claims 11 to 13.
제14항의 재조합 미생물을 배양하는 단계; 를 포함하는 2,3-부탄디올의 생산 방법.Culturing the recombinant microorganism of claim 14; &Lt; RTI ID = 0.0 &gt; 2,3-butanediol &lt; / RTI &gt;
KR1020170129180A 2016-10-06 2017-10-10 Recombinant microorganism with regulated glycolytic flux and method of producing compound using the same KR101965341B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160128973 2016-10-06
KR20160128973 2016-10-06

Publications (2)

Publication Number Publication Date
KR20180038404A true KR20180038404A (en) 2018-04-16
KR101965341B1 KR101965341B1 (en) 2019-04-03

Family

ID=62082097

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170129180A KR101965341B1 (en) 2016-10-06 2017-10-10 Recombinant microorganism with regulated glycolytic flux and method of producing compound using the same

Country Status (1)

Country Link
KR (1) KR101965341B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102008998B1 (en) * 2018-04-26 2019-08-08 포항공과대학교 산학협력단 Hexanoic acid-producing recombinant microorganism and method of producing hexanoic acid using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Biotechnology For Biofuels. Vol. 8, No. 106, 페이지 1-12 (2015.07.31.) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102008998B1 (en) * 2018-04-26 2019-08-08 포항공과대학교 산학협력단 Hexanoic acid-producing recombinant microorganism and method of producing hexanoic acid using the same

Also Published As

Publication number Publication date
KR101965341B1 (en) 2019-04-03

Similar Documents

Publication Publication Date Title
US11142761B2 (en) Compositions and methods for rapid and dynamic flux control using synthetic metabolic valves
AU2008310573A1 (en) Microorganism engineered to produce isopropanol
US10266831B2 (en) Recombinant microorganisms having a methanol elongation cycle (MEC)
EP2895593B1 (en) Production of organic acids by fermentation at low ph
WO2014153207A2 (en) Recombinant microorganisms having a methanol elongation cycle (mec)
US20170233713A1 (en) Hydrocarbon synthase gene and use thereof
EP3087174B1 (en) Methods and organisms with increased carbon flux efficiencies
Gulevich et al. Metabolic engineering of Escherichia coli for 1, 3-butanediol biosynthesis through the inverted fatty acid β-oxidation cycle
KR101965341B1 (en) Recombinant microorganism with regulated glycolytic flux and method of producing compound using the same
JP5649119B2 (en) Shiro-inositol producing cell and method for producing scyllo-inositol using the cell
KR20140092950A (en) Preparation method of succinic acid using recombinant yeast having a resistance to succinic acid
CA3179180A1 (en) Methods and compositions for the production of xylitol from xylose utilizing dynamic metabolic control
Skorokhodova et al. Effect of extra-and intracellular sources of CO 2 on anaerobic utilization of glucose by Escherichia coli strains deficient in carboxylation-independent fermentation pathways
EP3645725A1 (en) Microorganism with stabilized copy number of functional dna sequence and associated methods
KR102008998B1 (en) Hexanoic acid-producing recombinant microorganism and method of producing hexanoic acid using the same
US20230183757A1 (en) Methods and compositions for the production of xylitol from xylose utilizing dynamic metabolic control
Seo Production of 1-butanol and butanol isomers by metabolically engineered Clostridium beijerinckii and Saccharomyces cerevisiae
KR20230138798A (en) Platform for intensive expression of target protein through ProP-linking in minicell and its subsequent production of bio-products
JP2017192369A (en) Recombinant cell and method for producing isobutyric acid

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right